WO2006025478A1 - 高純度ジアリールカーボネートの工業的製造方法 - Google Patents

高純度ジアリールカーボネートの工業的製造方法 Download PDF

Info

Publication number
WO2006025478A1
WO2006025478A1 PCT/JP2005/015980 JP2005015980W WO2006025478A1 WO 2006025478 A1 WO2006025478 A1 WO 2006025478A1 JP 2005015980 W JP2005015980 W JP 2005015980W WO 2006025478 A1 WO2006025478 A1 WO 2006025478A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbonate
tower
column
distillation column
boiling point
Prior art date
Application number
PCT/JP2005/015980
Other languages
English (en)
French (fr)
Inventor
Shinsuke Fukuoka
Hironori Miyaji
Hiroshi Hachiya
Kazuhiko Matsuzaki
Original Assignee
Asahi Kasei Chemicals Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corporation filed Critical Asahi Kasei Chemicals Corporation
Priority to CN2005800295308A priority Critical patent/CN101010285B/zh
Priority to US11/661,605 priority patent/US20080064846A1/en
Priority to JP2006532776A priority patent/JP4292211B2/ja
Priority to BRPI0514693-3A priority patent/BRPI0514693A/pt
Priority to EP05776685A priority patent/EP1787976A4/en
Priority to EA200700546A priority patent/EA012179B1/ru
Publication of WO2006025478A1 publication Critical patent/WO2006025478A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C68/00Preparation of esters of carbonic or haloformic acids
    • C07C68/06Preparation of esters of carbonic or haloformic acids from organic carbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • B01D3/143Fractional distillation or use of a fractionation or rectification column by two or more of a fractionation, separation or rectification step
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • B01D3/16Fractionating columns in which vapour bubbles through liquid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C68/00Preparation of esters of carbonic or haloformic acids
    • C07C68/08Purification; Separation; Stabilisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/96Esters of carbonic or haloformic acids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Definitions

  • the present invention relates to an industrial process for producing high-purity diaryl carbonate. More specifically, the reaction mixture containing alkylaryl carbonate obtained by transesterification of dialkyl carbonate and aromatic monohydroxy compound is used as a raw material, and transesterification is carried out in a reactive distillation column having a specific structure. The resulting reaction mixture containing diaryl carbonate was separated and purified using a continuous multistage distillation column having two specific structures, and high-purity diaryl carbonate useful as a raw material for transesterification polycarbonate was industrially produced. It relates to a method of manufacturing.
  • High-purity diaryl carbonate is important as a raw material for producing aromatic polycarbonate, which is the most demanding engineering plastic, without using toxic phosgene.
  • a method for producing an aromatic carbonate a method of reacting an aromatic monohydroxy compound with phosgene has been known for a long time, and various studies have been made recently.
  • the aromatic carbonate produced by this method has chlorinated impurities that are difficult to separate, and cannot be used as a raw material for aromatic polycarbonate as it is. .
  • Lewis acids such as transition metal halides or compounds that generate Lewis acids
  • Patent Document 1 JP-A-51-105032, JP-A-56-123948, JP-A-56-123949
  • Gazette West German Patent Publication No. 2528412, British Patent No. 1499530, US Patent No. 4182726
  • Japanese Patent Laid-Open No. 51-75044 West German Patent Publication No. 2552907, US Patent No. 4045464) Description
  • tin compounds such as organotin alkoxides and organic stanoxides
  • Patent Document 2 JP 54-48733 A (West German Patent Publication No. 2736062), JP 54-63023 A, Kokai 60-169444 (U.S. Pat.
  • Patent Documents JP-A-60-169445 (U.S. Pat. No. 4,552,704), JP-A-62-277345, JP-A-1- 265063), alkali metal or alkaline earth metal salts and alkoxides (Patent Documents) 3: JP-A-57-176932), lead compounds (Patent Document 4: JP-A-57-176932, JP-A-1-93560), copper, iron, zirconium and other metals Complexes (Patent Document 5: JP-A-57-183745), titanic acid esters (Patent Document 6: JP-A-58-185536 (US Pat. No.
  • Patent Document 7 Japanese Patent Laid-Open No. 60-173016 (US Pat. No. 460 9501)), Sc, Mo, Mn, Bi, Te and other compounds (patents)
  • Patent Document 8 JP-A-1-265 064
  • ferric acetate Patent Document 9: JP-A-61-172852
  • Patent Document 10 JP-A-54-48732 (West German Patent Publication No. 736). 063, US Pat. No. 4,252,737)
  • Patent Document 11 Japanese Patent Laid-Open No. 58-185536 (US Pat. No. 410464)
  • Patent Document 12 Examples of JP-A-56-123948 (US Pat. No. 4,182,726)), Examples of JP-A-56-25138, JP-A-60-169444 (US Pat. No. 4554110), Example of JP-A-60-169445 (U.S. Pat.No. 4,552,704), Example of JP-A-60-173016 (U.S. Pat.No. 4,609,501) Examples, Examples of JP-A 61-172852, Examples of JP-A 61-291545, Examples of JP-A 62-277345).
  • the inventors of the present invention continuously supply dialkyl carbonate and aromatic hydroxy compound to a multistage distillation column, and continuously react in the column in the presence of a catalyst to produce by-produced alcohol.
  • a low-boiling component containing nitrogen is continuously extracted by distillation, and a component containing the generated alkylaryl carbonate is extracted from the bottom of the column (Patent Document 13: Japanese Patent Publication No. Hei 3-291257), and alkylaryl carbonate is continuously extracted.
  • Patent Document 14 Japanese Patent Laid-Open No. 4-9358. These reactions are carried out using two continuous multistage distillation columns to efficiently produce dialkyl carbonate as a by-product. Reactive distillation method for continuously producing diaryl carbonate while recycling it continuously (Patent Document 15: Japanese Patent Laid-Open No.
  • Patent Document 17 International Publication No. 00Z18720 (US Pat. No. 5,362,901)
  • Patent Document 18 Italian Patent No. 01255746
  • Patent Document 19 Special Kaihei 6-9506 (European Patent No. 05 60159, US Pat. No. 5,282,965)
  • Patent Document 20 Japanese Patent Laid-Open No. 6-41022 (European Patent 0572870, US Pat. No. 5,362,901)
  • Patent Document 21 JP-A-6-157424 (European Patent 0582931, US Pat. No.
  • Patent Document 23 Japanese Patent Laid-Open No. 9-40616
  • Patent Document 24 Japanese Patent Laid-Open No. 9-59225
  • Patent Document 25 Japanese Patent Laid-Open No. 9-110805
  • Patent Document 26 Japanese Patent Laid-Open No. 9-165357
  • Patent Document 27 JP-A-9-173819
  • Patent Document 28 JP-A-9-176094, JP2000-191596, JP2000-191597
  • Patent Document 29 JP-A-9- 194 436 (European Patent 0785184, US Pat. No.
  • Patent Reference 30 International Publication No. 00Z18720 (US Patent No. 6093842), International Publication No. 01Z042187 (Special Table No. 2003-516376); Patent Reference 31: Japanese Unexamined Patent Publication No. 20-01-64234, Japanese Unexamined Patent Publication No. 2001-64235 gazette; Patent Document 32: International Publication No. 02Z4 0439 gazette (US Pat. No. 6,596,894, US Pat. No. 6596895, US Pat. No. 660,0061).
  • the applicant of the present invention is a high-boiling point containing a catalyst component as a method for stably producing a high-purity aromatic carbonate for a long time without requiring a large amount of catalyst.
  • a method of separating a substance after reacting with an active substance and recycling a catalyst component Patent Document 33: WO 97Z11049 (European Patent 0855384, US Pat. No. 58 72275))
  • Patent Document 34 Japanese Patent Laid-Open No. 11-92429 (European Patent No. 1016648) US Pat. No. 6,622,210)
  • Patent Document 35 JP-A-9-255772 (European Patent 0892001, US Pat. No. 5,747,609)).
  • the reaction mixture containing the catalyst is flash-distilled with an evaporator, etc., and separated into a low-boiling substance and a high-boiling substance containing most of the catalyst, and then the low-boiling substance is distilled in a distillation column for recovering the raw material.
  • a method for obtaining diphenyl carbonate containing a catalyst as a bottom substance and distilling it in a purification tower to obtain diphenyl carbonate as a top component Patent Document 37: JP-A-4 100824, Examples) 1; Patent Document 38: JP-A-9 169704
  • the reaction mixture containing the catalyst is distilled in a distillation column (and an evaporator) and separated into a low-boiling substance and a high-boiling substance containing most of the catalyst.
  • a distillation column and an evaporator
  • Examples thereof include a method (Patent Document 25) in which distillate carbonate is obtained as a top component by sequentially performing continuous distillation using a distillation apparatus having a three-column power of a phenyl carbonate separation tower and a diphenyl carbonate separation tower.
  • Another method is a method of obtaining diaryl carbonate as a bottom component of a distillation column, for example,
  • the reaction mixture containing the catalyst is distilled in a distillation tower and separated into a low-boiling substance and a high-boiling substance containing most of the catalyst, and then the low-boiling substance is distilled in a distillation tower and diphenyl is used as a bottom component.
  • Examples thereof include a method for obtaining carbonate (Patent Document 31).
  • Another method is a method of obtaining diaryl carbonate as a side cut component of a distillation column.
  • diphenyl carbonate is heated to a high temperature at the bottom of two distillation towers, a light boiling separation tower and a methylphenyl carbonate separation tower, and then exposed to a high temperature in a diphenyl carbonate separation tower.
  • modification of diphenyl carbonate occurs, resulting in a decrease in purity and a decrease in yield.
  • the method of obtaining diphenol carbonate from the bottom of the column of IV is not suitable because the target polycarbonate cannot be produced because of its low purity.
  • a reaction mixture containing all of the catalyst, unreacted raw materials, impurities, and the like is introduced from the top of the third reactive distillation column from the bottom of the second reactive distillation column. Since the phenol carbonate is extracted, the purity of the diphenol carbonate from which the vapor and mist of catalyst, impurities and raw materials can be entrained is low.
  • the production amount of diphenyl carbonate is 6.7 kgZhr (Patent Document 34, Example 3) and 3.9 kg / hr (Patent Document 35, Example 1), which is not an industrial scale.
  • the method VII) is a preferable method, but the production amount of diphenyl carbonate is as small as 2 kgZhr (Patent Document 40, Example 8) and is not an industrial scale.
  • the top pressure of the first purification column is high at 200 Pa, it is difficult to implement industrially because it requires a very large distillation column that can maintain a high vacuum.
  • Patent Document 36 Example 2
  • this example is produced by the phosgene method, and it is a purification method of diphenyl carbonate that always contains chlorine impurities. There is no mention of adverse effects. In this method, it is not sufficient to separate these chlorinated impurities, and it cannot be used as a raw material for polycarbonate. This is because Patent Document 41 (Japanese Patent Laid-Open No. 11-12230) filed more than one year after Patent Document 36.
  • Comparative Example 1 Alkali Hot Water Washing 2 times then Hot Water Washing. Then, diphenyl carbonate dehydrated by distillation was passed through a solid alkali packed column and then distilled under reduced pressure in a multistage distillation column). Column not used).
  • Patent Document 36 as a method for evaluating the purity of diphenol carbonate obtained by distillation, the temperature and time at which phenol reacts with bisphenol A and begins to distill is shown.
  • the test method cannot evaluate diphenyl carbonate suitable for polymerization. This is because even in low-purity diphenyl carbonate, which cannot produce a polycarbonate having the required degree of polymerization, the reaction of eliminating the initial phenol is sufficient.
  • this evaluation method uses a large amount of 2.3 ppm of NaOH relative to bisphenol A as the catalyst. For example, diphenol carbonate containing 1 ppm of chlorinated impurities has high purity. It will be mistakenly evaluated as suitable as a raw material for polycarbonate.
  • the diphenyl carbonate having the necessary purity as a raw material for polycarbonate is obtained by the purification method of Patent Document 36.
  • the purification amount of diphenyl carbonate disclosed in Patent Document 36 is 0.57 kgZhr, which is not an industrial scale.
  • the reaction mixture obtained by the transesterification reaction using dialkyl carbonate and phenol as raw materials in the presence of a homogeneous catalyst usually contains various reaction by-products.
  • High boiling point by-products such as salicylic acid phenol, xanthone, methoxybenzoic acid phenol, 1 phenoxy carboluene, 2-phenoxy power, lupoxy phenol, etc., which have a higher boiling point than carbonate, are reduced to a sufficient level.
  • diphenol carbonate is used as a raw material for the transesterification polycarbonate, it may cause coloration and deterioration of physical properties. Therefore, it is preferable to reduce these impurities as much as possible.
  • the problem to be solved by the present invention is to use a reaction mixture containing an alkylaryl carbonate obtained by transesterification of a dialkyl carbonate and an aromatic monohydroxy compound as a raw material, and as a raw material for a high-quality, high-performance polycarbonate.
  • the purpose is to provide a specific method for producing a high-purity diaryl carbonate that can be used stably on an industrial scale of 1 ton Zhr or more for a long period of time.
  • the present inventors disclosed a method for producing aromatic carbonates using a continuous multistage distillation column, there have been many proposals relating to a method for producing a reaction mixture containing aromatic carbonates by a reactive distillation method or the like. These are all small-scale and short-term laboratory levels, and therefore, the reaction mixture power is also high-quality high-performance polycarbonate that can be used as a raw material for high-performance polycarbonate on an industrial scale. We have not been able to disclose concrete methods and devices that can be mass-produced. Therefore, the present inventors are able to produce a high-purity diaryl carbonate, which is important as a raw material for high-quality and high-performance polycarbonate, on an industrial scale of 1 ton or more per hour. As a result of repeated studies to find a method, the present invention has been achieved.
  • a reaction mixture containing an alkylaryl carbonate obtained by transesterification of a dialkyl carbonate and an aromatic monohydroxy compound is used as a raw material, and this raw material is composed of a continuous multistage distillation column in which a homogeneous catalyst exists. Continuously fed into the reactive distillation column The low-boiling point reaction mixture containing the dialkyl carbonate to be produced is simultaneously extracted in the column from the upper part of the column in a gaseous state, and the high-boiling point reaction mixture containing diaryl carbonate is removed from the lower part of the column.
  • the liquid is continuously withdrawn, and the high-boiling reaction mixture is continuously introduced into the high-boiling-point material separation tower A, and is added to the top component (A) containing diaryl carbonate and the bottom component (A) containing catalyst. Continuously distilled off and then the top of the column
  • Ingredient (A) is continuously fed to a diaryl carbonate purification tower B having a side cut outlet.
  • the reactive distillation column is a continuous multi-stage distillation column satisfying the following formulas (1) to (6), having a length L (cm), an inner diameter D (cm), and an internal number n of stages.
  • the diaryl carbonate purification tower B satisfies the following formulas (10) to (15), has a length of 1 ⁇ (cm), an inner diameter D (cm), and has an internal inside.
  • To the middle of the tower There is a side cut outlet B2 between the inlet Bl and the inlet Bl and the bottom of the tower, the number of internal stages on the upper side from the inlet B1 is n, and between the inlet Bl and the side cut outlet B2 The number of internal stages is n, and the number of internal stages below the side cut outlet B2 is
  • n is a continuous multi-stage distillation column in which the total number of plates (n + n + n) is n,
  • T 190-240 o C
  • P 2000-15000 Pa
  • Dingka 190-240 o C
  • P 2000-1
  • the reactive distillation tower, the high-boiling point substance separation tower A, and the diaryl carbonate purification tower B are distillation towers each having a tray and Z or packing as the internal.
  • a distillation column having a packing at the top and a tray at the bottom as the reactive distillation column force internal, and the internals of the high boiling point substance separation column A and the diaryl carbonate purification column B are respectively packed.
  • tray of the reactive distillation column is a perforated plate tray having a perforated plate portion and a downcomer portion.
  • the diaryl carbonate produced by the method according to any one of 1 to 9 above is an unsubstituted or lower hydrocarbon-substituted diphenol carbonate, wherein the halogen content of the diphenyl carbonate is 0. high-purity diphenyl carbonate having a content of by-products of not more than lppm and having a boiling point higher than that of diphenol carbonate of not more than lOOppm,
  • the diphenyl carbonate is unsubstituted diphenyl carbonate, the halogen content is less than lOppb, and the by-products having higher boiling point than diphenyl carbonate, phenyl salicylate, xanthone, methoxybenzoic acid
  • the halogen content is less than lppb and has a higher boiling point than diphenyl carbonate. 13.
  • a reaction mixture containing an alkylaryl carbonate obtained by transesterification of a dialkyl carbonate and an aromatic monohydroxy compound is introduced as a raw material.
  • the transesterification and distillation are simultaneously performed in the column, and the low boiling point reaction mixture containing the dialkyl carbonate to be produced is withdrawn in the form of gas from the top of the column, and the high boiling point reaction mixture containing the dialyl carbonate from the bottom of the column.
  • Reactive distillation tower for extracting liquid in a liquid state
  • the high-boiling point reaction mixture is introduced and contacted with the top component (A) containing diaryl carbonate.
  • High-boiling substance separation connected to the reactive distillation column by distillation separation to the bottom component (A) containing the medium
  • Diaryl Carbonate which is separated into three components, the Dokat component (B) and the bottom component (B).
  • the reactive distillation column is a continuous multi-stage distillation column satisfying the following formulas (1) to (6), having a length L (cm), an inner diameter D (cm), and an internal number n of stages.
  • n is a continuous multistage distillation column where the total number of plates (n + n + n) is n.
  • the manufacturing apparatus according to 14 or 15 above which is 5000 Pa,
  • the reactive distillation column, the high boiling point substance separation column A, and the diaryl carbonate purification column B are distillation columns each having a tray and Z or a packing as the internal, respectively, Thru
  • a distillation column having a packing at the top and a tray at the bottom as the reactive distillation column force internal, and the internals of the high boiling point substance separation column A and the diaryl carbonate purification column B are respectively packed.
  • the manufacturing apparatus according to any one of the preceding items 14 to 17, characterized in that:
  • the filler is at least one kind of rule filler in which a mela pack, gem pack, techno bag, flexi pack, sulzer packing, good roll packing, and glitch grid force are also selected.
  • tray of the reactive distillation column is a perforated plate tray having a perforated plate portion and a downcomer portion.
  • a high-quality, high-performance polycarbonate raw material is obtained from a reaction mixture containing an alkylaryl carbonate obtained by a transesterification reaction between a dialkyl carbonate and an aromatic monohydroxy compound.
  • Purity dialyl power-Bonate on an industrial scale of over 1 ton per hour, preferably over 2 ton per hour, more preferably over 3 ton per hour, over 2000 hours, preferably over 3000 hours, It has been found that it can be produced stably for a long period of time, preferably 5000 hours or more.
  • the dialkyl carbonate used in the present invention is represented by the general formula (16).
  • R 1 represents an alkyl group having 1 to 10 carbon atoms, an alicyclic group having 3 to 10 carbon atoms, or an aralkyl group having 6 to 10 carbon atoms.
  • R 1 include methyl, ethyl, propyl (each isomer), allyl, butyl (each isomer), butenyl (each isomer), pentyl (each isomer), hexyl (each Isomers), heptyl (each isomer), octyl (each isomer), nonyl (each isomer), decyl (each isomer), alkyl group such as cyclohexylmethyl; cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl Cycloheptyl and other alicyclic groups; aralkyl groups such as benzyl, phenethyl (each isomer), phenyl
  • alkyl groups, alicyclic groups, and aralkyl groups may be substituted with other substituents such as a lower alkyl group, lower alkoxy group, cyan group, halogen, etc., or unsaturated. Have a bond.
  • dialkyl carbonates having R 1 examples include dimethyl carbonate, jetyl carbonate, dipropyl carbonate (each isomer), diallyl carbonate, dibutenyl carbonate (each isomer), and dibutyl.
  • R 1 is preferably a dialkyl carbonate composed of an alkyl group having 4 or less carbon atoms not containing halogen, particularly preferably! / Is dimethyl carbonate, which is preferably used in the present invention.
  • dialkyl carbonates are preferred among the preferred dialkyl carbonates, more preferred are dialkyl carbonates produced in a state substantially free of halogen! /, For example, alkylene carbonates substantially free of halogen. Alcohol power substantially free of halogen and halogen is also produced.
  • the aromatic monohydroxy compound used in the present invention is represented by the following general formula (17), and if the hydroxyl group is directly bonded to the aromatic group, It can be anything.
  • Ar 1 represents an aromatic group having 5 to 30 carbon atoms.
  • aromatic monohydroxy compounds having Ar 1 include phenol; talesol (each isomer), xylenol (each isomer), trimethylphenol (each isomer), tetramethylphenol (each isomer), Ethylphenol (each isomer), Propylphenol (each isomer), Butylphenol (each isomer), Jetylphenol (each isomer), Methylethylphenol (each isomer), Methylpropylphenol (each Isomers), dipropylphenol (each isomer), methylbutylphenol (each isomer), pentylphenol (each isomer), hexylphenol (each isomer), cyclohexylphenol (each isomer), etc.
  • alkylphenols various alcohols such as methoxyphenol (each isomer) and ethoxyphenol (each isomer) Phenols; arylalkylphenols such as phenolpropylphenol (each isomer); naphthol (each isomer) and various substituted naphthols; hydroxypyridine (each isomer), hydroxycoumarin (each isomer), Heteroaromatic monohydroxy compounds such as hydroxyquinoline (each isomer) are used.
  • aromatic monohydroxy compounds those preferably used in the present invention are unsubstituted and substituted phenols in which Ar 1 also has an aromatic group having 6 to 10 carbon atoms. Unsubstituted phenol.
  • aromatic monohydroxy compounds those that are preferably used in the present invention are those that do not substantially contain halogen.
  • the amount ratio of the dialkyl carbonate and the aromatic monohydroxy compound used in is required to be 0.5 to 3 in terms of molar ratio. Outside this range, the remaining amount of unreacted substances is increased relative to the required amount of alkylaryl carbonate, which is not efficient, and a large amount of energy is required to recover them. In this sense, the molar ratio is more preferably 0.5 to 5 force S, and more preferably 1 to 3.
  • the catalyst used in the present invention contains a metal such as Pb, Cu, Zn, Fe, Co, Ni, Al, Ti, V, and Sn, and is homogeneously dissolved in the reaction system.
  • System catalyst a catalyst species in which these metal components are combined with an organic group is preferably used.
  • organic compounds in which these catalyst components are present in the reaction system such as aliphatic alcohols, aromatic monohydroxy compounds, alkylaryl carbonates, diaryl carbonates, dialkyl carbonates, etc. It may be one that has been reacted with, or one that has been heat-treated with raw materials or products prior to the reaction.
  • the catalyst used in the present invention is preferably one having high solubility in the reaction solution under the reaction conditions.
  • Preferred catalysts in this sense include, for example, PbO, Pb (OH), Pb (OPh); TiCl, Ti (OMe)
  • a halogen-free raw material and a catalyst it is particularly preferable to use a halogen-free raw material and a catalyst.
  • polycarbonate is used by the ester exchange method. It is important as a raw material for industrial production. This is because, even if the halogen power is present in the polymerization raw material even in an amount less than 1 ppm, the polymerization reaction is inhibited, the physical properties of the produced polycarbonate are lowered, and coloring is caused. is there.
  • Any method for producing a reaction mixture containing an alkylaryl carbonate by a transesterification reaction between a dialkyl carbonate and an aromatic monohydroxy compound may be used.
  • Particularly preferred for industrial implementation is a method using the continuous multistage distillation column previously proposed by the present inventors as a reactive distillation column.
  • Particularly preferred among these methods is the use of dialkyl carbonate and aromatic compounds in the presence of a homogeneous catalyst. Perform transesterification with aromatic monohydroxy compound, continuously extract the reaction mixture containing alcohol at the top, and continuously extract the reaction mixture containing alkylaryl carbonate from the bottom. Is the method.
  • the reaction mixture containing the alkylaryl carbonate thus obtained is continuously supplied into a reactive distillation column comprising a continuous multistage distillation column in which a homogeneous catalyst is present.
  • the low-boiling reaction mixture containing the dialkyl carbonate produced is simultaneously extracted from the top of the tower in the form of a gas, and the high-boiling reaction mixture containing diaryl carbonate is liquidized from the bottom of the tower. Withdraw continuously.
  • this ester exchange reaction the alkoxy group of the alkylaryl carbonate is exchanged with the aryloxy group of the aromatic monohydroxyl compound present in the system, and the alcohol is removed.
  • the disproportionation reaction of alkylaryl carbonate occurs mainly.
  • reaction mixture containing alkylaryl carbonate used as a raw material in the present invention may have a high purity or may contain other compounds. Including the dialkyl carbonate and Z or aromatic monohydroxy compound used to obtain the alkylaryl carbonate, and the compounds produced in this step and Z or other steps, It may contain reaction by-products such as alcohols, alkylaryl ethers, and diaryl carbonate. It is also a preferable method to use the raw material of the present invention as it is without separating unreacted substances and catalysts from the transesterification reaction mixture of dialkyl carbonate and aromatic monohydroxy compound.
  • dialkyl carbonate and aromatic monohydroxy compound used to obtain the alkyl reel carbonate which is the raw material of the present invention is newly introduced into the reaction system.
  • dialkyl carbonate and aromatic monohydroxy compound to be produced it is preferred to use those recovered from this step and z or other steps.
  • Fig. 1 is a schematic view of a reactive distillation column carried out in one embodiment of the present invention.
  • the reactive distillation column used in the above has an end plate part 5 above and below a cylindrical body having a length L (cm) and an inner diameter D (cm), and an internal 6 having n stages inside.
  • first inlets 3 in the upper part of the tower and Z or in the middle part, and one or more second inlets 4 above the liquid outlet 2 and at the lower part of the tower It is necessary to be a continuous multistage distillation column, and not only distillation but also reaction is performed simultaneously.
  • top of the tower or near the top of the tower used in the present invention means a portion of about 0.25 L downward from the top of the tower, and the term “bottom of the tower or near the bottom of the tower” It means the part up to about 0.25L from the bottom of the tower. “L” is as defined above.
  • the reactive distillation column used in the present invention needs to have a specific structure.
  • a high boiling point reaction mixture containing diaryl carbonate capable of providing 1 ton or more of high purity diaryl carbonate per hour while simultaneously performing not only distillation but also reaction is prolonged. It is necessary to satisfy various conditions to enable stable production over a period.
  • the reactive distillation column is a combination of conditions necessary for advancing the reaction with a high selectivity in a stable manner, rather than just the conditions of the distillation functional power.
  • the tower must satisfy the following formulas (1) and (6).
  • L (cm) is less than 1500, the reaction rate decreases and the target production volume cannot be achieved.
  • the force S is necessary to make L smaller than 8000.
  • a more preferable range of L (cm) is 2000 ⁇ L ⁇ 6000, and more preferably 2500 ⁇ L ⁇ 5000.
  • D (cm) is smaller than 100, the target production volume cannot be achieved, and D must be smaller than 2000 in order to reduce the equipment cost while achieving the target production volume. is there.
  • the more preferable range of D (cm) is 150 ⁇ D ⁇ 1000, and more preferably 200 ⁇ D ⁇ 800.
  • LZD When LZD is smaller than 2 or larger than 40, stable operation becomes difficult. Especially when LZD is larger than 40, the pressure difference between the top and bottom of the tower becomes too large, so that long-term stable operation becomes difficult. Since the temperature at the bottom must be increased, side reactions are likely to occur, leading to a decrease in selectivity.
  • the more preferable range of LZD is 3 ⁇ LZD ⁇ 30, and more preferably 5 ⁇ LZD ⁇ 15.
  • n is less than 10, the reaction rate decreases, the target production amount cannot be achieved, and the facility cost can be reduced while ensuring the reaction rate that can achieve the target production amount. It is necessary to make n smaller than 80. In addition, if n is greater than 80, the pressure difference between the top and bottom of the tower becomes too large, and it becomes difficult to perform long-term stable operation, and the temperature at the bottom of the tower must be increased. Resulting in a decline in rate.
  • a more preferred range of n is 15 ⁇ n ⁇ 60, and more preferably 20 ⁇ n ⁇ 50.
  • D / d force is smaller, not only will the equipment cost be increased, but also a large amount of gas components will be discharged out of the system, which makes stable operation difficult. The amount becomes relatively small, and the reaction rate is lowered just as stable operation becomes difficult.
  • the more preferable range of D / d is 2.5 ⁇ D / d ⁇ 12, and more preferably 3 ⁇ D / d ⁇ 10.
  • 2 is 7 ⁇ D / d ⁇ 25, more preferably 9 ⁇ D / d ⁇ 20.
  • the long-term stable operation as used in the present invention means that the operation can be continued in a steady state based on the operating condition where there is no piping clogging or erosion for 1000 hours or more, preferably 3000 hours or more, more preferably 5000 hours or more. This means that a predetermined amount of jar reel carbonate is produced while maintaining high selectivity.
  • the selectivity of dialyl carbonate in the reactive distillation step of the present invention refers to the reacted alkylaryl carbonate, and in the present invention, it is usually a high selectivity of 95% or more, preferably Can achieve a high selectivity of 97% or more, more preferably 99% or more.
  • the continuous multistage distillation column used as the reactive distillation column in the present invention is preferably a distillation column having tray and Z or packing as internal.
  • the term “internal” means a portion of the distillation column that actually makes gas-liquid contact.
  • Such trays include foam trays, perforated plate trays, valve trays, countercurrent trays, super flack trays, max flack trays, etc.
  • Irregular packing such as Berle saddle, Interlocks saddle, Dixon packing, McMahon packing, Helipac, etc. and regular packing such as Melapack, gem knock, Techno back, Flexi pack, Snow leather packing, Good roll packing, Glitch grid .
  • n internal plate number used in the present invention means the number of trays in the case of trays, and the theoretical plate number in the case of packing. Therefore, a continuous multi-sheet that has both the tray portion and the portion filled with the filler. In the case of a plate distillation column, n is the sum of the number of trays and the number of theoretical plates.
  • the reaction between the alkylaryl carbonate of the present invention and the aromatic monohydroxy compound present in the system has an extremely small equilibrium constant and a slow reaction rate, and is the main reaction.
  • the disproportionation reaction of carbonate is also an equilibrium reaction with a small equilibrium constant and a slow reaction rate.
  • the internal is a multistage distillation column having both a packing and a tray.
  • the portion filled with the packing is installed at the upper part and the tray part is installed at the lower part.
  • the packing is a regular packing. Further, it is preferable that one or two or more regular packings are used.
  • the regular packing is preferably at least one selected from a mela pack, a gem pack, a techno bag, a flexi pack, a snow leather packing, a good roll packing, and a grip grid.
  • the perforated plate tray in which the internal tray has a perforated plate portion and a downcomer portion is particularly excellent in terms of function and equipment cost. It was. It has also been found that it is preferred that the perforated plate tray has 100-: LOOO holes per area lm 2 of the perforated plate portion! More preferably! / The number of fistulas is 120-900 per lm 2 of the area, and more preferably 150-800. It has also been found that the cross-sectional area per hole of the perforated plate lay is preferably 0.5 to 5 cm 2 .
  • the cross-sectional area per hole is more preferably 0.7 to 4 cm 2 , and further preferably 0.9 to 3 cm 2 .
  • the perforated plate tray has 100 to: LOOO holes per area lm 2 of the perforated plate portion, and the cross-sectional area per hole is 0.5 to 5 cm 2 , It has been found to be particularly preferred.
  • the regular packing is at least one selected from a mela pack, a gem pack, a techno bag, a flex pack, a sulza packing, a good roll packing, and a glitch grid, and the perforated plate tray has an area of the perforated plate portion.
  • LO 00 has holes, and the cross-sectional area per hole of the perforated plate tray is 0.5 to 5 cm 2. It was. It has been found that by adding the above conditions to the reactive distillation column, the reactive distillation process of the present invention can be achieved more easily. [0050] When the reactive distillation step of the present invention is carried out, a raw material containing alkylaryl carbonate is continuously fed into a continuous multistage distillation column in which a homogeneous catalyst is present, and the reaction and distillation are simultaneously performed in the column.
  • the low-boiling point reaction mixture containing dialkyl carbonate and alcohol produced is continuously withdrawn in the form of a gas from the top of the column, and the high-boiling point reaction mixture containing diaryl carbonate as the main reaction product is continuously in liquid form from the bottom of the column.
  • diaryl carbonate is continuously produced.
  • any method may be used for allowing the catalyst to be present in the reactive distillation column. However, since it is a homogeneous catalyst that dissolves in the raw material and the reaction solution, the position force above the middle portion of the distillation column is high. It is preferable to supply into the distillation column.
  • the catalyst solution dissolved in the raw material or the reaction solution may be introduced together with the raw material, or the catalyst solution may be introduced into an introduction locus different from the raw material.
  • the amount of catalyst used in the present invention is expressed as a ratio with respect to the total mass of raw materials, which varies depending on the type of catalyst used, the type and ratio of raw materials, the reaction temperature, and the reaction conditions such as reaction pressure. Usually, it is used at 0.0001 to 30% by mass, preferably 0.005 to 10% by mass, more preferably 0.001 to 1% by mass.
  • the present invention in order to continuously supply the raw material containing alkylaryl carbonate into the reactive distillation column, it is below the gas outlet at the top of the distillation column, but at the top or middle of the column. Liquid and Z or gas from one or several inlets installed in the It is preferable to supply in the form of a slurry.
  • at least one introduction port should be installed between the packed portion and the tray portion. Is preferred.
  • the packing has a plurality of regular packing forces of two or more, it is also preferable to install introduction ports at intervals that constitute the plurality of regular packings.
  • the reaction time of the transesterification reaction carried out in the present invention is considered to correspond to the average residence time of the reaction liquid in the reactive distillation column. This is because the internal shape and number of stages of the distillation column, the feed rate of the raw material, etc. Depending on the type and amount of the catalyst, reaction conditions, etc., it is usually from 0.01 to: LO time, preferably from 0.05 to 5 hours, more preferably from 0.1 to 3 hours.
  • the reaction temperature is usually 100 to 350 ° C, although it varies depending on the type of raw material compound used and the type and amount of the catalyst. In order to increase the reaction rate, it is preferable to increase the reaction temperature. If the reaction temperature is high, side reactions are likely to occur. For example, alkylaryl ether is a fleece transfer product of diaryl carbonate and its ester compound. This is undesirable because by-products such as In this sense, the preferred reaction temperature is in the range of 130 to 280 ° C, more preferably 150 to 260 ° C, more preferably 180 to 240 ° C.
  • the reaction pressure varies depending on the type and composition of the starting material used, the reaction temperature, etc., but the normal tower top pressure of 0.1 to 2 X 10 7 Pa can be used. Preferably, it is performed in the range of 10 3 to 10 6 Pa, more preferably 5 ⁇ 10 3 to 10 5 .
  • the high boiling point reaction mixture containing diaryl carbonate continuously extracted from the lower part of the reactive distillation column usually contains a catalyst and dialkyl in addition to diaryl carbonate.
  • a catalyst and dialkyl in addition to diaryl carbonate.
  • By-products include relatively low boiling point by-products such as alkylaryl ethers, alkyl transferyl carbonates and free transition products of diaryl carbonates and their derivatives, diaryl carbonate metabolites, and structures.
  • high-boiling by-products such as unknown high-boiling substances.
  • reaction by-products are vinyl, methyl salicylate, salicylic acid phenol, xanthone, methoxybenzoic acid phenol, 1 phenolic carboxyl. 2-phenoxycarboxy phenol-ene etc. Usually, they contain a small amount of high-boiling by-products of unknown structure that are thought to have reacted further.
  • the high boiling point reaction mixture containing diaryl carbonate continuously extracted from the lower part of the reactive distillation column is continuously introduced into the high boiling point substance separation column A, and the diaryl force-bonate is contained.
  • the top component (A) and the bottom component (A) containing the catalyst are continuously separated.
  • the tower top component (A) is added to the diaryl carbonate refined having a side cut outlet.
  • point substance separation tower A and the diaryl carbonate purification tower B are continuous multistage distillation towers each having a specific structure, and they are used in combination.
  • FIG. 2 is a schematic diagram showing an example of a continuous separation / purification apparatus in which a high boiling point substance separation tower A and a dialle carbonate purification tower B for carrying out the present invention are connected.
  • Each of the high boiling point substance separation tower A and the diaryl carbonate purification tower B is composed of a continuous multistage distillation tower, and the inside thereof is not limited to the following, but in this example, a predetermined An internal consisting of a regular packing having the number of theoretical plates is installed.
  • Each column A and B has the structure described later in order to carry out the purification method and the production method according to the present invention.
  • the high boiling point substance separation column A used in the present invention satisfies the following formulas (7) to (9), and has a length L (
  • the distillation conditions for the high-boiling point substance separation tower A are as follows: the bottom temperature (T) is 185 to 280 ° C.
  • the pressure (P) force is preferably from 10000 to 20000 Pa.
  • the diaryl carbonate purification tower B satisfies the following formulas (10) to (15), has a length L (cm), an inner diameter D (cm), and has an internal inside, In the middle of the tower There is a side cut extraction port B2 between the introduction port Bl and the introduction port Bl and the bottom of the tower, the number of internal stages on the upper side from the introduction port B1 is n, and between the introduction port Bl and the side cut extraction port B2 The number of internal stages is n, and the number of internal stages below the side cut outlet B2
  • the temperature is ° C and the tower top pressure (P) is 1000 to 20000 Pa.
  • the high boiling point reaction mixture containing the dialyl carbonate can be purified from the high purity dial. It has been found that reel carbonate can be stably produced on an industrial scale of 1 ton or more and 50 ton or less for 1 hour, for example, 2000 hours or more, preferably 3000 hours or more, more preferably 5 000 hours or more. It was issued.
  • L (cm) is less than 800, the height of internal internals can be limited.
  • the range is 1000 ⁇ L ⁇ 2500, more preferably 1200 ⁇ L ⁇ 2000.
  • D (cm) is less than 100, the target production cannot be achieved, and the target production is It is necessary to make D smaller than 1000 to reduce the equipment cost while achieving the above.
  • the more preferable range of D (cm) is 200 ⁇ D ⁇ 600, and more preferably 250 ⁇
  • n is less than 20, the separation efficiency decreases, so that the desired high purity cannot be achieved,
  • n should be less than 100.
  • n force is greater than 100, the pressure difference between the top and bottom of the tower will increase.
  • n is 30 ⁇ n ⁇ 70, and more preferably 35 ⁇ n ⁇ 60
  • A is 1
  • P is 2000 to 15000 Pa, and more preferably 3000 to 13000 Pa.
  • L (cm) is less than 1000, the internal height that can be installed inside can be limited.
  • Range is 1500 ⁇ L ⁇ 3000, more preferably 1700 ⁇ L ⁇ 2500
  • a more preferred range of D (cm) is 150 ⁇ D ⁇ 500, and even more preferred is 200 ⁇ D
  • n is smaller than 20, the separation efficiency of the entire column is lowered, so that the desired high purity is achieved.
  • n In order to reduce the equipment cost while achieving the desired separation efficiency, n must be 70. It is necessary to make it smaller. Furthermore, if n is greater than 70, the pressure above and below the tower
  • n 25 ⁇ n ⁇ 55, more preferably 3
  • N, n, n are respectively 5 ⁇ n ⁇ 20, 12 ⁇ n ⁇ 40, 3 ⁇ n
  • the temperature is higher than 280 ° C because a high-boiling by-product is produced during distillation. More preferred T is 19
  • P is 2000 to 15000 Pa, and more preferably 3000 to 13000 Pa.
  • D may have the same inner diameter from the top to the bottom of the tower.
  • the inner diameter may be partially different.
  • the inner diameter of the upper part of the column may be smaller or larger than the inner diameter of the lower part of the tower.
  • the high boiling point substance separation tower A and the diaryl carbonate purification tower B used in the present invention are distillation towers each having a tray and Z or a packing as internal.
  • the term “internal” as used in the present invention means a part of the distillation column that is actually brought into contact with gas and liquid, and is as described above.
  • a multi-stage distillation column having both a tray part and a packed part can also be used.
  • the high boiling point substance separation column A of the present invention preferably has a packing as an internal, and more preferably a regular packing as a packing. It has also been found that the dial reel carbonate purification tower B is preferably packed as an internal, and more preferably one or more ordered packings. [0074] In the present invention, it is preferable to supply the bottom liquid continuously extracted from the reactive distillation column to the high boiling point substance separation column A as it is.
  • the high boiling point reaction mixture is continuously disconnect out from the bottom of the reactive distillation column, usually a dialkyl carbonate, from 0.05 to 2 wt%, an aromatic monohydroxy compound is 1 to 20 mass 0/0, Arukirua reel ether 0.5 0 5-2 mass 0/0, alkyl ⁇ reel carbonate 10 to 45 weight 0/0, di ⁇ reel carbonate Ne over preparative 50 to 80 wt%, 1 to a high boiling point by-products is 0.5 5% by mass, 0.001 to 5% by mass of catalyst is contained.
  • the composition of the high boiling point reaction mixture varies depending on the reaction distillation conditions, the type and amount of the catalyst, etc.
  • the high boiling point reaction mixture in order to continuously supply the high boiling point reaction mixture into the high boiling point substance separation tower A, one or several places installed below the middle part of the separation tower A It may be supplied in liquid form from the inlet, or it is also preferable to supply it into the tower through a reboiler from a pipe provided in the lower part of the reboiler of the separation tower A.
  • the amount of the high-boiling point reaction mixture supplied to the high-boiling-point substance separation tower A depends on the production amount of high-purity diaryl carbonate to be produced, the concentration of diaryl carbonate in the high-boiling point reaction mixture, the separation tower A Varies depending on the separation conditions.
  • diaryl carbonate is usually contained in an amount of 50 to 80% by mass, so that high purity diaryl carbonate of 1 ton or 50 ton or less per hour is obtained.
  • the amount of the reaction mixture continuously introduced into the high boiling point substance separation tower A varies depending on the diaryl carbonate content, but is about 1.3 to 2 tons Zhr or more and 100 tons or less. .
  • the high-boiling point reaction mixture continuously fed to the high-boiling-point substance separation column A is composed of most of the diaryl carbonate and unreacted raw materials, diaryl carbonates such as alkylaryl ether and alkylaryl carbonate.
  • diaryl carbonates such as alkylaryl ether and alkylaryl carbonate.
  • the top of the tower which is also a major force for compounds with low boiling points Ingredient (A), small amount of diaryl carbonate, catalyst and diaryl carbonate
  • bottom component (A) containing point by-products.
  • a small amount of Al is present in the bottom component (A).
  • Kilaryl carbonate may be included. These organic substances in the bottom component are useful for dissolving the catalyst component and keeping it in a liquid state. The total amount of this bottom component (A) or
  • a part of the catalyst is used as a catalyst component for the transesterification reaction and recycled to a transesterification reactor of dialkyl carbonate and aromatic monohydroxy compound and Z or a reactive distillation column as it is.
  • an aromatic monohydroxy compound for example, an unsubstituted or low-grade hydrocarbon-substituted phenol
  • phenyl salicylate for example, phenyl salicylate, xanthone, methoxybenzoic acid phenol
  • Phenyloxycarbons 2-phenyloxycarboxyl-by-products such as phenols and higher boiling point by-products
  • lower hydrocarbon-substituted dihydrocarbonates such as lower hydrocarbon-substituted compounds.
  • the by-product having higher boiling point and the catalyst component are separated almost completely as the bottom component (A) in this high-boiling substance separation tower A.
  • One of the characteristics of the present invention is that the content of the catalyst component can be easily adjusted to 200 ppm or less, preferably 10 ppm or less, more preferably 50 ppm or less.
  • the high-boiling by-product is hardly contained in the top component (A), and the introduced reaction mixture
  • the composition of the tower top component (A) is usually adjusted to 100% by weight of the tower top component.
  • Alkyl carbonate is 0.05 to 2 mass 0/0
  • the aromatic monohydroxy compound is 1 to 21 mass 0/0
  • alkyl ⁇ reel ether from 0.05 to 2 mass%
  • alkyl ⁇ reel carbonate Natick
  • the content of high-boiling by-products is usually 200 ppm or less, preferably lOO ppm or less, and more preferably 50 ppm.
  • the reflux ratio of the high-boiling point substance separation tower A is in the range of 0.01 to LO, preferably 0.0 to 5 and more preferably 0.1 to 3. It is.
  • top component (B) All components having a boiling point lower than that of diaryl carbonate contained in the column are the top component (B).
  • the tower top force is continuously extracted, and a small amount of liquid is continuously extracted from the tower bottom.
  • the top component (B) contained a small amount of diaryl carbonate, which was supplied.
  • the diaryl carbonate in the top component (B) is another distillation column that separates the top component (B).
  • the tower bottom component (B) is diaryl carbonate and a small amount of high boiling point concentrated to several percent.
  • the amount of the acid salt is very small, and the amount is usually 0.05 to 0.5% based on the supplied dianolate.
  • high-purity diaryl carbonate is usually continuously extracted at a flow rate of 1 ton Zhr or more, preferably 3 ton Zhr or more, more preferably 5 ton Z or more and 50 ton or less. This amount usually corresponds to about 90 to 96% of the diaryl carbonate fed to the purification tower B.
  • the purity of the diaryl carbonate obtained as the side cut component (B) in the present invention is as follows.
  • the present invention is carried out using an alkylaryl carbonate obtained by transesterification of a dialkyl carbonate with phenol or a lower hydrocarbon-substituted phenol, the content of high-boiling impurities is phenyl salicylate or its lower hydrocarbon-substituted product.
  • xanthone is 30 ppm or less, preferably 10 ppm or less, more preferably 1 ppm or less, and methoxybenzoic acid phenol or a lower hydrocarbon substitution product thereof.
  • high-purity diaryl carbonate used in the present invention is a diaryl carbonate having a purity of 99.9% or more and obtained from dialkyl carbonate and phenol or lower hydrocarbon-substituted phenol as raw materials. In the case of carbonate, it refers to diaryl carbonate having a high boiling point by-product content of lOOppm or less.
  • the halogen content of the obtained diaryl carbonate is 0.1 ppm or less, preferably 10 ppm or less, and more preferably. lppb or less.
  • the reflux ratio of the diaryl carbonate purification column B is in the range of 0.01 to 10, preferably 0.1 to 8, and more preferably 0.5 to 5. is there.
  • the materials constituting the reactive distillation column, the high boiling point substance separation column A, the diaryl carbonate purification column B, and the liquid contact part used in the present invention are mainly metal materials such as carbon steel and stainless steel. A certain force Stainless steel is preferred from the viewpoint of the quality of the dialyl carbonate to be produced.
  • the purity and impurity content of diphenyl carbonate are determined by gas chromatography.
  • the rogen content was measured by ion chromatography.
  • a continuous multi-stage distillation column equipped with a melapack was used as the separation column A.
  • Dimethyl carbonate / phenol 1.3 (weight ratio) A reaction mixture containing 18% by mass of methylphenol obtained by transesterification of a mixture of potassium carbonate was used as a raw material. This in raw materials, dimethyl carbonate of 26% by weight, Ryoji sole 6 mass 0/0, phenol 48 wt 0/0, Jifue - includes the Le carbonate 1 weight 0/0, more catalyst Pb (OPh) As about lOOppm was included. This raw material contains
  • This raw material was introduced into the reactive distillation column in Fig. 1 at a flow rate of 66 ton Zhr from the raw material introduction port installed between the melapack and the perforated plate tray. Reactive distillation was continuously carried out under the conditions that the temperature at the bottom of the column was 210 ° C., the pressure at the top of the column was 3 ⁇ 10 4 Pa, and the reflux ratio was 0.3. After 24 hours, stable steady operation was achieved.
  • composition of the high boiling point reaction mixture continuously withdrawn from the bottom of the tower at 13.1 ton Zhr was 0.1% by mass of dimethyl carbonate, Nord is 0.1 mass 0/0, phenol is 6.3 mass 0/0, Mechirufue - Le carbonate 32.2 wt%, Jifue two Le carbonate 58.6 wt%, the high boiling point by-products including the catalyst 2. 7% by mass.
  • the reaction mixture obtained by the above-mentioned reactive distillation is transferred from inlet A1 to separation tower A. Ton Zhr continuously introduced.
  • the temperature (T) at the bottom of the tower is set to 206.
  • the pressure at the top of the column (P) was 3800Pa, and distillation was continuously performed at a reflux ratio of 0.6.
  • the top component (A) is continuously withdrawn at 12.5 tons Zhr through
  • the bottom component (A) was continuously extracted at 0.6 ton Zhr.
  • the top component (A) is introduced as it is.
  • the top component (B) was continuously withdrawn at 5.3 tons Zhr through conduit 26, and conduit 31 was
  • the bottom component (B) is continuously withdrawn at 0.03 ton Zhr through the pipe 33 and the side force is
  • composition of each component 24 hours after the system was completely stabilized was as follows.
  • High-boiling substance containing a high-boiling by-product and a catalyst component such as benzoic acid phenol and 1-phenoxycarbo-l-2-phenoxycarboxy-phenol, higher boiling point by-products than diphenyl carbonate, and 59.0% by mass.
  • Salicylic acid, xanthone, and methoxybenzoic acid in the side cut component The content was less than 1 ppm, and 1 phenoloxy 2-phenoxycarboxylene was 4 ppm.
  • the halogen content was not more than lppb. From this, it was found that the purity of diphenyl carbonate obtained from the side cut was 99.999% or more. The production amount of this high-purity diphenyl carbonate was 7.17 tons per hour.
  • Dimethyl carbonate Z phenol 1.9 (weight ratio)
  • a mixture containing 21% by mass of methyl phenol obtained by subjecting the mixture to a transesterification reaction was used as a raw material.
  • This raw material was introduced into the reactive distillation column in FIG. 1 at a flow rate of 80 ton Zhr from the raw material introduction port installed between the melapack and the perforated plate tray. Reactive distillation was carried out continuously under the conditions of a column bottom temperature of 205 ° C., a column top pressure of 2 ⁇ 10 4 Pa, and a reflux ratio of 0.5. After 24 hours, stable steady operation was achieved.
  • Composition of the high boiling point reaction mixture continuously withdrawn in 11.3 tons Zhr from the bottom are dimethyl carbonate 0.1 wt%, Y two Nord is 0.1 mass 0/0, phenol is 2.5 mass 0/0, Mechirufue - Le carbonate 33.2 wt%, Jifue - Le carbonate 62.5 wt%, the high boiling point by-products including catalyst 1. was 6 wt%.
  • the reaction mixture obtained by the above reactive distillation was transferred from the inlet A1 to the separation column A 11.3. Ton Zhr continuously introduced.
  • the temperature (T) at the bottom of the tower is set to 205. Distillation was continuously performed at a reflux ratio of 0.7 at a temperature of ° C and the pressure (P) at the top of the column being 4000 Pa.
  • the top component (A) was continuously withdrawn at 11.0 tons Zhr through 6,
  • the bottom component (A) was continuously extracted at 0.3 ton Zhr.
  • the top component (A) is introduced as it is.
  • the top component (B) is continuously withdrawn at 4.7 ton Zhr through conduit 26, and conduit 31 is
  • the bottom component (B) is continuously withdrawn at 0.03 ton Zhr through the pipe 33 and the side force is
  • Ingredient (B) was continuously extracted at 6.27 tons Zhr.
  • composition of each component 24 hours after the system was completely stabilized was as follows.
  • High-boiling substances containing higher boiling point by-products and catalyst components than diphenyl carbonate such as benzoic acid phenol, 1-phenoxycarbon-2-phenol carboxy-phenol, etc. 59.8% by mass.
  • Dimethyl carbonate Z phenol 1.4 (weight ratio)
  • a mixture containing 16% by mass of methyl phenyl carbonate obtained by subjecting the mixture to a transesterification reaction was used as a raw material.
  • dimethyl carbonate 27 wt%, Ma two ,, one Le 7 mass 0/0, phenol 49 mass 0/0, Jifue - Ri Contact contains Le carbonate 0.5 mass 0/0, further The catalyst power SPb (OPh) was about 200ppm.
  • This raw material contains halogen
  • This raw material was introduced into the above-mentioned continuous multistage distillation column at a flow rate of 94 ton Zhr from the raw material introduction port installed between the melapack and the perforated plate tray. Reactive distillation was continuously carried out under the conditions that the temperature at the bottom of the column was 215 ° C, the pressure at the top of the column was 2.5 X 10 4 Pa, and the reflux ratio was 0.4. After 24 hours, stable steady operation was achieved. Composition of the high boiling point reaction mixture withdrawn in continuous manner with 17.2 tons Zhr from the bottom are dimethyl carbonate 0.2 wt%, ⁇ - Nord is 0.1 mass 0/0, phenol 6. 6 weight 0/0, Mechirufue - Le carbonate force 2 wt%, diphenyl carbonate 60.1 wt%, the high boiling point by-products including catalyst 2. was 8 wt%.
  • the reaction mixture obtained by the above reactive distillation was transferred from the inlet A1 to the separation column A 17.2. Ton Zhr continuously introduced.
  • the temperature (T) at the bottom of the tower is 207.
  • the top component (A) is continuously withdrawn through 16.4 at 16.4 tons Zhr, and the
  • the bottom component (A) was continuously extracted at 0.8 ton Zhr.
  • the top component (A) is introduced as it is.
  • the bottom temperature (T) is 220 ° C
  • the top pressure (P) is 6600 Pa
  • distillation is continuously performed at a reflux ratio of 1.49.
  • the top component (B) is continuously withdrawn at 7.1 tons Zhr through conduit 26, and conduit 31
  • the bottom component (B) is continuously extracted at 0.05 tons Zhr through The cut component (B) was continuously extracted at 9.25 ton Zhr.
  • composition of each component 24 hours after the system was completely stabilized was as follows.
  • a high-boiling substance containing a by-product having a higher boiling point than diphenyl carbonate such as benzoic acid phenol, 1-phenoxycarbol-2-phenoloxycarboxy-phenylene, and a catalyst component 61.2% by mass.
  • the present invention uses a reaction mixture containing an alkylaryl carbonate obtained by transesterification of a dialkyl carbonate and an aromatic monohydroxy compound as a raw material, and has a high purity that can be used as a raw material for a high-quality, high-performance polycarbonate.
  • Diaryl carbonate can be suitably used as a specific method for stable production over a long period of time on an industrial scale of 1 ton Zhr or more.
  • FIG. 1 is a schematic view showing an example of a reactive distillation column for carrying out the present invention.
  • FIG. 2 is a schematic view showing an example of a high boiling point substance separation column A and a diaryl carbonate purification column B for carrying out the present invention, and a continuous separation / purification apparatus in which they are connected.
  • an internal having a regular packing force having a predetermined number of theoretical plates is installed inside each continuous multistage distillation column.
  • 1 Gas outlet
  • 2 Liquid outlet
  • 3 Inlet
  • 4 Inlet
  • 5 End plate
  • 6 Internal
  • L Body length (cm)
  • D Body inner diameter (cm)
  • d Gas outlet inner diameter (cm)
  • d Liquid outlet inner diameter (cm)
  • A1 and B1 Inlet
  • B2 Inlet

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

明 細 書
高純度ジァリールカーボネートの工業的製造方法
技術分野
[0001] 本発明は、高純度ジァリールカーボネートの工業的製造方法に関する。さらに詳し くは、ジアルキルカーボネートと芳香族モノヒドロキシィ匕合物とのエステル交換反応に よって得られるアルキルァリールカーボネートを含む反応混合物を原料とし、特定の 構造を有する反応蒸留塔でエステル交換反応を行うことによって得られたジァリール カーボネートを含む反応混合物を 2基の特定の構造を有する連続多段蒸留塔を用 いて分離 '精製し、エステル交換法ポリカーボネートの原料として有用な高純度ジァリ ールカーボネートを工業的に製造する方法に関する。
背景技術
[0002] 高純度ジァリールカーボネートは、最も需要の多いエンジニアリングプラスチックで ある芳香族ポリカーボネートを、有毒なホスゲンを用いな 、で製造するための原料と して重要である。芳香族カーボネートの製法として、芳香族モノヒドロキシィ匕合物とホ スゲンとの反応による方法が古くから知られており、最近も種々検討されている。しか しながら、この方法はホスゲン使用の問題に加え、この方法によって製造された芳香 族カーボネートには分離が困難な塩素系不純物が存在しており、そのままでは芳香 族ポリカーボネートの原料として用いることはできない。なぜならば、この塩素系不純 物は極微量の塩基性触媒の存在下で行うエステル交換法ポリカーボネートの重合反 応を著しく阻害し、たとえば、 lppmでもこのような塩素系不純物が存在すると殆ど重 合を進行させることができない。そのため、エステル交換法ポリカーボネートの原料と するには、希アルカリ水溶液と温水による十分な洗浄と油水分離、蒸留などの多段階 の面倒な分離 ·精製工程が必要であり、さらにこのような分離 ·精製工程での加水分 解ロスや蒸留ロスのため収率が低下するなど、この方法を経済的に見合った工業的 規模で実施するには多くの課題がある。
[0003] 一方、ジアルキルカーボネートと芳香族モノヒドロキシ化合物とのエステル交換反応 による芳香族カーボネートの製造方法も知られている。し力しながら、これらのエステ ル交換反応は全て平衡反応であって、しカゝもその平衡が原系に極端に偏って ヽるこ とに加えて反応速度が遅いことから、この方法によって芳香族カーボネート類を工業 的に大量に製造するのは多大な困難があり、これを改良するために 2種類の提案が なされている。その 1つは、反応速度を高めるための触媒開発に関するものであり、こ のタイプのエステル交換反応用触媒として数多くの金属化合物が提案されて 、る。た とえば、遷移金属ハライド等のルイス酸またはルイス酸を生成させる化合物類 (特許 文献 1 :特開昭 51— 105032号公報、特開昭 56— 123948号公報、特開昭 56— 12 3949号公報(西独特許公開公報第 2528412号、英国特許第 1499530号明細書 、米国特許第 4182726号明細書)、特開昭 51— 75044号公報 (西独特許公開公 報第 2552907号、米国特許第 4045464号明細書)、有機スズアルコキシドゃ有機 スズォキシド類等のスズィ匕合物 (特許文献 2:特開昭 54— 48733号公報 (西独特許 公開公報第 2736062号)、特開昭 54— 63023号公報、特開昭 60— 169444号公 報 (米国特許第 4554110号明細書)、特開昭 60— 169445号公報 (米国特許第 45 52704号明細書)、特開昭 62— 277345号公報、特開平 1— 265063号公報)、ァ ルカリ金属またはアルカリ土類金属の塩類およびアルコキシド類 (特許文献 3:特開 昭 57— 176932号公報)、鉛ィ匕合物類 (特許文献 4 :特開昭 57— 176932号公報、 特開平 1— 93560号公報)、銅、鉄、ジルコニウム等の金属の錯体類 (特許文献 5 : 特開昭 57— 183745号公報)、チタン酸エステル類 (特許文献 6 :特開昭 58— 1855 36号公報 (米国特許第 4410464号明細書)、特開平 1— 265062号公報)、ルイス 酸とプロトン酸の混合物 (特許文献 7:特開昭 60— 173016号公報 (米国特許第 460 9501号明細書))、 Sc、 Mo、 Mn、 Bi、 Te等の化合物(特許文献 8 :特開平 1— 265 064号公報)、酢酸第 2鉄 (特許文献 9:特開昭 61— 172852号公報)等が提案され ている。
触媒開発だけでは不利な平衡の問題を解決できな 、ので、もう 1つの提案として、 反応方式を工夫することによって平衡をできるだけ生成系側にずらし、芳香族カーボ ネート類の収率を向上させる試みがなされている。たとえば、ジメチルカーボネートと フエノールの反応において、副生するメタノールを共沸形成剤とともに共沸によって 留去する方法 (特許文献 10 :特開昭 54— 48732号公報 (西独特許公開公報第 736 063号、米国特許第 4252737号明細書))、副生してくるメタノールをモレキュラーシ ーブで吸着させて除去する方法 (特許文献 11:特開昭 58— 185536号公報 (米国 特許第 410464号明細書))が提案されている。また、反応器の上部に蒸留塔を設け た装置によって、反応で副生してくるアルコール類を反応混合物から分離させながら 同時に蒸発してくる未反応原料との蒸留分離を行う方法も提案されている (特許文献 12 :特開昭 56— 123948号公報 (米国特許第 4182726号明細書)の実施例、特開 昭 56— 25138号公報の実施例、特開昭 60— 169444号公報 (米国特許第 45541 10号明細書)の実施例、特開昭 60— 169445号公報 (米国特許第 4552704号明 細書)の実施例、特開昭 60— 173016号公報 (米国特許第 4609501号明細書)の 実施例、特開昭 61— 172852号公報の実施例、特開昭 61— 291545号公報の実 施例、特開昭 62— 277345号公報の実施例)。
[0005] し力しながら、これらの反応方式は基本的にはバッチ方式力 切り替え方式であつ た。なぜならば、これらのエステル交換反応に対しては触媒開発による反応速度の 改良の程度はそれほど大きくなぐ反応速度が遅いことから、連続方式よりもバッチ方 式の方が好ましいと考えられていた力 である。これらのなかには、連続方式として蒸 留塔を反応器の上部に備えた連続攪拌槽型反応器 (CSTR)方式も提案されて!、る 力 反応速度が遅 ヽことや反応器の気液界面が液容量に対して小さ ヽことから反応 率を高くできないなどの問題がある。したがって、これらの方法で芳香族カーボネート を連続的に大量に、長期間安定的に製造するという目的を達成することは困難であ り、経済的に見合う工業的実施にいたるには、なお多くの解決すべき課題が残されて いる。
[0006] 本発明者等は、ジアルキルカーボネートと芳香族ヒドロキシィ匕合物を連続的に多段 蒸留塔に供給し、触媒を存在させた該塔内で連続的に反応させ、副生するアルコー ルを含む低沸点成分を蒸留によって連続的に抜き出すと共に、生成したアルキルァ リールカーボネートを含む成分を塔下部より抜き出す反応蒸留法 (特許文献 13 :特 開平 3— 291257号公報)、アルキルァリールカーボネートを連続的に多段蒸留塔に 供給し、触媒を存在させた該塔内で連続的に反応させ、副生するジアルキルカーボ ネートを含む低沸成分を蒸留によって連続的に抜き出すと共に、生成したジァリール カーボネートを含む成分を塔下部より抜き出す反応蒸留法 (特許文献 14:特開平 4 — 9358号公報)、これらの反応を 2基の連続多段蒸留塔を用いて行い、副生するジ アルキルカーボネートを効率的にリサイクルさせながらジァリールカーボネートを連続 的に製造する反応蒸留法 (特許文献 15:特開平 4 211038号公報)、ジアルキル カーボネートと芳香族ヒドロキシィ匕合物等を連続的に多段蒸留塔に供給し、塔内を 流下する液を蒸留塔の途中段および Zまたは最下段に設けられたサイド抜き出し口 より抜き出し、蒸留塔の外部に設けられた反応器へ導入して反応させた後に、該抜き 出し口のある段よりも上部の段に設けられた循環用導入口へ導入することによって、 該反応器内と該蒸留塔内の両方で反応を行う反応蒸留法 (特許文献 16 :特開平 4 224547号公報、特開平 4— 230242号公報、特開平 4 235951号公報)等、これ らのエステル交換反応を連続多段蒸留塔内で反応と蒸留分離とを同時に行う反応 蒸留法を開発し、これらのエステル交換反応に対して反応蒸留方式が有用であるこ とを世界で初めて開示した。
本発明者等が提案したこれらの反応蒸留法は、芳香族カーボネート類を効率よぐ かつ連続的に製造することを可能とする初めてのものであり、その後これらの開示を ベースとする同様な反応蒸留方式が数多く提案されるようになった (特許文献 17 :国 際公開第 00Z18720号公報 (米国特許第 5362901号明細書);特許文献 18 :イタ リア特許第 01255746号公報;特許文献 19:特開平 6 - 9506号公報(欧州特許 05 60159号明細書、米国特許第 5282965号明細書);特許文献 20 :特開平 6— 410 22号公報 (欧州特許 0572870号明細書、米国特許第 5362901号明細書);特許 文献 21 :特開平 6— 157424号公報 (欧州特許 0582931号明細書、米国特許第 53 34742号明細書)、特開平 6— 184058号公報(欧州特許 0582930号明細書、米 国特許第 5344954号明細書);特許文献 22:特開平 7— 304713号公報;特許文献 23:特開平 9—40616号公報;特許文献 24:特開平 9 - 59225号公報;特許文献 2 5:特開平 9 - 110805号公報;特許文献 26:特開平 9 - 165357号公報;特許文献 27 :特開平 9— 173819号公報;特許文献 28 :特開平 9— 176094号公報、特開 20 00— 191596号公報、特開 2000— 191597号公報;特許文献 29 :特開平 9— 194 436号公報 (欧州特許 0785184号明細書、米国特許第 5705673号明細書);特許 文献 30:国際公開第 00Z18720号公報 (米国特許第 6093842号明細書)、国際 公開第 01Z042187号公報 (特表 2003— 516376号公報);特許文献 31 :特開 20 01— 64234号公報、特開 2001— 64235号公報;特許文献 32 :国際公開第 02Z4 0439号公報(米国特許第 6596894号、米国特許第 6596895号、米国特許第 660 0061号明細書))。
[0008] また、本出願人は、反応蒸留方式にお!、て、多量の触媒を必要とせずに高純度芳 香族カーボネートを長時間、安定に製造できる方法として、触媒成分を含む高沸点 物質を作用物質と反応させた上で分離し、触媒成分をリサイクルする方法 (特許文献 33 :国際公開第 97Z11049号公報(欧州特許 0855384号明細書、米国特許第 58 72275号明細書) )や、反応系内の多価芳香族ヒドロキシィ匕合物を触媒金属に対し て質量比で 2. 0以下に保ちながら行う方法 (特許文献 34:特開平 11— 92429号公 報 (欧州特許 1016648号明細書、米国特許第 6262210号明細書))を提案した。さ らに、本発明者等は、重合工程で副生するフエノールの 70〜99質量%を原料として 用いて、反応蒸留法でジフエ-ルカーボネートを製造しこれを芳香族ポリカーボネー トの重合原料とする方法をも提案した (特許文献 35:特開平 9 - 255772号公報 (欧 州特許 0892001号明細書、米国特許第 5747609号明細書))。
[0009] し力しながら、これら反応蒸留法による芳香族カーボネート類の製造を提案する全 ての先行文献には、工業的規模の大量生産 (たとえば、 1時間あたり 1トン以上)を可 能とする具体的な方法や装置の開示は全くなぐまたそれらを示唆する記述もない。 たとえば、ジメチルカーボネートとフエノールから主としてジフエ-ルカーボネート(DP C)を製造するために開示された 2基の反応蒸留塔の高さ (Hおよび H: cm)、直径 (
1 2
Dおよび D: cm)、段数 (Nおよび N )と反応原料液導入量 (Qおよび Q: kg/hr)
1 2 1 2 1 2 に関する記述は、次表のとおりである。
[表 1] H, D, Qi H2 D2 N2 Q2 特許
文献
600 25 20 66 600 25 20 23 15
350 2. 8 一 0. 2 305 5〜10 1 5+ 0. 6 21
充填物
500 5 50 0. 6 400 8 50 0. 6 23
100 4 - 1 . 4 200 4 - 0. 8 24
300 5 40 1 . 5 - 5 25 0. 7 28
1200 20 40 86 600 25 20 31 33
34
600 - 20 66 600 - 20 22 35
[0010] すなわち、この反応を反応蒸留方式で実施するにあたり用いられた 2基の連続多段 蒸留塔の最大のものは、本出願人が特許文献 33、 34において開示したものである。 このように、この反応用に開示されて 、る連続多段蒸留塔における各条件の最大値 は、 H = 1200cm, H = 600cm, D = 20cm、 D = 25cm、 N =N = 50 (特許文
1 2 1 2 1 2 献 23)、 Q =86kgZhr、 Q =31kgZhrであり、ジフエ-ルカーボネートの生産量
1 2
は約 6. 7kgZhrに過ぎず、工業的規模の生産量ではなかった。
[0011] このようなジアルキルカーボネートと芳香族モノヒドロキシィ匕合物を原料とするエステ ル交換反応等で製造されたジァリールカーボネートを含む反応混合物からジァリー ルカーボネートを分離 ·精製する方法として、晶析法、蒸留法等が提案されている。 蒸留法としても 3つの方式が提案されている。 1つの方式は、蒸留塔の塔頂成分とし てジァリールカーボネートを得る方法であり、たとえば、
I)触媒を含む反応混合物をそのままバッチ方式の蒸留塔で蒸留し、塔頂成分とし てジフエ-ルカーボネートを得る方法 (特許文献 10の実施例、特許文献 19の実施例 2)、
II)触媒を含む反応混合物を蒸発缶等でフラッシュ蒸留し、低沸点物質と大部分の 触媒を含む高沸点物質とに分離した後、該低沸点物質を原料回収用の蒸留塔で蒸 留し、塔底物質として触媒を含むジフエ二ルカーボネートを得、これを精製塔で蒸留 することによって、ジフエ-ルカーボネートを塔頂成分として得る方法 (特許文献 37: 特開平 4 100824号公報、実施例 1;特許文献 38:特開平 9 169704号公報)、
III)触媒を含む反応混合物を蒸留塔 (および蒸発缶)で蒸留し、低沸点物質と大部 分の触媒を含む高沸点物質とに分離した後、該低沸点物質を軽沸分離塔、メチルフ ェニルカーボネート分離塔、ジフエニルカーボネート分離塔の 3塔力 なる蒸留装置 により順次連続蒸留を行 、、ジフエ-ルカーボネートを塔頂成分として得る方法 (特 許文献 25)等が挙げられる。
[0012] 別の方式は、蒸留塔の塔底成分としてジァリールカーボネートを得る方法であり、た とえば、
IV)触媒を含む反応混合物を蒸留塔で蒸留し、低沸点物質と大部分の触媒を含む 高沸点物質とに分離した後、該低沸点物質を蒸留塔で蒸留し、塔底成分としてジフ ェニルカーボネートを得る方法 (特許文献 31)等が挙げられる。
[0013] 他の方式は、蒸留塔のサイドカット成分としてジァリールカーボネートを得る方法で あり、たとえば、
V)触媒を含む反応混合物をそのまま第 3番目の反応蒸留塔に導入し、さらに反応 と蒸留を行 ヽ、該反応蒸留塔のサイドカット成分としてジフエ二ルカーボネートを得る 方法 (特許文献 21)、
VI)触媒を含む反応混合物を蒸発缶等でフラッシュ蒸留し、低沸点物質と大部分 の触媒を含む高沸点物質とに分離した後、該低沸点物質を蒸留塔に導入し、蒸留を 行 ヽ、該反応蒸留塔のサイドカット成分としてジフエニルカーボネートを得る方法 (特 許文献 34、 35、特許文献 39 :国際公開第 92Z18458号公報 (米国特許第 54262 07号明細書))、
VII)触媒を含む反応混合物を第 1精製塔で蒸留し、低沸点物質と触媒を含む高沸 点物質とに分離した後、該低沸点物質を第 2精製塔に導入し、蒸留を行い、該第 2精 製塔のサイドカット成分としてジフエ二ルカーボネートを得る方法 (特許文献 40:特開 平 11— 49727号公報)、
VIII)サリチル酸フエ-ルを含むジフエ-ルカーボネートを理論段数 5〜 15の蒸留 塔に導入し、塔底温度 150°C以上で蒸留し、該蒸留塔のサイドカット成分としてジフ ェニルカーボネートを得る方法 (特許文献 36:特開平 9— 194437号公報(欧州特許 0784048号明細書) )等が挙げられる。
[0014] し力しながら、これらの蒸留法によるジフエ-ルカーボネートの分離'精製法におい ても種々の課題が残されていることが判明した。すなわち、前記 I)で得られるジフエ- ルカーボネートは純度が低ぐまたバッチ方式であるので工業的に大量生産するに は不適である。 Π)の特許文献 37の方法はバッチ方式であり、特許文献 38の方法で 得られるジフエ-ルカーボネート中には lppm以下とはいえチタン触媒が存在してお り、着色の無い高純度のポリカーボネートを製造する原料としては不適である。 ΠΙ)の 方法では、ジフエ二ルカーボネートが軽沸分離塔、メチルフエ二ルカーボネート分離 塔の 2基の蒸留塔の塔底部で高温に加熱された後にジフエ二ルカーボネート分離塔 分離塔で高温に曝されるので、ジフエ二ルカーボネートの変性が起こり、純度の低下 と収率の低下をもたらす。
[0015] また、 IV)の塔底部からジフエ-ルカーボネートを得る方法では、純度が低く目的と するポリカーボネートを製造することはできないので不適である。
[0016] V)の方法では、第 2反応蒸留塔の底部から触媒や未反応原料や不純物等全てを 含む反応混合物が第 3反応蒸留塔の上部から導入されており、この塔のサイドからジ フエ二ルカーボネートが抜出されているので触媒や不純物や原料などの蒸気やミスト がェントレインされ得られるジフエ-ルカーボネートの純度は低い。 VI)の方法はジフ ェ-ルカーボネートの生産量が 6. 7kgZhr (特許文献 34、実施例 3)、 3. 9kg/hr ( 特許文献 35、実施例 1)であり、工業的規模ではない。 VII)の方法は好ましい方法 であるが、ジフエ二ルカーボネートの生産量が 2kgZhr (特許文献 40、実施例 8)と少 量であって工業的規模ではない。また、第 1精製塔の塔頂圧力が 200Paと高真空で 実施されているので、工業的に実施しょうとすれば高真空を保持できる非常に大きな 蒸留塔が必要となり、困難である。
[0017] さらに、 VIII)の方法では 3000ppmのサリチル酸フエ-ルの含有量を 50ppm (特 許文献 36、実施例 2)まで低下させるとの記載はあるもののそれ以外の不純物につ いてはまったく記載がない。たとえば、この実施例はホスゲン法によって製造され、必 ず塩素系不純物を含むジフエ二ルカーボネートの精製法であるにもかかわらず、塩 素系不純物(数 lOppbの極微量でポリカーボネートの重合および物性に悪影響)に 関する記載は全くない。なお、この方法ではこれらの塩素系不純物を分離することは 不十分であり、ポリカーボネート用原料として使用することはできない。このことは、特 許文献 36より 1年以上も後に出願された特許文献 41 (特開平 11— 12230号公報) の精製方法 (アルカリ熱水 2回洗浄後、熱水洗浄。次いで、蒸留で脱水したジフエ- ルカーボネートを固体アルカリ充填カラムに通した後、多段蒸留塔で減圧蒸留)の比 較例 1 (アルカリカラム不使用)に記載のとおりである。
[0018] さらにまた、特許文献 36では、蒸留で得られたジフエ-ルカーボネートの純度評価 法として、ビスフエノール Aと反応させ、フエノールが留出し始める温度と時間が示さ れて 、るが、このテスト方法では重合に適したジフエ-ルカーボネートの評価はでき ない。なぜならば、必要な重合度のポリカーボネートを製造できない純度の低いジフ ェニルカーボネートでも、初期のフエノールを脱離する反応は十分に起こる力 であ る。また、この評価方法では、ビスフエノール Aに対して 2. 3ppmもの大量の NaOH を触媒に用いているので、たとえば、 lppmの塩素系不純物を含むジフエ-ルカーボ ネートであっても高純度であってポリカーボネートの原料として適しているとの誤った 評価をすることになる。先述のとおり、 lppmの塩素系不純物を含むジフエ-ルカ一 ボネートはポリカーボネートの原料としては全く使用することはできない。通常の重合 では、このように大量のアルカリ触媒は使わないのであるから、この評価方法はポリ力 ーボネート用のジフエ-ルカーボネートの純度評価として不適である。また、特許文 献 36には、エステル交換法で得られたジフエ-ルカーボネートの精製についての具 体的な記述は全くな 、。ホスゲン法で得られたジフエ-ルカーボネートとエステル交 換法で得られたジフエ二ルカーボネートは、不純物の種類や含有量が異なるから、同 じ精製法で同じ純度のジフエ-ルカーボネートが得られると 、うことはできな 、。すな わち、特許文献 36の方法による精製法では、ポリカーボネートの原料としての必要な 純度を有するジフエ-ルカーボネートを得ているとは到底いえない。また、特許文献 3 6に開示されているジフエ-ルカーボネートの精製量は、 0. 57kgZhrであり、工業 的規模ではない。
[0019] 均一系触媒の存在下、ジアルキルカーボネートとフエノールとを原料とするエステル 交換反応で得られる反応混合物中には、通常、種々の反応副生物が含まれている 力 特に目的とするジフエニルカーボネートよりも沸点の高い、サリチル酸フエ-ル、 キサントン、メトキシ安息香酸フエ-ル、 1 フエノキシカルボ-ルー 2—フエノキシ力 ルポキシーフエ-レン等の高沸点副生物を十分なレベル以下まで低減させて ヽな ヽ ジフエ-ルカーボネートをエステル交換法ポリカーボネートの原料として用いれば、 着色や物性低下の原因となる。したがって、これらの不純物はできるだけ低減させる ことが好ましい。し力しながら、これらの高沸点副生物は、その分離が困難なこともあり 、これまでに提案されている方法では、これらの高沸点副生物を十分なレベル以下ま で低減させることができな力つた。特に生産量が 1トン Zhr以上の工業的規模で、高 品質 ·高性能ポリカーボネートの原料として必要な高純度ジァリールカーボネートを 製造する方法は全く提案されて!、なかった。
発明の開示
発明が解決しょうとする課題
[0020] 本発明が解決しょうとする課題は、ジアルキルカーボネートと芳香族モノヒドロキシ 化合物とのエステル交換反応によって得られるアルキルァリールカーボネートを含む 反応混合物を原料とし、高品質 ·高性能ポリカーボネートの原料として使用可能な高 純度のジァリールカーボネートを、 1トン Zhr以上の工業的規模で長期間安定的に 製造できる具体的な方法を提供することにある。
課題を解決するための手段
[0021] 本発明者らが連続多段蒸留塔を用いる芳香族カーボネート類の製造方法を開示し て以来、反応蒸留法等による芳香族カーボネート類を含む反応混合物の製造方法 に関する多くの提案があるが、これらは全て小規模、短期間の実験室的レベルのも のであり、したがって、これらの反応混合物力も高品質 ·高性能ポリカーボネートの原 料として使用できる高純度のジァリールカーボネートを工業的規模で大量生産できる 具体的な方法や装置の開示には到っていな力つた。そこで、本発明者らは、 1時間あ たり 1トン以上の工業的規模で、高品質 ·高性能ポリカーボネートの原料として重要な 高純度のジァリールカーボネートを長期間安定的に製造できる具体的な方法を見出 すべき検討を重ねた結果、本発明に到達した。
[0022] すなわち、本発明の第一の態様では、
1.ジアルキルカーボネートと芳香族モノヒドロキシィ匕合物とのエステル交換反応によ つて得られるアルキルァリールカーボネートを含む反応混合物を原料とし、この原料 を均一系触媒が存在する連続多段蒸留塔からなる反応蒸留塔内に連続的に供給し 、該塔内でエステル交換反応と蒸留を同時に行い、生成するジアルキルカーボネー トを含む低沸点反応混合物を塔上部よりガス状で連続的に抜出し、塔下部よりジァリ ールカーボネートを含む高沸点反応混合物を液状で連続的に抜出し、該高沸点反 応混合物を高沸点物質分離塔 Aに連続的に導入し、ジァリールカーボネートを含む 塔頂成分 ( A )と触媒を含む塔底成分 (A )に連続的に蒸留分離し、次いで該塔頂
T B
成分 (A )を、サイドカット抜き出し口を有するジァリールカーボネート精製塔 Bに連続
T
的に導入し、塔頂成分 (B )、サイドカット成分 (B )、塔底成分 (B )の 3つの成分に
T S B
連続的に蒸留分離することによって、高純度ジァリールカーボネートを製造するにあ たり、
(a)該反応蒸留塔が、下記式 (1) - (6)を満足する、長さ L (cm)、内径 D (cm)、内 部に段数 nのインターナルを有する連続多段蒸留塔であって、塔頂部またはそれに 近い塔の上部に内径 d (cm)のガス抜出し口、塔底部またはそれに近い塔の下部に 内径 d 2 (cm)の液抜出し口、該ガス抜出し口より下部であって塔の上部および Zまた は中間部に 1つ以上の導入口、該液抜出し口より上部であって塔の下部に 1つ以上 の導入口を有するものであって、
1500 < L ≤ 8000 式 (1)
100 < D ≤ 2000 式 (2)
2 < L/D ≤ 40 式 (3)
10 < n ≤ 80 式 (4)
2 < D/d ≤ 15 式 (5)
1
5 < D/d ≤ 30 式 (6)
(b)該高沸点物質分離塔 Aが、下記式 (7) - (9)を満足する、長さ L (cm) ,内径
A
D (cm)で、内部に段数 nのインターナルを有する連続多段蒸留塔であって、
A A
800 ≤ L ≤ 3000 式(7)
A
100 ≤ D ≤ 1000 式(8)
A
20 ≤ n ≤ 100 式(9)
A
(c)該ジァリールカーボネート精製塔 Bが、下記式(10) - (15)を満足する、長さ 1^ (cm) ,内径 D (cm)で、内部にインターナルを有するものであって、塔の中段に導 入口 Bl、該導入口 Blと塔底との間にサイドカット抜き出し口 B2を有し、導入口 B1か ら上部のインターナルの段数が n、導入口 Blとサイドカット抜き出し口 B2との間のィ ンターナルの段数が n、サイドカット抜き出し口 B2から下部のインターナルの段数が
2
nで、段数の合計 (n +n +n )が nである連続多段蒸留塔であって、
3 1 2 3 B
1000 ≤ L ≤ 5000 式(10)
B
100 ≤ D ≤ 1000 式(11)
B
5 ≤ n ≤ 20 式(12)
12 ≤ n ≤ 40 式(13)
2
3 ≤ n ≤ 15 式(14)
3
20 ≤ n ≤ 70 式(15)
B
(d)サイドカット成分 (B )として連続的に高純度ジァリールカーボネートを、 1時間あ
S
たり 1トン以上得る、
ことを特徴とする、高純度ジァリールカーボネートの工業的製造方法、
2.塔底温度 (T ) 185〜280°C、塔頂圧力(P ) 1000〜20000Paの条件下で該高
A A
沸点物質分離塔 Aの蒸留操作を行い、塔底温度 (T ) 185〜280°C、塔頂圧力 (P )
B B
1000〜20000Paの条件下で該ジァリールカーボネート精製塔 Bの蒸留操作を行う ことを特徴とする、前項 1記載の方法、
3.該反応蒸留塔の L、 D、 LZD、 n、力それぞれ、 2000≤L≤6000, 150≤D≤ 1000、 3≤L/D≤30, 15≤n≤60、であり、
該高沸点物質分離塔 Aの L 、 D 、 n 力それぞれ、 1000≤L ≤2500、 200≤
A A A A
D ≤600、 30≤n ≤70 であり、
A A
該ジァリールカーボネート精製塔 Bの L、 D、 n、 n、 n、 n がそれぞれ、 1500≤
B B 1 2 3 B
L ≤3000、 150≤D ≤500、 7≤n≤15、 12≤n≤30、 3≤n≤10、 25
B B 1 2 3
≤n ≤55であり、
B
Tカ 190〜240oC、 P カ 2000〜15000Pa、丁カ 190〜240oC、 Pカ 2000〜1
A A B B
5000Paであることを特徴とする、前項 1または 2記載の方法、
4.該反応蒸留塔、該高沸点物質分離塔 A、該ジァリールカーボネート精製塔 Bが、 それぞれ該インターナルとしてトレイおよび Zまたは充填物を有する蒸留塔であるこ とを特徴とする、前項 1な 、し 3のうち何れか一項に記載の方法、
5.該反応蒸留塔力インターナルとして充填物を上部に、トレィを下部に有する蒸留 塔であり、該高沸点物質分離塔 Aおよび該ジァリールカーボネート精製塔 Bのインタ ーナルが、それぞれ充填物であることを特徴とする、前項 1ないし 4のうち何れか一項 に記載の方法、
6.該充填物が、メラパック、ジェムパック、テクノバック、フレキシパック、スルザーパッ キング、グッドロールパッキング、グリッチグリッド力も選ばれた少なくとも一種の規則 充填物であることを特徴とする、前項 5に記載の方法、
7.該反応蒸留塔の該トレイが多孔板部とダウンカマー部を有する多孔板トレイである ことを特徴とする、前項 4または 5記載の方法、
8.該多孔板トレイが該多孔板部の面積 lm2あたり 100〜: LOOO個の孔を有するもの であることを特徴とする、前項 7に記載の方法、
9.該多孔板トレイの孔 1個あたりの断面積が 0. 5〜5cm2であることを特徴とする、前 項 7または 8に記載の方法、
を提供する。
また、本発明の第二の態様では、
10.前項 1〜9のいずれかに記載の方法で製造されたジァリールカーボネートが非 置換または低級炭化水素置換のジフエ-ルカーボネートであって、該ジフエ-ルカ一 ボネートのハロゲン含有量が 0. lppm以下で、且つ、該ジフエ-ルカーボネートより 高沸点の副生物の含有量が lOOppm以下である高純度ジフヱ二ルカーボネート、
11.該ジフエ-ルカーボネートが非置換ジフエ-ルカーボネートであって、ハロゲン 含有量が lOppb以下で、且つ、ジフエ-ルカーボネートより高沸点の副生物であるサ リチル酸フエニル、キサントン、メトキシ安息香酸フエ-ル、 1 フエノキシカルボ-ル 2 フエノキシカルボキシ フエ-レンの含有量がそれぞれ、 30ppm以下である前 項 10記載の高純度ジフヱ-ルカーボネート、
12.ジフエ-ルカーボネートより高沸点の副生物の含有量が 50ppm以下である前項 11記載の高純度ジフエ-ルカーボネート、
13.ハロゲン含有量が lppb以下で、且つ、ジフエ-ルカーボネートより高沸点の副 生物の含有量が、 lOppm以下である前項 12記載の高純度ジフエ二ルカーボネート を提供する。
さらに、本発明の第三の態様では、
14.ジアルキルカーボネートと芳香族モノヒドロキシ化合物とのエステル交換反応に よって得られるアルキルァリールカーボネートを含む反応混合物を原料として導入す る、均一系触媒が存在する連続多段蒸留塔からなる反応蒸留塔であって、該塔内で エステル交換反応と蒸留とを同時に行 、、生成するジアルキルカーボネートを含む 低沸点反応混合物を塔上部よりガス状で抜出し、塔下部よりジァリールカーボネート を含む高沸点反応混合物を液状で抜出す反応蒸留塔と、
該高沸点反応混合物を導入し、ジァリールカーボネートを含む塔頂成分 (A )と触
T
媒を含む塔底成分 (A )に蒸留分離する、該反応蒸留塔と連結した高沸点物質分離
B
塔 Aと、
該高沸点物質分離塔 Aと連結しており、該塔頂成分 (A )を、塔頂成分 (B )、サイ
T T
ドカット成分 (B )、塔底成分 (B )の 3つの成分に蒸留分離するジァリールカーボネ
S B
ート精製塔 Bと、
を備える高純度ジァリールカーボネートの製造装置において、
(a)該反応蒸留塔が、下記式 (1) - (6)を満足する、長さ L (cm)、内径 D (cm)、内 部に段数 nのインターナルを有する連続多段蒸留塔であって、塔頂部またはそれに 近い塔の上部に内径 d (cm)のガス抜出し口、塔底部またはそれに近い塔の下部に 内径 d (cm)
2 の液抜出し口、該ガス抜出し口より下部であって塔の上部および Zまた は中間部に 1つ以上の導入口、該液抜出し口より上部であって塔の下部に 1つ以上 の導入口を有し、
1500 < L ≤ 8000 式 (1)
100 < D ≤ 2000 式 (2)
2 < L/D ≤ 40 式 (3)
10 < n ≤ 80 式 (4)
2 < D/d ≤ 15 式 (5)
1
5 < D/d ≤ 30 式 (6) (b)該高沸点物質分離塔 Aが、下記式 (7) - (9)を満足する、長さ L (cm) ,内径
A
D (cm)で、内部に段数 n のインターナルを有する連続多段蒸留塔であり、
A A
800 ≤ L ≤ 3000 式(7)
A
100 ≤ D ≤ 1000 式(8)
A
20 ≤ n ≤ 100 式(9)
A
(c)該ジァリールカーボネート精製塔 Bが、下記式(10) - (15)を満足する、長さ L
B
(cm) ,内径 D (cm)で、内部にインターナルを有するものであって、塔の中段に導
B
入口 Bl、該導入口 Blと塔底との間にサイドカット抜き出し口 B2を有し、導入口 B1か ら上部のインターナルの段数が n、導入口 Blとサイドカット抜き出し口 B2との間のィ ンターナルの段数が n、サイドカット抜き出し口 B2から下部のインターナルの段数が
2
nで、段数の合計 (n +n +n )が nである連続多段蒸留塔である、
1000 < L < 5000 式(10)
B
100 < D < 1000 式 (11)
B
5 < n < 20 式(12)
1
12 < n < 40 式(13)
2
3 < n < 15 式 (14)
3
20 < n < 70 式(15)
:とを特徴とする製造装置、
15.塔底温度(T ) 185〜280°C、塔頂圧力(P ) 1000〜20000Paの条件下で該
A A
高沸点物質分離塔 Aの蒸留操作を行い、塔底温度 (T ) 185〜280°C、塔頂圧力 (P
B
) 1000〜20000Paの条件下で該ジァリールカーボネート精製塔 Bの蒸留操作を行
B
うことを特徴とする、前項 14記載の製造装置、
16.該反応蒸留塔の: L、 D、 LZD、 n、力それぞれ、 2000≤L≤ 6000、 150≤D ≤1000、 3≤L/D≤30, 15≤n≤60、であり、
該高沸点物質分離塔 Aの L 、 D 、 n 力それぞれ、 1000≤L ≤2500、 200≤
A A A A
D ≤600、 30≤n ≤70 であり、
A A
該ジァリールカーボネート精製塔 Bの L、 D、 n、 n、 n、 n がそれぞれ、 1500≤
B B 1 2 3 B
L ≤3000、 150≤D ≤500、 7≤n≤15、 12≤n≤30、 3≤n≤10、 25
B B 1 2 3 ≤n ≤ 55であり、
B
T 力 Sl90〜240oC、 P 力 S2000〜15000Pa、下カ 190〜2400〇、? 力 2000〜1
A A B B
5000Paであることを特徴とする、前項 14または 15記載の製造装置、
17.該反応蒸留塔、該高沸点物質分離塔 A、該ジァリールカーボネート精製塔 Bが 、それぞれ該インターナルとしてトレイおよび Zまたは充填物を有する蒸留塔である ことを特徴とする、前項 14ないし 16のうち何れか一項に記載の製造装置。
18.該反応蒸留塔力インターナルとして充填物を上部に、トレィを下部に有する蒸留 塔であり、該高沸点物質分離塔 Aおよび該ジァリールカーボネート精製塔 Bのインタ ーナルが、それぞれ充填物であることを特徴とする、前項 14ないし 17のうち何れか 一項に記載の製造装置、
19.該充填物が、メラパック、ジェムパック、テクノバック、フレキシパック、スルザーパ ッキング、グッドロールパッキング、グリッチグリッド力も選ばれた少なくとも一種の規則 充填物であることを特徴とする、前項 18に記載の製造装置、
20.該反応蒸留塔の該トレイが多孔板部とダウンカマー部を有する多孔板トレイであ ることを特徴とする、前項 17または 18に記載の製造装置、
21.該多孔板トレイが該多孔板部の面積 lm2あたり 100〜: LOOO個の孔を有するもの であることを特徴とする、前項 20に記載の製造装置、
22.該多孔板トレイの孔 1個あたりの断面積が 0. 5〜5cm2であることを特徴とする、 前項 20または 21に記載の製造装置、
を提供する。
発明の効果
本発明を実施することによって、ジアルキルカーボネートと芳香族モノヒドロキシィ匕 合物とのエステル交換反応によって得られるアルキルァリールカーボネートを含む反 応混合物から、高品質 ·高性能のポリカーボネートの原料となる高純度ジァリール力 ーボネートを、 1時間あたり 1トン以上、好ましくは 1時間あたり 2トン以上、さらに好まし くは 1時間あたり 3トン以上の工業的規模で、 2000時間以上、好ましくは 3000時間 以上、さらに好ましくは 5000時間以上の長期間、安定的に製造できることが見出さ 発明を実施するための最良の形態
[0026] 以下、本発明について具体的に説明する。
本発明で用いられるジアルキルカーボネートとは、一般式(16)で表されるものであ る。
R'OCOOR1 (16)
ここで、 R1は炭素数 1〜10のアルキル基、炭素数 3〜10の脂環族基、炭素数 6〜1 0のアラールキル基を表す。このような R1としては、たとえば、メチル、ェチル、プロピ ル (各異性体)、ァリル、ブチル (各異性体)、ブテニル (各異性体)、ペンチル (各異 性体)、へキシル (各異性体)、ヘプチル (各異性体)、ォクチル (各異性体)、ノニル ( 各異性体)、デシル(各異性体)、シクロへキシルメチル等のアルキル基;シクロプロピ ル、シクロブチル、シクロペンチル、シクロへキシル、シクロへプチル等の脂環族基; ベンジル、フ ネチル(各異性体)、フ ニルプロピル(各異性体)、フ 二ルブチル( 各異性体)、メチルベンジル (各異性体)等のアラールキル基が挙げられる。なお、こ れらのアルキル基、脂環族基、アラールキル基において、他の置換基、たとえば、低 級アルキル基、低級アルコキシ基、シァノ基、ハロゲン等で置換されていてもよいし、 不飽和結合を有して 、てもよ 、。
[0027] このような R1を有するジアルキルカーボネートとしては、たとえば、ジメチルカーボネ ート、ジェチルカーボネート、ジプロピルカーボネート(各異性体)、ジァリルカーボネ ート、ジブテニルカーボネート(各異性体)、ジブチルカーボネート (各異性体)、ジぺ ンチルカーボネート(各異性体)、ジへキシルカーボネート(各異性体)、ジヘプチル カーボネート (各異性体)、ジォクチルカーボネート(各異性体)、ジノニルカーボネー ト(各異性体)、ジデシルカーボネート (各異性体)、ジシクロペンチルカーボネート、 ジシクロへキシノレカーボネート、ジシクロへプチノレカーボネート、ジベンジノレカーボネ ート、ジフエネチルカーボネート(各異性体)、ジ(フエ-ルプロピル)カーボネート(各 異性体)、ジ(フエ-ルブチル)カーボネート(各異性体)ジ(クロ口ベンジル)カーボネ ート(各異性体)、ジ (メトキシベンジル)カーボネート(各異性体)、ジ (メトキシメチル) カーボネート、ジ (メトキシェチル)カーボネート(各異性体)、ジ (クロロェチル)カーボ ネート (各異性体)、ジ (シァノエチル)カーボネート (各異性体)等が挙げられる [0028] これらの中で、本発明において好ましく用いられるのは、 R1がハロゲンを含まない炭 素数 4以下のアルキル基からなるジアルキルカーボネートであり、特に好まし!/、のは ジメチルカーボネートである。また、好ましいジアルキルカーボネートのなかで、さらに 好ま 、のは、ハロゲンを実質的に含まな!/、状態で製造されたジアルキルカーボネ ートであって、たとえば、ハロゲンを実質的に含まないアルキレンカーボネートとハロ ゲンを実質的に含まないアルコール力も製造されたものである。
[0029] 本発明で用いられる芳香族モノヒドロキシィ匕合物とは、下記一般式(17)で表される ものであり、芳香族基に直接ヒドロキシル基が結合しているものであれば、どの様なも のであってもよい。
Ar'OH (17)
ここで Ar1は炭素数 5〜30の芳香族基を表す。このような Ar1を有する芳香族モノヒ ドロキシ化合物としては、たとえば、フエノール;タレゾール(各異性体)、キシレノール (各異性体)、トリメチルフ ノール (各異性体)、テトラメチルフ ノール (各異性体)、 ェチルフ ノール(各異性体)、プロピルフ ノール(各異性体)、ブチルフ ノール( 各異性体)、ジェチルフヱノール (各異性体)、メチルェチルフエノール (各異性体)、 メチルプロピルフエノール(各異性体)、ジプロピルフエノール(各異性体)、メチルブ チルフヱノール(各異性体)、ペンチルフヱノール(各異性体)、へキシルフヱノール( 各異性体)、シクロへキシルフェノール(各異性体)等の各種アルキルフエノール類;メ トキシフヱノール (各異性体)、エトキシフヱノール (各異性体)等の各種アルコキシフ ェノール類;フエ-ルプロピルフエノール(各異性体)等のァリールアルキルフエノール 類;ナフトール (各異性体)および各種置換ナフトール類;ヒドロキシピリジン (各異性 体)、ヒドロキシクマリン (各異性体)、ヒドロキシキノリン (各異性体)等のへテロ芳香族 モノヒドロキシィ匕合物類等が用いられる。これらの芳香族モノヒドロキシィ匕合物の中で 、本発明において好ましく用いられるのは、 Ar1が炭素数 6から 10の芳香族基力もな る非置換および置換フエノールであり、特に好ましいのは非置換フエノールである。ま た、これらの芳香族モノヒドロキシ化合物の中で、本発明において好ましく用いられる のは、ハロゲンを実質的に含まないものである。
[0030] 本発明の原料であるアルキルァリールカーボネートを含む反応混合物を得るため に用いられるジアルキルカーボネートと芳香族モノヒドロキシィ匕合物の量比はモル比 で、 0. 5〜3であることが必要である。この範囲外では、 目的とするアルキルァリール カーボネートの必要量に対して、未反応物の残存量が多くなり、効率的でないし、ま たそれらを回収するために多くのエネルギーを要する。この意味で、このモル比は、 0 . 5〜5力 Sより好ましく、さらに好ましいのは、 1〜3である。
[0031] 本発明にお 、て用いられる触媒は、 Pb、 Cu、 Zn、 Fe、 Co、 Ni、 Al、 Ti、 V、 Sn等 の金属を含有するものであって、反応系に溶解する均一系触媒である。したがって、 これらの金属成分が有機基と結合した触媒種が好ましく用いられる。もちろん、これら の触媒成分が反応系中に存在する有機化合物、たとえば、脂肪族アルコール類、芳 香族モノヒドロキシ化合物類、アルキルァリールカーボネート類、ジァリールカーボネ ート類、ジアルキルカーボネート類等と反応したものであってもよいし、反応に先立つ て原料や生成物で加熱処理されたものであってもょ ヽ。本発明で用いられる触媒は 、反応条件において反応液への溶解度の高いものであることが好ましい。この意味で 好ましい触媒としては、たとえば、 PbO、 Pb (OH) 、 Pb (OPh) ; TiCl、 Ti (OMe)
2 2 4 4
、 (MeO)Ti (OPh) 、(MeO) Ti (OPh) 、(MeO) Ti (OPh)、 Ti (OPh) ; SnCl、
3 2 2 3 4 4
Sn(OPh)、 Bu SnO、 Bu Sn (OPh) ; FeCl、 Fe (OH)、 Fe (OPh)等、またはこ
4 2 2 2 3 3 3
れらをフ ノールまたは反応液等で処理したもの等が挙げられる。
[0032] 本発明では、ハロゲンを含まない原料と触媒を使用することが特に好ましぐこの場 合、製造されるジァリールカーボネートは、ハロゲンを全く含まないため、エステル交 換法でポリカーボネートを工業的に製造するときの原料として重要である。なぜなら ば、重合原料中にハロゲン力 たとえば、 lppmよりも少ない量であっても存在してお れば、重合反応を阻害したり、生成したポリカーボネートの物性を低下させたり着色 の原因となるからである。
[0033] ジアルキルカーボネートと芳香族モノヒドロキシ化合物とのエステル交換反応によつ てアルキルァリールカーボネートを含む反応混合物を製造する方法にっ ヽては、ど のようなものであってもよいが、工業的に実施するのに特に好ましいのは、本発明者 らが先に提案した連続多段蒸留塔を反応蒸留塔として用いる方法である。この方法 のなかでも特に好ましいのは、均一系触媒の存在下にジアルキルカーボネートと芳 香族モノヒドロキシィ匕合物とのエステル交換反応を行 、、塔頂力 アルコールを含む 反応混合物を連続的に抜き出し、塔底力ゝらアルキルァリールカーボネートを含む反 応混合物を連続的に抜出す方法である。
[0034] 本発明では、このようにして得られたアルキルァリールカーボネートを含む反応混 合物を均一系触媒が存在する連続多段蒸留塔からなる反応蒸留塔内に連続的に供 給し、該塔内でエステル交換反応と蒸留を同時に行い、生成するジアルキルカーボ ネートを含む低沸点反応混合物を塔上部よりガス状で連続的に抜出し、塔下部より ジァリールカーボネートを含む高沸点反応混合物を液状で連続的に抜出す。このェ ステル交換反応にぉ 、ては、アルキルァリールカーボネートのアルコキシ基が系中に 存在する芳香族モノヒドロキシィ匕合物のァリーロキシ基と交換されアルコール類を脱 離する反応と、アルキルァリールカーボネート 2分子間のエステル交換反応である不 均化反応によってジァリールカーボネートとジアルキルカーボネートに変換される反 応が含まれている。本発明の反応蒸留塔では、アルキルァリールカーボネートの不 均化反応が主として起こって 、る。
[0035] なお、本発明で原料として用いられるアルキルァリールカーボネートを含む反応混 合物は、純度の高いものであってもいいが、他の化合物を含むものであってもよぐた とえば、このアルキルァリールカーボネートを得るために用いられたジアルキルカー ボネートおよび Zまたは芳香族モノヒドロキシィ匕合物を含んで 、てもよ 、し、この工程 および Zまたは他の工程で生成する化合物や反応副生物、たとえば、アルコール類 、アルキルァリールエーテル類、ジァリールカーボネートを含むものであってもよい。 ジアルキルカーボネートと芳香族モノヒドロキシィ匕合物とのエステル交換反応混合物 から未反応物質や触媒を分離せずにそのまま本発明の原料とすることも好ましい方 法である。なお、本発明のように工業的に実施する場合、本発明の原料であるアルキ ルァリールカーボネートを得るために用いられる、ジアルキルカーボネートと芳香族 モノヒドロキシィ匕合物は、新規に反応系に導入されるジアルキルカーボネートと芳香 族モノヒドロキシィ匕合物に加え、この工程および zまたは他の工程から回収されたも のをも使用することが好ましい。
[0036] 図 1は、本発明の一つの態様にて実施する反応蒸留塔の概略図である。本発明に おいて用いられる反応蒸留塔とは、長さ L (cm)、内径 D (cm)の円筒形の胴部の上 下に鏡板部 5を有し、内部に段数 nをもつインターナル 6を有する構造をしており、塔 頂部またはそれに近い塔の上部に内径 d (cm)のガス抜出し口 1と、塔底部またはそ れに近い塔の下部に内径 d (cm)の液抜出し口 2と、該ガス抜出し口 1より下部であ
2
つて塔の上部および Zまたは中間部に 1つ以上の第一の導入口 3と、該液抜出し口 2より上部であって塔の下部に 1つ以上の第二の導入口 4と、を有する連続多段蒸留 塔であることが必要であり、蒸留だけでなく反応も同時に行う。なお、本発明で用いる 用語「塔頂部またはそれに近い塔の上部」とは、塔頂部から下方に約 0. 25Lまでの 部分を意味し、用語「塔底部またはそれに近い塔の下部」とは、塔底部から上方に約 0. 25Lまでの部分を意味する。また、「L」は、前述の定義とおりである。
本発明で用いる反応蒸留塔は特定の構造を有していることが必要である。すなわ ち、本発明のこの工程においては、蒸留だけでなく反応も同時に行いながら、 1時間 あたり 1トン以上の高純度ジァリールカーボネートを与えることのできるジァリールカー ボネートを含む高沸点反応混合物を長期間安定的に製造できるものとするには種々 の条件を満足させることが必要である。すなわち、該反応蒸留塔は、単なる蒸留機能 力 の条件だけではなぐ安定的に高選択率で反応を進行させるために必要とされ る条件とが複合したものであり、具体的には、該蒸留塔は、下記式(1)一(6)を満足 する必要がある。
1500 < L ≤ 8000 式 (1)
100 < D ≤ 2000 式 (2)
2 < L/D ≤ 40 式 (3)
10 < n ≤ 80 式 (4)
2 < D/d ≤ 15 式 (5)
1
5 < D/d ≤ 30 式 (6)
式(1)、(2)、(3)、(4)、 (5)および (6)を同時に満足する連続多段蒸留塔を用い ることによって、アルキルァリールカーボネートを含む反応混合物から、高純度ジァリ ールカーボネートを 1時間あたり 1トン以上、 50トン以下の工業的規模で生産できる 量のジァリールカーボネートを主成分とする高沸点反応混合物を高選択率 ·高生産 性で、たとえば、 2000時間以上、好ましくは 3000時間以上、さらに好ましくは 5000 時間以上の長期間、安定的に製造できることが見出されたのである。本発明の方法 を実施することによって、このような優れた効果を有する工業的規模でのジァリール力 ーボネートの製造が可能になった理由は明らかではないが、式(1)〜(6)の条件が 組み合わさった時にもたらされる複合効果のためであると推定される。なお、各々の 要因の好ましい範囲は下記に示される。
[0038] L(cm)が 1500より小さいと、反応率が低下するため目的とする生産量を達成でき ないし、目的の生産量を達成できる反応率を確保しつつ設備費を低下させるには、 L を 8000より小さくすること力 S必要である。より好ましい L (cm)の範囲は、 2000≤L ≤6000 であり、さらに好ましくは、 2500≤L≤5000 である。
[0039] D(cm)が 100よりも小さいと、目的とする生産量を達成できないし、目的の生産量 を達成しつつ設備費を低下させるには、 Dを 2000より小さくすることが必要である。よ り好ましい D (cm)の範囲は、 150≤D≤1000 であり、さらに好ましくは、 200≤D ≤800 である。
[0040] LZDが 2より小さい時や 40より大きい時は安定運転が困難となり、特に 40より大き いと塔の上下における圧力差が大きくなりすぎるため、長期安定運転が困難となるだ けでなぐ塔下部での温度を高くしなければならないため、副反応が起こりやすくなり 選択率の低下をもたらす。より好ましい LZDの範囲は、 3≤LZD≤30 であり、さら に好ましくは、 5≤LZD≤15 である。
[0041] nが 10より小さ 、と反応率が低下するため目的とする生産量を達成できな 、し、目 的の生産量を達成できる反応率を確保しつつ設備費を低下させるには、 nを 80よりも 小さくすることが必要である。さらに nが 80よりも大きいと塔の上下における圧力差が 大きくなりすぎるため、長期安定運転が困難となるだけでなぐ塔下部での温度を高く しなければならないため、副反応が起こりやすくなり選択率の低下をもたらす。より好 ましい nの範囲は、 15≤n≤60 であり、さらに好ましくは、 20≤n≤50 である。
[0042] D/d力^より小さいと設備費が高くなるだけでなく大量のガス成分が系外に出や すくなるため、安定運転が困難になり、また 15よりも大きいとガス成分の抜出し量が 相対的に小さくなり、安定運転が困難になるだけでなぐ反応率の低下をもたらす。よ り好ましい D/dの範囲は、 2. 5≤D/d≤12 であり、さらに好ましくは、 3≤D/d ≤10 である。
[0043] D/d力 より小さいと設備費が高くなるだけでなく液抜出し量が相対的に多くなり
2
、安定運転が困難になり、 30よりも大きいと液抜出し口や配管での流速が急激に速く なりエロ—ジョンを起こしやすくなり装置の腐食をもたらす。より好ましい DZdの範囲
2 は、 7≤D/d≤25 であり、さらに好ましくは、 9≤D/d≤20 である。
2 2
[0044] さらに本発明では該 dと該 dが式(18)を満足する場合、さらに好ましいことがわか
1 2
つた ο
1 ≤d /d ≤ 6 式(18)
1 2
[0045] 本発明でいう長期安定運転とは、 1000時間以上、好ましくは 3000時間以上、さら に好ましくは 5000時間以上、配管のつまりやエロージョンがなぐ運転条件に基づい た定常状態で運転が継続でき、高選択率を維持しながら、所定量のジァリールカー ボネートが製造されて 、ることを意味する。
[0046] 本発明の反応蒸留工程でいうジァリールカーボネートの選択率とは、反応したアル キルァリールカーボネートに対するものであって、本発明では通常 95%以上の高選 択率であり、好ましくは 97%以上、さらに好ましくは 99%以上の高選択率を達成する ことができる。
[0047] 本発明で反応蒸留塔として用いられる連続多段蒸留塔は、インターナルとしてトレ ィおよび Zまたは充填物を有する蒸留塔であることが好まし 、。本発明で 、うインタ 一ナルとは、蒸留塔において実際に気液の接触を行わせる部分のことを意味する。 このようなトレイとしては、たとえば、泡鍾トレイ、多孔板トレイ、バルブトレイ、向流トレ ィ、スーパーフラックトレイ、マックスフラックトレイ等が好ましぐ充填物としては、ラシヒ リング、レッシングリング、ポールリング、ベルルサドル、インタロックスサドル、ディクソ ンパッキング、マクマホンパッキング、ヘリパック等の不規則充填物やメラパック、ジェ ムノック、テクノバック、フレキシパック、スノレザーパッキング、グッドロールパッキング、 グリッチグリッド等の規則充填物が好ましい。なお、本発明で用いる用語「インターナ ルの段数 n」とは、トレイの場合は、トレイの数を意味し、充填物の場合は、理論段数 を意味する。したがって、トレイ部と充填物の充填された部分とを合わせ持つ連続多 段蒸留塔の場合、 nはトレイの数と、理論段数の合計である。
[0048] 本発明のアルキルァリールカーボネートと、系中に存在する芳香族モノヒドロキシ化 合物との反応は、平衡定数が極端に小さぐしかも反応速度が遅いし、主たる反応で あるアルキルァリールカーボネートの不均化反応も平衡反応であって平衡定数が小 さく反応速度も遅い。このような本発明の反応を行う反応蒸留用の連続多段蒸留塔と しては、該インターナルが充填物およびトレイの両方を有する多段蒸留塔であること が見出された。そして、この蒸留塔において、充填物の充填された部分が上部に設 置されており、トレイ部が下部に設置されているものが好ましい。また、本発明におい ては、該充填物は規則充填物であることが好ましぐさらに該規則充填物が 1基また は 2基以上用いられることが好ましい。そして、該規則充填物は、メラパック、ジェムパ ック、テクノバック、フレキシパック、スノレザーパッキング、グッドロールパッキング、グリ ツチグリッドから選ばれた少なくとも一種であることが好ま 、。
[0049] さらに本発明の反応蒸留塔としては、該インターナルの該トレイが多孔板部とダウン カマー部を有する多孔板トレイが機能と設備費との関係で特に優れていることが見出 された。そして、該多孔板トレイが該多孔板部の面積 lm2あたり 100〜: LOOO個の孔 を有して!/ヽることが好ま ヽことも見出された。より好まし!/ヽ孔数は該面積 lm2あたり 1 20〜900個であり、さらに好ましくは、 150〜800個である。また、該多孔板卜レイの 孔 1個あたりの断面積が 0. 5〜5cm2であることが好ましいことも見出された。より好ま しい孔 1個あたりの断面積は、 0. 7〜4cm2であり、さらに好ましくは 0. 9〜3cm2であ る。さらには、該多孔板トレイが該多孔板部の面積 lm2あたり 100〜: LOOO個の孔を 有しており、且つ、孔 1個あたりの断面積が 0. 5〜5cm2である場合、特に好ましいこ とが見出された。さらに、該規則充填物が、メラパック、ジェムパック、テクノバック、フ レキシパック、スルザ一パッキング、グッドロールパッキング、グリッチグリッドから選ば れた少なくとも一種であり、該多孔板トレイが該多孔板部の面積 lm2あたり 100〜: LO 00個の孔を有するものであり、該多孔板トレイの孔 1個あたりの断面積が 0. 5〜5cm 2である連続多段蒸留塔の場合、特に好ましいことも見出した。反応蒸留塔に上記の 条件を付加することによって、本発明の反応蒸留工程が、より容易に達成されること が判明したのである。 [0050] 本発明の反応蒸留工程を実施する場合、アルキルァリールカーボネートを含む原 料を均一系触媒が存在する連続多段蒸留塔内に連続的に供給し、該塔内で反応と 蒸留を同時に行 、、生成するジアルキルカーボネートやアルコール類を含む低沸点 反応混合物を塔上部よりガス状で連続的に抜出し、ジァリールカーボネートを反応主 生成物とする高沸点反応混合物を塔下部より液状で連続的に抜出すことにより、ジァ リールカーボネートが連続的に製造される。本発明において、反応蒸留塔内に触媒 を存在させる方法はどのようなものであってもよいが、原料や反応液に溶解する均一 系触媒であるので、蒸留塔の中間部より上部の位置力 蒸留塔内に供給することが 好ましい。この場合、原料または反応液に溶解させた触媒液を原料と一緒に導入し てもよいし、原料とは別の導入ロカもこの触媒液を導入してもよい。また、アルキルァ リールカーボネートを含む原料を製造するのに使用し、この原料に含まれている触媒 をそのまま本反応蒸留工程の触媒とすることも好ましい方法であるが、必要に応じて 前記の触媒を新たに追加することもできる。本発明で用いる触媒の量は、使用する触 媒の種類、原料の種類やその量比、反応温度並びに反応圧力などの反応条件の違 いによっても異なる力 原料の合計質量に対する割合で表して、通常、 0. 0001〜3 0質量%、好ましくは 0. 005〜10質量%、より好ましくは 0. 001〜1質量%で使用さ れる。
[0051] 反応蒸留塔の塔上部から連続的に抜出される低沸点反応混合物中には、系中に 存在する芳香族モノヒドロキシィ匕合物やアルキルァリールエーテル類およびや未反 応のアルキルァリールカーボネートなどを含んで 、てもよ 、。この低沸点反応混合物 はジアルキルカーボネートと芳香族モノヒドロキシ化合物とのエステル交換反応器に 循環再使用することが好ましい。また、本発明において反応蒸留塔の塔頂ガス抜き 出し成分を凝縮した後、その一部を蒸留塔上部にもどす還流操作を実施することも 好ましい方法である。この場合、還流比は 0. 05〜10、好ましくは 0. 08〜5、さらに 好ましくは、 0. 1〜2の範囲である。
[0052] 本発明において、アルキルァリールカーボネートを含む原料を反応蒸留塔内に連 続的に供給するには、蒸留塔の上部のガス抜出し口よりも下部であるが塔の上部ま たは中間部に設置された 1箇所または数箇所の導入口から、液状および Zまたはガ ス状で供給することが好ましい。また、本発明の好ましい実施態様である上部に充填 物部、下部にトレィ部を有する蒸留塔を用いる場合、導入口の少なくとも 1箇所は充 填物部とトレィ部との間に設置されることが好ましい。また、充填物が 2基以上の複数 の規則充填物力 なっている場合は、これらの複数の規則充填物を構成する間隔に 導入口を設置することも好まし 、方法である。
[0053] 本発明で行われるエステル交換反応の反応時間は反応蒸留塔内での反応液の平 均滞留時間に相当すると考えられるが、これは蒸留塔のインターナルの形状や段数 、原料供給量、触媒の種類や量、反応条件などによって異なるが、通常 0. 01〜: LO 時間、好ましくは 0. 05〜5時間、より好ましくは 0. 1〜3時間である。
[0054] 反応温度は、用いる原料ィ匕合物の種類や触媒の種類や量によって異なるが、通常 100〜350°Cである。反応速度を高めるためには反応温度を高くすることが好ま 、 力 反応温度が高いと副反応も起こりやすくなり、たとえば、アルキルァリールエーテ ルゃジァリールカーボネートのフリース転移生成物やそのエステル化合物などの副 生が増えるので好ましくない。このような意味で、好ましい反応温度は 130〜280°C、 より好ましくは 150〜260°C、さら〖こ好ましくは、 180〜240°Cの範囲である。また反 応圧力は、用いる原料化合物の種類や組成、反応温度などにより異なるが、減圧、 常圧、加圧のいずれであってもよぐ通常塔頂圧力が 0. 1〜2 X 107Pa、好ましくは、 103〜106Pa、より好ましくは、 5 X 103〜105の範囲で行われる。
[0055] 本発明では、反応蒸留塔の塔下部より連続的に抜出されたジァリールカーボネート を含む高沸点反応混合物中には、ジァリールカーボネートの他に、通常、触媒、ジァ ルキルカーボネート、芳香族モノヒドロキシ化合物、アルキルァリールカーボネート、 副生物等が含まれている。副生物としては、アルキルァリールエーテル等の比較的 沸点の低い副生物と、アルキルァリールカーボネートゃジァリールカーボネートのフリ ース転移生成物やその誘導体、ジァリールカーボネートの変生物、および構造不明 の高沸点物質などの高沸点副生物がある。たとえば、ジメチルカーボネートとフエノ ールを原料にして、ジフエニルカーボネートを製造する場合、反応副生物としてァニ ノール、サリチル酸メチル、サリチル酸フエ-ル、キサントン、メトキシ安息香酸フエ- ル、 1 フエノキシカルボ-ル 2—フエノキシカルボキシ フエ-レン等が存在して おり、通常、これらがさらに反応したと考えられる構造不明の高沸点副生物が少量含 まれている。
[0056] 本発明では、反応蒸留塔の塔下部より連続的に抜出されたジァリールカーボネート を含む高沸点反応混合物を高沸点物質分離塔 Aに連続的に導入し、ジァリール力 ーボネートを含む塔頂成分 (A )と触媒を含む塔底成分 (A )に連続的に分離し、次
T B
いで該塔頂成分 (A )を、サイドカット抜き出し口を有するジァリールカーボネート精
T
製塔 Bに連続的に導入し、塔頂成分 (B )、サイドカット成分 (B )、塔底成分 (B )の
T S B
3つの成分に連続的に蒸留分離し、高純度ジァリールカーボネートをサイドカット成 分 (B )として連続的に、 1時間あたり 1トン以上得るのである力 そのためには該高沸
S
点物質分離塔 Aと該ジァリールカーボネート精製塔 Bをそれぞれ特定の構造を有す る連続多段蒸留塔とし、それらを組み合わせて用いることが必要である。
[0057] 図 2は、本発明を実施するための高沸点物質分離塔 Aとジァリールカーボネート精 製塔 Bとを連結した連続分離 ·精製装置の例を示す概略図である。高沸点物質分離 塔 Aおよびジァリールカーボネート精製塔 Bの各々は、連続多段蒸留塔から構成さ れ、それらの内部には、以下のものに限定されるわけではないが、この例において、 所定の理論段数を有する規則充填物からなるインターナルが設置されて 、る。なお、 各塔 Aおよび Bは、本発明に係る精製方法および製造方法を実施するためには、後 述する構造を備える。
[0058] 本発明で用いる該高沸点物質分離塔 Aは、下記式 (7) - (9)を満足する、長さ L (
A
cm)、内径 D (cm)で、内部に段数 n のインターナルを有する連続多段蒸留塔であ
A A
ることが必要である。
800 ≤ L ≤ 3000 式 (7)
A
100 ≤ D ≤ 1000 式 (8)
A
20 ≤ n ≤ 100 式 (9)
該高沸点物質分離塔 Aの蒸留条件としては、塔底温度 (T )が 185〜280°C、塔頂
A
圧力(P )力 l000〜20000Paであることが好ましい。
A
また、該ジァリールカーボネート精製塔 Bは、下記式(10) - (15)を満足する、長さ L (cm)、内径 D (cm)で、内部にインターナルを有するものであって、塔の中段に 導入口 Bl、該導入口 Blと塔底との間にサイドカット抜き出し口 B2を有し、導入口 B1 から上部のインターナルの段数が n、導入口 Blとサイドカット抜き出し口 B2との間の インターナルの段数が n、サイドカット抜き出し口 B2から下部のインターナルの段数
2
が nで、段数の合計 (n +n +n )が nである連続多段蒸留塔であることが必要である
1000 < L < 5000 式(10)
B
100 < D < 1000
B 式 (11)
5 < n < 20 式(12)
1
12 < n < 40 式(13)
2
3 < n < 15 式 (14)
3
20 < n < 70 式(15)
該ジァリールカーボネート精製塔 Bの蒸留条件としては、塔底温度 (T ) 185〜280
B
°C、塔頂圧力(P ) 1000〜20000Paであること力好ましい。
B
[0060] これらの条件の全てを同時に満足する高沸点物質分離塔 Aとジァリールカーボネ ート精製塔 Bを用いることによって、ジァリールカーボネートを含む高沸点反応混合 物から高純度ジァリールカーボネートを、 1時間あたり 1トン以上、 50トン以下の工業 的規模で、たとえば、 2000時間以上、好ましくは 3000時間以上、さらに好ましくは 5 000時間以上の長期間、安定的に製造できることが見出されたのである。本発明の 方法を実施することによって、このような優れた効果を有する工業的規模での高純度 ジァリールカーボネートの製造が可能になった理由は明らかではないが、式(7)〜( 15)の条件が組み合わさった時にもたらされる効果と蒸留条件との複合効果のため であると推定される。なお、各々の要因の好ましい範囲は下記に示される。
[0061] L (cm)が 800より小さいと、内部に設置できるインターナルの高さに制限ができる
A
ため分離効率が低下するため好ましくないし、目的の分離効率を達成しつつ設備費 を低下させるには、 Lを 3000より小さくすることが必要である。より好ましい L (cm)
A A
の範囲は、 1000≤L ≤2500 であり、さらに好ましくは、 1200≤L ≤2000 であ
A A
る。
[0062] D (cm)が 100よりも小さいと、目的とする生産量を達成できないし、目的の生産量 を達成しつつ設備費を低下させるには、 Dを 1000より小さくすることが必要である。
A
より好ましい D (cm)の範囲は、 200≤D ≤600 であり、さらに好ましくは、 250≤
A A
D ≤450 である。
A
[0063] nが 20より小さいと分離効率が低下するため目的とする高純度を達成できないし、
A
目的の分離効率を達成しつつ設備費を低下させるには、 nを 100よりも小さくするこ
A
とが必要である。さらに n力 100よりも大きいと塔の上下における圧力差が大きくなり
A
すぎるため、高沸点物質分離塔 Aの長期安定運転が困難となるだけでなぐ塔下部 での温度を高くしなければならな 、ため、副反応が起こりやすくなるので好ましくな 、 。より好ましい nの範囲は、 30≤n ≤70 であり、さらに好ましくは、 35≤n ≤60
A A A
である。
[0064] T力 185°Cよりも低いと塔頂圧力をより低くしなければならないため高真空を保持
A
する設備にしなければならないし、また設備が大きくなるので好ましくなぐ 280°Cより 高くすると蒸留時に高沸点副生物が生成するのでこのましくない。より好ましい T
Aは 1
90〜240°C、であり、さらに好ましくは 195〜230°Cの範囲である。
[0065] Pが lOOOPaよりも低いと高真空を保持できる大きな設備となり好ましくなぐ 2000
A
OPaより高いと蒸留温度が高くなり副生物が増加するので好ましくない。より好ましい P は 2000〜15000Paであり、さらに好ましくは 3000〜13000Paの範囲である。
A
[0066] L (cm)が 1000より小さいと、内部に設置できるインターナルの高さに制限ができ
B
るため分離効率が低下するため好ましくないし、目的の分離効率を達成しつつ設備 費を低下させるには、 Lを 5000より小さくすることが必要である。より好ましい L (cm
B B
)の範囲は、 1500≤L ≤3000 であり、さらに好ましくは、 1700≤L ≤2500 であ
B B
る。
[0067] D (cm)が 100よりも小さいと、目的とする生産量を達成できないし、目的の生産量
B
を達成しつつ設備費を低下させるには、 Dを 1000より小さくすることが必要である。
B
より好ましい D (cm)の範囲は、 150≤D ≤500 であり、さらに好ましくは、 200≤D
B B
≤400 である。
B
[0068] nが 20より小さ 、と塔全体としての分離効率が低下するため目的とする高純度を
B
達成できないし、目的の分離効率を達成しつつ設備費を低下させるには、 nを 70よ りも小さくすることが必要である。さらに nが 70よりも大きいと塔の上下における圧力
B
差が大きくなり、ジァリールカーボネート精製塔 Bの長期安定運転が困難となるだけ でなぐ塔下部での温度を高くしなければならないため、副反応が起こりやすくなるの で好ましくない。より好ましい nの範囲は、 25≤n ≤55 であり、さらに好ましくは、 3
B B
0≤n ≤50 である。さらに、目的とする高純度のジァリールカーボネートを長時間安
B
定的に得るためには、 n、 n、 n がそれぞれ、 5≤n≤20、 12≤n≤40、 3≤n
1 2 3 1 2 3
≤15 の範囲にあることが必要であることが判明した。より好ましい範囲は、 7≤n ≤15、 12≤n≤30、 3≤n≤10 である。
2 3
[0069] T力 185°Cよりも低いと塔頂圧力をより低くしなければならないため高真空を保持
B
する設備にしなければならないし、また設備が大きくなるので好ましくなぐ 280°Cより 高くすると蒸留時に高沸点副生物が生成するので好ましくない。より好ましい Tは 19
B
0〜240。C、であり、さらに好ましくは 195〜230。Cの範囲である。
[0070] Pが lOOOPaよりも低いと高真空を保持できる大きな設備となり好ましくなぐ 2000
B
OPaより高いと蒸留温度が高くなり副生物が増加するので好ましくない。より好ましい Pは 2000〜15000Paであり、さらに好ましくは 3000〜13000Paの範囲である。
B
[0071] なお、高沸点物質分離塔 Aとジァリールカーボネート精製塔 Bにおいて、 Dおよび
A
D が上記の範囲にある限り、塔の上部から下部までそれぞれ同じ内径であってもよ
B
いし、部分的に内径が異なっていてもよい。たとえば、これらの連続多段蒸留塔にお いて、塔上部の内径が塔下部の内径よりも小さくてもよいし、大きくてもよい。
[0072] 本発明で用いる高沸点物質分離塔 Aとジァリールカーボネート精製塔 Bは、それぞ れインターナルとしてトレイおよび Zまたは充填物を有する蒸留塔である。本発明で いうインターナルとは、蒸留塔において実際に気液の接触を行わせる部分のことを意 味し、前記のとおりである。トレイ部と充填物の充填された部分とを合わせ持つ多段 蒸留塔も用いることができる。
[0073] 本発明の高沸点物質分離塔 Aはインターナルとして充填物を有するものが好ましく 、さらに充填物として規則充填物が好ましいことも判明した。また、ジァリールカーボ ネート精製塔 Bはインターナルとして充填物であることが好ましぐさらに 1基または 2 基以上の規則充填物が好ましいことが見出された。 [0074] 本発明においては、反応蒸留塔の塔底力 連続的に抜出された塔底液をそのまま 高沸点物質分離塔 Aに供給することが好ましい。反応蒸留塔の塔底から連続的に抜 出される高沸点反応混合物には、通常、ジアルキルカーボネートが、 0. 05〜2質量 %、芳香族モノヒドロキシ化合物が 1〜20質量0 /0、アルキルァリールエーテルが 0. 0 5〜2質量0 /0、アルキルァリールカーボネートが 10〜45質量0 /0、ジァリールカーボネ ートが 50〜80質量%、高沸点副生物が 0. 1〜5質量%、触媒が 0. 001〜5質量% 含まれている。該高沸点反応混合物の組成は、反応蒸留条件、触媒の種類と量等 によって変化するが、一定の条件下で反応蒸留が行われる限り、ほぼ一定の組成の 反応混合物が製造できるので、高沸点物質分離塔 Aに供給される該高沸点反応混 合物の組成はほぼ一定である。し力しながら、本発明においては、高沸点反応混合 物の組成が上記の範囲内であれば、それが変動しても、ほぼ同様の分離効率で分 離できる。このことは本発明の特徴の 1つである。
[0075] 本発明にお 、て、該高沸点反応混合物を高沸点物質分離塔 A内に連続的に供給 するには、該分離塔 Aの中間部より下部に設置された 1箇所または数箇所の導入口 から、液状で供給してもよいし、該分離塔 Aのリボイラーの下部に設けた配管からリボ イラ一を経て塔内に供給することも好ましい方法である。高沸点物質分離塔 Aに供給 される該高沸点反応混合物の量は、製造すべき高純度ジァリールカーボネートの生 産量、該高沸点反応混合物中のジァリールカーボネートの濃度、該分離塔 Aの分離 条件等によって変化する。本発明で用いる該高沸点反応混合物中には、ジァリール カーボネートは、通常、 50〜80質量%含まれているので、 1時間あたり 1トン以上、 5 0トン以下の高純度ジァリールカーボネートを得るためには、高沸点物質分離塔 Aに 連続的に導入される反応混合物の量は、ジァリールカーボネートの含有量によって 変化するが、約 1. 3〜2トン Zhr以上、 100トン以下である。通常は約 2トン Zhr以上 、好ましくは約 6トン Zhr以上、さらに好ましくは約 10トン Zhr以上で、導入量の上限 は装置の大きさ、必要生産量等によって変わる力 通常 200トン Zhrである。
[0076] 高沸点物質分離塔 Aに連続的に供給された高沸点反応混合物は、ジァリールカー ボネートの大部分と未反応原料、アルキルァリールエーテル、アルキルァリールカー ボネート等のジァリールカーボネートよりも沸点の低い化合物の大部分力もなる塔頂 成分 (A )と、少量のジァリールカーボネートと触媒とジァリールカーボネートより高沸
T
点の副生物とを含む塔底成分 (A )に分離される。塔底成分 (A )中には少量のアル
B B
キルァリールカーボネートが含まれて 、てもよい。塔底成分中のこれらの有機物は触 媒成分を溶解させ液状に保つのに役立っている。この塔底成分 (A )の、全量または
B
一部はエステル交換反応の触媒成分として、通常そのままでジアルキルカーボネー トと芳香族モノヒドロキシィ匕合物とのエステル交換反応器および Zまたは反応蒸留塔 に循環再使用することは好ましい。
[0077] 本発明にお 、ては、芳香族モノヒドロキシィ匕合物として、たとえば、非置換または低 級炭化水素置換フエノールを用いた場合、サリチル酸フエニル、キサントン、メトキシ 安息香酸フエ-ル、 1 フエノキシカルボ-ル— 2—フエノキシカルボキシ—フエ-レ ン等のジフヱ二ルカーボネートより高沸点の副生物、またはこれらの低級炭化水素置 換ィ匕合物等の低級炭化水素置換ジフ 二ルカーボネートより高沸点の副生物と、触 媒成分は、この高沸点物質分離塔 Aで、ほぼ完全に塔底成分 (A )として分離するこ
B
とがでさる。
[0078] 塔頂成分 (A )中における、これらのジァリールカーボネートより高沸点の副生物と
T
触媒成分の含有量は、通常 200ppm以下、好ましくは lOOppm以下、より好ましくは 50ppm以下にすることが容易にできるのが本発明の特徴の 1つである。塔頂成分 (A )中にこれらの高沸点副生物を殆ど含ませないで、しかも、導入された反応混合物
T
中のジァリールカーボネートの大部分を塔頂力 抜き出すことができることも本発明 の特徴の 1つである。本発明においては、高沸点物質分離塔 Aに連続的に供給され た反応混合物中のジァリールカーボネートの 95%以上、好ましくは 96%以上、さら に好ましくは 98%以上を塔頂力も抜出すことができる。
[0079] また、本発明にお ヽては、該分離塔 Aに供給される反応混合物の組成に依存する ことではあるが、連続的に供給された液の通常、 90〜97質量%が塔頂成分 (A )と
T
して塔頂から連続的に抜出され、 10〜3質量%が塔底成分 (A )として塔底から連続
B
的に抜出される。塔頂成分 (A )の組成は、通常、塔頂成分 100質量%に対して、ジ
T
アルキルカーボネートが 0. 05〜2質量0 /0、芳香族モノヒドロキシ化合物が 1〜21質 量0 /0、アルキルァリールエーテルが 0. 05〜2質量%、アルキルァリールカーボネー トが 11〜47質量%、ジァリールカーボネートが 52〜84質量%であり、高沸点副生物 の含有量は、通常、 200ppm以下、好ましくは lOOppm以下、より好ましくは 50ppm である。
[0080] 本発明においては、高沸点物質分離塔 Aの還流比は 0. 01〜: LOの範囲であり、好 ましくは 0. 08〜5、さらに好ましくは、 0. 1〜3の範囲である。
[0081] 高沸点物質分離塔 Aの塔頂から連続的に抜出される塔頂成分 (A )の量は、前記
T
のとおり、該分離塔 Aに供給された反応混合物の通常約 90〜97%であるが、これが そのままジァリールカーボネート精製塔 Bの中段に設けられた導入口 B1から該精製 塔 Bに連続的に供給され、塔頂成分 (B )、サイドカット成分 (B )、塔底成分 (B )の 3
T S B
成分に連続的に分離される。該精製塔 Bに供給された該分離塔 Aの塔頂成分 (A )
T
に含まれていたジァリールカーボネートよりも低沸点の成分は全て塔頂成分 (B )とし
T
て塔頂力 連続的に抜出され、塔底からは、少量の液体が連続的に抜出される。塔 頂成分 (B )中には、少量のジァリールカーボネートが含まれ、その量は供給された
T
ジァリールカーボネートに対して、通常、 1〜9%、好ましくは 3〜8%である。この塔 頂成分 (B )中のジァリールカーボネートは、塔頂成分 (B )を分離する別の蒸留塔
T T
で分離され、回収されるが、この別の蒸留塔の塔底成分として分離し、それを高沸点 物質分離塔 Aまたは Zおよびジァリールカーボネート精製塔 Bに戻すことによって回 収することも好まし 、方法である。
[0082] 塔底成分 (B )はジァリールカーボネートと、数%程度に濃縮された少量の高沸点
B
副生物からなっている。塔底から抜出される塔底成分 (B )の中のジァリールカーボ
B
ネートの量が非常に少なくてすむことも本発明の特徴の 1つであり、その量は供給さ れたジァリーノレカーボネートに対して、通常、 0. 05〜0. 5%である。
[0083] サイドカット抜き出し口 B2からは、高純度ジァリールカーボネートが通常 1トン Zhr 以上、好ましくは 3トン Zhr以上、さらに好ましくは 5トン Z以上、 50トン以下の流量で 連続的に抜出され、この量は該精製塔 Bに供給されたジァリールカーボネートの通 常、約 90〜96%に相当する。
[0084] 本発明でサイドカット成分 (B )として得られるジァリールカーボネートの純度は、通
S
常 99. 9%以上であり、好ましくは 99. 99%以上で、より好ましくは 99. 999%以上 である。ジアルキルカーボネートと、フエノールまたは低級炭化水素置換フエノールと のエステル交換反応によって得られるアルキルァリールカーボネートを用いて本発明 を実施した時の高沸点不純物の含有量は、サリチル酸フエニルまたはその低級炭化 水素置換体が、 30ppm以下、好ましくは lOppm以下、さらに好ましくは lppm以下で あり、キサントンが 30ppm以下、好ましくは lOppm以下、さらに好ましくは lppm以下 であり、メトキシ安息香酸フエ-ルまたはその低級炭化水素置換体が 30ppm以下、 好ましくは lOppm以下、さらに好ましくは lppm以下であり、 1—フエノキシカルボ- ルー 2—フエノキシカルボキシ—フエ-レンまたはその低級炭化水素置換体が 30pp m以下、好ましくは lOppm以下、さらに好ましくは 5ppm以下である。そして、これら 高沸点副生物の合計含有量は lOOppm以下、好ましくは 50ppm以下、さらに好まし くは lOppm以下である。なお、本発明で用いる用語「高純度ジァリールカーボネート 」とは、その純度が 99. 9%以上であって、ジアルキルカーボネートとフエノールまた は低級炭化水素置換フエノールを原料として得られたジァリールカーボネートの場合 には、その高沸点副生物の含有量が、 lOOppm以下であるジァリールカーボネート をいう。
[0085] また、本発明では通常ハロゲンを含まない原料と触媒を使用するので、得られるジ ァリールカーボネートのハロゲン含有量は 0. lppm以下であり、好ましくは lOppb以 下であり、さらに好ましくは lppb以下である。
[0086] 本発明においては、ジァリールカーボネート精製塔 Bの還流比は、 0. 01〜10の範 囲であり、好ましくは 0. 1〜8、さらに好ましくは 0. 5〜5の範囲である。
[0087] 本発明で用いられる反応蒸留塔、高沸点物質分離塔 A、ジァリールカーボネート精 製塔 Bおよび接液部を構成する材料は、主に炭素鋼、ステンレススチールなどの金 属材料である力 製造するジァリールカーボネートの品質の面からは、ステンレスス チールが好ましい。
実施例
[0088] 以下、実施例により本発明をさらに具体的に説明するが、本発明は以下の実施例 に限定されるものではない。
ジフエ-ルカーボネートの純度、不純物の含有量はガスクロマトグラフィー法で、ノヽ ロゲン含有量は、イオンクロマトグラフィー法でそれぞれ測定した。
[0089] [実施例 1]
<反応蒸留塔 >
図 1に示されるような L = 3100cm、 D = 500cm, L/D=6. 2、 n= 30、 D/d = 3. 85、 D/d = 11. 1 である連続多段蒸留塔を用いた。なお、この実施例では、ィ
2
ンターナルとして、上部にメラパック 2基 (合計理論段数 11段)を設置し、下部に孔 1 個あたりの断面積 =約 1. 3cm2、孔数 =約 250個 Zm2を有する多孔板トレイを用い た。
<高沸点物質分離塔 A >
図 2に示されるような L = 1700cm, D = 340cmで、インターナルとして、 n = 30
A A A
のメラパックを設置した連続多段蒸留塔を該分離塔 Aとして用いた。
<ジァリールカーボネート精製塔 B>
図 2に示されるような L = 2200cm, D = 280cm、インターナルとして、 n = 12、 n
B B 1
= 18、 n = 5である 3基のメラパックを設置した連続多段蒸留塔を該精製塔 Bとして
2 3
用いた。
[0090] <反応蒸留 >
ジメチルカーボネート/フエノール = 1. 3 (重量比)カゝらなる混合物をエステル交換 反応させることによって得られた、メチルフエ二ルカーボネートを 18質量%含む反応 混合物を原料として用いた。この原料中には、ジメチルカーボネート 26質量%、了二 ソール 6質量0 /0、フエノール 48質量0 /0、ジフエ-ルカーボネート 1質量0 /0が含まれて おり、さらに触媒が Pb (OPh) として約 lOOppm含まれていた。この原料にはハロゲ
2
ンは実質的に含まれていな力つた (イオンクロマトグラフィーでの検出限界外で lppb 以下)。
メラパックと多孔板トレイとの間に設置されている原料導入口から、この原料を 66ト ン Zhrの流量で図 1の反応蒸留塔に導入した。塔底部の温度が 210°Cで、塔頂部 の圧力が 3 X 104Pa、還流比が 0. 3の条件下で連続的に反応蒸留が行われた。 24 時間後には安定的な定常運転が達成できた。塔底部から 13. 1トン Zhrで連続的に 抜出された高沸点反応混合物の組成は、ジメチルカーボネートが 0. 1質量%、ァ- ノールが 0. 1質量0 /0、フエノールが 6. 3質量0 /0、メチルフエ-ルカーボネートが 32. 2質量%、ジフエ二ルカーボネートが 58. 6質量%、触媒を含む高沸点副生物が 2. 7 質量%であった。
[0091] <分離 ·精製 >
図 2に示される高沸点物質分離塔 Aとジァリールカーボネート精製塔 Bからなる装 置を用いて、上記の反応蒸留で得られた反応混合物を導入口 A1から該分離塔 Aに 13. 1トン Zhrで連続的に導入した。該分離塔 Aにおいて塔底部の温度 (T )を 206
A
°C、塔頂部の圧力(P )を 3800Paとし、還流比 0. 6で連続的に蒸留を行い、導管 1
A
6を通して塔頂成分 (A )を 12. 5トン Zhrで連続的に抜き出し、導管 11を通して塔
T
底成分 (A )を 0. 6トン Zhrで連続的に抜き出した。該塔頂成分 (A )は、そのまま導
B T
入口 B1から該精製塔 Bに連続的に導入された。該精製塔 Bにおいて塔底部の温度 ( T )を 213°C、塔頂部の圧力(P )を 5000Paとし、還流比 1. 5で連続的に蒸留を行
B B
い、導管 26を通して塔頂成分 (B )を 5. 3トン Zhrで連続的に抜き出し、導管 31を
T
通して塔底成分 (B )を 0. 03トン Zhrで連続的に抜き出し、導管 33を通してサイド力
B
ット成分 (B )を 7. 17トン Zhrで連続的に抜き出した。
S
[0092] 系が完全に安定した 24時間後の各成分の組成は次のとおりであった。
A :ジメチルカーボネート 0. 1質量0 /0、ァ-ソール 0. 1質量0 /0、フエノール 6. 6質量
T
%、メチルフエ-ルカーボネート 33. 8質量0 /0、ジフエ-ルカーボネート 59. 4質量0 /0 A :ジフエ-ルカーボネート 41. 0質量0 /0、サリチル酸フエ-ル、キサントン、メトキシ
B
安息香酸フエ-ル、 1 フエノキシカルボ-ル— 2—フエノキシカルボキシ—フエ-レ ン等のジフエ二ルカーボネートより高沸点の副生物および、触媒成分を含む高沸点 物質 59. 0質量%。
B :ジメチルカーボネート 0. 25質量0 /0、ァ-ソール 0. 25質量0 /0、フエノール 15. 6
T
質量0 /0、メチルフエ-ルカーボネート 79. 6質量0 /0、ジフエ-ルカーボネート 4. 3質 B :ジフエ-ルカーボネート 95. 0質量%、高沸点物質 5. 0質量0 /0
B
[0093] サイドカット成分中のサリチル酸フエ-ル、キサントン、メトキシ安息香酸フエ-ルの 含有量は 、ずれも lppm以下であり、 1 フエノキシカルボ-ル 2—フエノキシカル ボキシ フエ-レンは 4ppmであった。また、ハロゲンの含有量は lppb以下であった 。このことから、サイドカットから得られたジフエ-ルカーボネートの純度は 99. 999% 以上であることがわかった。また、この高純度ジフエ-ルカーボネートの生産量は、 1 時間あたり 7. 17トンであった。
この条件で長期間の連続運転を行った。 500時間後、 2000時間後、 4000時間後 、 5000時間後、 6000時間後のジフエ-ルカーボネートの生産量および純度は実質 的に全く変わっていな力つた。
[0094] [実施例 2]
<反応蒸留 >
ジメチルカーボネート Zフエノール = 1. 9 (重量比)力 なる混合物をエステル交換 反応させることによって得られた、メチルフエ二ルカーボネートを 21質量%含む混合 物を原料として用いた。この原料中には、ジメチルカーボネート 32質量%、マ二,、一 ル 5質量0 /0、フエノール 41質量0 /0、ジフエ-ルカーボネート 1質量%が含まれており、 さらに触媒力 SPb (OPh) として約 250ppm含まれていた。この原料にはハロゲンは実
2
質的に含まれていな力つた (イオンクロマトグラフィーでの検出限界外で lppb以下)。 メラパックと多孔板トレイとの間に設置されている原料導入口から、この原料を 80ト ン Zhrの流量で図 1の反応蒸留塔に導入した。塔底部の温度が 205°Cで、塔頂部 の圧力が 2 X 104Pa、還流比が 0. 5の条件下で連続的に反応蒸留が行われた。 24 時間後には安定的な定常運転が達成できた。塔底部から 11. 3トン Zhrで連続的に 抜出された高沸点反応混合物の組成は、ジメチルカーボネートが 0. 1質量%、 Ύ二 ノールが 0. 1質量0 /0、フエノールが 2. 5質量0 /0、メチルフエ-ルカーボネートが 33. 2質量%、ジフエ-ルカーボネートが 62. 5質量%、触媒を含む高沸点副生物が 1. 6 質量%であった。
[0095] <分離 ·精製 >
実施例 1と同じ高沸点物質分離塔 Aとジァリールカーボネート精製塔 Bからなる装 置を用いて、上記の反応蒸留で得られた反応混合物を導入口 A1から該分離塔 Aに 11. 3トン Zhrで連続的に導入した。該分離塔 Aにおいて塔底部の温度 (T )を 205 °C、塔頂部の圧力(P )を 4000Paとし、還流比 0. 7で連続的に蒸留を行い、導管 1
A
6を通して塔頂成分 (A )を 11. 0トン Zhrで連続的に抜き出し、導管 11を通して塔
T
底成分 (A )を 0. 3トン Zhrで連続的に抜き出した。該塔頂成分 (A )は、そのまま導
B T
入口 B1から該精製塔 Bに連続的に導入された。該精製塔 Bにおいて塔底部の温度 ( T )を 210°C、塔頂部の圧力(P )を 4500Paとし、還流比 2. 0で連続的に蒸留を行
B B
い、導管 26を通して塔頂成分 (B )を 4. 7トン Zhrで連続的に抜き出し、導管 31を
T
通して塔底成分 (B )を 0. 03トン Zhrで連続的に抜き出し、導管 33を通してサイド力
B
ット成分 (B )を 6. 27トン Zhrで連続的に抜き出した。
S
[0096] 系が完全に安定した 24時間後の各成分の組成は次のとおりであった。
A :ジメチルカーボネート 0. 1質量0 /0、ァ-ソール 0. 1質量0 /0、フエノール 2. 6質量
T
%、メチルフエ-ルカーボネート 34. 1質量0 /0、ジフエ-ルカーボネート 63. 1質量0 /0 A :ジフエ-ルカーボネート 40. 2質量0 /0、サリチル酸フエ-ル、キサントン、メトキシ
B
安息香酸フエ-ル、 1 フエノキシカルボ-ル— 2—フエノキシカルボキシ—フエ-レ ン等のジフエ二ルカーボネートより高沸点の副生物および、触媒成分を含む高沸点 物質 59. 8質量%。
B :ジメチルカーボネート 0. 3質量0 /0、ァ-ソール 0. 2質量0 /0、フエノール 6. 1質量
T
%、メチルフエ-ルカーボネート 79. 8質量0 /0、ジフエ-ルカーボネート 13. 6質量0 /0 B :ジフエ-ルカーボネート 96. 0質量0 /0、高沸点物質 4. 0質量0 /0
B
[0097] サイドカット成分中のサリチル酸フエ-ル、キサントン、メトキシ安息香酸フエ-ルの 含有量は 、ずれも lppm以下であり、 1 フエノキシカルボ-ル 2—フエノキシカル ボキシ フエ-レンは 3ppmであった。また、ハロゲンの含有量は lppb以下であった 。このことから、サイドカットから得られたジフエ-ルカーボネートの純度は 99. 999% 以上であることがわかった。また、この高純度ジフエ-ルカーボネートの生産量は、 1 時間あたり 6. 27トンであった。
この条件で長期間の連続運転を行った。 500時間後、 1000時間後、 2000時間後 のジフエ-ルカーボネートの生産量および純度は実質的に全く変わっていな力つた。 [0098] [実施例 3]
<反応蒸留 >
ジメチルカーボネート Zフエノール = 1. 4 (重量比)力 なる混合物をエステル交換 反応させることによって得られた、メチルフエ二ルカーボネートを 16質量%含む混合 物を原料として用いた。この原料中には、ジメチルカーボネート 27質量%、マ二,、一 ル 7質量0 /0、フエノール 49質量0 /0、ジフエ-ルカーボネート 0. 5質量0 /0が含まれてお り、さらに触媒力 SPb (OPh) として約 200ppm含まれていた。この原料にはハロゲン
2
は実質的に含まれていな力つた (イオンクロマトグラフィーでの検出限界外で lppb以 下)。
メラパックと多孔板トレイとの間に設置されている原料導入口から、この原料を 94ト ン Zhrの流量で上記の連続多段蒸留塔に導入した。塔底部の温度が 215°Cで、塔 頂部の圧力が 2. 5 X 104Pa、還流比が 0. 4の条件下で連続的に反応蒸留が行われ た。 24時間後には安定的な定常運転が達成できた。塔底部から 17. 2トン Zhrで連 続的に抜出された高沸点反応混合物の組成は、ジメチルカーボネートが 0. 2質量% 、ァ-ノールが 0. 1質量0 /0、フエノールが 6. 6質量0 /0、メチルフエ-ルカーボネート 力 2質量%、ジフエニルカーボネートが 60. 1質量%、触媒を含む高沸点副生物 が 2. 8質量%であった。
[0099] <分離 ·精製 >
実施例 1と同じ高沸点物質分離塔 Aとジァリールカーボネート精製塔 Bからなる装 置を用いて、上記の反応蒸留で得られた反応混合物を導入口 A1から該分離塔 Aに 17. 2トン Zhrで連続的に導入した。該分離塔 Aにおいて塔底部の温度 (T )を 207
A
°C、塔頂部の圧力(P )を 4100Paとし、還流比 0. 61で連続的に蒸留を行い、導管
A
16を通して塔頂成分 (A )を 16. 4トン Zhrで連続的に抜き出し、導管 11を通して塔
T
底成分 (A )を 0. 8トン Zhrで連続的に抜き出した。該塔頂成分 (A )は、そのまま導
B T
入口 B1から該精製塔 Bに連続的に導入された。該精製塔 Bにおいて塔底部の温度 ( T )を 220°C、塔頂部の圧力(P )を 6600Paとし、還流比 1. 49で連続的に蒸留を
B B
行い、導管 26を通して塔頂成分 (B )を 7. 1トン Zhrで連続的に抜き出し、導管 31
T
を通して塔底成分 (B )を 0. 05トン Zhrで連続的に抜き出し、導管 33を通してサイド カット成分 (B )を 9. 25トン Zhrで連続的に抜き出した。
S
[0100] 系が完全に安定した 24時間後の各成分の組成は次のとおりであった。
A :ジメチルカーボネート 0. 2質量0 /0、ァ-ソール 0. 1質量0 /0、フエノール 6. 9質量
T
%、メチルフエ-ルカーボネート 31. 7質量0 /0、ジフエ-ルカーボネート 61. 1質量0 /0 A :ジフエ-ルカーボネート 39. 80質量0 /0、サリチル酸フエ-ル、キサントン、メトキシ
B
安息香酸フエ-ル、 1 フエノキシカルボ-ル— 2—フエノキシカルボキシ—フエ-レ ン等のジフエ二ルカーボネートより高沸点の副生物および、触媒成分を含む高沸点 物質 61. 2質量%。
B :ジメチルカーボネート 0. 5質量0 /0、ァ-ソール 0. 2質量0 /0、フエノール 16. 0質
T
0 /0、メチルフエ-ルカーボネート 73. 2質量0 /0、ジフエ-ルカーボネート 10. 1質量
%。
B :ジフエ-ルカーボネート 94. 0質量%、高沸点物質 6. 0質量%。
B
[0101] サイドカット成分中のサリチル酸フエ-ル、キサントン、メトキシ安息香酸フエ-ルの 含有量は 、ずれも lppm以下であり、 1 フエノキシカルボ-ル 2—フエノキシカル ボキシ フエ-レンは 4ppmであった。また、ハロゲンの含有量は lppb以下であった 。このことから、サイドカットから得られたジフエ-ルカーボネートの純度は 99. 999% 以上であることがわかった。また、この高純度ジフエ-ルカーボネートの生産量は、 1 時間あたり 9. 25トンであった。
この条件で長期間の連続運転を行った。 500時間後、 1000時間後、 2000時間後 のジフエ-ルカーボネートの生産量および純度は実質的に全く変わっていな力つた。 産業上の利用可能性
[0102] 本発明は、ジアルキルカーボネートと芳香族モノヒドロキシ化合物とのエステル交換 反応によって得られるアルキルァリールカーボネートを含む反応混合物を原料とし、 高品質 ·高性能ポリカーボネートの原料として使用可能な高純度のジァリールカーボ ネートを、 1トン Zhr以上の工業的規模で長期間安定的に製造できる具体的な方法 として好適に利用できる。
図面の簡単な説明 [図 1]本発明を実施する反応蒸留塔の例を示す概略図である。
[図 2]本発明を実施する高沸点物質分離塔 Aとジァリールカーボネート精製塔 B、お よびそれらを連結した連続分離'精製装置の例を示す概略図である。例示として、各 連続多段蒸留塔の内部には所定の理論段数を有する規則充填物力 なるインター ナルが設置されている。 1:ガス抜出し口、 2:液抜出し口、 3:導入口、 4:導入 口、 5:鏡板部、 6:インターナル、 L:胴部長さ(cm)、 D:胴部内径 (cm)、 d: ガス抜出し口内径 (cm)、 d:液抜出し口内径 (cm)、 A1および B1:導入口、 B2
2
: 抜出し口、 11: 高沸点物質分離塔 Aの塔底成分抜出し口、 13および 23:塔頂 ガス抜出し口、 14, 24, 18, 28, 38:熱交換器、 15および 25:還流液導入口、 16:高沸点物質分離塔 Aの塔頂成分抜出し口、 17および 27:塔底液抜出し口、 26:ジァリールカーボネート精製塔 Bの塔頂成分抜出し口、 31:ジァリールカーボ ネート精製塔 Bの塔底成分抜出し口、 33:ジァリールカーボネート精製塔 Bのサイド カット成分抜出し口

Claims

請求の範囲
ジアルキルカーボネートと芳香族モノヒドロキシ化合物とのエステル交換反応によつ て得られるアルキルァリールカーボネートを含む反応混合物を原料とし、この原料を 均一系触媒が存在する連続多段蒸留塔からなる反応蒸留塔内に連続的に供給し、 該塔内でエステル交換反応と蒸留を同時に行 、、生成するジアルキルカーボネート を含む低沸点反応混合物を塔上部よりガス状で連続的に抜出し、塔下部よりジァリ ールカーボネートを含む高沸点反応混合物を液状で連続的に抜出し、該高沸点反 応混合物を高沸点物質分離塔 Aに連続的に導入し、ジァリールカーボネートを含む 塔頂成分 ( A )と触媒を含む塔底成分 (A )に連続的に蒸留分離し、次いで該塔頂
T B
成分 (A )を、サイドカット抜き出し口を有するジァリールカーボネート精製塔 Bに連続
T
的に導入し、塔頂成分 (B )、サイドカット成分 (B )、塔底成分 (B )の 3つの成分に
T S B
連続的に蒸留分離することによって、高純度ジァリールカーボネートを製造するにあ たり、
(a)該反応蒸留塔が、下記式 (1) - (6)を満足する、長さ L (cm)、内径 D (cm)、内 部に段数 nのインターナルを有する連続多段蒸留塔であって、塔頂部またはそれに 近い塔の上部に内径 d (cm)のガス抜出し口、塔底部またはそれに近い塔の下部に 内径 d (cm)の液抜出し口、該ガス抜出し口より下部であって塔の上部および
2 Zまた は中間部に 1つ以上の導入口、該液抜出し口より上部であって塔の下部に 1つ以上 の導入口を有するものであって、
1500 < L ≤ 8000 式 (1)
100 < D ≤ 2000 式 (2)
2 < L/D ≤ 40 式 (3)
10 < n ≤ 80 式 (4)
2 < D/d ≤ 15 式 (5)
1
5 < D/d ≤ 30 式 (6)
(b)該高沸点物質分離塔 Aが、下記式 (7) - (9)を満足する、長さ L (cm) ,内径
A
D (cm)で、内部に段数 nのインターナルを有する連続多段蒸留塔であって、
A A
800 ≤ L ≤ 3000 式(7) 100 ≤ D ≤ 1000 式(8)
A
20 ≤ n ≤ 100 式(9)
A
(c)該ジァリールカーボネート精製塔 Bが、下記式(10) - (15)を満足する、長さ L
B
(cm) ,内径 D (cm)で、内部にインターナルを有するものであって、塔の中段に導
B
入口 Bl、該導入口 Blと塔底との間にサイドカット抜き出し口 B2を有し、導入口 B1か ら上部のインターナルの段数が n、導入口 Blとサイドカット抜き出し口 B2との間のィ ンターナルの段数が n、サイドカット抜き出し口 B2から下部のインターナルの段数が
2
nで、段数の合計 (n +n +n )が nである連続多段蒸留塔であって、
3 1 2 3 B
1000 ≤ L ≤ 5000 式(10)
B
100 ≤ D ≤ 1000 式(11)
B
5 ≤ n ≤ 20 式(12)
12 ≤ n ≤ 40 式(13)
2
3 ≤ n ≤ 15 式(14)
3
20 ≤ n ≤ 70 式(15)
B
(d)サイドカット成分 (B )として連続的に高純度ジァリールカーボネートを、 1時間あ
S
たり 1トン以上得る、
ことを特徴とする、高純度ジァリールカーボネートの工業的製造方法。
[2] 塔底温度 (T ) 185〜280°C、塔頂圧力(P ) 1000〜20000Paの条件下で該高
A A
沸点物質分離塔 Aの蒸留操作を行い、塔底温度 (T ) 185〜280°C、塔頂圧力 (P )
B B
1000〜20000Paの条件下で該ジァリールカーボネート精製塔 Bの蒸留操作を行う ことを特徴とする、請求項 1記載の方法。
[3] 該反応蒸留塔のレ D、 L/D, n、力それぞれ、 2000≤L≤ 6000、 150≤D≤1
000、 3≤L/D≤30, 15≤n≤60、であり、
該高沸点物質分離塔 Aの L 、 D 、 n 力それぞれ、 1000≤L ≤2500、 200≤
A A A A
D ≤600、 30≤n ≤70 であり、
A A
該ジァリールカーボネート精製塔 Bの L、 D、 n、 n、 n、 n がそれぞれ、 1500≤
B B 1 2 3 B
L ≤3000、 150≤D ≤500、 7≤n≤15、 12≤n≤30、 3≤n≤10、 25
B B 1 2 3
≤n ≤55であり、 T 力 Sl90〜240oC、 P 力 S2000〜15000Pa、下カ 190〜2400〇、? 力 2000〜1
A A B B
5000Paであることを特徴とする、請求項 1または 2記載の方法。
[4] 該反応蒸留塔、該高沸点物質分離塔 A、該ジァリールカーボネート精製塔 Bが、そ れぞれ該インターナルとしてトレイおよび Zまたは充填物を有する蒸留塔であることを 特徴とする、請求項 1ないし 3のうち何れか一項に記載の方法。
[5] 該反応蒸留塔力インターナルとして充填物を上部に、トレィを下部に有する蒸留塔 であり、該高沸点物質分離塔 Aおよび該ジァリールカーボネート精製塔 Bのインター ナルが、それぞれ充填物であることを特徴とする、請求項 1ないし 4のうち何れか一項 に記載の方法。
[6] 該充填物が、メラパック、ジェムパック、テクノバック、フレキシパック、スルザーパツキ ング、グッドロールパッキング、グリッチグリッドから選ばれた少なくとも一種の規則充 填物であることを特徴とする、請求項 5に記載の方法。
[7] 該反応蒸留塔の該トレイが多孔板部とダウンカマー部を有する多孔板トレイである ことを特徴とする、請求項 4または 5記載の方法。
[8] 該多孔板トレイが該多孔板部の面積 lm2あたり 100〜: LOOO個の孔を有するもので あることを特徴とする、請求項 7に記載の方法。
[9] 該多孔板トレイの孔 1個あたりの断面積が 0. 5〜5cm2であることを特徴とする、請 求項 7または 8に記載の方法。
[10] 請求項 1〜9のいずれかに記載の方法で製造されたジァリールカーボネートが非置 換または低級炭化水素置換のジフエ-ルカーボネートであって、該ジフエ-ルカーボ ネートのハロゲン含有量が 0. lppm以下で、且つ、該ジフエ-ルカーボネートより高 沸点の副生物の含有量が lOOppm以下である高純度ジフヱ-ルカーボネート。
[11] 該ジフエ-ルカーボネートが非置換ジフエ-ルカーボネートであって、ハロゲン含有 量が lOppb以下で、且つ、ジフヱ-ルカーボネートより高沸点の副生物であるサリチ ル酸フエ-ル、キサントン、メトキシ安息香酸フエ-ル、 1 フエノキシカルボ-ルー 2 フエノキシカルボキシ—フエ-レンの含有量がそれぞれ、 30ppm以下である請求 項 10記載の高純度ジフヱ-ルカーボネート。
[12] ジフエ-ルカーボネートより高沸点の副生物の含有量が 50ppm以下である請求項 11記載の高純度ジフエ-ルカーボネート。
[13] ハロゲン含有量が lppb以下で、且つ、ジフエ-ルカーボネートより高沸点の副生物 の含有量が、 lOppm以下である請求項 12記載の高純度ジフエ二ルカーボネート。
[14] ジアルキルカーボネートと芳香族モノヒドロキシ化合物とのエステル交換反応によつ て得られるアルキルァリールカーボネートを含む反応混合物を原料として導入する、 均一系触媒が存在する連続多段蒸留塔力 なる反応蒸留塔であって、該塔内でェ ステル交換反応と蒸留とを同時に行 、、生成するジアルキルカーボネートを含む低 沸点反応混合物を塔上部よりガス状で抜出し、塔下部よりジァリールカーボネートを 含む高沸点反応混合物を液状で抜出す反応蒸留塔と、
該高沸点反応混合物を導入し、ジァリールカーボネートを含む塔頂成分 (A )と触
T
媒を含む塔底成分 (A )に蒸留分離する、該反応蒸留塔と連結した高沸点物質分離
B
塔 Aと、
該高沸点物質分離塔 Aと連結しており、該塔頂成分 (A )を、塔頂成分 (B )、サイ
T T
ドカット成分 (B )、塔底成分 (B )の 3つの成分に蒸留分離するジァリールカーボネ
S B
ート精製塔 Bと、
を備える高純度ジァリールカーボネートの製造装置において、
(a)該反応蒸留塔が、下記式 (1) - (6)を満足する、長さ L (cm)、内径 D (cm)、内 部に段数 nのインターナルを有する連続多段蒸留塔であって、塔頂部またはそれに 近い塔の上部に内径 d (cm)のガス抜出し口、塔底部またはそれに近い塔の下部に 内径 d (cm)
2 の液抜出し口、該ガス抜出し口より下部であって塔の上部および Zまた は中間部に 1つ以上の導入口、該液抜出し口より上部であって塔の下部に 1つ以上 の導入口を有し、
1500 < L ≤ 8000 式 (1)
100 < D ≤ 2000 式 (2)
2 < L/D ≤ 40 式 (3)
10 < n ≤ 80 式 (4)
2 < D/d ≤ 15 式 (5)
1
5 < D/d ≤ 30 式 (6) (b)該高沸点物質分離塔 Aが、下記式 (7) - (9)を満足する、長さ L (cm) ,内径
A
D (cm)で、内部に段数 n のインターナルを有する連続多段蒸留塔であり、
A A
800 ≤ L ≤ 3000 式(7)
A
100 ≤ D ≤ 1000 式(8)
A
20 ≤ n ≤ 100 式(9)
A
(c)該ジァリールカーボネート精製塔 Bが、下記式(10) - (15)を満足する、長さ L
B
(cm) ,内径 D (cm)で、内部にインターナルを有するものであって、塔の中段に導
B
入口 Bl、該導入口 Blと塔底との間にサイドカット抜き出し口 B2を有し、導入口 B1か ら上部のインターナルの段数が n、導入口 Blとサイドカット抜き出し口 B2との間のィ ンターナルの段数が n、サイドカット抜き出し口 B2から下部のインターナルの段数が
2
nで、段数の合計 (n +n +n )が nである連続多段蒸留塔である、
1000 < L < 5000 式(10)
B
100 < D < 1000
B 式 (11)
5 < n < 20 式(12)
1
12 < n < 40 式(13)
2
3 < n < 15 式 (14)
3
20 < n < 70 式(15)
:とを特徴とする製造装置。
[15] 塔底温度 (T ) 185〜280°C、塔頂圧力(P ) 1000〜20000Paの条件下で該高
A A
沸点物質分離塔 Aの蒸留操作を行い、塔底温度 (T ) 185〜280°C、塔頂圧力 (P )
B B
1000〜20000Paの条件下で該ジァリールカーボネート精製塔 Bの蒸留操作を行う ことを特徴とする、請求項 14記載の製造装置。
[16] 該反応蒸留塔の L、 D、 LZD、 n、力それぞれ、 2000≤L≤6000, 150≤D≤1 000、 3≤L/D≤30, 15≤n≤60、であり、
該高沸点物質分離塔 Aの L 、 D 、 n 力それぞれ、 1000≤L ≤2500、 200≤
A A A A
D ≤600、 30≤n ≤70 であり、
A A
該ジァリールカーボネート精製塔 Bの L、 D、 n、 n、 n、 n がそれぞれ、 1500≤
B B 1 2 3 B
L ≤3000、 150≤D ≤500、 7≤n≤15、 12≤n≤30、 3≤n≤10、 25
B B 1 2 3 ≤n ≤ 55であり、
B
T 力 Sl90〜240oC、 P 力 S2000〜15000Pa、下カ 190〜2400〇、? 力 2000〜1
A A B B
5000Paであることを特徴とする、請求項 14または 15記載の製造装置。
[17] 該反応蒸留塔、該高沸点物質分離塔 A、該ジァリールカーボネート精製塔 Bが、そ れぞれ該インターナルとしてトレイおよび Zまたは充填物を有する蒸留塔であることを 特徴とする、請求項 14ないし 16のうち何れか一項に記載の製造装置。
[18] 該反応蒸留塔力インターナルとして充填物を上部に、トレィを下部に有する蒸留塔 であり、該高沸点物質分離塔 Aおよび該ジァリールカーボネート精製塔 Bのインター ナルが、それぞれ充填物であることを特徴とする、請求項 14ないし 17のうち何れか 一項に記載の製造装置。
[19] 該充填物が、メラパック、ジェムパック、テクノバック、フレキシパック、スルザーパツキ ング、グッドロールパッキング、グリッチグリッドから選ばれた少なくとも一種の規則充 填物であることを特徴とする、請求項 18に記載の製造装置。
[20] 該反応蒸留塔の該トレイが多孔板部とダウンカマー部を有する多孔板トレイである ことを特徴とする、請求項 17または 18に記載の製造装置。
[21] 該多孔板トレイが該多孔板部の面積 lm2あたり 100〜: LOOO個の孔を有するもので あることを特徴とする、請求項 20に記載の製造装置。
[22] 該多孔板トレイの孔 1個あたりの断面積が 0. 5〜5cm2であることを特徴とする、請 求項 20または 21に記載の製造装置。
PCT/JP2005/015980 2004-09-03 2005-09-01 高純度ジアリールカーボネートの工業的製造方法 WO2006025478A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN2005800295308A CN101010285B (zh) 2004-09-03 2005-09-01 高纯度碳酸二芳基酯的工业制备方法
US11/661,605 US20080064846A1 (en) 2004-09-03 2005-09-01 Industrial Process for Production of High-Purity Diaryl Carbonate
JP2006532776A JP4292211B2 (ja) 2004-09-03 2005-09-01 高純度ジアリールカーボネートの工業的製造方法
BRPI0514693-3A BRPI0514693A (pt) 2004-09-03 2005-09-01 aperfeiçoamento em um processo industrial para a produção de carbonato de diarila de pureza elevada, carbonato de difenila de pureza elevada, e, aparelho para produzir o mesmo
EP05776685A EP1787976A4 (en) 2004-09-03 2005-09-01 METHOD FOR THE PRODUCTION OF HIGH-PURITY DIARYLCARBONATE IN INDUSTRIAL STANDARD
EA200700546A EA012179B1 (ru) 2004-09-03 2005-09-01 Промышленный способ получения высокочистого диарилкарбоната, высокочистый дифенилкарбонат и установка для получения высокочистого диарилкарбоната

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004256518 2004-09-03
JP2004-256518 2004-09-03

Publications (1)

Publication Number Publication Date
WO2006025478A1 true WO2006025478A1 (ja) 2006-03-09

Family

ID=36000127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/015980 WO2006025478A1 (ja) 2004-09-03 2005-09-01 高純度ジアリールカーボネートの工業的製造方法

Country Status (8)

Country Link
US (1) US20080064846A1 (ja)
EP (1) EP1787976A4 (ja)
JP (1) JP4292211B2 (ja)
KR (1) KR100880141B1 (ja)
CN (1) CN101010285B (ja)
BR (1) BRPI0514693A (ja)
EA (1) EA012179B1 (ja)
WO (1) WO2006025478A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009137952A (ja) * 2007-11-20 2009-06-25 Bayer Materialscience Ag ジアリールカーボネートを精製する方法
US7777067B2 (en) 2004-07-13 2010-08-17 Asahi Kasei Chemicals Corporation Industrial process for production of an aromatic carbonate
US7812189B2 (en) 2004-08-25 2010-10-12 Asahi Kasei Chemicals Corporation Industrial process for production of high-purity diphenyl carbonate
US8044167B2 (en) 2004-10-14 2011-10-25 Asahi Kasei Chemicals Corporation Process for production of high-purity diaryl carbonate
WO2023058681A1 (ja) 2021-10-05 2023-04-13 旭化成株式会社 高純度ジアリールカーボネートの製造方法
JP7566410B2 (ja) 2021-10-15 2024-10-15 エルジー・ケム・リミテッド アクリル酸の製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1762560A4 (en) * 2004-06-25 2008-05-07 Asahi Kasei Chemicals Corp PROCESS FOR PRODUCING AROMATIC CARBONATE AT THE INDUSTRIAL SCALE
US7803961B2 (en) 2007-02-16 2010-09-28 Sabic Innovative Plastics Ip B.V. Process for manufacturing dimethyl carbonate
IN2014DN07584A (ja) 2007-02-16 2015-07-10 Sabic Innovative Plastics Ip

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2528412A1 (de) 1974-06-25 1976-01-08 Snam Progetti Verfahren zur herstellung von aromatischen carbonaten
JPS56123949A (en) 1974-06-25 1981-09-29 Anic Spa Manufacture of bisphenol a polyalkylcarbonic ester
WO1991009832A1 (fr) * 1989-12-28 1991-07-11 Asahi Kasei Kogyo Kabushiki Kaisha Procede de production en continu de carbonate aromatique
JPH04100824A (ja) * 1990-08-21 1992-04-02 Asahi Chem Ind Co Ltd 芳香族ポリカーボネートの製法
JPH09110805A (ja) * 1995-10-17 1997-04-28 Mitsubishi Chem Corp ジアリールカーボネート製造方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4182726A (en) * 1974-06-25 1980-01-08 Snamprogetti, S.P.A. Process for the preparation of aromatic carbonates
IT1025961B (it) * 1974-11-25 1978-08-30 Snam Progetti Processo per la preparazione di carbonati aromatici
DE2736063A1 (de) * 1977-08-10 1979-02-22 Bayer Ag Verfahren zur herstellung aromatischer kohlensaeureester
US4410464A (en) * 1982-03-15 1983-10-18 General Electric Company Diaryl carbonate process
US4552704A (en) * 1983-12-27 1985-11-12 General Electric Company Process for the production of aromatic carbonates
US4554110A (en) * 1983-12-27 1985-11-19 General Electric Company Process for the preparation of aromatic carbonates
US4609501A (en) * 1983-12-27 1986-09-02 General Electric Company Process for the preparation of aromatic carbonates
CN1013195B (zh) * 1986-12-28 1991-07-17 化学工业部晨光化工研究院一分院 碳酸二苯酯的合成
US5282965A (en) * 1990-11-29 1994-02-01 Nitto Denko Corporation Membrane filter for liquids and filtering device using the same
DE4218061A1 (de) * 1992-06-01 1993-12-02 Bayer Ag Verfahren zur Herstellung von organischen Carbonaten mit mindestens einer aromatischen Estergruppe
DE4226756A1 (de) * 1992-08-13 1994-02-17 Bayer Ag Verfahren zur Herstellung von Dicarbonaten
DE4226755A1 (de) * 1992-08-13 1994-02-17 Bayer Ag Verfahren zur kontinuierlichen Herstellung von Diarylcarbonaten aus Dialkylcarbonaten
IT1282363B1 (it) * 1996-01-16 1998-03-20 Enichem Spa Procedimento continuo per la preparazione di fenil metil carbonato
FI104658B (fi) * 1997-05-26 2000-03-15 Nokia Mobile Phones Ltd Kahden näytön näyttöjärjestely ja päätelaite
JP4112048B2 (ja) * 1997-09-16 2008-07-02 旭化成ケミカルズ株式会社 芳香族カーボネート類の製法
US6600061B1 (en) * 2000-11-15 2003-07-29 General Electric Company Method for the continuous production of aromatic carbonates
JP4292210B2 (ja) * 2004-08-25 2009-07-08 旭化成ケミカルズ株式会社 高純度ジフェニルカーボネートの工業的製造方法
EA200700530A1 (ru) * 2004-09-02 2007-08-31 Асахи Касеи Кемикалз Корпорейшн Промышленный способ получения высокочистого дифенилкарбоната
CN101039896B (zh) * 2004-10-14 2011-06-22 旭化成化学株式会社 高纯度碳酸二芳基酯的制备方法
WO2006043491A1 (ja) * 2004-10-22 2006-04-27 Asahi Kasei Chemicals Corporation 高純度ジアリールカーボネートの工業的製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2528412A1 (de) 1974-06-25 1976-01-08 Snam Progetti Verfahren zur herstellung von aromatischen carbonaten
JPS51105032A (en) 1974-06-25 1976-09-17 Snam Progetti Hokozokutansanenno seiho
JPS56123949A (en) 1974-06-25 1981-09-29 Anic Spa Manufacture of bisphenol a polyalkylcarbonic ester
JPS56123948A (en) 1974-06-25 1981-09-29 Anic Spa Manufacture of diphenylcarbonic ester
WO1991009832A1 (fr) * 1989-12-28 1991-07-11 Asahi Kasei Kogyo Kabushiki Kaisha Procede de production en continu de carbonate aromatique
JPH04100824A (ja) * 1990-08-21 1992-04-02 Asahi Chem Ind Co Ltd 芳香族ポリカーボネートの製法
JPH09110805A (ja) * 1995-10-17 1997-04-28 Mitsubishi Chem Corp ジアリールカーボネート製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1787976A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7777067B2 (en) 2004-07-13 2010-08-17 Asahi Kasei Chemicals Corporation Industrial process for production of an aromatic carbonate
US7812189B2 (en) 2004-08-25 2010-10-12 Asahi Kasei Chemicals Corporation Industrial process for production of high-purity diphenyl carbonate
US8044167B2 (en) 2004-10-14 2011-10-25 Asahi Kasei Chemicals Corporation Process for production of high-purity diaryl carbonate
US8044226B2 (en) 2004-10-14 2011-10-25 Asahi Kasei Chemicals Corporation Process for production of high-purity diaryl carbonate
JP2009137952A (ja) * 2007-11-20 2009-06-25 Bayer Materialscience Ag ジアリールカーボネートを精製する方法
WO2023058681A1 (ja) 2021-10-05 2023-04-13 旭化成株式会社 高純度ジアリールカーボネートの製造方法
KR20240046762A (ko) 2021-10-05 2024-04-09 아사히 가세이 가부시키가이샤 고순도 디아릴카르보네이트의 제조 방법
JP7566410B2 (ja) 2021-10-15 2024-10-15 エルジー・ケム・リミテッド アクリル酸の製造方法

Also Published As

Publication number Publication date
KR20070047334A (ko) 2007-05-04
EP1787976A1 (en) 2007-05-23
KR100880141B1 (ko) 2009-01-23
JP4292211B2 (ja) 2009-07-08
CN101010285A (zh) 2007-08-01
EA012179B1 (ru) 2009-08-28
EA200700546A1 (ru) 2007-10-26
EP1787976A4 (en) 2008-08-13
JPWO2006025478A1 (ja) 2008-05-08
CN101010285B (zh) 2011-03-16
BRPI0514693A (pt) 2008-06-17
US20080064846A1 (en) 2008-03-13

Similar Documents

Publication Publication Date Title
JP4292210B2 (ja) 高純度ジフェニルカーボネートの工業的製造方法
JP4292214B2 (ja) 高純度ジアリールカーボネートの製造方法
JP4224514B2 (ja) 高純度ジアリールカーボネートの工業的製造方法
KR100870851B1 (ko) 부생 알코올류의 공업적 분리 방법
JP4236205B2 (ja) 高純度ジフェニルカーボネートの工業的製造法
JP4292211B2 (ja) 高純度ジアリールカーボネートの工業的製造方法
KR100871306B1 (ko) 부생 알코올류를 공업적으로 분리하는 방법
WO2006006568A1 (ja) 芳香族カーボネート類を工業的に製造する方法
JP4229395B2 (ja) 芳香族カーボネートの工業的製造方法
WO2007072705A1 (ja) 高純度ジフェニルカーボネートを工業的規模で製造する方法
WO2006033291A1 (ja) 副生アルコール類の工業的分離装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 467/KOLNP/2007

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2005776685

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006532776

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020077004934

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 11661605

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580029530.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 200700546

Country of ref document: EA

WWP Wipo information: published in national office

Ref document number: 2005776685

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11661605

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0514693

Country of ref document: BR