WO2006022438A1 - 光学ガラス - Google Patents

光学ガラス Download PDF

Info

Publication number
WO2006022438A1
WO2006022438A1 PCT/JP2005/015968 JP2005015968W WO2006022438A1 WO 2006022438 A1 WO2006022438 A1 WO 2006022438A1 JP 2005015968 W JP2005015968 W JP 2005015968W WO 2006022438 A1 WO2006022438 A1 WO 2006022438A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
component
optical glass
optical
present
Prior art date
Application number
PCT/JP2005/015968
Other languages
English (en)
French (fr)
Inventor
Shinya Mashiko
Susumu Uehara
Masahiro Onozawa
Original Assignee
Kabushiki Kaisha Ohara
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Ohara filed Critical Kabushiki Kaisha Ohara
Publication of WO2006022438A1 publication Critical patent/WO2006022438A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/068Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths

Definitions

  • the present invention relates to a glass preform material having high refractive index and low dispersibility, a low transition temperature (T g) and used for precision press molding, and optical glass suitable for precision press molding.
  • T g transition temperature
  • Glass aspherical lenses are increasingly used for the purpose of reducing the number of lenses constituting the optical system of optical devices.
  • Glass aspherical lenses are made by press-molding a glass preform material that has been heat-softened with a mold that has a high-precision molding surface, and then transferring the shape of the high-precision molding surface of the mold to the glass preform material.
  • the mainstream method is to obtain it by precision press molding.
  • the glass used for precision press molding and the glass preform material glass used for precision press molding suppress the above damage, maintain a high-precision molding surface of the mold for a long time, and perform precision breathing at a low temperature.
  • transition temperature (T g) As low as possible.
  • the glass transition temperature (T g) of the glass preform used for precision press molding exceeds 6 30 ° C, precision press molding becomes difficult, so the transition temperature (T g) is 6 3 0
  • the transition temperature (T g) is 6 3 0
  • the glass of the glass preform used for precision press molding must be a glass with excellent devitrification resistance.
  • Optical glasses used for aspherical lenses are required to have various optical constants (refractive index (nd) and Abbe number (re d)).
  • nd refractive index
  • re d Abbe number
  • JP-A-9 to 278480 B 2 0 3 - Ge0 2 - La 2 0 3 - Nb 2 0 5 - Zr0 2 - Ti0 2 system of the optical glass JP 52- 155614, B 2
  • JP 2002-362939 discloses an optical glass of B 2 0 3 — CaO— La 2 0 3 — Nb 2 0 3 — T i 0 2 — Z r ⁇ 2 system.
  • the glass disclosed in No. 1 has a high total content of B 2 0 3 and S i 0 2 of 19 to 28%, which are low refractive index components, and does not satisfy the desired optical constant.
  • JP 2000- to 128,570 the 310 2 - 8 2 0 3 - ⁇ & 0- 1: & 2 ⁇ 3 - Ding]-02 system of the optical glass
  • Japanese Patent 2000- 159537 Si0 2 - B 2 ⁇ 3 —Z r 0 2 — La 2 0 3 — T i 0 2 system
  • the optical glasses described in these publications contain a large amount of T i 0 2 in order to increase the refractive index. However, if T i 0 2 is contained in a large amount, the transmittance is remarkably deteriorated and the glass is colored.
  • JP 52-63211 discloses B 2 0 3 —La 2 0 3 —Y 2 0 3 —T i 0 2 series optical glass, but lowers the transition temperature and melts the glass. It does not contain an alkali component, a component that improves the properties, and the transition temperature (Tg) becomes high, making precision press molding difficult.
  • Tokusho Akira 54-103411 discloses 8 2 0 3 — & 2 0 3 — Ding & 2 0 5 series optical glass, but it lowers the transition temperature and improves the meltability of the glass. It does not contain an alkaline component, and the transition temperature (T'g) becomes high, making precision press molding difficult.
  • JP 2004-175632 discloses S i0 2 — B 2 0 3 _BaO_La 2 0 3 — T i0 2 optical glass, but the glass specifically disclosed in this gazette is T i0 2 Although containing a large amount, T i 0 2 significantly exacerbates transparently rate the inclusion in a large amount, there is the disadvantage that to colored glass. Disclosure of the invention
  • Tg transition temperature
  • T Even if g is low, it cannot have an optical constant in the specific range that has been strongly demanded in recent years. Also, components that may lower the Tg, for example, increasing the L i 2 0, etc. occur such as reduction of resistance to devitrification, and thus compromising the stability of optical glass. On the other hand, in the conventional art, there is a tendency that a large amount is contained T i0 2 to pursue a high refractive index, but as a result coloration of the optical glass is deteriorated, have ended up as applied to practical It was.
  • the present invention the comprehensively overcome various disadvantages of the optical glass as described in the prior art, has an optical science constants of the specific range without the inclusion of T i0 2 in a large amount, and the transition temperature (Tg It is to provide a glass preform ⁇ "that can be used for precision press molding and optical glass that is suitable for precision press molding and has excellent stability.
  • La 2 0 3 , Nb 2 0 5 , Ta 2 0 5 , 1 2 0 and ⁇ 110 the ratio of ZnO and Li 2 0 and / or containing ZnO and Li 2 0 the amount and by defining the ratio of La 2 0 3 content in a predetermined range liquor, has a pre-Symbol particular range has optical constants and precision press lower moldable transition temperature (T g), It was also found that a glass preform material used for precision press molding excellent in stability and optical glass suitable for precision press molding can be obtained.
  • the first configuration of the present invention has a refractive index (nd) of 1.9 or more, an Abbe number (re d) of 25 or more, and is selected from the group consisting of Si0 2 , B 2 0 3 and Ge0 2 An optical glass containing one or more, and La 2 0 3 , Nb 2 0 5 , Ta 2 0 5 , Li 2 0 and ZnO.
  • the second configuration of the present invention is the optical glass according to Configuration 1, wherein the liquidus temperature is 1150 ° C. or lower.
  • the third constitution of the present invention is the optical glass of the constitutions 1 and 2, wherein the logarithm log? 7 of the viscosity at the liquidus temperature (dPa ⁇ s) is 0.3 or more.
  • a fourth structure of the present invention is the optical glass according to any one of the structures 1 to 3, wherein the glass transition temperature (Tg) is 630 ° C. or lower.
  • the sixth structure of the present invention is a L i 2 0 ZnO content to the content is from 1.5 to 7.5 wherein the configuration 1-5 of the optical glass which is expressed in mass%.
  • the structure value of the sum of Z n 0 and L i 2 0 content relative L a 2 0 3 content expressed in% by mass is in the range of from 0.1 to 0.5 1 to 6 optical glasses.
  • the 8th composition of the present invention is mass%.
  • RO is selected from CaO, Sr0 and BaO, or two or more, and / or
  • the total amount of F containing each component of the oxide equivalent composition and fluoride-substituted part or all of the oxide is 0 to 5 parts by mass with respect to 100 parts by mass of the oxide equivalent composition. It is the optical glass of the said structures 1-7 containing each component used as the range of this.
  • the ninth configuration of the present invention is mo l%.
  • RO is one or more selected from CaO, SrO and BaO, and / or Sb, 0 3 0 ⁇ : L%
  • the ratio of the number of moles of F in which a part or all of the above oxide is fluoride-substituted with respect to the total number of moles of the oxide equivalent composition is 0 to 0.25. It is an optical glass containing each component so that.
  • Si0 2 and the total content of B 2 0 3 is the above configuration 1-9 of the optical glass is less than 5% or more and 17% by mass%.
  • An eleventh configuration of the present invention is a precision press-molding preform made of the optical glass of the above configurations 1 to 10.
  • a twelfth configuration of the present invention is an optical product obtained by precision press-molding the precision press-molding preform of the above-mentioned configuration 11.
  • the S i 0 2 component is an effective component for increasing the glass viscosity and improving the devitrification resistance in the optical glass of the present invention.
  • Tg increases and undissolved material is easily generated. Moreover, since it is a low refractive index component, the desired optical constant cannot be satisfied.
  • the upper limit of the content is preferably 5.5%, more preferably 5%, and most preferably 4%.
  • S i0 2 component as a raw material by using, eg, S i0 2, etc. can be introduced in the glass composition.
  • the optical glass of the present invention is a component that is essential as a glass forming oxide component.
  • the lower limit is preferably 5%, more preferably 6%, most preferably 7%, preferably 15%, more preferably 14.5%, Most preferably, it can contain up to 14%.
  • B 2 0 3 component, as a raw material for example H 3 BO 3 and the like can be introduced into the glass composition used.
  • the total content of S i 0 2 and B 2 0 3 is within a predetermined range. If this value is too large, undissolved material is likely to be generated, and it becomes difficult to maintain a desired optical constant value. On the other hand, if the glass is too small, there will be a disadvantage if the anti-devitrification property of the glass is insufficient. Therefore, the value is preferably 5%, more preferably 5.5%, most preferably 6%, and preferably less than 17%, when the content of each component is expressed by mass%. The upper limit is preferably 16.5%, and most preferably 16%.
  • La 2 0 3 component increases the refractive index of the glass is a component indispensable to the glass of the present invention having an effective and low dispersion for lowering dispersion.
  • the amount is too small, it is difficult to maintain the value of the optical constant of the glass within the specific range, and when it is too large, the devitrification resistance is deteriorated.
  • the La 2 0 3 component can be introduced into the glass composition using, for example, La 2 0 3 , La (N 0 3 ) 3 ⁇ xH 2 0, LaF 3 or the like as a raw material.
  • the Nb 2 0 5 component is a component that increases the refractive index of the glass and is indispensable for the glass of the present invention.
  • 22% is the lower limit, preferably 30%, more preferably 29%, most preferably Can contain up to 28%.
  • the N b 2 0 5 component is introduced into the glass composition using, for example, N b 2 0 5 as a raw material.
  • the Ta 2 0 5 component is an effective component for increasing the refractive index of glass and improving devitrification.
  • the amount is too small, it is difficult to maintain the value of the optical constant of the glass within the specific range. If the amount is too large, the devitrification property is deteriorated and undissolved products are likely to be generated.
  • the Ta 2 0 5 component can be introduced into the glass composition using, for example, Ta 2 0 5 as a raw material.
  • G e 0 2 component has the effect of increasing the refractive index of glass and improving anti-devitrification, If the amount is too small, it is difficult to maintain the value of the optical constant of the glass within the specific range. If the amount is too large, the raw material is very expensive and the cost becomes high. Therefore, in order to achieve the above effect, it preferably contains 1%, more preferably 3%, most preferably 6% as the lower limit, preferably 20%, more preferably 19%, most preferably 18% as the upper limit. be able to.
  • Ge0 2 components using, for example GeO 2 or the like as a raw material can be introduced into the glass composition.
  • the Li 20 component has the effect of significantly lowering the transition temperature (Tg) and promoting the melting of the mixed glass raw material. However, if the amount is too small, these effects are insufficient, and if the amount is too large, the devitrification resistance deteriorates rapidly.
  • the lower limit is preferably set to exceed 0.5% or more, preferably 6%, more preferably 5%, and most preferably 4%.
  • Li 2 0 component material as for example L i 2 C0 3, LiF, LiN0 3, LiO H, etc. using can be introduced into the glass composition.
  • the ZnO component is a component that has a large effect of lowering the transition temperature (Tg). However, since it is a highly dispersed component, it becomes difficult to have an optical constant within the specified range when added in excess, and resistance to devitrification is also high. Deteriorate.
  • the content is preferably 10% or less, more preferably 9% or less, and most preferably 8% or less. May contain 2%, more preferably 3%, and most preferably 4%.
  • the ZnO component can be introduced into the glass composition using, for example, ZnO, ZnF 2 or the like as a raw material.
  • the optical glass of the present invention is preferably a ratio of ZnO content with respect to L i 2 0 content is within a predetermined range. If this value is too large, the devitrification resistance is deteriorated, and if it is too small, the chemical durability is deteriorated. Therefore, the value is preferably 1.5, more preferably 1.6, most preferably 1.7, and preferably 7.5, when the content of each component is expressed in mass%.
  • the upper limit is preferably 7.4, and most preferably 7.3.
  • the value of the sum of ZnO and L i 2 0 content relative La 2 0 3 content in yet present invention that is, the value of (Z nO + L i 2 0 ) Bruno La 2 0 3 and a value within a predetermined range It is preferable to become. If this value is too large, the viscosity (log ??) will be low, the workability during pressing will be poor, and the desired optical constant will be difficult to maintain. On the other hand, if it is too small, the transition temperature (Tg) increases and the devitrification property deteriorates. Therefore, this value is preferably 0.1, more preferably 0.15, most preferably 0.2, and more preferably 0.5, when the content of each component is expressed by mass%. Better Or 0.45, most preferably 0.4.
  • the Gd 2 0 3 component is effective in increasing the refractive index of glass and lowering the dispersion. However, if the amount is too large, the devitrification resistance is deteriorated.
  • it in order to maintain good devitrification resistance while maintaining the desired optical constant in the present invention, it is preferably 8% or less, more preferably 6% or less, and most preferably 4% or less. can do.
  • the Gd 2 0 3 component can be introduced into the glass composition using, for example, G d 2 0 3 , G d F 3 or the like as a raw material.
  • Y 2 0 3 component increases the refractive index of the glass, it is effective to lowering dispersion. However, if the amount is too large, the devitrification resistance deteriorates.
  • it in order to maintain good devitrification resistance while maintaining the desired optical constant in the present invention, it is preferably 8% or less, more preferably 6% or less, and most preferably 4% or less. can do.
  • the 20 3 component can be introduced into the glass composition using, for example, Y 2 0 3 , YF 3 or the like as a raw material.
  • the Yb 2 0 3 component is effective in increasing the refractive index of glass and lowering the dispersion. However, if added excessively, the devitrification resistance of the glass is deteriorated.
  • it in order to maintain good devitrification resistance while maintaining the desired optical constant in the present invention, it is preferably 8% or less, more preferably 6% or less, and most preferably 4% or less. can do.
  • the Y b 2 0 3 component can be introduced into the glass composition using, for example, Y b 2 0 3 , Y b F 3 or the like as a raw material.
  • the T i 0 2 component deteriorates the light transmittance and makes the glass highly dispersed, but can be optionally added to prevent the glass from becoming loose.
  • the amount is preferably less than 5%, more preferably 4.5% or less, and most preferably 4% or less.
  • T i0 2 component as a raw material by using, eg, T i 0 2 or the like can be introduced into the glass composition.
  • the Zr0 3 component has the effect of adjusting the optical constant, improving devitrification resistance, and improving chemical durability. However, when added excessively, the devitrification resistance deteriorates. Therefore, in order to make it easy to maintain good chemical durability and devitrification resistance, it can be contained preferably 10% or less, more preferably 9% or less, and most preferably 8% or less. .
  • Z r 0 2 component as a raw material by using, eg, Z r 0 2, Z r F 4 , etc. can be introduced into the glass composition.
  • One or more components selected from CaO, SrO and B a 0 components
  • the RO component is effective for adjusting the optical constant. However, if the total amount of the CaO, 31 "0 and 6 & 0 components is too large, the devitrification resistance is deteriorated.
  • it in order to easily maintain particularly good devitrification resistance, it can be contained preferably at 15% or less, more preferably 13% or less, and most preferably 10% or less.
  • the CaO component can be introduced into the glass composition by using, for example, CaC0 3 , CaF 2 , Ca (OH) 2 , etc. as raw materials.
  • the SrO component can be introduced into the glass composition using, for example, Sr (N0 3 ) 2 , SrF 2 , Sr (OH) 2 or the like as a raw material.
  • the BaO component can be introduced into the glass composition using, for example, BaC0 3 , Ba (N0 3 ) 2 , BaF 2 , Ba (OH) 2 or the like as a raw material.
  • the W0 3 component has the effect of adjusting the optical constants and improving anti-devitrification, but if the amount is too large, the devitrification resistance and the light transmittance in the short wavelength range of the visible range are adversely affected.
  • the glass having excellent light transmittance in the short wavelength region in the visible region it is preferably 7% or less, more preferably 6% or less, most preferably. Can be contained at 5% or less.
  • the W0 3 component can be introduced into the glass composition using, for example, W0 3 as a raw material.
  • B i 20 3 component has the effect of increasing the refractive index of glass and lowering the point transfer (Tg), but it has a harmful effect on the environment and has a large environmental impact. More preferably, the upper limit is 2%, and most preferably it is not contained.
  • the Sb 203 component can be added as a defoaming agent during glass melting, but up to 1% is sufficient.
  • Tg transition temperature
  • the F component is considered to exist in the form of a fluoride substituted with some or all of one or more oxides of each silicon and other metal elements. . If the total amount of F substituted for a part or all of the oxide is too large, the volatilization amount of the fluorine component increases and it becomes difficult to obtain a homogeneous glass.
  • the amount is preferably 5 parts by mass or less, more preferably 4 parts by mass or less, and most preferably 3% by mass or less with respect to 100 parts by mass of the glass composition having an oxide equivalent composition.
  • oxide equivalent composition means that the fluoride used as the glass component of the present invention is all decomposed when the glass is melted and the acid. It is a composition in which each component is indicated with the total weight of the generated oxide assumed to be 100% by mass when converted to a compound.
  • the lead compound is a component that is easy to fuse with the mold during precision press molding, and environmental measures are not limited to glass manufacturing, cold processing of glass such as polishing and glass disposal.
  • the optical glass of the present invention should not be contained because there is a problem that it is a component that is necessary and has a large environmental load.
  • P 2 0 5 is contained in the optical glass of the present invention; it tends to deteriorate the devitrification resistance: Therefore, it is not preferable to contain P 20 5 .
  • Te0 2 is, platinum crucible, when the portion in contact with the molten glass is melted the glass raw material in a molten bath that is made of platinum, tellurium etc.
  • platinum alloyed alloy summer was -:.
  • Location is Since the heat resistance deteriorates, a hole is opened at the location.
  • the optical glass of the present invention preferably contains no coloring components such as V, Cr, Mn, Fe, Co, Ni, Cu, Mo, Eu, Nd, Sm, Tb, Dy, and Er.
  • coloring components such as V, Cr, Mn, Fe, Co, Ni, Cu, Mo, Eu, Nd, Sm, Tb, Dy, and Er.
  • not contained here means that it is not contained artificially unless it is mixed as an impurity.
  • the glass composition of the present invention cannot be expressed directly in the description of m 01% because the composition is expressed by mass%, but in the glass composition satisfying various properties required in the present invention.
  • the composition expressed by mo 1% of each component present in the oxide takes on the following values in terms of oxide conversion composition.
  • RO is selected from: CaO S rO and BaO 1. Species or 2 or more types; and / or Sb 0 1%
  • the ratio of the number of moles of F in each of the oxides in the oxide conversion composition is 0..25 -Become.
  • the effect of the S 10 2 component in the glass composition of the present invention is as described above. In order to achieve the effect, it is preferably approximately 15 mol%, more preferably approximately 13 mol%, and most preferably approximately 11 mo. It can be contained up to 1%. As described above, the effect of the B 2 0 3 component in the glass composition of the present invention is 3 ⁇ 4, but in order to produce the effect, it is preferably about 1.0 m 0.1%,: more; preferably about 1 , 2 mo I%, 'The most preferred is approximately 13mo 1%, and the preferred is approximately 35mo 1%, more preferably approximately 33 mo 1%, most preferably approximately 32m 01%. Can be contained.
  • the effect of the La 2 '0 3 component in the glass composition of the present invention is as described above, but in order to achieve the effect, preferably about 5 mo 1%, more preferably about 7 mo 1%, most preferably
  • the lower limit can be about 8 mo 1%, preferably about 2 mm 01%, more preferably about 18 mo 1%, and most preferably about 17 mo 1%.
  • the effect of the Nb 2 0 5 component in the glass composition of the present invention is as described above, but in order to achieve the effect, preferably about 8 mo 1%, more preferably about 9 mo 1%, most preferably about 1 Omo 1% is the lower limit, preferably about 22 mo 1%, more preferably about 2 lmo 1%, and most preferably about 20 mo 1%.
  • lmo 1% is the lower limit, preferably about 1 Omo 1%, more preferably about 8 mo. It can be contained at an upper limit of 1%, most preferably approximately 6 mo 1%.
  • G e 0 2 component in the glass composition of the present invention are as described above, in order to achieve the effect, preferably approximately lmo 1%, more preferably approximately 4 mo l%, and most preferably approximately 7mo 1% as the lower limit, preferably approximately 34m ol%, more preferably about 33mo 1%, and most preferably about 32mo1% can be contained as an upper limit.
  • lmo 1% is the lower limit, preferably approximately 2 Omo 1%, more preferably approximately 18mo 1 %, Most preferably about 17mo 1%.
  • the effect of the G d 2 0 3 component in the glass composition of the present invention is as described above, but in order to achieve the effect, it is preferably about 5 mo 1%, more preferably about 4 mo: l%. It contains about 3 mo 1% as the upper limit.
  • the effect of the Y b 2 0 3 component in the glass of the present invention is as follows: it is as described above, but s is preferably approximately 5 mo 1%, more preferably approximately 4 to achieve the effect. mo].%, most preferably up to about 3 m 01%.
  • T i 0 2 component in the glass composition of the present invention is as described above.
  • Preferred in the glass of the present invention preferably about 1 Omo 1%, more preferred: Shigu can contain up to about 9mo 1%, most preferably up to about 8mo 1% b
  • the effect of the Zr 0 2 component in the glass composition of the present invention is as described above, but in order to achieve the effect, preferably about 15 mo.l%, more preferably about 14 mo 1%, most preferably Can contain up to about 12 mo 1%.
  • the effect of the Z ⁇ component in the glass composition of the present invention is as described above.
  • it is preferably less than 2 Omo 1%, more preferably approximately 18 mo 1%, most preferably 16 mo 1%, 3mo 1%, preferably 4 mol%, most preferably 5mo 1% can be contained as a lower limit.
  • the effect of the R 0 component in the glass composition of the present invention is as described above. In order to achieve the effect, it is preferably about 3 Omo 1%, more preferably about 28 mo 1%, and most preferably about 26. Can contain up to 1% mo.
  • the effect of the W0 3 component in the glass composition of the present invention is as described above, but in order to achieve the effect, it is preferably approximately 5mo 1%, more preferably approximately 4.5mo 1%, and most preferably approximately 4%. Can contain up to 1% mo.
  • the effect of the total content of S i0 2 and B 2 0 3 components in the glass composition of the present invention is as described above. However, in order to exert the effect, preferably about 1 Omo 1%, more preferably about 12mo 1%, most preferably approximately 14 mo 1% as a lower limit, preferably approximately 42 mo 1%, more preferably approximately 4 lmo 1%, most preferable Preferably, it can be contained up to about 4 O mo 1%.
  • the F component in the glass composition of the present invention is as described above, but in order to achieve the effect, the number of moles of F in which a part or all of the oxide is substituted with fluoride with respect to the total number of moles of the oxide conversion composition.
  • the ratio is preferably not more than 0.25, more preferably not more than 0.24, and most preferably not more than 0.23.
  • the optical glass of the present invention is mainly used as a glass preform for softening by heating and obtaining a glass molded product through precision press molding. Therefore, in order to suppress damage to the mold used at this time, maintain a high-precision molding surface of the mold for a long time, and enable precision press molding at a low temperature, the lowest possible transition temperature "( T g)
  • the desired glass transition temperature (T g) is realized.
  • the T g of the optical glass of the present invention is preferably 570 ° C, more preferably 575 ° C, and most preferably 5 8 ° C.
  • the lower limit is 0 ° C, preferably 630 ° C, more preferably 625 ° C, and most preferably 620 ° C.
  • the liquidus temperature is 1 1550 ° C. or lower in order to realize stable production by the following production method. Particularly preferably, by setting the temperature to 1 1 35 ° C. or lower, the temperature range in which stable production can be performed is widened, and the glass melting temperature can be lowered, so that the consumed energy can be suppressed.
  • liquid phase temperature means using a general melting furnace, melting a 50 cc glass sample with a platinum crucible, holding it at an arbitrary temperature for 2 hours, and taking it out. The lowest temperature at which no crystal is observed is observed by visually observing the presence or absence of glass crystals.
  • the optical glass of the present invention can be used as a preform material for press molding, or the molten glass can be directly pressed.
  • the production method and hot forming method are not particularly limited, and known production methods and forming methods can be used.
  • a method for manufacturing a preform material for example, in Japanese Patent Application Laid-Open No. 8-3 1 9 1 2 4
  • the glass gob forming method described can be produced directly from molten glass such as the optical glass manufacturing method and manufacturing apparatus described in JP-A-8 7 3 2 2 9, and can also be formed into a plate shape.
  • the material may be manufactured by cold working.
  • the logarithm of the viscosity (d P a ⁇ s) at the liquidus temperature (d P a ⁇ s) preferably has a logarithm of 1 ⁇ g 7?
  • the upper limit is 20, the more preferred is 1.8, and the most preferred is /1.5 '.
  • the hot forming method of the preform is not particularly limited, but it is possible to use an inconvenient method of the optical element forming method described in, for example, Japanese Patent Publication No. 6 2-4 1 1 80 .
  • Example 1 Japanese Patent Publication No. 6 2-4 1 1 80 .
  • Gd 2 0 i 0. 000 0. 000 0. 000 0. 000 0. 000
  • the glass transition temperature (T g) was measured by the method described in Japan Optical Glass Industry Association Standard J OGI S08 2.00 3 (Measurement Method of Thermal Expansion of Optical Glass). : However, a sample having a length of 5 Omn and a diameter of 4 mm was used as a sample piece.
  • the liquid phase temperature is measured by using a general melting furnace, melting a 50 cc glass sample with a platinum crucible, holding it at an arbitrary temperature for 2 hours, and then taking it out. The lowest temperature at which no crystals were observed was determined by visual observation.
  • Viscosity at the liquidus temperature? 7 was measured using a ball pulling viscometer (manufactured by OPT CORPORATION: Model No. BVM-13LH). In Tables 1 to 6, when the viscosity is represented, it is represented by a common logarithm of a viscosity of 7 ?.
  • all of the optical glasses (N o. 1 to N h. 25) of the examples of the present invention have optical constants (refractive index (nd) and Abbe number (re- d) and), the transition temperature (Tg) is in the range of 630 ° C or lower, and the logarithm of the viscosity at the liquidus temperature (10 gT?) is in the range of 0.3-2. It was suitable for glass preforms used for precision press molding and precision press molding.
  • Comparative Example No. 1 Example N 0.5 of Japanese Patent Laid-Open No. 2000-1 28570
  • Comparative Example No. 2 Japanese Patent Laid-Open No. 2000-1 28570
  • the glass of Example No. 10 of the Gazette was vigorously devitrified when inserted into a mold and did not vitrify.
  • the optical glass of the present invention has a refractive index (nd) of 1.9 or more, an Abbe number (re d) of 25 or more, and a glass transition temperature (Tg) of 630 ° C or less.
  • nd refractive index
  • re d Abbe number
  • Tg glass transition temperature

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

屈折率(nd)が1.9以上、アッベ数(νd)が25以上を有し、SiO2、B2O3及びGeO2からなる群より選択される1種又は2種以上、並びにLa2O3、Nb2O5、Ta2O5、Li2O及びZnOを含有する光学ガラス

Description

明細書
光学ガラス 技術分野
本発明は、 高屈折率低分散性を有し、 さらに低い転移温度 (T g ) を有し、 精密プレス成形に使用するガラスプリフォーム材、 及び精密プレス成形に適し た光学ガラスに関する。 背景技術
近年、 光学機器の小型軽量化が著しく進行している中で、 光学機器の光学系 を構成するレンズの枚数を減少させる目的でガラス製の非球面レンズが多く用 いられるようになってきている。 ガラス製の非球面レンズは、 加熱軟化したガ ラスプリフォーム材を、 高精度な成形面をもつ金型でプレス成形し、 金型の高 精度な成形面の形状をガラスプリフォーム材に転写して得る方法、 すなわち、 精密プレス成形によって製造されることが主流となっている。
精密プレス成形によって、 ガラス成形品を得るにあたっては、 加熱軟化させ たガラスプリフォーム材を高温環境下でプレス成形することが必要であるので、 この際使用する金型も高温に曝され、 金型の成形面が酸化、 侵食されたり、 金 型成形面の表面に設けられている離型膜が損傷したりして金型の高精度な成形 面が維持できなくなることが多く、 また、 金型自体も損傷し易い。 そのように なると、 金型の交換、 メンテナンスの回数が増加して、 低コスト、 大量生産を 実現できなくなる。 そこで、 精密プレス成形に使用するガラス及び精密プレス 成形に使用するガラスプリフォーム材のガラスは、 上記損傷を抑制し、 金型の 高精度な成形面を長く維持し、 かつ低い温度での精密ブレス成形を可能にする という観点から、 できるだけ低い転移温度 (T g ) を有することが望まれてい る。 現在、 精密プレス成形に使用するガラスプリフォーム材のガラスの転移温 度 (T g ) が 6 3 0 °Cを超えると精密プレス成形が困難となるため、 転移温度 ( T g ) が 6 3 0 °C以下である高屈折率低分散性ガラスが求められている。 ま た、 失透が生じたガラスプリフォーム材を精密プレス成形しても失透は消失せ ず、 失透を含むガラス成形品は、 レンズ等の光学素子として使用することがで きないため、 精密プレス成形に使用するガラスプリフォーム材のガラスは、 耐 失透性が優れたガラスであることが必要とされる。
非球面レンズに用いられる光学ガラスは、 種々の光学定数 (屈折率 (n d ) 及びアッベ数 (レ d ) ) を有するものが求められているが、 なかでも、 近年、 光学系の焦点距離の短縮、 小型化の為、 高屈折率低分散性を有するものが求め られている。 特に光学設計上、 屈折率 (nd) が 1. 9以上、 アッベ数 ( d) が 25以上を有する高屈折率低分散性光学ガラスが強く求められている。
そのため、 従来から高屈折率低分散ガラスを得る為に種々の提案がされてい る。 例えば、 特開平 9— 278480には B 203— Ge02— La203— Nb2 05— Zr02— Ti02系の光学ガラス、 特開昭 52— 155614には、 B2
03— La203— Gd205— W03— Z r02系の光学ガラスが、 特開昭 53-
4023には、 B203— La203— Hf 02系の光学ガラスが開示されているが、 これらの公報に具体的に開示されているガラスは、 転移温度を下げ、 また、 ガ ラスの溶融性を良くするアルカリ成分の含有量が 0. 5%までと少ないため、 転移温度 (Tg) が高くなり、 精密プレス成形が困難になり、 また、 ガラスの 溶融性が悪くなる。
特開 2002— 362939には、 B203— CaO— La203— Nb203— T i 02— Z r◦ 2系の光学ガラスが開示されているが、 この公報に具体的に開 示されているガラスは、低屈折率成分である B 203と S i 02の合計含有量が 1 9〜28%と多く、 上記所望の光学定数を満たしていない。
特開2000— 128570には、3102— 8203—〇& 0— 1:,&23—丁 ]· 02系の光学ガラスが、特開 2000— 159537には、 Si02— B23 —Z r 02— La 203— T i 02系開示されている。 これらの公報に記載の光学 ガラスは屈折率を上げるために T i 02を多量に含有させている。 しかし T i 0 2は多量に含有させると透過率を著しく悪化させ、 ガラスを着色させるという不 利益がある。
特開昭 52 - 63211には、 B203— La203— Y203— T i 02系の光 学ガラスが開示されているが、 転移温度を下げ、 また、 ガラスの溶融性を良く する成分である、 アルカリ成分を含有しておらず、 転移温度 (Tg) が高くな り、 精密プレス成形が困難になる。
特閧昭 54— 103411には、 8203— &203—丁&205系の光学ガラ スが開示されているが、 転移温度を下げ、 また、 ガラスの溶融性を良くする成 分であるアルカリ成分を含有しておらず、 転移温度 (T'g) が高くなり、 精密 プレス成形が困難になる。
特開 2004— 175632には S i02— B203_BaO_La203— T i02系の光学ガラスが開示されているが、 この公報に具体的に開示されている ガラスは、 T i02を多量に含有しているが、 T i 02は多量に含有させると透 過率を著しく悪化させ、 ガラスを着色させるという不利益がある。 発明の開示
従来の低分散性光学ガラスでは、 転移温度(Tg)が高いか又は転移温度(T g) は低くても、 近年強く求められている前記特定範囲の光学定数を有するこ とはできない。 また、 Tgを下げ得る成分、 例えば L i20等を増加させると耐 失透性の低下等を生じ、 光学ガラスの安定性を損なうこととなる。 一方、 従来 の技術においては、高屈折率を追い求めるために T i02を多量に含有させる傾 向がある、 しかしその結果光学ガラスの着色性が悪化し、 実用性にかけるもの となってしまっていた。 本発明は、 前記従来の技術に記載した光学ガラスの諸 欠点を総合的に解消し、 T i02を多量に含有させること無く前記特定範囲の光 学定数を有し、 かつ、 転移温度 (Tg) が低く、 精密プレス成形に使用できる ガラスプリフォーム^ "及び精密プレス成形に適し、 安定性に優れた光学ガラス を提供することにある。
本発明者は、 上記課題を解決するために、 鋭意試験研究を重ねた結果、 ガラ ス組成物において S i02、 B203及び Ge 02からなる群より選択される 1種 又は 2種以上、 並びに La203、 Nb 205、 Ta 205、 120及び∑110を 含有させることにより、 さらに ZnO及び L i20の比、 及び/又は ZnO及び L i20含有量と La 203含有量との比を所定の範酒に規定することにより、前 記特定範囲の光学定数を有しかつ精密プレス成形が可能な低い転移温度 (T g) を有し、 かつ安定性に優れた精密プレス成形に使用するガラスプリフォーム材、 及び精密プレス成形に適した光学ガラスが得られることを見出した。
本発明の第 1の構成は、 屈折率 (nd) が 1. 9以上、 アッベ数 (レ d) が 25以上を有し、 Si02、 B 203及び Ge02からなる群より選択される 1種 又は 2種以上、 並びに La203、 Nb205、 Ta205、 Li20及び ZnOを 含有する光学ガラスである。
本発明の第 2の構成は、 液相温度が 1150°C以下である前記構成 1の光学 ガラスである。
本発明の第 3の構成は、 液相温度における粘度 ( d P a · s ) の対数 log ?7が 0. 3以上である前記構成 1及び 2の光学ガラスである。
本発明の第 4の構成は、 ガラス転移温度 (Tg) が 630°C以下である前記 構成 1〜 3の光学ガラスである。
本発明の第 5の構成は、 質量%で表した B 203、 La203、 Nb205、 Ta 205、 0602及び1^;120の各成分の合計量が、 76%以上である前記構成 1 〜4の光学ガラスである。
本発明の第 6の構成は、 質量%で表した L i20含有量に対する ZnO含有量 が 1. 5〜7. 5である前記構成 1〜5の光学ガラスである。
本発明の第 7の構成は、 質量%で表した L a 203含有量に対する Z n 0及び L i20含有量の和の値が 0. 1〜0. 5の範囲である前記構成 1〜 6の光学ガ ラスである。 本発明の第 8の構成は、 質量%で
B2O3 5〜 15%
L a203 20 〜29%
Nb205 22〜30%
Ta205 4 〜15%
Li20 0. 5%を超え 6%まで、
Ge 02 1 -20%, 及び
ZnO 2 〜10%
並びに
Si02 0- -5. 5%、 及び/又は
Gd203 0 〜8%、 及び/又は
Y203 0 〜8%、 及び/又は
Yb203 0 〜8%、 及び/又は
Ti02 0- 5%未満、 及び/又は
Zr02 0 -10%, 及び/又は
wo3 0- -7%, 及び/又は
Bi203 0〜 3%、 及び/又は
RO 0· 〜15%
ただし、 ROは、 CaO、 S r 0及び BaOから選 種又は 2種以上、 及び/又は
Sb203 0〜: 1%
の酸化物換算組成の各成分を含有し、 かつ上記酸化物の一部又は全部をフッ化 物置換した Fの合計量が、 上記酸化物換算組成 100質量部に対して 0〜5質 量部の範囲となる各成分を含有する前記構成 1〜 7の光学ガラスである。 本発明の第 9の構成は、 mo l%で
B203 10〜35%
L a203 5〜20%
Nb205 8〜22%
Ta205 1〜10%
Li20 1〜20%
Ge 02 1〜34%
ZnO 3〜20%
及び
Si02 0〜15%及び/又は
Gd203 0〜 5%及び/又は
Y203 0〜 5%及び/又は Yb203 0 5 %及び/又は
Ti02 0〜 10 %及び/又は
Z r 02 0〜 15 %及び/又は
W03 0〜 5 %及び/又は
RO 0- -30%
ただし、 ROは、 CaO、 SrO及び BaOから選ばれる 1種又は 2種以上、 及び/又は Sb,03 0〜: L%
の酸化物換算組成の各成分を含有し、 かつ酸化物換算組成の総モル数に対す る上記酸化物の一部又は全部をフッ化物置換した Fのモル数の比が 0〜0. 2 5となるように各成分を含有する光学ガラスである。
本発明の第 10の構成は、 Si02と B203の合計含有量が、 質量%で 5%以 上かつ 17 %未満である前記構成 1〜 9の光学ガラスである。
本発明の第 11の構成は、 前記構成 1〜10の光学ガラスからなる精密プレ ス成形用プリフォームである。
本発明の第 12の構成は、 前記構成 11の精密プレス成形用プリフォームを 精密プレス成形してなる光学製品である。 発明を実施するための最良の形態
以下、 本発明について詳細に説明する。
本発明の光学ガラスに含有できる成分について説明する。 以下、 特に断らな い限り各成分の含有率は質量%で表すものとする。
上記組成のガラスにおいて S i 02成分は、 本発明の光学ガラスにおいて、 ガ ラスの粘度を高め、 耐失透性を向上させるのに有効な成分であるが、 その量が 多すぎると転移温度(Tg)が高くなり、 未熔解物が発生しやすくなる。 また、 低屈折率成分である為、 所望の光学定数を満たすことができなくなる。
従って、 耐失透性を維持し、 低い転移温度 (Tg)を得やすくするためには、 好ましくは 5. 5%、 より好ましくは 5%、 最も好ましくは 4%を上限として 含有できる。
S i02成分は、 原料として例えば S i02等を使用してガラス組成物中に導 入できる。
B 203成分は、 本発明の光学ガラスにおいて、 ガラス形成酸化物成分として 欠かすことのできない成分である。 しかし、 その量が少なすぎると耐失透性が 不十分となり、 多すぎると化学的耐久性が悪くなる。 従って、 良好な化学的安 定性を維持しやすくする為には、 好ましくは 5 %、 より好ましくは 6%、 最も 好ましくは 7%を下限とし、 好ましくは 15%、 より好ましくは 14. 5%、 最も好ましくは 14%を上限として含有できる。 B203成分は、 原料として例えば H3 BO 3等を使用してガラス組成物中に導 入できる。
本発明の光学ガラスにおいては S i 02と B 203の含有量の和が所定の範囲 内であることが好ましい。 この値が大きすぎると未熔解物を発生しやすく、 ま た所望の光学定数の値を維持し難くなる。 また小さすぎるとガラスの対失透性 が不十分となるといつた不利益を生じてしまう。 従って、 当該値は各成分の含 有量を質量%で表した場合に、 好ましくは 5%、 より好ましくは 5. 5%、 最 も好ましくは 6%を下限とし、 好ましくは 17%未満、 より好ましくは 16. 5%、 最も好ましくは 16%を上限とする。
La203成分は、 ガラスの屈折率を高め、 低分散化させるのに有効であり低 分散性を有する本発明のガラスに欠かすことのできない成分である。 しかし、 その量が少なすぎるとガラスの光学定数の値を前記特定範囲内に維持し難く、 多すぎると耐失透性が悪くなる。
従って、上記効果を奏するために、好ましくは 20%、より好ましくは 21%、 最も好ましくは 22%を下限とし、好ましくは 29 %、より好ましくは 28%、 最も好ましくは 27%を上限として含有することができる。 La 203成分は、 原料として例えば La203、 La (N03) 3 · xH20、 LaF3等を使用して ガラス組成物中に導入できる。
Nb205成分は、 ガラスの屈折率を高め、 本発明のガラスに欠かすことので きない成分である。 しかし、 その量が少なすぎるとガラスの光学定数の値を前 記特定範囲内に維持し難く、多すぎるとガラスが着色し、透過率を悪化させる。 従って、 本発明の光学ガラスにおける所望の光学定数を維持しつつ良好な透 過率を維持しやすくするためには、 22%を下限とし、 好ましくは 30%、 よ り好ましくは 29 %、 最も好ましくは 28%を上限として含有することができ る。
N b 205成分は、 原料として例えば N b 205等を使用してガラス組成物中に 導人さる。
Ta 205成分は、 ガラスの屈折率を高め、 対失透性を向上させるのに有効な 成分である。 しかし、 その量が少なすぎるとガラスの光学定数の値を前記特定 範囲内に維持し難く、 その量が多すぎると、 対失透性を悪化させ、 未熔解物が 発生しやすくなる。
従って、 上記効果を奏するために、 好ましくは 4%、 より好ましくは 5%、 最も好ましくは 6%を下限とし、 好ましくは 15%、 より好ましくは 14%、 最も好ましくは 13%を上限として含有することができる。 Ta205成分は、 原料として例えば Ta205等を使用してガラス組成物中に導入できる。
G e 02成分は、ガラスの屈折率を高め、対失透性を向上させる効果があるが、 その量が少なすぎるとガラスの光学定数の値を前記特定範囲内に維持し難く、 その量が多すぎると、 非常に原料が高価であり、 コストが高くなつてしまう。 従って、 上記効果を奏するために、 好ましくは 1%、 より好ましくは 3%、 最も好ましくは 6%を下限とし、 好ましくは 20%、 より好ましくは 19%、 最も好ましくは 18%を上限として含有することができる。 Ge02成分は、 原 料として例えば GeO 2等を使用してガラス組成物中に導入できる。
Li20成分は、 転移温度 (Tg)を大幅に下げ、 かつ、 混合したガラス原料 の溶融を促進する効果を奏する。 しかしその量が少なすぎるとこれらの効果が 不十分であり、 多すぎると耐失透性が急激に悪化する。
従って、 上記効果を奏するために、 好ましくは 0. 5%以上を超えることを 下限とし、 好ましくは 6%、 より好ましくは 5%、 最も好ましくは 4%を上限 として含有することができる。
Li20成分は、 原料として例えば L i2C03、 LiF、 LiN03、 LiO H、 等を使用してガラス組成物中に導入できる。
ZnO成分は、 転移温度 (Tg) を低める効果が大きい成分であるが、 高分 散成分である為、 過剰に添加すると上記特定範囲内の光学定数を有することが 難しくなり、 耐失透性も悪くなる。
従って、良好な耐失透性を維持しつつ転移温度(Tg)を低くするためには、 好ましくは 10%以下、 より好ましくは 9%以下、 最も好ましくは 8%以下の 量で含有し、 好ましくは 2%、 より好ましくは 3%、 最も好ましくは 4%を下 限として含有することができる。
ZnO成分は、 原料として例えば ZnO、 Z n F 2等を使用してガラス組成物 中に導入できる。
本発明の光学ガラスにおいては L i 20含有量に対する ZnO含有量の比が 所定の範囲内であることが好ましい。 この値が大きすぎると耐失透性が悪くな り、 小さすぎると化学的耐久性が悪くなるといった不利益を生じてしまう。 従 つて、 当該値は各成分の含有量を質量%で表した場合に、 好ましくは 1. 5、 より好ましくは 1. 6、 最も好ましくは 1. 7を下限とし、 好ましくは 7. 5、 より好ましくは 7. 4、 最も好ましくは 7. 3を上限とする。
さらに本発明においては La 203含有量に対する ZnO及び L i20含有量 の和の値、 すなわち (Z nO + L i 20)ノ La203の値が所定の範囲内の値と なることが好ましい。 この値が大きすぎると粘度 (log??) が低くなりプレ ス時の作業性が悪くなる上、 所望の光学定数も維持し難くなる。 他方、 小さす ぎると転移温度 (Tg) が高くなり、 対失透性が悪くなる。 従って、 当該値は 各成分の含有量を質量%で表した場合に、 好ましくは 0. 1、 より好ましくは 0. 15、 最も好ましくは 0. 2を下限とし、 好ましくは 0. 5、 より好まし くは 0. 45、 最も好ましくは 0· 4を上限とする。
Gd 203成分は、 ガラスの屈折率を高め、 低分散化させるのに有効である。 しかし、 その量が多すぎると耐失透性が悪くなる。
従って、 本発明における所望の光学定数を維持しつつ良好な耐失透性を維持 しゃすくするために、 好ましくは 8%以下、 より好ましくは 6%以下、 最も好 ましくは 4 %以下で含有することができる。
Gd203成分は、原料として例えば G d 203、 G d F 3等を使用してガラス組 成物中に導入できる。
Y203成分は、 ガラスの屈折率を高め、 低分散化させるのに有効である。 し かし、 その量が多すぎると耐失透性が悪くなる。
従って、 本発明における所望の光学定数を維持しつつ良好な耐失透性を維持 しゃすくするために、 好ましくは 8%以下、 より好ましくは 6%以下、 最も好 ましぐは 4 %以下で含有することができる。
Υ203成分は、原料として例えば Y203、 YF3等を使用してガラス組成物中 に導入できる。
Yb 203成分は、 ガラスの屈折率を高め、 低分散化させるのに有効である。 しかし、 過剰に添加するとガラスの耐失透性を悪化ざせる。
従って、 本発明における所望の光学定数を維持しつつ良好な耐失透性を維持 しゃすくするために、 好ましくは 8%以下、 より好ましくは 6%以下、 最も好 ましくは 4 %以下で含有することができる。
Y b 203成分は、原料として例えば Y b 203、 Y b F 3等を使用してガラス組 成物中に導入できる。
T i 02成分は光線透過率を悪化させることと、 ガラスを高分散化させるが、 ガラスのソ一ラリゼ一シヨン防止のため任意に添加することもできる。 本発明 の光学定数を維持するためには、 その量は好ましくは 5%未満、 より好ましく は 4. 5%以下、 最も好ましくは 4%以下で含有することができる。
T i02成分は、 原料として例えば T i 02等を使用してガラス組成物中に導 入できる。
Zr03成分は、 光学定数を調整し、 耐失透性を改善し、 化学的耐久性を向上 させる効果があるが、 しかし、 過剰に添加すると逆に耐失透性が悪くなる。 従って、 良好な化学的耐久性、 耐失透性を維持しやすくする為には、 好まし くは 10%以下、 より好ましくは 9%以下、 最も好ましくは 8%以下で含有さ せることができる。
Z r 02成分は、原料として例えば Z r 02、 Z r F4等を使用してガラス組成 物中に導入できる。
CaO、 S rO及び B a 0成分から選ばれる 1種又は 2種以上の成分である RO成分は光学定数の調整に有効である。 しかし、 CaO、 31"0及び:6&0 成分の合計量が多すぎると耐失透性が悪くなる。
従って、 特に良好な耐失透性を維持しやすくする為には、 好ましくは 15% 以下、 より好ましくは 13%以下、 最も好ましくは 10%以下で含有させるこ とができる。
CaO成分は、 原料として例えば CaC03、 CaF2、 Ca (OH) 2、 等を 使用してガラス組成物中に導入できる。
SrO成分は、 原料として例えば Sr (N03) 2、 SrF2、 S r (OH) 2 等を使用してガラス組成物中に導入できる。
BaO成分は、 原料として例えば BaC03、 Ba (N03) 2、 BaF2、 B a (OH) 2等を使用してガラス組成物中に導入できる。
W03成分は、 光学定数を調整し、 対失透性を改善する効果があるが、 その量 多いと逆に耐失透性や、 可視域の短波長域の光線透過率が悪くなる。
従って、 良好な対失透性を保ち、 可視域の短波長域の光線透過率が優れたガ ラスを得やすくする為には、 好ましくは 7%以下、 より好ましくは 6%以下、 最も.好ましくは 5 %以下で含有させることができる。
W03成分は、 原料として例えば W03.等を使用してガラス組成物中に導入で きる。
B i 203成分は、 ガラスの屈折率を高め、 点移転 (Tg) を下げる効果があ るが、 環境に有害な影響を与え、 環境負荷の大きい成分であるため、 好ましく は 4%、 より好ましくは 2%を上限とし、 最も好ましくは含有.しない。
Sb 203成分は、ガラス溶融時の脱泡剤として添加しうるが、その量は 1% までで十分である。
F成分は、 ガラスの分散を低くしつつ、 転移温度 (T:g) を低下させ、 耐失 透性を向上させるために有効であり、 特に F成分を La203成分と共存させる ことにより、 前記特定範囲内の光学定数を有し、 かつ、 精密プレス成形が可能 な低い転移温度 (Tg) を有する低分散性の光学ガラスを得ることができる。' なお、 本発明の光学ガラス中においては、 F成分は各珪素や他の金属元素の 1種又は 2種以上の酸化物一部又は全部と置換したフッ化物の形態で存在する ものと考えられる。 当該酸化物の一部又は全部と置換したフッ化物の Fとして の合計量が多すぎると、 フッ素成分の揮発量が多くなり、 均質なガラスを得に くくなる。
従って、 酸化物換算組成のガラス組成物 100質量部に対して、 好ましくは 5質量部以下、 より好ましくは 4質量部以下、 最も好ましくは 3%質量部以下 の量を含有する。 なお、 本明細書中において 「酸化物換算組成」 とは、 本発明 のガラス構成成分として使用される弗化物等がガラス溶融時に全て分解され酸 化物へ変化すると仮定した場合の生成酸化物の総重量を 100質量%として各 成分を表記した組成である。
次に本発明の光学ガラスにおいて含有させるべきでない成分.について説明す る。
鉛化合物は、 精密プレス成形時に金型と融着しやす 成分であるという問題 並びにガラスの製造のみならず、 研磨等のガラスの冷間加工及びガラスの廃棄 に至るまで、 環境対策上の措置が必要となり、 環境負荷が大きい成分であると いう問題があるため、 本発明の光学ガラスに含有させるべきではない。
A s 203、 カドミ'ゥム及びトリゥムは、 共に、 環境に有害な影響を与え、,':.環 境負荷の非常に大きい成分であるため、 本発明の光学ガラスに含有させるベき ではない。
P 205は、 本発明の光学ガラスに含有させるど; 耐失透性を悪化させやすい: ので P 205を含有させることは好ましくない。
Te0.2は、 白金製の坩堝や、 溶融ガラスと接する部分が白金で形成されてい る溶融槽でガラス原料を溶融する際、 テルルど白金が合金化し、 合金と:なつ.た-: 箇所は耐熱性が悪ぐなるため、 その箇所に穴が開き.溶融ガラス,流出する:事故が おこる危険性が憂慮されるた'め、'本発明の光学ガラスに含有させるべきではな い。
さらに本発明の光学ガラスにおいては、 V、 Cr、 Mn、 Fe、 Co、 Ni、 Cu、 Mo、 E.u、 Nd、 Sm、 Tb、 D y、 E r等の着色成分は含有しない ことが好ましい。 ただし、 ここでいう 「含有しない」 とは、 不純物として混入 される場合を除き、 人為的に含有させないことを意味する。
本発明のガラス組成物は、 その組成が質量%で表されているため直接的に m 01%の記載に表せるものではないが、 本発明において要求される諸特性を満 たすガラス組成物中に存在する各成分の mo 1%表示による組成は、 酸化物換 算組成で概ね以下の値をとる。
B203 10〜35%
L a203 5-20%
Nb205 8〜22%
T a 205 1〜10%
Li20 1〜20%
Ge 02 1〜34%
Ζ ηθ 3〜20%及び/又は
及び
Si02 0〜15%及び/又は
Gd203 0〜 5 %及び/又は Y203 0 一 5 %及び/又は
Yb203 0 - 5 %及び/又は
Ti02 0 10 %及び/又は
Zr02 0 15 %及び/又は
W03 0 5%及び/又は
RQ 0 -30%
ただし、 ROは、:. CaO S rO及び BaOから選ばれる 1.種又は 2種以上、 及び;/又は Sb 0 1%
'の酸化物換算組成の各成分を含有し、 かつ酸化物換算組成の総ぞル数に対する 上記酸化物の 部叉は全部をフッ化物置換じ Fのモル数の比が 0 ひ.. .25- となる。
本発明のガラス組成物における S 102成分の効果は上述のとおりであるが、 当該効果を奏するために、 好ましくは概ね 15mo l%、 より,好ましくは概ね 13mol %、 最も好ましくは概ね 11 mo.1%を上限として含有できる。 本発明のガラス組成物における B 203成分の効果は上述のとおり、 ¾あるが、 当該効果を奏するために、.好ましぐは概ね 1.0 m 0.1%、 :より;好ま.しくは概ね 1,2 mo I %、' 最も好ましぐは概ね 13mo 1 %を下限とじ、.好ま bぐは概ね 35mo 1%、 より好ましくは概ね 33 mo 1 %、 最も好ましくは概ね 32 m 01%を上限として含有できる。
本発明のガラス組成物における La2'03成分の効果は上述のとおりであるが、 当該効果を奏するために、 好ましくは概ね 5 m o 1 %、 より好ましくは概ね 7 mo 1%、 最も好ましくは概ね 8 mo 1%を下限とし、 好ましくは概ね 2ひ m 01%、 より好ましくは概ね 18 mo 1%、 最も好ましくは概ね 17 mo 1% を上限として含有できる。
本発明のガラス組成物における Nb 205成分の効果は上述のとおりであるが、 当該効果を奏するために、 好ましくは概ね 8mo 1%、 より好ましくは概ね 9 mo 1%、 最も好ましくは概ね 1 Omo 1%を下限とし、 好ましくは概ね 22 mo 1%、より好ましくは概ね 2 lmo 1%,最も好ましくは概ね 20 mo 1% を上限として含有できる。
本発明のガラス組成物における T a 205成分の効果は上述のとおりであるが、 当該効果を奏するために、 lmo 1%を下限とし、好ましくは概ね 1 Omo 1 % より好ましくは概ね 8 mo 1%、 最も好ましくは概ね 6 mo 1%を上限として 含有できる。
本発明のガラス組成物における G e 02成分の効果は上述のとおりであるが、 当該効果を奏するために、 好ましくは概ね lmo 1%、 より好ましくは概ね 4 mo l%、 最も好ましくは概ね 7mo 1%を下限とし、 好ましくは概ね 34m o l%、 より好ましくは概ね 33mo 1%、 最も好ましくは概ね 32mo 1% を上限として含有できる。
本発明のガラス組成物における L i 20成分の効果は上述のとおりであるが、 当該効果を奏するために、 lmo 1%を下限とし、好ましくは概ね 2 Omo 1 %、 より好ましくは概ね 18mo 1%、 最も好ましくは概ね 17mo 1%を上限と して含有できる。
本発明のガラス組成物における G d 203成分の効果は上述のとおりであるが、 当該効果を奏するために、 好ましくは概ね 5mo 1%、 より好ましくは概ね 4 mo:l % .最も好ましくは概ね 3 mo 1 %を上限とじて含有で:きる:。
本発明のガラス組成物における Y 23成分の効果は上述のとおり:であるが、. 当該効果を奏するために、 好ましくは概ね 5 mo 1%、 より好ましくは概ね 4 mo 1 %、 最も好ましぐは概ね 3 mo 1 %を上限とじて含有できる。
本発明のガラス:組成物における Y b 203成分の効果は it:述のと.お であるが s 当該効果を.奏するために、 好ましくは概ね 5 m o 1 %、 より:好ましくは概ね 4 m o ]. %、 最も好ましくは概ね 3 m 01 %を上限として.含有でぎる。
本発明のガラス組成物における. T i 02成分の効果は上述の.とおり::である。.本 発明のガラス中 おいては好ま.しくは概ね 1 Omo 1 %、 より.好ま:しぐは概ね 9mo 1%、 最も好ましくは概ね 8 mo 1 %を上限として含有できる b
本発明のガラス組成物における Z r 02成分の効果は上述のとおりであるが、 当該効果を奏するために、 好ましくは概ね 15mo.l%、. より.好ましくは概ね 14mo 1%、 最も好ましくは概ね 12 mo 1 %を上限として含有できる。
本発明のガラス組成物における Z ηθ成分の効果は上述のとおりである。 本 発明のガラス中においては好ましくは概ね 2 Omo 1%未満、 より好ましくは 概ね 18mo 1%、 最も好ましくは 16 mo 1%を上限とし、 3mo 1%、 好 ましくは 4mo l%、 最も好ましくは 5mo 1%を下限として含有することが できる。
本発明のガラス組成物における R 0成分の効果は上述のとおりであるが、 当 該効果を奏するために、 好ましくは概ね 3 Omo 1%、 より好ましくは概ね 2 8mo 1%、 最も好ましくは概ね 26 mo 1 %を上限として含有できる。
本発明のガラス組成物における W03成分の効果は上述のとおりであるが、 当 該効果を奏するために、 好ましくは概ね 5mo 1%、 より好ましくは概ね 4. 5mo 1%、 最も好ましくは概ね 4 mo 1 %を上限として含有できる。
本発明のガラス組成物における S i02、 B 203成分の合計含有量の効果は上 述のとおりであるが、当該効果を奏するために、好ましくは概ね 1 Omo 1%、 より好ましくは概ね 12mo 1%、 最も好ましくは概ね 14 m o 1 %を下限と し、 好ましくは概ね 42 mo 1%、 より好ましくは概ね 4 lmo 1%、 最も好 ましくは概ね 4 O m o 1 %を上限として含有できる。
本発明のガラス組成物における S b 2 0 3成分の効果は上述のとおりであるが、 当該効果を奏するために、 概ね 1 m o 1 %以下で十分である。
本発明のガラス組成物における F成分は上述のとおりであるが、 当該効果を 奏するために、 酸化物換算組成の総モル数に対する上記酸化物の一部又は全部 をフッ化物置換した Fのモル数の比が好ましぐは概ね 0 . 2 5以下、 より.好ま しくは 0 . 2 4以下、 最も好ましくは 0 . 2 3以下.となる.ように含有される。. 次に本発明の光学ガラスの物性について説明する。
本発明の光学ガラスは、 主に加熱軟化させて精密プレス成形にょづてガラス 成形品を得るためのガラスプリフオーム材として使用ざれる。:.従ってこの際使 用する金型の損傷を抑制し、 金型の高精度な成形面を長く維持し、 かつ 低い 温度での精密プレス成形を可能にするために、できるだけ低い転移温度 "( T g )
,を有することが望まれている。 そのため、 上記特定範囲の..組成を用いることに よ::り 所望のガラス転移温度 ( T g ) を実現させた.ものである。
.こで T gが低すぎる 化学的耐久性が悪化し同時に耐失透性が低下じ安定 した生産:を行うことが困難になる。 また、: T gが高ぐな.り:すぎると.モ ぉ;ドプ レ^性が悪化す.. だけでなく溶融性が低下し溶け残り.等が発生じゃすい。 じか じ溶け残り防止のために溶融温度を高くすると溶融容器からの白金溶け込み量 が増し光線透過性が悪化してしまう傾向にある。 従って、 本発明の光学ガラス の T gは好ましくは 5 7 0 °C、 より好ましくは 5 7 5 °C、 最も好ましぐほ 5 8
0 °Cを下限とし、 好ましくは 6 3 0 °C、 より好ましくは 6 2 5 °C、 最も好まし くは 6 2 0 °Cを上限とする。
本発明の光学ガラスでは、 下記製造方法により、 安定した生産を実現するた め、 液相温度を 1 1 5 0 °C以下とすることが重要である。 特に好ましくは 1 1 3 5 °C以下とすることで、 安定生産可能な温度範囲が広ぐなり、 また、 ガラス 熔解温度を下げることができるため、 消費されるエネルギーを抑えることがで さる。
本明細書中において、 「液相温度」 とは一般の溶解炉を使用し、 5 0 c cの ガラス試料を白金製のルツボにて溶融させ、 その後、 任意の温度で 2時間保持 した後取り出し、 ガラスの結晶の有無を目視にて観察し、 結晶が認められない 一番低い温度を表す。
前述のとおり本発明の光学ガラスはプレス成形用のプリフォーム材として使 用することができ、 或いは溶融ガラスをダイレクトプレスすることも可能であ る。 プリフォーム材として使用する場合、 その製造方法及び熱間成形方法は特 に限定されるものではなく、 公知の製造方法及び成形方法を使用することがで きる。 プリフォーム材の製造方法としては、 例えば特開平 8— 3 1 9 1 2 4に 記載のガラスゴブの成形方法ゃ特開平 8 7 3 2 2 9に記載の光学ガラスの製 造方法及び製造装置のような溶融ガラスから直接プリフォーム材を製造するこ ともでき、 また板状に成形した材料を冷間加工して製造しても良い。
なお、 本発明の光学ガラスを用いて溶融ガラスを白金或いは強化白金から滴 下させてプリフォームを製造する場合、 溶融ガラスの粘度は、 低すぎるとガラ スプリフォームに脈理が入りやすくなり、 高すぎると、 自重と表面張力による がラスの切断が困難になる。
従って、 高品質か 安定した生産のためには、 液相温度における.粘度 (d P a · s ) の対数 1 ό g 7?の俊が好ましくは 0 .:. 3以上であり'、 好ましぐは 2 0、 より好ましぐは 1 . 8、 最も好ましぐは/ 1. 5 'を上限とする.。
なお、 プリフォ ムの熱間成形方法を特に限定するものではないが、··例えば 特公昭 6 2— 4 1 1 8 0に記載の光学素子の成形方法の— ゔな方法を使用する ことができる。 実施例
以下、 本発明の実施例について述べるが.、.本発明ばこれら実施例に限定され るものではない。.なお下表 1〜 6に規定する各成分の含有量ば全て質量%で表 すものとする。
/ Oso90sAV£t7:/K>d 896sssooz<
Figure imgf000016_0001
Figure imgf000017_0001
Figure imgf000018_0001
'[表 4 ]
16 17 18 19 20
Si02 1. 527 1. 527 1. 527 1. 527 1. 527 203 13. 591 10. 595 10. 595 10. 595 9. 597
Y20:i 0. 000 0. 000 0. 000 0. 000 0. 000
La20:i 25. 369 25. 369 25. 369 25. 369 24. 370
Gd20:i 0. 000 0. 000 0. 000 0. 000 0. 000
Yb20:i 0. 000 0. 000 0. 000 0. 000 0. 000
Ti02 2. 023 0. 725 0. 000 1. 024 0. 725
Zr02 6. 238 6. 238 6. 238 6. 238 6. 238
Nb205 24. 613 24. 613 26. 636 24. 613 22. 616
Ta20s 9. 611 9. 611 9. 611 10. 609 9. 611
ZnO 3. 395 5. 392 5. 392 5. 392 5. 392
WO:) 1. 498 2. 796 1. 498 1. 498 2. 796
CaO 0. 000 0. 000 0. 000 0. 000 0. 000
SrO 0. 000 0. 000 0. 000 0. 000 1. 997
BaO 0. 000 0. 000 0. 000 0. 000 1. 997
Li20 0. 749 0. 749 0. 749 0. 749 0. 749
SbA 0. 100 0. 100 0. 100 0. 100 0. 100 ト 0. 000 0. 000 0. 000 0. 000 0. 000
GeO, 11. 288 12. 287 12. 287 12. 287 12. 287
Zn0/Li 20 4. 53 7. 20 7. 20 7. 20 7. 20
(ZnO+Li20) /La20:) 0. 16 0. 24 0. 24 0. 24 0. 25
Si0 B 0, 0. 11 0. 14 0. 14 0. 14 0. 16 合計 (%) 100 100 100 100 100 n d 1. 93498 1. 94989 1. 95084 1. 95288 1. 94220
、' ,1 28. 5 28. 7 28. 8 28. 6 29. 0
Tg 606 598 599 600 599
AT 652 640 642 643 643 液相温度(°C) 1080 1080 1090 1080 1080 log η 0. 73 0. 73 0. 67 0. 72 0. 70 69 Ό 9 Ό S9 Ό S ' 0 1 Ό η So f
080 ΐ ΟΖΠ 0601 οεπ ΟΖΟΐ
Τ99 S 9 ε 9 S 9
809 209 969 Ζ69 s丄
L "82 6 '82 L '82 6 -82 8-82
uΖ9^6 ·Ι 08S 6 ·Ι ene 'ΐ
00 ΐ 001 ΟΟΐ ΟΟΐ 001 (°/。)+
W ·0 W .0 η ·ο 9ΐ Ό η ·ο lO¾/¾TS η ·ο ΟΖ Ό οζ ·0 92 Ό Ζ Ό v(oz +ouz)
0Ζ Ί Ζ8 '9 Ζ8 '9 02 'L OZ'L 0'ΐ1/0"Ζ
L8Z 'ΖΙ LSZ 'ΖΙ Ζ8Ζ'2ΐ 062 ΐ SSZ'll ΓΌ90
000 ·0 000 ·0 000 Ό 000 Ό 000 Ό zd
001 ·0 00 ΐ Ό 001 ·0 ΟΟΐ Ό 001 ·0 ¾5qs
6 L '0 6 L Ό 6 L ·0 6\Ί Ό < 1 ·0 στ\
000 ·0 000 '0 000 ·0 966 'Ζ 666 ·0 oBa
000 ·0 000 '0 000 Ό 966 'Ζ 86 Ϊ ( S
000 Ό 000 Ό 000 Ό 66 ·ΐ 666 ·0 OBQ
ΙβΖ'Ζ Α66'ΐ L6L ·ΐ 96Ζ 'τ 96Ζ 'Ζ ¾M
269 -9 εεε εεε ' S6C '9 Ζ<οΖ '9 0UZ
Π9 '6 Π9'6 Π9 ·6 ΐΐ9 ·6 ΪΤ9 ·6
εΐ9 - ζ εΐ9 ~fz εΐ9 - ζ 9ΐ9'22 9ΐΐ 'ΖΖ ¾zq
\ ζ - 866 - 692 '9 S2Z ·9
ZL ·0 θβΐ'Ό 9ZL ·0 ZL Ό ZL ·0 ΐ丄
000 Ό 000 ·0 000 Ό 000 ·0 ':o q人
000 Ό 000 Ό 966 ·Ζ 000 "0 000 ·0 >:
69C zn - Ζ 69S '92 ζίζ ζ οζε - ζ
96 ·2 000 ·0 000 000 ·0 000 '0 ¾r'A
96S ΌΙ 96S ΌΙ 969 Όΐ Ζ69 ·6 S6S ΌΙ ¾¾
LZ 'l LZ9 "ΐ Ζ29Ί LZ ·Ι
2Ζ ζ ΖΖ \Ζ
[s峯]
61
ST0/S00Zdf/X3d 8£1^o/900Z OAV ^ (Oo)J-v
W ¾ Oo)§J-
8 "82 " Λ
9 6 ·ΐ u
001 001 001 (%)-I^
000 οζο Sに 0
ΟΟΌ 000 820 ¾¾1/(0"Τ1+0"Ζ)
ΟΟΌ ΟΟΌ οοε 0'ΐΊ/0"Ζ
0028
zd
0010 が SV
¾sqs
000.1 02bN
0003 o?'n οοο.ε
OJS
ΟΟΟΌΙ 0099 0B3
¾M
0009 0"Z οοοοε 000'8
00021 00に 0 ooso
0009 000.fr ¾·¾
0090 00862 00961 ¾u
¾zq入
' 'ΡΟ
Οθε'62 00082 00S.8Z
2
OOO'fr ι ΟΟΟΌΖ 00092 ¾¾
000 000
ε ζ ΐ ί'細
[9 mi
oz
ST0/S00Zdf/X3d 8£1^o/900Z OAV 表 1〜表 5に示した本発明のガラスの実施例 (No. l〜No. 25) は、 酸化物、 水酸化物、 炭酸塩、硝酸塩、 フッ化物等の通常の光学ガラス用原料を、 各実施例の組成の割合となるように秤量し、 混合し、 白金坩堝に投入し、 組成 による溶融性に応じて、 .1000〜130 ,0°Cで、 3〜 5時間溶融、 清澄、.撹 拌して均質化した後、 金型等に錶込み徐冷することにより得ることができた。 屈折率 (nd)及び、 アツべ数 (レ d) は徐冷降温速度を— 25 °G hにし て得られた光学ガラスについて測定した。
ガラス転移温度 (T g) は日本光学硝子工業会規格 J OGI S08 2.00 3 (光学ガラスの熱膨張の測定方法) に記載された方法により測定した。:だだ し、 試料片として長さ 5 Omn 直径 4 mmの試料を使用した。
液相温度の測定は、 一般の溶解炉を使用し、 50 c cのガラス試料を白金製 のルツ-ボにて溶融させ、 その後、 任意の温度で 2時間保持した後取り出し、 ガ ラスの結晶の有無を目視にて観察し、 結晶が認められない一番低い温度を求め た。
液相温度における粘度 ?7 (dPa · s).は、 球引上げ式粘度計 (有限会社ォ ブト企業製:.型番 BVM— 13 LH)を使用し、液相温度での粘度を測定 た。 なお、 表 1〜 6中において粘度を表す場合は粘度 7?の常用対数で表した。
表 1〜表 5に見られるとおり、 本発明の実施例の光学ガラス (N o . 1~N ひ. 25) はすべて、 上記特定範囲内の光学定数 (屈折率 (nd)及びアッベ 数 (レ d)、 ) を有し、 転移温度 (Tg) が 630°C以下の範囲にあり、 かつ 液相温度における粘度の対数 (10 gT?) が 0. 3〜2の範囲内であるこどか ら、 精密プレス成形に使用するガラスプリフォーム材及び精密プレス成形に適 していた。
これに対し、 表 6には比較例を示すが、 比較例 No. 1 (特開 2000—1 28570号公報の実施例 N 0. 5) 、 比較例 N o . 2 (特開 2000 -1 28570号公報の実施例 No. 10) のガラスは、 金型に錄込む際に激しく 失透し、 ガラス化しなかった。
比較例 No. 3 (特開平 9一 278480号公報の実施例 No. 3) のガラ スは、 所望する光学定数は満たしているものの、 転移温度 (Tg) が高く、 精 密プレス成形による安定した生産が困難であり、 上述した近年の光学設計上の 要求を満たしていない。 産業上の利用可能性
本発明の光学ガラスは屈折率 (nd) が 1. 9以上、 アッベ数 (レ d) が 2 5以上を有し、 ガラス転移温度 (Tg) が 630°C以下であり、 精密プレス成 形に使用するガラスプリフォーム材、 及び精密プレス成形に適している (

Claims

請求の範囲
1.屈折率 (nd) が 1. 9以上、 アッベ数 (レ d) が 25以上を有し、 S i 0
2、 B203及び Ge02からなる群より選択される 1種又は 2種以上、 並びに L a203、 Nb205、 Ta205、 L i 20及び Z n 0を含有する光学ガラス。
2.液相温度が 1150。C以下である請求項 1の光学ガラス。
3.液相温度における粘度 (dPa · s)の対数 10 g 7が 0. 3,以上である請 求項 1又は 2に記載の光学ガラス。
4.ガラス転移温度 (Tg)が 630°C以下である請求項 1 3のいずれかに記 : 載の光学ガラス。
5.質量%で表した B203、 La203、 Nb205、 Ta205、 Ge02及び L i 20の各成分の合計量が、 76%以上である請求項 Γ〜 4のいずれかに記載の光 学ガラス。
6.質量%で表した L i20含有量に対する ΖηΟ含有量が 1. 5〜7. 5 あ: る請求項 1〜 5のいずれかに記載の光学ガラス。
7„質量%で表した L a 203含有量に対する Z n 0及び L i 2 Θ.含有量の和の値. が 0. 1〜0. 5の範囲である請求項 1〜6のいずれか 1項に記載の光学ガラ ス。
8.質量%で
B 203 5〜 15 %
La203 20〜29%
Nb205 22〜30%
Ta205 4- 15 %
L i 20 0. 5%を超え 6%まで、
Ge02 1〜20%、 及び
ZnO 2〜: 10%
並びに
Si02 0〜5. 5%、 及び/又は
Gd203 0〜8%、 及び/又は
Y203 0〜8%、 及び/又は
Yb203 0〜8%、 及び/又は
T i 02 0〜 5 %未満、 及び/又は
Z r 02 0〜 10 %、 及び/又は
W03 0〜7%、 及び/又は
B i 203 0〜3%、 及び/又は
RO 0〜15% ただし、 ROは、 CaO、 SrO及び BaOから選ばれる 1種又は 2種以上、 及び/又は
Sb203 0〜1%
の酸化物換算組成の各成分を含有し、 かつ上記酸化物の一部又は全部をフッ化 物置換した Fの合計量が、 上記酸化物換算組成 100質量部に対して 0〜 5質 量部の範囲となる各成分を含有する請求請 1〜 7のいずれか 1項に.記載の光学 ガラス。
9.mo 1%で
B2;03 1 ,0 - 35 %
L a 203 5〜20%
Nb:205 8〜 22 %
Ta205 1〜 10 %
Li20 1〜20%
Ge02 1-34%
ZnO 3〜20%
及び
S i 02 15%及び Z又は
Gd203 0〜 5%及び/又は
Y203 0〜 5%及び/又は
Yb203 0〜 5%及び/又は
T i02 0〜: L 0 %及び/又は
Z r 02 0〜: I 5 %及び/又は
W03 0〜 5%及び/又は
RO 0〜30%
ただし、 ROは、 CaO、 SrO及び BaOから選ばれる 1種又は 2種以上、 及び/又は
S b203 0〜: L%
の酸化物換算組成の各成分を含有し、 かつ酸化物換算組成の総モル数に対す る上記酸化物の一部又は全部をフッ化物置換した Fのモル数の比が 0〜 0. 2 5となるように各成分を含有する光学ガラス。
10. S i 02と B 203の合計含有量が、 質量%で 5 %以上かつ 17 %未満であ る請求項 1〜 9のいずれか 1項に記載の光学ガラス。
11.請求項 1〜 10のいずれか 1項に記載の光学ガラスからなる精密プレス 成形用プリフォーム。
12.請求項 11に記載の精密プレス成形用プリフォームを精密プレス成形し てなる光学製品。
PCT/JP2005/015968 2004-08-27 2005-08-25 光学ガラス WO2006022438A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-247994 2004-08-27
JP2004247994 2004-08-27

Publications (1)

Publication Number Publication Date
WO2006022438A1 true WO2006022438A1 (ja) 2006-03-02

Family

ID=35967632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/015968 WO2006022438A1 (ja) 2004-08-27 2005-08-25 光学ガラス

Country Status (1)

Country Link
WO (1) WO2006022438A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0492835A (ja) * 1990-08-02 1992-03-25 Sumita Kogaku Glass:Kk 精密プレス用光学ガラス
JPH06305769A (ja) * 1993-04-22 1994-11-01 Ohara Inc 光学ガラス
JP2000169176A (ja) * 1998-10-02 2000-06-20 Ohara Inc 眼鏡用および光学用ガラス
JP2002012443A (ja) * 2000-06-27 2002-01-15 Hoya Corp 光学ガラス及びそれを用いた光学製品
JP2002362938A (ja) * 2001-06-06 2002-12-18 Ohara Inc 光学ガラス

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0492835A (ja) * 1990-08-02 1992-03-25 Sumita Kogaku Glass:Kk 精密プレス用光学ガラス
JPH06305769A (ja) * 1993-04-22 1994-11-01 Ohara Inc 光学ガラス
JP2000169176A (ja) * 1998-10-02 2000-06-20 Ohara Inc 眼鏡用および光学用ガラス
JP2002012443A (ja) * 2000-06-27 2002-01-15 Hoya Corp 光学ガラス及びそれを用いた光学製品
JP2002362938A (ja) * 2001-06-06 2002-12-18 Ohara Inc 光学ガラス

Similar Documents

Publication Publication Date Title
JP5545917B2 (ja) 光学ガラス
JP4897071B2 (ja) 光学ガラス
US8207075B2 (en) Optical glass
JP4739721B2 (ja) 光学ガラス
JP3377454B2 (ja) モールドプレス用光学ガラス
JP4746995B2 (ja) 光学ガラス
US7867934B2 (en) Optical glass
WO2002002470A1 (fr) Verre optique et produit optique faisant intervenir ce verre
JP2006016295A5 (ja)
TW201223907A (en) Optical glass, preform material, and optical element
WO2009096439A1 (ja) 光学ガラス
JP5073353B2 (ja) 光学ガラス
JP4993872B2 (ja) 光学ガラス
JP5616566B2 (ja) 光学ガラス
JP4889949B2 (ja) 光学ガラス
JP2011140434A (ja) 光学ガラス、光学素子及びプリフォーム
JP4828893B2 (ja) 光学ガラス
JP2007070194A (ja) 光学ガラス
JP2009018952A (ja) 光学ガラス
JP6639074B2 (ja) 光学ガラス、レンズプリフォーム及び光学素子
JP6893749B2 (ja) 光学ガラス、レンズプリフォーム及び光学素子
JP6325189B2 (ja) 光学ガラス
JP2010202417A (ja) 光学ガラス
JP2006117503A (ja) 光学ガラス
JP5770973B2 (ja) 光学ガラスおよび光学素子

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase