WO2006022319A1 - プラズマ成膜方法及びその装置 - Google Patents

プラズマ成膜方法及びその装置 Download PDF

Info

Publication number
WO2006022319A1
WO2006022319A1 PCT/JP2005/015407 JP2005015407W WO2006022319A1 WO 2006022319 A1 WO2006022319 A1 WO 2006022319A1 JP 2005015407 W JP2005015407 W JP 2005015407W WO 2006022319 A1 WO2006022319 A1 WO 2006022319A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
film
fluorine
plasma
volume ratio
Prior art date
Application number
PCT/JP2005/015407
Other languages
English (en)
French (fr)
Inventor
Yasuo Kobayashi
Kenichi Nishizawa
Takatoshi Kameshima
Ryuichiro Isaki
Manabu Shinriki
Original Assignee
Tokyo Electron Limited
Taiyo Nippon Sanso Corporation
Ohmi, Tadahiro
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited, Taiyo Nippon Sanso Corporation, Ohmi, Tadahiro filed Critical Tokyo Electron Limited
Priority to EP05780931A priority Critical patent/EP1786029A4/en
Publication of WO2006022319A1 publication Critical patent/WO2006022319A1/ja
Priority to US11/660,649 priority patent/US20070259131A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02118Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer carbon based polymeric organic or inorganic material, e.g. polyimides, poly cyclobutene or PVC
    • H01L21/0212Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer carbon based polymeric organic or inorganic material, e.g. polyimides, poly cyclobutene or PVC the material being fluoro carbon compounds, e.g.(CFx) n, (CHxFy) n or polytetrafluoroethylene
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4402Reduction of impurities in the source gas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/312Organic layers, e.g. photoresist
    • H01L21/3127Layers comprising fluoro (hydro)carbon compounds, e.g. polytetrafluoroethylene

Definitions

  • the present invention relates to a method and apparatus for forming a fluorine-added carbon film (a fluorocarbon film) used as, for example, an interlayer insulating film by plasma.
  • a fluorine-added carbon film a fluorocarbon film
  • the nth wiring layer and the (n + 1) th layer The wiring layer is connected with a conductive layer, and a thin film called an interlayer insulating film is formed in a region other than the conductive layer.
  • a typical example of this interlayer insulating film is a silicon oxide film (SiO film).
  • a fluorine-added carbon film which is a compound of carbon (C) and fluorine (F) has attracted attention. According to this fluorine-added carbon film, it is much larger than a silicon oxide film. The relative dielectric constant can be lowered.
  • the fluorine-added carbon film is formed by a film-forming species obtained by converting a source gas composed of carbon (C) and fluorine (F) into plasma.
  • raw material gas if CF gas, which is also known as CF gas, is used, its decomposition products will be
  • Patent Document 1 uses a cyclic CF gas as a source gas, and a 2.45 GHz microphone.
  • Electron cyclotron resonance is caused by the interaction between the mouth wave and the magnetic field of 875 gauss to convert the plasma generating gas such as Ar gas into plasma, and the GF
  • a technique for forming a fluorine-added carbon film on a semiconductor wafer (hereinafter referred to as a wafer) by converting the gas into plasma is described.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 11 162960
  • the raw material gas contains moisture, and conventionally, for example, the moisture concentration of the raw material gas in the gas cylinder is below the measurement limit of the Karl Fischer method or the like, and the amount cannot be accurately grasped. .
  • water (HO) molecules are also contained in the film.
  • the present invention has been made on the basis of such a background.
  • An object of the present invention is to provide a plasma film forming method and apparatus capable of obtaining a fluorine-added carbon film having excellent thermal stability when forming a fluorine-added carbon film by plasma.
  • CF moth moisture content is less 60 X 10_ 9 volume ratio
  • another plasma film forming method of the present invention is a method in which CF gas from which moisture has been removed by passing it through a purifier filled with a substance having a hydrophilic or reducing surface layer is converted into plasma, and fluorine is removed.
  • the plasma film-forming apparatus of the present invention includes a CF gas supply source, and converting the CF gas into plasma
  • a film formation processing unit for forming a fluorine-added carbon film on the substrate, a supply path for connecting the supply source and the film formation processing unit, and supplying CF gas to the film formation processing unit,
  • a purifier filled with a substance having a hydrophilic or reducing surface layer provided in a supply path.
  • the gas outlet of the purifier is preferably provided in the vicinity of the gas inlet of the film forming unit.
  • the water is removed so as to be below.
  • the moisture content is converted into a plasma the 60 X 10_ 9 volume ratio following CF gas
  • a fluorine-added carbon film is formed, so that a very small amount of water is taken into the fluorine-added carbon film. Therefore, it is possible to ensure a high thermal stability that is difficult to cause desorption of fluorine during heating in the subsequent process due to moisture in the fluorine-added carbon film.
  • the CF gas is supplied to the film forming unit via the purifier.
  • CF gas can be supplied to the film forming unit with a stable moisture content.
  • the purifier is provided in the immediate vicinity of the film forming unit, that is, the gas exhaust port of the purifier is provided in the vicinity of the gas inlet of the film forming unit. Even if moisture adheres to the inner surface of the supply channel downstream of the vessel, the effect can be suppressed as much as possible, and CF gas can be supplied to the film forming unit with a more stable moisture content. .
  • FIG. 1 is a schematic configuration diagram showing an example of a plasma film forming apparatus in which a plasma film forming method according to the present invention is implemented.
  • FIG. 2 is a cross-sectional view showing a purifier and a film forming unit used in the plasma film forming apparatus.
  • FIG. 3 is a sectional view showing an example of a semiconductor device provided with a fluorine-added carbon film as an interlayer insulating film.
  • FIG. 4 is a plan view showing a second gas supply unit used in the film formation processing unit.
  • FIG. 5 is a perspective view showing a partial cross section of an antenna unit used in the film forming unit.
  • FIG. 1 is a schematic configuration diagram showing a plasma deposition apparatus of the present invention.
  • a semiconductor wafer (hereinafter referred to as “wafer” t) W for forming an integrated circuit including CMOS is used as the substrate.
  • reference numeral 1 denotes a source gas supply source according to the present invention, which includes, for example, a gas container 11 filled with the source gas.
  • the example material gas, water content 100 X 10_ 9 body volume ratio (lOOppb) follows, for example 60 X 10- 9 volume ratio (60 ppb) of about CF gas is used
  • CF gas for example, cyclic CF gas (l, 2, 3, 3, 4, 4, 5, 5-Octafluoro-l-cy
  • the water content in the raw material gas is indicated by a volume ratio, and is obtained by the following equation.
  • the water selectively to remove moisture of the feed gas by adsorption to material, moisture content, for example 20 X 10_ 9 volume ratio (20 ppb) extent and lesser CF gas A purifier 2 is provided.
  • the gas container 11 is filled
  • Water content was 60 X 10- 9 volume ratio of about CF gas as a starting material gas that, water purification unit 2
  • the purifier 2 has an average particle size of 2 to 3 m in a purification vessel 21.
  • m for example, is filled with a pellet made of a porous material such as zeolite, silica, alumina, metal oxide or the like.
  • the pellets are subjected to a predetermined activation treatment, and the surface layer has hydrophilicity or a reducing action. In other words, this pellet has a hydrophilic or reducing surface layer.
  • a film-forming gas from which a small amount of moisture has been removed by the purifier 2 is turned into plasma, and a film for forming a fluorine-added carbon film on Ueno and W is formed.
  • a processing unit 3 is provided.
  • the wafer W is placed on the mounting table 62, and the planar antenna member 76 made of, for example, a radial line slot antenna provided on the upper side of the mounting table 62 so as to face the mounting table 62.
  • a microwave is supplied from a microwave generation source 79, a raw material gas and an argon (Ar) gas that is a plasma gas are introduced between the mounting table 62 and the planar antenna member 76, and the planar antenna member 76 is introduced.
  • the film-forming gas is turned into plasma by the microwaves emitted from the substrate, whereby a fluorine-added carbon film is formed.
  • valve VI is an opening / closing valve for gas container 11
  • valves V2 and V3 are valves for opening / closing supply passage 4 provided before and after purifier 2.
  • the gas container 11, the purifier 2, and the gas supply unit 68 (see FIG. 2) of the film formation processing unit 3 are connected by a supply path 4, and the purifier 2 is connected to the gas of the film formation processing unit 3. It is provided near the supply unit 68.
  • the arrangement position of the purifier 2 is not particularly limited. However, if the purifier 2 is away from the film forming unit 3, for example, moisture adheres to the piping on the downstream side of the purifier 2 at the initial stage of operation. Then, since the moisture is taken into the film processing unit 3 or the material strength of the pipe may be scattered, the purifier 2 is placed near the film processing unit 3. It is preferable to have it.
  • the specific value of “near” is the force S that seems to change in the structure of the entire system including the main body of the plasma deposition system, and the purifier 2 as much as possible in that structure.
  • a configuration in which the purifier 2 is directly connected to the gas inlet on the film forming unit 3 side is preferable.
  • a gas box including a gas cylinder and the film forming unit 3 are considerably separated, and a supply control unit in which devices such as valves and flow meters are arranged is provided in the middle!
  • the purifier 2 is arranged closer to the film forming unit 3 than the supply control unit, it can be said that it is arranged “near”.
  • the moisture in the CF gas is chemically changed as described above.
  • the CF gas supplied to the film forming unit 3 has a moisture content of 20 X 10_ 9
  • the amount of water is reduced to about a volume ratio and the amount of water is extremely low. Then, in the film deposition unit 3, the active by the water content is plasma the 20 X 10- 9 volume about CF gas Ar
  • FIG. 3 shows an example of a semiconductor device provided with an interlayer insulating film made of a fluorine-added carbon film thus formed.
  • Reference numeral 41 is a p-type silicon layer
  • 42 and 43 are source and drain n-type regions
  • 44 is a gate oxide film
  • 45 is a gate electrode, which constitute a MOS transistor.
  • 46 is a BPSG film (silicate glass film doped with boron (B) and phosphorus (P))
  • 47 is a wiring with tungsten (W) power
  • 48 is a side spacer.
  • an interlayer insulating film 52 made of a fluorine-added carbon film (CF film) in which a wiring layer 51 having a copper force is embedded is stacked in multiple layers.
  • CF film fluorine-added carbon film
  • 53 is a hard mask made of silicon nitride or nitrogen-added calocarbon carbide (SiCN)
  • 54 is a protective layer having force such as titanium nitride or tantalum nitride for preventing diffusion of wiring metal
  • 55 is a protective film. It is.
  • the interlayer insulating film 52 is heated to the process temperature of the heating step.
  • heating examples of processes include insulating film deposition, copper wiring annealing, hard masks such as tantalum nitride annealing, etc., the highest heating process after the formation of interlayer insulating film 52 !, process temperature Is, for example, 350 ° C to 420 ° C. Note that the heat treatment temperature may decrease as the generation of semiconductor devices becomes smaller.
  • the purifier 2 filled with a pellet having a hydrophilic or reducing surface layer since the purifier 2 filled with a pellet having a hydrophilic or reducing surface layer is used, a very small amount of water contained in the raw material gas is contained in the raw material gas. It is removed by chemisorption on the pellets, as will be apparent from the examples below.
  • the moisture detection method used for confirming the effectiveness of the purifier 2 will be briefly described.
  • the measurement of fluorine and water concentration of the CF-based gas comprised of carbon is carried out by quartz crystal vibrating and Karl Fischer method if example embodiment, was but substantially 6000 X 10_ following 9 volume ratio in these techniques
  • the water content was too strong to measure.
  • This present inventors used an infrared laser absorption spectroscopy was established a method capable of measuring 100 X 10_ 9 volume ratio below the water concentration in the CF-based gas.
  • an infrared laser is used to irradiate light having a wavelength of 1392.53 nm to a measurement object, light transmitted through the measurement object is detected, and the intensity of the detection light reaches a certain threshold value.
  • is an index value of noise variation.
  • the thermal stability means that there is little desorption of fluorine-based gases such as fluorine, hydrogen fluoride, and fluorine carbide when the formed fluorine-added carbon film is heated. .
  • fluorine-based gases such as fluorine, hydrogen fluoride, and fluorine carbide
  • the thermal stability means that there is little desorption of fluorine-based gases such as fluorine, hydrogen fluoride, and fluorine carbide when the formed fluorine-added carbon film is heated. .
  • fluorine-based gases such as fluorine, hydrogen fluoride, and fluorine carbide
  • Fluorine-containing carbon film desorption small instrument further moisture content of the fluorine-based gas such as hydrogen fluoride and the fluorocarbon is deposited by 2 0 X 10- 9 volume about ratio of CF gas, fluorine
  • moisture content 60 X 10- 9 volume ratio or less preferably to be al moisture content using a 20 X 10- 9 volume ratio of about CF gas Caro
  • the moisture content in the CF gas is unstable due to fluctuations in the moisture vapor pressure in the gas phase in the gas container 11 due to temperature changes.
  • CF gas is separated into a gas phase and a liquid phase.
  • the purifier 2 when the purifier 2 is provided, regardless of the moisture concentration in the raw material gas, the purifier 2 is passed through so that the moisture in the raw material gas is hydrophilic or has a reducing action.
  • the moisture content of CF gas is almost always on the downstream side of the purifier 2.
  • the purifier 2 is preferably provided in the immediate vicinity of the film forming unit 3.
  • the supply path 4 is composed of, for example, a pipe whose inner surface is chemically polished.
  • the purifier 2 and the film forming unit 3 are connected to each other. Since the supply path 4 is short, even if moisture adheres to the inner surface of the supply path 4, the influence can be suppressed as much as possible, and the film formation processing unit 3 can be kept in a state where the moisture content is more stable. This is because it can be supplied.
  • the water content as described above is 60 X 10_ 9 volume ratio following CF Gasudea
  • fluorine water content is formed using a 100 X 10- 9 volume ratio of about CF gas
  • the film formation processing unit 3 is a CVD (Chemical Vapor Deposition) apparatus that generates plasma using a radial line slot antenna.
  • 61 is a processing vessel (vacuum chamber)
  • 62 is a mounting table equipped with temperature control means
  • a 13.56 MHz bias high frequency power source 63 is connected to this mounting table 62, for example.
  • a first gas supply unit 64 having a substantially circular planar shape, for example, is provided on the upper part of the processing container 61 so as to face the mounting table 62.
  • the gas supply unit 64 is made of, for example, aluminum oxide, and a plurality of first gas supply holes 65 are formed on the surface facing the mounting table 62.
  • the gas supply hole 65 communicates with the first gas supply path 67 through the gas flow path 66.
  • the first gas supply path 67 is connected to a plasma gas such as argon (Ar) gas or krypton (Kr) gas and a hydrogen (H) gas supply source.
  • a second gas supply unit 68 having a substantially circular planar shape is provided between the mounting table 62 and the first gas supply unit 64, for example.
  • the second gas supply unit 68 is made of a conductor such as aluminum alloy containing magnesium (Mg) or aluminum-added stainless steel, and has a number of second gas supply holes on the surface facing the mounting table 62. 69 is formed. Inside the gas supply unit 68, for example, as shown in FIG. 4, a lattice-like gas flow channel 71 communicating with one end side of the gas supply hole 69 is formed. One end of path 4 is connected.
  • the second gas supply unit 68 is formed with a large number of openings 72 so as to penetrate the gas supply unit 68.
  • the opening 72 is for allowing plasma or a source gas in the plasma to pass through a space below the gas supply unit 68, and is formed, for example, between adjacent gas flow paths 71.
  • the second gas supply unit 68 passes through the supply path 4 and the purifier 2, and the CF gas as the raw material gas is supplied.
  • This CF gas is connected to the gas flow path 71 via the supply path 4 in sequence.
  • the gas is uniformly supplied to the space below the second gas supply unit 68 through the gas supply hole 69.
  • a cover plate 73 made of a dielectric material such as aluminum oxide is provided on the upper side of the first gas supply unit 64, and the cover plate 73 has an upper cover on the upper side.
  • An antenna portion 74 is provided so as to be in close contact with the plate 73. As shown in FIG. 5, the antenna portion 74 is provided so as to close the flat antenna body 75 whose bottom surface side has a circular planar shape and the opening portion on the lower surface side of the antenna body 75, and has many openings.
  • a flat antenna member (slot plate) 76 having a disk shape in which a slot is formed.
  • the antenna body 75 and the flat antenna member 76 are made of a conductor and are flat and hollow.
  • a circular waveguide is formed. The lower surface of the planar antenna member 76 is connected to the cover plate 73.
  • a slow phase plate 77 made of a low-loss dielectric material such as acid aluminum aluminum nitride nitride (Si N).
  • This retardation plate 77 is for shortening the wavelength of the microwave and shortening the guide wavelength in the waveguide.
  • a radial line slot antenna (RLSA) is extinguished by these antenna main body 75, planar antenna member 76, and slow phase plate 77! /.
  • the antenna unit 74 configured in this manner is not shown so that the planar antenna member 76 is in close contact with the cover plate 73, but is attached to the processing container 61 via a seal member.
  • the antenna unit 74 is connected to an external microwave generating means 79 via a coaxial waveguide 78 so that, for example, a microwave having a frequency of 2.45 GHz or 8.3 GHz is supplied.
  • the waveguide 78A outside the coaxial waveguide 78 is connected to the antenna body 75, and the center conductor 78B is connected to the planar antenna member 76 through an opening formed in the slow phase plate 77. .
  • the planar antenna member 76 also has a copper plate force of, for example, a thickness of about 1 mm, and a plurality of slots 81 for generating, for example, circularly polarized waves are formed as shown in FIG.
  • the slot 81 is formed, for example, concentrically or spirally along the circumferential direction, with a pair of slots 8 la and 8 lb arranged in a substantially T-shape slightly spaced apart.
  • the slots 81a and 81b are arranged so as to be substantially orthogonal to each other, circularly polarized waves including two orthogonal polarization components are radiated.
  • an exhaust pipe 82 is connected to the bottom of the processing container 61, and this exhaust pipe 82 is connected to a vacuum pump 84, which is a vacuum exhaust means, via a pressure adjusting unit 83, and the processing container 61 has a predetermined pressure. Can be evacuated.
  • a wafer W as a substrate is loaded and placed on the mounting table 62.
  • a vacuum is evacuated to a constant pressure, and plasma gas, for example, Ar gas is supplied to the first gas supply section 64 through the first gas supply path 67 at a predetermined flow rate, for example, 300 sccm, and the second gas is supplied through the supply path 4.
  • the deposition gas, moisture content by purifier 2 is CF gas purified to about 20 X 10_ 9 volume ratio.
  • the inside of the processing vessel 61 is maintained at a process pressure of 60 Pa, for example.
  • microwave when a high frequency (microwave) of 2.45 GHz and 2000 W is supplied from the microwave generating means 79, this microwave propagates in the coaxial waveguide 78 in the TM mode, TE mode, or TEM mode, and the antenna.
  • the slot pair 81a, 81b is reached while it reaches the planar antenna member 76 of the portion 74 and propagates radially from the center of the planar antenna member 76 toward the peripheral region via the inner conductor 78B of the coaxial waveguide.
  • the microwaves are emitted from the cover plate 73 and the first gas supply unit 64 toward the processing space below the gas supply unit 64.
  • the circularly polarized wave is uniformly emitted over the plane of the planar antenna member 76, and the electric field density in the processing space below is uniformized. It is done.
  • the microwave energy excites high-density and uniform plasma over the entire processing space.
  • the plasma flows into the processing space below the gas supply unit 68 via the opening 72 of the second gas supply unit 68, and is supplied from the gas supply unit 68 to the processing space. Activate CF gas, that is, plasm
  • the active species thus generated are deposited on the surface of the wafer w, and an interlayer insulating film made of a fluorine-added carbon film is formed.
  • the fluorine-containing carocarbon film of the present invention may be used as an insulating film other than the interlayer insulating film.
  • the film formation processing unit of the present invention is not limited to the above-described method of generating plasma using the radial line slot antenna, but also a parallel plate type plasma film formation apparatus, a plasma film formation apparatus using electron cyclotron resonance, etc. Can be used.
  • Example 1 Is a measurement test of moisture content in CF gas downstream of the purifier 2, Examples 2 and 3
  • Example 4 is a test for adhesion of the fluorine-added carbon film.
  • the water concentration in the gas container 11 is passed through a 60 X 10_ 9 volume ratio hereinafter the CF gas purifier 2, CF gas supply passage 4 downstream of the purifier 2 of
  • the use of the purifier 2, CF gas force water content of about 60 X 10_ 9 volume ratio can also remove moisture, moisture content of about 20 X 10- 9 volume ratio C
  • the water concentration 60 X 10_ 9 volume ratio of about CF gas, 20 X 10_ 9 volume ratio of water content by the purifier 2 about
  • the film is processed and supplied to the film processing unit 3 where the processing atmosphere pressure is 60 Pa, the microwave power S2000W, the flow rate of CF gas is 200 sccm, and the flow rate of Ar gas is 300 sc.
  • Fluoro-added carbon film was formed on Ueno and W of 8 inch size as cm.
  • the length L of the pipe from the purifier 2 to the gas inlet in the film forming unit 3 was lm.
  • the film thickness of the fluorine-added carbon film thus obtained was measured immediately after film formation, cut into approximately 10 mm squares, and TDS (Thermal Desorption Spectroscopy) measurement was performed.
  • the moisture content in the gas was measured by infrared laser absorption.
  • Example 3 the purifier 2 Do used, the same plasma film forming apparatus removal, Te and Example 2 that used used used in Example 2, water concentration 60 X 10- 9 volume CF gas
  • Example 5 8 is supplied to the film formation processing unit 3, and a fluorine-added carbon film is formed under the same film formation conditions as in Example 2.
  • a film was formed and TDS measurement was performed in the same manner. At this time, when the moisture content in the CF gas at the measurement point P closest to the film forming unit 3 was measured by infrared laser absorption, the moisture content was measured.
  • the amount was confirmed to be about 60 X 10_ 9 volume ratio.
  • the results are shown in Fig. 6 (b) and Fig. 7 (b).
  • a tape test was conducted by laminating a nitrogen-doped silicon carbide film (SiCN film), a fluorine-added carbon film (CF film), a SiCN film, and a silicon oxide film (SiO film) in this order on a silicon bare wafer.
  • SiCN film nitrogen-doped silicon carbide film
  • CF film fluorine-added carbon film
  • SiCN film silicon oxide film
  • SiO film silicon oxide film
  • the SiCN film was the same both above and below, and was formed with a film thickness of lOnm using the film forming apparatus provided with the film forming process 3 shown in FIG.
  • the microwave power was set to 1500 W
  • the process pressure was set to 39.9 Pa (300 mTorr)
  • the wafer temperature was set to 380 ° C.
  • trimethylsilane gas was 40 sccm
  • Ar gas was 800 sccm
  • nitrogen gas was 50 sccm.
  • the flow rate was
  • the fluorine-added carbon film was formed at a film pressure of 120 nm using the above-described film forming apparatus provided with the film forming processing unit 3 shown in FIG. Regarding the film formation conditions, the microwave power was set to 2750 W, the process pressure was set to 7.4 Pa (56 mTorr), the wafer temperature was set to 380 ° C, and C F
  • Concentration used was the about 20 X 10_ 9 volume ratio.
  • the SiO film is an organic source vapor such as TEOS (tetraethyl orthosilicate) and oxygen gas.
  • TEOS tetraethyl orthosilicate
  • oxygen gas oxygen gas
  • the sample wafer on which the laminated film was obtained in this way was also subjected to a tape test through an annealing process at 400 ° C for 1 hour, which is expected in the actual semiconductor device manufacturing process.
  • the tape test is performed by scratching the sample wafer with a size of about 2 mm square, attaching a scotch tape on it, and peeling off this tape.
  • CF gas water concentration of about 100 X 10_ 9 volume ratio in the gas container was supplied to the film formation processing unit 3 to form a fluorine-added carbon film under the same film formation conditions as in Example 2, and TDS measurement was performed in the same manner. At this time, when the moisture content in the CF gas at the measurement point P closest to the film forming unit 3 was measured by infrared laser absorption, the moisture content was measured.
  • a sample wafer was prepared in exactly the same manner as in Example 4, and a tape test was conducted in the same manner.
  • Measurement targets are hydrogen (H), water (H 2 O), fluorine (F), hydrogen fluoride (HF), carbon monoxide (CO), fluoride
  • FIG. 7 (a), (b), and (c) show the main parts of Figure 6 (a), (b), and (c) with different scales and measurement targets.
  • the target is hydrogen (H), water (HO), fluorine (F), and fluorocarbon (CF).
  • Fluoridation force water content was formed using a 100 X 10- 9 volume ratio of about CF gas
  • H 2 O itself contained in the film evaporates and H 2 O decomposes
  • Example 2 and Example 3 are compared, the amounts of H 0, H, CF, CO, and HF desorbed from the fluorine-added carbon film are the same, and these amounts Is more than Comparative Example 1
  • Example 3 the amount of degassing increased rapidly from around 200 ° C, whereas in Example 2, 250 ° C The degassing amount suddenly increases from around the point where F is desorbed at different temperatures. This is desorbed at a high temperature as in Example 2. The F desorbed at around 200 ° C as in Example 3 is assumed to be free F due to the decomposition of the CF film due to the presence of HO.
  • film peeling occurred on 3 out of 5 wafers. The place where peeling occurred was difficult to identify because the SiCN film was as thin as 10 nm. It occurred at the interface between the CF film and the upper SiCN film, or at the interface between the upper SiCN film and the SiO film. Film peeling
  • the adhesion strength of the wafer that did not cause peeling was further measured by the 4-point pending method, and the value was 2.1 to 2.5 jZm2.
  • Fluorine-added carbon films are known to be effective as interlayer insulating films as described in “Background Art”, but it is considered extremely difficult to produce fluorine-added carbon films with good film quality. Therefore, grasping such an indicator of the amount of water in the trace water region is a major step toward the realization of a fluorine-added carbon film, and therefore the present invention is extremely effective.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

 水分含有量が60×10-9体積比以下のC5F8ガスを用いて、フッ素添加カーボン膜を成膜することにより、熱的安定性に優れたフッ素添加カーボン膜を得ることを目的とする。C5F8ガスの供給源1と、ウエハWに対してC5F8ガスをプラズマ化させてフッ素添加カーボン膜を成膜する成膜処理部3との間に、親水性又は還元作用のある表層を備えた物質を充填した精製器2を設け、C5F8ガスを精製器2に通気させることにより、C5F8ガスの水分を除去し、例えば水分含有量が20×10-9体積比程度のC5F8ガスを成膜処理部3に導入し、フッ素添加カーボン膜を成膜する。このようすると、成膜されたフッ素添加カーボン膜に取り込まれる水分量が極めて少なくなり、後の加熱工程にて膜中の水分に起因するフッ素の脱離が発生しにくくなり、膜の熱的安定性が高められる。

Description

明 細 書
プラズマ成膜方法及びその装置
技術分野
[0001] 本発明は、例えば層間絶縁膜等として用いられるフッ素添加カーボン膜 (フロロ力 一ボン膜)をプラズマによって成膜する方法及びその装置に関する。
背景技術
[0002] 半導体デバイスの高集積ィ匕を図るための一つの手法として配線を多層化する技術 があり、多層配線構造をとるためには、 n層目の配線層と (n+ 1)層目の配線層との 間を導電層で接続すると共に、導電層以外の領域は層間絶縁膜と呼ばれる薄膜が 形成される。この層間絶縁膜の代表的なものとしてシリコン酸ィ匕膜 (SiO膜)があるが
2
、近年デバイスの動作についてより一層の高速ィ匕を図るために層間絶縁膜の比誘電 率を低くすることが要求されて 、る。
[0003] このような要請により、炭素(C)及びフッ素 (F)の化合物であるフッ素添加カーボン 膜が注目されており、このフッ素添加カーボン膜によればシリコン酸ィ匕膜に比べて大 幅に比誘電率を下げることができる。ここでこのフッ素添加カーボン膜は、炭素(C)と フッ素 (F)よりなる原料ガスをプラズマ化して得た成膜種により成膜される。原料ガス としては、 C Fガスなども知られている力 C Fガスを用いれば、その分解生成物は
4 8 5 8
立体構造を作り易ぐこの結果 C F結合が強固になって、誘電率が低ぐ熱安定性 に優れた層間絶縁膜が得られることが知られている。
[0004] 特許文献 1には、原料ガスとして環状構造の C Fガスを用い、 2. 45GHzのマイク
5 8
口波と 875ガウスの磁場との相互作用により電子サイクロトロン共鳴 (ECR)を起こして Arガスなどのプラズマ発生用のガスをプラズマ化し、このプラズマにより前記 C Fガ
5 8 スをプラズマ化してフッ素添加カーボン膜を半導体ウェハ(以下ウェハという)上に成 膜する技術が記載されて 、る。
[0005] 特許文献 1 :特開平 11 162960号公報
発明の開示
発明が解決しょうとする課題 [0006] ところで前記原料ガス中には水分が含まれており、従来では例えばガスボンベ中の 原料ガスの水分濃度はカールフィッシャー法等の測定限界以下であり、正確にその 量は把握できな力つた。し力しながらこのような測定不可能である微量の水分を含む C Fガスを用いてフッ素添加カーボン膜を成膜すると、膜中にも水 (H O)分子が含
5 8 2
まれてしまうが、ごのようにフッ素添加カーボン膜中に水分子が取り込まれて 、ると、 水分子を構成する水素 (H)がフッ素 (F)と結合してフッ化水素 (HF)を生成し、この ためデバイスの製造工程中において例えば 350°C以上に加熱されると、フッ化水素( HF)が膜から抜けてしまう。つまりフッ素添加カーボン膜を加熱すると Fが膜中より蒸 発してしまうので、熱的安定性に欠けてしまい、このように加熱工程時に脱ガスが起こ ると、膜が空洞化して脆くなつてしまい、密着性が悪くなつて、層間絶縁膜を積層した ときに膜剥がれを起こしたり、層間絶縁膜による配線の押さえ込み作用が低下し、配 線のうねりやエレクト口マイグレーションが発生しやすくなると共に、発生するフッ化水 素による配線の腐食も懸念される。
[0007] 本発明は、このような背景に基づいてなされたものであり、その目的は、 C Fガスを
5 8 プラズマ化してフッ素添加カーボン膜を成膜するにあたり、熱安定性に優れた特性を 有するフッ素添加カーボン膜を得ることができるプラズマ成膜方法及びその装置を提 供することにある。
課題を解決するための手段
[0008] 本発明のプラズマ成膜方法は、水分含有量が 60 X 10_9体積比以下である C Fガ
5 8 スをプラズマ化し、フッ素添加カーボン膜を成膜することを特徴とする。また本発明の 他のプラズマ成膜方法は、親水性又は還元作用のある表層を備えた物質を充填した 精製器に通気させることにより水分が除去された C Fガスをプラズマ化して、フッ素
5 8
添加カーボン膜を成膜することを特徴とする。ここで前記精製器に通気させることによ り水分が除去された C Fガスは、例えば水分含有量が 60 X 10—9体積比以下の C F
5 8 5 ガスである。
8
[0009] さらに本発明のプラズマ成膜装置は、 C Fガスの供給源と、 C Fガスをプラズマ化
5 8 5 8
して、基板上にフッ素添加カーボン膜を成膜する成膜処理部と、前記供給源と前記 成膜処理部とを接続し、 C Fガスを成膜処理部に供給するための供給路と、この供 給路に設けられ、親水性又は還元作用のある表層を備えた物質を充填した精製器と 、を備えることを特徴とする。ここで前記精製器のガス排出口は、成膜処理部のガス 導入口の近傍に設けられて ヽることが好ま Uヽ。ここで前記成膜処理部に供給された C Fガスは、前記精製器に通気させることにより、水分含有量が 60 X 10_9体積比以
5 8
下になるように水分が除去されたものである。
発明の効果
[0010] 本発明によれば、水分含有量が 60 X 10_9体積比以下の C Fガスをプラズマ化し
5 8
てフッ素添加カーボン膜を成膜して 、るので、フッ素添加カーボン膜中に取り込まれ る水分が極めて微量となる。従ってフッ素添加カーボン膜中の水分に起因する、後 工程における加熱時のフッ素の脱離が起こりにくぐ高い熱的安定性を確保すること ができる。
[0011] また他の発明によれば、 C Fガスを精製器を介して成膜処理部に供給しているの
5 8
で、温度変化によるガスボンベ内の気相中の水分蒸気圧の変動等により、精製器の 上流側にて C Fガス中の水分量が不安定である場合にも、精製器により水分を除去
5 8
することにより、精製器の下流側における C Fガス中の水分量をほぼ一定にすること
5 8
ができ、水分含有量が安定した状態で C Fガスを成膜処理部へ供給することができ
5 8
る。
[0012] さらに他の発明によれば、前記精製器を成膜処理部の直近に、つまり精製器のガ ス排出口を、成膜処理部のガス導入口の近傍に設けているので、精製器の下流側の 供給路の内面に水分が付着していたとしても、その影響を極力抑えることができ、より 水分含有量が安定した状態で C Fガスを成膜処理部へ供給することができる。
5 8
図面の簡単な説明
[0013] [図 1]本発明に係るプラズマ成膜方法が実施されるプラズマ成膜装置の一例を示す 概略構成図である。
[図 2]前記プラズマ成膜装置に用いられる精製器と成膜処理部を示す断面図である
[図 3]フッ素添加カーボン膜を層間絶縁膜として備えた半導体装置の一例を示す断 面図である。 [図 4]前記成膜処理部に用いられる第 2のガス供給部を示す平面図である。
[図 5]前記成膜処理部に用いられるアンテナ部を一部断面で示す斜視図である。
[図 6]水分含有量の異なる C Fガスを用いてフッ素添加カーボン膜を成膜し、その膜
5 8
に対して行った TDS分析の結果を示す特性図である。
[図 7]水分含有量の異なる C Fガスを用いてフッ素添加カーボン膜を成膜し、その膜
5 8
に対して行った TDS分析の結果を示す特性図である。
発明を実施するための最良の形態
[0014] 本発明のプラズマ成膜方法について、例えばフッ素添加カーボン膜からなる層間 絶縁膜を成膜する方法の実施の形態について説明する。図 1は本発明のプラズマ成 膜装置を示す概略構成図である。基板としては、例えば CMOSを含む集積回路形 成用の半導体ウェハ(以下「ウェハ」 t 、う) Wが用いられる。
[0015] 図中 1は、本発明の原料ガスの供給源であり、例えば前記原料ガスが充填されてい るガス容器 11を備えている。例えば原料ガスとしては、水分含有量が 100 X 10_9体 積比(lOOppb)以下例えば 60 X 10—9体積比(60ppb)程度の C Fガスが用いられ
5 8
る。ここで C Fガスとしては、例えば環状 C Fガス(l,2,3,3,4,4,5,5-Octafluoro-l-cy
5 8 5 8
clopentene) ,三重結合を 1つ持つ C Fガス(l,3,3,4,4,5,5,5—Octafluoro—l—pentyne)
5 8
,共役二重結合を持つ C Fガス(1,1,2,3,4,5,5,5- Octafluoro- 1,3- pentadiene)等を
5 8
用!、ることができる。
[0016] また本発明では、前記原料ガス中の水分含有量は体積比により示しており、次式に より求められたものである。
H O体積,原料ガス体積 =H O体積, (C Fガス体積 + H。体積)
2 2 5 8 2
このガス容器 11の下流側には、水分を選択的に吸着する物質により前記原料ガス 中の水分を除去して、水分含有量が例えば 20 X 10_9体積比(20ppb)程度と少ない C Fガスを得るための精製器 2が設けられている。以下ガス容器 11に充填されてい
5 8
る水分含有量が 60 X 10—9体積比程度の C Fガスを原料ガスとし、精製器 2により水
5 8
分が除去され、水分含有量が 20 X 10—9体積比程度となった C Fガスを成膜ガスと
5 8
して説明する。
[0017] 前記精製器 2は、例えば図 2に示すように、精製容器 21内に、平均粒径が 2〜3m mの例えば多孔質材料例えばゼォライト、シリカ、アルミナ、金属酸ィ匕物等よりなるぺ レットを充填して構成されている。前記ペレットは、所定の活性化処理が施されて、表 層が親水性又は還元作用を有している。つまりこのペレットは親水性又は還元作用 のある表層を備えている。
[0018] このような精製器 2では、精製容器 21内に原料ガスを通気させると、原料ガスがぺ レット 22同士の隙間を介して下流側へ通気していき、この際原料ガスと親水性又は 還元作用のあるペレット 22の表面とが接触したときに、原料ガス中の水がペレット 22 の表面に化学吸着されて除去される。こうしてこの精製器 2は、後述の実施例から明 らかなように、例えば水分含有量が 60 X 10—9体積比程度の C Fガスから、当該ガス
5 8
に含まれる微量な水分をさらに除去して、水分含有量が 20 X 10_9体積比程度の C
5
Fガスを得ることができるように構成されている。
8
[0019] この精製器 2の下流側には、当該精製器 2により微量な水分が除去された成膜ガス をプラズマ化して、ウエノ、 W上にフッ素添加カーボン膜を成膜するための成膜処理 部 3が設けられている。この成膜処理部 3では、ウェハ Wは載置台 62上に載置され、 載置台 62の上部側に、載置台 62と対向して設けられた例えばラジアルラインスロット アンテナよりなる平面アンテナ部材 76にマイクロ波発生源 79からマイクロ波を供給し 、載置台 62と平面アンテナ部材 76との間に、原料ガスと、プラズマガスであるアルゴ ン (Ar)ガスとを導入して、前記平面アンテナ部材 76から放出されたマイクロ波により 成膜ガスをプラズマ化し、これによりフッ素添加カーボン膜が形成されるようになって いる。図 1, 2中バルブ VIはガス容器 11の開閉バルブ、バルブ V2, V3は、精製器 2 の前後に設けられた供給路 4を開閉するためのバルブである。
[0020] 前記ガス容器 11と精製器 2と成膜処理部 3のガス供給部 68 (図 2参照)とは供給路 4にて接続されており、精製器 2は成膜処理部 3のガス供給部 68の近傍に設けられ ている。本発明では、精製器 2の配置位置について特に限定するものではないが、 精製器 2が成膜処理部 3から離れていると、例えば運転初期時に精製器 2の下流側 の配管に水分が付着して 、たときに、その水分が成膜処理部 3に取り込まれてしまう ことから、あるいは配管の材質力も水分が飛散する場合があることから、精製器 2を成 膜処理部 3の近傍に設けることが好ま 、。 [0021] ここで ヽぅ「近傍」の具体的な数値は、プラズマ成膜装置の本体を含むシステム全 体の構造において変わってくると思われる力 S、その構造の中でできる限り精製器 2を 成膜処理部 3に近づけることが好ましぐ例えば成膜処理部 3側のガス導入口に精製 器 2を直結する構成が好ましい。一般に半導体製造工場では、ガスボンベを含むガ スボックスと成膜処理部 3とはかなり離れており、その途中にバルブや流量計などの 機器群を配置した供給制御ユニットが設けられて!/、るが、この供給制御ユニットよりも 成膜処理部 3に近い側に精製器 2を配置すれば「近傍」に配置したといえる。
[0022] このようなプラズマ成膜装置では、成膜処理部 3にてチャンバ 61内を所定の減圧雰 囲気に設定し、バルブ VI, V2, V3を開くと、ガス容器 11内の 60 X 10_9体積比程 度の水分を含む C Fガスが精製器 2内を通気して、成膜処理部 3へ導入される。ここ
5 8
で前記 C Fガスが精製器 2内を通気する際、既述のように C Fガス中の水分が化学
5 8 5 8
吸着により除去されるので、成膜処理部 3に供給される C Fガスは水分が 20 X 10_9
5 8
体積比程度に低減された、極めて水分量が低いものとなる。そして成膜処理部 3では 、この水分量が 20 X 10—9体積比程度の C Fガスをプラズマ化された Arにより活性
5 8
化させ、これによりウェハ w上にフッ素添加カーボン膜を成膜する。
[0023] ここでこのようにして成膜されたフッ素添加カーボン膜よりなる層間絶縁膜を備えた 半導体装置の一例を図 3に示す。 41は p型シリコン層、 42, 43は夫々ソース、ドレイ ンをなす n型領域、 44はゲート酸ィ匕膜、 45はゲート電極であり、これらにより MOSトラ ンジスタが構成されている。また 46は BPSG膜 (ボロン(B)及びリン(P)がドープされ たシリケートガラス膜)、 47はタングステン (W)力 なる配線であり、 48はサイドスぺー サである。そして BPSG膜 46の上には、例えば銅力もなる配線層 51が埋め込まれた フッ素添加カーボン膜 (CF膜)よりなる層間絶縁膜 52が多層に積み上げられて 、る 。 (図 3では便宜上 2層としてある)。なお 53は例えば窒化シリコンあるいは窒素添カロ 炭化ケィ素(SiCN)力 なるハードマスク、 54は配線金属の拡散を防止するための 例えばチタンナイトライドあるいはタンタルナイドライドなど力もなる保護層、 55は保護 膜である。
[0024] このような半導体装置の製造プロセスの中には基板を加熱する工程があり、このた め層間絶縁膜 52は、その加熱工程のプロセス温度まで加熱されることになる。加熱 工程の例としては、絶縁膜の成膜、銅配線のァニール、ハードマスク例えばタンタル ナイトライドのァニールなどが挙げられ、層間絶縁膜 52を形成した後の加熱工程の 中で最も高!、プロセス温度は例えば 350°C〜420°Cである。なお半導体装置の微細 化の世代が進むにつれて熱処理温度は低くなる可能性がある。
[0025] このように上述の実施の形態では、親水性又は還元作用のある表層を備えたペレ ットを充填した精製器 2を用いて ヽるので、原料ガスに含まれる微量な水分が前記べ レットに化学吸着されて除去され、後述の実施例により明らかなように、 C Fガス中の
5 8 水分含有量を 20 X 10_9体積比程度まで低下することができる。
[0026] ここで前記精製器 2の有効性を確認するときに用いた水分検出方法について簡単 に説明する。従来では、フッ素と炭素よりなる CF系ガス中の水分濃度の測定は、例 えば水晶振動式やカールフィッシャー法等により行われて 、たが、これらの手法では 略 6000 X 10_9体積比以下の水分量は測定することができな力つた。今回本発明者 らは、赤外レーザー吸光法を用いて、 CF系ガスにおいて 100 X 10_9体積比以下の 水分濃度を測定することができる手法を確立した。この赤外レーザー吸光法とは、例 えば赤外線レーザーにより、 1392. 53nmの波長の光を測定対象に照射して、測定 対象を透過した光を検出し、この検出光の強度がある閾値に達するまでの時間から、 ランベルトの式を用いて水分濃度を算出する手法である。この手法によれば、検出下 限は 3 σ = 9 X 10—9体積比、定量下限は 10 σ = 20 Χ 10_9体積比程度であり、 100 X 10_9体積比以下の領域の水分濃度を高精度に検出できる。ここで前記 σとはノィ ズのばらつきの指標値である。この手法により従来のガスボンベ中の原料ガス(C F
5 8
)の水分濃度を測定したところ、 100 X 10_9体積比程度であった。
[0027] このように今回、 CF系ガス中の 100 X 10_9体積比以下の微量な水分量を精度良く 検出する技術を確立したことにより、後述の実施例より明らかなように、 C F
5 8ガスを用 いてフッ素添加カーボン膜を成膜するにあたり、 C Fガスに含まれる 100 Χ 10—9
5 8
積比以下の極めて微量な水分が、得られるフッ素添加カーボン膜の熱的安定性に 大きく影響を与えていることが見出された。これにより本発明者らは水分含有量が 10 0 X 10_9体積比以下の C Fガスに着目し、種々の実験を行った結果、水分含有量
5 8
が 60 X 10—9体積比以下の C Fガスを用いてフッ素添加カーボン膜を成膜すること iS 膜の熱的安定性の向上に極めて有効であることを見出し、本発明を確立するに 至った。
[0028] ここで前記熱的安定性とは、成膜されたフッ素添加カーボン膜を加熱したときのフッ 素やフッ化水素、炭化フッ素等のフッ素系のガスの脱離が少ないということである。つ まり既述のように、フッ素添加カーボン膜中の水分量が少なければ、フッ素添加カー ボン膜のフッ素と結合する水素が少な 、ので、その分加熱時にフッ化水素として蒸発 してしまうフッ素が少なくなる。このように加熱工程時に脱ガスが少なくなると、膜の空 洞化や、密着性の悪化が抑えられ、膜剥がれの発生が防止できると共に、層間絶縁 膜による配線の押さえ込み作用の低下も抑えられるので、配線のうねりやエレクトロマ ィグレーシヨンの発生を防止することできる。
[0029] 後述の実施例により明らかなように、水分含有量が 60 X 10_9体積比程度の C F
5 8 ガスにより成膜されたフッ素添加カーボン膜は、水分含有量が 100 X 10_9体積比程 度の C Fガスにより成膜されたフッ素添加カーボン膜に比べて、膜を加熱したときの
5 8
フッ化水素や炭化フッ素等のフッ素系のガスの脱離が少なぐさらに水分含有量が 2 0 X 10—9体積比程度の C Fガスにより成膜されたフッ素添加カーボン膜は、フッ素
5 8
の抜けが少ないことが認められ、このように水分含有量が 60 X 10—9体積比以下、さ らに好ましくは水分含有量が 20 X 10—9体積比程度の C Fガスを用いてフッ素添カロ
5 8
カーボン膜を成膜することにより、後の工程にて例えば 350°C程度に加熱しても、膜 特性が低下しな!ヽ層間絶縁膜等の絶縁膜として最適なフッ素添加カーボン膜を得る ことができることが理解される。
[0030] また本発明では原料ガス供給源 1と成膜処理部 3との間に精製器 2を設けているの で、 20 X 10—9体積比程度の水分含有量の C Fガスを安定した状態で成膜処理部 3
5 8
に供給することができる。つまり精製器 2の上流側では、温度変化によるガス容器 11 内の気相中の水分蒸気圧の変動等によって C Fガス中の水分含有量が不安定で
5 8
ある場合がある。例えばガス容器 11中では、 C Fガスは気相と液相とに分離した状
5 8
態で充填されているので、温度変化により C Fガス中の水分量が変わってくる。つま
5 8
り H Oの蒸気圧曲線と、 C Fガスの蒸気圧曲線とでは、温度に対する変わり方(曲
2 5 8
線のカーブ)が異なるので、ある温度領域では気相中の水分濃度が変わり、ガス容器 11中の H O/C Fの比が変わってくる。従ってガス容器 11内の C Fガス中の水分
2 5 8 5 8
含有量が所定の温度領域では 60 X 10_9体積比以下だとしても、その温度領域から ずれると 60 X 10_9体積比以上になってしまう場合があり、精製器 2を設けない場合 には、温度によって C Fガス中の水分含有量が変化してしまうおそれがある。
5 8
[0031] これに対して精製器 2を設けた場合には、原料ガス中の水分濃度に関わらず、精製 器 2を通過させることで、原料ガス中の水分が親水性又は還元作用のある表層により 吸着除去されるので、精製器 2の下流側では C Fガスの水分含有量が常にほぼ
5 8 一 定量に調整され、常に水分含有量が安定した C Fガスを成膜処理部 3に供給するこ
5 8
とができる。これにより得られるフッ素添加カーボン膜の水分含有量が安定する。
[0032] また上述の実施の形態では、精製器 2により、温度が変化しても C Fガス中の水分
5 8
含有量を常に 20 X 10_9体積比程度に除去することができるので、水分含有量が 20 X 10—9体積比程度の C Fガスを安定して成膜処理部 3に供給できる。
5 8
[0033] この際、精製器 2は成膜処理部 3の直近に設けることが好ましい。供給路 4は例えば その内面が化学研磨された配管より構成されているが、精製器 2を成膜処理部 3の近 傍に設けるようにすれば、精製器 2と成膜処理部 3との間の供給路 4が短いので、こ の供給路 4の内面に水分が付着していたとしても、その影響を極力抑えることができ 、より水分含有量が安定した状態で成膜処理部 3に供給できるからである。
[0034] 以上において、既述のように水分含有量が 60 X 10_9体積比以下の C Fガスであ
5 8 れば、水分含有量が 100 X 10—9体積比程度の C Fガスを用いて成膜されたフッ素
5 8
添加カーボン膜に比べて、膜を加熱したときの脱ガス量が低減されるので、膜の熱的 安定性が向上している。このことから、本発明では、水分含有量が 60 X 10_9体積比 以下の C Fガスを用いてフッ素添加カーボン膜を成膜すればよぐ必ずしも精製器 2
5 8
を設ける必要はない。
[0035] 次いで前記成膜処理部 3の一例について図 2及び図 4により説明する。この成膜処 理部 3は、ラジアルラインスロットアンテナを用いてプラズマを発生させる CVD (Che mical Vapor Deposition)装置である。図中 61は処理容器(真空チャンバ)、 62 は温調手段を備えた載置台であり、この載置台 62には例えば 13. 56MHzのバイァ ス用高周波電源 63が接続されており、載置面は静電チャックとして構成されている。 [0036] 前記処理容器 61の上部には、載置台 62と対向するように、例えば平面形状が略 円形状に構成された第 1のガス供給部 64が設けられて 、る。このガス供給部 64は例 えば酸ィ匕アルミニウムにより構成され、載置台 62と対向する面には多数の第 1のガス 供給孔 65が形成されて 、る。このガス供給孔 65はガス流路 66を介して第 1のガス供 給路 67に連通して 、る。この第 1のガス供給路 67はプラズマガスであるアルゴン (Ar )ガスやクリプトン (Kr)ガスなどの供給源及び水素 (H )ガスの供給源が接続されて
2
いる。
[0037] また載置台 62と第 1のガス供給部 64との間には、例えば平面形状が略円形状に構 成された第 2のガス供給部 68を備えて 、る。この第 2のガス供給部 68は例えばマグ ネシゥム(Mg)を含んだアルミニウム合金やアルミニウム添加ステンレススチール等の 導電体により構成され、載置台 62と対向する面には多数の第 2のガス供給孔 69が形 成されている。このガス供給部 68の内部には、例えば図 4に示すようにガス供給孔 6 9の一端側と連通する格子状のガス流路 71が形成されており、このガス流路 71には 前記供給路 4の一端側が接続されている。また第 2のガス供給部 68には、当該ガス 供給部 68を貫通するように、多数の開口部 72が形成されている。この開口部 72は、 プラズマやプラズマ中の原料ガスを当該ガス供給部 68の下方側の空間に通過させ るためのものであり、例えば隣接するガス流路 71同士の間に形成されている。
[0038] ここで第 2のガス供給部 68は、供給路 4、精製器 2を介して原料ガスである C Fガ
5 8 スのガス容器 11と接続され、この C Fガスは供給路 4を介してガス流路 71に順次通
5 8
流し、前記ガス供給孔 69を介して第 2のガス供給部 68の下方側の空間に一様に供 給される。
[0039] 前記第 1のガス供給部 64の上部側には、例えば酸ィ匕アルミニウムなどの誘電体に より構成されたカバープレート 73が設けられ、このカバープレート 73の上部側には、 当該カバープレート 73と密接するようにアンテナ部 74が設けられている。このアンテ ナ部 74は、図 5に示すように、平面形状が円形の下面側が開口する扁平なアンテナ 本体 75と、このアンテナ本体 75の前記下面側の開口部を塞ぐように設けられ、多数 のスロットが形成された円板状の平面アンテナ部材 (スロット板) 76とを備えており、こ れらアンテナ本体 75と平面アンテナ部材 76とは導体により構成され、扁平な中空の 円形導波管を構成している。そして前記平面アンテナ部材 76の下面が前記カバー プレート 73に接続されている。
[0040] また前記平面アンテナ部材 76とアンテナ本体 75との間には、例えば酸ィ匕アルミ- ゥムゃ窒化ケィ素(Si N )等の低損失誘電体材料により構成された遅相板 77が設け
3 4
られて 、る。この遅相板 77はマイクロ波の波長を短くして前記導波管内の管内波長 を短くするためのものである。この実施の形態では、これらアンテナ本体 75、平面ァ ンテナ部材 76、遅相板 77とによりラジアルラインスロットアンテナ(Radial Line Slo t Anntena: RLSA)が开滅されて!/、る。
[0041] このように構成されたアンテナ部 74は、前記平面アンテナ部材 76がカバープレート 73に密接するように図示しな!、シール部材を介して処理容器 61に装着されて!、る。 そしてこのアンテナ部 74は同軸導波管 78を介して外部のマイクロ波発生手段 79と 接続され、例えば周波数が 2. 45GHzあるいは 8. 3GHzのマイクロ波が供給される ようになつている。この際、同軸導波管 78の外側の導波管 78Aはアンテナ本体 75に 接続され、中心導体 78Bは遅相板 77に形成された開口部を介して平面アンテナ部 材 76に接続されている。
[0042] 前記平面アンテナ部材 76は、例えば厚さ lmm程度の銅板力もなり、図 5に示すよ うに例えば円偏波を発生させるための多数のスロット 81が形成されている。このスロッ ト 81は略 T字状に僅かに離間させて配置した一対のスロット 8 la, 8 lbを 1組として、 周方向に沿って例えば同心円状や渦巻き状に形成されている。このようにスロット 81 aとスロット 81bとを相互に略直交するような関係で配列しているので、 2つの直交する 偏波成分を含む円偏波が放射されることになる。この際スロット対 81a, 81bを遅相板 77により圧縮されたマイクロ波の波長に対応した間隔で配列することにより、マイクロ 波が平面アンテナ部材 76より略平面波として放射される。また処理容器 61の底部に は排気管 82が接続されており、この排気管 82は圧力調整部 83を介して真空排気手 段である真空ポンプ 84に接続され、処理容器 61内を所定の圧力まで真空引きでき るようになっている。
[0043] 続いてこの装置にて実施される成膜プロセスの一例について説明する。先ず基板 であるウェハ Wを搬入して載置台 62上に載置する。続いて処理容器 61の内部を所 定の圧力まで真空引きし、第 1のガス供給路 67を介して第 1のガス供給部 64にブラ ズマガス例えば Arガスを所定の流量例えば 300sccmで供給すると共に、供給路 4を 介して第 2のガス供給部 68に成膜ガスを所定の流量例えば 150SCcmで供給する。 ここでこの成膜ガスは、精製器 2により水分含有量が 20 X 10_9体積比程度に精製さ れた C Fガスである。そして処理容器 61内を例えばプロセス圧力 60Paに維持し、
5 8
載置台 62の表面温度を 350°Cに設定する。
[0044] 一方マイクロ波発生手段 79から 2. 45GHz, 2000Wの高周波(マイクロ波)を供給 すると、このマイクロ波は、 TMモード或いは TEモード或いは TEMモードで同軸導 波管 78内を伝搬してアンテナ部 74の平面アンテナ部材 76に到達し、同軸導波管の 内部導体 78Bを介して、平面アンテナ部材 76の中心部から周縁領域に向けて放射 状に伝搬される間に、スロット対 81a, 81bからマイクロ波がカバープレート 73、第 1の ガス供給部 64を介して当該ガス供給部 64の下方側の処理空間に向けて放出される
[0045] このとき既述のようにスリット対 81a, 81bを配列したので、円偏波が平面アンテナ部 材 76の平面に亘つて均一に放出され、この下方の処理空間の電界密度が均一化さ れる。そしてこのマイクロ波のエネルギーにより、広い処理空間の全域に亘つて高密 度で均一なプラズマが励起される。そしてこのプラズマは、第 2のガス供給部 68の開 口部 72を介して当該ガス供給部 68の下方側の処理空間に流れ込んで行き、当該ガ ス供給部 68からこの処理空間に供給される C Fガスを活性ィ匕させて、つまりプラズ
5 8
マ化して活性種を形成する。こうして生成された活性種がウェハ wの表面に堆積して フッ素添加カーボン膜からなる層間絶縁膜が成膜される。
[0046] 以上において上述の例では、層間絶縁膜を例に挙げている力 本発明のフッ素添 カロカーボン膜は層間絶縁膜以外の絶縁膜として用いてもょ ヽ。また本発明の成膜処 理部としては、既述のラジアルラインスロットアンテナによりプラズマを発生する方式 のみならず、平行平板型プラズマ成膜装置や、電子サイクロトロン共鳴を利用したプ ラズマ成膜装置等を用いることができる。
実施例
[0047] 続いて本発明の効果を確認するために行った実施例について説明する。実施例 1 は、精製器 2の下流側における C Fガス中の水分含有量の測定試験、実施例 2、 3
5 8
はフッ素添加カーボン膜中の成分の脱離に関する試験、実施例 4はフッ素添加カー ボン膜の密着性に関する試験である。
(実施例 1)
上述のプラズマ成膜装置を用い、ガス容器 11中の水分濃度が 60 X 10_9体積比以 下の C Fガスを精製器 2に通過させ、精製器 2の下流側の供給路 4内の C Fガスの
5 8 5 8 水分濃度を既述の赤外レーザー吸光法により測定した。ここで測定対象の C Fガス
5 8 は測定ポイント P (図 1参照)でサンプリングし、同様の測定を複数回行ったが、いず れも C Fガス中の水分含有量は 20 X 10—9体積比程度であった。
5 8
このことから、精製器 2を用いることにより、水分含有量が 60 X 10_9体積比程度の C Fガス力も水分を除去することができ、水分含有量が 20 X 10—9体積比程度の C
5 8 5
Fガスを得ることができることが認められた。
8
[0048] (実施例 2)
図 2に示す成膜処理部 3を備えた上述のプラズマ成膜装置を用い、水分濃度が 60 X 10_9体積比程度の C Fガスを、精製器 2により水分含有量を 20 X 10_9体積比程
5 8
度に精製して成膜処理部 3に供給し、成膜処理部 3にて処理雰囲気の圧力が 60Pa 、マイクロ波電力力 S2000W、 C Fガスの流量が 200sccm、 Arガスの流量が 300sc
5 8
cmとして、 8インチサイズのウエノ、 Wに対してフッ素添加カーボン膜を成膜した。この とき精製器 2が成膜処理部 3におけるガス導入口に至るまでの配管の長さ距離 L (図 2参照)は lmとした。こうして得られたフッ素添加カーボン膜に対して、成膜後すばや く膜厚を測定し、ほぼ 10mm角に切り出して、 TDS (Thermal Desorption Spect roscopy)測定を行った。この際、成膜処理部 3の直近の測定ポイント Pにおける C F
5 ガス中の水分含有量を赤外レーザー吸光法で測定したところ、水分含有量は 20 X
8
10_9体積比程度であることを確認した。この結果を図 6 (a)、図 7 (a)に示す。
[0049] (実施例 3)
実施例 3にお 、ては、実施例 2で用いた精製器 2を用いな 、ことを除 、ては実施例 2と同様のプラズマ成膜装置を用い、水分濃度が 60 X 10—9体積比程度の C Fガス
5 8 を成膜処理部 3に供給し、実施例 2と同様の成膜条件にてフッ素添加カーボン膜を 成膜し、同様に TDS測定を行った。この際、成膜処理部 3の直近の測定ポイント Pに おける C Fガス中の水分含有量を赤外レーザー吸光法で測定したところ、水分含有
5 8
量は 60 X 10_9体積比程度であることを確認した。この結果を図 6 (b)、図 7 (b)に示 す。
[0050] (実施例 4)
シリコンベアウェハ上に、窒素添加炭化ケィ素膜 (SiCN膜)、フッ素添加カーボン 膜 (CF膜)、 SiCN膜、シリコン酸ィ匕膜 (SiO膜)をこの順に積層してテープテストを実
2
施した。
ここで SiCN膜は上下とも同一であり、図 2に示す成膜処理 3を備えた上述の成膜 装置を用いて lOnmの膜厚で成膜した。その成膜条件については、マイクロ波のパヮ 一を 1500W、プロセス圧力を 39. 9Pa (300mTorr)、ウェハの温度を 380°Cに設定 し、トリメチルシランガスを 40sccm、 Arガスを 800sccm及び窒素ガスを 50sccmの 流量で供給した。
またフッ素添加カーボン膜は、図 2に示す成膜処理部 3を備えた上述の成膜装置を 用いて 120nmの膜圧で成膜した。その成膜条件については、マイクロ波のパワーを 2750W,プロセス圧を 7. 4Pa (56mTorr)、ウェハの温度を 380°Cに設定し、 C F
5 8 ガス 200sccm、 Arガスを 250sccmの流量で供給した。 C Fガスとしては、その水分
5 8
濃度が 20 X 10_9体積比程度のものを用いた。
SiO膜は TEOS (テトラェチルオルソシリート)などの有機ソースの蒸気と酸素ガス
2
とを用い、これらガスを活性ィ匕して得たプラズマにより、 40nmの膜厚で成膜した。 こうして積層膜が得られたサンプルウェハについて、実際の半導体装置製作工程 において予想される 400°C、 1時間のァニール工程を経て力もテープテストを実施し た。テープテストとはサンプルウェハを 2mm角くらいの大きさでケガき、その上にスコ ツチテープを貼り付け、このテープを引き剥がすことにより行われ、各々の積層膜の 密着力が不足していた場合には、引き剥がされたテープと共に積層膜が引き剥がさ れ、従ってこのテストを行うことで薄膜の密着性の評価を行うことができる。
[0051] (比較例 1)
精製器を用いずに、ガス容器中の水分濃度が 100 X 10_9体積比程度の C Fガス を成膜処理部 3に供給し、実施例 2と同様の成膜条件にてフッ素添加カーボン膜を 成膜し、同様に TDS測定を行った。この際、成膜処理部 3の直近の測定ポイント Pに おける C Fガス中の水分含有量を赤外レーザー吸光法で測定したところ、水分含有
5 8
量は 100 X 10—9体積比程度であることを確認した。この結果を図 6 (c)、図 7 (c)に示 す。
[0052] (比較例 2)
また C Fガスとして、その水分濃度が 100 X 10—9体積比程度のものを用いた他は
6 8
、実施例 4と全く同様にしてサンプルウェハを作成し、同様にテープテストを実施した
[0053] (結果及び考察)
図 6 (a) , (b) , (c)は、夫々横軸は温度、縦軸は分子の量を示している。測定対象 は、水素 (H )、水 (H O)、フッ素 (F)、フッ化水素 (HF)、一酸化炭素 (CO)、フッ化
2 2
炭素(CF)とした力 図では夫々のデータを重なった状態で示している。また図 7 (a) , (b) , (c)は、夫々図 6 (a) , (b) , (c)の要部を、スケールと測定対象とを変えて示し ており、ここでは測定対象は、水素 (H )、水 (H O)、フッ素 (F)、フッ化炭素 (CF)の
2 2
みを示して!/、る。これらは 、ずれも測定後に膜厚及びサンプルの面積に基づ 、て規 格化して!/、る(較正されて!、る)。
[0054] この結果、比較例 1は、実施例 2、実施例 3のフッ素添加カーボン膜に比べて、膜か ら脱離する H 0、 H、 CF、 HF、 COの量が非常に多いことが認められた。これにより
2 2
、水分含有量が 100 X 10—9体積比程度の C Fガスを用いて成膜したフッ素添加力
5 8
一ボン膜では、膜中に取り込まれる H Oの量が多くなり、フッ素添加カーボン膜をカロ
2
熱することによって、膜に含まれる H O自体が蒸発していくと共に、 H Oが分解して、
2 2
H、 HFを生成し、これらが脱離していき、さらにこれらのガスの脱離により、膜が脆く
2
なって CF自体も脱離しやすくなるものと推察される。
[0055] これに対して、実施例 2と実施例 3とを比較すると、フッ素添加カーボン膜から脱離 する H 0、 H、 CF、 CO、 HFの量は同じ程度であって、これらの量は比較例 1よりも
2 2
約 1Z4以下の量に低減していることから、水分含有量が 60 X 10_9体積比程度の C
5
Fガスであれば、膜の加熱時の脱ガス量がかなり少なくなり、熱的安定性の高いフッ 素添加カーボン膜を成膜できることが認められる。
[0056] さらに Fに着目すると、急激に脱ガス量が増加する温度は、比較例 1が最も低ぐ続 いて実施例 3、実施例 2の順序で温度が高くなつている。この傾向は CFについても 同様であり、これにより水分含有量が少ない C Fガス程、 Fが脱離する温度が高ぐ
5 8
Fが脱離しにくい状態になり、熱的安定性が高くなることが認められる。
[0057] ここで実施例 2と実施例 3とを比較すると、実施例 3では 200°Cを越えたあたりから 急激に脱ガス量が増加しているのに対し、実施例 2では 250°Cを越えたあたりから急 激に脱ガス量が増加していて Fが脱離する温度が異なる力 これは実施例 2のように 高い温度で脱離する Fは、膜中の遊離フッ素が脱離したものであり、実施例 3のように 200°C付近で脱離する Fは、 H Oの存在により CF膜が分解し、遊離した Fであると推
2
察される。
[0058] 実施例 4のように水分濃度が 20 X 10_9体積比程度のもので作成されたサンプルゥ ェハにお 、ては膜剥がれが発生せず、さらに 4ポイントペンディング法(例えば Engine ering Fracture Mechanics 61(1998)141- 162参照)にて測定された 4. 6〜5. Oj/m2 であった。ここで Cuデュアルダマシンの作成工程で実施される CMP (Chemical Mec hanical Polishing)にお!/、ては、一般的に 4ポイントペンディング法にて測定された値 が 2. 7Zjm2以上であればほぼ膜剥がれが発生しないと言われており、 4. 6〜5. 0J / 2t\、う値は十分にこの範囲を満たして 、る。
一方、比較例 2のように C Fガスの水分濃度が 100 X 10—9体積比程度のもので作
5 8
成されたサンプルウェハは、 5枚中 3枚のウェハで膜剥がれが生じた。剥がれの発生 した場所は、 SiCN膜が 10nmと薄いことから特定することは困難である力 CF膜と 上層 SiCN膜の界面、あるいは上層 SiCN膜と SiO膜の界面で発生していた。膜剥
2
がれが生じな力つたウェハは、さらに 4ポイントペンディング法により密着力が測定さ れ、その値は 2. 1〜2. 5jZm2であった。
[0059] このように C Fガス中に水分が微量といえども含まれていると、 CF膜の膜質に影響
5 8
を与えるため、水分量を管理することが重要であることが理解される。ここに本発明者 らは、微量な水分量を検出する方法を模索しながら、水分の微量領域において水分 量と膜質との関係を追及し、 100 X 10—9体積比といった極微量領域であっても、 10 O X 10_9体積比に比較して、 60 X 10_9体積比まで水分量を抑えると膜質が大幅に 向上し、また 20 X 10_9体積比まで水分量を抑えればなお一層膜質が向上すること を把握した。
フッ素添加カーボン膜は「背景技術」に述べたように、層間絶縁膜として有効なもの であることが知られているが、良好な膜質のフッ素添加カーボン膜の製造が極めて困 難であると考えられており、こうした背景力 微量水分領域における水分量の指標を 把握したことはフッ素添加カーボン膜の実現ィ匕に向けて大きく一歩踏み出したもので あり、従って本発明は極めて有効なものである。

Claims

請求の範囲
[1] 水分含有量が 60 X 10_9体積比以下である C Fガスをプラズマ化し、フッ素添加力
5 8
一ボン膜を成膜することを特徴とするプラズマ成膜方法。
[2] 親水性又は還元作用のある表層を備えた物質を充填した精製器に通気させること により水分が除去された C Fガスをプラズマ化して、フッ素添加カーボン膜を成膜す
5 8
ることを特徴とするプラズマ成膜方法。
[3] 前記精製器に通気させることにより水分が除去された C Fガスは、水分含有量が 6
5 8
0 X 10_9体積比以下であることを特徴とする請求項 2記載のプラズマ成膜方法。
[4] C Fガスの供給源と、
5 8
C Fガスをプラズマ化して、基板上にフッ素添加カーボン膜を成膜する成膜処理
5 8
部と、
前記供給源と前記成膜処理部とを接続し、 C Fガスを成膜処理部に供給するため
5 8
の供給路と、
この供給路に設けられ、親水性又は還元作用のある表層を備えた物質を充填した 精製器と、を備えることを特徴とするプラズマ成膜装置。
[5] 前記精製器のガス排出口は、成膜処理部のガス導入口の近傍に設けられて ヽるこ とを特徴とする請求項 4記載のプラズマ成膜装置。
[6] 成膜処理部に供給された C Fガスは、前記精製器に通気させることにより、水分含
5 8
有量が 60 X 10_9体積比以下になるように水分が除去されたものであることを特徴と する請求項 4又は 5記載のプラズマ成膜装置。
PCT/JP2005/015407 2004-08-25 2005-08-25 プラズマ成膜方法及びその装置 WO2006022319A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP05780931A EP1786029A4 (en) 2004-08-25 2005-08-25 PROCESS FOR FORMING PLASMA FILM AND IDOINE APPARATUS
US11/660,649 US20070259131A1 (en) 2004-08-25 2006-08-25 Plasma-Assisted Deposition Method and System for Carrying Out the Same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004245700 2004-08-25
JP2004-245700 2004-08-25
JP2005-225717 2005-08-03
JP2005225717A JP4843274B2 (ja) 2004-08-25 2005-08-03 プラズマ成膜方法

Publications (1)

Publication Number Publication Date
WO2006022319A1 true WO2006022319A1 (ja) 2006-03-02

Family

ID=35967526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/015407 WO2006022319A1 (ja) 2004-08-25 2005-08-25 プラズマ成膜方法及びその装置

Country Status (5)

Country Link
US (1) US20070259131A1 (ja)
EP (1) EP1786029A4 (ja)
JP (1) JP4843274B2 (ja)
KR (3) KR100944557B1 (ja)
WO (1) WO2006022319A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007138841A1 (ja) * 2006-05-25 2007-12-06 Tokyo Electron Limited 成膜方法、成膜装置及び記憶媒体、並びに半導体装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3384795B2 (ja) * 1999-05-26 2003-03-10 忠弘 大見 プラズマプロセス装置
JP2006135303A (ja) * 2004-10-05 2006-05-25 Tokyo Electron Ltd プラズマ成膜方法及びプラズマ成膜装置、並びにプラズマ成膜装置に用いられる記憶媒体
JP5261964B2 (ja) * 2007-04-10 2013-08-14 東京エレクトロン株式会社 半導体装置の製造方法
US8021975B2 (en) 2007-07-24 2011-09-20 Tokyo Electron Limited Plasma processing method for forming a film and an electronic component manufactured by the method
WO2012026286A1 (ja) * 2010-08-27 2012-03-01 東京エレクトロン株式会社 エッチング方法、基板処理方法、パターン形成方法、半導体素子の製造方法、および半導体素子
CN104209009A (zh) * 2014-08-26 2014-12-17 东华大学 基于界面交联改善疏水微孔膜抗污性能的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10338506A (ja) * 1997-06-05 1998-12-22 Nec Corp オゾン流量制御装置
WO1999028963A1 (fr) * 1997-11-28 1999-06-10 Nippon Zeon Co., Ltd. Procede de formation d'un film isolant
JP2001135633A (ja) * 1999-11-10 2001-05-18 Matsushita Electronics Industry Corp 半導体装置の製造方法
WO2005017991A1 (ja) * 2003-08-15 2005-02-24 Tokyo Electron Limited 半導体装置、半導体装置の製造方法及びプラズマcvd用ガス

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6088425A (ja) * 1983-10-20 1985-05-18 Ricoh Co Ltd 気相薄膜形成方法
US4675149A (en) * 1986-01-31 1987-06-23 General Electric Company Jet pump beam holder/positioner tool
FR2733319B1 (fr) * 1995-04-21 1997-05-23 Air Liquide Procede et dispositif d'analyse de traces d'impuretes dans un echantillon de gaz au moyen d'une diode laser
US6059859A (en) * 1997-09-19 2000-05-09 Aeronex, Inc. Method, composition and apparatus for water removal from non-corrosive gas streams
JP4492764B2 (ja) * 1999-05-24 2010-06-30 日本ゼオン株式会社 プラズマ反応用ガス及びその製造方法
TW546545B (en) * 2000-03-21 2003-08-11 Shinetsu Chemical Co Resist compositions and patterning process
KR100403244B1 (ko) * 2001-04-06 2003-10-23 대백신소재주식회사 고 순도의 삼불화 질소 제조를 위한 암모니아 가스 정제방법
US6824589B2 (en) * 2001-10-31 2004-11-30 Matheson Tri-Gas Materials and methods for the purification of inert, nonreactive, and reactive gases
US6865243B2 (en) * 2002-10-25 2005-03-08 General Electric Company Method of detecting cracks in jet pump beams of a nuclear reactor
US7314506B2 (en) * 2004-10-25 2008-01-01 Matheson Tri-Gas, Inc. Fluid purification system with low temperature purifier

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10338506A (ja) * 1997-06-05 1998-12-22 Nec Corp オゾン流量制御装置
WO1999028963A1 (fr) * 1997-11-28 1999-06-10 Nippon Zeon Co., Ltd. Procede de formation d'un film isolant
JP2001135633A (ja) * 1999-11-10 2001-05-18 Matsushita Electronics Industry Corp 半導体装置の製造方法
WO2005017991A1 (ja) * 2003-08-15 2005-02-24 Tokyo Electron Limited 半導体装置、半導体装置の製造方法及びプラズマcvd用ガス

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1786029A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007138841A1 (ja) * 2006-05-25 2007-12-06 Tokyo Electron Limited 成膜方法、成膜装置及び記憶媒体、並びに半導体装置

Also Published As

Publication number Publication date
US20070259131A1 (en) 2007-11-08
KR100922448B1 (ko) 2009-10-21
EP1786029A1 (en) 2007-05-16
KR20080108370A (ko) 2008-12-12
KR100944557B1 (ko) 2010-02-25
KR20080066096A (ko) 2008-07-15
JP2006093664A (ja) 2006-04-06
EP1786029A4 (en) 2009-01-07
KR20070064330A (ko) 2007-06-20
JP4843274B2 (ja) 2011-12-21

Similar Documents

Publication Publication Date Title
TWI450379B (zh) 層間絕緣膜及配線構造與此等之製造方法
KR100743745B1 (ko) 반도체장치의 제조방법 및 성막시스템
JP5119609B2 (ja) 成膜方法、成膜装置及び記憶媒体、並びに半導体装置
TW556337B (en) Semiconductor device production method and semiconductor device production apparatus
KR100484321B1 (ko) 반도체 장치 및 그 제조 방법
JP4843274B2 (ja) プラズマ成膜方法
JP4716370B2 (ja) 低誘電率膜のダメージ修復方法及び半導体製造装置
KR20090032984A (ko) 성막 방법, 성막 장치, 기억 매체 및, 반도체 장치
KR100477402B1 (ko) 플라즈마 박막 증착 방법
JP5082411B2 (ja) 成膜方法
JP5238615B2 (ja) 半導体装置の製造方法
JP4194521B2 (ja) 半導体装置の製造方法
CN101356638B (zh) 半导体装置和半导体装置的制造方法
US20110130584A1 (en) Insulating film material, method of film formation using insulating film material, and insulating film
JP5009527B2 (ja) 半導体装置、半導体装置の製造方法及びプラズマcvd用ガス
KR20120092545A (ko) 비정질 탄소의 도핑에 의해 불화탄소(cfx) 막의 접착성을 향상시키는 방법
CN100533684C (zh) 等离子体成膜方法及其装置
JP4986661B2 (ja) 絶縁膜の形成方法およびこれを用いた半導体装置
JP4986660B2 (ja) 絶縁膜の形成方法およびこれを用いた半導体装置
JP2005167114A (ja) 窒化ホウ素膜の成膜方法及び成膜装置
JP2006013184A (ja) 窒化ホウ素膜の成膜方法
JP2008227308A (ja) 絶縁膜の形成方法およびこれを用いた半導体装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005780931

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11660649

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580028448.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077006711

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005780931

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11660649

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: JP