WO2006022286A1 - チップアンテナ - Google Patents

チップアンテナ Download PDF

Info

Publication number
WO2006022286A1
WO2006022286A1 PCT/JP2005/015333 JP2005015333W WO2006022286A1 WO 2006022286 A1 WO2006022286 A1 WO 2006022286A1 JP 2005015333 W JP2005015333 W JP 2005015333W WO 2006022286 A1 WO2006022286 A1 WO 2006022286A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
chip antenna
antenna
power supply
dielectric
Prior art date
Application number
PCT/JP2005/015333
Other languages
English (en)
French (fr)
Inventor
Tetsuo Shinkai
Original Assignee
Omron Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corporation filed Critical Omron Corporation
Priority to US11/661,339 priority Critical patent/US20080024369A1/en
Publication of WO2006022286A1 publication Critical patent/WO2006022286A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2283Supports; Mounting means by structural association with other equipment or articles mounted in or on the surface of a semiconductor substrate as a chip-type antenna or integrated with other components into an IC package
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/40Radiating elements coated with or embedded in protective material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/357Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using a single feed point
    • H01Q5/364Creating multiple current paths
    • H01Q5/371Branching current paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/40Element having extended radiating surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength

Definitions

  • the present invention relates to a chip antenna, and more particularly to a chip antenna that supports a wide frequency band.
  • an antenna having a tapered slot shape capable of transmitting and receiving radio waves in a relatively wide range of frequencies.
  • the tapered slot shape has a structure in which the conductor width becomes wider with an inclination, as shown in FIG.
  • FIG. 22 shows a graph of measurement results of VSWR (Voltage Standing Wave Ratio) of the tapered slot antenna shown in FIG. VSWR is a value indicating the degree of reflection. “1” indicates no reflection, which is the best antenna characteristic. The higher the VSWR, the greater the reflection, which means that the antenna characteristics are worsening.
  • the graph in Fig. 22 shows the maximum value of VSWR.
  • this tapered slot antenna has a relatively low VSWR value for wideband radio waves in the frequency band 3.1 to 10.6 GHz, so the wideband in the frequency band 3.1 to 10.6 GHz. It can be seen that it can be used to send and receive radio waves.
  • Patent Document 1 Japanese Patent Laid-Open No. 11 163626 (published on June 18, 1999) has a corrugated structure provided on both ends of the conductor parallel to the electromagnetic wave radiation direction. Has disclosed a tapered slot antenna in which the center axial force is asymmetrical. This makes the antenna directivity asymmetric.
  • the taper slot antenna has a relatively low VSWR value in the frequency band 3.1 to 10.6 GHz, but the frequency band 4 to: VSWR in the vicinity of LOGHz. Tends to increase, that is, the antenna characteristics tend to deteriorate.
  • the antenna of Patent Document 1 is intended to make the directivity asymmetric, so that the VSW R characteristic is improved, and a stable antenna characteristic is obtained in a wide band (eg, 3.1 to 10.6 GHz). If it is done, you cannot expect the effect.
  • the corrugated structure is complex and difficult to mass produce.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a chip antenna that stably exhibits good antenna characteristics over a wide band.
  • a chip antenna of the present invention includes a dielectric substrate made of a dielectric material, a power feeding conductor having a terminal portion having a power feeding terminal, and a conductor portion conducted to the terminal portion, A chip antenna including a ground electrode provided apart from the power supply conductor, wherein the conductor portion is inclined so as to increase in width as the distance from the terminal portion increases.
  • the distance from the end of the conductor portion to the ground electrode is the distance from the end of the inclined portion of the conductor portion to the ground electrode.
  • the distance from the end of the conductor portion to the ground electrode in the radio wave transmission / reception region is different from each other. Since the frequency of the radio wave received or transmitted by the chip antenna depends on the distance from the end of the conductor to the ground electrode, different frequency regions can be set as targets by varying this distance. Therefore, compared with the conventional taper slot antenna having a line-symmetric shape, the antenna has a higher antenna sensitivity in a wide frequency range and becomes a chip antenna.
  • such a chip antenna can transmit and receive well regardless of the direction of the chip antenna and the direction of polarization used for radio waves (longitudinal wave, transverse wave, etc.), and the directivity is lost. Is advantageous.
  • the chip antenna of the present invention includes an end portion of a conductor portion in one radio wave transmission / reception region.
  • the maximum value of the distance to the ground electrode is 10
  • the maximum value of the distance from the end of the conductor to the ground electrode in the other radio wave transmission / reception area is larger than 1 and smaller than 7. Yes.
  • the effect of improving the antenna characteristics over the entire target frequency range is improved.
  • the maximum distance from the end of the conductor in one radio wave transmission / reception area to the ground electrode is 10
  • the maximum edge force of the conductor in the other radio wave transmission / reception area is 7
  • the distance from the end of the conductor portion to the ground electrode does not change so much in both cases, so the effect of improving the antenna characteristics over the entire target frequency range is low.
  • the maximum distance from the end of the conductor to the ground electrode in the other radio transmission / reception area is 1 or less, the radio transmission / reception areas of both sides of the conductor are not balanced, and the antenna characteristics are stable. There is a possibility that it cannot be improved.
  • the chip antenna of the present invention is characterized in that it transmits and receives radio waves having a frequency of 3.1 GHz to 10.6 GHz.
  • the dielectric substrate and the power supply conductor are integrally formed by insert molding so that at least a part of the conductor portion is covered with the dielectric material. It has been characterized by
  • the manufacturing becomes easier as compared with the conventional antenna manufacturing method. Therefore, mass productivity can be improved and a low-cost chip antenna can be provided.
  • the chip antenna according to the present invention sandwiches a power supply conductor having the terminal portion and the conductor portion, and at least a part of the conductor portion of the power supply conductor is made of a dielectric substrate.
  • the dielectric substrate and the power supply conductor are integrally formed by insert molding so as to be covered with the dielectric material.
  • the chip antenna according to the present invention is formed by integrally forming the dielectric substrate and the power supply conductor by insert molding, so that the mask processing step described above and the mask portion are etched. Therefore, it is possible to manufacture by a simple method without requiring a step of removing.
  • a resin can be used as the dielectric material of the dielectric substrate.
  • the chip antenna according to the present invention has improved mass productivity.
  • the cost associated with the chip antenna can be reduced, so that a low-cost chip antenna can be provided.
  • the conductor portion of the power supply conductor is insert-molded so as to be covered with the dielectric material, the portion of the conductor portion covered with the dielectric material is not exposed to the outside. Therefore, the conductor portion can be protected from the external environment such as oxidation.
  • insert molding means that a metal material such as a power supply conductor is placed in the mold using a mold, and further a dielectric material is placed in the mold.
  • a metal material such as a power supply conductor and a dielectric material are integrally formed.
  • the chip antenna manufactured by the chip antenna manufacturing method of the present invention has a chip shape, a thin antenna having a lower height from the ground plane than a conventional monopole antenna is used. Can be provided.
  • the dielectric substrate is composed of at least two dielectric materials having different relative dielectric constants, and each dielectric material is in contact with the conductor portion. It is said.
  • a conventional broadband antenna having a tapered slot shape has a specific frequency as described above. There was an increase in the VSWR value in the band. One reason for this is the reflection of electromagnetic waves propagating to the radiation conductor. Specifically, electromagnetic waves are reflected at the interface where the dielectric constant changes, such as the outer surface of the dielectric substrate. Here, the boundary surface is a boundary between the outer surface of the dielectric substrate and the external space where electromagnetic waves are radiated.
  • a conventional broadband antenna having a tapered slot shape has a single-layer dielectric substrate. When the dielectric substrate is a single layer, the electromagnetic wave is reflected only at the boundary surface between the outer surface of the dielectric substrate and the external space where the electromagnetic wave is radiated. Waves are generated. This increases the VSWR value. Therefore, according to the chip antenna of the present invention, each substrate material is configured to be in contact with at least the conductor portion, and each substrate material has a different dielectric constant.
  • the electromagnetic wave propagating from the feed line to the feed conductor inside the dielectric substrate reaches the boundary surface of each substrate material and the outer surface of the dielectric substrate according to the difference in the relative dielectric constant. Being reflected is a bit different.
  • the chip antenna of the present invention can make the dielectric substrate multi-layered, and even when multi-layered, the dielectric material and the power feeding can be easily formed by insert molding.
  • the conductor can be integrally formed.
  • FIG. 1 is a plan view showing an outer shape of a chip antenna in an embodiment according to the present invention.
  • FIG. 2 is an enlarged plan view of the conductor part in FIG.
  • FIG. 3 A graph in which VSWR is estimated as the antenna characteristics of a conventional chip antenna and the antenna characteristics of the chip antenna in this embodiment.
  • VSWR is measured as the antenna characteristics of the chip antenna in this embodiment, and the maximum value is graphed.
  • VSWR is measured as the antenna characteristics of the chip antenna in this embodiment, and the maximum value is graphed.
  • VSWR is measured as the antenna characteristics of the chip antenna in this embodiment, and the maximum value is graphed.
  • FIG. 7 (a) is a plan view showing the outer shape of the chip antenna in the present embodiment.
  • FIG. 7 (b) is a plan view of the chip antenna showing a comparative configuration of the chip antenna shown in FIG. 7 (a).
  • FIG. 8 (a) VSWR is measured as the antenna characteristic of the chip antenna in the present embodiment, and the maximum value is graphed.
  • FIG. 8B is a graph showing an enlarged vertical axis of the graph shown in FIG. 8 (a).
  • FIG. 9 The average gain of the chip antenna in the present embodiment is measured and graphed.
  • FIG. 10 is a graph showing the radiation characteristics of a conventional chip antenna.
  • FIG. 11 is a graph showing the radiation characteristics of the chip antenna in the present embodiment.
  • FIG. 12 is a perspective view showing the shape of a chip antenna according to another embodiment of the present invention.
  • FIG. 13 is a perspective view showing a configuration of a chip antenna according to another embodiment of the present invention.
  • FIG. 14 is a cross-sectional view of the chip antenna shown in FIG. 12, cut along line AA ′.
  • FIG. 15 is a cross-sectional view of the chip antenna shown in FIG. 12, cut along line C C ′.
  • FIG. 16 (a) is a plan view showing the structure of a feed conductor composed of a feed electrode portion and a feed terminal portion provided in the chip antenna according to the embodiment of the present invention.
  • FIG. 16 (b) is a perspective view of the feed conductor shown in FIG. 16 (a).
  • FIG. 17 is a schematic view showing a method for manufacturing the chip antenna in the embodiment according to the present invention.
  • FIG. 18 is a perspective view showing a modified example of the structure of the chip antenna according to the embodiment of the present invention.
  • FIG. 19 is a cross-sectional view of a chip antenna according to another embodiment of the present invention cut along a line AA ′.
  • FIG. 20 is a cross-sectional view of a chip antenna according to another embodiment of the present invention cut along a line segment CC ′.
  • FIG. 21 is a cross-sectional view showing a configuration of a general tapered slot antenna.
  • FIG. 1 is a plan view showing the shape of chip antenna 1 in the present embodiment.
  • the ground electrode 4 is disposed on a part of the back surface of the dielectric substrate 2, and the feed conductor 3 is disposed on a part of the surface of the dielectric substrate 2.
  • This is a microstrip line structure.
  • the characteristic impedance of the high-frequency transmission line can be maintained at about 50 ⁇ .
  • the configuration of the chip antenna 1 is not limited to this as long as the characteristic impedance is appropriately maintained, and a coplanar line structure in which a ground electrode is formed on the surface so as to sandwich the feeding conductor is also possible.
  • the dielectric substrate 2 is a rectangular parallelepiped substrate made of a dielectric material and having a size of 100 mm ⁇ 50 mm and a thickness of 1 mm.
  • the ground electrode 4 is made of a conductive material, and is formed on the back surface of the dielectric substrate 2 at a portion 70 mm below the paper surface. In order to form a metal film on a part of the dielectric substrate 2 in this way, the metal film is formed on the entire surface and then etched or bonded together. That's fine.
  • the terminal part 3b is formed in a linear shape with a single width at the central part 70mm below the paper surface, and the conductor part 3a is formed in a 10 X 10mm section following the terminal part 3b. ing.
  • the conductive portion 3a has a single-width linear shape in the vicinity of the connection portion with the terminal portion 3b, but thereafter, the conductive portion 3a has a tapered shape in which the width W increases as the distance from the terminal portion 3b increases.
  • the width W refers to the distance between the left and right slopes of the tapered shape, and the width including the slot even if there is a slot in between is the width W.
  • FIG. 2 shows a drawing in which the conductor portion 3a is cut out.
  • the conductor portion 3a is asymmetric in shape on the left radio wave transmission / reception region 5a and the right radio wave transmission / reception region 5b from the central axis S of the taper. Therefore, the distance from the slope of the conductive part 3a to the ground electrode 4 is also different.
  • the antenna length a defined by the length from the terminal portion 3b until the spread begins, and the conductive portion 3a and the ground electrode 4 in the radio wave transmission / reception region 5a on the left side by force.
  • the antenna length b is defined as the maximum distance from the antenna
  • the antenna length c is defined as the maximum distance between the conductive portion 3a and the ground electrode 4 in the radio wave transmission / reception area 5b on the right side. It will be.
  • the length of the antenna corresponding to the length a defines the upper limit frequency.
  • the length of the antenna corresponding to the length b defines the lower limit frequency.
  • the length force of the antenna corresponding to length c Specifies the intermediate frequency. 3. 1 ⁇ : LO.
  • the upper limit frequency is 10.6GHz
  • the lower limit frequency is 3.1GHz
  • the intermediate frequency is 4 ⁇ : LOGHz. That is.
  • the chip antenna 1 of the present embodiment has an antenna frequency length b that defines the lower limit frequency and an antenna length length a that defines the upper limit frequency, as well as the intermediate frequency of the above band.
  • an antenna length length c equivalent to the part where the VSWR maximum value rises with a general tapered slot antenna
  • the antenna length c should be designed according to 4 ⁇ : LOGHz where VSWR is low.
  • a single chip antenna 1 to have three types of antenna lengths, each of them is adapted to a low frequency region, a medium frequency region, and a high frequency region. Shows antenna characteristics. Therefore, the VSWR force of a general tapered slot-shaped antenna having symmetrical power supply electrode portions increases in the intermediate frequency region as shown by the broken line in FIG. 3, whereas in the chip antenna 1 of the present embodiment, It is presumed that good antenna characteristics can be obtained in a wide frequency range without such an increase in VSWR.
  • conductor portion 3a has a slit along central axis S in radio wave transmission / reception region 5b.
  • the terminal portion 3b of the power supply conductor 3 is disposed on the end opposite to the conductor portion 3a and on the back surface of the dielectric substrate 2.
  • the inner conductor (core wire) of the coaxial cable is connected to the terminal portion 3b, and the outer conductor (shield) of the coaxial cable is connected to the vicinity of the ground electrode 4.
  • FIG. 4 shows the antenna characteristics of the chip antenna 1 according to the present embodiment as 3.1 to 10.
  • VSWR is measured in the frequency region of the 6GHz band, and the maximum value is graphed.
  • the VSWR of the chip antenna (general tapered slot antenna) with the symmetrical feeding electrode part of the comparative example is VSWR in the frequency band 4 to: LOGHz region. It can be seen that the maximum value is rising. This is calculated by combining the antenna length a that defines the upper frequency limit with the antenna length b that defines the lower limit frequency. This is because even if the VSWR is lowered in the 6 GHz frequency range, the VSWR deteriorates at the intermediate frequency due to the characteristics of the tapered slot antenna.
  • the increase in the VSWR maximum value in the region of frequency 4 to: LO GHz is reduced.
  • the decrease in the increase in the maximum VSWR value is significant.
  • the graph of FIG. 6 shows the results of the comparative example, the chip antenna when c is 1, 3, and 5 mm, extracted from the graph of FIG. According to this, the VSWR becomes more stable as c is smaller than in the comparative example where the feeding electrode is symmetrical.
  • the lower limit frequency tends to be slightly higher as when c is lmm, and the characteristics vary around 5 GHz. Therefore, it can be said that the force VSWR is most stable when c is between 3mm and 5mm.
  • c be greater than lmm and less than 7mm. In other words, when b is 10, c is preferably greater than 1, and more preferably 3 or more. Further, when b is 10, c is preferably less than 7 and more preferably 5 or less.
  • the chip antenna 1 of the present embodiment has a frequency of around 3.1 GHz and a frequency of 4 to 1.
  • is the length of the antenna
  • C is the speed of light
  • f is the frequency
  • ⁇ eff is the effective dielectric constant
  • the speed of light and effective relative permittivity are constant. Therefore, when the length of the antenna changes, the frequency changes depending on this. Therefore, the length of the three types of antennas If it has, it becomes an antenna suitable for three kinds of frequencies.
  • the average gain is the average gain measured by rotating the chip antenna 1 horizontally twice with 3-axis and 2-polarization. It was measured. Average gain is an indicator of antenna sensitivity, and is ideally zero.
  • 2 polarization means that the output radio waves were measured for the longitudinal V polarization and the transverse H polarization. The three axes indicate the direction of the chip antenna 1.
  • the major axis direction in the plane of the dielectric substrate 2 is the y axis
  • the minor axis direction is the X axis
  • the thickness direction is the z axis, x, y , V measured in three postures where each z-axis is vertical.
  • the average gain is the same as the comparative example when c is 9mm and 7mm, but when c is 5mm, 3mm, and 1mm, the average gain approaches 0 as it becomes shorter.
  • the average gain has been improved in the high frequency range from 7 GHz to 10.6 GHz. This is thought to be due to the improvement of VSWR described above.
  • the length of c is set to lmn! By setting it to ⁇ 5mm, the antenna characteristics can be enhanced over a wide range of frequencies.
  • the length of c necessary for producing such an effect varies depending on characteristics such as the dielectric constant of the dielectric substrate. Therefore, c
  • the length of the is not limited to this, it can be set according to the chip antenna and radio frequency!
  • Figs. 10 and 11 show the orientation of each of the three axes (vertical) for the chip antenna of the comparative example (Fig. 10) and the chip antenna 1 of the present embodiment with c of 5 mm (Fig. 11).
  • the orientation is x-axis (indicated by (X) in the figure), y-axis (indicated by (y) in the figure), and z-axis (indicated by (z) in the figure).
  • Fig. 10 shows the results of measuring the far-field radiation characteristic gain, which is an index of directivity, and in Fig. 10, 0, 90, 180, and 270 in the circumferential area are obtained when the tip antenna 1 is rotated horizontally.
  • the rotation angle indicates the positional relationship between the front direction of the chip antenna 1 and the far field radiation characteristic gain measuring device, that is, when rotating the X axis (X)
  • the angle of rotation is 0 degrees when there is a measuring device in this position, and when the measuring device is rotated in the direction of the arrow from here and rotated by 270 degrees, it corresponds to the Y axis.
  • the Z axis is the 0 degree reference, and when it is rotated 90 degrees, it corresponds to the force X axis, and when the Z axis is rotated (z)
  • the numerical value indicated by the circle radius indicates the far-field radiation characteristic gain
  • the V polarization is gray
  • the H polarization is shown in black, and the frequencies are 3.1 GHz, 5 GHz, 9 GHz, and 10.6 GHz.
  • the chip antenna 1 can be used for both electromagnetic wave transmission and reception.
  • FIG. 12 is a perspective view showing the shape of chip antenna 11 in the present embodiment.
  • the chip antenna 11 is a chip-shaped antenna, and its outer shape is
  • the dielectric substrate 13 is formed.
  • FIG. 13 is a perspective view of the chip antenna 11 illustrated in FIG. As shown in FIG. 13, the chip antenna 11 includes a feed conductor 12, a dielectric substrate 13, a ground electrode 14a and
  • the power supply conductor 12 includes a power supply electrode portion 15 (conductor portion) and a power supply terminal portion 16 (terminal portion). As shown in FIG. 13, the power supply conductor 12 is sandwiched by the dielectric substrate 13, and in particular, the power supply electrode portion 15 is completely covered by the dielectric substrate 13. A portion of the power supply terminal portion 16 is exposed to the outside of the dielectric substrate 13, and has a power supply terminal 17 at the end of the exposed power supply terminal portion 16.
  • FIG. 14 is a cross-sectional view showing a state where the chip antenna 1 is cut along the line segment AA ′ in FIG.
  • the feeding conductor 12 has a shape that is axisymmetric with respect to the central axis S as shown in FIG.
  • the details of the shape of the power supply conductor 12 are the same as those in the first embodiment, and are omitted
  • the feeding electrode portion 15 is an electrode made of a conductor, and this shape is generally called a tapered slot shape.
  • the feeding electrode portion 15 is connected to the feeding terminal portion 16 in the region V.
  • the feeding terminal portion 16 is a terminal made of a conductor, and its shape is a flat plate.
  • the power supply terminal portion 16 is disposed between the ground electrodes 14a and 14b so as to be separated from each other, and is electrically insulated from the ground electrodes 14a and 14b by being separated.
  • One of the opposing ends of the power supply terminal section 16 is connected to the region V of the power supply electrode section 15 and is electrically connected to the power supply electrode section 15.
  • the other end is provided with a power supply terminal 17 and is connected to a power supply line (not shown).
  • the portion of the power supply terminal portion 16 provided with the power supply terminal 17 is exposed to the outside of the dielectric substrate 13 as described above, and the exposed portion is as shown in FIG. 12 and FIG. In It is bent. Since the feeding terminal 17 portion of the feeding terminal portion 16 is bent, the chip antenna 11 of the present embodiment has a structure suitable for surface mounting.
  • the power supply terminal portion 16 can be made of, for example, a metal material.
  • the ground electrodes 14a and 14b are electrodes made of a conductor, and the shape thereof is a flat plate.
  • the ground electrodes 14a and 14b are arranged at a predetermined distance from the ground electrodes 14a and 14b so that the power supply terminal portion 16 is spaced from the ground electrodes 14a and 14b.
  • the ground electrodes 14a and 14b can be made of, for example, a metal plate material.
  • Dielectric substrate 13 is made of a dielectric material, and is a member that is interposed between power supply electrode portion 15 and ground electrodes 14a and 14b and fills between power supply electrode portion 5 and ground electrodes 14a and 14b.
  • the outer shape of the dielectric substrate 13 corresponds to the outer shape of the chip antenna 11, and has a rectangular parallelepiped shape as shown in FIG.
  • FIG. 15 is a cross-sectional view showing a state where the chip antenna 11 is cut along a line segment CC ′ in FIG.
  • the dielectric substrate 13 is configured to be in contact with the feeding electrode portion 15.
  • rosin is preferred.
  • the chip antenna according to the present invention can be manufactured by integrally molding the feeding conductor 12 and the dielectric substrate 13 by insert molding. In order to perform insert molding, it is more preferable to use a thermoplastic resin, that is, a thermoplastic cured resin.
  • the resin examples include polyethersulfone (PPS), liquid crystal polymer (LCP), syndiotactic polystyrene (SPS), polycarbonate (PC), polyethylene terephthalate (PET), epoxy resin (EP ), Polyimide resin (PI), polyetherimide resin (PEI), phenol resin (PF), and the like.
  • PPS polyethersulfone
  • LCP liquid crystal polymer
  • SPS syndiotactic polystyrene
  • PC polycarbonate
  • PET polyethylene terephthalate
  • EP epoxy resin
  • PI Polyimide resin
  • PEI polyetherimide resin
  • PF phenol resin
  • PPS or LCP can be produced so as to have a high dielectric constant. Therefore, it is preferable to use PPS or LCP produced in this way and having a high dielectric constant.
  • the chip antenna 11 as described above has the feeding electrode portion 15 having the same shape as the conductive portion 3a of the first embodiment, the chip antenna having high antenna sensitivity in a wide frequency range. Become a tena.
  • a cable such as a coaxial cable (not shown) is connected to the center of the chip antenna 11 from the ground electrode 14a side.
  • the inner conductor (core wire) of the coaxial cable is connected to the feeding terminal 17, and the outer conductor (shield) of the coaxial cable is connected between the ground electrodes 14a and 14b.
  • the ground electrodes 14a and 14b are provided with connectors (not shown) for connection to the coaxial cable.
  • a coaxial cable without providing a connector may be directly attached to the ground electrodes 14a and 14b.
  • the feed electrode portion 15 is formed by forming a tapered slot-shaped feed electrode portion 15 as shown in Fig. 16 (a) by installing a lead frame in a cut shape having a tapered slot shape and pre-scanning it. can do.
  • a lead frame in a cut shape having a tapered slot shape and pre-scanning it. can do.
  • gold, silver, copper, or the like can be used as a material constituting the power supply electrode portion 15.
  • the power supply terminal portion 16 is formed by soldering. Since the feeding electrode unit 15 and the feeding terminal unit 16 are electrically connected, the feeding terminal 17 can be electrically connected to the feeding electrode unit 15.
  • FIG. 16 (b) is a perspective view of the power supply conductor 12 in which the connection portion of the power supply terminal portion 16 is cut from the structure in the state of FIG. 16 (a).
  • the power supply conductor 12 manufactured as described above is used to integrally form the dielectric substrate 13 by insert molding to form a chip antenna.
  • a method for manufacturing a chip antenna by insert molding will be described as follows based on FIGS. 17 (a) to (f).
  • FIG. 17 (a) is a perspective view showing the shape of the first mold 18.
  • FIG. 17A shows only one side of the first mold 18. Therefore, when the substrate material is introduced, the first metal mold 18 on the other side is also used so that the power supply conductor 12 is sandwiched from both sides.
  • the first mold 18 is provided with a first positioning region 18a at a predetermined position. Examples of the first positioning region 18a include a region in which a depression is formed in the shape of the power supply terminal portion 16 of the power supply conductor 12 like the first positioning region 18a.
  • the feeding terminal portion 16 By forming the depression, the feeding terminal portion 16 can be fitted into the depression and the feeding conductor 12 can be aligned.
  • a rod-like protrusion is formed at a predetermined position, and the feeder conductor 12 can be aligned even if the feeder terminal portion 16 is brought into contact with the protrusion. If it is a thing, it will not be specifically limited
  • the power supply conductor 12 shown in FIG. 16B is formed by the first positioning region 18a.
  • the power supply conductor 12 and the dielectric substrate 13 can be integrally formed with high accuracy because the power supply conductor 12 and the dielectric substrate 13 can be accurately installed in the first mold 18.
  • FIG. 17 (b) is a perspective view showing a state where the power supply conductor 12 is arranged in the first mold 18.
  • FIG. 17 (c) is a schematic diagram showing a state in which the feeding conductor 12 is sandwiched between the first molds 18 on both sides.
  • the dielectric substrate 13 and the feed conductor 12 are integrated by introducing the substrate material of the dielectric substrate 13 having thermoplasticity into the first mold 18 from an introduction port (not shown) and insert molding. .
  • FIG. 17 (d) shows the chip antenna 11 after insert molding.
  • the substrate material of the dielectric substrate 13 is formed integrally with the power supply conductor 12 so as to completely cover the surface of the power supply electrode portion 15 of the power supply conductor 12.
  • the integrally formed chip antenna 11 is cut so that the length of the feeding terminal portion 16 is shortened.
  • the feeding terminal portion 16 exposed to the outside of the dielectric substrate 13 is bent.
  • the feeder conductor 12 having the structure shown in FIG. 16 (b) is used.
  • FIG. 18 uses the power supply conductor 12 having the structure shown in FIG. 2 is a perspective view showing a state in which the substrate 2 and the dielectric substrate 12 are integrally formed by insert molding. In this way, it can also be manufactured using a feed conductor having the structure shown in FIG. 16 (a).
  • the power supply electrode portion 15 having a desired shape can be easily formed. Therefore, by changing the shape of the cut mold, it is possible to form the feeding electrode portion 15 having a desired shape. Therefore, it is possible to provide the chip antenna 11 having a shape suitable for an apparatus or device on which the chip antenna 11 manufactured by the manufacturing method of the present invention is mounted.
  • the antenna characteristics are further improved by forming the dielectric substrate from at least two dielectric materials having different relative dielectric constants.
  • FIG. 19 is a cross-sectional view showing a state in which the chip antenna 11 is cut along the line segment AA ′ in FIG. 12 for the chip antenna having the dielectric substrate 23 having such two dielectric material forces. .
  • the configuration other than the dielectric substrate 23 is the same as that of the chip antenna 11 described above.
  • the dielectric substrate 23 is composed of substrate materials 23a and 23b.
  • the substrate materials 23a and 23b will be described in detail below based on FIG.
  • FIG. 20 is a cross-sectional view showing a state where the chip antenna 11 is cut along a line segment CC ′ in FIG.
  • the dielectric substrate 23 is composed of substrate materials 23a and 23b, and both are configured to be in contact with the feeding electrode portion 15.
  • the substrate material 23a is disposed in a region including the symmetry axis S of the power supply conductor 12, and the substrate material 23b is disposed in a region far from the symmetry axis S without including the symmetry axis S.
  • the substrate materials 23a and 23b are dielectrics having dielectric constants ⁇ 23a and ⁇ 23b, respectively, and the dielectric constants are adjusted so that the relative dielectric constants increase in this order.
  • the substrate material 23b has a higher dielectric constant than the substrate material 23a so that the relative dielectric constant increases as the distance from the symmetry axis S increases.
  • the dielectric constant of each substrate material is not particularly limited as long as such a condition is satisfied.
  • the chip antenna 1 having a rectangular parallelepiped shape has been described.
  • the present invention is not limited to this, as described above, surface mounting If it is a shape that can be performed, it is not limited to the shape of a rectangular parallelepiped, for example, it may be a trapezoidal shape.
  • ceramic may be used as a substrate material for the dielectric substrate 13.
  • the chip antenna according to the present invention can be easily manufactured, and can cope with a wide band such as 3.1-: LO. Therefore, handheld devices such as mobile phones, PDAs, PC card radios, CF (Compact Flash (registered trademark)) radios, SD card radios, IEEE1394 radios, USB radios, etc. Can be widely applied to.
  • handheld devices such as mobile phones, PDAs, PC card radios, CF (Compact Flash (registered trademark)) radios, SD card radios, IEEE1394 radios, USB radios, etc. Can be widely applied to.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Details Of Aerials (AREA)
  • Waveguide Aerials (AREA)

Abstract

 本発明に係るチップアンテナ(1)は、誘電体基板(2)と、給電端子を有する端子部(3b)と該端子部に導通した導体部(3a)とを有する給電導体(3)と、上記給電導体(3)に離間して設けられた接地電極(4)とを備え、上記導体部(3a)が、端子部(3b)から離れるにしたがって幅が広くなるように傾斜しており、かつ、導体部(3a)の中心軸(S)から見て、導体部(3a)の端部から接地電極(4)までの距離が非対称となっている。これにより、製造が容易で、かつ、アンテナ特性の良い広帯域に対応するチップアンテナを提供することができる。

Description

明 細 書
チップアンテナ
技術分野
[0001] 本発明は、チップアンテナに関し、より詳細には、広い周波数帯域に対応したチッ プアンテナに関するものである。
背景技術
[0002] 近年、無線通信機能を備えた携帯型の情報処理装置の普及がめざま 、。このよ うな情報処理装置における無線通信には、該情報処理装置へのアンテナの搭載が 必須である。このようなアンテナとして、比較的広範囲の周波数の電波を送受信でき る、テーパースロット形状のアンテナが知られている。テーパースロット形状とは、図 2 1に示すように、導体幅が傾きをもって広くなる構造を持つものである。
[0003] 図 22に、図 21に示したテーパースロット形状のアンテナの VSWR (Voltage Standin g Wave Ratio :電圧定在波比)の測定結果のグラフを示す。 VSWRとは、反射の度合 いを示す値であり、「1」が反射がない状態を示し、アンテナ特性として最良な状態で あるといえる。そして、 VSWRが高くなるほど反射が大きくなり、アンテナ特性が悪くな つていることを意味する。なお、図 22のグラフは、 VSWRの最大値について示してい る。
[0004] 図 22のグラフから、このテーパースロット形状のアンテナは、周波数帯域 3. 1〜10 . 6GHzの広帯域の電波に対する VSWR値が比較的低いため、周波数帯域 3. 1〜 10. 6GHzの広帯域の電波の送受信に使用することができることがわかる。
[0005] また、特許文献 1 (特開平 11 163626号公報(1999年 6月 18日公開))には、導 体のうちの電磁波放射方向に平行な両側端にコルゲート構造を設け、このコルゲート 構造が中心軸力 見て非対称となっているテーパードスロットアンテナが開示されて いる。これにより、アンテナの指向性を非対称にしている。
[0006] しかしながら、テーパースロット形状のアンテナは、図 22に示したように、 VSWR値 が周波数帯域 3. 1〜10. 6GHzの間で比較的低いが、周波数帯域 4〜: LOGHz付 近において VSWRが上昇する、すなわち、アンテナ特性が悪くなる傾向がある。 [0007] また、特許文献 1のアンテナは指向性を非対称にすることを目的としており、 VSW R特性が向上したり、広帯域 (例えば 3. 1〜10. 6GHz)で安定的なアンテナ特性が 得られたりするといつた効果は期待できない。さらに、コルゲート構造が複雑で量産 が困難である。
[0008] 本発明は、上記の問題点に鑑みてなされたものであり、その目的は、広帯域で安定 して良好なアンテナ特性を示すチップアンテナを提供することにある。
発明の開示
[0009] 本発明のチップアンテナは、上記課題を解決するために、誘電材料からなる誘電 体基板と、給電端子を有する端子部と該端子部に導通した導体部とを有する給電導 体と、上記給電導体に離間して設けられた接地電極とを備えたチップアンテナであつ て、上記導体部が、端子部から離れるにしたがって幅が広くなるように傾斜しており、 上記導体部と上記接地電極との間で電波の送信および zまたは受信が行われる電 波送受信領域が 2箇所設けられているとともに、上記電波送受信領域における導体 部の端部力 接地電極までの距離が互いに異なって 、ることを特徴として!/、る。
[0010] ここで、導体部の端部から接地電極までの距離とは、導体部の傾斜部分の端部か ら接地電極までの距離である。
[0011] 上記構成によれば、電波送受信領域における導体部の端部から接地電極までの 距離が互いに異なる。チップアンテナの受信するまたは送信する電波の周波数は、 導体部の端部から接地電極までの距離に依存するので、この距離を異ならせれば、 異なる周波数領域をターゲットとして設定できる。したがって、従来の線対称の形状 のテーパースロットアンテナと比べ、広範囲の周波数領域でアンテナ感度の高 、チッ プアンテナとなる。
[0012] また、このようなチップアンテナでは、チップアンテナの向きや電波に使用される偏 波の方向(縦波、横波等)に関わらず良好に送受信が可能であり、指向性がなくなる という点で有利である。
[0013] さらに、比較的容易に製造できるので、簡単に、低コストで高性能のチップアンテナ を製造できる。
[0014] また、本発明のチップアンテナは、一方の電波送受信領域における導体部の端部 力も接地電極までの距離の最大値を 10とした場合に、他方の電波送受信領域にお ける導体部の端部から接地電極までの距離の最大値が、 1より大きく 7より小さいこと を特徴としている。
[0015] 導体部の端部から接地電極までの距離をこのように設定することで、目的とする周 波数範囲全域においてアンテナ特性を向上させる効果が向上する。一方の電波送 受信領域における導体部の端部から接地電極までの距離の最大値を 10とした場合 に、他方の電波送受信領域における導体部の端部力 接地電極までの距離の最大 値が 7以上である場合、導体部の端部から接地電極までの距離が双方であまり変わ らないので、目的とする周波数範囲全域においてアンテナ特性を向上させる効果が 低い。一方、他方の電波送受信領域における導体部の端部から接地電極までの距 離の最大値が 1以下である場合、導体部の双方の電波送受信領域のバランスがとれ ず、安定的にアンテナ特性を向上できなくなる可能性がある。
[0016] また、本発明のチップアンテナは、 3. 1GHzから 10. 6GHzの周波数の電波の送 信および zまたは受信を行うことを特徴としている。
[0017] 3. 1GHzから 10. 6GHzの周波数の電波は、 UWB通信の周波数帯域に相当する ので、 UWB通信を行うアンテナとして使用する場合に良好なアンテナ特性が得られ る。
[0018] また、本発明のチップアンテナは、上記導体部の少なくとも一部が上記誘電材料に よって被覆されるように、上記誘電体基板と上記給電導体とが、インサート成形によつ て一体成形されて 、ることを特徴として 、る。
[0019] これによれば、従来までのアンテナの製造方法と比較して、製造が容易になる。し たがって、量産性を向上することができ、低価格のチップアンテナを提供することがで きる。
[0020] 具体的には、本発明に係るチップアンテナは、上記端子部および導体部を有する 給電導体を挟持するように、かつ、上記給電導体の導体部の少なくとも一部が、誘電 体基板の誘電材料によって被覆されるように、インサート成形によって、上記誘電体 基板を、該給電導体とを一体成形する。
[0021] 一般的なチップアンテナは、多くの製造工程が必要となる。そのため、チップアンテ ナの生産効率を向上させることが困難である。そこで、本発明に係るチップアンテナ は、上記のように、インサート成形によって、上記誘電体基板を、該給電導体とを一 体成形することから、上述したマスク加工する工程や、上記マスク部分をエッチングに よって除く工程を必要とせず、簡易な方法によって製造することができる。上記誘電 体基板の誘電材料としては、榭脂を用いることができる。
[0022] すなわち、本発明に係るチップアンテナは量産性が向上している。
[0023] さらに、量産性の向上に伴って、チップアンテナに係るコストを低減させることができ ることから低価格のチップアンテナを提供することができる。
[0024] また、上記給電導体の導体部の少なくとも一部を、上記誘電材料によって被覆する ようにインサート成形するため、該導体部における誘電材料によって被覆された部分 は外部に露出しない。そのため、該導体部を酸化等の外部環境から保護することが できる。
[0025] したがって、上記導体部の外部環境に対する耐久性および、チップアンテナ全体 の外部環境に対する耐久性を向上させることができる。
[0026] なお、本明細書中における「インサート成形」とは、金型を用いて、該金型内に、給 電導体等の金属材料を設置し、さらに、該金型内に誘電材料を導入することによって
、給電導体等の金属材料と、誘電材料とを一体成形することをいう。
[0027] また、本発明のチップアンテナの製造方法によって製造されるチップアンテナは、 チップ形状であることから、従来のモノポールアンテナと比較して接地面からの高さが 低ぐ薄型のアンテナを提供することができる。
[0028] これにより、近年、開発が盛んに行われている各種モパイル機器等の薄型機器に 好適に用いることができる。
[0029] また、本発明のチップアンテナは、上記誘電体基板は、比誘電率が異なる少なくと も 2つの誘電材料からなり、各該誘電材料は、上記導体部と接触していることを特徴 としている。
[0030] 上記の構成とすることにより、上記の効果に加えて、 VSWRの最大値を小さく抑え つつ、より広 、周波数帯域に対応できるチップアンテナを提供することができる。
[0031] 従来のテーパースロット形状の広帯域アンテナは、上述したように、特定の周波数 帯域において VSWR値の上昇がみられた。この原因の 1つは、放射導体に伝搬する 電磁波の反射である。具体的には、誘電体基板の外面などのように、比誘電率が変 化する境界面においては、電磁波の反射が生じる。ここで、上記境界面とは、誘電体 基板の外面と電磁波が放射される外部空間との境界のことである。従来のテーパー スロット形状の広帯域アンテナは、誘電体基板が単層である。誘電体基板が単層で ある場合、電磁波の反射の発生箇所は、誘電体基板の外面と電磁波が放射される 外部空間との境界面のみになり、所定の周波数に集中して強度の強い反射波が発 生してしまう。これにより、 VSWR値が上昇してしまう。そこで、本発明のチップアンテ ナによれば、各該基板材料が少なくとも上記導体部に接触するように構成されており 、かつ、各該基板材料は、比誘電率が異なっている。
[0032] これにより、誘電体基板の内部において上記給電線から上記給電導体に伝搬する 電磁波は、上記比誘電率の違いに応じて各基板材料の境界面および誘電体基板の 外面にお ヽて反射されること〖こなる。
[0033] すなわち、上記の構成では、誘電体基板を構成する少なくとも 2つの基板材料が、 互いに異なる比誘電率を有する基板基材であるため、電磁波の反射の発生箇所が 分散することになり、これに伴って、それぞれの周波数の反射波も分散する。したがつ て、所定の周波数に集中して強度の強い反射波が発生し、その周波数における VS WR値が上昇する、という不具合を回避することができる。
[0034] また、このように、本発明のチップアンテナは、上記誘電体基板を多層化することが できるとともに、多層化する場合であっても、インサート成形によって、容易に各誘電 材料と上記給電導体とを一体成形することができる。
[0035] したがって、製造が容易であるとともに、広帯域の周波数 (電波)にも対応することが できるチップアンテナを提供することができる。
[0036] 本発明のさらに他の目的、特徴、および優れた点は、以下に示す記載によって十 分判るであろう。また、本発明の利益は、添付図面を参照した次の説明で明白になる であろう。
図面の簡単な説明
[0037] [図 1]本発明に係る実施の形態におけチップアンテナの外形を示した平面図である。 [図 2]図 1にお 、て、導体部を拡大した平面図である。
[図 3]従来のチップアンテナのアンテナ特性と本実施の形態におけるチップアンテナ のアンテナ特性として VSWRを推測したグラフにしたものである。
[図 4]本実施の形態におけるチップアンテナのアンテナ特性として VSWRを測定し、 その最大値をグラフにしたものである。
[図 5]本実施の形態におけるチップアンテナのアンテナ特性として VSWRを測定し、 その最大値をグラフにしたものである。
[図 6]本実施の形態におけるチップアンテナのアンテナ特性として VSWRを測定し、 その最大値をグラフにしたものである。
[図 7(a)]本実施の形態におけるチップアンテナの外形を示した平面図である。
[図 7(b)]図 7 (a)に示したチップアンテナの比較構成を示したチップアンテナの平面 図である。
[図 8(a)]本実施の形態におけるチップアンテナのアンテナ特性として VSWRを測定し 、その最大値をグラフにしたものである。
[図 8(b)]図 8 (a)に示したグラフの縦軸を拡大させて示したグラフである。
[図 9]本実施の形態におけるチップアンテナの平均利得を測定し、グラフにしたもの である。
[図 10]従来のチップアンテナの放射特性を示すグラフである。
[図 11]本実施の形態におけるチップアンテナの放射特性を示すグラフである。
圆 12]本発明に係る他の実施の形態におけチップアンテナの形状を示した斜視図で ある。
圆 13]本発明に係る他の実施の形態におけチップアンテナの構成を示す透視図で ある。
[図 14]図 12に示したチップアンテナを線分 A—A'にて切断した断面図である。
[図 15]図 12に示したチップアンテナを線分 C C 'にて切断した断面図である。
[図 16(a)]本発明に係る実施の形態におけチップアンテナに備えられた給電電極部と 、給電端子部とから構成される給電導体の構造を示した平面図である。
[図 16(b)]図 16 (a)において示した給電導体の斜視図である。 [図 17]本発明に係る実施の形態におけチップアンテナの製造方法を示す概略図で ある。
[図 18]本発明に係る実施の形態におけるチップアンテナの構造の変形例を示した斜 視図である。
[図 19]本発明に係る他の実施の形態のチップアンテナを線分 A—A'にて切断した 断面図である。
[図 20]本発明に係る他の実施の形態のチップアンテナを線分 C C 'にて切断した断 面図である。
[図 21]—般的なテーパースロット形状のアンテナの構成を示す断面図である。
[図 22]—般的なテーパースロット形状のアンテナの特性評価として、 3. 1〜10. 6G
Hz帯域における VSWRを測定した測定結果を示すグラフ図である。
発明を実施するための最良の形態
[0038] 本発明の一実施形態について説明すれば、以下の通りである。なお、本発明はこ れに限定されるものではな 、。
〔実施の形態 1〕
本発明に係る実施の形態にっ 、て、図 1〜図 11に基づ!/、て説明すれば以下のと おりである。
[0039] 図 1は、本実施の形態におけるチップアンテナ 1の形状を示した平面図である。
[0040] 図 1に示すように、チップアンテナ 1は、誘電体基板 2の一部裏面に、接地電極 4が 配されており、誘電体基板 2の一部表面に、給電導体 3が配置されてなるマイクロスト リップライン構造である。この構成によれば、高周波の伝送ラインの特性インピーダン スを約 50 Ωに保つことができる。なお、チップアンテナ 1の構成としては特性インピー ダンスが適切に保たれる構造であればこれに限られるものではなぐ表面に、給電導 体を挟むように接地電極が形成されたコプレナーライン構造でもよ 、。
[0041] 誘電体基板 2は、誘電材料からなり、 100mm X 50mm,厚さ lmmの直方体の基 板である。接地電極 4は、導電材料からなり、誘電体基板 2の裏面における紙面下側 70mmの部分に成膜されている。このように誘電体基板 2の一部に金属膜を成膜す るには、金属膜を全体に成膜した後エッチングするか、または金属膜を貼りあわせれ ばよい。給電導体 3のうち、端子部 3bは紙面下側 70mmの中央部分に単一幅で線 状に形成されており、導体部 3aは、端子部 3bに続く 10 X 10mmの区画内に形成さ れている。導電部 3aは、端子部 3bとの接続部付近では単一幅の線状となっているが 、それ以降は端子部 3bから離れるにしたがって幅 Wが広がるテーパー形状である。 ここで、幅 Wはテーパー形状の右の傾斜部力 左の傾斜間での距離を言い、間にス ロットがあつたとしてもそれを含んだ長さを幅 Wとする。
[0042] 図 2に、導体部 3aを切り取った図面を示す。上記導体部 3aは、図 2に示すように、 テーパーの中心軸 Sから向かって左側の電波送受信領域 5aと右側の電波送受信領 域 5bでは形状が異なり、非対称となっている。よって、導電部 3aの斜面から接地電 極 4までの距離も異なる。このような形状の導体部 3aでは、端子部 3bから広がりが始 まるまでの長さに規定されるアンテナ長さ a、向力つて左側の電波送受信領域 5aにお ける導電部 3aと接地電極 4との最大距離に規定されるアンテナ長さ b、向かって右側 の電波送受信領域 5bにおける導電部 3aと接地電極 4との最大距離に規定されるァ ンテナ長さ cの 3つのアンテナ長さを有することとなる。ここで、 a<b< cである。
[0043] そして、長さ aに相当するアンテナの長さが、上限周波数を規定する。また、長さ bに 相当するアンテナの長さが、下限周波数を規定する。長さ cに相当するアンテナの長 さ力 中間周波数を規定する。 3. 1〜: LO. 6GHz帯域の周波数領域で言えば、上限 周波数とは 10. 6GHzのことであり、下限周波数とは 3. 1GHzのことであり、中間周 波数とは 4〜: LOGHzのことである。
[0044] すなわち、本実施の形態のチップアンテナ 1は、下限周波数を規定するアンテナ長 の長さ bと、上限周波数を規定するアンテナ長の長さ aの他に、上記の帯域の中間周 波数 (一般的なテーパースロットアンテナで VSWR最大値が上昇してしまう部分)に 相当するアンテナ長の長さ cを有するように設計することにより、中間周波数にも合う アンテナになり、広帯域でアンテナ特性を向上させられると考えられる。このことを考 慮すると、アンテナの長さ cは、 VSWRが低くなる 4〜: LOGHzにあわせて設計するこ とが望ましい。
[0045] このように、 1つのチップアンテナ 1が、 3種類のアンテナ長さを有するように設計す ることで、それぞれが、低周波数領域、中周波数領域、高周波数領域に適合したァ ンテナ特性を示す。したがって、左右対称の給電電極部を有する一般的なテーパー スロット形状アンテナの VSWR力 図 3の破線に示すように、中間周波数領域で上昇 してしまうのに対し、本実施の形態のチップアンテナ 1ではこのような VSWRの上昇 が起こらず、広範囲の周波数領域において、良好なアンテナ特性が得られることが 推測される。
[0046] また、このようなチップアンテナ 1は、コルゲート構造等の複雑な構成がなぐ比較的 容易に製造できるので、低コストで量産できると 、う利点がある。
[0047] なお、本実施の形態では、導体部 3aが、電波送受信領域 5b内で中心軸 Sに沿つ たスリットを有している。
[0048] また、このチップアンテナ 1を用いて電磁波の送受信を行う場合には、給電導体 3の 端子部 3bの導体部 3aとは反対側の端部と、誘電体基板 2の裏面に配された接地電 極 4とを、同軸ケーブル(図示せず)などのケーブルで接続する。このとき、同軸ケー ブルの内部導体 (芯線)を端子部 3bと接続し、同軸ケーブルの外部導体 (シールド) を接地電極 4付近に接続する。
[0049] 以下に、チップアンテナ 1について、図 4から図 6に基づいて、給電電極部 3の形状 のアンテナ特性への影響について具体的に説明する。チップアンテナ 1としては、電 波送受信領域 5bの形状を、アンテナ長さ cが lmm、 3mm、 5mm、 7mm、 9mmとな るように変更したチップアンテナを作製して実験した。
[0050] 図 4は、本実施の形態におけるチップアンテナ 1のアンテナ特性として、 3. 1〜10.
6GHz帯域の周波数領域における VSWRを測定し、その最大値をグラフにしたもの である。また、図 4には、比較例として、左右対称で、アンテナ長さ b = cのテーパース ロット形状の給電電極部を有するチップアンテナの測定結果を太線によって示してい る。なお、すべてのチップアンテナの誘電体基板の材料は、誘電率 ε =4. 7のもの を用いている。
[0051] 図 4に太線で示すように、比較例の左右対称の給電電極部を有するチップアンテ ナ(一般的なテーパースロット形状アンテナ)の VSWRは、周波数帯域 4〜: LOGHz の領域とにおける VSWR最大値が上昇していることがわかる。これは、上限周波数を 規定するアンテナ長 aと下限周波数を規定するアンテナ長 bとを合わせて、 3. 1〜10 . 6GHz帯域の周波数領域における VSWRを低くしても、テーパースロットアンテナ の特性上、中間周波数部分で、 VSWRが悪くなつてしまうからである。
[0052] これに対し、本実施の形態のチップアンテナ 1では、周波数 4〜: LOGHzの領域に おける VSWR最大値の上昇が低減していることがわかる。特に、アンテナ長さ cが 9m mから lmmに減るにしたがって、 VSWR最大値の上昇の低減が顕著になっている。
[0053] 図 4のグラフから、比較例、 cが 7mmおよび 9mmのときのチップアンテナの結果を 抜き出したのが図 5のグラフである。同図に示すように、 cが 7mmや 9mmのときは、 給電電極部が左右対称のものと VSWRがあまり変わらない。したがって、 cは 7mmよ り短い方が望ましい。
[0054] また、図 4のグラフから、比較例、 cが 1, 3, 5mmのときのチップアンテナの結果を 抜き出したのが図 6のグラフである。これによれば、比較例の給電電極部が左右対称 のものと比べ、 cが小さくなるにしたがって VSWRが安定している。ただし、 cが短すぎ ると cが lmmのときのように、下限周波数が若干高くなる傾向があり 5GHz付近で特 性がばらつく。したがって、 cが 3mm〜5mmのとき力 VSWRが最も安定していると 言え、 cは lmmより大きく 7mmより小さくすることが望ましい。言い換えると、 bを 10と したときに cは 1より大きくすることが望ましぐ 3以上にすることがさらに望ましい。また 、 bを 10としたときに、 cを 7より小さくすることが好ましぐ 5以下とすることがさらに望ま しい。
[0055] ここで、本実施の形態のチップアンテナ 1が、周波数 3. 1GHz付近と、周波数 4〜1
OGHzの領域における VSWR最大値の上昇を低減することができた理由としては、 以下のようなことが考えられる。
[0056] 一般に、アンテナの長さと、誘電率と、周波数との関係は、下記の式があてはまる傾
I口」にある。
λ =C/if ε eff
なお、 λはアンテナの長さを示し、 Cは光速を示し、 fは周波数を示し、 ε effは実効 比誘電率を示す。
[0057] 本実施の形態では、光速や実効比誘電率は一定であるので、アンテナの長さが変 化すると、これに依存して周波数も変化する。したがって、 3種類のアンテナの長さを 有して 、ると、 3種類の周波数に適合したアンテナとなるのである。
[0058] 次に、導体部 3aの切り込み部のアンテナ特性に対する影響を観察するため、 cを 5 mmに固定し、図 7 (a)に示される、中心軸 Sにおけるスリットが一番深い部分力 接 地電極 4までの距離 CLを 2mm、 6mm, 10mmに変化させて、上述した実験と同様 に VSWRを測定した。なお、 CLが 10mmのときはスリットのない図 7 (b)のような形状 となる。結果を図 8 (a)に示し、図 8 (b)にその縦軸拡大図を示す。なお、図 8 (a) · (b) でも、比較例として、左右対称の給電電極部を有するチップアンテナ(一般的なテー パースロット形状アンテナ)の VSWRを示して!/、る。
[0059] 図 8 (b)によれば、本実施の形態のチップアンテナ 1は、すべて比較例よりも VSWR が安定していた。一方、 CLを変化させても VSWRには影響がなぐスロットの有無や 大きさは、アンテナ特性に影響がないことが分力る。
[0060] 続いて、チップアンテナ 1を用いて実際に電波を放射したときの放射特性を測定し た。まず、 cが lmm、 3mm、 5mm、 7mm、 9mmであるチップアンテナについて、周 波数の利得を 3軸 2偏波で、チップアンテナ 1を水平に 2度ずつ回転させて測定した 平均を平均利得として測定した。平均利得はアンテナの感度を示す指標であり、理 想的には 0である。なお、 2偏波とは、出力する電波を、縦波の V偏波と、横波の H偏 波とした場合の 2つについて測定したことを意味する。また、 3軸とは、チップアンテナ 1の向きを示し、誘電体基板 2の平面における長軸方向を y軸、短軸方向を X軸、厚さ 方向を z軸とした場合に、 x、 y、 z軸それぞれが鉛直方向となるような 3つの姿勢につ V、て測定したことを意味する。
[0061] 結果を図 9に示す。これ〖こよると、平均利得については、 cが 9mm、 7mmの場合は 比較例と変わらないが、 cが 5mm、 3mm、 1mmになると、短くなるにつれて平均利 得が 0に近づいている。特に周波数が 7GHzから 10. 6GHzの高周波領域で平均利 得が改善されている。これは、上述した VSWRが改善されたことによるものと考えられ る。
[0062] なお、本実施の形態では、 cの長さを lmn!〜 5mmとすることで、広範囲の周波数 でアンテナ特性を高めることができる。しかし、このような効果を奏するために必要と なる cの長さは、誘電体基板の誘電率等の特性に依存して変化する。したがって、 c の長さはこれに限られるものではなぐそれぞれのチップアンテナや、電波の周波数 に合わせて設定すればよ!、。
[0063] また、図 10、図 11に、比較例のチップアンテナ(図 10)と、本実施の形態のチップ アンテナ 1で cが 5mmのもの(図 11)について、 3軸それぞれの姿勢(鉛直方向が x軸 の姿勢 (図中 (X)で示す)、 y軸の姿勢 (図中 (y)で示す)、 z軸の姿勢 (図中 (z)で示 す)について、水平に回転させて指向性の指標となる遠方界放射特性利得を測定し た結果を示す。なお、図 10において、円周部分の 0、 90、 180、 270は、チップアン テナ 1を水平に回転させたときの回転角を示す。回転角はチップアンテナ 1の正面方 向と遠方界放射特性利得の測定装置との位置関係をあらわす。すなわち、 X軸を回 転させるとき (X)は、表面側 Z軸上に測定装置があるときが回転角 0度であり、ここから 矢印方向に測定装置を回転させて、 270度回転させたときが Y軸に相当する。同様 に、 Y軸を回転させるとき (y)は、 Z軸が 0度の基準となり、 90度回転させたとき力 X 軸に相当する。また、 Z軸を回転させるとき (z)は、 Y軸が 0度の基準となり、 270度回 転させたときが、 X軸に相当する。また、円の半径に示される数値は遠方界放射特性 利得を示す。また、 V偏波は灰色で、 H偏波は黒で示している。周波数は、 3. 1GHz 、 5GHz、 9GHz、 10. 6GHz【こつ!/ヽて ¾J定して!/ヽる。
[0064] 図 10と図 11とを比べると、図 10では、鉛直方向力 軸のときにすべての周波数で V 偏波の遠方界放射特性利得が— 40dBi以下と非常に悪いのに対し、図 11では、鉛 直方向が X軸のときに 5GHz〜10. 6GHzで周波数利得が改善されている。したがつ て、 cが 5mmのチップアンテナ 1では、どの方向力もでも V偏波、 H偏波に関わらず 電波を良好に受信でき、無指向性のアンテナとなる事がわかる。
[0065] これによれば、縦波、横波両方を使った送受信ができるので、チップアンテナをど のような向きにおいても、安定してアンテナの感度がよくなる。
[0066] 以上、説明の便宜上、チップアンテナ 1を用いて電磁波を送信する場合を想定して 、チップアンテナの特性等について説明した力 この特性等は、チップアンテナ 1を 用いて電磁波を受信する場合についてもほぼ同様に成り立つ。すなわち、チップァ ンテナ 1は、電磁波の送信用にも受信用にも使用することができる。
〔実施の形態 2〕 本発明に係る他の実施の形態について、図 12〜図 20に基づいて説明すれば以 下のとおりである。
[0067] 図 12は、本実施の形態におけるチップアンテナ 11の形状を示した斜視図である。
図 12に示すように、チップアンテナ 11は、チップ形状のアンテナであり、その外形は
、誘電体基板 13によって形成されている。
[0068] 図 13は、図 12において図示したチップアンテナ 11の透視図である。図 13に示す ように、チップアンテナ 11は、給電導体 12と、誘電体基板 13と、接地電極 14aおよび
14bを備えている。
[0069] 上記給電導体 12は、給電電極部 15 (導体部)および給電端子部 16 (端子部)を備 えている。図 13に示すように、給電導体 12は、誘電体基板 13によって狭持された構 成となっており、特に、給電電極部 15は誘電体基板 13によって完全に被覆されてい る。給電端子部 16は、その一部が誘電体基板 13外部に露出しており、露出した給 電端子部 16の端部に給電端子 17を有して 、る。
[0070] 図 14は、図 12における線分 A—A'でチップアンテナ 1を切断した状態を示した断 面図である。上記給電導体 12は、図 14に示すように、中心軸 Sに対して非線対称の 形状である。給電導体 12の形状の詳細は、実施の形態 1と同じであるので省略する
[0071] 上記給電電極部 15は、導体からなる電極であり、この形状は、一般に、テーパース ロット形状と呼ばれている。給電電極部 15は、領域 Vにおいて、上記給電端子部 16 と連結している。
[0072] 上記給電端子部 16は、導体からなる端子であり、その形状は平板である。上記給 電端子部 16は、接地電極 14aおよび 14bの間に、それぞれ力も離間するように配置 されており、離間することによって接地電極 14aおよび 14bとは電気的に絶縁されて いる。給電端子部 16における対向する両端のうち、一端は、上記給電電極部 15の 領域 Vに連結しており、給電電極部 15と電気的に接続されている。他端には、給電 端子 17が備えられており、図示しない給電線に接続されている。
[0073] 上記給電端子部 16の給電端子 17が備えられている部分は、上述したように、誘電 体基板 13外部に露出しており、さらに、露出部分は、図 12および図 13に示すように 屈曲している。上記給電端子部 16の給電端子 17部分が屈曲していることにより、本 実施の形態のチップアンテナ 11は、表面実装に適した構造になっている。給電端子 部 16は、例えば、金属材料によって構成することができる。
[0074] 接地電極 14aおよび 14bは、導体からなる電極であり、その形状は平板である。接 地電極 14aおよび 14bは、接地電極 14aおよび 14bの間に給電端子部 16が離間し て配置されるように、接地電極 14aおよび 14bとの間は所定の距離をなして配置され ている。接地電極 14aおよび 14bは、例えば、金属の板材によって構成することがで きる。
[0075] 誘電体基板 13は、誘電体からなり、給電電極部 15と接地電極 14aおよび 14bとの 間に介在して、給電電極部 5と接地電極 14aおよび 14bとの間を埋める部材である。 この誘電体基板 13の外形は、チップアンテナ 11の外形に相当し、図 12に示すように 、直方体の形状をなしている。
[0076] 図 15は、図 12における線分 C— C'で、上記チップアンテナ 11を切断した状態を 示した断面図である。図 15に示すように、誘電体基板 13は、上記給電電極部 15に 接触するように構成されている。誘電体基板 13は、本実施例のアンテナ形状で、誘 電率 ε = 16となる基板材料を用いている。基板材料としては、榭脂が好ましい。基板 材料として榭脂を使用することで、本発明に係るチップアンテナを、インサート成形に よって、上記給電導体 12と誘電体基板 13とを一体成形して製造することができる。ィ ンサート成形をするためには、熱可塑性を有する榭脂、すなわち、熱可塑性硬化榭 脂であることがさらに好ましい。
[0077] 上記榭脂としては、例えば、ポリエーテルサルフォン (PPS)、液晶ポリマー (LCP) 、シンジオタクチックポリスチレン(SPS)、ポリカーボネート(PC)、ポリエチレンテレフ タレート(PET)、エポキシ榭脂 (EP)、ポリイミド榭脂(PI)、ポリエーテルイミド榭脂(P EI)、フエノール榭脂(PF)などを用いることができる。
[0078] 上記榭脂の中でも、 PPSまたは LCPは、高い誘電率を有するように製造できるので 、このように製造された高 、誘電率を有する PPSや LCPを使用することが好ま 、。
[0079] 以上のようなチップアンテナ 11は、実施の形態 1の導電部 3aと同様の形状の給電 電極部 15を有しているので、広範囲の周波数領域でアンテナ感度の高いチップアン テナとなる。
[0080] このチップアンテナ 11を用いて電磁波の送受信を行う場合には、このチップアンテ ナ 11の中心に、接地電極 14a側から同軸ケーブル(図示せず)などのケーブルが接 続される。このとき、同軸ケーブルの内部導体 (芯線)を給電端子 17と接続し、同軸ケ 一ブルの外部導体 (シールド)を接地電極 14aおよび 14bの間付近に接続する。その ために、接地電極 14aおよび 14bには、同軸ケーブルと接続するためのコネクタ(図 示せず)が設けられる。なお、コネクタを設けることなぐ同軸ケーブルを接地電極 14 aおよび 14bに直接取り付けてもよい。
[0081] 次に、図 16〜図 18に基づいて、以上のような構成を備えたチップアンテナ 1の製 造方法について説明する。
[0082] まず、給電導体 12の製造方法について、図 16 (a)および (b)に基づいて説明する
[0083] 給電電極部 15は、テーパースロット形状のカット型にリードフレームを設置し、プレ スカ卩ェすることによって、図 16 (a)に示すようなテーパースロット形状の給電電極部 1 5を形成することができる。給電電極部 15を構成する材料としては、例えば、金、銀、 銅などを用いることができる。給電端子部 16は、半田メツキによって形成される。給電 電極部 15と給電端子部 16とは導通しているため、給電端子 17は、給電電極部 15と 電気的に接続できる。図 16 (b)は、図 16 (a)の状態の構造から給電端子部 16の接 続部分を切断した給電導体 12の斜視図である。
[0084] 次に、上記で製造した給電導体 12を用いて、インサート成形により、誘電体基板 1 3と一体成形させ、チップアンテナを形成する。
[0085] インサート成形によるチップアンテナの製造方法について、図 17 (a)〜(f)に基づ V、て説明すれば以下の通りである。
[0086] インサート成形によるチップアンテナの製造は、チップの形状をなした第 1の金型 1 8を用いてインサート成形する。図 17 (a)は、第 1の金型 18の形状を示した斜視図で ある。なお、説明の便宜上、図 17 (a)には、第 1の金型 18のうち片側のみを図示して いる。したがって、基板材料を導入する際は、もう一方側の第 1の金型 18も用いて、 両側から給電導体 12を挟持するように設置される。 [0087] 図 17 (a)に示すように、第 1の金型 18には所定の位置に第 1の位置決め領域 18a が設けられている。第 1の位置決め領域 18aとしては、第 1の位置決め領域 18aのよう に、給電導体 12の給電端子部 16の形状に窪みを形成するものが挙げられる。窪み を形成することによって、その窪みに該給電端子部 16をはめ込み、給電導体 12を位 置合わせすることができる。そのほかにも、所定の位置に棒状の突起部が形成され、 その突起部に該給電端子部 16を接触させることによって位置合わせするものであつ てもよぐ給電導体 12を位置合わせすることができるものであれば特に限定されない
[0088] このように、第 1の金型 18には第 1の位置決め領域 18aが設けられているため、図 1 6 (b)に示した給電導体 12は、この第 1の位置決め領域 18aによって第 1の金型 18 内に正確に設置することができ、給電導体 12と誘電体基板 13とを精度よく一体成形 することができる。
[0089] 図 17 (b)は、第 1の金型 18に給電導体 12が配置された状態を示す斜視図である。
図 17 (c)は、両側の第 1の金型 18によって給電導体 12が挟持された状態を示した 模式図である。この第 1の金型 18内に、熱可塑性を有する誘電体基板 13の基板材 料を図示しない導入口より導入し、インサート成形することによって、誘電体基板 13と 給電導体 12とを一体化する。
[0090] 図 17 (d)には、インサート成形後のチップアンテナ 11を示している。図 17 (d)に示 したように、誘電体基板 13の基板材料は、上記給電導体 12のうち給電電極部 15の 表面を完全に被覆するように、給電導体 12と一体成形する。
[0091] 一体成形したチップアンテナ 11は、図 17 (e)のように、給電端子部 16の長さを短く カットされる。次に、図 17 (f)に示すように、誘電体基板 13の外部に露出した給電端 子部 16を屈曲させる。
[0092] 以上のような方法によって、誘電体基板 13の基板材料が 1種類の場合のチップァ ンテナを製造することができる。
[0093] なお、上記した製造方法では、給電導体 12に図 16 (b)に図示した構造のものを用
Vヽて 、るが、本発明はこれに限定されるものではな!/、。
[0094] すなわち、図 18は、図 16 (a)に示した構造の給電導体 12を用いて、該給電導体 1 2と誘電体基板 12とインサート成形により一体成形した状態を示す斜視図である。こ のように、図 16 (a)に示した構造の給電導体を用いて製造することもできる。
[0095] また、容易に、所望の形状の給電電極部 15を形成することができる。したがって、 上記カット型の形を変えることにより、所望の形状の給電電極部 15を形成することが 可能となる。そのため、本発明の製造方法によって製造したチップアンテナ 11を搭載 する装置や機器に好適な形状のチップアンテナ 11を提供することができる。
[0096] なお、上記誘電体基板を、比誘電率が異なる少なくとも 2つの誘電材料により形成 することで、さらにアンテナ特性がさらに向上する。
[0097] 図 19は、このような 2つの誘電材料力もなる誘電体基板 23を有するチップアンテナ について、図 12における線分 A—A'でチップアンテナ 11を切断した状態を示した 断面図である。なお、誘電体基板 23以外の構成は上記したチップアンテナ 11と同じ である。
[0098] 誘電体基板 23は、基板材料 23aおよび 23bから構成されている。基板材料 23aお よび 23bについて、図 20に基づいて以下に詳細に説明する。
[0099] 図 20は、図 12における線分 C— C 'で、上記チップアンテナ 11を切断した状態を 示した断面図である。図 20に示すように、誘電体基板 23は、基板材料 23aおよび 23 bから構成されており、ともに、上記給電電極部 15に接触するように構成されている。 具体的には、基板材料 23aは上記給電導体 12の対称軸 Sを含んだ領域に配置して おり、基板材料 23bは対称軸 Sを含まず、対称軸 Sから遠い領域に配置されている。
[0100] 上記基板材料 23aおよび 23bは、それぞれ誘電率 ε 23aおよび ε 23bを有した誘 電体であり、それぞれの比誘電率がこの順に大きくなるように誘電率が調整されてい る。具体的には、対称軸 Sから遠くなるにつれて比誘電率が高くなるように、基板材料 23bは、基板材料 23aよりも高 ヽ誘電率を有して!/ヽる。
[0101] 各基板材料の誘電率は、このような条件を満たすものであれば、特に限定されるも のではない。例えば、誘電率 ε =4である基板材料 23aと、誘電率 ε = 16である基 板材料 23bとを用いることができる。
[0102] なお、本実施の形態では、直方体の形状を有したチップアンテナ 1につ 、て説明し た。し力しながら、本発明はこれに限定されるものではなぐ上述したように表面実装 することが可能な形状であれば、直方体の形状に限定されるものではなぐ例えば台 形の形状になって 、てもよ 、。
[0103] また、本発明のチップアンテナ 11は、誘電体基板 13の基板材料として、セラミック を用いてもよい。
[0104] なお、本発明は上述した各実施の形態に限定されるものではなぐ請求項に示した 範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手 段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれ る。
産業上の利用の可能性
[0105] 本発明に係るチップアンテナは、容易に製造でき、例えば 3. 1〜: LO. 6GHz等の 広帯域に良好に対応できる。したがって、例えば、携帯電話、 PDA, PCカード型無 線機、 CF (コンパクトフラッシュ (登録商標))型無線機、 SDカード型無線機、 IEEE1 394型無線機、 USB型無線機などハンドへルド機器に広く適用することができる。

Claims

請求の範囲
[1] 誘電材料からなる誘電体基板と、
給電端子を有する端子部と該端子部に導通した導体部とを有する給電導体と、 上記給電導体に離間して設けられた接地電極とを備えたチップアンテナであって、 上記導体部が、端子部から離れるにしたがって幅が広くなるように傾斜しており、 上記導体部と上記接地電極との間で電波の送信および Zまたは受信が行われる 電波送受信領域が 2箇所設けられているとともに、上記電波送受信領域における導 体部の端部力 接地電極までの距離が互いに異なって 、ることを特徴とするチップ アンテナ。
[2] 一方の電波送受信領域における導体部の端部から接地電極までの距離の最大値 を 10とした場合に、
他方の電波送受信領域における導体部の端部から接地電極までの距離の最大値 力 1より大きく 7より小さいことを特徴とする請求項 1に記載のチップアンテナ。
[3] 3. 1GHzから 10. 6GHzの周波数の電波の送信および Zまたは受信を行うことを 特徴とする請求項 1または 2に記載のチップアンテナ。
[4] 上記導体部の少なくとも一部が上記誘電材料によって被覆されるように、上記誘電 体基板と上記給電導体とが、インサート成形によって一体成形されて!ヽることを特徴 とする請求項 1から 3の何れ力 1項に記載のチップアンテナ。
[5] 上記誘電体基板は、比誘電率が異なる少なくとも 2つの誘電材料力 なり、各該誘 電材料は、上記導体部と接触して!/ヽることを特徴とする請求項 1から 4の何れか 1項 に記載のチップアンテナ。
PCT/JP2005/015333 2004-08-26 2005-08-24 チップアンテナ WO2006022286A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/661,339 US20080024369A1 (en) 2004-08-26 2005-08-24 Chip Antenna

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004247471A JP4149974B2 (ja) 2004-08-26 2004-08-26 チップアンテナ
JP2004-247471 2004-08-26

Publications (1)

Publication Number Publication Date
WO2006022286A1 true WO2006022286A1 (ja) 2006-03-02

Family

ID=35967495

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/015333 WO2006022286A1 (ja) 2004-08-26 2005-08-24 チップアンテナ

Country Status (4)

Country Link
US (1) US20080024369A1 (ja)
JP (1) JP4149974B2 (ja)
CN (1) CN101010832A (ja)
WO (1) WO2006022286A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007241887A (ja) * 2006-03-10 2007-09-20 Fujitsu Component Ltd キーボード
JP2008236705A (ja) * 2006-08-09 2008-10-02 Daido Steel Co Ltd 超広帯域通信用アンテナ
JP4682965B2 (ja) * 2006-10-31 2011-05-11 日本電気株式会社 広帯域無指向性アンテナ
US8237614B2 (en) 2007-03-12 2012-08-07 Nec Corporation Planar antenna, and communication device and card-type terminal using the antenna
TWI415331B (zh) * 2009-05-22 2013-11-11 Advanced Connectek Inc Broadband antenna
TWI508378B (zh) * 2012-07-04 2015-11-11 Arcadyan Technology Corp 寬頻單極天線與電子裝置
DE102015215987A1 (de) * 2015-08-21 2017-02-23 BSH Hausgeräte GmbH Dualband Antenne
JP6469771B2 (ja) * 2017-07-19 2019-02-13 株式会社フジクラ ダイポールアンテナ
US11239560B2 (en) * 2017-12-14 2022-02-01 Desarrollo De Tecnologia E Informätica Aplicada, S.A.P.I. De C.V. Ultra wide band antenna

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002280819A (ja) * 2000-12-27 2002-09-27 Furukawa Electric Co Ltd:The 小型アンテナの製造方法
JP2002299936A (ja) * 2001-03-29 2002-10-11 Ngk Spark Plug Co Ltd チップアンテナ
JP2002330025A (ja) * 2001-05-02 2002-11-15 Murata Mfg Co Ltd アンテナ装置及びこのアンテナ装置を備えた無線通信機
JP2004140496A (ja) * 2002-10-16 2004-05-13 Taiyo Yuden Co Ltd 誘電体アンテナ及びそれを内蔵する移動体通信機
JP2004228693A (ja) * 2003-01-20 2004-08-12 Alps Electric Co Ltd デュアルバンドアンテナ

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6157344A (en) * 1999-02-05 2000-12-05 Xertex Technologies, Inc. Flat panel antenna
EP1221738A3 (en) * 2000-12-27 2002-10-23 The Furukawa Electric Co., Ltd. Small antenna and manufacturing method thereof
JP2003152428A (ja) * 2000-12-27 2003-05-23 Furukawa Electric Co Ltd:The 小型アンテナおよびその製造方法
US6809687B2 (en) * 2001-10-24 2004-10-26 Alps Electric Co., Ltd. Monopole antenna that can easily be reduced in height dimension
US6603429B1 (en) * 2002-02-21 2003-08-05 Centurion Wireless Tech., Inc. Multi-band planar antenna
TW557604B (en) * 2002-05-23 2003-10-11 Realtek Semiconductor Corp Printed antenna structure
JP2003347827A (ja) * 2002-05-28 2003-12-05 Ngk Spark Plug Co Ltd アンテナ及びそれを備えた無線周波モジュール
JP3794360B2 (ja) * 2002-08-23 2006-07-05 株式会社村田製作所 アンテナ構造およびそれを備えた通信機

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002280819A (ja) * 2000-12-27 2002-09-27 Furukawa Electric Co Ltd:The 小型アンテナの製造方法
JP2002299936A (ja) * 2001-03-29 2002-10-11 Ngk Spark Plug Co Ltd チップアンテナ
JP2002330025A (ja) * 2001-05-02 2002-11-15 Murata Mfg Co Ltd アンテナ装置及びこのアンテナ装置を備えた無線通信機
JP2004140496A (ja) * 2002-10-16 2004-05-13 Taiyo Yuden Co Ltd 誘電体アンテナ及びそれを内蔵する移動体通信機
JP2004228693A (ja) * 2003-01-20 2004-08-12 Alps Electric Co Ltd デュアルバンドアンテナ

Also Published As

Publication number Publication date
CN101010832A (zh) 2007-08-01
JP4149974B2 (ja) 2008-09-17
JP2006067252A (ja) 2006-03-09
US20080024369A1 (en) 2008-01-31

Similar Documents

Publication Publication Date Title
WO2006022286A1 (ja) チップアンテナ
KR101746475B1 (ko) 스터브 기생소자를 갖는 적층형 세라믹 원형편파 안테나
US6903692B2 (en) Dielectric antenna
JP4481716B2 (ja) 通信装置
JP4450323B2 (ja) 平面広帯域アンテナ
US7173566B2 (en) Low-sidelobe dual-band and broadband flat endfire antenna
WO2006022350A1 (ja) チップアンテナおよびその製造方法
JP2004088218A (ja) 平面アンテナ
US20160301127A1 (en) Mobile radio device
US7106257B2 (en) Dual-band inverted-F antenna
JPH05259724A (ja) プリントアンテナ
US7786941B2 (en) Antenna module
JP5104131B2 (ja) 無線装置および無線装置が備えるアンテナ
US9123997B2 (en) Multi-band monopole antenna
EP1483803B1 (en) Microwave antenna
JPH11340726A (ja) アンテナ装置
US7663568B2 (en) Antenna apparatus
JPH05299929A (ja) アンテナ
WO2006028212A1 (ja) 表面実装型アンテナおよびそれを備えた無線通信機
US20070013590A1 (en) Wide-band antenna, and wide-band antenna mounting substrate
TWI587571B (zh) 天線組件
JP2004173143A (ja) アンテナと通信ケーブルの接続部構造
JP2006314127A (ja) チップアンテナおよびその製造方法
JP7492563B2 (ja) 多周波アンテナ
EP3893329B1 (en) Antenna for sending and/or receiving electromagnetic signals

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580027796.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11661339

Country of ref document: US

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 11661339

Country of ref document: US