WO2006018169A1 - Härtungsbeschleuniger - Google Patents

Härtungsbeschleuniger Download PDF

Info

Publication number
WO2006018169A1
WO2006018169A1 PCT/EP2005/008565 EP2005008565W WO2006018169A1 WO 2006018169 A1 WO2006018169 A1 WO 2006018169A1 EP 2005008565 W EP2005008565 W EP 2005008565W WO 2006018169 A1 WO2006018169 A1 WO 2006018169A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanoparticulate
semiconductor materials
materials according
oxide
polymer
Prior art date
Application number
PCT/EP2005/008565
Other languages
English (en)
French (fr)
Inventor
Adalbert Huber
Marc Entenmann
Alfred Hennemann
Matthias Koch
Original Assignee
Merck Patent Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck Patent Gmbh filed Critical Merck Patent Gmbh
Priority to EP05775134A priority Critical patent/EP1776412A1/de
Priority to US11/573,514 priority patent/US9114983B2/en
Publication of WO2006018169A1 publication Critical patent/WO2006018169A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/68Particle size between 100-1000 nm
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/69Particle size larger than 1000 nm
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Definitions

  • the present invention relates to nanoparticulate curing accelerators, preparations prepared therefrom, in particular masterbatches containing nanoparticles and their use in polymer matrices, in particular paints and printing inks of all kinds, which place the highest demands on color neutrality or transparency.
  • Nanopartite doped compounds in particular doping of tin oxides with antimony and / or indium play a role in many applications in which the outstanding physical properties such as electrical conductivity, thermal conductivity, absorption of long-wave and very short-wave radiation must be combined with transparency and color neutrality in the visual Light range at low application concentration.
  • the nanoparticle is produced either by solvolysis or by electrochemical means.
  • the surface of the particles is modified in situ, stabilizing the particle and adapting it to the application matrix.
  • it is disadvantageous that in these processes it can not be ruled out entirely that some of these inclusions of surface modifying agents can be incorporated into the nanoparticles themselves, or to incompatibility with the matrix, comes. This often reduces the applicability of the doped, in particular tin oxide-based, nanoparticles thus produced.
  • these methods are often difficult to ascertain and are not economical for the quantities needed in the paint area.
  • the object of the present invention is to provide nanoparticulate semiconductor materials which do not have the abovementioned disadvantages.
  • the surface of nanoparticulate semiconductor materials can be favorably influenced if coarser-particle precursors serve as the basis for the preparation of nanoparticles.
  • the advantages are, in particular, the achievable high purity of the surface, especially if the stabilization of the nanoparticles does not take place as usual with dispersing additives, but rather electrostatically in aqueous media via the setting of a zeta potential which is sufficient in terms of magnitude.
  • the zeta potential is> 30 mV, in particular> 60 mV.
  • the present invention thus nanoparticulate semiconductor materials prepared by coarse-particle precursors, in the particle size range of 0.1 to 50 microns, in the aqueous medium at a pH of 6-11, ground.
  • the nanoparticles produced in this way are characterized by their high purity, their absence of foreign substances and their high absorption in the IR range.
  • the invention furthermore relates to the use of the nanoparticulate semiconductor materials according to the invention for the IR curing of polymer matrices, in particular in the field of lacquers and printing inks, and to the use of the nanoparticulate semiconductor materials in polymer masterbatches and polymer preparations.
  • Suitable precursors having particle sizes of from 0.1 to 50 ⁇ m, preferably from 0.5 to 20 ⁇ m and in particular from 1 to 10 ⁇ m, are used of mechanical energy in aqueous media, preferably water or water-miscible organic solvents, such as methanol, ethanol, diols, triols, at a pH of 6-11, crushed.
  • aqueous media preferably water or water-miscible organic solvents, such as methanol, ethanol, diols, triols, at a pH of 6-11, crushed.
  • Semiconductor materials produced in this way are characterized by being very stable and having a very pure surface and composition. Nanoparticles prepared in this way can be dried after the milling or they are added in solution to the aqueous application systems.
  • additives in particular thickeners, wetting agents, dispersing aids and other additives, during or after the grinding process in order to increase the compatibility with different matrices.
  • the additives may be polymeric, oligomeric and monomeric additives. These preparations consisting of nanoparticles, additives and optionally water or water / solvent mixture can thus be both solid and liquid preparations.
  • the present invention also relates to preparations containing nanoparticles, additives and optionally water or a water / solvent mixture. These preparations can be used for example in matrix polymers, such as. As polymer masterbatches and find in polymer preparations application.
  • the nanoparticles When incorporating the nanoparticles into nonaqueous systems, the nanoparticles are previously stripped of the aqueous medium, e.g. by drying or slow evaporation using strong mechanical shear. Subsequently, the dry or dried nanoparticles are introduced into a matrix polymer melt using high shear energies. Additives of excipients which facilitate the homogeneous incorporation of the nanoparticles into the polymer melt, e.g. amphiphilic nonionic copolymers, e.g. Polyether-based polymer systems often facilitate the transfer of the nanoparticles into the corresponding melt of the matrix polymer.
  • the electrostatically stabilized, aqueous dispersion can be added directly into the polymer melt using an extruder by the action of high shear forces. If necessary, you can - A -
  • Additives are added.
  • masterbatches or polymer preparations which contain the nanoparticles according to the invention in concentrations of up to 30%, preferably 1-30%, in particular 5-10%.
  • These can then be used in powder clearcoat systems, the effective concentration being about 0.3-0.8% of nanoparticles based on solid polymer.
  • the clearcoat systems produced in this way exhibit significantly increased heating rates on IR irradiation.
  • Suitable light and transparent semiconductor materials as IR curing accelerators are, in particular, indium (III) oxide, tin, tin (IV) oxide, zinc oxide, antimony and mixtures thereof. Very particular preference is given to tin oxide.
  • IR curing accelerators are tin (IV) oxide,
  • Antimony (III) oxide indium tin oxide (ITO) or antimony (III) oxide and mixtures thereof.
  • doped tin oxides additionally show a strong absorption in the UV range, which is very advantageous in clearcoat systems, since typical UV protective pigments, such as, for example, TiO 2 pigments, are absent in high concentrations. An additional UV protection is therefore desirable, especially in clearcoat systems.
  • the nanoparticulate semiconductor materials according to the invention generally have a primary particle average particle sizes (d 5 o) of 10 to 80 nm, preferably from 20 to 50 nm, especially 20 to 30 microns.
  • the semiconductor material is preferably constructed microcrystalline.
  • Particularly preferred curing accelerators are transparent or light-colored semiconductor materials with a powder resistance of ⁇ 20 ⁇ • m, preferably of ⁇ 5 ⁇ • m.
  • a particularly preferred curing accelerator is an antimony (III) oxide-doped tin (IV) oxide. Further preferred are additions of indium oxides as dopants. In addition to antimony (III), preferably antimony (III) oxide, halides, preferably chlorides and fluorides, are furthermore suitable as dopant, in particular for tin oxides.
  • the doping is dependent on the semiconductor material used and is generally 0.5 to 30% by weight, preferably 2 to 25% by weight, in particular 5 to 16% by weight, based on the semiconductor material.
  • Tin oxides are preferably doped with 0.5 to 30% by weight, in particular 1 to 12% by weight and very particularly preferably 5 to 10% by weight.
  • the dopants used are preferably antimony or antimony compounds.
  • mixtures of nanoparticulate semiconductor materials as curing accelerators, in particular of polymer matrices such as lacquers and printing inks, wherein the mixing ratio has no limits.
  • Preferred mixtures are indium-tin oxides with doped tin (IV) oxides and indium-tin oxide with doped zinc oxides.
  • nanoparticles of the present invention with platelet-curing accelerators such as Minatec.RTM ® 30 or Minatec.RTM ® 31, products can continue in a particular embodiment, Merck KGaA, are mixed Fa..
  • the latter preferably have particle sizes of 5-100 ⁇ m.
  • This mixture of nanoparticles / platelets preferably contains 2-98% by weight, in particular 50-98% by weight and very particularly preferably 80-98% by weight of the nanoparticulate semiconductor materials according to the invention.
  • Such mixtures of platelet-shaped curing accelerators which ensure an excellent surface coverage which is as transparent as possible, preferably in the visible light range, with nanoparticles according to the invention, which additionally have good thermal conductivity and which ensure strong IR absorption and heat conduction within the matrix volume, are advantageous for all Polymer matrices known to the person skilled in the art.
  • Mixtures of two, three or more nanoparticulate semiconductor materials can also be added to the application systems. The total concentration depends on the application system. For example, in the paint system or in the printing ink, the total concentration of semiconductor material mixture should not exceed 10
  • the curing accelerator (s) are preferably added to the paint system or the printing ink in amounts of from 0.01 to 10.0% by weight, in particular from 0.01 to 8.0% by weight, particularly preferably in amounts of 0.05 - 5.0 wt.%, Based on the paint or the ink added.
  • the nanoparticulate semiconductor materials according to the invention are prepared by milling a suitable precursor having particle sizes of particle size range from 0.1 to 50 .mu.m, preferably from 0.5 to 10 .mu.m, in particular from 1 to 10 .mu.m, in water or in an aqueous solvent mixture.
  • Suitable precursors are in particular doped or undoped, light and transparent Halbleiter ⁇ materials, in particular indium oxide, tin, tin oxide, antimony and mixtures thereof. Very particular preference is given to tin oxide, in particular antimony-doped tin oxide.
  • Suitable precursors are commercially available, for. B. from the company. Merck KGaA under the brand Minatec ® 230th
  • the milling of the precursor takes place in water.
  • Suitable organic solvents are in particular alcohols, e.g. Ethanol, propanol, butanol, cyclohexanol, glycols, e.g. Ethylene or propylene glycols.
  • Suitable mills are ball mills, bead mills, and more
  • the pH is adjusted to 6-11, preferably pH 8-11.
  • the pH depends on the precursor used and can easily be determined by the person skilled in the art.
  • the grinding process lasts 2 to 48 hours, preferably 10 to 24 hours, depending on the precursor used.
  • the nanoparticles are necessary unless removed by centrifugation, and then out at temperatures from 40 to 130 0 C, particularly 50-80 0 C, preferably by applying vacuum dried.
  • the milling is preferably carried out at concentrations of the precursor material of 5 to 20%, particularly preferably at concentrations of Precursor ⁇ material of 10 to 20%, depending on the viscosity of the resulting nanoparticle dispersion. It should also be sought as high as possible filling level of hard finely divided grinding media.
  • Nanoparticulate doped tin oxides are preferably prepared by coarse-particle precursors in the particle size range from 0.1 to 50 .mu.m, in particular 1 to 10 .mu.m, at a pH of 9-11, an intensive
  • Combination with platelet-shaped curing accelerators is stirred before application to an object, for example a lacquer or an ink.
  • an object for example a lacquer or an ink.
  • This is preferably done using a high speed stirrer or, in the case of hard dispersible, mechanically insensitive cure accelerators, by using a bead mill or shaker.
  • Other dispersing units known to those skilled in the art are also possible.
  • the paint or ink in the air is physically cured using IR irradiation, or chemically crosslinked.
  • the curing time of the paint layer or the ink is very much shortened, or the use of IR drying in transparent paint systems, such as powder coatings, only economically feasible, as these themselves, as an organic compound hardly absorb in the near, high-energy infrared range. The more efficient effect can easily be determined by the significantly accelerated temperature development on IR irradiation of a transparent polymer layer which contains nanoparticles according to the invention in comparison to the corresponding sample
  • nanoparticulate IR curing accelerators according to the invention are therefore suitable, in particular because of their transparency, for IR clearcoat materials of all kinds.
  • the acceleration of the curing can also have a positive effect on overlying IR lacquer layers, depending on the pigmentation of these overlying lacquer layers and the heat influences.
  • the invention furthermore relates to polymer matrices, such as e.g. Printing inks, industrial coatings and automotive coatings, including clearcoats containing the nanoparticle IR curing accelerator according to the invention.
  • polymer matrices such as e.g. Printing inks, industrial coatings and automotive coatings, including clearcoats containing the nanoparticle IR curing accelerator according to the invention.
  • Suitable coating systems include, in particular, IR-curable coatings in the field of powder coatings, as well as solvent-based systems. Also suitable are film applications and plastic welding, as well as solvent-based or aqueous IR printing inks for all common types of printing, such as e.g. Gravure printing, flexo printing, letterpress printing, textile printing, offset printing, screen printing, security printing.
  • Example 1 Preparation of a nanoparticulate antimony-doped tin oxide
  • the d 50 value of the particle size is about 50 nm.
  • a hydroclearcoat is mixed with in each case 0.5% nanoparticulate zinc oxide, tin oxide and the antimony-doped tin oxide nanoparticles from Example 1 and applied at a constant layer thickness to a metal substrate.
  • the development of the surface and substrate temperature is measured as a function of time when irradiated with an IR source.
  • nanoparticulate antimony-doped zinc oxide (based on the solids) from Example 1 (Cytec, West Paterson, USA Fa.) 633 with Crylcoat ® were added and pre-dried 2 h at 25 0 C and 50 mbar. In the subsequent extrusion, the residual water is separated via the degassing. A transparent powder coating masterbatch is obtained which contains the nanoparticulate antimony-doped zinc oxide according to the invention in a finely dispersed state.
  • Example 4 Preparation and comparison of color-neutral, preferably transparent IR-absorbing powder coating systems
  • the heating behavior is tested on aluminum sheets after the electrostatic powder coating application.
  • the surface temperature is measured during irradiation with an IR source.
  • the following 3 samples are compared:
  • Powder coating sample 1 Preparation of an antimony-doped zinc oxide powder clearcoat containing nanoparticulate antimony-doped zinc oxide
  • Powder coating sample 2 comparative sample pigmented with precursor Minatec ® 230
  • Powder coating sample 3 Comparative sample of unpigmented powder clearcoat
  • the powder clearcoat which contains the nanoparticle preparation according to the invention according to Example 3, achieves the fastest or largest heating.
  • a significantly worse temperature development shows the precursor Minatec ® 230 pigmented powder coating sample 2, which is visually not completely transparent.
  • the unpigmented powder clearcoat has a very slow temperature development.
  • only powder coating sample 1 achieves the necessary for complete crosslinking high temperatures by IR irradiation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Paints Or Removers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

Die vorliegende Erfindung betrifft nanoteilige Härtungsbeschleuniger, daraus hergestellte Präparationen, insbesondere Nanoteilchen enthaltende Masterbatches und deren Verwendung in Polymermatrizen, insbesondere Lacke und Druckfarben aller Art, welche höchste Ansprüche an Farbneutralität bzw. Transparenz stellen.

Description

Härtungsbeschleuniger
Die vorliegende Erfindung betrifft nanoteilige Härtungsbeschleuniger, daraus hergestellte Präparationen, insbesondere Nanoteilchen ent- haltende Masterbatches und deren Verwendung in Polymermatrizen, insbesondere Lacke und Druckfarben aller Art, welche höchste Ansprüche an Farbneutralität bzw. Transparenz stellen.
Nanoteilige, dotierte Verbindungen, insbesondere Dotierungen von Zinnoxiden mit Antimon und/oder Indium spielen bei vielen Anwendungen eine Rolle, bei denen die herausragenden physikalischen Eigenschaften wie elektrische Leitfähigkeit, Wärmeleitfähigkeit, Absorption von langwelliger und sehr kurzwelliger Strahlung verbunden sein muss mit Transparenz und Farbneutralität im visuellen Lichtbereich bei geringer Anwendungskonzentration.
Entscheidend, in wieweit diese Eigenschaften jedoch in der jeweiligen Matrix zur Wirkung kommen, ist die wirkliche Vereinzelung der Teilchen als Nanopartikel in der Wirkmatrix. Diese Vereinzelung ist im wesentlichen abhängig von der Gestaltung der Oberfläche der Nanopartikel, da diese über die Wechselwirkung, die Benetzung, die Flockulationsstabilität und damit die Wirksamkeit in der Anwendungsmatrix entscheidet. Diese Oberfläche muss schon während der Herstellung der Nanoteilchen erzeugt werden und ist somit vom Herstellungsverfahren abhängig. Im Falle von Nanoteilchen ist infolgedessen der stoffliche Aufbau, die Dotierung, die
Einlagerung von Verunreinigungen im wesentlichen eine Fragestellung des Herstellverfahrens.
Bei den gebräuchlichsten Methoden zur Herstellung von dotierten Zinnoxid-Nanopartikeln wird das Nanoteilchen entweder durch Solvolyse- verfahren oder auf elektrochemischem Wege erzeugt. Dabei wird die Oberfläche der Teilchen in situ modifiziert und damit das Teilchen stabilisiert und an die Anwendungsmatrix angepasst. Von Nachteil ist, dass bei diesen Verfahren jedoch nicht gänzlich ausgeschlossen werden kann, dass es teilweise zu Einschlüssen dieser Oberflächen¬ modifizierungsagenzien in die Nanoteilchen selbst, beziehungsweise zu einer Unverträglichkeit mit der Matrix, kommt. Dies mindert oftmals die Anwendbarkeit der so erzeugten dotierten, insbesondere auf Zinnoxid basierenden, Nanopartikel. Ferner sind diese Verfahren oftmals schlecht upzuscalen und für die im Lackbereich benötigten Quantitäten nicht ökonomisch.
Aufgabe der vorliegenden Erfindung ist es nanoteilige Halbleitermaterialien bereit zu stellen, die die oben genannten Nachteile nicht aufweisen.
Überraschenderweise wurde nun gefunden, dass die Oberfläche von nanoteiligen Halbleitermaterialien günstig beeinflusst werden kann, wenn grobteiligere Precursor als Basis zur Herstellung von Nanoteilchen dienen. Als Vorteile sind im Besonderen die erzielbare große Reinheit der Oberfläche zu nennen, vor allem, wenn die Stabilisierung der Nanopartikel nicht wie üblich mit Dispergieradditiven, sondern elektrostatisch in wässrigen Medien über die Einstellung eines vom Betrag her ausreichenden Zetapotentials erfolgt. Vorzugsweise beträgt das Zetapotential > 30 mV, insbesondere > 60 mV.
Gegenstand der vorliegenden Erfindung sind somit nanoteilige Halbleitermaterialien, hergestellt, indem grobteilige Precursor, im Teilchengrößenbereich von 0,1 bis 50 μm, im wässrigen Medium bei einem pH-Wert von 6-11 , gemahlen werden.
Die auf diese Art und Weise erzeugten Nanopartikel zeichnen sich durch ihre große Reinheit, ihre Abwesenheit von Fremdstoffen und ihre hohe Absorption im IR-Bereich aus.
Gegenstand der Erfindung ist weiterhin die Verwendung der erfindungs- gemäßen nanoteiligen Halbleitermaterialien zur IR-Härtung von Polymer¬ matrizen, insbesondere aus dem Bereich der Lacke und Druckfarben sowie die Verwendung der nanoteiligen Halbleitermaterialien in Polymer- Masterbatches und Polymerpräparationen.
Geeignete Precursor mit Partikelgrößen von 0,1 bis 50 μm, vorzugsweise 0,5 bis 20 μm und insbesondere 1 bis 10 μm, werden unter Anwendung von mechanischer Energie in wässrigen Medien, vorzugsweise Wasser oder mit Wasser mischbare organische Lösemittel, wie z.B. Methanol, Ethanol, Diole, Triole, bei einem pH-Wert von 6-11 , zerkleinert. So hergestellte Halbleitermaterialien zeichnen sich dadurch aus, dass sie sehr stabil sind und eine sehr reine Oberfläche und Zusammensetzung aufweisen. Derart hergestellte Nanopartikel können nach der Mahlung getrocknet werden oder sie werden in Lösung den wässrigen Anwendungssystemen zugesetzt. Es ist auch möglich Zusatzstoffe, insbesondere Verdicker, Netzmittel, Dispergierhilfsmittel und andere Additive vor, beim oder nach dem Mahlprozess zuzugeben um damit die Kompatibilität mit unterschiedlichen Matrizen zu steigern. Bei den Additiven kann es sich sowohl um polymere, oligomere und monomere Additive handeln. Diese Präparationen bestehend aus Nanoteilchen, Zusatzstoffen und gegebenenfalls Wasser bzw. Wasser/Lösemittel- Gemisch können somit sowohl feste, als auch flüssige Zubereitungen sein.
Gegenstand der vorliegenden Erfindung sind auch Präparationen enthaltend Nanoteilchen, Zusatzstoffe und gegebenenfalls Wasser bzw. ein Wasser/Lösemittelgemisch. Diese Präparationen können beispielsweise in Matrixpolymeren, wie z. B. Polymermasterbatches und in Polymerpräparationen Anwendung finden.
Bei der Einarbeitung der Nanopartikel in nichtwässrige Systeme werden die Nanopartikel zuvor von dem wässrigen Medium befreit, z.B. durch Trocknung oder langsame Abdunstung unter Anwendung starker mechanischer Scherung. Anschließend werden die trockenen oder getrockneten Nanopartikel unter Anwendung von hohen Scherenergien in eine Matrixpolymerschmelze eingetragen. Zusätze von Hilfsstoffen, welche die homogene Einarbeitung der Nanopartikel in die Polymerschmelze erleichtern, z.B. amphiphile nichtionische Copolymere, wie z.B. Polyether basierende Polymersysteme, erleichtern oftmals die Überführung der Nanopartikel in die entsprechende Schmelze des Matrixpolymers.
Oftmals kann die elektrostatisch stabilisierte, wässrige Dispersion direkt unter Anwendung eines Extruders durch Einwirkung hoher Scherkräfte in die Polymerschmelze eingetragen werden. Gegebenenfalls können - A -
Additive zugesetzt werden. Auf diese Weise gelingt die Herstellung von Masterbatches oder Polymerpräparationen, welche die erfindungs¬ gemäßen Nanopartikel in Konzentrationen von bis zu 30 %, vorzugsweise 1 - 30 %, insbesondere 5 - 10 %, enthalten. Diese können dann in Pulverklarlacksysteme eingesetzt werden, wobei die Wirkkonzentration bei ca. 0,3 - 0,8 % Nanopartikel bezogen auf festes Polymer liegt. Die so hergestellten Klarlacksysteme zeigen bei IR-Bestrahlung wesentlich vergrößerte Aufheizraten.
Geeignete helle und transparente Halbleitermaterialien als IR- Härtungsbeschleuniger sind insbesondere lndium(lll)oxid, Zinn, Zinn(IV)oxid, Zinkoxid, Antimon sowie deren Gemische. Ganz besonders bevorzugt ist Zinnoxid.
Besonders bevorzugte IR-Härtungsbeschleuniger sind Zinn(IV)oxid,
Antimon(lll)oxid, Indium-Zinn-Oxid (ITO) oder Antimon(lll)oxid sowie deren Gemische. Insbesondere dotierte Zinnoxide zeigen zusätzlich eine starke Absorption im UV-Bereich, welche bei Klarlacksystemen sehr von Vorteil ist, da hier typische UV-Schutzpigmente, wie z.B. TiO2-Pigmente, in hohen Konzentrationen fehlen. Ein zusätzlicher UV-Schutz ist daher gerade in Klarlacksystemen erwünscht.
Die erfindungsgemäßen nanoteiligen Halbleitermaterialien besitzen in der Regel als Primärpartikel mittlere Partikelgrößen (d5o) von 10 bis 80 nm, vorzugsweise von 20 bis 50 nm, insbesondere von 20 bis 30 μm.
Bei den homogen aufgebauten Halbleitern ist das Halbleitermaterial vorzugsweise mikrokristallin aufgebaut.
Besonders bevorzugte Härtungsbeschleuniger sind transparente oder helle Halbleitermaterialien mit einem Pulverwiderstand von < 20 Ω • m, vorzugsweise von < 5 Ω • m.
Ein besonders bevorzugter Härtungsbeschleuniger ist ein mit Antimon(lll)oxid dotiertes Zinn(IV)oxid. Weiterhin bevorzugt sind Zugaben von Indiumoxiden als Dotierungsmittel. Neben Antimon(lll), vorzugsweise Antimon(lll)oxid, sind Halogenide, vorzugsweise Chloride und Fluoride, weiterhin als Dotierstoff, insbesondere für Zinnoxide, geeignet.
Die Dotierung ist abhängig vom eingesetzten Halbleitermaterial und beträgt in der Regel 0,5 - 30 Gew. %, vorzugsweise 2 - 25 Gew. %, insbesondere 5 - 16 Gew. % bezogen auf das Halbleitermaterial.
Zinnoxide sind vorzugsweise mit 0,5 - 30 Gew. %, insbesondere 1 - 12 Gew. % und ganz besonders bevorzugt mit 5 - 10 Gew. % dotiert. Als Dotiermittel werden vorzugsweise Antimon oder Antimonverbindungen eingesetzt.
Weiterhin können auch Gemische von nanoteiligen Halbleitermaterialien als Härtungsbeschleuniger, insbesondere von Polymermatrizes wie Lacke und Druckfarben, eingesetzt werden, wobei dem Mischungsverhältnis keine Grenzen gesetzt sind.
Bevorzugte Gemische sind Indium-Zinn-Oxide mit dotierten Zinn(IV)oxiden und Indium-Zinn-Oxid mit dotierten Zinkoxiden. Weiterhin können in einer besonderen Ausführungsform auch die erfindungsgemäßen Nanoteilchen mit plättchenförmigen Härtungsbeschleunigern, wie z.B. Minatec® 30 oder Minatec® 31 , Produkte der Fa. Merck KGaA, gemischt werden. Letztere haben vorzugsweise Teilchengrößen von 5 - 100 μm. Dieses Gemisch aus Nanopartikel/Plättchen enthält vorzugsweise 2-98 Gew. %, insbesondere 50-98 Gew. % und ganz besonders bevorzugt 80-98 Gew. % der erfindungsgemäßen nanoteiligen Halbleitermaterialien. Derartige Gemische von plättchenförmigen Härtungsbeschleunigern, welche eine exzellente, vorzugsweise im sichtbaren Lichtbereich möglichst transparente Flächenabdeckung gewährleisten mit den erfindungs¬ gemäßen Nanopartikeln, welche zusätzlich eine gute Wärmeleitfähigkeit aufweisen und welche innerhalb des Matrixvolumens für eine starke IR- Absorption und Wärmeleitung sorgen, sind vorteilhaft für alle dem Fachmann bekannten Polymermatrizen. Den Anwendungssystemen können auch Gemische aus zwei, drei oder mehr nanoteiligen Halbleitermaterialien zugesetzt werden. Die Gesamtkonzentration ist abhängig von dem Anwendungssystem. Beispielsweise sollte im Lacksystem bzw. in der Druckfarbe die Gesamtkonzentration an Halbleitermaterialiengemisch nicht mehr als 10
Gew. % bezogen auf das Anwendungssystem betragen.
Der bzw. die Härtungsbeschleuniger werden dem Lacksystem bzw. der Druckfarbe vorzugsweise in Mengen von 0,01 - 10,0 Gew. %, insbe- sondere von 0,01 - 8,0 Gew. %, besonders bevorzugt in Mengen von 0,05 - 5,0 Gew. %, bezogen auf den Lack bzw. die Druckfarbe, zugesetzt.
Die nanoteiligen erfindungsgemäßen Halbleitermaterialien werden hergestellt, indem ein geeigneter Precursor mit Partikelgrößen von Teilchengrößenbereich 0,1 bis 50 μm, vorzugsweise von 0,5 bis 10 μm, insbesondere von 1 bis 10 μm, in Wasser oder in einem wässrigen Lösemittelgemisch gemahlen wird. Geeignete Precursor sind insbe¬ sondere dotierte oder undotierte, helle und transparente Halbleiter¬ materialien, insbesondere Indiumoxid, Zinn, Zinnoxid, Antimon sowie deren Gemische. Ganz besonders bevorzugt ist Zinnoxid, insbesondere mit Antimon dotiertes Zinnoxid. Geeignete Precursor sind kommerziell erhältlich, z. B. von der Fa. Merck KGaA unter der Marke Minatec® 230.
Vorzugsweise findet die Mahlung der Precursor in Wasser statt. Es können aber auch Gemische von Wasser und organischen Lösemitteln, die in Wasser gut löslich sind, eingesetzt werden. Geeignete organische Lösemittel sind insbesondere Alkohole, wie z.B. Ethanol, Propanol, Butanol, Cyclohexanol, Glycole, wie z.B. Ethylen- oder Propylenglykole.
Geeignete Mühlen sind Kugelmühlen, Perlmühlen, sowie weitere dem
Fachmann bekannte und geeignete Mahlaggregate, welche eine intensive Abführung der entstehenden Wärme als auch einen hohen Füllgrad an Mahlkörpem und weiterhin einen starken Eintrag an mechanischer Energie erlauben. Während der Mahlung wird der pH-Wert auf 6-11 , vorzugsweise pH 8-11 eingestellt. Der pH-Wert ist abhängig vom verwendeten Precursor und kann vom Fachmann leicht ermittelt werden. Der Mahlprozess dauert in Abhängigkeit vom eingesetzten Precursor 2 bis 48 h, vorzugsweise 10 bis 24 h.
Anschließend kann ein Trocknungsprozess erfolgen. Sofern erforderlich werden die Nanoteilchen abzentrifugiert und anschließend bei Tempera¬ turen von 40 - 130 0C, insbesondere 50 - 80 0C, bevorzugt unter Anwendung von Vakuum getrocknet.
Die Mahlung erfolgt bevorzugt bei Konzentrationen des Precursormaterials von 5 bis 20 %, besonders bevorzugt bei Konzentrationen des Precursor¬ materials von 10 bis 20 %, in Abhängigkeit von der Viskosität der ent- stehenden Nanopartikeldispersion. Es sollte ferner ein möglichst hoher Füllgrad an harten feinteiligen Mahlkörpern angestrebt werden.
Nanoteilige dotierte Zinnoxide werden vorzugsweise hergestellt, indem grobteilige Precursor im Teilchengrößenbereich von 0,1 bis 50 μm, insbe- sondere 1 bis 10 μm, bei einem pH-Wert von 9-11 , einer intensiven
Mahlung, vorzugsweise unter Verwendung von Zirkonoxid-Mahlkörper bzw. Mahlkörper von vergleichbarer oder höherer Härte, unterzogen werden.
Der erfindungsgemäße IR-Härtungsbeschleuniger allein oder in
Kombination mit plättchenförmigen Härtungsbeschleunigern wird vor der Applikation auf einen Gegenstand, z.B. einen Lack bzw. eine Druckfarbe, eingerührt. Dies erfolgt vorzugsweise unter Verwendung eines Hochgeschwindigkeitsrührers oder im Fall schwer dispergierbarer, mechanisch unempfindlicher Härtungsbeschleuniger durch Verwendung einer Perlmühle bzw. einer Schüttelmaschine. Auch andere dem Fachmann bekannte Dispergieraggregate sind möglich. Zuletzt wird der Lack oder die Druckfarbe an der Luft physikalisch unter Anwendung von IR-Bestrahlung, ausgehärtet, beziehungsweise chemisch vernetzt. Durch den Härtungsbeschleuniger wird die Härtungszeit der Lackschicht bzw. der Druckfarbe sehr stark verkürzt, beziehungsweise der Einsatz von IR-Trocknung in transparenten Lacksystemen, wie z.B. Pulverlacken, erst ökonomisch durchführbar, da diese selbst, als organische Verbindung kaum im nahen, energiereichen Infrarotbereich absorbieren. Die effizientere Wirkung lässt sich leicht an der wesentlich forcierten Temperaturentwicklung bei IR-Bestrahlung einer transparenten Polymerschicht, welche erfindungsgemäße Nanopartikel enthält im Vergleich zu der entsprechenden Probe ohne die erfindungsgemäßen Partikel feststellen.
Die erfindungsgemäßen nanoteiligen IR-Härtungsbeschleuniger sind deshalb insbesondere aufgrund ihrer Transparenz für IR-Klarlacke aller Art geeignet.
Weiterhin wurde gefunden, dass sich die Beschleunigung der Aushärtung auch auf darüberliegende IR-Lackschichten positiv auswirken kann, abhängig von der Pigmentierung dieser darüberliegenden Lackschichten und den Wärmeeinflüssen.
Gegenstand der Erfindung sind weiterhin Polymermatrizen, wie z.B. Druck¬ farben, Industrielacke und Automobillacke, einschließlich Klarlacke, die die erfindungsgemäßen nanoteiligen IR-Härtungsbeschleuniger enthalten.
Zu den geeigneten Lacksystemen zählen insbesondere IR-härtbare Lacke aus dem Bereich der Pulverlacke, sowie lösemittelbasierende Systeme. Weiterhin geeignet sind Folienapplikationen und Kunststoffschweißen, sowie Lösemittel-haltige oder wässrige IR-Druckfarben für alle gängigen Druckarten, wie z.B. Tiefdruck, Flexodruck, Buchdruck, Textildruck, Offset- Druck, Siebdruck, Sicherheitsdruck.
Die folgenden Beispiele sollen die Erfindung näher erläutern, ohne sie jedoch zu begrenzen. Beispiele
Beispiel 1 : Herstellung eines nanoteiligen antimondotierten Zinnoxids
Zur Herstellung eines antimondotierten nanoteiligen Zinnoxids werden in einer Rührwerkskugelmühle ca. 13 Massen prozent des ungefähr 1 - 10 μm großen Precursors (Minatec® 230 der Fa. Merck KGaA) gegeben, Zirkonoxid-Mahlkörper mit 0,35 mm Durchmesser (Füllgrad φ = 0,8) hinzugefügt und 24 Stunden bei pH 11 gemahlen. Der d50-Wert der Teilchengröße beträgt ca. 50 nm.
Beispiel 2: Herstellung von transparenten IR-absorbierenden Polymer¬ matrizen
Ein Hydroklarlack wird mit jeweils 0,5 % nanoteiligem Zinkoxid, Zinnoxid und den antimondotierten Zinnoxidnanoteilchen aus Beispiel 1 versetzt und bei konstanter Schichtdicke auf ein Metallsubstrat appliziert. Gemessen wird die Entwicklung der Oberflächen- und Substrattemperatur in Abhängigkeit der Zeit bei Bestrahlung mit einer IR-Quelle.
Aus Tabelle 1 ist ersichtlich, dass für den Klarlack mit den erfindungs¬ gemäßen Nanoteilchen die am stärksten forcierte Wärmeentwicklung (Tmax> gemessen nach 20 sec Bestrahlung) erhalten wird. Die Farb¬ unterschiede (ΔE) zum Klarlacksystem fallen jedoch gegenüber nano¬ teiligem Zinnoxid oder Zinkoxid sehr gering aus. Da es sich bei den erfindungsgemäßen Teilchen um nanoteilige Materialien von d5o = 50 nm mit geringer Absorption (Abbildung 1 ) handelt, zeigen sie weiterhin eine große Transparenz. Tabelle 1 :
Figure imgf000012_0001
Beispiel 3: Herstellung eines Pulverklarlack-Masterbatches
5 % des nanoteiligen antimondotierten Zinkoxids (bezogen auf die Festsubstanz) aus Beispiel 1 wird mit Crylcoat® 633 (Fa. Cytec, West Paterson, USA) versetzt und 2 h bei 25 0C und 50 mbar vorgetrocknet. Bei der anschließenden Extrusion wird das Restwasser über die Entgasung abgetrennt. Es wird ein transparenter Pulverlack-Masterbatch erhalten, welcher das erfindungsgemäße nanoteilige antimondotierte Zinkoxid in feindispersem Zustand enthält.
Beispiel 4: Herstellung und Vergleich von farbneutralen, möglichst transparenten IR-absorbierenden Pulverlacksystemen
Das Aufheizverhalten wird nach der elektrostatischen Pulverlack¬ applikation auf Aluminiumblechen geprüft. Hierzu wird die Oberflächen¬ temperatur bei der Bestrahlung mit einer IR-Quelle gemessen. Es werden die folgenden 3 Proben miteinander verglichen:
Pulverlackprobe 1 : Herstellung eines antimondotierten Zinkoxid- Pulverklarlackes enthaltend nanoteiliges antimondotiertes Zinkoxid
4 m% Masterbatch gemäß Beispiel 3, 4,4 m% Primid XL 552 (Fa. EMS- PRIMID1 Doma/Ems, Schweiz) und 0,5 m% Benzoin (Fa. Merck KGaA, Darmstadt, Deutschland) werden in 91 ,1 m% Crylcoat® 633 (Fa. Cytec, West Paterson, USA) durch gemeinsame Extrusion unter Verwendung eines Busskneters (TCS 30) bei 110 0C und 300 U/min eingearbeitet. (Entspricht einem Gehalt von 0,2 m% erfindungsgemäßer Nanoteilchen aus Beispiel 1 im Pulverlack).
Pulverlackprobe 2: Vergleichsprobe pigmentiert mit Precursor Minatec® 230
0,2 m% Minatec® 230 (Fa. Merck KGaA, Darmstadt, Deutschland), 4,4 m% Primid XL 552 (Fa. EMS-PRIMID, Doma/Ems, Schweiz) und 0,5 m% Benzoin (Fa. Merck KGaA, Darmstadt, Deutschland) werden in 94,9 m% Crylcoat® 633 (Fa. Cytec, West Paterson, USA) analog Pulverlackprobe 1 eingearbeitet.
Pulverlackprobe 3: Vergleichsprobe unpigmentierter Pulverklarlack
4,4 m% Primid XL 552 (Fa. EMS-PRIMID, Doma/Ems, Schweiz) und 0,5 m% Benzoin (Fa. Merck KGaA, Darmstadt, Deutschland) werden in 95,1 m% Crylcoat® 633 (Fa. Cytec, West Paterson, USA) analog Pulverlack¬ probe 1 und 2 eingearbeitet.
Aus Abbildung 2 ist ersichtlich, dass der Pulverklarlack, welcher die erfindungsgemäße Nanoteilchenpräparation gemäß Beispiel 3 enthält, die schnellste bzw. größte Aufheizung erzielt. Eine wesentlich schlechtere Temperaturentwicklung zeigt die mit dem Precursor Minatec® 230 pigmentierte Pulverlackprobe 2, welche auch visuell als nicht vollständig transparent zu bezeichnen ist. Der unpigmentierte Pulverklarlack weist eine sehr langsame Temperaturentwicklung auf. Weiterhin wird festgestellt, dass nur Pulverlackprobe 1 die zur vollständigen Vernetzung notwendigen hohen Temperaturen durch IR-Bestrahlung erzielt.

Claims

Patentansprüche
1. Nanoteilige Halbleitermaterialien hergestellt, indem man Halbleitermaterialien in einem wässrigen Medium bei einem pH-Wert von 6-11 und einer Teilchengröße von 0,1 bis 50 μm mahlt.
2. Nanoteilige Halbleitermaterialien nach Anspruch 1 , dadurch gekennzeichnet, dass diese als Primärpartikel mittlere Partikelgrößen (d5o) von 10 bis 80 nm aufweisen.
3. Nanoteilige Halbleitermaterialien nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass sie aus lndium(lll)oxid, Indium-Zinn-Oxid (ITO), Antimon(lll)oxid, Zinn(IV)oxid, Zinkoxid oder deren Gemische bestehen.
4. Nanoteilige Halbleitermaterialien nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass sie mit Antimon(lll) oder Halogeniden dotiert sind.
5. Nanoteilige Halbleitermaterialien nach Anspruch 4, dadurch gekennzeichnet, dass das Halbleitermaterial ein mit Antimon(lll)oxid dotiertes Zinn(IV)oxid ist.
6. Nanoteilige Halbleitermaterialien nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass die Dotierung 0,5 - 30 Gew. % bezogen auf das Halbleitermaterial beträgt.
7. Nanoteilige Halbleitermaterialien nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Halbleitermaterial mikrokristallin aufgebaut ist.
8. Verwendung von nanoteiligen Halbleitermaterialien nach einem der Ansprüche 1 bis 7 als IR-Härtungsbeschleuniger in festen und flüssigen Präparationen, Matrixpolymeren, Polymerpräparationen, Industrielacken, Automobillacken, Klarlacksystemen, Pulverlacken, in
Kunststoffen und Folien.
9. Verwendung nach Anspruch 8, dadurch gekennzeichnet, dass die Anwendungssysteme ein oder mehrere nanoteilige Halbleiter¬ materialien gemäß einem der Ansprüche 1 bis 7 enthalten.
10. Lacke und Druckfarben, dadurch gekennzeichnet, dass sie 0,01 - 10
Gew. % an nanoteiligen Halbleitermaterialien gemäß einem der Ansprüche 1 bis 7 bezogen auf den Lack bzw. die Druckfarbe als IR- Härtungsbeschleuniger enthalten.
11. Polymer-Masterbatches und Polymerpräparationen, dadurch gekennzeichnet, dass sie 1-30 Gew.% an nanoteiligen Halbleiter¬ materialien gemäß einem der Ansprüche 1 bis 7 bezogen auf das Polymer-Masterbatch bzw. die Polymerpräparation enthalten.
12. Feste und flüssige Präparationen, dadurch gekennzeichnet, dass sie ein oder mehrere nanoteilige Halbleitermaterialien nach einem der Ansprüche 1 bis 7, Zusatzstoffe und gegebenenfalls Wasser oder ein Wasser/Lösemittelgemisch enthalten.
13. Verwendung der Präparationen nach Anspruch 12 in Matrix¬ polymeren und Polymerpräparationen.
PCT/EP2005/008565 2004-08-12 2005-08-08 Härtungsbeschleuniger WO2006018169A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP05775134A EP1776412A1 (de) 2004-08-12 2005-08-08 Härtungsbeschleuniger
US11/573,514 US9114983B2 (en) 2004-08-12 2005-08-08 Hardening accelerators

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004039358.3 2004-08-12
DE200410039358 DE102004039358A1 (de) 2004-08-12 2004-08-12 Härtungsbeschleuniger

Publications (1)

Publication Number Publication Date
WO2006018169A1 true WO2006018169A1 (de) 2006-02-23

Family

ID=35044983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/008565 WO2006018169A1 (de) 2004-08-12 2005-08-08 Härtungsbeschleuniger

Country Status (5)

Country Link
US (1) US9114983B2 (de)
EP (1) EP1776412A1 (de)
DE (1) DE102004039358A1 (de)
TW (1) TW200621865A (de)
WO (1) WO2006018169A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008005826A1 (de) 2007-02-09 2008-08-14 Merck Patent Gmbh Polymermodifizierte Partikel
WO2009015713A1 (de) * 2007-06-22 2009-02-05 Merck Patent Gmbh Härtungsbeschleuniger
US8252104B2 (en) * 2007-11-06 2012-08-28 Brother Kogyo Kabushiki Kaisha Water-based infrared absorptive ink for ink-jet recording, ink-jet recording method, and ink-jet recording apparatus
US8697785B2 (en) 2009-12-01 2014-04-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. N-allyl carbamate compounds and use thereof, in particular in radiation-curing coatings

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5858077A (en) * 1994-04-08 1999-01-12 Nippon Arc Co., Ltd. Coating composition capable of yielding a cured product having a high refractive index and coated articles obtained therefrom
US6162374A (en) * 1998-05-28 2000-12-19 Merck Patent Gesellschaft Mit Electrically conductive pigment mixture
US6409815B1 (en) * 1994-04-06 2002-06-25 Merck Patent Gesellschaft Mit Beschraenkter Haftung Surface-modified conductive pigment
DE10261541A1 (de) * 2002-12-23 2004-07-01 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Indium-Zinn-Oxid enthaltendes Material, Verfahren zu seiner Herstellung und dieses Material enthaltende Beschichtungen

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5071800A (en) * 1989-02-28 1991-12-10 Tosoh Corporation Oxide powder, sintered body, process for preparation thereof and targe composed thereof
US5296168A (en) * 1989-08-03 1994-03-22 E. I. Du Pont De Nemours And Company Electroconductive particles and method for adjusting the isoelectric point thereof
DE69309814T2 (de) * 1992-08-31 1997-10-16 Sumitomo Cement Co Antireflektive und antistatische Bekleidungschicht für eine Elektronenstrahlröhre
JPH06184470A (ja) * 1992-12-21 1994-07-05 Hitachi Chem Co Ltd 導電塗料組成物及び導電塗膜の製造法
US5518810A (en) * 1993-06-30 1996-05-21 Mitsubishi Materials Corporation Infrared ray cutoff material and infrared cutoff powder use for same
US5484694A (en) * 1994-11-21 1996-01-16 Eastman Kodak Company Imaging element comprising an electrically-conductive layer containing antimony-doped tin oxide particles
NL1004635C2 (nl) * 1995-12-06 1999-01-12 Sumitomo Chemical Co Indiumoxyde-tinoxydepoeders en werkwijze voor het voortbrengen daarvan.
US7015280B2 (en) * 2002-03-22 2006-03-21 Northern Illinois University Conductive emulsion for preparing surface for powder coating

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6409815B1 (en) * 1994-04-06 2002-06-25 Merck Patent Gesellschaft Mit Beschraenkter Haftung Surface-modified conductive pigment
US5858077A (en) * 1994-04-08 1999-01-12 Nippon Arc Co., Ltd. Coating composition capable of yielding a cured product having a high refractive index and coated articles obtained therefrom
US6162374A (en) * 1998-05-28 2000-12-19 Merck Patent Gesellschaft Mit Electrically conductive pigment mixture
DE10261541A1 (de) * 2002-12-23 2004-07-01 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Indium-Zinn-Oxid enthaltendes Material, Verfahren zu seiner Herstellung und dieses Material enthaltende Beschichtungen

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008005826A1 (de) 2007-02-09 2008-08-14 Merck Patent Gmbh Polymermodifizierte Partikel
WO2009015713A1 (de) * 2007-06-22 2009-02-05 Merck Patent Gmbh Härtungsbeschleuniger
US8252104B2 (en) * 2007-11-06 2012-08-28 Brother Kogyo Kabushiki Kaisha Water-based infrared absorptive ink for ink-jet recording, ink-jet recording method, and ink-jet recording apparatus
US8697785B2 (en) 2009-12-01 2014-04-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. N-allyl carbamate compounds and use thereof, in particular in radiation-curing coatings

Also Published As

Publication number Publication date
US20090288581A1 (en) 2009-11-26
EP1776412A1 (de) 2007-04-25
DE102004039358A1 (de) 2006-02-23
US9114983B2 (en) 2015-08-25
TW200621865A (en) 2006-07-01

Similar Documents

Publication Publication Date Title
DE60225591T3 (de) Verfahren zur herstellung einer zusammensetzung enthaltend ein polymer oder copolymer von 3,4-dialkoxythiopen und ein nicht-wässriges lösungsmittel
DE60226067T2 (de) Zusammensetzung enthaltend ein polymer oder copolymer von 3,4-dialkoxythiopen und ein nichtwässriges lösungsmittel
EP0960912B1 (de) Pigmentmischung
EP1708963B1 (de) Nanopartikel
WO2010092013A1 (de) Polymerzusammensetzungen enthaltend nanopartikuläre ir-absorber
EP1871825A1 (de) Formmasse und formkörper aus thermoplastischem kunststoff, enthaltend nanoskalige, anorganische teilchen, verfahren zur herstellung der formmasse und der formkörper sowie deren verwendungen
EP2141124B1 (de) Verfahren zur Herstellung von grob- und/oder nanoskaligen, gecoateten, desagglomerierten Magnesiumhydroxidpartikeln
EP1680462B1 (de) Verfahren zur herstellung eines antistatisch beschichteten formkörpers
WO2004106423A2 (de) Lösemittelhaltige zusammensetzungen auf basis von polychloropren
DE19756790A1 (de) Prepolymer mit darin isoliert dispergierten nanoskaligen Feststoffteilchen, Verfahren zu seiner Herstellung und seine Verwendung
EP1603980A1 (de) Antistatisch beschichteter formkörper und verfahren zu seiner herstellung
EP1716199A2 (de) Verfahren zur herstellung von polyesterharzen mit nanoskaligen zusatzstoffen f r pulverlacke
EP1517950B1 (de) Härtung und trocknung von lacksystemen und druckfarben
DE10129374A1 (de) Verfahren zur Herstellung von Formkörpern mit elektrisch-leitfähiger Beschichtung und Formkörper mit entsprechender Beschichtung
EP1776412A1 (de) Härtungsbeschleuniger
EP2141189A2 (de) Verfahren zum Herstellen von aushärtbaren Massen, enthaltend grob-und/oder nanoskalige, gecoatete, desagglomerierte und bevorzugt funktionalisierte Magnesiumhydroxidpartikel, sowie von ausgehäteten thermoplastischen oder duroplastischen Polymeren bzw. Kompositen, enthaltend desagglomerierte und homogen verteilte Magnesiumhydroxidfüllstoffpartikel
EP2065451A2 (de) Trockenpräparate
EP1648968A1 (de) Feste pigmentpräparationen und ihre dispersionen in organischen lösemitteln, verfahren zu ihrer herstellung und ihre verwendung
DE102011114363A1 (de) Stabile nanopartikuläre Suspension und Verfahren zur Herstellung
EP0960169A1 (de) Farbige pulverförmige beschichtungsmasse
DE10343393A1 (de) Mit Effektpigmenten pigmentierte, pulverförmige Beschichtungsstoffe, Verfahren zu ihrer Herstellung und ihre Verwendung
DE2450786C3 (de) Pigmentzubereitungen
DE60111098T2 (de) Wässrige Pulverlack-Dispersionen, Verfahren zu ihrer Herstellung und ihre Verwendung
DE202019104416U1 (de) Farb- und Füllstoffpasten unter Verwendung anorganischer Partikel als Spacer
DE102017131437A1 (de) Verwendung einer Pigmentpräparation zur Herstellung von Lackfarben sowie die danach hergestellte Lackfarbe

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005775134

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005775134

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11573514

Country of ref document: US