WO2006016436A1 - 制御システム、制御方法、および処理システム、ならびにコンピュータ読取可能な記憶媒体およびコンピュータプログラム - Google Patents

制御システム、制御方法、および処理システム、ならびにコンピュータ読取可能な記憶媒体およびコンピュータプログラム Download PDF

Info

Publication number
WO2006016436A1
WO2006016436A1 PCT/JP2005/005805 JP2005005805W WO2006016436A1 WO 2006016436 A1 WO2006016436 A1 WO 2006016436A1 JP 2005005805 W JP2005005805 W JP 2005005805W WO 2006016436 A1 WO2006016436 A1 WO 2006016436A1
Authority
WO
WIPO (PCT)
Prior art keywords
alarm
information
processing
control
state
Prior art date
Application number
PCT/JP2005/005805
Other languages
English (en)
French (fr)
Inventor
Kazushi Mori
Original Assignee
Tokyo Electron Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited filed Critical Tokyo Electron Limited
Priority to US10/541,378 priority Critical patent/US20060247803A1/en
Publication of WO2006016436A1 publication Critical patent/WO2006016436A1/ja

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0259Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the response to fault detection
    • G05B23/0267Fault communication, e.g. human machine interface [HMI]
    • G05B23/027Alarm generation, e.g. communication protocol; Forms of alarm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67253Process monitoring, e.g. flow or thickness monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67288Monitoring of warpage, curvature, damage, defects or the like

Definitions

  • Control system Control system, control method, processing system, computer-readable storage medium, and computer program
  • the present invention relates to a control system, a control method, a processing system, a computer-readable storage medium, and a computer program including a processing device that performs predetermined processing on an object to be processed, for example, when manufacturing a semiconductor device .
  • a semiconductor wafer (hereinafter simply referred to as a wafer), and various processing apparatuses are used for that purpose.
  • a processing apparatus include a cleaning processing apparatus that performs a drying process after immersing a wafer in one or a plurality of processing tanks in which a processing liquid is stored.
  • Such a cleaning processing apparatus includes a temperature sensor that detects the temperature of the processing liquid supplied to the substrate, a concentration sensor that detects the concentration of the processing liquid, a position sensor that detects the position of the processing liquid in the tank, and the like.
  • a control system is provided for detecting the state of the processing device and controlling the processing device based on the various detection data. This control system also issues an alarm that the processing device may fail if the detected value of the sensor exceeds a preset allowable value during operation of the processing device.
  • a control unit is provided in each processing device, and these control units are connected to a host computer.
  • the host computer performs tracking processing of each processing device through exchange of various data with the control unit of each processing device.
  • the processing power received by each processing device is accumulated as a history, and the contents are displayed on a display device, and various parameters of the processing device are corrected and an abnormality is detected based on the process data.
  • Patent Document 1 in such a unified management method using a host computer, accumulated process data is limited, and abnormality or characteristic deterioration of a processing apparatus can be detected at an early stage.
  • a controller that collects all process data generated by the control unit of each processing device, analyzes the collected process data, and outputs the analysis results is disclosed as being difficult. Yes. As a result, the process data to be grasped can be increased, and the change with time of each processing apparatus can be detected early.
  • Patent Document 1 Japanese Patent Laid-Open No. 11-16797
  • An object of the present invention is to determine a state of a processing device based on alarm information, and to sufficiently manage a device abnormality, a device life, etc., and a control method thereof It is another object of the present invention to provide a processing system including such a control system, and a computer-readable storage medium and a computer program for performing such control.
  • Another object of the present invention is to provide a control system, a control method and a processing system capable of reliably predicting or discovering an actual device abnormality or device life at the user level, and such control. It is an object of the present invention to provide a computer-readable storage medium and a computer program for performing the above.
  • the control means for controlling the processing device based on the information detected in the processing device that performs the predetermined processing on the object to be processed;
  • Alarm generating means for generating an alarm when out of range, and the control means grasps the state of occurrence of the alarm generated from the alarm generating means, and
  • a control system is provided that notifies a warning when the occurrence state of the error reaches a predetermined threshold.
  • a control unit that controls the plurality of processing devices based on information detected by a plurality of processing devices that perform predetermined processing on the object to be processed;
  • An alarm generating means for generating an alarm when the detected information is out of a predetermined range, and the control means is configured to control the plurality of processing devices based on the plurality of information detected by the processing devices.
  • a plurality of device control units that individually control the control unit, a part of information received from each device control unit, and a host computer that controls each processing device based on the information, and each device control unit A control device that receives all or almost all of the information and controls each of the processing devices based on the information, and the control device receives the received information and the power of the alarm generation means.
  • Received error Means for collecting alarm information, means for analyzing the collected information, and grasping the state of occurrence of the alarm based on the alarm information, and notifying the user when the state of occurrence has reached a predetermined threshold A control system is provided.
  • a control method for controlling a processing apparatus based on a plurality of pieces of information detected by a processing apparatus that performs a predetermined process on an object to be processed.
  • a control method is provided for grasping the state of occurrence of an alarm that is generated when the issued information is out of a predetermined range and notifying a warning when the state of occurrence reaches a predetermined threshold.
  • a processing apparatus that performs a predetermined process on a target object and a control system that controls the processing apparatus.
  • Control means for controlling the processing apparatus based on information detected in a processing apparatus that performs predetermined processing, and alarm generation means for generating an alarm when the detected information is out of a predetermined range
  • the control means is provided with a processing system for grasping a state of occurrence of an alarm generated from the alarm generation means and notifying a warning when the occurrence state reaches a predetermined threshold value.
  • the apparatus includes a processing device that performs a predetermined process on the object to be processed, and a control system that controls the processing device.
  • Predetermined Control means for controlling the plurality of processing devices based on information detected by a plurality of processing devices that perform the above-described processing, and alarm generation means for generating an alarm when the detected information falls outside a predetermined range force
  • the control means includes a plurality of device control units that individually control the plurality of processing devices based on a plurality of pieces of information detected in the processing devices, and a part of the control units. Receives information, receives all or almost all information from the host computer that controls each processing device based on the information and each device control unit, and based on the information!
  • a control device for controlling the processing device wherein the control device collects the information received from each device control unit and the alarm information received from the alarm generating means, and the collected information is resolved. Means for, said grasp the occurrence of the alarm based on the alarm information, the generation state and means for notifying a warning when it reaches a predetermined threshold, the processing system is provided.
  • a computer reads the data including software that controls the processing device based on a plurality of pieces of information detected by the processing device that performs a predetermined process on the object.
  • This is a possible storage medium, and the software grasps the occurrence state of an alarm that is generated when the detected information is out of a predetermined range, and warns when the occurrence state reaches a predetermined threshold value.
  • a storage medium is provided.
  • a computer program including software for controlling the processing device based on a plurality of pieces of information detected by the processing device that performs a predetermined process on the object to be processed by the computer.
  • the software grasps the state of occurrence of an alarm that is generated when detected information is out of a predetermined range, and notifies a warning when the state of occurrence reaches a predetermined threshold.
  • the alarm generation force is detected, the alarm generation state is grasped, and a warning is notified when the generation state reaches a predetermined threshold value.
  • a predetermined threshold value Can be found or predicted.
  • the user sets a threshold value for notifying the occurrence status of the device alarm, such as the number of alarm occurrences within a predetermined time and the time from the occurrence of an alarm until the next alarm occurrence.
  • a threshold value for notifying the occurrence status of the device alarm such as the number of alarm occurrences within a predetermined time and the time from the occurrence of an alarm until the next alarm occurrence.
  • FIG. 1 is a block diagram showing an overall configuration of a processing system according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing a configuration of a part related to process data transfer in a main controller (MC) of a processing apparatus used in a processing system according to an embodiment of the present invention.
  • MC main controller
  • FIG. 3 is a perspective view showing an example of a processing apparatus used in a processing system according to an embodiment of the present invention.
  • FIG. 4 is a plan view showing an example of a processing apparatus used in the processing system according to the embodiment of the present invention.
  • FIG. 5 is a schematic view showing a first chemical tank and its piping system of a processing apparatus used in a processing system according to an embodiment of the present invention.
  • FIG. 6 is a block diagram showing main detection means connected to the block controller (BC).
  • FIG. 7 is a diagram showing an example of an alarm generation state to be detected in the AGC FDC function unit.
  • FIG. 8 A diagram showing another example of an alarm occurrence state that should be detected in the AGC FDC function unit
  • FIG. 9 is a diagram showing an example of a graph display of an alarm occurrence state when a detection condition is designated in the AGC FDC function unit.
  • FIG. 10 is a diagram showing another example of a graph display of an alarm occurrence state when a detection condition is specified in the AGC FDC function unit.
  • FIG. 1 is a block diagram showing the overall configuration of the processing system according to this embodiment.
  • This processing system 1 has a plurality of processing apparatuses 10 that perform cleaning by performing liquid processing on a wafer.
  • Each processing apparatus 10 includes a block controller (BC) 11 that is a lower-level control system, and a higher-level control system. It is controlled by the main controller (MC) 12 that is the control system.
  • the processing system 1 includes a host computer 15 that controls the entire system, and an advanced 'group' controller (hereinafter referred to as AGC) that analyzes process data generated by the control system of each processing device and outputs the result. I have 17).
  • AGC advanced 'group' controller
  • the main controller (MC) 12 receives the detection signal via the block controller (BC) 11 and sends a control signal to each component of the processing device 10 based on the detection signal.
  • Control unit 12a that transmits a signal
  • an abnormality detection unit 20 that analyzes process information received from the control unit 12a to detect an abnormality
  • an alarm generation unit that generates an alarm based on the abnormality detection information of the abnormality detection unit 20 21
  • the memory 18 in which all process information and alarm information received from the processing device 10 via the block controller (BC) 11 and subjected to signal processing by the control unit 12a are temporarily stored, and preset from the memory 18.
  • the HCI (Host Communication Interfa) is a logical interface between the HCI send buffer 19 that writes some types of process data (data 1, 3) and writes information to the host computer 15. ce) 13 and RAP (Remote Agent Process) 16 which is a logical interface means with AGC 17.
  • the HCI 13 exchanges various data with the host computer 15 through the data transmission system 14 such as TCPZlP.
  • the RAP 16 exchanges various data with the AGC 17 through the data transmission system 14.
  • the HCI 13 selects only some types of preset process data from all the process data obtained from the processing device 10 by the main controller 12 and transmits the selected process data to the host computer 15. In other words, the HCI 13 takes out some types of preset process data (data 1, 3) from the memory 18 in which all the process data generated by the main controller (MC) 12 is temporarily stored. Write to transmit buffer 19 and send HCI The contents of the communication buffer 19 are collectively transmitted to the host computer 15. The status data generated by the main controller (MC) 12 is also transmitted.
  • the RAP 16 unconditionally transmits all process data obtained from the processing apparatus 10 to the AGC 17 by the main controller (MC) 12. That is, the RAP 16 sequentially reads the process data stored in the process data storage memory 18 in the main controller (MC) 12 and transfers it to the AGC 17 without changing the data structure. However, operations that rearrange the data order or exclude only a small part of the data may be performed here.
  • the host computer 15 performs overall processing of each processing device 10 such as performing tracking processing of each processing device 10 by exchanging various data with the main controller (MC) 12 of each processing device 10. Take control.
  • MC main controller
  • AGC17 targets all process data obtained from each processing device 10, including centralized management of recipes (process condition values) for each processing device and process control of each processing device 10 based on the recipe.
  • recipe process condition values
  • analysis processing, statistical processing, centralized monitoring processing of process data and analysis Z statistical results, and processing to reflect analysis Z statistical results in the recipe are performed.
  • the AGC 17 includes an AGC server 17a and an AGC client 17b.
  • the AGC server 17 a includes a communication iZF (interface unit) 22, an EQM control unit 23, and a database 24.
  • the communication IZF (interface unit) 22 transmits / receives various data to / from the main controller (MC) 12 and the AGC client 17b of each processing apparatus 10 through the data transmission system 14.
  • the EQM control unit 23 corrects various parameters of the process for each processing unit based on the process conditions defined in advance and the process data obtained from each processing unit 10, stores the received parameters in the database 24, and It mainly performs processes such as searching the database 24 for process data to be transferred to the AGC client 17b.
  • the AGC client 17b can use and process the data analysis unit 25 that analyzes and statistically processes the process data transferred from the AGC server 17a, and the captured user process data and the analysis results.
  • Data conversion unit 26 that converts data into various formats
  • data display unit 27 that displays the converted data on a monitor, etc.
  • the recipe correction unit 28 that updates the recipe (process conditions) to optimize it, and the device error is detected at the user level separately from the device alarm occurrence.
  • It has an FDC (Fault Detection and Classification) function unit 29 that has functions such as defining and analyzing alarm occurrence states according to arbitrarily set error settings and detecting device errors in real time.
  • the recipe may be stored in a hard disk or a semiconductor memory, or may be set at a predetermined position while being stored in a portable storage medium such as a CDROM or DVD. Furthermore, the recipe may be appropriately transmitted from another device via, for example, a dedicated line.
  • FIG. 3 is a perspective view of the processing apparatus 10
  • FIG. 4 is a plan view thereof.
  • the processing apparatus 10 carries in and out the carrier C in which the wafer W is stored in a horizontal state, carries out and stores the carrier C, and performs a cleaning process using a predetermined chemical solution for the wafer and W, and also performs drying.
  • the processing unit 32 mainly performs processing, and an interface unit 33 that transfers the wafer W between the loading / unloading unit 31 and the processing unit 32.
  • the loading / unloading section 31 can store a plurality of carriers C, and a carrier loading / unloading section 34 on which a stage 41 for mounting a carrier C capable of accommodating a predetermined number, for example, 25 wafers W, is formed. It consists of a career stock section 35.
  • the carrier C has a structure in which the wafer W is accommodated substantially horizontally at a predetermined interval, and one side surface thereof serves as a loading / unloading port for the wafer W, and the loading / unloading port can be opened and closed by a lid.
  • the carrier stock portion 35 is provided with a plurality of carrier holding members 43, and the carrier C is held by these carrier holding members 43.
  • the carrier C storing the unprocessed wafer W placed on the stage 41 is carried into the carrier stock unit 35 by the carrier transfer device 42, while the carrier C storing the processed wafer W and W is The carrier is transferred from the carrier stock unit 35 to the stage 41 using the carrier transfer device 42.
  • a shutter 44 is provided between the carrier loading / unloading section 34 and the carrier stock section 35, and the shutter C is transferred when the carrier C is transferred between the carrier loading / unloading section 34 and the carrier stock section 35. 44 is opened, otherwise, the veg shutter 44 that performs atmosphere separation between the carrier loading / unloading section 34 and the carrier stock section 35 is closed.
  • the carrier transport device 42 includes, for example, an arm 42a such as an articulated arm or a telescopic arm that is driven so that at least the carrier C can be moved in the X direction. 42a grips carrier C and carries carrier C.
  • the carrier transporting device 42 can be driven in the Y direction and the Z direction (height direction) by a Y-axis driving mechanism and a Z-axis driving mechanism (not shown), and is thereby arranged at a predetermined position.
  • Carrier C can be placed on carrier holding member 43.
  • the carrier holding member 43 is provided in the vicinity of the wall surface forming the carrier stock portion 35, and is provided in a plurality of stages, for example, four stages in the height direction at each location.
  • the carrier stock section 35 temporarily stores the carrier C in which the wafer W before processing is stored, and also stores the carrier C in which the inside from which the wafer W is taken out is empty.
  • a window portion 46 is formed at the boundary between the carrier stock portion 35 and the interface portion 33, and the lid of the carrier C faces the window portion 46 on the carrier stock portion 35 side of the window portion 46.
  • an inspection Z loading / unloading stage 45 having the same structure as the carrier holding member 43 is provided so that the carrier C can be placed as described above.
  • the carrier transport device 42 may hold the carrier C for a predetermined time in a predetermined space facing the window 46 where the inspection Z loading / unloading stage 45 is not provided.
  • a lid opening / closing mechanism 47 for opening / closing the lid of the carrier C placed on the inspection Z loading / unloading stage 45 is provided on the carrier stock 35 side of the window 46.
  • the Ueno and W in the carrier C can be carried out to the interface unit 33 side. Conversely, the force on the interface unit 33 side also enters the empty carrier C. It is also possible to carry in wafer W.
  • the lid opening / closing mechanism 47 may be provided on the interface part 33 side of the window part 46.
  • a wafer inspection device 48 for measuring the number of wafers W in the carrier C is provided on the interface section 33 side of the window section 46.
  • the wafer inspection apparatus 48 for example, scans an infrared sensor head having a transmission unit and a reception unit in the Z direction in the vicinity of the X direction end of the wafer W accommodated in the carrier C, and between the transmission unit and the reception unit. Inspect the number of wafers W by detecting infrared transmitted or reflected light signal.
  • the stored state of the wafer W for example, the Use one that has a function to detect whether wafers W are placed one by one in parallel at a predetermined pitch in rear C, and whether wafers w are not stored diagonally with a step difference. It is preferable. Further, after confirming the storage state of the wafer w, the number of wafers W may be detected using the sensor.
  • the wafer inspection apparatus 48 is wired to the block controller (BC) 11 as a signal input device, and transmits the detected number of stored sheets and the stored state to the block controller (BC) 11 as an output signal.
  • the operations of the carrier transfer device 42 and the wafer inspection device 48 are controlled by the host computer 15 via the block controller (BC) 11 and the main controller (MC) 12.
  • the carrier transfer device 42 is controlled so that the carrier C is stored in the carrier stock unit 35.
  • the opening / closing of the shutter 44, the opening / closing of the window 46, and the operation of the lid opening / closing mechanism 47 are controlled in conjunction with the movement of the carrier transport device 42.
  • the interface unit 33 is provided with a wafer carry-in / out device 49, a wafer transfer device 51, and a wafer transfer device 52.
  • the wafer transfer device 51 transfers the wafer W to and from the wafer carry-in / out device 49 and converts the posture of the wafer W, and between the posture changing mechanism 51a and the wafer transfer device 52.
  • a wafer vertical holding mechanism 51b for transferring the wafer W.
  • the wafer loading / unloading device 49 unloads the wafers W and W in the carrier C through the window 46 and delivers them to the attitude changing mechanism 51a, and receives the wafer W after the liquid processing from the attitude changing mechanism 51a.
  • the wafer carry-in / out device 49 has two arms, an arm 49a for carrying an unprocessed wafer W and an arm 49b for carrying a processed wafer W.
  • the arms 49a and 49b are adapted to the alignment pitch of the wafer W in the carrier C so that a plurality of wafers W stored in the carrier C can be held together, and a predetermined number of Z directions Are arranged at predetermined intervals.
  • the arms 49a and 49b move (slide) or extend and retract in the direction of arrow A, and can move up and down by a predetermined distance in the Z direction.
  • the entire wafer loading / unloading device 49 is configured to be rotatable in the ⁇ direction, so that the arms 49a and 49b are connected to the carrier C placed on the inspection Z loading / unloading stage 45 and the posture changing mechanism 51a. This is also accessible.
  • the wafer carry-in / out device 49 for example, in a state where the arm 49a is on the wafer transfer device 51 side, the arm 49a is inserted below the wafer W, and the arm 49a is moved up by a predetermined distance to remove the wafer W. The arm 49a is held, and then the arm 49a is moved in the opposite direction to carry out the wafer W in the carrier C. Next, after the entire wafer carry-in / out device 49 is rotated by 90 °, the arm 49a is moved to deliver the wafer W held on the arm 49a to the posture changing mechanism 51a.
  • the arm 49b is moved to take out the liquid-treated weno and W from the posture change structure 5 la, and then the wafer carry-in / out device 49 is moved to 90 °. After the rotation, the arm 49b is placed on the wafer transfer device 51 side, and the arm 49b is moved to carry the wafer W held by the arm 49b into the empty carrier C.
  • the posture changing mechanism 51a of the wafer transfer device 51 a plurality of horizontal wafers W are received from the wafer loading / unloading device 49 by the guide member, and the guide member is rotated in this state to vertically change the wafer posture. Convert to state.
  • the wafer vertical holding mechanism 51b can store 50 wafers W for two carriers whose posture has been changed to the vertical state by the posture changing mechanism 51a at an arrangement pitch that is half the wafer arrangement pitch in the carrier C.
  • the Ueno and W for the two carriers are transferred to the wafer transfer device 52.
  • the wafer transfer device 52 delivers the wafer W in a vertical state with the wafer vertical holding mechanism 5 lb, carries the unprocessed wafer W into the processing unit 32, and conversely ends the liquid processing or the like.
  • the transferred wafer W is unloaded from the processing unit 32 and transferred to the wafer vertical holding mechanism 5 lb.
  • the wafer W is held by three chucks 58a to 58c.
  • the wafer transfer device 52 is provided with a guide rail 53 so that the wafer transfer device 52 can transfer the wafer W to and from the wafer vertical holding mechanism 51b and transfer the wafer W to the processing unit 32. It moves in the X direction along, and can enter the processing section 32 and exit the Z.
  • the wafer W is transferred between the wafer vertical holding mechanism 5 lb and the wafer transfer device 52.
  • a wafer detection sensor 57 for inspecting the arrangement state of the wafers W is provided at a position where the above is performed. Note that the wafer detection sensor 57 is not limited to such a position, and may be at a position where inspection can be performed until the processed wafer W is transferred to the wafer carry-in / out device 49.
  • the wafer detection sensor 57 is wired to the block controller (BC) 11 as a signal input device, and transmits the detected value to the block controller (BC) 11 as an output signal.
  • the interface unit 33 is provided with a parking area 40a on the side of the position where the wafer W is transferred between the wafer vertical holding mechanism 51b and the wafer transfer device 52.
  • the parking area 40a For example, an unprocessed wafer W can be put on standby. For example, when liquid processing or drying processing is performed on a lot of wafers W, the wafer W to be started next is parked using the time when it is not necessary to operate the wafer transfer device 52. Transport to area 40a. As a result, for example, compared to the case where the wafer W is transferred from the carrier stock unit 35, it is possible to shorten the movement time of the wafer W to the processing unit 32 and improve the throughput. It is out.
  • the processing unit 32 includes a liquid processing unit 38, a drying unit 39, and a knocking area 40b. From the interface unit 33 side, the drying unit 39, the liquid processing unit 38, and the parking area 40b are arranged in this order. Is arranged in.
  • the wafer transfer device 52 can move in the processing unit 32 along a guide rail 53 extending in the X direction.
  • the parking area 40b is a place for waiting for an unprocessed wafer W.
  • the wafer W in the lot where liquid processing or drying processing is performed is performed, and the wafer W which should start liquid processing next using the time when it is not necessary to operate the wafer transfer device 52 is in the parking area 40b. It is conveyed to. Since the parking area 40b is adjacent to the liquid processing unit 38, the moving time of the wafer W can be shortened at the start of the liquid processing, and the throughput can be improved.
  • the liquid treatment unit 38 includes a first chemical tank 61, a second chemical tank 63, a third chemical tank 65, a first flush tank 62, a second flush tank 64, and a third flush tank 66.
  • the first chemical tank 61, the first flush tank 62, the second chemical tank 63, the second The washing tank 64, the third chemical tank 65, and the third washing tank 66 are arranged in this order.
  • a transfer device 69 for transferring Ueno and W between the third chemical tank 65 and the third washing tank 66.
  • a chemical liquid for removing organic dirt and removing surface metal impurities is stored in the first chemical tank 61.
  • SPM liquid mixed sulfuric acid / peroxy-hydrogen water mixed solution
  • the second chemical tank 63 stores a chemical solution for removing deposits such as particles, for example, SC-1 solution (a mixed solution of ammonia, hydrogen peroxide, hydrogen, and water).
  • the chemical solution tank 65 stores an etching solution for etching the acid film formed on the surface of the wafer W, for example, dilute hydrofluoric acid (DHF).
  • DHF dilute hydrofluoric acid
  • a mixture of hydrofluoric acid (HF) and ammonium fluoride (buffered hydrofluoric acid (BHF)) can be used in addition to dilute hydrofluoric acid.
  • phosphoric acid can be used as an etchant.
  • the first to third rinsing tanks 62, 64 and 66 are for removing the chemical solution adhering to the wafer W by the liquid treatments in the first to third chemical solution tanks 61, 63 and 65, respectively.
  • Various washing methods such as water and quick dampening are used.
  • the transfer device 67 has a drive mechanism that can be moved up and down in the Z direction.
  • the wafer W delivered from the wafer transfer device 52 is lowered and immersed in the first chemical tank 61, and a predetermined time has elapsed.
  • the wafer W is pulled up later, and then the wafer W is moved in parallel in the X direction so that the wafer W is immersed in the first rinsing tank 62, held for a predetermined time, and then lifted.
  • the wafer W that has been processed in the first washing tank 62 is once returned to the chucks 58a to 58c of the wafer transfer device 52, and then transferred from the wafer transfer device 52 to the transfer device 68.
  • the transport devices 68 and 69 have the same configuration as the transport device 67 and operate in the same manner.
  • the liquid processing unit 38 is provided with a liquid processing unit thermometer 59 for detecting the temperature of the atmosphere in the liquid processing unit 38 and a liquid processing unit pressure gauge 60 for detecting the pressure.
  • Liquid processing unit thermometer 59 and liquid processing unit pressure gauge 60 are equipped with block controller (B C) 11 is wired as a signal input device, and the detected temperature and pressure are sent to the block controller (BC) 11 as output signals.
  • the drying unit 39 is provided with a rinsing tank 54 and a chuck cleaning mechanism 56 that cleans the chucks 58a to 58c of the wafer transfer device 52.
  • An isopropyl alcohol (IPA) is disposed above the rinsing tank 54, for example.
  • a drying chamber (not shown) is provided for drying the wafer W by supplying the steam.
  • a transfer device 55 for transferring the wafer W between the washing tank 54 and the drying chamber is provided, and the wafer W washed with water in the washing bath 54 is pulled up by the transfer device 55 and IPA-dried in the drying chamber. It has become so.
  • the transfer device 55 is configured in the same manner as the transfer device 67 and the like described above except that it cannot move in the X direction, and the wafer W can be transferred to and from the wafer transfer device 52.
  • the first chemical tank 61 is composed of a box-shaped inner tank 80 and an outer tank 81 that are large enough to accommodate the wafer W.
  • the upper surface of the inner tank 80 is open, and the wafer W is inserted into and removed from the inner tank 80 through the opening on the upper surface.
  • the outer tub 81 is mounted so as to surround the opening of the inner tub 80 so as to receive the chemical liquid in which the upper end force of the inner tub 80 also overflows.
  • liquid level sensors 82a and 82b for measuring the position of the liquid level are provided on the liquid level of the chemical solution stored in the inner tank 80 and the outer tank 81, respectively. These liquid level sensors 82a and 82b are wired to the block controller (BC) 11 as signal input devices, and transmit the detected liquid level positions to the block controller (BC) 11 as output signals.
  • a circulation supply circuit 84 is connected between the inner tank 80 and the outer tank 81 to supply a chemical solution in a circulating manner during the etching process of the wafer W.
  • One of the circulation supply circuit 84 is connected to the bottom surface of the outer tub 81, and in the middle of the circulation supply circuit 84, a pump 86, a temperature control unit 88, and a filter 90 are arranged in this order, and the other of the circulation supply circuit 84 is It is connected to the nozzle in the inner tank 80.
  • the chemical liquid overflowed from the inner tank 80 to the outer tank 81 flows into the circulation supply circuit 84, and is passed through the temperature control unit 88 and the filter 90 in this order by the operation of the pump 86, and after temperature adjustment and cleaning, the nozzle After that, it is again supplied into the inner tank 80.
  • the nozzle is arranged below the outer tank 81 and is configured to supply a chemical toward the surface of the wafer W.
  • the temperature control unit 88 immerses the chemical solution supplied from the circulation supply circuit 84 into the inner bath 80 so that the chemical solution in the inner bath 80 does not become lower or higher than a predetermined processing temperature. It has the function of cooling or heating in advance.
  • the temperature controller 88 is wired to the block controller (BC) 11 as a signal output device, and receives the control signal output from the block controller (BC) 11.
  • the temperature control unit 88 is composed of a heater, a heat exchanger, and a cooling water supply means, and a valve and a heater power block arranged in the middle of the cooling water supply path for introducing the cooling water into the heat exchanger. Connected to controller (BC) 11. Then, a predetermined control signal is transmitted to either the heater or the valve via the block controller (BC) 11 as necessary.
  • a branch pipe 92 for connecting the chemical solution in the circulation supply circuit 84 to the outer tank 81 is connected. Further, the branch pipe 92 detects the temperature and concentration of the chemical solution.
  • a concentration / temperature detector 95 is provided.
  • the concentration / temperature detector 95 is wired to the block controller (BC) 11 as a signal input device.
  • the concentration'temperature detector 95 is provided with a thermometer 95a for detecting the temperature of the chemical solution and a concentration meter 95b for detecting the concentration of the chemical solution, and the detected temperature and concentration are respectively output to the block controller.
  • BC Send to 11.
  • the branch pipe 92 is narrower than the pipe of the circulation supply circuit 84.
  • the diameter of the branch pipe 92 is 1Z3 which is the diameter of the circulation supply circuit 84.
  • the first chemical solution tank 61 is provided with a chemical solution supply circuit 100 for filling the chemical solution into the tank.
  • the chemical solution supply circuit 100 includes a chemical solution supply source 101, a pure water supply source 102, and a mixing supply unit 103 that mixes the chemical solution and pure water.
  • the mixed supply unit 103 is wired to the block controller (BC) 11 as a signal output device.
  • the chemical supply circuit 100 is It functions as a liquid replenishing means, and is controlled so that the chemical liquid is replenished from the chemical liquid supply source 101 and the pure water supply source 102 when the concentration of the chemical liquid in the chemical liquid tank 61 decreases.
  • the other end of the chemical solution supply circuit 100 is connected to the outer tank 81, and the adjusted chemical solution flows through the circulation supply circuit 84, and after the temperature is adjusted, the downward force of the inner tank 80 Wafer Supplied to W.
  • the force which is the configuration of the first chemical tank 61 and the piping system as described above.
  • the first and second chemical tanks 63 and 65 also have substantially the same configuration and function, and thus the description thereof is omitted.
  • the first to third rinsing tanks 62, 64, 66 also basically have the same configuration and function. That is, it has a water washing tank composed of an inner tank and an outer tank and a circulation supply circuit, and pure water is supplied to the water washing tank from the pure water supply circuit.
  • the processing apparatus 10 includes various detection means for detecting the state of each component. That is, as described above, the liquid processing unit thermometer 59 and the liquid processing unit pressure gauge 60 are installed as detection means for detecting the state of the atmosphere in the liquid processing unit 38. As the detection means for detecting the state of the first chemical tank 61 and each part of its piping system, the liquid level sensors 82a and 82b, the thermometer 95a of the temperature 'concentration detector 95 and the concentration meter 95b are installed. . Similar liquid level sensors, temperature / concentration detector thermometers and concentration meters are installed in the second and third chemical tanks 63 and 65 and the piping system.
  • a wafer inspection device 48 is installed in the interface unit 33 as a detection means for detecting the storage state of the wafer and W, and a wafer detection sensor 57 is installed as a detection means for detecting the arrangement state of the wafers W. .
  • various detection means are provided. These perform predetermined detection as described above, and transmit the detected value as an output signal to the block controller (BC) 11 as shown in FIG.
  • Wafer inspection device 48, wafer detection sensor 57, liquid processing unit thermometer 59, liquid processing unit pressure gauge 60, liquid level sensors 82a and 82b, thermometer 95 installed in temperature 'concentration detector 95 a, the concentration meter 95b, and the output signals of a number of other detection means are sent to the block controller (BC) 11 at predetermined time intervals and sent to the AG C17 via the main controller (MC) 12 to It is possible to detect a change in the state of each part of the processing device.
  • main controller (MC) 12 When the detection signal exceeding the allowable value is detected by the detection unit 20, the alarm generation unit 21 generates an alarm to the operator.
  • the carrier C constituting one lot is placed on the inspection Z loading / unloading stage 45 from the loading / unloading section 31 or the carrier stock section 35 using the carrier conveying apparatus 42, and the carrier opening / closing mechanism 47 performs carrier loading. Open the lid of C, and then open the window 46, and inspect the number of wafers W stored in the carrier and the storage state by the wafer inspection device 48.
  • the carrier C which has been detected as having no abnormality by inspection, is delivered to the posture changing structure 51a by the arm 49a, and the posture is changed in the posture changing 51a and then transferred to the wafer vertical holding mechanism 51b.
  • the posture change mechanism 51a converts the posture of the wafer W, and the wafer W is delivered to the arm 49a wafer vertical holding mechanism 5 lb.
  • 50 wafers W are arranged in the wafer vertical holding mechanism 5 lb.
  • the wafer vertical holding mechanism 5 lb is slid to the wafer transfer device 52 side, and the wafer W is transferred to the chucks 58a to 58c.
  • the wafer transfer device 52 holding the wafer W is moved along the guide rail 53 to the position of the first chemical bath 61 or the first washing bath 62 of the liquid processing unit 38, and the wafer W is moved to the first transfer device 67.
  • liquid processing of wafer W is started.
  • the liquid treatment of the wafer W includes, for example, immersion in the first chemical bath 61 and cleaning by the first water washing bath 62, immersion in the second chemical bath 63 and cleaning by the second water washing bath 64, and third cleaning. It is carried out in the order of immersion in the chemical tank 65 and cleaning by the third water washing tank 66.
  • the wafer W that has been processed in the liquid processing unit 38 is once transferred to the wafer transfer device 52 and then transferred to the transfer device 55 of the drying unit 39 to be subjected to a drying process.
  • the wafer W that has been dried is transferred to the wafer transfer device 52, returned to the interface unit 33, and the state of the wafer W is inspected by the detection sensor 57.
  • the liquid processing apparatus 1 is stopped and maintenance is performed.
  • the wafer W returned to the interface unit 33 after the liquid processing is completed is inspected in the Z loading / unloading stage according to the reverse procedure of the procedure for transferring the unprocessed wafer W from the carrier stock unit 35 to the wafer transfer device 52.
  • the processing operation for the wafer W which is the object to be processed, is executed while being controlled by the corresponding block controller (BC) 11 and main controller (MC) 12 under process control by the host computer 15 and AGC 17. .
  • each main controller (MC) 12 the process data obtained from the processing device 10 via the block controller (BC) 11 is written into the process data storage memory 18 shown in FIG.
  • the process data written in the process data storage memory 18 is transferred to the host computer 15 and the AGC 17 through an independent channel of the data transmission system 14 such as TC PZIP by the HCI 13 and RAP 16 which are logical interface means for external transfer. Forwarded to
  • the HCI 13 extracts only some types of preset process data from all the process data held in the process data storage memory 18 and writes them to the HCI transmission buffer 19.
  • the contents of the HCI transmission buffer 19 are transmitted to the host computer 15 through the data transmission system 14.
  • the RAP 16 reads all process data from the process data storage memory 18 and transfers it to the AGC 17.
  • the AGC server 17a of the AGC 17 receives the process data transmitted by the RAP 16 of the main controller (MC) 12 of each processing device 10, accumulates this process data in the database 24, and Data and recipe data power Process control is performed by generating parameter correction values for each processor and sending them to the main controller (MC) 12.
  • the AGC server 17a When the AGC server 17a receives a process data transfer request from the AGC client 17b, the AGC server 17a reads out the corresponding process data from the database 24 and transmits it to the AGC client 17b through the communication IZF 22.
  • the process data transferred to the AGC client 17b is converted into data that can be used and processed by the client user by the data converter 26 and displayed on the monitor by the data display unit 27.
  • the process data transferred to the AGC client 17b is analyzed and statistically processed by the data analysis unit 25, and the analysis result is converted to data in a user-usable format in the same way as the process data by the data conversion unit 26. Converted and displayed on the monitor. This allows AGC client 17b Centralized management of the entire substrate processing system is realized.
  • the data analysis unit 25 of the AGC client 17b detects an abnormality or predicts an abnormality of the processing apparatus from the analysis result of the process data, and if an abnormality is detected or predicted, the data display unit 27 And output to the monitor through AGC server 17a.
  • the AGC server 17a performs control such as instructing the main controller (MC) 12 that controls the processing apparatus 10 detected or abnormally detected to stop the processing apparatus.
  • the recipe correction unit 28 of the AGC client 17b performs an update process for optimizing the recipe (process condition) from the analysis result for the process data including the measurement data such as the film thickness measurement result on the substrate. .
  • the process data to be analyzed is enormous, and the alarm information from each processing device is also enormous.
  • the usage status of the device differs depending on the user, and even if the device abnormality or device life is determined uniformly from the analysis information in the data analysis unit 25, the device abnormality or device life may not actually be reached.
  • the AGC client 17b is provided with the FDC function unit 29 as described above, and in addition to detecting an abnormality in the device (device alarm occurrence), an abnormality is defined at the user level and arbitrarily set Provide a function to detect settings in real time so that device abnormalities and device life can be detected and predicted with sufficient accuracy.
  • Wafer inspection device 48, wafer detection sensor 57, liquid processing unit thermometer 59, liquid processing unit pressure gauge 60, liquid level sensors 82a and 82b, thermometer 95 installed in temperature 'concentration detector 95 a and the output signal from the densitometer 95b etc. are transmitted to the eighteenth and seventeenth through the block controller (BC) 11 and the main controller (MC) 12 1 ⁇ ? 16 at a predetermined time interval, and the eight hundredth client 17a
  • the alarm information generated by the alarm generation unit 21 when the abnormality detection unit 20 detects a detection signal exceeding the allowable value from these detection means is also transmitted to the AGC 17, and these are also transmitted. Accumulated in database 24 of AGC server 17a.
  • the FDC function unit 29 determines the occurrence status of these alarms. This threshold value can be set at the user level, a predetermined alarm occurrence state is monitored, and a warning is notified when the occurrence state reaches the threshold value.
  • Typical examples of the alarm occurrence status to be grasped include the number of alarm occurrences within a predetermined time and the time until the next alarm occurrence after the occurrence of an alarm. These are set as detection conditions. can do. That is, in the former case, a warning is set to be notified when the number of alarm occurrences within a predetermined time reaches a predetermined number. For example, as shown in Fig. 7, when the number of alarm occurrences per hour reaches 4 times, a warning is notified. In the latter case, an alarm is generated and the force is set to notify a warning when the time until the next alarm is within the specified time. For example, as shown in Fig. 8, a warning is issued when an alarm occurs and the next alarm occurs in one hour. In the former case, the “predetermined time” and the “number of alarm occurrences” within the predetermined time can be set by the user. In the latter case, an alarm is generated and the force is reduced. Allow the user to set the time to alarm occurrence.
  • the display screen force FDC function screen is displayed, and this screen force can also be set and displayed in various states. For example, list alarms so that alarms can be specified individually. In this case, it is preferable to display alarms by category.
  • This display screen power FDC function can be turned on or off. It is also possible to set whether to enable the FDC function for each processing device. Further, the detection condition can be set on this display screen. Furthermore, on this display screen, a warning to be notified when the occurrence of a predetermined alarm reaches the threshold value is displayed. You can also set how warnings are reported in this case. For example, messenger service report, email report, no report, etc. can be set. The cumulative number of warnings can also be displayed.
  • the alarm occurrence status when the detection condition is designated can be displayed in a graph.
  • Figure 9 shows a graph of the number of alarm occurrences within a given time with the horizontal axis representing time and the vertical axis representing the cumulative number of alarm occurrences. It is a point that is.
  • Figure 10 shows the case in which the horizontal axis represents the number of alarm occurrences and the vertical axis represents the cumulative time, and the time from the occurrence of the alarm until the next alarm occurrence is displayed as a graph. This is a point where a warning is notified.
  • the host computer 15 when the host computer 15 is down, the process data spooling processing by the AGC 17 is performed. That is, the host computer 15 can take in the process data of the down period from the AGC 17 immediately after the recovery. Thereby, the tracking processing of each processing apparatus 10 by the host computer 15 can be resumed immediately after recovery.
  • 82a, 82b, temperature 'concentration detector 95 All or almost all detailed process data represented by detection signals from the thermometer and concentration meter, etc. can be taken into AGC 17 for centralized monitoring. , The status of each processing equipment over time Changes can be detected early. As a result, the maintenance reliability of the processing system including a large number of processing devices 10 can be improved.
  • each processing apparatus 10 is updated by updating each data in the recipe to a more preferable value from analysis results and statistical results for detailed process data including measurement data such as a film thickness measurement result on the substrate. It is possible to automatically obtain optimum process conditions with various viewpoints that take into account variations in characteristics over time, and to improve the reliability of wafer W liquid processing.
  • the process data obtained from each processing device 10 is taken into the AGC 17 and centrally monitored, thereby expanding the range of information that can be grasped as the status of each processing device, and processing device abnormalities and deterioration states. This makes it possible to discover the life in more detail and earlier than when the AGC17 is not provided.
  • the AGC client 17b is provided with the FDC function unit 29, and the alarm generation status is separated from the device alarm generation.
  • abnormalities can be defined at the user level, abnormal settings can be arbitrarily set, alarm occurrence status can be analyzed according to the arbitrarily set abnormal settings, and device abnormalities can be detected. It is possible to notify the user when a device condition such as a processing abnormality that the user actually wants to know, and to detect and predict the abnormality or life of the processing device earlier and more reliably. it can. Specifically, for example, the user sets a threshold value for notifying the alarm occurrence status of the device alarm such as the number of alarm occurrences within a predetermined time and the time from the occurrence of an alarm until the next alarm occurrence. It is possible to reliably determine the status of the processing device at the user level by determining that a device abnormality has occurred, and to detect or predict the device abnormality or device life sooner and more reliably. can do.
  • the present invention is not limited to the above-described embodiment, and can be variously modified.
  • the initial state of the predetermined detection means is detected and the force F DC function is executed.
  • Attitudes may also perform FDC functions.
  • the FDC function unit may be provided in the controller of the force processing device provided in the AGC.
  • the present invention does not necessarily require AGC, but the above FDC function may be used alone.
  • the apparatus for cleaning the wafer by performing liquid processing is described as an example of the processing apparatus.
  • the present invention is not limited to this and can be applied to other processing apparatuses.
  • the object to be processed is not limited to a wafer.
  • a device that performs a series of a plurality of processes on an object to be processed such as the processing device shown in the above embodiment, there are many types of information to be detected, and the types of alarms are accordingly corresponding.
  • the present invention is particularly effective because of the enormous volume.
  • processing system having a plurality of processing devices has been described as an example, but one processing device may be used.

Abstract

 制御システムは、ウエハWに所定の処理を施す処理装置10において検出される複数のプロセス情報に基づいて処理装置10を制御する制御装置17と、検出されたプロセス情報が所定の範囲から外れた場合にアラームを発するアラーム発生手段21とを具備し、制御装置17は、アラームの発生状態を把握し、その発生状態が所定の閾値に達した場合に警告を通知する。

Description

明 細 書
制御システム、制御方法、および処理システム、ならびにコンピュータ読 取可能な記憶媒体およびコンピュータプログラム
技術分野
[0001] 本発明は、例えば半導体デバイスの製造の際に被処理体に所定の処理を行う処 理装置を含む制御システム、制御方法、および処理システム、ならびにコンピュータ 読取可能な記憶媒体およびコンピュータプログラムに関する。
背景技術
[0002] 例えば半導体デバイスの製造工程においては、半導体ウェハ(以下、単にウェハと 記す)に種々の処理が施され、そのために種々の処理装置が用いられている。このよ うな処理装置としては、例えば、処理液を貯留した 1または複数の処理槽にウェハを 浸漬させて処理を行った後、乾燥処理を行う洗浄処理装置が挙げられる。
[0003] このような洗浄処理装置は、基板に供給する処理液の温度を検出する温度センサ や、処理液の濃度を検出する濃度センサ、槽内の処理液の位置を検出する位置セ ンサ等の種々の検出データを入力し、処理装置の状態を検知するとともに、種々の 検出データに基づ!/、て処理装置を制御する制御システムが設けられて!/、る。この制 御システムは、また、処理装置の稼働中にセンサの検出値が予め設定された許容値 を超えた場合には、処理装置に障害が発生するおそれがあるとしてアラームを発す る。
[0004] 一方、ウェハの処理にお 、ては、複数の処理装置を配置して処理システムを構築 するが、近年このような処理システムは大規模ィ匕しており、そのため多数の処理装置 を一元管理する要求が益々高まって!/、る。
[0005] このため、各処理装置に制御部を設け、これら制御部をホストコンピュータに接続し 、ホストコンピュータは各処理装置の制御部との間での各種データのやりとりを通じて 各処理装置のトラッキング処理や、各処理装置力 受信したプロセスデータを履歴と して蓄積し、その内容を表示装置に表示したり、そのプロセスデータに基づいて処理 装置の各種パラメータ補正や異常検出等を行うようにして ヽる。 [0006] また、特許文献 1では、このようなホストコンピュータを用いた一元管理方式では、蓄 積されるプロセスデータが限定的であり、また処理装置の異常や特性劣化を早期に 発見することが困難であるとして、ホストコンピュータの他に、各処理装置の制御部で 生成された全てのプロセスデータを収集し、収集したプロセスデータを解析し、解析 結果を出力するコントローラを設けることが開示されている。これにより、把握するプロ セスデータを増加させることができ、各処理装置の状態の経時的な変化も早期に発 見することができるとして 、る。
[0007] しかしながら、このようなシステムにおいて各処理装置からのプロセスデータは膨大 であり、したがって、各処理装置力ものアラーム情報も膨大であるため、このような情 報から処理装置の状態を判断することは容易ではなぐ装置異常や装置寿命等を十 分に管理することが求められてきた。また、ユーザーによって装置の使用状況は異な り、プロセスデータから装置異常や装置寿命を一律に判断しても、実際に装置異常 や装置寿命に達して 、な 、場合もある。
特許文献 1:特開平 11― 16797号公報
発明の開示
[0008] 本発明の目的は、アラーム情報に基づいて、処理装置の状態を判断することが可 能であり、装置異常や装置寿命等を十分に管理することができる制御システムおよび 制御方法およびそのような制御システムを備えた処理システム、さらにはそのような制 御を行うコンピュータ読取可能な記憶媒体およびコンピュータプログラムを提供するこ とにある。
[0009] また、本発明の他の目的は、ユーザーレベルで確実に実際の装置異常や装置寿 命を予測ないし発見することができる制御システムおよび制御方法および処理システ ム、さらにはそのような制御を行うコンピュータ読取可能な記憶媒体およびコンビユー タプログラムを提供することにある。
[0010] 本発明の第 1の観点によれば、被処理体に所定の処理を施す処理装置において 検出される情報に基づいて前記処理装置を制御する制御手段と、検出された情報が 所定の範囲から外れた場合にアラームを発するアラーム発生手段とを具備し、前記 制御手段は、前記アラーム発生手段から発生するアラームの発生状態を把握し、そ の発生状態が所定の閾値に達した場合に警告を通知する制御システムが提供され る。
[0011] 本発明の第 2の観点によれば、被処理体に所定の処理を施す複数の処理装置に おいて検出される情報に基づいて前記複数の処理装置を制御する制御手段と、前 記検出される情報が所定の範囲力 外れた場合にアラームを発するアラーム発生手 段とを具備し、前記制御手段は、前記各処理装置において検出される複数の情報に 基づいて前記複数の処理装置を個別に制御する複数の装置制御部と、前記各装置 制御部から一部の情報を受信し、その情報に基づ 、て前記各処理装置を制御する ホストコンピュータと、前記各装置制御部から全てのまたはほぼ全ての情報を受信し 、その情報に基づいて前記各処理装置を制御する制御装置とを有し、前記制御装 置は、前記各装置制御部力 受信した情報およびアラーム発生手段力 受信したァ ラーム情報を収集する手段と、前記収集した情報を解析する手段と、前記アラーム情 報に基づいて前記アラームの発生状態を把握し、その発生状態が所定の閾値に達 した場合に警告を通知する手段とを有する、制御システムが提供される。
[0012] 本発明の第 3の観点によれば、被処理体に所定の処理を施す処理装置において 検出される複数の情報に基づ 、て前記処理装置を制御する制御方法であって、検 出された情報が所定の範囲から外れた場合に発生されるアラームの発生状態を把握 し、その発生状態が所定の閾値に達した場合に警告を通知する制御方法が提供さ れる。
[0013] 本発明の第 4の観点によれば、被処理体に所定の処理を施す処理装置と、前記処 理装置を制御する制御システムとを具備し、前記制御システムは、被処理体に所定 の処理を施す処理装置において検出される情報に基づ!/、て前記処理装置を制御す る制御手段と、検出された情報が所定の範囲力 外れた場合にアラームを発するァ ラーム発生手段とを備え、前記制御手段は、前記アラーム発生手段から発生するァ ラームの発生状態を把握し、その発生状態が所定の閾値に達した場合に警告を通 知する処理システムが提供される。
[0014] 本発明の第 5の観点によれば、被処理体に所定の処理を施す処理装置と、前記処 理装置を制御する制御システムとを具備し、前記制御システムは、被処理体に所定 の処理を施す複数の処理装置において検出される情報に基づいて前記複数の処理 装置を制御する制御手段と、前記検出される情報が所定の範囲力 外れた場合にァ ラームを発するアラーム発生手段とを備え、前記制御手段は、前記各処理装置にお いて検出される複数の情報に基づいて前記複数の処理装置を個別に制御する複数 の装置制御部と、前記各装置制御部から一部の情報を受信し、その情報に基づいて 前記各処理装置を制御するホストコンピュータと、前記各装置制御部から全てのまた はほぼ全ての情報を受信し、その情報に基づ!/、て前記各処理装置を制御する制御 装置とを有し、前記制御装置は、前記各装置制御部から受信した情報およびアラー ム発生手段から受信したアラーム情報を収集する手段と、前記収集した情報を解析 する手段と、前記アラーム情報に基づいて前記アラームの発生状態を把握し、その 発生状態が所定の閾値に達した場合に警告を通知する手段とを有する、処理システ ムが提供される。
[0015] 本発明の第 6の観点によれば、コンピュータが被処理体に所定の処理を施す処理 装置において検出される複数の情報に基づいて前記処理装置を制御するソフトゥェ ァを含むコンピュータにより読み取り可能な記憶媒体であって、前記ソフトウェアは、 検出された情報が所定の範囲から外れた場合に発生されるアラームの発生状態を把 握し、その発生状態が所定の閾値に達した場合に警告を通知する、記憶媒体が提 供される。
[0016] 本発明の第 7の観点によれば、コンピュータが被処理体に所定の処理を施す処理 装置において検出される複数の情報に基づいて前記処理装置を制御するソフトゥェ ァを含むコンピュータプログラムであって、前記ソフトウェアは、検出された情報が所 定の範囲から外れた場合に発生されるアラームの発生状態を把握し、その発生状態 が所定の閾値に達した場合に警告を通知する、コンピュータプログラムが提供される
[0017] 本発明によれば、アラーム発生手段力 発生するアラームの発生状態を把握し、そ の発生状態が所定の閾値に達した場合に警告を通知するので、装置異常や装置寿 命を早期に発見または予測することができる。また、アラーム発生手段から発生する アラームの発生状態の閾値を設定可能とし、任意に設定した異常設定に応じてァラ ームの発生状態を解析し、装置異常を検出することができるので、ユーザーにとって 実際に把握したい処理異常等の装置状態となったときに警告を通知するようにするこ とができ、より早期にかつ確実に処理装置の異常や寿命を発見ないし予測することが できる。具体的には、例えば所定時間内のアラーム発生数、およびアラーム発生して から次回のアラーム発生までの時間等、装置アラームの発生状態の警告を通知する 閾値をユーザーが設定し、この閾値に達した場合に装置異常が生じたと判断するこ とにより、処理装置の状態をユーザーレベルで確実に判断することが可能であり、装 置異常や装置寿命をより早期にかつ確実に発見ないし予測することができる。
図面の簡単な説明
[0018] [図 1]本発明の一実施形態に係る処理システムの全体的な構成を示すブロック図。
[図 2]本発明の一実施形態に係る処理システムに用いられる処理装置のメインコント ローラ (MC)におけるプロセスデータ転送に係る部分の構成を示す図。
[図 3]本発明の一実施形態に係る処理システムに用いられる処理装置の一例を示す 斜視図。
[図 4]本発明の一実施形態に係る処理システムに用いられる処理装置の一例を示す 平面図。
[図 5]本発明の一実施形態に係る処理システムに用いられる処理装置の第 1の薬液 槽およびその配管系を示す概略図。
[図 6]ブロックコントローラ (BC)に接続している主な検出手段を示すブロック図。
[図 7]AGCの FDC機能部において検出すべきアラーム発生状態の一例を示す図。
[図 8] AGCの FDC機能部において検出すべきアラーム発生状態の他の例を示す図
[図 9]AGCの FDC機能部において検出条件を指定した際のアラーム発生状況のグ ラフ表示の一例を示す図。
[図 10]AGCの FDC機能部において検出条件を指定した際のアラーム発生状況のグ ラフ表示の他の例を示す図。
発明を実施するための最良の形態
[0019] 以下、添付図面を参照して、本発明の実施形態について説明する。 ここでは、基板としてのウェハに液処理を施して洗浄する処理装置を備えた処理シ ステムについて説明する。図 1は本実施形態に係る処理システムの全体的な構成を 示すブロック図である。
[0020] この処理システム 1は、ウェハに液処理を施して洗浄する複数の処理装置 10を有し ており、各処理装置 10は、下位制御系であるブロックコントローラ(BC) 11と、上位制 御系であるメインコントローラ(MC) 12により制御されるようになっている。また、処理 システム 1は、システム全体の制御を行うホストコンピュータ 15と、各処理装置の制御 系で生成されたプロセスデータを解析してその結果を出力するアドバンスド 'グルー プ 'コントローラ(以下、 AGCと記す) 17とを有して 、る。
[0021] 図 2に示すように、メインコントローラ(MC) 12は、ブロックコントローラ(BC) 11を介 して検出信号を受信し、その検出信号に基づいて処理装置 10の各構成部に制御信 号を送信する制御部 12aと、制御部 12aから受け取ったプロセス情報を解析して異常 を検出する異常検出部 20と、異常検出部 20の異常検出情報に基づいてアラームを 発生させるアラーム発生部 21と、処理装置 10からブロックコントローラ (BC) 11を介 して受信され制御部 12aで信号処理された全プロセス情報およびアラーム情報が一 時的に蓄積されるメモリ 18と、メモリ 18から予め設定された一部の種類のプロセスデ ータ(データ 1, 3)を取り出して情報を書き込む HCI送信バッファ 19と、ホストコンビュ ータ 15との論理的なインターフェイス手段である HCI (Host Communication Interface ) 13と、 AGC 17との論理的なインターフェイス手段である RAP (Remote Agent Process) 16とを有している。そして、 HCI13によって、 TCPZlP等のデータ伝送系 1 4を通じたホストコンピュータ 15との間での各種データのやりとりが行われる。また、 R AP16によって AGC17との間での各種データのやりとりがデータ伝送系 14を通じて 行われる。
[0022] HCI13は、メインコントローラ 12にて処理装置 10から得た全てのプロセスデータの 中から予め設定された一部の種類のプロセスデータだけを選択してホストコンビユー タ 15に送信する。すなわち、 HCI13は、メインコントローラ(MC) 12にて生成された 全プロセスデータが一時的に蓄積されるメモリ 18から予め設定された一部の種類の プロセスデータ(データ 1, 3)を取り出して HCI送信バッファ 19に書き込み、 HCI送 信バッファ 19の内容をまとめてホストコンピュータ 15に送信する。また、メインコント口 ーラ(MC) 12で生成されたステータスデータ等も送信される。
[0023] RAP16は、メインコントローラ(MC) 12にて処理装置 10から得た全てのプロセスデ ータを無条件に AGC 17に送信する。すなわち、 RAP16は、メインコントローラ(MC ) 12内のプロセスデータ蓄積用メモリ 18に蓄積されたプロセスデータを先頭力 順次 読み出し、そのデータ構造のまま AGC 17に転送する。ただし、データの順番を並び 換えたり、ごく一部のデータを排除する程度の操作をここで行ってもよい。
[0024] ホストコンピュータ 15は、各処理装置 10のメインコントローラ(MC) 12との間での各 種データをやりとりを通じて各処理装置 10のトラッキング処理を行うなど各処理装置 1 0の全体的な動作制御を行う。
[0025] AGC17は、各処理装置毎のレシピ (プロセス条件値)の集中管理やレシピに基づ く各処理装置 10のプロセスコントロールをはじめとして、各処理装置 10から得られる 全てのプロセスデータを対象に、その解析処理、統計処理、プロセスデータやその解 析 Z統計結果の集中モニタリング処理、さらには解析 Z統計結果をレシピに反映さ せる処理等を行う。
[0026] AGC17は AGCサーバ 17aと AGCクライアント 17bから構成されている。
[0027] AGCサーバ 17aは、通信 iZF (インターフェース部) 22と、 EQM制御部 23と、デ ータベース 24とを有している。通信 IZF (インターフェース部) 22は、各処理装置 10 のメインコントローラ(MC) 12および AGCクライアント 17bとの間でデータ伝送系 14 を通じて各種テータを送受信する。 EQM制御部 23は、予め定義されたプロセス条 件と各処理装置 10から得られるプロセスデータに基づいて処理装置毎のプロセスの 各種パラメータ補正を行うとともに、受信したパラメータのデータベース 24への格納、 および AGCクライアント 17bに転送すべきプロセスデータをデータベース 24から検 索する処理等を主に行う。
[0028] AGCクライアント 17bは、 AGCサーバ 17aより転送されてきたプロセスデータの解 析処理および統計処理を行うデータ解析部 25と、取り込んだプロセスデータやその 解析結果等をクライアントユーザの利用 ·加工可能な形式のデータに変換するデー タ変換部 26と、変換データをモニタ等に表示するデータ表示部 27と、被処理体上の 膜厚等の測定データを含むプロセスデータの解析結果に基づ 、てレシピ (プロセス 条件)を最適化するように更新するレシピ修正部 28と、装置アラーム発生とは別に、 ユーザーレベルで装置異常を定義し、任意に設定した異常設定に応じてアラームの 発生状態を解析し、装置異常をリアルタイムで検出する等の機能を有する FDC ( Fault Detection and Classification)機能部 29とを有する。なお、レシピはハードディ スクゃ半導体メモリーに記憶されていてもよいし、 CDROM、 DVD等の可搬性の記 憶媒体に収容された状態で所定位置にセットするようになっていてもよい。さらに、他 の装置から、例えば専用回線を介してレシピを適宜伝送させるようにしてもよい。
[0029] 次に、処理装置 10の一例について説明する。図 3は処理装置 10の斜視図であり、 図 4はその平面図である。
[0030] 処理装置 10は、ウェハ Wが水平状態で収納されたキャリア Cを搬入出し、また保管 等する搬入出部 31と、ウエノ、 Wに所定の薬液を用いた洗浄処理を行い、また乾燥処 理等を行う処理部 32と、搬入出部 31と処理部 32との間でウェハ Wを搬送するインタ 一フェイス部 33とで主に構成されて 、る。
[0031] 搬入出部 31は、所定枚数、例えば 25枚のウェハ Wを収容可能なキャリア Cを載置 するためのステージ 41が形成されたキャリア搬入出部 34と、複数のキャリア Cが保管 可能となっているキャリアストック部 35とで構成されている。キャリア Cは、ウェハ Wを 略水平に所定間隔で収容し、その一側面がウェハ Wの搬入出口となっており、この 搬入出口が蓋体により開閉可能となっている構造を有する。また、キャリアストック部 3 5は、複数のキャリア保持部材 43が設けられており、これらキャリア保持部材 43により キャリア Cが保持されるようになっている。ステージ 41に載置された処理前のウェハ W が収納されたキャリア Cは、キャリア搬送装置 42によりキャリアストック部 35へ搬入さ れ、一方、処理後のウエノ、 Wが収納されたキャリア Cは、キャリアストック部 35からキヤ リア搬送装置 42を用いて、ステージ 41へと搬出される。
[0032] キャリア搬入出部 34とキャリアストック部 35との間にはシャッター 44が設けられてお り、キャリア搬入出部 34とキャリアストック部 35との間でのキャリア C受け渡しの際にシ ャッター 44が開かれ、それ以外のときにはキャリア搬入出部 34とキャリアストック部 35 との間の雰囲気分離を行うベぐシャッター 44は閉じた状態とされる。 [0033] キャリア搬送装置 42は、例えば、少なくともキャリア Cを X方向に移動させることが可 能なように駆動される多関節アームまたは伸縮アーム等のアーム 42aを有しており、 このようなアーム 42aがキャリア Cを把持してキャリア Cの搬送を行う。また、キャリア搬 送装置 42は、図示しない Y軸駆動機構と Z軸駆動機構により、 Y方向及び Z方向(高 さ方向)へも駆動可能となっており、これにより所定位置に配設されたキャリア保持部 材 43にキャリア Cを載置することが可能となって 、る。
[0034] キャリア保持部材 43は、図 4では、キャリアストック部 35を形成する壁面近傍に設け られており、各箇所において高さ方向に複数段に,例えば 4段設けられている。キヤリ ァストック部 35は、処理前のウェハ Wが収納されたキャリア Cを一時的に保管し、また ,ウェハ Wが取り出された内部が空となったキャリア Cを保管する役割を果たす。
[0035] キャリアストック部 35とインターフェイス部 33との境界には窓部 46が形成されており 、この窓部 46のキャリアストック部 35側には、キャリア Cの蓋体が窓部 46に対面する ようにキャリア Cを載置することができるように、キャリア保持部材 43と同様の構造を有 する検査 Z搬入出ステージ 45が設けられている。なお、検査 Z搬入出ステージ 45を 配設することなぐ窓部 46に対面した所定のスペースにおいてキャリア搬送装置 42 がキャリア Cを所定時間保持するようにしてもょ 、。窓部 46のキャリアストック部 35側 には、検査 Z搬入出ステージ 45に載置されたキャリア Cの蓋体の開閉を行うための 蓋体開閉機構 47が設けられており、窓部 46およびキャリア Cの蓋体を開けた状態と することで、キャリア C内のウエノ、 Wをインターフェイス部 33側へ搬出することが可能 となっており、逆に、インターフェイス部 33側力も空のキャリア C内へウェハ Wを搬入 することも可能である。なお、蓋体開閉機構 47は窓部 46のインターフェイス部 33側 に設けてもよい。
[0036] 窓部 46のインターフェイス部 33側には、キャリア C内のウェハ Wの枚数を計測する ためのウェハ検査装置 48が設けられている。ウェハ検査装置 48は、例えば、送信部 と受信部を有する赤外線センサヘッドを、キャリア C内に収納されたウェハ Wの X方向 端近傍において Z方向にスキャンさせながら、送信部と受信部との間で赤外線の透 過光または反射光の信号を検知して、ウェハ Wの枚数を検査する。ウェハ検査装置 48としては、ウェハ Wの枚数の検査と並行して、ウェハ Wの収納状態、例えば、キヤ リア C内にウェハ Wが所定のピッチで平行に 1枚ずつ配置されているかどうか、ゥェ ハ wが段差ずれして斜めに収納されていないかどうか等を検出する機能を具備した ものを用いることが好ましい。また、ウェハ wの収納状態を確認した後に、同センサを 用いてウェハ Wの枚数を検出するようにしてもよい。このウェハ検査装置 48は、ブロ ックコントローラ (BC) 11に信号入力機器として配線接続されており、検出した収納枚 数および収納状態を出力信号としブロックコントローラ (BC) 11に送信する。
[0037] キャリア搬送装置 42とウェハ検査装置 48とは、ブロックコントローラ(BC) 11および メインコントローラ(MC) 12を介してホストコンピュータ 15によりその動作が制御され る。例えば、キャリア C内のウェハ Wの枚数をウェハ検査装置 48により検査した後に 、そのキャリア Cをキャリアストック部 35に保管するように、キャリア搬送装置 42を制御 する。なお、シャッター 44の開閉や窓部 46の開閉、蓋体開閉機構 47の動作がキヤリ ァ搬送装置 42の動きに連動して制御される。
[0038] インターフェイス部 33には、ウェハ搬入出装置 49と、ウェハ移し替え装置 51と、ゥ ェハ搬送装置 52とが設けられている。ウェハ移し替え装置 51は、ウェハ搬入出装置 49との間でウェハ Wの受け渡しを行い、かつ、ウェハ Wの姿勢を変換する姿勢変換 機構 51aと、姿勢変換機構 51aとウェハ搬送装置 52との間でウェハ Wの受け渡しを 行うウェハ垂直保持機構 51bとから構成されている。
[0039] ウェハ搬入出装置 49は、窓部 46を通してキャリア C内のウエノ、 Wを搬出して姿勢 変換機構 51aへ受け渡し、また、液処理が終了したウェハ Wを姿勢変換機構 51aか ら受け取ってキャリア Cへ搬入する。このウェハ搬入出装置 49は、未処理のウェハ W の搬送を行うアーム 49aと、処理済みのウェハ Wの搬送を行うアーム 49bの 2系統の アームを有している。アーム 49aおよび 49bは、キャリア C内に収納された複数のゥェ ハ Wを一括して保持することができるように、キャリア C内におけるウェハ Wの配列ピ ツチに適合させて、所定数 Z方向に所定間隔で並べられている。また、図 4に示した 状態において、アーム 49aおよび 49bは矢印 A方向に移動 (スライド)または伸縮自 在であり、かつ、 Z方向に所定距離昇降可能となっている。さらに、ウェハ搬入出装置 49全体は Θ方向に回転可能に構成されており、これにより、アーム 49aおよび 49bは 、検査 Z搬入出ステージ 45に載置されたキャリア Cおよび姿勢変換機構 51aのいず れにもアクセス可能となって 、る。
[0040] ウェハ搬入出装置 49においては、例えば、アーム 49aがウェハ移し替え装置 51側 にある状態において、アーム 49aをウェハ Wの下側に挿入し、アーム 49aを所定距離 上昇させてウェハ Wをアーム 49aに保持させ、その後アーム 49aを逆方向に移動さ せてキャリア C内のウェハ Wを搬出する。次いで、ウェハ搬入出装置 49全体を 90° 回転させた後、アーム 49aを移動させることにより、アーム 49aに保持したウェハ Wを 姿勢変換機構 51aへ受け渡す。一方、アーム 49bが処理部 32側にある状態におい て、アーム 49bを移動させて姿勢変 «構 5 laから液処理済みのウエノ、 Wを取り出 した後、ウェハ搬入出装置 49全体を 90° 回転させた後、アーム 49bをウェハ移し替 え装置 51側にある状態とし、アーム 49bを移動させることにより、アーム 49bに保持さ れたウェハ Wを空のキャリア Cへ搬入する。
[0041] ウェハ移し替え装置 51の姿勢変換機構 51aにおいては、ガイド部材によりウェハ搬 入出装置 49から水平方向の複数のウェハ Wを受け取り、その状態でガイド部材を回 転させてウェハの姿勢を垂直状態へ変換する。
[0042] ウェハ垂直保持機構 51bは、姿勢変換機構 51aで垂直状態に姿勢変換されたキヤ リア 2個分の 50枚のウェハ Wをキャリア C内におけるウェハ配列ピッチの半分の配列 ピッチで収納可能となっており、このキャリア 2個分のウエノ、 Wをウェハ搬送装置 52 へ受け渡す。
[0043] ウェハ搬送装置 52は、ウェハ垂直保持機構 5 lbとの間で垂直状態のウェハ Wの 受け渡しを行い、未処理のウェハ Wを処理部 32へ搬入し、逆に、液処理等の終了し たウェハ Wを処理部 32から搬出して、ウェハ垂直保持機構 5 lbに受け渡す。ウェハ 搬送装置 52においては、ウェハ Wは 3本のチャック 58a〜58cにより保持される。ゥ ェハ搬送装置 52がウェハ垂直保持機構 51bとの間でウェハ Wの受け渡しを行い、ま た,処理部 32へウェハ Wを搬送することができるように,ウェハ搬送装置 52は、ガイ ドレール 53に沿って X方向に移動し、処理部 32へ進入 Z退出することができるように なっている。
[0044] また、液処理後のウェハ Wに損傷や位置ずれ等の発生がないかどうかを確認する ために、ウェハ垂直保持機構 5 lbとウェハ搬送装置 52との間でウェハ Wの受け渡し が行われる位置に、ウェハ Wの配列状態を検査するウェハ検出センサ 57が設けられ ている。なお、ウェハ検出センサ 57は、このような位置に限定されず、処理後のゥェ ハ Wがウェハ搬入出装置 49へ搬送されるまでの間で検査を行うことができる位置に あればよい。ウェハ検出センサ 57は、ブロックコントローラ (BC) 11に信号入力機器 として配線接続されており、検出値を出力信号としてブロックコントローラ (BC) 11に 送信する。
[0045] インターフェイス部 33には、ウェハ垂直保持機構 51bとウェハ搬送装置 52との間で ウェハ Wの受け渡しが行われる位置の側方に、パーキングエリア 40aが設けられてお り、このパーキングエリア 40aには、例えば、未処理のウェハ Wを待機させることが可 能となっている。例えば、あるロットのウェハ Wについて液処理または乾燥処理が行 われている際に、ウェハ搬送装置 52を運転させることが必要でない時間を利用して、 次に液処理を開始すべきウェハ Wをパーキングエリア 40aに搬送しておく。これによ り、例えば、キャリアストック部 35からウェハ Wを搬送してくる場合と比較すると、ゥェ ハ Wの処理部 32への移動時間を短縮することが可能となり、スループットを向上させ ることがでさる。
[0046] 処理部 32は、液処理ユニット 38と、乾燥ユニット 39と、ノ ーキングエリア 40bと力ら 構成されており、インターフェイス部 33側から、乾燥ユニット 39、液処理ユニット 38、 パーキングエリア 40bの順で配置されている。ウェハ搬送装置 52は、 X方向に延在 するガイドレール 53に沿って処理部 32内を移動することができるようになつている。
[0047] パーキングエリア 40bは、パーキングエリア 40aと同様に、未処理のウェハ Wを待機 させる場所である。液処理または乾燥処理があるロットのウェハ Wにつ 、て行われて おり、ウェハ搬送装置 52を運転させることが必要でない時間を利用して次に液処理 を開始すべきウェハ Wがパーキングエリア 40bへ搬送される。パーキングエリア 40b は液処理ユニット 38に隣接していることから、液処理開始にあたってウェハ Wの移動 時間を短縮することが可能となり、スループットを向上させることができる。
[0048] 液処理ユニット 38は、第 1の薬液槽 61、第 2の薬液槽 63、第 3の薬液槽 65、第 1の 水洗槽 62、第 2の水洗槽 64、第 3の水洗槽 66を有しており、図 4に示すように、パー キングエリア 40b側から、第 1の薬液槽 61、第 1の水洗槽 62、第 2の薬液槽 63、第 2 の水洗槽 64、第 3の薬液槽 65、第 3の水洗槽 66の順に配置されている。また、第 1 の薬液槽 61と第 1の水洗槽 62との間でウェハ Wを搬送するための搬送装置 67、第 2の薬液槽 63と第 2の水洗槽 64との間でウエノ、 Wを搬送するための搬送装置 68、 第 3の薬液槽 65と第 3の水洗槽 66との間でウエノ、 Wを搬送するための搬送装置 69 とを備えている。
[0049] 第 1の薬液槽 61には、有機性汚れ除去や表面金属不純物除去を行うための薬液 が貯留されて 、る。有機性汚れ除去や表面金属不純物除去を行うための薬液として は,例えば 130°C前後に加熱された SPM液 (濃硫酸と過酸ィ匕水素水の混合溶液)が 貯留される。また、第 2の薬液槽 63には、パーティクル等の付着物を除去するための 薬液、例えば SC— 1液 (アンモニアと過酸ィ匕水素と水の混合溶液)が貯留されており 、第 3の薬液槽 65には、ウェハ Wの表面に形成された酸ィ匕膜をエッチングするため のエッチング液、例えば希フッ酸 (DHF)が貯留されている。エッチング液としては、 希フッ酸の他、フッ酸(HF)とフッ化アンモ-ゥムとの混合物(バッファドフッ酸 (BHF) )を用いることもできる。また、ウエノ、 Wの表面に形成された窒化膜をエッチングする 場合は、エッチング液としてリン酸を用いることができる。第 1〜第 3の水洗槽 62, 64 , 66は、それぞれ第 1〜第 3の薬液槽 61, 63, 65による液処理によってウェハ Wに 付着した薬液を除去するものであり、例えば、オーバーフローリンスやクイックダンプリ ンス等の各種の水洗手法が用いられる。
[0050] 搬送装置 67は、 Z方向に昇降可能な駆動機構を有しており、ウェハ搬送装置 52か ら受け渡されたウェハ Wを下降させて第 1の薬液槽 61に浸して所定時間経過後に引 き上げ、次いで、ウェハ Wを X方向に平行移動させてウェハ Wを第 1の水洗槽 62に 浸して所定時間保持し、引き上げるように動作する。第 1の水洗槽 62での処理を終え たウェハ Wは、一度、ウェハ搬送装置 52のチャック 58a〜58cに戻された後、ウェハ 搬送装置 52から搬送装置 68へ搬送される。搬送装置 68, 69は、搬送装置 67と同 様の構成を有し、また、同様に動作する。
[0051] 液処理ユニット 38には、液処理ユニット 38内の雰囲気の温度を検出する液処理ュ ニット温度計 59および圧力を検出する液処理ユニット圧力計 60が設置されている。 液処理ユニット温度計 59および液処理ユニット圧力計 60は、ブロックコントローラ(B C) 11に信号入力機器として配線接続されており、それぞれ検出した温度および圧 力を出力信号としてブロックコントローラ(BC) 11に送信する。
[0052] 乾燥ユニット 39は、水洗槽 54とウェハ搬送装置 52のチャック 58a〜58cを洗浄す るチャック洗浄機構 56が配設されており、水洗槽 54の上部には、例えばイソプロピル アルコール (IPA)の蒸気が供給されてウェハ Wを乾燥する乾燥室(図示せず)が設 けられている。また、水洗槽 54と乾燥室との間でウェハ Wを搬送する搬送装置 55が 設けられており、水洗槽 54で水洗されたウェハ Wが搬送装置 55で引き上げられ、乾 燥室において IPA乾燥されるようになっている。搬送装置 55は X方向の移動ができ ない他は前述した搬送装置 67等と同様に構成されており、ウェハ搬送装置 52との間 でウェハ Wの受け渡しが可能となって!/、る。
[0053] 第 1の薬液槽 61は、図 5に示すように、ウェハ Wを収納するのに充分な大きさを有 する箱形の内槽 80と外槽 81から構成されている。内槽 80の上面は開口しており,こ の上面の開口部を介して内槽 80に対するウェハ Wの出し入れが行われる。外槽 81 は、内槽 80の上端力もオーバーフローした薬液を受けとめるように、内槽 80の開口 部を取り囲んで装着されている。さらに、内槽 80および外槽 81に貯留される薬液の 液面には、それぞれ液面の位置を計測するための液面センサ 82a, 82bが設けられ ている。これら液面センサ 82a, 82bは、ブロックコントローラ(BC) 11に信号入力機 器として配線接続されており、検出した液面の位置を出力信号としてブロックコント口 ーラ(BC) 11に送信する。
[0054] 内槽 80と外槽 81との間には、ウェハ Wのエッチング処理中に薬液を循環流通させ て供給する循環供給回路 84が接続されて 、る。この循環供給回路 84の一方は外槽 81の底面に接続されており、循環供給回路 84の途中には、ポンプ 86、温度制御部 88、フィルタ 90が順に配列され、循環供給回路 84の他方は内槽 80内のノズルに接 続されている。したがって、内槽 80から外槽 81にオーバーフローした薬液は循環供 給回路 84に流入し、ポンプ 86の稼働によって温度制御部 88、フィルタ 90の順に通 過し温調および清浄化された後、ノズルを経て再び内槽 80内に供給されるようにな つている。ノズルは外槽 81の下方に配置されており、ウェハ Wの表面に向かって薬 液を供給するように構成されて ヽる。 [0055] 温度制御部 88は、内槽 80内の薬液が所定の処理温度よりも低くまたは高くならな いように、循環供給回路 84から内槽 80内に供給される薬液をウェハ Wの浸漬前に 予め冷却または加熱しておく機能を有している。このように、予め冷却または加熱さ れた薬液を内槽 80内に供給することにより、内槽 80内の薬液の温度を維持すること が可能となる。また,温度制御部 88はブロックコントローラ(BC) 11に信号出力機器 として配線接続されており、ブロックコントローラ (BC) 11から出力された制御信号を 受信する。例えば、温度制御部 88はヒータと熱交換器および冷却水供給手段とから 構成されており、熱交換器内部に冷却水を導入する冷却水供給路の途中に配置さ れた弁とヒータ力 ブロックコントローラ(BC) 11に接続されている。そして、ヒータまた は弁の何れかに、必要に応じてブロックコントローラ (BC) 11を介して所定の制御信 号が送信される。
[0056] 循環供給回路 84の途中には、循環供給回路 84内の薬液を外槽 81に流入させる 分岐管 92が接続されており、さらに分岐管 92には、薬液の温度および濃度を検出 するための濃度 ·温度検出部 95が設けられている。濃度 ·温度検出部 95はブロック コントローラ (BC) 11に信号入力機器として配線接続されている。濃度'温度検出部 95には、薬液の温度を検出する温度計 95aと、薬液の濃度を検出する濃度計 95bが 設けられており、それぞれ検出した温度および濃度を出力信号としてブロックコント口 ーラ(BC) 11に送信する。
[0057] 分岐管 92は循環供給回路 84の管より細ぐ例えば分岐管 92の直径が循環供給回 路 84の直径の 1Z3となっている。この場合、乱流の発生を防止できるので、濃度'温 度検出部 95において超音波濃度計を使用した場合であっても、濃度の計測に用い る超音波は乱流渦の影響を受けない。また、ポンプ 86の駆動によって生じる薬液の 圧力変動が濃度の計測に与える影響を抑制する。したがって、高精度な濃度測定が 可能となる。
[0058] 第 1の薬液槽 61には薬液を槽内に充填するための薬液供給回路 100が設けられ ている。薬液供給回路 100は、薬液供給源 101、純水供給源 102および薬液と純水 を混合する混合供給部 103とを備えている。混合供給部 103はブロックコントローラ( BC) 11に信号出力機器として配線接続されている。なお、薬液供給回路 100は薬 液の補充手段としての機能を有し、薬液槽 61内の薬液の濃度が低下した際に、薬 液供給源 101、純水供給源 102から薬液を補充するように制御される。
[0059] 薬液供給回路 100の他端は外槽 81へ接続されており、調整された薬液はー且循 環供給回路 84を流れて、温度を調整された後、内槽 80の下方力 ウェハ Wに対し て供給されるようになって 、る。
[0060] 以上が第 1の薬液槽 61および配管系の構成である力 第 1および第 2の薬液槽 63 , 65もほぼ同様の構成と機能を有しているので説明は省略する。また、第 1〜第 3の 水洗槽 62, 64, 66も、基本的には同様の構成と機能を有している。すなわち、内槽 および外槽からなる水洗槽と、循環供給回路とを有し、水洗槽に対して純水供給回 路から純水が供給されるようになって!/ヽる。
[0061] 以上のように、処理装置 10は各構成部の状態を検知する種々の検出手段を備え ている。すなわち、上述したように、液処理ユニット 38内の雰囲気の状態を検出する 検出手段としては、液処理ユニット温度計 59および液処理ユニット圧力計 60が設置 されている。また、第 1の薬液槽 61およびその配管系の各部の状態を検出する検出 手段としては、液面センサ 82a, 82b、温度'濃度検出部 95の温度計 95aおよび濃度 計 95bが設置されている。第 2および第 3の薬液槽 63, 65および配管系にも同様の 液面センサ、温度 ·濃度検出部の温度計および濃度計が設置されている。さらに、ゥ エノ、 Wの収納状態を検出する検出手段として、インターフェイス部 33にウェハ検査 装置 48が設置され、ウェハ Wの配列状態を検出する検出手段として、ウェハ検出セ ンサ 57が設置されている。その他にも種々の検出手段が設けられている。これらは、 上述したように所定の検出を行い、図 6に示すように、検出値を出力信号としてブロッ クコントローラ(BC) 11に送信するようになって!/、る。
[0062] ウェハ検査装置 48、ウェハ検出センサ 57、液処理ユニット温度計 59、液処理ュ- ット圧力計 60、液面センサ 82a, 82b、温度'濃度検出部 95に設置された温度計 95 aおよび濃度計 95b、およびその他多数の検出手段の出力信号は所定の時間間隔 でブロックコントローラ(BC) 11に送信され、メインコントローラ(MC) 12を介して AG C17に送信され、処理装置の各部の状態を表す検知信号として検知し、処理装置の 各部の状態変化を検知することができる。さらに、メインコントローラ(MC) 12の異常 検出部 20で許容値を超えた検知信号が検知されると、アラーム発生部 21によって、 オペレータに対してアラームを発生させる。
[0063] 次に、このような処理システムの制御動作について説明する。
処理装置 10では、まず、 1ロットを構成するキャリア Cを搬入出部 31またはキャリア ストック部 35からキャリア搬送装置 42を用いて検査 Z搬入出ステージ 45に載置し、 蓋体開閉機構 47によりキャリア Cの蓋体を開き、さらに窓部 46を開いて、キャリアじに 収納されたウェハ Wの枚数と収納状態をウェハ検査装置 48によって検査する。検査 により異常が検出されな力つたキャリア Cはアーム 49aにより姿勢変 «構 51aへ受 け渡され、姿勢変 構 51aにおいて姿勢変換されてウェハ垂直保持機構 51bに 受け渡される。もう一つのキャリア Cについても姿勢変換機構 51aにてウェハ Wの姿 勢変換が行われ、ウェハ Wはアーム 49aウェハ垂直保持機構 5 lbに受け渡される。 こうして、ウェハ垂直保持機構 5 lbには、 50枚のウェハ Wが配列される。
[0064] ウェハ垂直保持機構 5 lbはウェハ搬送装置 52側へスライド移動され、ウェハ Wが チャック 58a〜58cへ移し替えられる。ウェハ Wを保持したウェハ搬送装置 52を、ガ イドレール 53に沿って液処理ユニット 38の第 1の薬液槽 61または第 1の水洗槽 62の 位置へ移動させ、ウェハ Wを第 1の搬送装置 67へ移し替え、ウェハ Wの液処理を開 始する。ウェハ Wの液処理は、例えば、第 1の薬液槽 61への浸漬と第 1の水洗槽 62 による洗浄、第 2の薬液槽 63への浸漬と第 2の水洗槽 64による洗浄、第 3の薬液槽 6 5への浸漬と第 3の水洗槽 66による洗浄の順で行われる。
[0065] 液処理ユニット 38での処理が終了したウェハ Wは、一度、ウェハ搬送装置 52に移 し替えられた後、乾燥ユニット 39の搬送装置 55へ移し替えられ、乾燥処理が施され る。乾燥処理が終了したウェハ Wは、ウェハ搬送装置 52に移し替えられて、インター フェイス部 33に戻され、検出センサ 57によりウェハ Wの状態を検査する。ここで、ゥ ェハ Wの状態に異常が検出されれば、例えば、液処理装置 1を停止してメンテナンス を行う等の処置をとる。液処理が終了してインターフェイス部 33へ戻されたウェハ W は、先に未処理のウェハ Wをキャリアストック部 35からウェハ搬送装置 52まで搬送し た手順と逆の手順により、検査 Z搬入出ステージ 45に載置された空のキャリア Cへ収 納することができる。液処理が終了したウェハ Wが収納されたキャリア Cは、キャリア 搬入出部 34へ搬送されて、次工程へと送られる。
[0066] 以上の被処理体であるウェハ Wに対する処理動作が、ホストコンピュータ 15および AGC17よるプロセスコントロールの下、対応するブロックコントローラ(BC) 11および メインコントローラ (MC) 12により制御されつつ実行される。
[0067] 個々のメインコントローラ(MC) 12にて、ブロックコントローラ(BC) 11を介して処理 装置 10から得たプロセスデータは、図 2に示したプロセスデータ蓄積用メモリ 18に書 き込まれる。プロセスデータ蓄積用メモリ 18に書き込まれたプロセスデータは、その 外部転送に係る論理的なインターフェイス手段である HCI13と RAP16によって、 TC PZIP等のデータ伝送系 14の独立したチャンネルを通じてホストコンピュータ 15と A GC17に転送される。
[0068] ここで、 HCI13は、プロセスデータ蓄積用メモリ 18に保持されたすベてのプロセス データの中から予め設定された一部の種類のプロセスデータだけを引き出して HCI 送信バッファ 19に書き込み、 HCI送信バッファ 19の内容をデータ伝送系 14を通じて ホストコンピュータ 15に送信する。一方、 RAP16は、プロセスデータ蓄積用メモリ 18 力 全てのプロセスデータを読み出して AGC 17に転送する。
[0069] AGC17の AGCサーバ 17aは、各処理装置 10のメインコントローラ(MC) 12の RA P16によって送信されたプロセスデータを受信し、このプロセスデータをデータべ一 ス 24に蓄積するとともに、このプロセスデータとレシピデータ力 各処理装置のパラメ ータ補正値を生成してこれをメインコントローラ (MC) 12に送信することによってプロ セスコントローノレを行う。
[0070] また、 AGCサーバ 17aは、 AGCクライアント 17bからプロセステータ転送要求を受 けると、データベース 24から該当するプロセスデータを読み出し、通信 IZF22を通じ て AGCクライアント 17bに送信する。 AGCクライアント 17bに転送されたプロセスデ ータは、データ変換部 26にてクライアントユーザの利用 ·加工可能な形式のデータに 変換され、データ表示部 27によってモニタに表示される。さらに、 AGCクライアント 1 7bに転送されたプロセスデータは、データ解析部 25にて解析および統計処理され、 その解析結果はデータ変換部 26にてプロセスデータと同様にユーザ利用可能な形 式のデータに変換され、モニタに表示される。これにより AGCクライアント 17b上での 基板処理システム全体の一元管理が実現される。
[0071] また、 AGCクライアント 17bのデータ解析部 25は、プロセスデータの解析結果から 処理装置の異常検出や異常予測を行い、異常を検出した場合および予測した場合 は、その旨をデータ表示部 27を通してモニタに出力するとともに AGCサーバ 17aに 通知する。この通知に従って AGCサーバ 17aは、例えば、異常検出あるいは異常予 測された処理装置 10を制御しているメインコントローラ(MC) 12に対して処理装置の 停止を指示するなどの制御を行う。
[0072] さらに、 AGCクライアント 17bのレシピ修正部 28は、基板上の膜厚測定結果等の測 定データを含むプロセスデータに対する解析結果からレシピ (プロセス条件)を最適 化するための更新処理を行う。
[0073] ところで、上記データ解析部 25では、解析するプロセスデータが膨大であり、各処 理装置からのアラーム情報も膨大であるため、実際には、解析部 25での解析情報か ら処理装置の状態を判断することは容易ではなぐ装置異常や装置寿命等を迅速か つ十分に管理することは困難となる場合が多い。また、ユーザーによって装置の使用 状況は異なり、データ解析部 25での解析情報から装置異常や装置寿命を一律に判 断しても、実際に装置異常や装置寿命に達していない場合もある。そこで、本実施形 態では、 AGCクライアント 17bに上述したように FDC機能部 29を設け、装置の異常 検出(装置アラーム発生)に加えて、ユーザーレベルで異常を定義し、任意に設定し た異常設定をリアルタイムで検出する機能を持たせ、装置異常や装置寿命を十分か つ確実に発見な 、し予測することができるようにする。
[0074] ウェハ検査装置 48、ウェハ検出センサ 57、液処理ユニット温度計 59、液処理ュ- ット圧力計 60、液面センサ 82a, 82b、温度'濃度検出部 95に設置された温度計 95 aおよび濃度計 95b等からの出力信号が所定の時間間隔でブロックコントローラ (BC ) 11およびメインコントローラ(MC) 12の1^?16を経て八0じ17に送信されて八0じ クライアント 17aのデータベース 24に蓄積される他、異常検出部 20がこれら検出手 段からの許容値を超えた検知信号を検知した場合にアラーム発生部 21により発せら れるアラーム情報も AGC 17へ送信され、これらが AGCサーバー 17aのデータべ一 ス 24に蓄積される。 FDC機能部 29では、これらアラームの発生状態について、所定 の閾値をユーザーレベルで設定可能とし、所定のアラームの発生状態を監視してそ の発生状態が前記閾値に達した場合に警告を通知する。
[0075] 具体例としては、ある検出手段におけるアラームが発生した場合に、自動的にェン トリーされて FDC機能がオンとなり、 FDC機能部 29が自動的に監視を開始するよう にする自動監視機能を持たせることができる。この場合には、種々の検出手段にお けるアラームが発生する毎に順次自動的に FDC機能がエントリーされるようにする。 また、このように自動監視機能ではなぐ任意の検出手段を設定し、設定した検出手 段のアラームが発生した場合に FDC機能がオンとなるようにしてもょ 、。
[0076] アラーム発生対象である検出手段は上記の他にも多数あり、自動監視の場合には 、エントリー数の上限を設定する必要がある。このため、一定時間前記閾値に達しな V、場合には装置に不具合が生じて 、るおそれが小さ!/、として自動的にエントリーを削 除する機能を設け、この機能のオン'オフおよびその時間をユーザーが設定できるよ うにすることが好ましい。また、あるアラームについて監視を始めて力も警告が通知さ れるまでの時間、または一度警告が通知された後、次の警告が通知されるまでの時 間が所定時間を超えた場合に、自動監視のエントリーを削除する機能を設け、この機 能のオン'オフおよびその時間をユーザーが設定できるようにすることもできる。さらに 、このようにアラームの種類が多いため、全アラームを例えば処理装置 10の各構成 部毎に分類することも好ましい。
[0077] 把握すべきアラーム発生状態の典型例としては、所定時間内のアラーム発生数、 およびアラーム発生して力も次回のアラーム発生までの時間を挙げることができ、こ れらを検出条件として設定することができる。すなわち、前者の場合は、所定時間内 のアラーム発生数が所定回数に達すると警告を通知するように設定する。例えば、図 7に示すように、 1時間のアラーム発生数が 4回に達した場合に警告を通知するように する。また、後者の場合は、アラームが発生して力も次回のアラーム発生までの時間 が所定時間内になると警告を通知するように設定する。例えば、図 8に示すように、ァ ラームが発生して力 次回のアラームが 1時間で発生した場合に警告を通知するよう にする。そして、前者の場合には、前記「所定時間」および所定時間内の「アラーム発 生数」をユーザーが設定できるようにし、後者の場合には、アラームが発生して力も次 回のアラーム発生までの時間をユーザーが設定できるようにする。
[0078] この FDC機能部 29に関する情報もデータ表示部 27によってモニタに表示される。
すなわち、 FDC機能の IDを指定することにより表示画面力FDC機能画面となり、こ の画面力も種々の設定および状態表示を行うことができる。例えば、アラームを一覧 表示し、アラームを個別指定できるようにする。この場合、アラームを分類別に表示す るようにすることが好ましい。また、この表示画面力 FDC機能のオン'オフを設定す ることができる。処理装置毎に FDC機能を有効にするか否かを設定することもできる 。さらに上記検出条件設定もこの表示画面により行うことができる。さらにまた、この表 示画面には、所定のアラームの発生が上記閾値に達した場合に通知される警告が 表示される。この場合に警告をどのようにして報告するかについても設定することがで きる。例えば、メッセンジャーサービス報告、メール報告、報告なし等を設定すること ができる。警告発生の累積回数も表示させることができる。
[0079] 検出条件を指定した際のアラーム発生状況をグラフ表示することもできる。図 9は、 横軸に時間をとり、縦軸にアラーム発生の累積回数をとつて、所定時間内のアラーム 発生数をグラフ表示した場合であり、白抜き丸ポイントが閾値を超え、警告が通知さ れる点である。また、図 10は、横軸にアラーム発生回数をとり、縦軸に累積時間をと つて、アラーム発生して力も次回のアラーム発生までの時間をグラフ表示した場合で あり、白抜き丸ポイントが閾値を超え、警告が通知される点である。
[0080] これに加えて、本実施形態では、ホストコンピュータ 15がダウンした場合に AGC17 によるプロセスデータのスプーリング処理が行われる。すなわち、ホストコンピュータ 1 5は、復旧後、ダウン期間のプロセスデータを AGC17から直ちに取り込むことができ る。これにより、ホストコンピュータ 15による各処理装置 10のトラッキング処理を復旧 後直ちに再開することができる。
[0081] 以上説明したように、本実施形態によれば、各処理装置 10から得られるウェハ検査 装置 48、ウェハ検出センサ 57、液処理ユニット温度計 59、液処理ユニット圧力計 60 、液面センサ 82a, 82b、温度'濃度検出部 95に設置された温度計および濃度計等 力 の検出信号に代表される全てあるいはほぼ全ての詳細なプロセスデータを AGC 17に取り込んで集中モニタリングすることができるので、各処理装置の状態の経時的 な変化を早期に発見することができる。これにより、多数の処理装置 10を含む処理シ ステムの保守信頼性を高めることが可能となる。また、本実施形態では、基板上の膜 厚測定結果等の測定データを含む詳細なプロセスデータに対する解析結果や統計 結果からレシピにおける各データをより好ましい値に更新することによって、各処理装 置 10の経時的な特性の変動をも考慮した様々な観点力も最適なプロセス条件を自 動的に得ることが可能となり、ウェハ Wの液処理の信頼性の向上を図ることができる。
[0082] また、このように各処理装置 10から得られるプロセスデータを AGC17に取り込んで 集中モニタリングすることにより、各処理装置の状態として掴むことのできる情報の幅 が広がり、処理装置異常や劣化状態、寿命を AGC17を設けない場合に比べてより 詳細かつ早期に発見することが可能となる。ここで、従来のように AGC17のデータ解 析部 25ですベての処理を行って、処理装置の状態を把握しょうとする場合には、解 析するデータが膨大であるため、実際には、異常検出や異常予測の機能を十分に 発揮させるのが困難となる場合が多いが、本実施形態では、 AGCクライアント 17bに FDC機能部 29を設け、装置アラーム発生とは別に、アラームの発生状態を解析し、 装置異常をリアルタイムで検出することができるので、装置異常や装置寿命を早期に 発見または予測することができる。また、ユーザーレベルで異常を定義可能とし、異 常設定を任意に行うことができ、任意に設定した異常設定に応じてアラームの発生状 態を解析し、装置異常を検出することができるので、ユーザーにとって実際に把握し たい処理異常等の装置状態となったときに警告を通知するようにすることができ、より 早期にかつ確実に処理装置の異常や寿命を発見な 、し予測することができる。具体 的には、例えば所定時間内のアラーム発生数、およびアラーム発生してから次回の アラーム発生までの時間等、装置アラームの発生状態の警告を通知する閾値をユー ザ一が設定し、この閾値に達した場合に装置異常が生じたと判断することにより、処 理装置の状態をユーザーレベルで確実に判断することが可能であり、装置異常や装 置寿命をより早期にかつ確実に発見ないし予測することができる。
[0083] なお、本発明は上記実施形態に限定されることなく種々変形可能である。例えば、 上記実施形態では、所定の検出手段について初回のアラーム発生を検出して力 F DC機能を実行するようにした力 アラーム発生の検出の有無にかかわらず、初期状 態力も FDC機能を実行するようにしてもよい。また、 FDC機能部を AGC内に設けた 力 処理装置のコントローラに設けるようにしてもよい。さらに、本発明は必ずしも AG Cを前提にする必要はなぐ上記 FDC機能を単独で用いるようにしてもょ ヽ。
[0084] また、上記実施形態では処理装置としてウェハに対して液処理を施して洗浄する 装置を例にとって説明したが、これに限らず、他の処理装置に適用可能である。また 、被処理体もウェハに限るものではない。ただし、上記実施形態で示した処理装置の ように、被処理体に対して一連の複数の処理を施す装置の場合には、検出すべき情 報の種類が多ぐそれに応じてアラームの種類も膨大であるため、本発明が特に有 効である。
[0085] さらに、上記実施形態では、処理システムとして複数の処理装置を有するものを例 にとつて説明したが、処理装置は 1台でも構わない。

Claims

請求の範囲
[1] 被処理体に所定の処理を施す処理装置において検出される情報に基づいて前記 処理装置を制御する制御手段と、
検出された情報が所定の範囲力 外れた場合にアラームを発するアラーム発生手 段と
を具備し、
前記制御手段は、前記アラーム発生手段から発生するアラームの発生状態を把握 し、その発生状態が所定の閾値に達した場合に警告を通知する制御システム。
[2] 請求項 1に係る制御システムにお 、て、前記制御手段は、前記アラーム発生手段 力 発生するアラームの発生状態の閾値を設定可能であり、前記アラームの発生状 態を把握し、その発生状態が前記設定された閾値に達した場合に警告を通知する、 制御システム。
[3] 請求項 1に係る制御システムにおいて、前記処理装置は複数の検出手段を有し、 前記制御手段は、ある検出手段からアラームが発生した場合に、 自動的に前記ァラ ーム発生状態の把握を開始する、制御システム。
[4] 請求項 1に係る制御システムにおいて、前記処理装置は複数の検出手段を有し、 前記制御手段は、予め設定された検出手段からアラームが発生した場合に、前記ァ ラーム発生状態の把握を開始する、制御システム。
[5] 請求項 1に係る制御システムにお 、て、前記アラーム発生手段は、前記制御手段 に設けられている、制御システム。
[6] 請求項 1に係る制御システムにおいて、前記アラームの発生状態は、所定時間内 のアラーム発生数である、制御システム。
[7] 請求項 1に係る制御システムにおいて、前記アラームの発生状態は、アラーム発生 して力も次回のアラーム発生の時間である、制御システム。
[8] 被処理体に所定の処理を施す複数の処理装置において検出される情報に基づい て前記複数の処理装置を制御する制御手段と、
前記検出される情報が所定の範囲力 外れた場合にアラームを発するアラーム発 生手段と を具備し、
前記制御手段は、
前記各処理装置において検出される複数の情報に基づいて前記複数の処理装置 を個別に制御する複数の装置制御部と、
前記各装置制御部から一部の情報を受信し、その情報に基づ!、て前記各処理装 置を制御するホストコンピュータと、
前記各装置制御部力 全てのまたはほぼ全ての情報を受信し、その情報に基づい て前記各処理装置を制御する制御装置と
を有し、
前記制御装置は、
前記各装置制御部から受信した情報およびアラーム発生手段から受信したアラー ム情報を収集する手段と、
前記収集した情報を解析する手段と、
前記アラーム情報に基づいて前記アラームの発生状態を把握し、その発生状態が 所定の閾値に達した場合に警告を通知する手段とを有する、制御システム。
[9] 請求項 8に係る制御システムにおいて、前記警告を通知する手段は、前記アラーム 発生手段力 発生するアラームの発生状態の閾値を設定可能である、制御システム
[10] 請求項 8に係る制御システムにお 、て、前記制御装置は、前記解析の結果および 前記アラームの発生状態を出力する手段をさらに有する、制御システム。
[11] 請求項 8に係る制御システムにおいて、前記各処理装置は、複数の検出手段を有 し、前記制御装置は、ある検出手段力 アラームが発生した場合に、自動的に前記 アラーム発生状態の把握を開始する、制御システム。
[12] 請求項 8に係る制御システムにおいて、前記各処理装置は複数の検出手段を有し
、前記制御装置は、予め設定された検出手段からアラームが発生した場合に、前記 アラーム発生状態の把握を開始する、制御システム。
[13] 請求項 8に係る制御システムにおいて、前記アラーム発生手段は、前記制御手段 に設けられている、制御システム。
[14] 請求項 8に係る制御システムにおいて、前記アラームの発生状態は、所定時間内 のアラーム発生数である、制御システム。
[15] 請求項 8に係る制御システムにおいて、前記アラームの発生状態は、アラーム発生 して力も次回のアラーム発生の時間である、制御システム。
[16] 被処理体に所定の処理を施す処理装置において検出される複数の情報に基づい て前記処理装置を制御する制御方法であって、
検出された情報が所定の範囲力 外れた場合に発生されるアラームの発生状態を 把握し、その発生状態が所定の閾値に達した場合に警告を通知する制御方法。
[17] 請求項 16に係る制御方法において、検出されたプロセス情報が所定の範囲から外 れた場合に発生されるアラームの発生状態の閾値を設定し、前記アラームの発生状 態を把握し、その発生状態が前記設定された閾値に達した場合に前記警告を通知 する、制御方法。
[18] 請求項 16に係る制御方法において、前記処理装置は複数の検出手段を有し、あ る検出手段力 アラームが発生した場合に、自動的に前記アラーム発生状態の把握 を開始する、制御方法。
[19] 請求項 16に係る制御方法において、前記処理装置は複数の検出手段を有し、予 め設定された検出手段力もアラームが発生した場合に、前記アラーム発生状態の把 握を開始する、制御方法。
[20] 請求項 16に係る制御方法において、前記アラームの発生状態は、所定時間内の アラーム発生数である、制御方法。
[21] 請求項 16に係る制御方法において、前記アラームの発生状態は、アラーム発生し て力も次回のアラーム発生の時間である、制御方法。
[22] 被処理体に所定の処理を施す処理装置と、前記処理装置を制御する制御システム とを具備し、
前記制御システムは、
被処理体に所定の処理を施す処理装置において検出される情報に基づいて前記 処理装置を制御する制御手段と、
検出された情報が所定の範囲力 外れた場合にアラームを発するアラーム発生手 段と
を備え、
前記制御手段は、前記アラーム発生手段から発生するアラームの発生状態を把握 し、その発生状態が所定の閾値に達した場合に警告を通知する処理システム。
[23] 被処理体に所定の処理を施す処理装置と、前記処理装置を制御する制御システム とを具備し、
前記制御システムは、
被処理体に所定の処理を施す複数の処理装置において検出される情報に基づい て前記複数の処理装置を制御する制御手段と、
前記検出される情報が所定の範囲力 外れた場合にアラームを発するアラーム発 生手段と
を備え、
前記制御手段は、
前記各処理装置において検出される複数の情報に基づいて前記複数の処理装置 を個別に制御する複数の装置制御部と、
前記各装置制御部から一部の情報を受信し、その情報に基づ!、て前記各処理装 置を制御するホストコンピュータと、
前記各装置制御部力 全てのまたはほぼ全ての情報を受信し、その情報に基づい て前記各処理装置を制御する制御装置と
を有し、
前記制御装置は、
前記各装置制御部から受信した情報およびアラーム発生手段から受信したアラー ム情報を収集する手段と、
前記収集した情報を解析する手段と、
前記アラーム情報に基づいて前記アラームの発生状態を把握し、その発生状態が 所定の閾値に達した場合に警告を通知する手段とを有する、処理システム。
[24] コンピュータが被処理体に所定の処理を施す処理装置にお!、て検出される複数の 情報に基づ 、て前記処理装置を制御するソフトウェアを含むコンピュータにより読み 取り可能な記憶媒体であって、
前記ソフトウェアは、検出された情報が所定の範囲から外れた場合に発生されるァ ラームの発生状態を把握し、その発生状態が所定の閾値に達した場合に警告を通 知する、記憶媒体。
コンピュータが被処理体に所定の処理を施す処理装置において検出される複数の 情報に基づいて前記処理装置を制御するソフトウェアを含むコンピュータプログラム であって、
前記ソフトウェアは、検出された情報が所定の範囲から外れた場合に発生されるァ ラームの発生状態を把握し、その発生状態が所定の閾値に達した場合に警告を通 知する、コンピュータプログラム。
PCT/JP2005/005805 2004-08-11 2005-03-29 制御システム、制御方法、および処理システム、ならびにコンピュータ読取可能な記憶媒体およびコンピュータプログラム WO2006016436A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/541,378 US20060247803A1 (en) 2005-03-29 2005-03-29 Control system, control method, process system, and computer readable storage medium and computer program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004234829 2004-08-11
JP2004-234829 2004-08-11

Publications (1)

Publication Number Publication Date
WO2006016436A1 true WO2006016436A1 (ja) 2006-02-16

Family

ID=35839212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/005805 WO2006016436A1 (ja) 2004-08-11 2005-03-29 制御システム、制御方法、および処理システム、ならびにコンピュータ読取可能な記憶媒体およびコンピュータプログラム

Country Status (2)

Country Link
TW (1) TW200606607A (ja)
WO (1) WO2006016436A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009016379A (ja) * 2007-06-29 2009-01-22 Tokyo Electron Ltd 群管理システム、半導体製造装置、情報処理方法、およびプログラム
JP2012156296A (ja) * 2011-01-26 2012-08-16 Disco Abrasive Syst Ltd 監視システム
JP2013093478A (ja) * 2011-10-27 2013-05-16 Tokyo Electron Ltd 基板処理装置及び基板処理方法並びに基板処理プログラムを記憶したコンピュータ読み取り可能な記憶媒体
JP2013177216A (ja) * 2012-02-28 2013-09-09 Daifuku Co Ltd 物品搬送設備
WO2019167299A1 (ja) * 2018-02-28 2019-09-06 三菱電機株式会社 工場自動化システム、工場自動化方法およびコンピュータ可読記憶媒体

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10240341A (ja) * 1997-02-28 1998-09-11 Toshiba Corp アラーム監視ディジタル制御装置
JPH11118592A (ja) * 1997-10-15 1999-04-30 Hitachi Ltd 機器異常診断装置およびそれを搭載したプラント装置
JP2002312021A (ja) * 2001-04-13 2002-10-25 Mitsubishi Electric Corp 半導体製造装置の管理システム
JP2003217995A (ja) * 2002-12-09 2003-07-31 Tokyo Electron Ltd 制御システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10240341A (ja) * 1997-02-28 1998-09-11 Toshiba Corp アラーム監視ディジタル制御装置
JPH11118592A (ja) * 1997-10-15 1999-04-30 Hitachi Ltd 機器異常診断装置およびそれを搭載したプラント装置
JP2002312021A (ja) * 2001-04-13 2002-10-25 Mitsubishi Electric Corp 半導体製造装置の管理システム
JP2003217995A (ja) * 2002-12-09 2003-07-31 Tokyo Electron Ltd 制御システム

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009016379A (ja) * 2007-06-29 2009-01-22 Tokyo Electron Ltd 群管理システム、半導体製造装置、情報処理方法、およびプログラム
JP2012156296A (ja) * 2011-01-26 2012-08-16 Disco Abrasive Syst Ltd 監視システム
JP2013093478A (ja) * 2011-10-27 2013-05-16 Tokyo Electron Ltd 基板処理装置及び基板処理方法並びに基板処理プログラムを記憶したコンピュータ読み取り可能な記憶媒体
JP2013177216A (ja) * 2012-02-28 2013-09-09 Daifuku Co Ltd 物品搬送設備
WO2019167299A1 (ja) * 2018-02-28 2019-09-06 三菱電機株式会社 工場自動化システム、工場自動化方法およびコンピュータ可読記憶媒体
JP6573741B1 (ja) * 2018-02-28 2019-09-11 三菱電機株式会社 工場自動化システム、工場自動化方法およびコンピュータ可読記憶媒体

Also Published As

Publication number Publication date
TW200606607A (en) 2006-02-16
TWI311697B (ja) 2009-07-01

Similar Documents

Publication Publication Date Title
KR101417701B1 (ko) 처리 장치의 이상 판정 시스템 및 그 이상 판정 방법
JP5042225B2 (ja) 熱処理システムのビルトイン・セルフテスト
TWI412906B (zh) 具有虛擬量測功能的製造執行系統與製造系統
EP1300874B1 (en) Method for maintaining a processor
JP5096335B2 (ja) 熱処理システムのビルトイン・セルフテスト
KR101761956B1 (ko) 오염을 측정하여 반도체 제조를 제어하기 위한 방법 및 장치
US20060247803A1 (en) Control system, control method, process system, and computer readable storage medium and computer program
WO2006016436A1 (ja) 制御システム、制御方法、および処理システム、ならびにコンピュータ読取可能な記憶媒体およびコンピュータプログラム
US20220152780A1 (en) Substrate processing apparatus and substrate processing method
US20060235558A1 (en) Method of scavenging intermediate formed by reaction of oxidoreductase with substrate
KR20190134523A (ko) 기판 수납 용기 관리 시스템, 로드 포트, 기판 수납 용기 관리 방법
JP2006228911A (ja) 半導体製造装置、コンピュータプログラム及び記憶媒体
JP5105399B2 (ja) データ収集方法,基板処理装置,基板処理システム
TWI280603B (en) Manufacturing system of semiconductor device and manufacturing method of semiconductor device
WO2006016435A1 (ja) 処理システムおよび処理方法、ならびにコンピュータ読取可能な記憶媒体およびコンピュータプログラム
JP2006157029A (ja) 半導体装置の製造システム
KR102456823B1 (ko) 기판 처리 장치 및 기판 처리 방법
US11662373B2 (en) Substrate storage container management system, load port, and substrate storage container management method
TW202220076A (zh) 基板處理方法及基板處理裝置
JP2010267856A (ja) 洗浄処理装置および洗浄処理方法
JP2002016123A (ja) 試料処理装置および処理方法
JPH10223499A (ja) 物品の製造方法、物品の製造システムおよび複数の加工処理装置の運用方法
WO2023135904A1 (ja) 基板処理装置管理システム、基板処理装置管理方法および基板処理装置管理プログラム
JP2001338964A (ja) 試料処理装置および処理方法
JP2003297710A (ja) 処理システム及び処理方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2006247803

Country of ref document: US

Ref document number: 10541378

Country of ref document: US

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 10541378

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP