WO2006016401A1 - 通信システム、リーダライタ装置及びrf−idタグ - Google Patents

通信システム、リーダライタ装置及びrf−idタグ Download PDF

Info

Publication number
WO2006016401A1
WO2006016401A1 PCT/JP2004/011482 JP2004011482W WO2006016401A1 WO 2006016401 A1 WO2006016401 A1 WO 2006016401A1 JP 2004011482 W JP2004011482 W JP 2004011482W WO 2006016401 A1 WO2006016401 A1 WO 2006016401A1
Authority
WO
WIPO (PCT)
Prior art keywords
modulated wave
clock
data
tag
modulated
Prior art date
Application number
PCT/JP2004/011482
Other languages
English (en)
French (fr)
Inventor
Mitsuhiro Shimozawa
Naohisa Takayama
Ryoji Hayashi
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to PCT/JP2004/011482 priority Critical patent/WO2006016401A1/ja
Publication of WO2006016401A1 publication Critical patent/WO2006016401A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/59Responders; Transponders

Definitions

  • the present invention relates to a communication system in which an RF-ID tag and a reader / writer device that are not equipped with a power supply communicate using radio waves in the UHF band or higher, a reader / writer device and an RF-ID constituting the communication system. It is about tags.
  • the modulation power transmitted from the reader / writer device is rectified to obtain drive power.
  • the reader / writer device When the reader / writer device transmits data to the RF—ID tag, normally the data is ASK modulated and the modulated wave is transmitted to the RF—ID tag.
  • the reader / writer device transmits an unmodulated carrier with a constant amplitude to the RF—ID tag, and the load modulation circuit of the RF—ID tag does not modulate.
  • the modulated wave is transmitted to the reader / writer device.
  • the RF-ID tag generates a clock by dividing the carrier of the modulated wave transmitted from the reader / writer device (see, for example, Patent Document 1).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 11-296627
  • the conventional communication system is configured as described above, when the carrier frequency of the modulated wave transmitted from the reader / writer device is high (for example, 950 MHz), the operating frequency of the clock generating frequency divider is set. There is a problem that the power consumption of the RF-ID tag increases because it is necessary to increase the frequency division number of the frequency divider.
  • the present invention has been made to solve the above-described problems. Even when the carrier frequency of the modulated wave by the data transmitted from the reader / writer device to the RF-ID tag is high, the RF-ID tag An object of the present invention is to obtain a communication system that can achieve low power consumption. It is another object of the present invention to provide a reader / writer device that can supply a radio wave for generating a clock to an RF-ID tag without a clock generating frequency divider. Furthermore, an object of the present invention is to obtain an RF ID tag that can generate a clock without mounting a frequency divider for clock generation.
  • an RF-ID tag receives a transmission signal from a reader / writer device, generates a clock from a periodic waveform signal lower than a carrier frequency superimposed on the transmission signal, and While operating in synchronization with the clock, the data from the reader / writer device is demodulated, and the data to the reader / writer device is modulated and transmitted.
  • FIG. 1 is a configuration diagram showing a communication system according to Embodiment 1 of the present invention.
  • FIG. 2 is an explanatory diagram showing various signal waveforms during downlink communication.
  • FIG. 3 is an explanatory diagram showing various signal waveforms during uplink communication.
  • FIG. 4 An explanatory diagram showing a time waveform of a code in which marks or spaces do not continue for a predetermined number of symbols or more.
  • FIG. 5 is a configuration diagram showing a communication system according to Embodiment 3 of the present invention.
  • FIG. 6 is an explanatory diagram showing various signal waveforms during downlink and uplink communications.
  • FIG. 7 is an explanatory diagram showing various signal waveforms during downlink and uplink communications.
  • FIG. 8 is a configuration diagram showing a communication system according to Embodiment 5 of the present invention.
  • FIG. 9 is an explanatory diagram showing various signal waveforms during downlink communication.
  • FIG. 10 is a configuration diagram showing a communication system according to Embodiment 6 of the present invention.
  • FIG. 1 is a block diagram showing a communication system according to Embodiment 1 of the present invention.
  • the R / W device 1 that is a reader / writer device modulates the carrier with the data to be transmitted and transmits the modulated wave
  • the RF— When receiving data from ID tag 2, the carrier is modulated with a periodic waveform signal having a frequency lower than that of the modulated wave carrier used for communication, and the modulated wave is transmitted.
  • the RF tag 2 When the RF—ID tag 2 receives the modulated wave from the data transmitted from the RZW device 1, the RF tag rectifies the modulated wave to obtain drive power, and generates a clock from the modulated wave using the power. While demodulating data from the modulated wave in synchronization with the clock, when receiving a modulated wave based on a periodic waveform signal transmitted from the R / W device 1, the modulated wave is rectified to obtain driving power, and A clock is generated from the modulated wave using electric power, and data destined for the RZW device 1 is modulated and transmitted in synchronization with the clock.
  • the control circuit 12 of the RZW device 1 communicates data from the RZW device 1 to the RF—ID tag 2.
  • the data addressed to the RF—ID tag 2 is input from the input terminal 11 and the data is transmitted.
  • the signal is output to the signal generation circuit 13.
  • a periodic waveform signal generation command is output to the RF band carrier generation circuit 14 and the data demodulated by the reception signal demodulation circuit 22 is output. (RF—data received from ID tag 2) is output to output terminal 23.
  • the transmission signal generation circuit 13 of the R / W device 1 receives data addressed to the RF—ID tag 2 from the control circuit 12, the transmission signal generation circuit 13 converts the data into an analog signal for generating an ASK modulated wave, and the RF band carrier When a periodic waveform signal is received from the generation circuit 14, the periodic waveform signal is converted into an analog signal for generating an ASK modulated wave.
  • the RF band carrier generation circuit 14 of the R / W device 1 When receiving the generation command of the periodic waveform signal from the control circuit 12, the RF band carrier generation circuit 14 of the R / W device 1 generates a periodic waveform signal having a frequency lower than that of the carrier of the modulated wave addressed to the RF ID tag 2.
  • a local oscillation signal generation circuit (hereinafter referred to as an L0 circuit) 15 of the RZW device 1 oscillates an L0 wave that is a local oscillation signal.
  • the transmission mixer 16 of the RZW device 1 mixes the analog signal for ASK modulation wave generation output from the transmission signal generation circuit 13 and the L0 wave oscillated from the L0 circuit 15 to generate an ASK modulation wave in the RF band. To do.
  • the control circuit 12, the transmission signal generation circuit 13, the RF band carrier generation circuit 14, the LO circuit 15 and the transmission mixer 16 constitute modulation means.
  • the RF amplifier 17 of the R / W device 1 amplifies the ASK modulated wave generated by the transmission mixer 16 and outputs it to the circulator 18.
  • the circulator 18 of the RZW device 1 outputs the ASK modulated wave amplified by the RF amplifier 17 to the antenna 19, and outputs the ASK modulated wave received by the antenna 19 to the low noise amplifier 20.
  • the RF amplifier 17, the circulator 18 and the antenna 19 constitute transmission means.
  • the low noise amplifier 20 of the RZW device 1 amplifies the ASK modulated wave received by the antenna 19.
  • the reception mixer 21 of the RZW device 1 mixes the LO wave oscillated from the LO circuit 15 with the ASK modulated wave amplified by the low noise amplifier 20, and converts the ASK modulated wave into a baseband signal.
  • the reception signal demodulation circuit 22 of the R / W device 1 demodulates the baseband signal power data converted by the reception mixer 21 and outputs the demodulated data to the control circuit 12.
  • the antenna 31 of the ID tag 2 receives the ASK modulated wave transmitted from the R / W device 1, while transmitting the ASK modulated wave to the R / W device 1.
  • the antenna 31 constitutes a receiving means.
  • the rectification / storage circuit 32 of the ID tag 2 rectifies the ASK modulated wave received by the antenna 31 to obtain driving power, and the driving power is compared with the comparator 34, the clock generation circuit 35, the signal demodulation / generation circuit 36, and Supply to CPU37.
  • the rectification Z power storage circuit 32 constitutes drive power acquisition means.
  • the envelope detection circuit 33 of the RF—ID tag 2 detects the envelope of the ASK modulated wave received by the antenna 31.
  • the comparator 34 of the RF—ID tag 2 compares the envelope of the ASK modulation wave detected by the envelope detection circuit 33 with a predetermined threshold value, and shapes the waveform of the envelope.
  • RF—ID tag 2 clock generation circuit 35 generates a clock from the output signal of comparator 34 To do.
  • the envelope detection circuit 33, the comparator 34, and the clock generation circuit 35 constitute clock generation means.
  • RF—ID tag 2 signal demodulation The Z generation circuit 36 demodulates data from the output signal of the comparator 34 in synchronization with the clock generated by the clock generation circuit 35, while the clock generation circuit 35 generates the data. Data for R / W device 1 is generated in synchronization with the generated clock.
  • the CPU 37 of the RF ID tag 2 analyzes the data demodulated by the signal demodulation Z generation circuit 36 and outputs a data generation command addressed to the R / W device 1 to the signal demodulation Z generation circuit 36.
  • RF The load modulator 38 of the ID tag 2 matches the data addressed to the R / W device 1 generated by the signal demodulation / generation circuit 36, and the reflection coefficient for the RF band carrier transmitted from the RZW device 1 To change.
  • the reflection coefficient is completely reflected, while when the data power S is “0”, the reflection coefficient is made non-reflecting to generate an ASK modulated wave.
  • the ASK modulation wave is generated and output to the antenna 31.
  • the signal demodulation / generation circuit 36 constitutes demodulation means, and the signal demodulation / generation circuit 36, CPU 37, load modulator 38 and antenna 31 constitute transmission means.
  • Communication processing of the communication system is broadly divided into lower communication in which data is communicated from the R / W device 1 to the RF—ID tag 2 and upstream communication in which data is communicated from the RF—ID tag 2 to the R / W device 1. Downstream and upstream communications are performed alternately as shown in Fig. 2 (a).
  • the control circuit 12 of the RZW device 1 communicates data from the RZW device 1 to the RF—ID tag 2.
  • the data addressed to the RF—ID tag 2 is input from the input terminal 11 and the data is generated as a transmission signal.
  • the LO wave oscillation command is output to LO circuit 15.
  • the transmission signal generation circuit 13 of the RZW device 1 receives data addressed to the RF-ID tag 2 from the control circuit 12, the transmission signal generation circuit 13 converts the data into an analog signal for generating an ASK modulation wave.
  • the L ⁇ circuit 15 of the RZW device 1 Oscillates the LO wave that is the oscillation signal.
  • the transmission mixer 16 of the R / W device 1 receives an analog signal for generating an ASK modulated wave from the transmission signal generating circuit 13 and receives an LO wave from the LO circuit 15, an analog signal for generating the ASK modulated wave and an L O Waves are mixed to generate an ASK modulated wave in the RF band.
  • the RF amplifier 17 of the RZW device 1 amplifies the ASK modulated wave and outputs the amplified ASK wave to the circulator 18.
  • the circulator 18 of the RZW device 1 outputs the ASK modulated wave amplified by the RF amplifier 17 to the antenna 19.
  • the ASK modulated wave is transmitted from the R / W device 1 to the RF-ID tag 2.
  • Figure 2 (b) shows the waveform of the ASK modulated wave transmitted from the RZW device 1, and the symbol rate is Fs.
  • the antenna 31 of the ID tag 2 receives the ASK modulated wave transmitted from the R / W device 1.
  • the rectification / storage circuit 32 of the RF—ID tag 2 rectifies the ASK modulation wave to acquire driving power and accumulates the driving power.
  • the rectification / storage circuit 32 supplies the drive power to the comparator 34, the clock generation circuit 35, the signal demodulation / generation circuit 36, and the CPU 37 as a power source.
  • the envelope detection circuit 33 of the RF-ID tag 2 detects the envelope of the ASK modulation wave received by the antenna 31.
  • Figure 2 (c) shows the envelope waveform of the ASK modulated wave detected by the envelope detector circuit 33.
  • the comparator 34 of the RF—ID tag 2 compares the envelope of the ASK modulation wave detected by the envelope detection circuit 33 with a predetermined threshold, and shapes the waveform of the envelope.
  • FIG. 2 (d) shows the waveform of the signal after waveform shaping by the comparator 34.
  • the clock generation circuit 35 of the ID tag 2 generates a clock from the signal after waveform shaping by the comparator 34. Specifically, it is as follows.
  • the waveform-shaped signal that is the input signal of the clock generation circuit 35 always repeats “1” and “0”, the signal can be used as it is as a clock.
  • the output signal strength of the comparator 34 can be reduced.
  • “1” or “0” may continue, so if the output signal of the comparator 34 is used as a clock as it is, it will drop below the clock frequency power.
  • Fs a clock delayed by one symbol
  • FIG. 2 (e) shows a clock generated by the clock generation circuit 35.
  • the clock generation circuit 35 is equipped with another delay circuit and compared with a signal delayed by 2 symbols or more, a clock with a period equivalent to 1 symbol can be obtained even when 3 symbols or spaces are consecutive. Can be generated.
  • the signal demodulation / generation circuit 36 of the ID tag 2 demodulates data from the output signal of the comparator 34 in synchronization with the clock generated by the clock generation circuit 35.
  • the CPU 37 of the RF—ID tag 2 analyzes the data demodulated by the signal demodulation / generation circuit 36 in synchronization with the clock generated by the clock generation circuit 35, and performs processing according to the analysis result.
  • the control circuit 12 of the RZW device 1 communicates data from the RF—ID tag 2 to the R / W device 1.
  • the ASK modulation wave and the radio wave for clock generation are supplied to the RF—ID tag 2, so The waveform signal generation command is output to the RF band carrier generation circuit 14 and the L
  • the RF band carrier generation circuit 14 of the RZW device 1 Upon receiving a periodic waveform signal generation command from the control circuit 12, the RF band carrier generation circuit 14 of the RZW device 1 generates a periodic waveform signal having a frequency lower than that of the carrier of the modulated wave addressed to the RF-ID tag 2. Generate.
  • the transmission signal generation circuit 13 of the R / W device 1 receives the periodic waveform signal from the RF band carrier generation circuit 14, it converts the periodic waveform signal into an analog signal for generating an ASK modulated wave.
  • the L0 circuit 15 of the RZW device 1 oscillates the L0 wave that is a local oscillation signal.
  • the transmission mixer 16 of the RZW device 1 receives an analog signal for generating an ASK modulation wave from the transmission signal generation circuit 13 and receives an L wave from the L circuit 15 and an analog signal for generating the ASK modulation wave and the L signal. O Waves are mixed to generate an ASK modulated wave in the RF band.
  • the RF amplifier 17 of the RZW device 1 amplifies the ASK modulated wave and outputs it to the circulator 18.
  • the circulator 18 of the RZW device 1 outputs the ASK modulated wave amplified by the RF amplifier 17 to the antenna 19.
  • FIG. 3 (b) shows the waveform of the ASK modulated wave transmitted from the R / W device 1, and the amplitude fluctuates at a period corresponding to the operation clock of the RF-ID tag 2.
  • Fs the symbol rate of the ASK modulated wave transmitted by the R / W device 1 during downlink communication.
  • the antenna 31 of the ID tag 2 receives the ASK modulated wave transmitted from the R / W device 1.
  • the rectification / storage circuit 32 of the RF—ID tag 2 rectifies the ASK modulation wave to acquire driving power and accumulates the driving power.
  • the rectification / storage circuit 32 supplies the drive power to the comparator 34, the clock generation circuit 35, the signal demodulation / generation circuit 36, and the CPU 37 as a power source.
  • the envelope detection circuit 33 of the RF-ID tag 2 detects the envelope of the ASK modulation wave received by the antenna 31.
  • Figure 3 (c) shows the envelope waveform of the ASK modulated wave detected by the envelope detector circuit 33.
  • the comparator 34 of the RF-ID tag 2 compares the envelope of the ASK modulated wave detected by the envelope detector circuit 33 with a predetermined threshold, and shapes the waveform of the envelope. That is, if the envelope of the ASK modulated wave is larger than the threshold, “1” is output, and if the envelope of the ASK modulated wave is smaller than the threshold, “0” is output, thereby shaping the envelope waveform.
  • FIG. 3 (d) shows the waveform of the signal after waveform shaping by the comparator 34.
  • the clock generation circuit 35 of the ID tag 2 generates a clock from the signal after waveform shaping by the comparator 34.
  • the amplitude of the ASK modulated wave received by the antenna 31 fluctuates in a period corresponding to the operation clock of the RF-ID tag 2 as described above, so the output signal of the comparator 34 is used as it is as a clock. be able to. Therefore, the clock generation circuit 35 outputs the output signal of the comparator 34 that does nothing particularly as a clock to the signal demodulation / generation circuit 36 and the CPU 37.
  • FIG. 3 (e) shows the clock output from the clock generation circuit 35.
  • the CPU 37 of the RF—ID tag 2 outputs a data generation command addressed to the R / W device 1 to the signal demodulation / generation circuit 36 in synchronization with the clock generated by the clock generation circuit 35.
  • the signal demodulation / generation circuit 36 of the ID tag 2 synchronizes with the clock generated by the clock generation circuit 35 and outputs data addressed to the R / W device 1. Generate.
  • RF When load modulator 38 of ID tag 2 receives data addressed to R / W device 1 from signal demodulation / generation circuit 36, RF transmitted from R / W device 1 is matched to that data. Change the reflection coefficient for the band carrier.
  • the reflection coefficient is made completely reflective, while when the data is "0", the reflection coefficient is made non-reflecting, so that the ASK modulation wave And outputs the ASK modulated wave to the antenna 31.
  • an ASK modulated wave is transmitted from the RF-ID tag 2 to the RZW device 1.
  • FIG. 3 (f) shows the waveform of the ASK modulated wave transmitted from the RF—ID tag 2.
  • the antenna 19 of the R / W device 1 receives the ASK modulated wave transmitted from the RF—ID tag 2.
  • the circulator 18 of the RZW device 1 When the antenna 19 receives the ASK modulated wave, the circulator 18 of the RZW device 1 outputs the ASK modulated wave to the low noise amplifier 20.
  • the low noise amplifier 20 of the RZW device 1 When receiving the ASK modulated wave from the circulator 18, the low noise amplifier 20 of the RZW device 1 amplifies the ASK modulated wave.
  • the reception mixer 21 of the RZW device 1 mixes the LO wave oscillated from the LO circuit 15 with the ASK modulated wave amplified by the low noise amplifier 20, and converts the ASK modulated wave into a baseband signal.
  • the received signal demodulating circuit 22 of the RZW device 1 demodulates data (data received from the RF-ID tag 2) from the baseband signal and outputs it to the control circuit 12. .
  • the control circuit 12 of the R / W device 1 outputs the data demodulated by the reception signal demodulation circuit 22 to the output terminal 23.
  • the RF-ID tag 2 when the RF-ID tag 2 receives an ASK modulated wave from the R / W device 1 during downlink communication, a clock is generated from the ASK modulated wave.
  • the data destined for the RF—ID tag 2 is demodulated, and during upstream communication, the RF—ID tag 2 receives a modulated wave in which the RF band carrier is modulated with a periodic waveform signal, Since a clock is generated from the modulated wave and the data addressed to the R / W device 1 is modulated and transmitted in synchronization with the clock, the clock is generated by dividing the carrier in the RF band.
  • FIG. 4 is an explanatory diagram showing a time waveform of a code in which a mark or space does not continue for a predetermined number of symbols.
  • FIG. 4 (a) represents “1”
  • FIG. 4 (b) represents “0”. Represents.
  • the circuit configuration of the clock generation circuit 35 can be simplified.
  • FIG. 5 is a block diagram showing a communication system according to Embodiment 3 of the present invention.
  • the same reference numerals as those in FIG. 1 are identical to FIG. 1 and the same reference numerals as those in FIG. 1;
  • the RF-ID tag 2 multiplication circuit 39 multiplies the frequency of the clock generated by the clock generation circuit 35 by a constant, and supplies the clock to the signal demodulation / generation circuit 36 and the CPU 37.
  • the clock generation circuit 35 of the RF ID tag 2 generates a clock from the output signal of the comparator 34 in the same way as in the first embodiment at the time of downlink communication and uplink communication. Note that the speed of the clock generated by the clock generation circuit 35 is the same as the speed of the symbol rate.
  • the power generation circuit 39 of the RF-ID tag 2 When the power generation circuit 39 of the RF-ID tag 2 generates the S clock of the clock generation circuit 35, the frequency of the clock is multiplied by a constant, and the clock is supplied to the signal demodulation / generation circuit 36 and the CPU 37. .
  • Figures 6 (c) and 6 (f) are waveforms showing a clock whose frequency is multiplied by a constant by the multiplier circuit 39.
  • the multiplication factor of the multiplication circuit 39 is four.
  • the signal demodulation / generation circuit 36 and CPU 37 of the RF-ID tag 2 receive a clock from the multiplier circuit 39, the signal demodulation / generation circuit 36 and the CPU 37 perform the same processing as in the first embodiment in synchronization with the clock.
  • the signal demodulation / generation circuit 36 operates with a clock that is an integer multiple of the symbol rate. Therefore, when demodulating a digital modulation wave including ASK, the demodulation accuracy is improved. There is an effect that can. Further, since the demodulation accuracy is improved, the communication distance can be extended.
  • the symbol rate of the ASK modulated wave transmitted from R / W device 1 during downlink communication is the same as the amplitude change period of the RF band carrier transmitted from RZW device 1 during uplink communication.
  • the amplitude change period of the RF band carrier transmitted from the R / W device 1 during uplink communication is defined as the ASK modulation transmitted from the RZW device 1 during downlink communication. It may be made faster than the wave symbol rate.
  • the period of amplitude change of the RF band carrier transmitted from the R / W device 1 during uplink communication is set to four times the symbol rate of the ASK modulated wave transmitted from the R / W device 1 during downlink communication. ing.
  • the operation of the RF-ID tag 2 during downlink communication is the same as that in the third embodiment.
  • the operation of the multiplier circuit 39 is stopped, and the clock generated by the clock generation circuit 35 is supplied to the signal demodulation / generation circuit 36 and the CPU 37.
  • the operation of the multiplier circuit 39 is stopped, so that the power consumption of the RF-ID tag 2 can be reduced.
  • FIG. 8 is a block diagram showing a communication system according to Embodiment 5 of the present invention.
  • the same reference numerals as those in FIG. 1 are identical to FIG. 1 and the same reference numerals as those in FIG. 1;
  • the RF band carrier generation circuit 25 of the R / W device 1 Upon receiving a periodic waveform signal generation command from the control circuit 12, the RF band carrier generation circuit 25 of the R / W device 1 generates a periodic waveform signal whose frequency is lower than that of the carrier of the modulated wave addressed to the RF—ID tag 2. Thus, a periodic waveform signal whose amplitude changes with the same period as the subcarrier is generated.
  • the transmission signal generation circuit 24 and the RF band carrier generation circuit 25 constitute modulation means.
  • the comparator 40 of the ID tag 2 shapes the waveform having a period of 4Fs from the envelope detected by the envelope detection circuit 33. Note that the comparator 40 constitutes clock generation means.
  • the control circuit 12 of the R / W device 1 communicates data from the R / W device 1 to the RF—ID tag 2 and inputs data addressed to the RF—ID tag 2 from the input terminal 11 during downstream communication. Is output to the transmission signal generation circuit 24, and an LO wave oscillation command is output to the LO circuit 15.
  • the transmission signal generation circuit 24 of the R / W device 1 receives data addressed to the RF-ID tag 2 from the control circuit 12, the transmission signal generation circuit 24 converts the data into an analog signal for generating an ASK modulation wave.
  • the L0 circuit 15 of the RZW device 1 oscillates the L0 wave, which is a local oscillation signal, as in the first embodiment.
  • the transmission mixer 16 of the RZW device 1 is subcarrier-modulated from the transmission signal generation circuit 24.
  • An analog signal for SK modulation wave generation and LO wave are mixed to generate an ASK modulation wave in the RF band.
  • the transmission mixer 16 When the transmission mixer 16 generates an ASK modulated wave, the RF amplifier 17 of the RZW device 1 As in the first embodiment, the ASK modulated wave is amplified and output to the circulator 18.
  • the circulator 18 of the R / W device 1 outputs the ASK modulated wave amplified by the RF amplifier 17 to the antenna 19.
  • the ASK modulated wave is transmitted from the R / W device 1 to the RF-ID tag 2.
  • the antenna 31 of the RF-ID tag 2 receives the ASK modulated wave transmitted from the R / W device 1 as in the first embodiment.
  • the Z power storage circuit 32 rectifies the ASK modulated wave to acquire drive power and receives the drive power, as in the first embodiment. Accumulate.
  • the rectification / storage circuit 32 supplies the drive power to the comparator 34, the clock generation circuit 35, the signal demodulation / generation circuit 36, and the CPU 37 as a power source.
  • the envelope detection circuit 33 of the RF-ID tag 2 detects the envelope of the ASK modulation wave received by the antenna 31.
  • Figure 9 (b) shows the envelope waveform of the ASK modulated wave detected by the envelope detector circuit 33.
  • the comparator 34 of the RF—ID tag 2 is a comparator for received data, and shapes the waveform of the period Fs out of the envelope of the ASK modulation wave detected by the envelope detection circuit 33. That is, the ASK If the envelope of the modulated wave is larger than the threshold A, “1” is output, and if the envelope of the ASK modulated wave is smaller than the threshold A, “0” is output, thereby shaping the envelope waveform.
  • Figure 9 (c) shows the waveform of the signal after waveform shaping by the comparator 34.
  • the comparator 40 of the RF-ID tag 2 is a clock generation comparator, and shapes the waveform having a period of 4Fs in the envelope of the ASK modulation wave detected by the envelope detection circuit 33.
  • FIG. 9 (d) shows the waveform of the signal after waveform shaping by the comparator 40.
  • the clock generation circuit 35 of the RF—ID tag 2 When the comparator 40 shapes the waveform with a period of 4Fs, the clock generation circuit 35 of the RF—ID tag 2 generates a clock from the signal after waveform shaping by the comparator 40 in the same manner as in the first embodiment. .
  • a clock with a period of 4Fs is generated.
  • FIG. 9E shows a clock generated by the clock generation circuit 35.
  • the Z generation circuit 36 demodulates data from the output signal of the comparator 34 in synchronization with the clock having a period of 4 Fs generated by the clock generation circuit 35.
  • the CPU 37 of the RF—ID tag 2 analyzes the data demodulated by the signal demodulation / generation circuit 36 in synchronization with the clock of the period 4Fs generated by the clock generation circuit 35, and performs processing according to the analysis result. carry out.
  • the R / W device 1 side is different from the first embodiment only in the operation of the RF band carrier generation circuit 25.
  • the RF band carrier generation circuit 25 when the RF band carrier generation circuit 25 receives a periodic waveform signal generation command from the control circuit 12, the RF band carrier generation circuit 25 generates a periodic waveform signal having a frequency lower than that of the modulated wave carrier addressed to the RF-ID tag 2. This is the same as the RF band carrier generation circuit 14 in FIG.
  • the RF band carrier generation circuit 25 of the fifth embodiment is different in that it generates a periodic waveform signal whose amplitude changes in the same cycle as the subcarrier used by the transmission signal generation circuit 24. .
  • the R / W device 1 transmits a modulated wave in the RF band whose amplitude changes with a period of 4Fs to the RF ID tag 2.
  • the comparator 40 of the RF—ID tag 2 shapes the waveform having a period of 4Fs in the envelope of the ASK modulation wave detected by the envelope detection circuit 33.
  • RF — Clock generation circuit 35 of ID tag 2 has comparator 40 shaping waveform with period of 4Fs Then, in the same manner as in the first embodiment, a clock is generated from the signal after waveform shaping by the comparator 40.
  • a clock with a period of 4Fs is generated.
  • the Z generation circuit 36 demodulates data from the output signal of the comparator 34 in synchronization with the clock having a period of 4 Fs generated by the clock generation circuit 35.
  • the CPU 37 of the RF—ID tag 2 analyzes the data demodulated by the signal demodulation / generation circuit 36 in synchronization with the clock of the period 4Fs generated by the clock generation circuit 35, and performs processing according to the analysis result. carry out.
  • a subcarrier having a frequency four times the data transmission rate is subcarrier-modulated by the data, and then the RF band is used.
  • the carrier wave in the RF band is modulated with a periodic waveform signal whose amplitude changes in the same cycle as that of the subcarrier. This increases the communication distance and extends the communication distance.
  • FIG. 10 is a block diagram showing a communication system according to Embodiment 6 of the present invention.
  • the same reference numerals as those in FIG. 10 are identical to FIG. 10 in the figure.
  • the filter 41 is composed of, for example, a low-pass filter, and passes only the waveform of the period Fs out of the envelope of the ASK modulation wave detected by the envelope detection circuit 33.
  • the filter 42 has, for example, a band-pass filter or a high-pass filter, and passes only the waveform having a period of 4 Fs from the envelope of the ASK modulation wave detected by the envelope detection circuit 33.
  • the filter 42 constitutes clock generation means.
  • the envelope detection circuit 33 of the comparators 34 and 40 is compared with the thresholds A and B, and the waveform is shaped.
  • the waveform shaping accuracy is improved and the waveform shaping accuracy is increased.
  • the waveform shaping accuracy can be increased without setting the threshold values A and B strictly. That is, a filter 41 that passes only the waveform of the period Fs out of the envelope of the ASK modulation wave detected by the envelope detection circuit 33 is provided in the preceding stage of the comparator 34, and only the waveform of the period 4Fs is allowed to pass. Since the filter 42 is provided in front of the comparator 40, the waveform shaping accuracy can be improved without setting the thresholds A and B strictly. Therefore, it is possible to obtain an accurate clock and to accurately demodulate data.
  • a clock is generated from an ASK modulated wave during downlink communication and a clock is generated using a periodic waveform signal whose amplitude periodically varies during uplink communication. You can generate a clock like this.
  • the RZW device 1 transmits a PSK modulated wave to the RF-ID tag 2, and the RF-ID tag 2 generates a clock from the PSK modulated wave.
  • the R / W device 1 transmits an RF band carrier whose phase periodically varies to the RF ID tag 2 as a periodic waveform signal with a phase change, and the RF ID tag 2 A clock is generated by extracting the phase change of the carrier.
  • the communication system uses the RF-ID tag when the RF-ID tag without a power supply and the reader / writer device communicate using radio waves of the UHF band or higher. It is suitable for use with clocks that are highly needed to generate low power consumption.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Near-Field Transmission Systems (AREA)

Abstract

 下り通信時には、RF−IDタグ2がR/W装置1からASK変調波を受信すると、そのASK変調波からクロックを生成し、そのクロックに同期して、RF−IDタグ2宛のデータを復調する。また、上り通信時には、RF−IDタグ2が周期波形信号でRF帯のキャリアが変調された変調波を受信して、その変調波からクロックを生成し、そのクロックに同期して、R/W装置1宛のデータを変調して送信する。これにより、RF帯のキャリアを分周してクロックを生成する分周器をRF−IDタグ2に搭載することなく、クロックを生成してデータをR/W装置1に送信することができる。

Description

明 細 書
通信システム、リーダライタ装置及び RF-IDタグ
技術分野
[0001] この発明は、電源を搭載していない RF— IDタグとリーダライタ装置が UHF帯以上 の電波を使用して通信する通信システムと、その通信システムを構成するリーダライ タ装置及び RF— IDタグとに関するものである。
背景技術
[0002] 従来の通信システムにおける RF— IDタグは、電源を搭載していないため、リーダラ イタ装置から送信される変調波を整流して駆動電力を取得する。
リーダライタ装置がデータを RF— IDタグに送信する場合、通常、データを ASK変 調して、その変調波を RF— IDタグに送信する。
[0003] また、 RF— IDタグがデータをリーダライタ装置に送信する場合、リーダライタ装置が 振幅一定の無変調キャリアを RF— IDタグに送信し、 RF— IDタグの負荷変調回路が 無変調キャリアを ASK変調波に変換することにより、その変調波をリーダライタ装置 に送信する。
なお、 RF—IDタグは、リーダライタ装置から送信される変調波のキャリアを分周する ことによってクロックを生成している(例えば、特許文献 1を参照)。
[0004] 特許文献 1 :特開平 11一 296627号公報
[0005] 従来の通信システムは以上のように構成されているので、リーダライタ装置から送信 される変調波のキャリア周波数が高い場合 (例えば、 950MHz)、クロック生成用の 分周器の動作周波数を高めて、その分周器の分周数を高める必要があり、 RF—IDタ グの消費電力が大きくなる課題があった。
[0006] この発明は上記のような課題を解決するためになされたもので、リーダライタ装置か ら RF— IDタグに送信されるデータによる変調波のキャリア周波数が高い場合でも、 R F— IDタグの低消費電力化を図ることができる通信システムを得ることを目的とする。 また、この発明は、クロック生成用の分周器を搭載していなレ、 RF— IDタグにクロック 生成用の電波を供給することができるリーダライタ装置を得ることを目的とする。 さらに、この発明は、クロック生成用の分周器を搭載することなぐクロックを生成す ること力 Sできる RF— IDタグを得ることを目的とする。
発明の開示
[0007] この発明に係る通信システムは、 RF— IDタグがリーダライタ装置からの送信信号を 受信して、その送信信号に重畳されているキャリア周波数より低い周期波形信号から クロックを生成し、そのクロックに同期して動作する一方、リーダライタ装置からのデー タを復調し、また、リーダライタ装置へのデータを変調して送信するようにしたものであ る。
[0008] このことによって、リーダライタ装置から送信されるデータによる変調波のキャリア周 波数が高い場合でも、 RF— IDタグの低消費電力化を図ることができるなどの効果が ある。
図面の簡単な説明
[0009] [図 1]この発明の実施の形態 1による通信システムを示す構成図である。
[図 2]下り通信時の各種信号波形を示す説明図である。
[図 3]上り通信時の各種信号波形を示す説明図である。
[図 4]マーク又はスペースが規定のシンボル数以上連続しない符号の時間波形を示 す説明図である。
[図 5]この発明の実施の形態 3による通信システムを示す構成図である。
[図 6]下り及び上り通信時の各種信号波形を示す説明図である。
[図 7]下り及び上り通信時の各種信号波形を示す説明図である。
[図 8]この発明の実施の形態 5による通信システムを示す構成図である。
[図 9]下り通信時の各種信号波形を示す説明図である。
[図 10]この発明の実施の形態 6による通信システムを示す構成図である。
発明を実施するための最良の形態
[0010] 以下、この発明をより詳細に説明するために、この発明を実施するための最良の形 態について、添付の図面に従って説明する。
実施の形態 1.
図 1はこの発明の実施の形態 1による通信システムを示す構成図である。 [0011] 図において、リーダライタ装置である R/W装置 1はデータを RF— IDタグ 2に送信 する場合、送信対象のデータでキャリアを変調して、その変調波を送信する一方、 R F— IDタグ 2からデータを受信する場合、通信に使用する変調波のキャリアより周波数 が低い周期波形信号でキャリアを変調して、その変調波を送信する。
RF— IDタグ 2は RZW装置 1から送信されたデータによる変調波を受信すると、そ の変調波を整流して駆動電力を取得し、その電力を使用して当該変調波からクロック を生成するとともに、そのクロックに同期して当該変調波からデータを復調する一方、 R/W装置 1から送信された周期波形信号による変調波を受信すると、その変調波を 整流して駆動電力を取得し、その電力を使用して当該変調波からクロックを生成する とともに、そのクロックに同期して RZW装置 1宛のデータを変調して送信する。
[0012] RZW装置 1の制御回路 12は RZW装置 1から RF— IDタグ 2にデータを通信する 下り通信時には、入力端子 11から RF— IDタグ 2宛のデータを入力して、そのデータ を送信信号生成回路 13に出力する。また、 RF— IDタグ 2から R/W装置 1にデータ を通信する上り通信時には、周期波形信号の生成指令を RF帯キャリア生成回路 14 に出力するとともに、受信信号復調回路 22により復調されたデータ (RF— IDタグ 2か ら受信したデータ)を出力端子 23に出力する。
[0013] R/W装置 1の送信信号生成回路 13は制御回路 12から RF— IDタグ 2宛のデータ を受けると、そのデータを ASK変調波生成用のアナログ信号に変換し、 RF帯キヤリ ァ生成回路 14から周期波形信号を受けると、その周期波形信号を ASK変調波生成 用のアナログ信号に変換する。
R/W装置 1の RF帯キャリア生成回路 14は制御回路 12から周期波形信号の生成 指令を受けると、 RF— IDタグ 2宛の変調波のキャリアより周波数が低い周期波形信号 を生成する。
[0014] RZW装置 1の局部発振信号生成回路 (以下、 L〇回路という) 15は局部発振信号 である L〇波を発振する。
RZW装置 1の送信ミクサ 16は送信信号生成回路 13から出力された ASK変調波 生成用のアナログ信号と L〇回路 15から発振された L〇波を混合して、 RF帯の ASK 変調波を生成する。 なお、制御回路 12、送信信号生成回路 13、 RF帯キャリア生成回路 14、 LO回路 1 5及び送信ミクサ 16から変調手段が構成されている。
[0015] R/W装置 1の RF増幅器 17は送信ミクサ 16により生成された ASK変調波を増幅 してサーキユレータ 18に出力する。
RZW装置 1のサーキユレータ 18は RF増幅器 17により増幅された ASK変調波を アンテナ 19に出力し、アンテナ 19により受信された ASK変調波を低雑音増幅器 20 に出力する。
なお、 RF増幅器 17、サーキユレータ 18及びアンテナ 19から送信手段が構成され ている。
[0016] RZW装置 1の低雑音増幅器 20はアンテナ 19により受信された ASK変調波を増 幅する。
RZW装置 1の受信ミクサ 21は低雑音増幅器 20により増幅された ASK変調波に L O回路 15から発振された LO波を混合して、その ASK変調波をベースバンド信号に 変換する。
R/W装置 1の受信信号復調回路 22は受信ミクサ 21により変換されたベースバン ド信号力 データを復調して制御回路 12に出力する。
[0017] RF— IDタグ 2のアンテナ 31は R/W装置 1から送信された ASK変調波を受信する 一方、 ASK変調波を R/W装置 1に送信する。なお、アンテナ 31は受信手段を構成 している。
RF— IDタグ 2の整流/蓄電回路 32はアンテナ 31により受信された ASK変調波を 整流して駆動電力を取得し、その駆動電力をコンパレータ 34、クロック生成回路 35、 信号復調/生成回路 36及び CPU37に供給する。なお、整流 Z蓄電回路 32は駆動 電力取得手段を構成してレ、る。
[0018] RF— IDタグ 2の包絡線検波回路 33はアンテナ 31により受信された ASK変調波の 包絡線を検波する。
RF— IDタグ 2のコンパレータ 34は包絡線検波回路 33により検波された ASK変調 波の包絡線と所定の閾値を比較して、その包絡線の波形を整形する。
RF— IDタグ 2のクロック生成回路 35はコンパレータ 34の出力信号からクロックを生 成する。
なお、包絡線検波回路 33、コンパレータ 34及びクロック生成回路 35からクロック生 成手段が構成されている。
[0019] RF— IDタグ 2の信号復調 Z生成回路 36はクロック生成回路 35により生成されたク ロックに同期して、コンパレータ 34の出力信号からデータを復調する一方、クロック生 成回路 35により生成されたクロックに同期して、 R/W装置 1宛のデータを生成する。
RF— IDタグ 2の CPU37は信号復調 Z生成回路 36により復調されたデータを解析 する一方、 R/W装置 1宛のデータの生成指令を信号復調 Z生成回路 36に出力す る。
[0020] RF— IDタグ 2の負荷変調器 38は信号復調/生成回路 36により生成された R/W 装置 1宛のデータに合わせて、 RZW装置 1から送信された RF帯キャリアに対する反 射係数を変更する。即ち、 R/W装置 1宛のデータが" 1 "のときは反射係数を完全反 射にする一方、そのデータ力 S"0"のときは反射係数を無反射にすることで ASK変調 波を生成し、その ASK変調波をアンテナ 31に出力する。
なお、信号復調/生成回路 36から復調手段が構成され、信号復調/生成回路 36 、 CPU37、負荷変調器 38及びアンテナ 31から送信手段が構成されている。
[0021] 次に動作について説明する。
通信システムの通信処理は、 R/W装置 1から RF— IDタグ 2にデータを通信する下 り通信と、 RF— IDタグ 2から R/W装置 1にデータを通信する上り通信に大別され、下 り通信と上り通信は、図 2 (a)に示すように、交互に実施される。
[0022] 最初に、下り通信時の R/W装置 1と RF— IDタグ 2の動作を説明する。
RZW装置 1の制御回路 12は、 RZW装置 1から RF— IDタグ 2にデータを通信する 下り通信時には、入力端子 11から RF— IDタグ 2宛のデータを入力して、そのデータ を送信信号生成回路 13に出力するとともに、 L〇波の発振指令を LO回路 15に出力 する。
[0023] RZW装置 1の送信信号生成回路 13は、制御回路 12から RF— IDタグ 2宛のデー タを受けると、そのデータを ASK変調波生成用のアナログ信号に変換する。
RZW装置 1の L〇回路 15は、制御回路 12から LO波の発振指令を受けると、局部 発振信号である LO波を発振する。
R/W装置 1の送信ミクサ 16は、送信信号生成回路 13から ASK変調波生成用の アナログ信号を受け、 LO回路 15から LO波を受けると、その ASK変調波生成用のァ ナログ信号と L〇波を混合して、 RF帯の ASK変調波を生成する。
[0024] RZW装置 1の RF増幅器 17は、送信ミクサ 16が ASK変調波を生成すると、その A SK変調波を増幅してサーキユレータ 18に出力する。
RZW装置 1のサーキユレータ 18は、 RF増幅器 17により増幅された ASK変調波を アンテナ 19に出力する。
これにより、 R/W装置 1から ASK変調波が RF-IDタグ 2に送信される。 図 2 (b)は RZW装置 1から送信される ASK変調波の波形を示しており、シンボル レートが Fsである。
[0025] RF— IDタグ 2のアンテナ 31は、 R/W装置 1から送信された ASK変調波を受信す る。
RF— IDタグ 2の整流/蓄電回路 32は、アンテナ 31が ASK変調波を受信すると、 その ASK変調波を整流して駆動電力を取得し、その駆動電力を蓄積する。
また、整流/蓄電回路 32は、その駆動電力を電源として、コンパレータ 34、クロック 生成回路 35、信号復調/生成回路 36及び CPU37に供給する。
[0026] 一方、 RF— IDタグ 2の包絡線検波回路 33は、アンテナ 31により受信された ASK変 調波の包絡線を検波する。
図 2 (c)は包絡線検波回路 33により検波された ASK変調波の包絡線の波形を示し ている。
[0027] RF— IDタグ 2のコンパレータ 34は、包絡線検波回路 33により検波された ASK変調 波の包絡線と所定の閾値を比較して、その包絡線の波形を整形する。
即ち、 ASK変調波の包絡線が閾値より大きければ' '1"を出力し、 ASK変調波の包 絡線が閾値より小さければ" 0"を出力することにより、その包絡線の波形を整形する。 図 2 (d)はコンパレータ 34による波形整形後の信号の波形を示している。
[0028] RF— IDタグ 2のクロック生成回路 35は、コンパレータ 34による波形整形後の信号か らクロックを生成する。 具体的には下記の通りである。
クロック生成回路 35の入力信号である波形整形後の信号が常に" 1"ど' 0"を繰り返 すのであれば、その信号をそのままクロックとして使用することができる。
[0029] しかし、データ伝送に使う ASK変調波は、 "1"に相当するマークど' 0"に相当する スペースが 2シンボル以上連続する場合があるため、コンパレータ 34の出力信号力 図 2 (d)に示すように、 "1"または" 0"が連続することがあるので、コンパレータ 34の出 力信号をそのままクロックとして使用すると、クロック周波数力 以下に低下する。
[0030] このような場合に備えて、クロック生成回路 35は、内部に遅延回路を搭載しており、 遅延回路により 1シンボル( = Fs)遅延されたクロックと、遅延回路により遅延されてレ、 ないクロックとの差分を演算することで、常に 1シンボル相当の周期のクロックを抽出 するようにしている。
図 2 (e)はクロック生成回路 35により生成されたクロックを示している。
なお、クロック生成回路 35が更にもう一つ遅延回路を搭載し、 2シンボル以上遅延 させた信号と比較すれば、マークまたはスペースが 3シンボル連続する場合にも、 1シ ンボル相当の周期のクロックを生成することができる。
[0031] RF— IDタグ 2の信号復調/生成回路 36は、クロック生成回路 35により生成された クロックに同期して、コンパレータ 34の出力信号からデータを復調する。
RF— IDタグ 2の CPU37は、クロック生成回路 35により生成されたクロックに同期し て、信号復調/生成回路 36により復調されたデータを解析し、その解析結果に応じ た処理を実施する。
[0032] 次に、上り通信時の R/W装置 1と RF— IDタグ 2の動作を説明する。
RZW装置 1の制御回路 12は、 RF— IDタグ 2から R/W装置 1にデータを通信する 上り通信時には、 ASK変調波及びクロック生成用の電波を RF— IDタグ 2に供給する ため、周期波形信号の生成指令を RF帯キャリア生成回路 14に出力するとともに、 L
O波の発振指令を L〇回路 15に出力する。
[0033] RZW装置 1の RF帯キャリア生成回路 14は、制御回路 12から周期波形信号の生 成指令を受けると、 RF— IDタグ 2宛の変調波のキャリアより周波数が低い周期波形信 号を生成する。 R/W装置 1の送信信号生成回路 13は、 RF帯キャリア生成回路 14から周期波形 信号を受けると、その周期波形信号を ASK変調波生成用のアナログ信号に変換す る。
[0034] RZW装置 1の L〇回路 15は、制御回路 12から LO波の発振指令を受けると、局部 発振信号である L〇波を発振する。
RZW装置 1の送信ミクサ 16は、送信信号生成回路 13から ASK変調波生成用の アナログ信号を受け、 L〇回路 15から L〇波を受けると、その ASK変調波生成用のァ ナログ信号と L〇波を混合して、 RF帯の ASK変調波を生成する。
[0035] RZW装置 1の RF増幅器 17は、送信ミクサ 16が ASK変調波を生成すると、その A SK変調波を増幅してサーキユレータ 18に出力する。
RZW装置 1のサーキユレータ 18は、 RF増幅器 17により増幅された ASK変調波を アンテナ 19に出力する。
これにより、 R/W装置 1から ASK変調波が RF— IDタグ 2に送信される。 図 3 (b)は R/W装置 1から送信される ASK変調波の波形を示しており、 RF-IDタ グ 2の動作クロックに相当する周期で振幅が変動している。ここでは、下り通信時に R /W装置 1が送信する ASK変調波のシンボルレート Fsと同じである。
[0036] RF— IDタグ 2のアンテナ 31は、 R/W装置 1から送信された ASK変調波を受信す る。
RF— IDタグ 2の整流/蓄電回路 32は、アンテナ 31が ASK変調波を受信すると、 その ASK変調波を整流して駆動電力を取得し、その駆動電力を蓄積する。
また、整流/蓄電回路 32は、その駆動電力を電源として、コンパレータ 34、クロック 生成回路 35、信号復調/生成回路 36及び CPU37に供給する。
[0037] 一方、 RF—IDタグ 2の包絡線検波回路 33は、アンテナ 31により受信された ASK変 調波の包絡線を検波する。
図 3 (c)は包絡線検波回路 33により検波された ASK変調波の包絡線の波形を示し ている。
[0038] RF— IDタグ 2のコンパレータ 34は、包絡線検波回路 33により検波された ASK変調 波の包絡線と所定の閾値を比較して、その包絡線の波形を整形する。 即ち、 ASK変調波の包絡線が閾値より大きければ "1 "を出力し、 ASK変調波の包 絡線が閾値より小さければ" 0"を出力することにより、その包絡線の波形を整形する。 図 3 (d)はコンパレータ 34による波形整形後の信号の波形を示している。
[0039] RF— IDタグ 2のクロック生成回路 35は、コンパレータ 34による波形整形後の信号か らクロックを生成する。
ただし、アンテナ 31により受信された ASK変調波は、上述したように、 RF—IDタグ 2の動作クロックに相当する周期で振幅が変動しているので、コンパレータ 34の出力 信号をそのままクロックとして使用することができる。したがって、クロック生成回路 35 は、特に何もすることなぐコンパレータ 34の出力信号をクロックとして、信号復調/ 生成回路 36及び CPU37に出力する。
図 3 (e)はクロック生成回路 35から出力されたクロックを示している。
[0040] RF— IDタグ 2の CPU37は、クロック生成回路 35により生成されたクロックに同期し て、 R/W装置 1宛のデータの生成指令を信号復調/生成回路 36に出力する。
RF— IDタグ 2の信号復調/生成回路 36は、 CPU37からデータの生成指令を受け ると、クロック生成回路 35により生成されたクロックに同期して、 R/W装置 1宛のデ ータを生成する。
[0041] RF— IDタグ 2の負荷変調器 38は、信号復調/生成回路 36から R/W装置 1宛の データを受けると、そのデータに合わせて、 R/W装置 1から送信された RF帯キヤリ ァに対する反射係数を変更する。
即ち、 R/W装置 1宛のデータ力 S"l "のときは反射係数を完全反射にする一方、そ のデータが" 0"のときは反射係数を無反射にすることで、 ASK変調波を生成し、その ASK変調波をアンテナ 31に出力する。
これにより、 RF-IDタグ 2から ASK変調波が RZW装置 1に送信される。
[0042] 図 3 (f)は RF— IDタグ 2から送信される ASK変調波の波形を示している。
なお、入力する RF帯の信号の振幅を RF— IDタグ 2の動作クロッに相当する周期( = Fs)で変えているので、 RF— IDタグ 2から送信される ASK変調波のマークゃスぺ ースが、常に、同一レベルではない。しかし、 RZW装置 1の受信信号復調回路 22で マークとスペースを判断する閾値を正しく設定することで、データ伝送には影響を与 えることがない。
[0043] R/W装置 1のアンテナ 19は、 RF— IDタグ 2から送信される ASK変調波を受信す る。
RZW装置 1のサーキユレータ 18はアンテナ 19が ASK変調波を受信すると、その ASK変調波を低雑音増幅器 20に出力する。
RZW装置 1の低雑音増幅器 20は、サーキユレータ 18から ASK変調波を受けると 、その ASK変調波を増幅する。
[0044] RZW装置 1の受信ミクサ 21は、低雑音増幅器 20による増幅後の ASK変調波に L O回路 15から発振された LO波を混合して、その ASK変調波をベースバンド信号に 変換する。
RZW装置 1の受信信号復調回路 22は、受信ミクサ 21からベースバンド信号を受 けると、そのベースバンド信号からデータ (RF-IDタグ 2から受信したデータ)を復調 して制御回路 12に出力する。
R/W装置 1の制御回路 12は、受信信号復調回路 22により復調されたデータを出 力端子 23に出力する。
[0045] 以上で明らかなように、この実施の形態 1によれば、下り通信時には RF— IDタグ 2が R/W装置 1から ASK変調波を受信すると、その ASK変調波からクロックを生成し、 そのクロックに同期して、 RF— IDタグ 2宛のデータを復調し、また、上り通信時には R F— IDタグ 2が周期波形信号で RF帯のキャリアが変調された変調波を受信して、その 変調波からクロックを生成し、そのクロックに同期して、 R/W装置 1宛のデータを変 調して送信するように構成したので、 RF帯のキャリアを分周してクロックを生成する分 周器を RF— IDタグ 2に搭載することなぐクロックを生成してデータを RZW装置 1に 送信すること力 Sできるようになる。その結果、 R/W装置 1から RF— IDタグ 2に送信さ れるデータの変調波の周波数が高い場合でも(例えば、 950MHz)、 RF— IDタグ 2 の低消費電力化を図ることができる効果を奏する。
[0046] 実施の形態 2.
上記実施の形態 1では、クロック生成回路 35が内部に遅延回路を搭載しており、下 り通信時において、遅延回路により 1シンボル( = Fs)遅延されたクロックと、遅延回路 により遅延されていないクロックとの差分を演算することで、常に 1シンボル相当の周 期のクロックを抽出するものについて示した力 S、 R/W装置 1の RF帯キャリア生成回 路 14がマーク又はスペースが規定のシンボル数(例えば、 3シンボル)以上連続しな い符号を使用して周期波形信号を生成し、 RZW装置 1の送信信号生成回路 13が 当該周期波形信号を ASK変調波生成用のアナログ信号に変換するようにしてもよい
[0047] 図 4はマーク又はスペースが規定のシンボル数以上連続しない符号の時間波形を 示す説明図であり、図 4 (a)は" 1"を表し、図 4 (b)は" 0"を表している。
図 4 (c)に示すように、データとして "1"が続く場合は、マークとスペースが交互に現 れ、 "1 "ど' 0"が交互に続く場合でも、マークとスペースは最大でも 2つ以上続くことは なレ、。 ASK変調波のシンボルレートは 2倍となる力 S、クロック生成回路 35が連続する シンボル数に合わせて多数の遅延回路を搭載する必要がなくなる。
これにより、クロック生成回路 35の回路構成を簡単化することができる効果を奏する
[0048] 実施の形態 3.
図 5はこの発明の実施の形態 3による通信システムを示す構成図である。図におい て、図 1と同一符号は同一または相当部分を示すので説明を省略する。
RF— IDタグ 2の遞倍回路 39はクロック生成回路 35により生成されたクロックの周波 数を定数倍し、そのクロックを信号復調/生成回路 36及び CPU37に供給する。
[0049] 次に動作について説明する。
RF— IDタグ 2のクロック生成回路 35は、下り通信時及び上り通信時において、上記 実施の形態 1と同様にして、コンパレータ 34の出力信号からクロックを生成する。 なお、クロック生成回路 35により生成されるクロックの速度は、シンボルレートの速 度と同一である。
[0050] RF—IDタグ 2の遁倍回路 39は、クロック生成回路 35力 Sクロックを生成すると、そのク ロックの周波数を定数倍し、そのクロックを信号復調/生成回路 36及び CPU37に 供給する。
図 6 (c), (f)は遁倍回路 39により周波数が定数倍されたクロックを示す波形であり 、この例では、遞倍回路 39の遞倍数は 4である。
[0051] RF-IDタグ 2の信号復調/生成回路 36及び CPU37は、遞倍回路 39からクロック を受けると、そのクロックに同期して、上記実施の形態 1と同様の処理を実施する。 しかし、信号復調/生成回路 36は、上記実施の形態 1と異なり、シンボル速度の整 数倍のクロックで動作することになるので、 ASKを含むディジタル変調波を復調する に際して、復調精度を高めることができる効果を奏する。また、復調精度が高まるため 、通信距離を伸長することができる効果を奏する。
[0052] 実施の形態 4.
上記実施の形態 3では、下り通信時に R/W装置 1から送信される ASK変調波の シンボルレートと、上り通信時に RZW装置 1から送信される RF帯キャリアの振幅変 化の周期が同一であるものについて示したが、図 7 (d)に示すように、上り通信時に R /W装置 1から送信される RF帯キャリアの振幅変化の周期を、下り通信時に RZW 装置 1から送信される ASK変調波のシンボルレートよりも早くするようにしてもよい。 図 7の例では、上り通信時に R/W装置 1から送信される RF帯キャリアの振幅変化の 周期を、下り通信時に R/W装置 1から送信される ASK変調波のシンボルレートの 4 倍にしている。
[0053] この場合、下り通信時の RF— IDタグ 2の動作は、上記実施の形態 3と同じである。
し力し、上り通信時においては、遞倍回路 39の動作を止めて、クロック生成回路 35 により生成されたクロックを信号復調/生成回路 36及び CPU37に供給する。
この実施の形態 4によれば、上り通信時においては、遞倍回路 39の動作を止める ので、 RF— IDタグ 2の消費電力を低減することができる効果を奏する。
[0054] 実施の形態 5.
図 8はこの発明の実施の形態 5による通信システムを示す構成図である。図におい て、図 5と同一符号は同一または相当部分を示すので説明を省略する。
RZW装置 1の送信信号生成回路 24は制御回路 12から RF— IDタグ 2宛のデータ を受けると、そのデータを ASK変調波生成用のアナログ信号に変換し、そのアナ口 グ信号を例えばデータの伝送速度( = Fs)の 4倍の周波数( = 4Fs)でサブキャリア変 調する。また、 RF帯キャリア生成回路 25から周期波形信号を受けると、その周期波 形信号を ASK変調波生成用のアナログ信号に変換する。
[0055] R/W装置 1の RF帯キャリア生成回路 25は制御回路 12から周期波形信号の生成 指令を受けると、 RF— IDタグ 2宛の変調波のキャリアより周波数が低い周期波形信号 であって、上記サブキャリアと同一の周期で振幅が変化する周期波形信号を生成す る。
なお、送信信号生成回路 24及び RF帯キャリア生成回路 25は変調手段を構成して いる。
[0056] RF— IDタグ 2のコンパレータ 40は包絡線検波回路 33により検波された包絡線のう ち、周期 4Fsの波形を整形する。なお、コンパレータ 40はクロック生成手段を構成し ている。
[0057] 次に動作について説明する。
最初に、下り通信時の RZW装置 1と RF— IDタグ 2の動作を説明する。
R/W装置 1の制御回路 12は、 R/W装置 1から RF— IDタグ 2にデータを通信する 下り通信時には、入力端子 11から RF— IDタグ 2宛のデータを入力して、そのデータ を送信信号生成回路 24に出力するとともに、 LO波の発振指令を LO回路 15に出力 する。
[0058] R/W装置 1の送信信号生成回路 24は、制御回路 12から RF— IDタグ 2宛のデー タを受けると、そのデータを ASK変調波生成用のアナログ信号に変換する。
また、送信信号生成回路 24は、例えば、データの伝送速度( = Fs)の 4倍の周波数
( = 4Fs)のサブキャリアを用いて、そのアナログ信号をサブキャリア変調することによ り、 4Fsの周期で振幅を変化させる(図 9 (a)を参照)。
[0059] RZW装置 1の L〇回路 15は、制御回路 12から LO波の発振指令を受けると、上記 実施の形態 1と同様に、局部発振信号である L〇波を発振する。
RZW装置 1の送信ミクサ 16は、送信信号生成回路 24からサブキャリア変調された
ASK変調波生成用のアナログ信号を受け、 LO回路 15から LO波を受けると、その A
SK変調波生成用のアナログ信号と LO波を混合して、 RF帯の ASK変調波を生成す る。
[0060] RZW装置 1の RF増幅器 17は、送信ミクサ 16が ASK変調波を生成すると、上記 実施の形態 1と同様に、その ASK変調波を増幅してサーキユレータ 18に出力する。
R/W装置 1のサーキユレータ 18は、 RF増幅器 17により増幅された ASK変調波を アンテナ 19に出力する。
これにより、 R/W装置 1から ASK変調波が RF-IDタグ 2に送信される。
[0061] RF— IDタグ 2のアンテナ 31は、上記実施の形態 1と同様に、 R/W装置 1から送信 された ASK変調波を受信する。
RF— IDタグ 2の整流 Z蓄電回路 32は、アンテナ 31が ASK変調波を受信すると、 上記実施の形態 1と同様に、その ASK変調波を整流して駆動電力を取得し、その駆 動電力を蓄積する。
また、整流/蓄電回路 32は、その駆動電力を電源として、コンパレータ 34、クロック 生成回路 35、信号復調/生成回路 36及び CPU37に供給する。
[0062] 一方、 RF— IDタグ 2の包絡線検波回路 33は、アンテナ 31により受信された ASK変 調波の包絡線を検波する。
図 9 (b)は包絡線検波回路 33により検波された ASK変調波の包絡線の波形を示し ている。
[0063] RF— IDタグ 2のコンパレータ 34は、受信データ用のコンパレータであり、包絡線検 波回路 33により検波された ASK変調波の包絡線のうち、周期 Fsの波形を整形する 即ち、 ASK変調波の包絡線が閾値 Aより大きければ "1 "を出力し、 ASK変調波の 包絡線が閾値 Aより小さければ" 0"を出力することにより、その包絡線の波形を整形 する。
図 9 (c)はコンパレータ 34による波形整形後の信号の波形を示している。
[0064] また、 RF—IDタグ 2のコンパレータ 40は、クロック生成のコンパレータであり、包絡 線検波回路 33により検波された ASK変調波の包絡線のうち、周期 4Fsの波形を整 形する。
即ち、 ASK変調波の包絡線が閾値 Bより大きければ' '1"を出力し、 ASK変調波の 包絡線が閾値 Bより小さければ" 0"を出力することにより、その包絡線の波形を整形 する。 図 9 (d)はコンパレータ 40による波形整形後の信号の波形を示している。
[0065] RF— IDタグ 2のクロック生成回路 35は、コンパレータ 40が周期 4Fsの波形を整形 すると、上記実施の形態 1と同様にして、コンパレータ 40による波形整形後の信号か らクロックを生成する。
ただし、この実施の形態 5では、周期 4Fsのクロックが生成される。
図 9 (e)はクロック生成回路 35により生成されたクロックを示している。
[0066] RF— IDタグ 2の信号復調 Z生成回路 36は、クロック生成回路 35により生成された 周期 4Fsのクロックに同期して、コンパレータ 34の出力信号からデータを復調する。
RF—IDタグ 2の CPU37は、クロック生成回路 35により生成された周期 4Fsのクロッ クに同期して、信号復調/生成回路 36により復調されたデータを解析し、その解析 結果に応じた処理を実施する。
[0067] 次に、上り通信時の RZW装置 1と RF— IDタグ 2の動作を説明する。
R/W装置 1側では、上記実施の形態 1と比べて、 RF帯キャリア生成回路 25の動 作のみが相違する。
即ち、 RF帯キャリア生成回路 25は、制御回路 12から周期波形信号の生成指令を 受けると、 RF— IDタグ 2宛の変調波のキャリアより周波数が低レ、周期波形信号を生成 する点では、図 1の RF帯キャリア生成回路 14と同じである。
[0068] しかし、この実施の形態 5の RF帯キャリア生成回路 25は、送信信号生成回路 24が 使用するサブキャリアと同一の周期で振幅が変化する周期波形信号を生成する点で 相違している。
したがって、 R/W装置 1からは、周期 4Fsで振幅が変化する RF帯の変調波が RF —IDタグ 2に送信される。
[0069] RF— IDタグ 2のコンパレータ 40は、包絡線検波回路 33により検波された ASK変調 波の包絡線のうち、周期 4Fsの波形を整形する。
即ち、 ASK変調波の包絡線が閾値 Bより大きければ' '1"を出力し、 ASK変調波の 包絡線が閾値 Bより小さければ" 0"を出力することにより、その包絡線の波形を整形 する。
[0070] RF— IDタグ 2のクロック生成回路 35は、コンパレータ 40が周期 4Fsの波形を整形 すると、上記実施の形態 1と同様にして、コンパレータ 40による波形整形後の信号か らクロックを生成する。
ただし、この実施の形態 5では、周期 4Fsのクロックが生成される。
[0071] RF— IDタグ 2の信号復調 Z生成回路 36は、クロック生成回路 35により生成された 周期 4Fsのクロックに同期して、コンパレータ 34の出力信号からデータを復調する。
RF—IDタグ 2の CPU37は、クロック生成回路 35により生成された周期 4Fsのクロッ クに同期して、信号復調/生成回路 36により復調されたデータを解析し、その解析 結果に応じた処理を実施する。
[0072] 以上で明らかなように、この実施の形態 5によれば、下り通信時には、データの伝送 速度の 4倍の周波数を有するサブキャリアを、そのデータによってサブキャリア変調し てから、 RF帯のキャリアを変調する一方、上り通信時には、そのサブキャリアと同一の 周期で振幅が変化する周期波形信号で RF帯のキャリアを変調するように構成したの で、信号復調/生成回路 36の復調精度を高めて、通信距離を伸長することができる 効果を奏する。
[0073] 実施の形態 6.
図 10はこの発明の実施の形態 6による通信システムを示す構成図である。図にお いて、図 8と同一符号は同一または相当部分を示すので説明を省略する。
フィルタ 41は例えばローパスフィルタから構成され、包絡線検波回路 33により検波 された ASK変調波の包絡線のうち、周期 Fsの波形のみを通過させる。
フィルタ 42は例えばバンドパスフィルタやハイパスフィルタ力 構成され、包絡線検 波回路 33により検波された ASK変調波の包絡線のうち、周期 4Fsの波形のみを通 過させる。
なお、フィルタ 42はクロック生成手段を構成している。
[0074] 上記実施の形態 5では、コンパレータ 34, 40の包絡線検波回路 33と閾値 A, Bを 比較して、波形を整形するものについて示したが、波形の整形精度を高めて、正確 なクロック等を得るには、閾値 A, Bを厳密に設定する必要がある。
この実施の形態 6では、閾値 A, Bを厳密に設定しないでも、波形の整形精度を高 めることができるようにしている。 [0075] 即ち、包絡線検波回路 33により検波された ASK変調波の包絡線のうち、周期 Fs の波形のみを通過させるフィルタ 41をコンパレータ 34の前段に設け、周期 4Fsの波 形のみを通過させるフィルタ 42をコンパレータ 40の前段に設けているので、閾値 A, Bを厳密に設定しないでも、波形の整形精度を高めることができる。したがって、正確 なクロックを得て、データを正確に復調することができる効果を奏する。
[0076] 実施の形態 7.
上記実施の形態 1一 6では、下り通信時には ASK変調波からクロックを生成し、上り 通信時には振幅が周期的に変動する周期波形信号を使用してクロックを生成するも のについて示したが、次のようにして、クロックを生成してもよレ、。
[0077] 即ち、下り通信時には、 RZW装置 1が PSK変調波を RF-IDタグ 2に送信し、 RF- IDタグ 2が PSK変調波からクロックを生成する。
また、上り通信時には、 R/W装置 1が位相変化を伴う周期波形信号として、位相 が周期的に変動する RF帯のキャリアを RF— IDタグ 2に送信し、 RF—IDタグ 2が RF帯 のキャリアの位相変化を抽出してクロックを生成する。
この場合も、上記実施の形態 1一 6と同様の効果を奏することができる。 産業上の利用可能性
[0078] 以上のように、この発明に係る通信システムは、電源を搭載していない RF— IDタグ とリーダライタ装置が UHF帯以上の電波を使用して通信するに際して、 RF— IDタグ が使用するクロックを低消費電力で生成する必要性が高いものに用いるのに適して いる。

Claims

請求の範囲
[1] 送信対象のデータでキャリアを変調して、その変調波を送信する一方、そのデータ による変調波のキャリアより周波数が低い周期波形信号でキャリアを変調して、その 変調波を送信するリーダライタ装置と、上記リーダライタ装置から送信されたデータに よる変調波を受信すると、その変調波を整流して駆動電力を取得し、その電力を使 用して当該変調波からクロックを生成するとともに、そのクロックに同期して当該変調 波からデータを復調する一方、上記リーダライタ装置力 送信された周期波形信号に よる変調波を受信すると、その変調波を整流して駆動電力を取得し、その電力を使 用して当該変調波からクロックを生成するとともに、そのクロックに同期して上記リーダ ライタ装置宛のデータを変調して送信する RF— IDタグとを備えた通信システム。
[2] リーダライタ装置は、振幅変化を伴う周期波形信号でキャリアを変調することを特徴 とする請求項 1記載の通信システム。
[3] リーダライタ装置は、データによる変調波のシンボルレートと同一の周期で振幅が 変化する周期波形信号でキャリアを変調することを特徴とする請求項 2記載の通信シ ステム。
[4] リーダライタ装置は、データを変調する際、マーク又はスペースが規定のシンボル 数以上連続しない符号を使用して変調することを特徴とする請求項 3記載の通信シ ステム。
[5] RF-IDタグは、データによる変調波又は周期波形信号による変調波からクロックを 生成すると、そのクロックの周波数を定数倍してから、そのクロックを使用することを特 徴とする請求項 3記載の通信システム。
[6] RF— IDタグは、リーダライタ装置によりデータによる変調波のシンボルレートの定数 倍の周期で振幅が変化する周期波形信号でキャリアが変調される場合、その周期波 形信号による変調波を受信すると、その周期波形信号による変調波からクロックを生 成して使用する一方、データによる変調波を受信すると、そのデータによる変調波か らクロックを生成し、そのクロックの周波数を定数倍してから、そのクロックを使用する ことを特徴とする請求項 2記載の通信システム。
[7] リーダライタ装置は、データの伝送速度の定数倍の周波数を有するサブキャリアを データでサブキャリア変調し、変調後のサブキャリアを使用して RF帯キャリアを変調 する一方、そのサブキャリアと同一の周期で振幅が変化する周期波形信号で RF帯 キャリアを変調することを特徴とする請求項 2記載の通信システム。
[8] RF— IDタグは、所望の周期波形のみを通過させるフィルタを実装し、そのフィルタ を通過したデータによる変調波又は周期波形信号による変調波からクロックを生成す ることを特徴とする請求項 7記載の通信システム。
[9] リーダライタ装置は、位相変化を伴う周期波形信号でキャリアを変調することを特徴 とする請求項 1記載の通信システム。
[10] データを RF— IDタグに送信する場合、送信対象のデータでキャリアを変調する一 方、クロック生成用の電磁波を RF— IDタグに送信する場合、そのデータによる変調 波のキャリアより周波数が低い周期波形信号でキャリアを変調する変調手段と、上記 変調手段により変調されたデータによる変調波又は周期波形信号による変調波を送 信する送信手段とを備えたリーダライタ装置。
[11] リーダライタ装置力 送信されたデータによる変調波又は周期波形信号による変調 波を受信する受信手段と、上記受信手段により受信されたデータによる変調波又は 周期波形信号による変調波を整流して駆動電力を取得する駆動電力取得手段と、 上記駆動電力取得手段により取得された駆動電力を使用して、上記受信手段により 受信されたデータによる変調波又は周期波形信号による変調波からクロックを生成 するクロック生成手段と、上記受信手段によりデータによる変調波が受信された場合 、上記クロック生成手段により生成されたクロックに同期して、その変調波からデータ を復調する復調手段と、上記受信手段により周期波形信号による変調波が受信され た場合、上記クロック生成手段により生成されたクロックに同期して、上記リーダライタ 装置宛のデータを変調して送信する送信手段とを備えた RF - IDタグ。
PCT/JP2004/011482 2004-08-10 2004-08-10 通信システム、リーダライタ装置及びrf−idタグ WO2006016401A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/011482 WO2006016401A1 (ja) 2004-08-10 2004-08-10 通信システム、リーダライタ装置及びrf−idタグ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/011482 WO2006016401A1 (ja) 2004-08-10 2004-08-10 通信システム、リーダライタ装置及びrf−idタグ

Publications (1)

Publication Number Publication Date
WO2006016401A1 true WO2006016401A1 (ja) 2006-02-16

Family

ID=35839178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/011482 WO2006016401A1 (ja) 2004-08-10 2004-08-10 通信システム、リーダライタ装置及びrf−idタグ

Country Status (1)

Country Link
WO (1) WO2006016401A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10107859A (ja) * 1996-09-27 1998-04-24 Omron Corp データ伝送方法、書込/読出制御ユニット及びデータキャリア
JPH10233718A (ja) * 1997-02-19 1998-09-02 Omron Corp 識別システム、通信システム及びデータキャリア
JPH11272814A (ja) * 1998-03-20 1999-10-08 Toshiba Corp 無線通信方式および無線式情報記憶媒体
JP2000275337A (ja) * 1999-03-26 2000-10-06 Yamatake Corp 非接触データ送受信装置
JP2001175825A (ja) * 1999-12-20 2001-06-29 Sony Corp 情報処理装置、icカード及びリーダライタ
JP2003304175A (ja) * 2002-04-08 2003-10-24 Hitachi Kokusai Electric Inc データ検出システムおよびデータ検出装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10107859A (ja) * 1996-09-27 1998-04-24 Omron Corp データ伝送方法、書込/読出制御ユニット及びデータキャリア
JPH10233718A (ja) * 1997-02-19 1998-09-02 Omron Corp 識別システム、通信システム及びデータキャリア
JPH11272814A (ja) * 1998-03-20 1999-10-08 Toshiba Corp 無線通信方式および無線式情報記憶媒体
JP2000275337A (ja) * 1999-03-26 2000-10-06 Yamatake Corp 非接触データ送受信装置
JP2001175825A (ja) * 1999-12-20 2001-06-29 Sony Corp 情報処理装置、icカード及びリーダライタ
JP2003304175A (ja) * 2002-04-08 2003-10-24 Hitachi Kokusai Electric Inc データ検出システムおよびデータ検出装置

Similar Documents

Publication Publication Date Title
US7889057B2 (en) RFID reader
JP2612190B2 (ja) 応答装置と質問装置からなる全二重通信装置
JP2006325233A (ja) トランスミッタ及びデータ送信方法
US9426008B2 (en) Signal processing device and method
JP2008061218A (ja) 半導体集積回路装置および受信装置
EP1734658A1 (en) Direct conversion radio apparatus for RFID system
US7342481B2 (en) Method and circuit arrangement for wireless data transmission
US7242259B2 (en) Active backscatter transponder, communication system comprising the same and method for transmitting data by way of such an active backscatter transponder
US9954702B2 (en) Radio communication device and radio communication method
WO2007097319A1 (ja) 直交復調器及び質問器
CN108449742B (zh) 一种近场通信的辅助解调系统和方法
JP3917637B2 (ja) 無線通信システム、無線送信機、無線受信機および無線通信方法
CN101159024A (zh) 半导体集成电路装置以及接收装置
JPH0693704B2 (ja) ベースバンド信号通信装置
WO2006016401A1 (ja) 通信システム、リーダライタ装置及びrf−idタグ
US7978073B2 (en) Transmitter and a method for transmitting data
JPH10229350A (ja) 通信システム
JPH07177054A (ja) ディジタル無線通信端末
JP4672666B2 (ja) データ通信装置及びデータ通信システム
EP1433264B1 (en) Method for improving the performance of an rfid transponder
JP2004194150A (ja) 通信システム、及び通信システムの質問器
JP2874368B2 (ja) データ伝送カップラ
JP2004320083A (ja) 復調装置、受信装置、無線通信システム、復調方法、受信方法及び無線通信方法
JPS5931018B2 (ja) 情報伝送装置
JP5650588B2 (ja) 無線通信システム、無線通信装置及び同期信号送信装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP