WO2006013881A1 - ニッケル・水素蓄電池の寿命判定方法および寿命判定装置 - Google Patents

ニッケル・水素蓄電池の寿命判定方法および寿命判定装置 Download PDF

Info

Publication number
WO2006013881A1
WO2006013881A1 PCT/JP2005/014187 JP2005014187W WO2006013881A1 WO 2006013881 A1 WO2006013881 A1 WO 2006013881A1 JP 2005014187 W JP2005014187 W JP 2005014187W WO 2006013881 A1 WO2006013881 A1 WO 2006013881A1
Authority
WO
WIPO (PCT)
Prior art keywords
life
storage battery
value
environmental temperature
reduction amount
Prior art date
Application number
PCT/JP2005/014187
Other languages
English (en)
French (fr)
Inventor
Tatsuhiko Suzuki
Hiroki Takeshima
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US10/587,276 priority Critical patent/US7439745B2/en
Priority to EP05768401A priority patent/EP1775793B1/en
Priority to DE602005015453T priority patent/DE602005015453D1/de
Priority to JP2006531509A priority patent/JP4874108B2/ja
Publication of WO2006013881A1 publication Critical patent/WO2006013881A1/ja
Priority to US11/987,456 priority patent/US7471091B2/en
Priority to US11/987,454 priority patent/US7459912B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/30Nickel accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3648Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/374Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] with means for correcting the measurement for temperature or ageing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for determining the life of a nickel-hydrogen storage battery used in an uninterruptible power supply and the like, and a life determination device employing the method, and more specifically, based on the unique behavior of a nickel-hydrogen storage battery.
  • the present invention relates to a highly accurate life judgment method.
  • an apparatus having a built-in backup storage battery such as an uninterruptible power supply (UPS)
  • UPS uninterruptible power supply
  • Deterioration of the life of nickel-hydrogen storage batteries is generally caused by corrosion of the hydrogen storage alloy of the negative electrode. Power is often affected by factors such as operating temperature, number of discharges, and magnitude of load power during discharge. . There are various factors for determining the life in this way, and it is not easy to accurately determine the life of the storage battery in use.
  • the expected life value is calculated from the discharge load power value, and the remaining life value is defined as the difference between the expected life value and the life reduction amount calculated as a linear function with the number of discharges as a variable.
  • a determination method has been proposed (for example, Patent Document 3). This method is effective for lead-acid batteries because it can be used while appropriately correcting the expected life value with high accuracy without forcibly discharging the battery.
  • Patent Document 1 JP-A-8-138759
  • Patent Document 2 JP 2000-215923 A
  • Patent Document 3 Japanese Patent Laid-Open No. 2000-243459
  • a main object of the present invention is to provide a method and apparatus capable of accurately determining the life of a nickel-hydrogen storage battery.
  • the first nickel-hydrogen storage battery life determination method of the present invention includes the following steps.
  • the life of a nickel-hydrogen storage battery is mainly caused by corrosion of the hydrogen storage alloy of the negative electrode.
  • the hydrogen storage alloy is abruptly self-pulverized due to the volume change associated with the storage and release of hydrogen during the initial charge and discharge. At this time, the corrosion of the hydrogen storage alloy is accelerated, but if the number of discharges overlaps to some extent, the corrosion is suppressed as the self-pulverization subsides. Therefore, battery systems such as lead-acid batteries that are repeatedly charged and discharged as the active material dissolves and precipitates.
  • life degradation is shown as a natural logarithmic function with the number of discharges as a variable.
  • the present invention focuses on this behavior, and provides a life determination method capable of accurately determining the life of a nickel 'hydrogen storage battery.
  • the expected life value is L
  • the number of discharges is N
  • the first life reduction amount is L
  • the values of a and b are the structure of the nickel-hydrogen storage battery, for example, the value of the force c, which varies with the thickness of the separator, is almost constant in the nickel hydrogen storage battery.
  • the second life determination method of the present invention is a method capable of more accurately determining the life of the nickel hydrogen storage battery, and in the first method described above, the charge measured at regular time intervals. Calculate the average value of the storage battery temperature during discharge or rest, and calculate the second life reduction amount from the product of the exponential function with the difference between the average value of the storage battery temperature and the measured value of the environmental temperature as a variable, and the number of discharges. The life is determined using the value obtained by subtracting the first and second life reduction amounts from the expected life value as the remaining life value.
  • the life of the nickel-hydrogen storage battery decreases exponentially as the temperature of the battery itself increases. This is because the corrosion of the hydrogen storage alloy is accelerated at higher temperatures than at room temperature. By adding this element to the first method of the present invention, the life of the nickel-hydrogen storage battery can be determined more accurately.
  • the expected life value is L
  • the first life reduction amount is L
  • the number of discharges is N
  • the average value of the storage battery temperature during charging / discharging or resting measured at intervals is ⁇ , and the expected life value m
  • the second life reduction amount L varies depending on the average value of the storage battery temperature.
  • the constant d is almost constant depending on the type of storage battery.
  • the third life judging method of the present invention is a method capable of more accurately judging the life of the nickel-hydrogen storage battery.
  • the measured value of the environmental temperature and the storage battery temperature The expected life value is calculated from the product of the exponential function value with the difference from the average value of the initial value and the initial expected life value, and the first and second life reduction values are subtracted from the expected life value.
  • the lifetime is determined using the remaining value as the remaining lifetime value.
  • the expected life value L (synonymous with the initial expected life value) in the first and second methods described above is:
  • the life of the nickel-metal hydride storage battery can be determined more accurately.
  • the initial expected life value is L
  • the expected life value is L as needed
  • the first life reduction amount is L
  • the environmental temperature at the time of initial expected life value calculation is ⁇ , the storage battery temperature during charging / discharging or resting
  • the third method of the present invention in order to calculate the life value from the load power value applied to the nickel-metal hydride storage battery at the time of discharge, the relationship between the load power, the environmental temperature and the life is shown in advance. Since data is prepared and the life corresponding to this measured value of load power and environmental temperature is selected and set to the expected life value, the life can be accurately predicted. However, if the storage battery is discharged due to its actual backup function due to an actual power failure, the life of the storage battery that deteriorates due to the discharge is corrected. The life of the pond can be accurately and accurately determined.
  • Storage means for storing data indicating the relationship between the load power applied to the storage battery during discharge and the environmental temperature of the place where the storage battery is installed and the life of the storage battery, and the load power applied to the storage battery is measured
  • Load power measuring means to
  • Environmental temperature measuring means for measuring the environmental temperature
  • An expected life value selection means for selecting, as an expected life value, a life corresponding to the measured load power and environmental temperature from the data stored in the storage means;
  • a discharge number counting means for counting the number of discharges of the storage battery
  • First life reduction amount calculating means for calculating a first life reduction amount from a natural logarithm function having the number of discharges counted by the discharge number counting means as a variable;
  • a remaining life value calculating means for calculating a remaining life value from the difference between the expected life value and the first life reduction amount.
  • the lifetime determination apparatus of the present invention by utilizing the first lifetime reduction amount, the influence of backup discharge at the time of power failure on the lifetime of the storage battery can be reflected in the lifetime determination of the nickel hydrogen storage battery.
  • the lifetime determination apparatus of the present invention further includes the above-described configuration.
  • Storage battery temperature measuring means for measuring the storage battery temperature during charging / discharging or resting at regular time intervals
  • An average value calculating means for calculating an average value of the storage battery temperature from the measured storage battery temperature and the number of times of the measurement
  • the storage battery temperature can be reflected by calculating the remaining lifetime value from the difference between the expected lifetime value and the first lifetime decrease amount and the second lifetime decrease amount. The accuracy of the remaining life value is improved.
  • the lifetime determination apparatus of the present invention further includes the above-described configuration.
  • the expected lifetime value can be appropriately adjusted at any time by calculating the expected lifetime value and the first lifetime decrease amount and the second lifetime decrease amount residual lifetime value. The accuracy is further improved.
  • each means of the life determination part is integrated with the storage battery, or means for displaying the remaining life value, means for communicating the remaining life value, or remaining life
  • the method for determining the life of a nickel-hydrogen storage battery according to the present invention is not limited to the nickel-hydrogen storage battery built in the uninterruptible power supply, even when the discharge power amount, the frequency of discharge, the storage battery temperature, etc. are different. The life can be determined accurately and accurately.
  • FIG. 1 is a block diagram of a nickel-hydrogen battery life determination device of the present invention.
  • FIG. 2 is a flowchart of a method for determining the life of a nickel-hydrogen storage battery in Embodiment 1 of the present invention.
  • FIG. 3 is a flowchart of a method for determining the life of a nickel-hydrogen storage battery in Embodiment 2 of the present invention.
  • FIG. 4 is a flowchart of a method for determining the life of a nickel-hydrogen storage battery according to Embodiment 3 of the present invention.
  • FIG. 1 is a block diagram of the life judging apparatus of the present invention.
  • the life judging device 1 is composed of a life judging unit 2 and a nickel-hydrogen storage battery 3 built in the uninterruptible power supply. Is done.
  • load power measurement means 4 for measuring the value of load power, and data obtained in advance for the relationship between the load power and the storage battery life for each environmental temperature at regular intervals are stored in the load power storage battery.
  • Storage means 5 for storing in the form of a life table, environmental temperature measuring means 6 for measuring the environmental temperature of the place where the storage battery 3 is installed, and load power and environmental temperature measuring means 6 measured by the load power measuring means 4 Based on the measured environmental temperature, the expected life value calculation means 7 for selecting the expected life value from the life data stored in the storage means 5, the discharge frequency counting means 8 for counting the discharge number of the storage battery 3, and the constant Storage battery temperature measurement means 9 for measuring the storage battery temperature at a time interval of, the average value calculation means 10 for calculating the average value by dividing the sum of the storage battery temperatures measured by the storage battery temperature measurement means 9 by the number of measurements, and the remaining Remaining life display for displaying life A stage 11, a controller 12, a charging control unit 13, that the communication unit 14 is built in.
  • the control unit 12 includes a first life reduction amount calculation means 12a that converts information from the discharge number counting means 6 that counts the number of discharges into a life reduction amount, and a battery temperature obtained by the average value calculation means 10. Second life reduction amount calculation means 12b for converting the information from the average value and the number of discharges measurement means 8 into the life reduction amount, and the information from the average value calculation means 10 to the initial expected life value read from the storage means 5. The life expectancy value calculation means 12c and the remaining life value calculation means 12d for calculating the expected life value as needed are calculated.
  • Reference numeral 15 denotes an uninterruptible power supply main unit.
  • FIG. 2 is a flowchart showing a first life judging method of the present invention.
  • the life determination device 1 starts to operate, and the initial expected life value L is calculated (Route A) and the first life is low.
  • route A The operation of route A will be described.
  • the relationship between the load power applied to the storage battery at the time of discharge and the storage battery life is determined in advance for each environmental temperature at regular intervals, and this data is stored in a memory or other memory
  • the means 5 is stored as a load power storage battery life table 20.
  • the load power measuring means 4 measures the value of load power (S22).
  • the value of the load power is indicated by the time rate of the discharge current representing the discharge rate.
  • the measured value of the load power is compared with the value of the load power storage battery life table 20 stored in the storage means 5 (S23), and the load power value is calculated from the table closest to the environmental temperature measured in S21.
  • the expected life value L corresponding to is obtained and output to the control unit 12 (S24).
  • the number N of discharges of the storage battery 3 is obtained by the discharge number counting means 6 (S25), this value N is output to the control unit 12, and the number N of discharges is calculated from the equation (1) by the first life reduction amount calculating means 12a. Find the first life drop L as a natural logarithmic function
  • the remaining life value calculation means 12d calculates the remaining life value L from equation (2) (S27)
  • the remaining life value L obtained in this way is output from the control unit 12 to the remaining life display means 11.
  • the remaining life value L is displayed on the display, display on the display, or sound, etc. Announce.
  • the remaining life value L is further sent to the uninterruptible power supply main unit 15 by the communication means 14, and the charging control means 13 controls the charging of the discharged nickel-hydrogen storage battery 3.
  • nickel-metal hydride storage batteries are generally installed in a place where it is difficult for the user to touch, the remaining life in a part that is easy for the user to touch, such as the control unit of the UPS. It is effective to provide the display means 11.
  • FIG. 3 is a flowchart showing the second life judging method of the present invention.
  • the operation of route C is added to the operations of routes A and B described in the first life judgment method.
  • the environmental temperature T is first measured by the environmental temperature measurement means 6 (S31), and the storage battery temperature measurement means 9 is first measured at regular time intervals.
  • the average value calculation means 10 calculates the average value T of the storage battery temperature (S32). Measured at this storage battery temperature average T and ambient temperature T and route B S25 m 0 Using the fixed number of discharges N, obtain the second life reduction amount L from equation (3) (S33). And seeking
  • the remaining life value L is calculated from the equation (4) by the life value calculating means 12d (S34). Since the subsequent processing is the same as that of Embodiment 1, it is omitted.
  • FIG. 4 is a flowchart showing the third life judging method of the present invention.
  • the initial expected life value L is obtained in the operation of route A.
  • step 0 (S24) is the same as the first and second life judgment methods, but the subsequent operations are different. Specifically, the expected life value calculation means 12c at any time uses the environmental temperature T measured at S21 and the average value T of the storage battery temperature calculated at S32 of Route C as needed from Equation (5).
  • the first life reduction amount L and the second life reduction amount L should be reduced.
  • the remaining life value L is calculated to determine the life of the nickel-hydrogen storage battery (S42).
  • the subsequent processing is the same as in the first embodiment.
  • a positive electrode in which spherical nickel hydroxide powder is filled in three-dimensional porous nickel and a negative electrode in which hydrogen storage alloy powder is applied to a nickel-plated punching metal have a theoretical capacity ratio of 1Z2 (relative to the positive electrode).
  • the negative electrode was doubled) and wound through a separator made of a sulfone / polypropylene nonwoven fabric to constitute an electrode group.
  • This electrode assembly was inserted into a cylindrical can made of iron and nickel-plated, and an electrolyte solution consisting of an aqueous solution of KOH and NaOH was injected. Then, the opening of the can was sealed with a sealing plate and a gasket.
  • a cylindrical-Neckel hydrogen storage battery A having a diameter of 17 mm, a height of 50 mm, a separator thickness of 0.18 mm, and a nominal capacity of 1800 mAh was produced.
  • This storage battery A is incorporated into the life determination device shown in Fig. 1 and integrated with the life determination device.
  • the following charge / discharge test was conducted under ambient conditions.
  • Expected life value (initial expected life value) L is the environmental temperature The relationship between the degree of discharge and the discharge current value was calculated by comparing the life information of the storage battery extracted in advance.
  • the remaining lifetime value L was calculated based on the flowchart of FIG. 2 in place of the discharge rate with the time rate X 5 and the time rate X 0.5. Expected life value L calculation
  • Equation (3) Using the lifetime determination apparatus and storage battery of Example 1, the remaining lifetime value L was calculated using Equations (3) and (4) based on the flowchart of FIG. No. 4 in Table 1 and Table 2 show the remaining life value calculation conditions and calculation results, including the value of constant d in Equation (3).
  • the remaining lifetime value L was calculated using equations (5) and (6) based on the flowchart of FIG.
  • the average value T of the storage battery temperature is m as shown in Table 2.
  • the remaining life value was calculated under the same conditions as in Example 1 except that the lifetime determination apparatus and storage battery of Example 1 were used and the environmental temperature was changed to 35 ° C.
  • the conditions for calculating the remaining life value and the calculation results are shown in No. 6 of Table 1 and Table 2, respectively.
  • the life value was calculated.
  • the conditions for calculating the remaining life value and the calculation results are shown in No. 12 of Table 1 and Table 2, respectively.
  • Cylindrical nickel 'hydrogen storage battery B having the same structure as in Example 1 except that the separator thickness is 0.18 mm and the nominal capacity is 1600 mAh, and the separator thickness is 0.26 mm and the nominal capacity is 1400 mAh.
  • a similar cylindrical nickel hydrogen storage battery C was prepared. For these storage batteries, the remaining life values were calculated under the same conditions as in Example 1. The conditions for calculating the remaining life value and the calculation results are shown in Nos. 7 and 8 of Tables 1 and 2.
  • the battery was configured such that the theoretical capacity of the negative electrode was twice that of the theoretical capacity of the positive electrode. It is thought that it was affected.
  • intermittent charging of ⁇ control method is selected as the battery charging method, but even when intermittent charging such as dTZdt control method or timer control method, which is a temperature control method, or trickle charging is performed. Nearly similar results are obtained.
  • the lifetime determination method and apparatus of the present invention are useful in, for example, a nickel hydrogen storage battery lifetime determination method used in an uninterruptible power supply and the like and a lifetime determination apparatus using the same.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Abstract

 放電時に蓄電池に印加される負荷電力の値及び蓄電池が設置された場所の環境温度と、蓄電池の寿命との関係を示すデータを予め用意する。次に、蓄電池の放電時の負荷電力と環境温度を測定し、これらの測定値に対応する寿命を前記データから選択して期待寿命値とする。次に放電回数を変数とする自然対数関数から第1寿命低下量を算出し、前記の期待寿命値と第1寿命低下量との差を残存寿命値として、ニッケル・水素蓄電池の寿命を判定する。この方法により、ニッケル・水素蓄電池固有の現象に基づく補正を行いつつ、バックアップ電源として、ニッケル・水素蓄電池の寿命を正確に判定することができる。

Description

明 細 書
ニッケル ·水素蓄電池の寿命判定方法および寿命判定装置
技術分野
[0001] 本発明は、無停電電源装置などに用いるニッケル ·水素蓄電池の寿命判定方法お よびその方法を採用した寿命判定装置に関するものであり、より詳しくは、ニッケル' 水素蓄電池独自の挙動に基づいた高精度な寿命判定方法に関する。
背景技術
[0002] 無停電電源装置 (UPS)などのように、バックアップ用の蓄電池を内蔵した装置に おいては、蓄電池の寿命を検知することが保守点検の上力も重要である。ニッケル- 水素蓄電池の寿命の劣化は、一般的に負極の水素吸蔵合金の腐食が主要因となる 力 使用温度、放電回数、放電時の負荷電力の大きさなどの要因により影響されるこ とも多い。このように寿命を判定する要素は多様であり、使用中の蓄電池の寿命を正 確に判定することは容易ではな 、。
[0003] 従来、ニッケル '水素蓄電池の容量や寿命を判定するため、寿命末期の内部抵抗 増加や、放電時の電圧変化を、寿命を判定するパラメータとして用いることが提案さ れている。一例として、複数の放電電流値に対応する放電電圧値の分布に基づいて その勾配を演算して劣化判定を行う装置 (例えば特許文献 1)、放電中に測定する内 部抵抗や電池電圧を初期と相対比較して劣化判定を行う装置 (例えば特許文献 2) が開示されている。このような寿命判定方法は、蓄電池の内部抵抗と、これによりもた らされる電圧変化およびニッケル ·水素蓄電池の寿命との相関関係に着目したもの で、短期間にある程度の寿命を予測することができるという点では効果がある。
[0004] 一方、放電負荷電力値から期待寿命値を算出し、この期待寿命値と、放電回数を 変数とする一次関数として算出した寿命低下量との差を残存寿命値として、蓄電池 の寿命を判定する方法が提案されている(例えば特許文献 3)。この方法は、蓄電池 を強制的に放電させることなぐ精度の高い期待寿命値を適切に補正しつつ活用で きるので、鉛蓄電池などでは効果がある。
特許文献 1:特開平 8— 138759号公報 特許文献 2 :特開 2000— 215923号公報
特許文献 3:特開 2000 - 243459号公報
発明の開示
発明が解決しょうとする課題
[0005] し力しながら、特許文献 1および 2の方法では、内部抵抗がある程度上昇しないと寿 命の判定ができない上に、寿命劣化の要因となる放電頻度、蓄電池温度などが考慮 されていない。さらに特許文献 3の方法では、ニッケル '水素蓄電池独自の劣化挙動 (負極の水素吸蔵合金の腐食)のため、寿命判定に用いる式は放電回数を変数とす る一次関数にはならない。このため、いずれの場合も残存寿命値が実績値から大きく 乖離するという問題があった。
[0006] 本発明の主たる目的は、ニッケル.水素蓄電池の寿命を正確に判定することができ る方法および装置を提供することにある。
課題を解決するための手段
[0007] 本発明の第 1のニッケル ·水素蓄電池の寿命判定方法は以下の各ステップを含む ものである。
(a)放電時に蓄電池に印加される負荷電力及び前記蓄電池が設置された場所の環 境温度と、前記蓄電池の寿命との関係を示すデータを予め用意する
(b)前記蓄電池の放電時の負荷電力及び環境温度を測定する
(c)前記負荷電力及び環境温度の測定値に対応する寿命を前記データ力 選択し て期待寿命値とする
(d)前記蓄電池の放電回数を変数とする自然対数関数力 第 1寿命低下量を算出 する
(e)前記期待寿命値カゝら前記第 1寿命低下量を引いた値を残存寿命値とする
[0008] 上述したように、ニッケル.水素蓄電池の寿命は、負極の水素吸蔵合金の腐食が主 要因となる。水素吸蔵合金は初期の充放電時に水素の吸蔵'放出に伴う体積変化に 起因して、急激に自己粉砕される。この際、水素吸蔵合金の腐食は加速されるが、あ る程度放電回数が重なると、自己粉砕の沈静に伴って腐食は抑制される。よって鉛 蓄電池などのように活物質が溶解析出することによって充放電が繰り返される電池系 とは異なり、ニッケル ·水素蓄電池特有の挙動として、寿命劣化は放電回数を変数と する自然対数関数として示される。
[0009] 本発明はこの挙動に着目したものであり、ニッケル '水素蓄電池の寿命を正確に判 定することができる寿命判定方法を提供する。
[0010] 具体的には、期待寿命値を L、放電回数を N、第 1寿命低下量を L、残存寿命値
0 1
を Lとした場合、以下に示すように、第 1寿命低下量は式(1)で、残存寿命値は式(2) で表される。
L =a X ln (b X N) +c · · · (1)
1
L = L -L · · · (2)
o 1
ここで a、 b、 cは定数である。また Inは自然対数の関数であることを示す。
[0011] 寿命低下量は、負極の水素吸蔵合金の腐食の程度に応じて増加するので、電池 構成条件を変更して腐食を抑制したり、腐食の影響を受けにくくしたりした場合、 L
1は 小さくなる。なお、定数 a、 b、 cのうち a、 bの値はニッケル ·水素蓄電池の構造、例えば セパレータの厚みによって変わる力 cの値はニッケル '水素蓄電池においてはほぼ 一定である。
[0012] 本発明の第 2の寿命判定方法は、ニッケル '水素蓄電池の寿命をより正確に判定 することができる方法であり、上述した第 1の方法において、一定の時間間隔で測定 された充放電時もしくは休止時の蓄電池温度の平均値を算出し、この蓄電池温度の 平均値と環境温度の測定値との差を変数とする指数関数の値と、放電回数の積から 第 2寿命低下量を算出し、前記の期待寿命値から第 1および第 2寿命低下量を引い た値を残存寿命値として寿命を判定するものである。
[0013] ニッケル ·水素蓄電池の寿命は、電池自身の温度上昇に伴い指数関数的に低下 する。これは高温下において、水素吸蔵合金の腐食が常温下よりも加速されるため である。この要素を本発明の第 1の方法に加えることにより、ニッケル '水素蓄電池の 寿命をより正確に判定することができる。
[0014] 具体的には、期待寿命値を L、第 1寿命低下量を L、放電回数を N、一定の時間
0 1
間隔で測定した充放電時もしくは休止時の蓄電池温度の平均値を τ、期待寿命値 m
算出時の環境温度を T、第 2寿命低下量を L、残存寿命値を Lとした場合、以下に 示すように、第 2寿命低下量は式(3)で、残存寿命値は式 (4)でそれぞれ表される。 L =d X N X 2[(Tmτο)/10] · ' · (3)
2
L = L一(L +L ) · · · (4)
0 1 2
ここで dは定数である。
[0015] 第 2寿命低下量 Lは、蓄電池温度の平均値に応じて変動するので、電池の構成条
2
件を変更して発熱を抑制したり放熱性を向上したりした場合、 L
2は小さくなる。なお、 定数 dは蓄電池の種類に応じてほぼ一定の値となる。
[0016] 本発明の第 3の寿命判定方法は、ニッケル ·水素蓄電池の寿命をさらに正確に判 定することができる方法であり、上述した第 2の方法において、環境温度の測定値と 蓄電池温度の平均値との差を変数とする指数関数の値と、初期の期待寿命値との積 から随時期待寿命値を算出し、前記の随時期待寿命値から第 1および第 2寿命低下 量を引 、た値を残存寿命値として寿命を判定するものである。
[0017] 上述した第 1及び第 2の方法における期待寿命値 L (初期期待寿命値と同義)は、
0
厳密には蓄電池の温度履歴により指数関数的に変化する。この要素を本発明の第 2 の方法にカ卩えることにより、ニッケル ·水素蓄電池の寿命をさらに正確に判定すること ができる。
[0018] 具体的には、初期期待寿命値を L、随時期待寿命値を L、第 1寿命低下量を L、
0 m 1 初期期待寿命値算出時の環境温度を τ、充放電時もしくは休止時の蓄電池温度の
0
平均値を T、第 2寿命低下量を L、残存寿命値を Lとした場合、以下に示すように、 m 2
随時期待寿命値は式(5)で、残存寿命値は式 (6)で表される。
L =L X 2[(T°"Tm) 10] - - - (5)
m 0
L = L - (L +L ) · · · (6)
m 1 2
[0019] 上記本発明の第 3の方法によれば、放電時にニッケル ·水素蓄電池に印加される 負荷電力値から寿命値を算出するのに、予め負荷電力および環境温度と寿命との 関係を示すデータを用意し、このデータ力 負荷電力と環境温度の測定値に対応す る寿命を選択して期待寿命値とするので、寿命を正確に予測することができる。しか も、実際の停電によって蓄電池が本来のバックアップ機能を発揮して放電している場 合には、その放電により劣化する蓄電池の寿命を補正するので、ニッケル '水素蓄電 池の寿命を正確に精度よく判定することができる。
[0020] 次に、本発明のニッケル ·水素蓄電池の寿命判定装置は、
放電時に蓄電池に印加される負荷電力および前記蓄電池の設置された場所の環 境温度と、前記蓄電池の寿命との関係を示すデータを記憶する記憶手段と、 前記蓄電池に印加される負荷電力を測定する負荷電力測定手段と、
前記環境温度を測定する環境温度測定手段と、
前記記憶手段に記憶されたデータから、測定された負荷電力および環境温度に対 応する寿命を期待寿命値として選択する期待寿命値選択手段と、
前記蓄電池の放電回数を計数する放電回数計数手段と、
前記放電回数計数手段で計数された放電回数を変数とする自然対数関数から第 1 寿命低下量を算出する第 1寿命低下量算出手段と、
前記の期待寿命値と第 1寿命低下量との差から残存寿命値を算出する残存寿命値 算出手段とを備えたものである。
上記本発明の寿命判定装置では、第 1寿命低下量を活用することにより、停電時の バックアップ放電が蓄電池の寿命に及ぼす影響を、ニッケル '水素蓄電池の寿命判 定〖こ反映させることができる。
[0021] 本発明の寿命判定装置は、上記構成に更に、
充放電時もしくは休止時の蓄電池温度を一定の時間間隔で測定する蓄電池温度 測定手段と、
測定した蓄電池温度とその測定回数から蓄電池温度の平均値を算出する平均値 算出手段と、
前記蓄電池温度の平均値と環境温度との差を変数とする指数関数の値と、放電回 数との積力 第 2寿命低下量を算出する第 2寿命低下量算出手段を加えたものであ る。
上記本発明の寿命判定装置では、前記の期待寿命値と第 1寿命低下量および第 2 寿命低下量との差から残存寿命値を算出することにより、蓄電池温度を反映させるこ とができるので、残存寿命値の精度が向上する。
[0022] 本発明の寿命判定装置は、上記構成に更に、 記憶手段に記憶されたデータから、測定された負荷電力および環境温度に対応す る蓄電池の寿命を選択して初期期待寿命値とし、環境温度と蓄電池温度の平均値 の差とを変数とする指数関数の値と、初期期待寿命値との積から随時期待寿命値を 算出する随時期待寿命値算出手段を加えたものである。
上記本発明の寿命判定装置では、前記の随時期待寿命値および第 1寿命低下量 ならびに第 2寿命低下量力 残存寿命値を算出することにより、期待寿命値を随時適 正化できるので、残存寿命値の精度がさらに向上する。
[0023] 上述した本発明の寿命判定装置において、寿命判定部分の各手段を蓄電池と一 体化させることにより、または残存寿命値を表示する手段、残存寿命値を通信する手 段、もしくは残存寿命値により蓄電池の充電を制御する手段を付与することにより、よ り効率的なシステムとして機能させることができる。
発明の効果
[0024] 本発明のニッケル '水素蓄電池の寿命判定方法及び装置は、無停電電源装置に 内蔵しているニッケル ·水素蓄電池について、放電電力量、放電の頻度、蓄電池温 度などが異なる場合でも、精度よく正確に寿命を判定できるものである。
図面の簡単な説明
[0025] [図 1]図 1は本発明のニッケル ·水素蓄電池の寿命判定装置のブロック図である。
[図 2]図 2は本発明の実施の形態 1におけるニッケル ·水素蓄電池の寿命判定方法の フローチャートである。
[図 3]図 3は本発明の実施の形態 2におけるニッケル ·水素蓄電池の寿命判定方法の フローチャートである。
[図 4]図 4は本発明の実施の形態 3におけるニッケル ·水素蓄電池の寿命判定方法の フローチャートである。 発明を実施するための最良の形態
[0026] 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、本発 明はその要点を変更しな 、範囲にぉ 、て適宜変更して実施することができる。
図 1は本発明の寿命判定装置のブロック図である。図 1において、寿命判定装置 1 は寿命判定部 2と無停電電源装置に内蔵して ヽるニッケル ·水素蓄電池 3により構成 される。
[0027] 寿命判定部 2には、負荷電力の値を測定する負荷電力測定手段 4と、一定間隔の 環境温度毎に負荷電力と蓄電池寿命との関係を予め求めたデータを負荷電力ー蓄 電池寿命テーブルの形で記憶する記憶手段 5と、蓄電池 3が設置された場所の環境 温度を測定する環境温度測定手段 6と、負荷電力測定手段 4で測定された負荷電力 および環境温度測定手段 6で測定された環境温度を基に、記憶手段 5に記憶された 寿命データから期待寿命値を選択する期待寿命値算出手段 7と、蓄電池 3の放電回 数を計数する放電回数計数手段 8と、一定の時間間隔で蓄電池温度を測定する蓄 電池温度測定手段 9と、蓄電池温度測定手段 9で測定された蓄電池温度の和を測 定回数で割って平均値を算出する平均値算出手段 10と、残存寿命を表示する残存 寿命表示手段 11と、制御部 12と、充電制御手段 13と、通信手段 14が内蔵されてい る。
[0028] 制御部 12は、放電回数を計数する放電回数計数手段 6からの情報を寿命低下量 に換算する第 1寿命低下量算出手段 12aと、平均値算出手段 10で求められた蓄電 池温度の平均値および放電回数測定手段 8からの情報を寿命低下量に換算する第 2寿命低下量算出手段 12bと、記憶手段 5から読み出された初期期待寿命値に平均 値算出手段 10からの情報を加味して随時期待寿命値を算出する随時期待寿命値 算出手段 12cと、残存寿命値算出手段 12dとを備えている。なお、 15は無停電電源 装置本体である。
[0029] 次に、上記寿命判定装置を用いた本発明の各寿命判定方法について、フローチヤ ートに基づいて具体的に説明する。
(実施の形態 1)
[0030] 図 2は本発明の第 1の寿命判定方法を示すフローチャートである。
無停電電源装置に内蔵しているニッケル ·水素蓄電池 3が放電を始めると、寿命判 定装置 1が作動を開始し、初期期待寿命値 Lを求める動作 (ルート A)と第 1寿命低
0
下量 Lを求める動作 (ルート B)が作動する。
1
[0031] ルート Aの動作を説明する。予め、一定間隔の環境温度毎に、放電時に蓄電池に 印加される負荷電力と蓄電池寿命との関係を求め、このデータをメモリーなどの記憶 手段 5に負荷電力 蓄電池寿命テーブル 20として記憶しておく。
最初に、環境温度測定手段 6で蓄電池 3が設置されている場所の環境温度 Tを測
0 定し (ステップ S21)、次に負荷電力測定手段 4で負荷電力の値を測定する(S22)。 通常、負荷電力の値は、放電レートを表す放電電流の時間率で示される。
[0032] 次に、負荷電力の測定値を、記憶手段 5に記憶されている負荷電力 蓄電池寿命 テーブル 20の値と照合し (S23)、 S21で測定した環境温度に最も近いテーブルから 負荷電力値に応じた期待寿命値 Lを求め、制御部 12へ出力する(S24)。
0
[0033] 次に、ルート Bの動作を説明する。放電回数計数手段 6により蓄電池 3の放電回数 Nを求め(S25)、この値 Nを制御部 12へ出力し、第 1寿命低下量算出手段 12aによ り、式(1)から放電回数 Nを変数とする自然対数関数として第 1寿命低下量 Lを求め
1 て出力する(S26)。そして、求められた初期期待寿命値 Lと第 1寿命低下量 Lに基
0 1 づき、残存寿命値算出手段 12dにおいて式(2)から残存寿命値 Lを算出する(S27)
[0034] このようにして求めた残存寿命値 Lは、制御部 12から残存寿命表示手段 11に出力 され、例えば、 LEDなどの点灯、ディスプレイなどへの表示、あるいは音などにより、 使用者に寿命を告知する。残存寿命値 Lは、さらに通信手段 14により無停電電源装 置本体 15に送られ、充電制御手段 13により、放電しているニッケル.水素蓄電池 3の 充電を制御する。
[0035] なお、一般にニッケル ·水素蓄電池は使用者の目に触れ難い場所に設置されてい るので、無停電電源装置本体の制御部のように、使用者の目に触れ易い部分に残 存寿命表示手段 11を設けるのが効果的である。
(実施の形態 2)
[0036] 図 3は本発明の第 2の寿命判定方法を示すフローチャートである。
第 2の寿命判定方法では、第 1の寿命判定方法で説明したルート A、 Bの動作にル ート Cの動作が加わる。ルート Cの動作では、ルート Aと同様、最初に環境温度測定 手段 6で環境温度 Tを測定し (S31)、蓄電池温度測定手段 9で一定の時間間隔毎
0
に蓄電池温度を測定した後、平均値算出手段 10で蓄電池温度の平均値 Tを算出 m する(S32)。この蓄電池温度の平均値 T と環境温度 Tおよび、ルート Bの S25で測 m 0 定済の放電回数 Nを用いて式(3)より第 2寿命低下量 Lを求める(S33)。そして、求
2
められた期待寿命値 Lと第 1寿命低下量 Lおよび第 2寿命低下量 Lに基づき、残存
0 1 2
寿命値算出手段 12dにより式 (4)から残存寿命値 Lを算出する(S34)。以後の処理 は実施の形態 1と同様であるため、省略する。
(実施の形態 3)
[0037] 図 4は本発明の第 3の寿命判定方法を示すフローチャートである。
第 3の寿命判定方法では、ルート Aの動作において初期の期待寿命値 Lを求める
0 ステップ (S24)までは第 1、第 2の寿命判定方法と同じであるが、それ以降の動作が 異なっている。具体的には、随時期待寿命値算出手段 12cは、 S21で測定した環境 温度 Tとルート Cの S32で算出した蓄電池温度の平均値 Tを用いて式(5)より随時
0 m
期待寿命値 Lを求める(S41)。ついで、残存寿命値算出手段 12dにおいて、求め m
た随時期待寿命値 Lから第 1寿命低下量 Lと第 2寿命低下量 Lとを減ずること〖こより m 1 2
、残存寿命値 Lを算出してニッケル ·水素蓄電池の寿命を判定する(S42)。以後の 処理は実施の形態 1と同様である。
[0038] 次に、上記本発明の寿命判定方法において、上述した各式に基づき、様々な条件 下で残存寿命値を算出した実施例について説明する。
(実施例 1)
[0039] 球状水酸化ニッケル粉末を 3次元多孔体ニッケルに充填した正極と、水素吸蔵合 金粉末をニッケルメツキしたパンチングメタルに塗布した負極とを、それらの理論容量 比が 1Z2 (正極に対して負極が 2倍)となるように組み合わせ、スルホンィ匕ポリプロピ レン不織布カゝらなるセパレータを介して捲回し、電極群を構成した。この電極群を鉄 製でニッケルめつきされた円筒缶に挿入し、 KOHと NaOHの水溶液からなる電解液 を注入した後、封口板およびガスケットにより缶の開口部を密封した。こうして直径 17 mm、高さ 50mm、セパレータの厚み 0. 18mm,公称容量 1800mAhの円筒型-ッ ケル ·水素蓄電池 Aを作製した。
[0040] この蓄電池 Aを図 1の寿命判定装置に組み込み、寿命判定装置と一体化させた- ッケル '水素蓄電池に対して、十分に初期活性ィ匕サイクルを経させた後に、 40°C雰 囲気下で下記の充放電試験を行った。期待寿命値 (初期期待寿命値) Lは環境温 度と放電電流値の関係力 予め抽出した蓄電池の寿命情報とを比較して算出した。
[0041] 充電: 900mA、最高到達電圧から 5mV電圧低下時に充電停止( 、わゆる
制御方式)
休止: 3日
以上の充電および休止を繰り返し、 10サイクルに 1度、放電電流 1800mAにて 1. OVまで放電を行なった。この放電を 10回、 30回、及び 50回繰り返した時点で、図 2 のフローチャートに基づいて残存寿命値 Lを算出した。この寿命判定装置は、 -ッケ ル.水素蓄電池の残存容量が 1080mAh (公称容量の 60%)に達した時点をもって 寿命と判断した。
[0042] 期待寿命値 L及びそれを算出する際の環境温度と放電レート (時間率で表示)、
0
更に寿命判定に用いた式(1)の定数 a、 b、 cの値を表 1の No. 1に示し、残存寿命値 の算出結果を表 2の No. 1に示す。
(実施例 2)
[0043] 実施例 1の寿命判定装置を用い、放電レートを時間率 X 5及び時間率 X 0. 5に代 え、図 2のフローチャートに基づいて残存寿命値 Lを算出した。期待寿命値 L算出の
0 条件、定数 a、 b、 cの値を表 1の No. 2と 3に、また残存寿命値 Lの算出結果を表 2の No. 2と 3にそれぞれ示す。
(比較例 1)
[0044] 実施例 1の寿命判定装置及び蓄電池を用い、実施例 2と同様の条件下で、式( 1)及び(2)の代わりに一次関数 L=L Nを用いて残存寿命値を算出した。残存寿
0
命値算出の条件及び算出結果を表 1及び表 2の No . 9〜: L 1に示す。
(実施例 3)
[0045] 実施例 1の寿命判定装置及び蓄電池を用い、図 3のフローチャートに基づき、式(3 )、(4)を用いて残存寿命値 Lを算出した。式 (3)の定数 dの値を含め、残存寿命値算 出の条件及び算出結果を表 1及び表 2の No. 4にそれぞれ示す。
(実施例 4)
[0046] 実施例 1の寿命判定装置及び蓄電池を用い、図 4のフローチャートに基づき、式(5 )、(6)を用いて残存寿命値 Lを算出した。残存寿命値算出の条件及び算出結果を 表 1及び表 2の No. 5にそれぞれ示す。なお蓄電池温度の平均値 Tは表 2に示すと m
おりである。
(実施例 5)
[0047] 実施例 1の寿命判定装置及び蓄電池を用い、環境温度を 35°Cに変えた以外は実 施例 1と同様の条件で残存寿命値を算出した。残存寿命値算出の条件及び算出結 果を表 1及び表 2の No. 6にそれぞれ示す。
(比較例 2)
[0048] 実施例 5の寿命判定装置及び蓄電池を用い、一次関数 L=L Nを用いて残存寿
0
命値を算出した。残存寿命値算出の条件及び算出結果を表 1及び表 2の No. 12に それぞれ示す。
(実施例 6)
[0049] セパレータの厚みが 0. 18mm,公称容量が 1600mAhである点以外は、実施例 1 と同様の構造の円筒型ニッケル '水素蓄電池 B、及びセパレータの厚みが 0. 26mm 、公称容量が 1400mAhの同様の円筒型ニッケル '水素蓄電池 Cを作製した。これら の蓄電池について、実施例 1と同様の条件で残存寿命値を算出した。残存寿命値算 出の条件及び算出結果を表 1及び表 2の No. 7と 8に示す。
(比較例 3)
[0050] 実施例 6の寿命判定装置及び蓄電池を用い、一次関数 L=L Nを用いて残存寿
0
命値を算出した。残存寿命値算出の条件及び算出結果を表 1及び表 2の No. 13と 1 4に示す。
[0051] [表 1]
Figure imgf000014_0001
[0052] 上記各実施例及び比較例で求めた残存寿命値 Lの値と実測値の乖離を、放電回 数 N毎に表 2にサイクル数で示した。
[0053] [表 2]
Figure imgf000015_0001
L8lPl0/S00Zdr/13d Ϊ88£Ϊ0/900Ζ OAV [0054] 表 2より、 NO. 9〜14に示した比較例は実測値との乖離が顕著であるのに対し、 N o. 1〜8に示した実施例は実測値との乖離が僅かであることが分かる。この傾向は放 電回数 Nが増える程強くなる。この理由として、水素吸蔵合金の腐食はサイクルの繰 返しにより沈静ィ匕するため、自然対数関数に近似できるためであると考えられる。
[0055] 特に本実施例の場合、負極理論容量が正極理論容量の 2倍となるよう電池を構成 していることから、電池の寿命劣化速度が一次関数から大きく乖離し、より自然対数 関数に近づ 、たことが影響したと考えられる。
[0056] また、 No. 1〜3の判定結果に対し No. 4及び 5の判定結果が、放電回数 Nが多く なるほど高精度になった理由として、充放電に伴う電池の発熱や環境温度の変化が 考慮しやすくなつたためと考えられる。
[0057] なお、本実施例では比較的放熱性の高 、金属製の電池缶を用いたが、放熱性の 低い榭脂製の電槽を用いた場合、式 (3)、(4)及び式 (5)、(6)による判定の効果が より顕著になるものと考えられる。
[0058] さらに本実施例では、電池の充電方法として Δν制御方式の間欠充電を選択し たが、温度制御方式である dTZdt制御方式やタイマー制御方式などの間欠充電、 もしくはトリクル充電を行う場合でもほぼ同様な結果が得られる。
産業上の利用可能性
[0059] 本発明の寿命判定方法及び装置は、例えば、無停電電源装置などに用いるニッケ ル '水素蓄電池の寿命判定方法およびそれを用いた寿命判定装置において有用な ものである。

Claims

請求の範囲
[1] 以下の各ステップを含むニッケル ·水素蓄電池の寿命判定方法。
(a)放電時に蓄電池に印加される負荷電力及び前記蓄電池が設置された場所の環 境温度と、前記蓄電池の寿命との関係を示すデータを予め用意する
(b)前記蓄電池の放電時の負荷電力及び環境温度を測定する
(c)前記負荷電力及び環境温度の測定値に対応する寿命を前記データ力 選択し て期待寿命値とする
(d)前記蓄電池の放電回数を変数とする自然対数関数力 第 1寿命低下量を算出 する
(e)前記期待寿命値カゝら前記第 1寿命低下量を引いた値を残存寿命値とする
[2] 以下の各ステップを含むニッケル.水素蓄電池の寿命判定方法。
(a)放電時に蓄電池に印加される負荷電力及び前記蓄電池が設置された場所の環 境温度と、前記蓄電池の寿命との関係を示すデータを予め用意する
(b)前記蓄電池の放電時の負荷電力及び環境温度を測定する
(c)前記負荷電力及び環境温度の測定値に対応する寿命を前記データ力 選択し て期待寿命値とする
(d)前記蓄電池の放電回数を変数とする自然対数関数力 第 1寿命低下量を算出 する
(e)—定の時間間隔で測定された充放電時もしくは休止時の蓄電池温度の平均値 を算出し、この蓄電池温度の平均値と前記環境温度の測定値との差を変数とする指 数関数の値と、前記放電回数との積から第 2寿命低下量を算出する
(f)前記期待寿命値から前記第 1寿命低下量および第 2寿命低下量を引いた値を残 存寿命値とする
[3] 以下の各ステップを含むニッケル.水素蓄電池の寿命判定方法。
(a)放電時に蓄電池に印加される負荷電力及び前記蓄電池が設置された場所の環 境温度と、前記蓄電池の寿命との関係を示すデータを予め用意する
(b)前記蓄電池の放電時の負荷電力及び環境温度を測定する
(c)前記負荷電力及び環境温度の測定値に対応する寿命を前記データ力 選択し て初期期待寿命値とする
(d)—定の時間間隔で測定された充放電時もしくは休止時の蓄電池温度の平均値 を算出し、前記環境温度の測定値と前記蓄電池温度の平均値との差を変数とする指 数関数の値と、前記初期期待寿命値との積から随時期待寿命値を算出する
(e)前記蓄電池の放電回数を変数とする自然対数関数力 第 1寿命低下量を算出 する
(f)前記蓄電池温度の平均値と前期環境温度の測定値の差を変数とする指数関数 の値と前記放電回数との積から第 2寿命低下量を算出する
(g)前記随時期待寿命値から前記第 1寿命低下量および第 2寿命低下量を引いた 値を残存寿命値とする
[4] 放電時に蓄電池に印加される負荷電力および前記蓄電池が設置された場所の環 境温度と、前記蓄電池の寿命との関係を示すデータを記憶する記憶手段と、 前記蓄電池に印加される負荷電力を測定する負荷電力測定手段と、
前記環境温度を測定する環境温度測定手段と、
前記記憶手段に記憶されたデータから前記負荷電力測定手段で測定された負荷 電力および前記環境温度測定手段で測定された環境温度に対応する寿命を期待 寿命値として選択する期待寿命値選択手段と、
前記蓄電池の放電回数を計数する放電回数係数手段と、
前記放電回数係数手段で計数された放電回数を変数とする自然対数関数から第 1 寿命低下量を算出する第 1寿命低下量算出手段と、
前記期待寿命値選択手段で選択した期待寿命値及び前記第 1寿命低下量算出手 段で算出した第 1寿命低下量力 残存寿命値を算出する残存寿命値算出手段とを 備えたニッケル '水素蓄電池の寿命判定装置。
[5] 前記各手段が前記蓄電池と一体に設けられた請求項 4に記載のニッケル ·水素蓄 電池の寿命判定装置。
[6] 残存寿命値を表示する手段を備えた請求項 4に記載のニッケル ·水素蓄電池の寿 命判定装置。
[7] 残存寿命値を通信する手段を備えた請求項 4に記載のニッケル ·水素蓄電池の寿 命判定装置。
[8] 残存寿命値により前記蓄電池の充電を制御する手段を備えた請求項 4に記載の- ッケル ·水素蓄電池の寿命判定装置。
[9] 放電時に蓄電池に印加される負荷電力および前記蓄電池が設置された場所の環 境温度と、前記蓄電池の寿命との関係を示すデータを記憶する記憶手段と、 前記蓄電池に印加される負荷電力の値を測定する負荷電力測定手段と、 前記環境温度を測定する環境温度測定手段と、
前記記憶手段に記憶されたデータから前記負荷電力測定手段で測定された負荷 電力および前記環境温度測定手段で測定された環境温度に対応する寿命を期待 寿命値として選択する期待寿命値選択手段と、
前記蓄電池の放電回数を計数する放電回数係数手段と、
前記放電回数係数手段で計数された放電回数を変数とする自然対数関数から第 1 寿命低下量を算出する第 1寿命低下量算出手段と、
充放電時もしくは休止時の蓄電池温度を一定の時間間隔で測定する蓄電池温度 測定手段と、
前記蓄電池温度測定手段で測定された蓄電池温度と測定回数から蓄電池温度の 平均値を算出する平均値算出手段と、
前記平均値算出手段で算出された蓄電池温度の平均値と前記環境温度測定手段 で測定された環境温度との差を変数とする指数関数の値と、前記放電回数係数手段 で計数された放電回数との積力 第 2寿命低下量を算出する第 2寿命低下量算出手 段と、
前記期待寿命値選択手段で選択された期待寿命値から前記第 1寿命低下量算出 手段で算出された第 1寿命低下量及び前記第 2寿命低下量算出手段で算出された 第 2寿命低下量を引いて残存寿命値を算出する残存寿命値算出手段とを備えた- ッケル ·水素蓄電池の寿命判定装置。
[10] 前記各手段が前記蓄電池と一体に設けられた請求項 9に記載のニッケル ·水素蓄 電池の寿命判定装置。
[11] 残存寿命値を表示する手段を備えた請求項 9に記載のニッケル ·水素蓄電池の寿 命判定装置。
[12] 残存寿命値を通信する手段を備えた請求項 9に記載のニッケル ·水素蓄電池の寿 命判定装置。
[13] 残存寿命値により前記蓄電池の充電を制御する手段を備えた請求項 9に記載の- ッケル ·水素蓄電池の寿命判定装置。
[14] 放電時に蓄電池に印加される負荷電力および前記蓄電池が設置された場所の環 境温度と、前記蓄電池の寿命との関係を示すデータを記憶する記憶手段と、 前記蓄電池に印加される負荷電力の値を測定する負荷電力測定手段と、 前記環境温度を測定する環境温度測定手段と、
前記記憶手段に記憶されたデータから前記負荷電力測定手段で測定された負荷 電力および前記環境温度測定手段で測定された環境温度に対応する寿命を初期 期待寿命値として選択する期待寿命値選択手段と、
前記蓄電池の放電回数を計数する放電回数係数手段と、
前記放電回数係数手段で計数された放電回数を変数とする自然対数関数から第 1 寿命低下量を算出する第 1寿命低下量算出手段と、
充放電時もしくは休止時の蓄電池温度を一定の時間間隔で測定する蓄電池温度 測定手段と、
前記蓄電池温度測定手段で測定された蓄電池温度と測定回数から蓄電池温度の 平均値を算出する平均値算出手段と、
前記環境温度測定手段で測定された環境温度と前記平均値算出手段で算出され た蓄電池温度の平均値の差とを変数とする指数関数の値と、前記期待寿命値選択 手段で選択された初期期待寿命値との積力 随時期待寿命値を算出する随時期待 寿命値算出手段と、
前記平均値算出手段で算出された蓄電池温度の平均値と前記環境温度測定手段 で測定された環境温度との差を変数とする指数関数の値と、前記放電回数係数手段 で計数された放電回数との積力 第 2寿命低下量を算出する第 2寿命低下量算出手 段と、
前記随時期待寿命値算出手段で算出された随時期待寿命値力 前記第 1寿命低 下量算出手段で算出された第 1寿命低下量及び前記第 2寿命低下量算出手段で算 出された第 2寿命低下量を引いて残存寿命値を算出する残存寿命値算出手段とを 備えたニッケル '水素蓄電池の寿命判定装置。
[15] 前記各手段が前記蓄電池と一体に設けられた請求項 14に記載のニッケル,水素 蓄電池の寿命判定装置。
[16] 残存寿命値を表示する手段を備えた請求項 14に記載のニッケル ·水素蓄電池の 寿命判定装置。
[17] 残存寿命値を通信する手段を備えた請求項 14に記載のニッケル ·水素蓄電池の 寿命判定装置。
[18] 残存寿命値により前記蓄電池の充電を制御する手段を備えた請求項 14に記載の ニッケル ·水素蓄電池の寿命判定装置。
PCT/JP2005/014187 2004-08-05 2005-08-03 ニッケル・水素蓄電池の寿命判定方法および寿命判定装置 WO2006013881A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US10/587,276 US7439745B2 (en) 2004-08-05 2005-08-03 Nickel-hydride battery life determining method and life determining apparatus
EP05768401A EP1775793B1 (en) 2004-08-05 2005-08-03 Nickel-hydride battery life determining method and life determining apparatus
DE602005015453T DE602005015453D1 (de) 2004-08-05 2005-08-03 Nickelhybridbatterie-lebenszeitbestimmungsverfahren und lebenszeitbestimmungsvorrichtung
JP2006531509A JP4874108B2 (ja) 2004-08-05 2005-08-03 ニッケル・水素蓄電池の寿命判定方法および寿命判定装置
US11/987,456 US7471091B2 (en) 2004-08-05 2007-11-30 Nickel-hydride battery life determining method and life determining apparatus
US11/987,454 US7459912B2 (en) 2004-08-05 2007-11-30 Nickel-hydride battery life determining method and life determining apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-229251 2004-08-05
JP2004229251 2004-08-05
JP2004-304121 2004-10-19
JP2004304121 2004-10-19

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US10/587,276 A-371-Of-International US7439745B2 (en) 2004-08-05 2005-08-03 Nickel-hydride battery life determining method and life determining apparatus
US11/987,454 Division US7459912B2 (en) 2004-08-05 2007-11-30 Nickel-hydride battery life determining method and life determining apparatus
US11/987,456 Division US7471091B2 (en) 2004-08-05 2007-11-30 Nickel-hydride battery life determining method and life determining apparatus

Publications (1)

Publication Number Publication Date
WO2006013881A1 true WO2006013881A1 (ja) 2006-02-09

Family

ID=35787162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/014187 WO2006013881A1 (ja) 2004-08-05 2005-08-03 ニッケル・水素蓄電池の寿命判定方法および寿命判定装置

Country Status (7)

Country Link
US (3) US7439745B2 (ja)
EP (1) EP1775793B1 (ja)
JP (2) JP4874108B2 (ja)
KR (1) KR100811968B1 (ja)
CN (1) CN100448100C (ja)
DE (1) DE602005015453D1 (ja)
WO (1) WO2006013881A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007263952A (ja) * 2006-02-28 2007-10-11 Matsushita Electric Ind Co Ltd 電池寿命判定装置及び電池寿命判定方法
EP1990646A1 (en) * 2006-02-28 2008-11-12 Matsushita Electric Industrial Co., Ltd. Battery service life judging device and battery service life judging method
JP2009105032A (ja) * 2007-10-02 2009-05-14 Panasonic Corp 電池寿命判定装置及び電池寿命判定方法
CN101149422B (zh) * 2006-09-22 2012-12-05 欧姆龙株式会社 电池寿命预测系统及方法、通讯终端装置、电池寿命预测装置
JP2017010813A (ja) * 2015-06-23 2017-01-12 三菱電機株式会社 電力供給システム
JP2017224518A (ja) * 2016-06-16 2017-12-21 トヨタ自動車株式会社 電池システム
EP4354581A1 (en) 2022-09-29 2024-04-17 FDK Corporation Method of estimating life of nickel-metal hydride battery

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8471531B2 (en) * 2007-03-20 2013-06-25 Belkin International, Inc. Estimated remaining life of a battery included in an uninterruptible power supply
KR100903489B1 (ko) * 2007-04-30 2009-06-18 삼성에스디아이 주식회사 리튬 이차전지 주기 수명 검사 방법
US8046180B2 (en) * 2007-07-13 2011-10-25 Honeywell International Inc. Model-based determination of power source replacement in wireless and other devices
JP5076835B2 (ja) * 2007-11-26 2012-11-21 株式会社ニプロン 二次電池の劣化状態判定システム
DE102008037193A1 (de) * 2008-08-11 2010-02-18 Endress + Hauser Process Solutions Ag Verfahren zur Überwachung der Reststandzeit einer Batterie
US8179278B2 (en) * 2008-12-01 2012-05-15 Schlumberger Technology Corporation Downhole communication devices and methods of use
US8783382B2 (en) * 2009-01-15 2014-07-22 Schlumberger Technology Corporation Directional drilling control devices and methods
US8407018B2 (en) * 2009-03-24 2013-03-26 American Power Conversion Corporation Battery life estimation
US10132870B2 (en) * 2009-04-24 2018-11-20 Dell Products L.P. Dynamic discharging to detect derated battery cells
KR101079262B1 (ko) 2009-12-31 2011-11-03 재단법인 국방기술품질원 리튬 전지를 전원 공급원으로 이용하는 기기
US20110190956A1 (en) * 2010-01-29 2011-08-04 Neil Kunst Prognostic-Enabled Power System
DE102010048188B4 (de) * 2010-10-13 2020-11-12 Phoenix Contact Gmbh & Co. Kg Akkumulator-Kontrollvorrichtung, sowie Verfahren und System zur elektrischen Hilfsversorgung
JP5655838B2 (ja) * 2012-10-25 2015-01-21 トヨタ自動車株式会社 電池システム
BR112016002911A2 (pt) * 2013-08-13 2017-08-01 Koninklijke Philips Nv bateria, sistema, e, método
CN109904533B (zh) * 2017-12-11 2022-03-25 奥动新能源汽车科技有限公司 电动汽车用电池包的电池寿命分析系统及方法
JP2019175755A (ja) * 2018-03-29 2019-10-10 セイコーエプソン株式会社 回路装置、制御装置、受電装置及び電子機器
CN111426954B (zh) * 2020-04-13 2021-04-13 清华大学 燃料电池使用寿命和剩余寿命的对数预测方法及装置
CN112782592A (zh) * 2021-03-26 2021-05-11 国网河南省电力公司方城县供电公司 一种蓄电池寿命检测系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0574501A (ja) * 1991-09-11 1993-03-26 Honda Motor Co Ltd バツテリの寿命測定装置
JP2000012098A (ja) * 1998-06-26 2000-01-14 Nissan Motor Co Ltd 電池劣化診断方法
JP2000243459A (ja) * 1999-02-19 2000-09-08 Matsushita Electric Ind Co Ltd 蓄電池の寿命判定方法およびそれを用いた寿命判定装置
JP2003161768A (ja) * 2001-11-28 2003-06-06 Ntt Power & Building Facilities Inc 蓄電池の劣化予測方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3121732B2 (ja) * 1994-11-04 2001-01-09 三菱電機株式会社 二次電池のパラメータ測定方法ならびにそれを用いた二次電池の充放電制御方法および寿命予測方法、ならびに、二次電池の充放電制御装置およびそれを用いた電力貯蔵装置
JP3285720B2 (ja) 1994-11-08 2002-05-27 松下電器産業株式会社 組電池の劣化検出方法及び劣化検出装置
JP3697818B2 (ja) * 1996-02-28 2005-09-21 新神戸電機株式会社 蓄電池の劣化診断方法及び装置並びに交流無停電電源装置
JP3943743B2 (ja) * 1999-01-18 2007-07-11 株式会社ミツトヨ 電池寿命検出装置
JP2000215923A (ja) 1999-01-25 2000-08-04 Matsushita Electric Ind Co Ltd 電池劣化判定装置
US6191556B1 (en) 1999-10-12 2001-02-20 International Business Machines Corporation Method and apparatus for estimating the service life of a battery
EP1278072B1 (en) * 2000-06-08 2007-05-02 Mitsubishi Denki Kabushiki Kaisha Device for judging life of auxiliary battery
JP2002017045A (ja) * 2000-06-29 2002-01-18 Toshiba Battery Co Ltd 二次電池装置
JP2002330547A (ja) * 2001-04-27 2002-11-15 Internatl Business Mach Corp <Ibm> 電池寿命を判断する電気機器、コンピュータ装置、電池寿命判断システム、電池、および電池寿命検出方法
JP4042475B2 (ja) * 2002-06-12 2008-02-06 トヨタ自動車株式会社 電池の劣化度算出装置および劣化度算出方法
DE10234032A1 (de) * 2002-07-26 2004-02-05 Vb Autobatterie Gmbh Energiespeicher und Verfahren zur Ermittlung des Verschleißes eines elektrochemischen Energiespeichers

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0574501A (ja) * 1991-09-11 1993-03-26 Honda Motor Co Ltd バツテリの寿命測定装置
JP2000012098A (ja) * 1998-06-26 2000-01-14 Nissan Motor Co Ltd 電池劣化診断方法
JP2000243459A (ja) * 1999-02-19 2000-09-08 Matsushita Electric Ind Co Ltd 蓄電池の寿命判定方法およびそれを用いた寿命判定装置
JP2003161768A (ja) * 2001-11-28 2003-06-06 Ntt Power & Building Facilities Inc 蓄電池の劣化予測方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1775793A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007263952A (ja) * 2006-02-28 2007-10-11 Matsushita Electric Ind Co Ltd 電池寿命判定装置及び電池寿命判定方法
EP1990646A1 (en) * 2006-02-28 2008-11-12 Matsushita Electric Industrial Co., Ltd. Battery service life judging device and battery service life judging method
EP1990646A4 (en) * 2006-02-28 2009-11-25 Panasonic Corp DEVICE FOR ESTIMATING THE LIFETIME OF A BATTERY AND METHOD FOR ESTIMATING THE LIFETIME OF LIFE OF A BATTERY
JP2010190904A (ja) * 2006-02-28 2010-09-02 Panasonic Corp 電池寿命判定装置及び電池寿命判定方法
US8035395B2 (en) 2006-02-28 2011-10-11 Panasonic Corporation Battery life predicting device and battery life predicting method
CN101149422B (zh) * 2006-09-22 2012-12-05 欧姆龙株式会社 电池寿命预测系统及方法、通讯终端装置、电池寿命预测装置
JP2009105032A (ja) * 2007-10-02 2009-05-14 Panasonic Corp 電池寿命判定装置及び電池寿命判定方法
JP2017010813A (ja) * 2015-06-23 2017-01-12 三菱電機株式会社 電力供給システム
JP2017224518A (ja) * 2016-06-16 2017-12-21 トヨタ自動車株式会社 電池システム
EP4354581A1 (en) 2022-09-29 2024-04-17 FDK Corporation Method of estimating life of nickel-metal hydride battery

Also Published As

Publication number Publication date
JP2010190903A (ja) 2010-09-02
JP4874108B2 (ja) 2012-02-15
CN1922754A (zh) 2007-02-28
CN100448100C (zh) 2008-12-31
EP1775793A1 (en) 2007-04-18
DE602005015453D1 (de) 2009-08-27
KR20070001965A (ko) 2007-01-04
US20080125987A1 (en) 2008-05-29
US7459912B2 (en) 2008-12-02
US20080133157A1 (en) 2008-06-05
US20070164707A1 (en) 2007-07-19
EP1775793B1 (en) 2009-07-15
US7439745B2 (en) 2008-10-21
US7471091B2 (en) 2008-12-30
KR100811968B1 (ko) 2008-03-10
JPWO2006013881A1 (ja) 2008-05-01
EP1775793A4 (en) 2008-11-12

Similar Documents

Publication Publication Date Title
WO2006013881A1 (ja) ニッケル・水素蓄電池の寿命判定方法および寿命判定装置
JP5198502B2 (ja) 電池寿命判定装置及び電池寿命判定方法
US8649988B2 (en) Service life estimation method for lead storage battery and power source system
EP3285081B1 (en) Battery state of health detection device and method
JP5184791B2 (ja) 電池寿命判定装置及び電池寿命判定方法
JP2010139396A (ja) 電池寿命検出装置、蓄電装置、及び電池寿命検出方法
EP2728368A2 (en) Condition estimation device and method for battery
US10847982B2 (en) Battery control system
JP2010085243A (ja) バックアップ電池の満充電容量検出方法
WO2017169088A1 (ja) リチウムイオン二次電池の寿命推定装置
JP2012253975A (ja) アルカリ蓄電池の充放電制御方法および充放電システム
EP3570405B1 (en) Device and method for controlling discharge
JP5431685B2 (ja) 電池寿命判定装置及び電池寿命判定方法
US20050225301A1 (en) Method and system for determining the health of a battery
JP2016223964A (ja) 蓄電デバイスの劣化診断装置及び劣化診断方法
JP2005195388A (ja) 電池の残量計測装置
CN116736144A (zh) 一种锂电池电芯异常检测方法、系统、终端及存储介质
JP3678045B2 (ja) 蓄電池の充電方法
JP2013029445A (ja) バッテリ管理装置及び電力供給システム
JP4660367B2 (ja) 二次電池の残存容量検出方法
JPH11355968A (ja) 蓄電池の充電方法とその充電装置
JP2004361221A (ja) 二次電池の蓄電残量チェック装置及び蓄電残量チェック方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2006531509

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2007164707

Country of ref document: US

Ref document number: 10587276

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2005768401

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200580005332.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020067017003

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1020067017003

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005768401

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10587276

Country of ref document: US