WO2006013706A1 - 触媒粒径制御式カーボンナノ構造物の製造方法、製造装置及びカーボンナノ構造物 - Google Patents

触媒粒径制御式カーボンナノ構造物の製造方法、製造装置及びカーボンナノ構造物 Download PDF

Info

Publication number
WO2006013706A1
WO2006013706A1 PCT/JP2005/012909 JP2005012909W WO2006013706A1 WO 2006013706 A1 WO2006013706 A1 WO 2006013706A1 JP 2005012909 W JP2005012909 W JP 2005012909W WO 2006013706 A1 WO2006013706 A1 WO 2006013706A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
gas
fine particles
carbon nanostructure
carbon
Prior art date
Application number
PCT/JP2005/012909
Other languages
English (en)
French (fr)
Inventor
Yoshikazu Nakayama
Takeshi Nagasaka
Toru Sakai
Toshiki Goto
Hiroyuki Tsuchiya
Keisuke Shiono
Nobuharu Okazaki
Original Assignee
Japan Science And Technology Agency
Public University Corporation, Osaka Prefecture University
Taiyo Nippon Sanso Corporation
Otsuka Chemical Co., Ltd.
Nissin Electric Co., Ltd.
Daiken Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Agency, Public University Corporation, Osaka Prefecture University, Taiyo Nippon Sanso Corporation, Otsuka Chemical Co., Ltd., Nissin Electric Co., Ltd., Daiken Chemical Co., Ltd. filed Critical Japan Science And Technology Agency
Priority to US11/632,466 priority Critical patent/US20080063589A1/en
Priority to EP05765739A priority patent/EP1790613A4/en
Priority to CNA2005800238269A priority patent/CN101018737A/zh
Priority to JP2006531353A priority patent/JPWO2006013706A1/ja
Priority to KR1020077002354A priority patent/KR100887588B1/ko
Publication of WO2006013706A1 publication Critical patent/WO2006013706A1/ja

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B3/0004Apparatus specially adapted for the manufacture or treatment of nanostructural devices or systems or methods for manufacturing the same
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/18Nanoonions; Nanoscrolls; Nanohorns; Nanocones; Nanowalls
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
    • D01F9/133Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/36Diameter

Definitions

  • the present invention relates to a manufacturing method, a manufacturing apparatus, and a carbon nanostructure for manufacturing a carbon nanostructure such as a carbon nanotube or a carbon nanocoil.
  • a carbon nanostructure is a nano-sized substance composed of carbon nuclear power.
  • carbon nanotubes carbon nanotubes with beads formed by forming beads on carbon nanotubes, and brush-like carbon nanostructures with many carbon nanotubes Tubes, carbon nanotwists with twisted carbon nanotubes, coiled carbon nanocoils, and spherical fullerenes.
  • carbon nanocoils were obtained in 1994 by Amerinckx, XB Zhang, D. Bernaerts, XF Zhang, V. Ivanov and JB Nagy, SCIENCE, 265 (1994) 635 (Non-patent Document 1)). It was synthesized for the first time using chemical vapor deposition (hereinafter referred to as CVD).
  • CVD chemical vapor deposition
  • the carbon micro-coil previously manufactured has an amorphous structure and is a solid structure in which carbon is packed up to the center of the wire, whereas the carbon nanocoil has a graphite crystal structure and a tube structure. was also elucidated.
  • Patent Document 3 a method for mass production of carbon nanocoils by dispersing a catalyst as a special 2003-26410.
  • hydrocarbon gas is circulated in a heated reactor, the catalyst is dispersed in the form of particles in the hydrocarbon gas, and the hydrocarbon particles are decomposed in the vicinity of the catalyst while the catalyst particles are dispersed.
  • This is a method of growing carbon nanocoils on the surface.
  • continuous production of carbon nanocoils is enabled by growing high-density nanocoils with a dispersed catalyst at high density and repeating the growth and recovery of carbon nanocoils.
  • Patent Document 1 and Patent Document 2 both produce a carbon nanocoil by forming a catalyst on a substrate in a thin film, and Patent Document 3 sprays catalyst fine particles into a reaction furnace to produce carbon nanocoils. Coils are produced.
  • the zigzag CNF has a fiber width of about 500 nm or more, and the zigzag CNF has a periodically curved periodic structure. In this periodic structure, the zigzag CNF is continuously curved by 180 degrees or more.
  • Patent Document 1 JP 2001-192204
  • Patent Document 2 JP 2001-310130
  • Patent Document 3 JP 2003-26410
  • Non-Patent Document 2 W. Li, S. Xie, W. Liu, R. Zhao, Y. Zhang, W. Zhou and G. Wang, J. Material Sci., 34 (1999) 2745
  • Non-Patent Document 3 Shaoming Yang, Xiuqin and hen and Seiji Motojima, Diamond and Relate d Materials 13 (2004) 85-92
  • the catalyst raw material is procured from a catalyst manufacturer or purified in advance in another catalyst process.
  • the particle size distribution of the catalyst fine particles varies at the stage of obtaining it from a catalyst manufacturer, etc., or at the stage of purification after another catalyst process.
  • aggregation of catalyst fine particles is unavoidable due to the influence of the surface condition of the catalyst and the humidity in the atmosphere to be handled, and does not contribute to the growth of carbon nanocoils.
  • secondary catalyst particles with a diameter of lOOOnm or larger are mixed in the catalyst, or the catalyst fine particles are excessively aggregated to form a dumped state.
  • the present invention is a method for producing a carbon nanostructure that can be mass-produced stably and at low cost without being affected by variations in the particle diameter of catalyst fine particles inherent in the catalyst raw material.
  • the first object is to provide a manufacturing apparatus used in the manufacturing method.
  • the second object of the present invention is to provide a carbon nanostructure having a novel form.
  • the present invention has been made to solve the above problems, and a first embodiment of the present invention is a crimped carbon nanotube having a wire diameter of lnm to 300nm, and the crimped shape is It is a carbon nanostructure that is a three-dimensional shape with irregular bending points.
  • a second embodiment of the present invention is the diffraction profile obtained when the Cu intrinsic X-ray having a wavelength of 1.54A is irradiated in the first embodiment, wherein the diffraction profile is a graphite crystal.
  • (002) has a maximum peak corresponding to the reflection, and the peak position of this maximum peak exists between 23 degrees and 25 degrees with a force of ⁇ , and the half width of the maximum peak is 2 degrees with 6 degrees to 8 degrees
  • a third aspect of the present invention is a carbon nanostructure having two or more bending points when the crimped carbon nanotube bends approximately 180 degrees in the first or second aspect. is there.
  • the particle diameter of the catalyst fine particles is selected in a production apparatus for producing a carbon nanostructure by contacting a raw material gas and catalyst fine particles in a reaction furnace while flowing.
  • An apparatus for producing a carbon nanostructure comprising at least a selection means for supplying the catalyst fine particles selected by the selection means to the reaction furnace.
  • a fifth aspect of the present invention is the carbon nanostructure manufacturing apparatus according to the fourth aspect, wherein the selection means includes a floating means for floating the catalyst fine particles.
  • a sixth aspect of the present invention is that in the fifth aspect, after the catalyst fine particles are suspended by the floating means, the floating action of the floating means is stopped, and the catalyst fine particles are freely dropped or This is a carbon nanostructure manufacturing apparatus that selects the particle size by forcibly dropping.
  • a seventh aspect of the present invention is the carbon nanostructure according to the fourth aspect, wherein the supply means is a conveying means force for quantitatively conveying the selected catalyst fine particles to the reaction furnace. It is a manufacturing device.
  • An eighth aspect of the present invention in any one of the fourth to seventh aspects, comprises carrier gas transport means for supplying the source gas and the catalyst fine particles to the reaction furnace with a carrier gas,
  • the carrier gas conveying means is a carbon nanostructure manufacturing apparatus that introduces the carrier gas into the reaction furnace so that pressure fluctuations in the reaction furnace do not occur.
  • a ninth aspect of the present invention is the fifth or sixth aspect, wherein the floating means comprises injection means for instantaneously injecting high-pressure gas into the catalyst housing portion, and the high-pressure gas is injected by the injection means.
  • the carbon nanostructure manufacturing apparatus floats catalyst fine particles in the catalyst housing portion by instantaneously injecting gas into the catalyst housing portion.
  • the floating means comprises a pulsed gas supply means for supplying a pulsed gas to the catalyst housing portion, and the pulse An apparatus for producing a carbon nanostructure that floats catalyst fine particles in the catalyst housing part by spraying the pulsed gas onto the catalyst housing part by a gas-like gas supply means.
  • the gas is sprayed intermittently, the floating catalyst fine particles are allowed to stand in a state where the spraying is stopped, and the catalyst fine particles.
  • This is a carbon nanostructure manufacturing apparatus in which the particle size of each is selected.
  • the catalyst fine particles floating in the catalyst housing portion are introduced into the reaction furnace by a carrier gas. It is a manufacturing apparatus of a carbon nanostructure containing a catalyst conveyance means.
  • the carbon nanostructure manufacturing apparatus includes a switching means for releasing the gas in the catalyst housing portion to a region different from the reactor.
  • a carrier gas is vented to the reaction furnace to reduce pressure fluctuation in the reaction furnace.
  • the apparatus for producing a carbon nanostructure provided with a gas flow path for the carrier gas.
  • a fifteenth aspect of the present invention in the manufacturing method of manufacturing a carbon nanostructure by contacting a raw material gas and catalyst fine particles in a reaction furnace while flowing, the floating step of floating the catalyst fine particles in a gas phase And a particle size selection step of selecting a particle size, and a method for producing a carbon nanostructure that supplies catalyst fine particles selected in the particle size selection step to the reaction furnace.
  • a sixteenth aspect of the present invention is the carbon nanostructure manufacturing method according to the fifteenth aspect, wherein, in the selection step, the particle diameter is selected by suspending the catalyst fine particles.
  • the floating action of the catalyst fine particles is stopped, and the catalyst fine particles are freely dropped or forcibly dropped. It is a manufacturing method of the carbon nanostructure which selects a diameter.
  • An eighteenth aspect of the present invention is the method for producing a carbon nanostructure according to the fifteenth aspect, wherein the selected catalyst fine particles are quantitatively conveyed to the reaction furnace.
  • the source gas and the catalyst fine particles are supplied to the reaction furnace by a carrier gas, and pressure fluctuations in the reaction furnace are performed.
  • This is a carbon nanostructure manufacturing method in which the carrier gas is introduced into the reaction furnace so as not to occur.
  • the carbon that floats catalyst fine particles in the catalyst housing portion by instantaneously injecting the high-pressure gas into the catalyst housing portion is a manufacturing method of a nanostructure.
  • a twenty-first aspect of the present invention is the carbon nanostructure according to the sixteenth or seventeenth aspect, wherein the catalyst fine particles in the catalyst housing portion are suspended by spraying the pulsed gas onto the catalyst housing portion. It is a manufacturing method of a thing.
  • the gas is intermittently sprayed, and the floating catalyst fine particles are allowed to stand in a state where the spraying is stopped, thereby selecting the particle diameter. This is a method for producing a carbon nanostructure.
  • the catalyst fine particles floating in the catalyst housing portion are introduced into the reaction furnace by a carrier gas. It is a manufacturing method of a carbon nanostructure.
  • the gas in the catalyst housing portion is caused to react with the reaction at least during the spraying. This is a method for producing a carbon nanostructure that is discharged to a different area from the furnace.
  • a carrier gas is supplied to the reaction gas through a gas flow path that reduces pressure fluctuations in the reactor. It is a manufacturing method of the carbon nanostructure which ventilates to a furnace.
  • the present inventors conducted a CH research on the catalyst powder suspended in a dispersed state in the gas phase through experimental research for obtaining carbon nanostructures efficiently in a small vertical reactor.
  • hydrocarbon gas such as
  • the diffraction profile in the diffraction profile obtained when a Cu intrinsic X-ray having a wavelength of 1.54 A is irradiated, the diffraction profile is (002) reflection of the graphite crystal. It is possible to provide a carbon nanomaterial having a maximum peak corresponding to and having a peak position of 2 ⁇ in the range of 23 to 25 degrees. In the diffraction profile, the peak position of the maximum peak is in the range of 23 degrees to 25 degrees at 2 ⁇ , so the following relational expression in Bragg's law
  • the interplanar spacing of the crimped carbon nanotube crystal is in the range of approximately 3.56 mm to 3.86 mm.
  • d is the interplanar spacing in the crimped carbon nanotube crystal
  • is the Bragg angle
  • the half-width of the maximum peak is 6 to 8 degrees at 2 ⁇ , the Sierra equation showing the relationship between the half-width of the peak ⁇ and the crystallite size D in the diffraction profile
  • the crystallite size of the crimped carbon nanotube crystal is in the range of about 10.6 mm to 14.1 mm when 2 ⁇ is 23 degrees.
  • the crystallite size of the crimped carbon nanotube crystal is in the range of about 10.6 A to 14.2 A. Therefore, according to the second embodiment of the present invention, the interplanar spacing of the crimped carbon nanotube crystal is in the range of about 3.56A to 3.86A, and the crystallite size of the crimped single-bonn nanotube crystal is about 10 Carbon nanostructures controlled in the range of 6A to 14.2A can be provided.
  • the crimped carbon nanotube is bent by approximately 180 degrees.
  • a new kind of carbon nanostructure having two or more bending points can be provided.
  • carbon nanofibers have been discovered that bend approximately 180 degrees at one bending point, but the crimped carbon nanotube according to the present invention has two or more bending points, and each bending point is stepwise.
  • This is a new type of carbon nanostructure in which the crimped carbon nanotube is bent by approximately 180 degrees by bending.
  • the particle diameter of the catalyst fine particles is appropriately adjusted. You can select and control. Therefore, the particle size of the catalyst fine particles can be controlled within the production apparatus, and the carbon nanostructures that are not affected by the variation in the particle size of the catalyst fine particles present in the catalyst raw material can be mass-produced stably and at low cost. can do.
  • various carbon nanostructures can be produced, and the wire has a wire diameter of In m to 300 nm and has a three-dimensional shape with irregular bending points. A new kind of existing carbon nanostructure can be produced.
  • catalyst fine particles composed only of the catalyst or catalyst fine particles in which the catalyst is supported on Z and a support are used.
  • the catalyst is selected depending on the type of carbon nanostructure to be produced, and is variously selected according to the purpose, such as a metal catalyst, an alloy catalyst, an oxide catalyst, and a carbide catalyst. Catalysts in which these catalysts are supported on a catalyst carrier are also included in the catalyst fine particles of the present invention.
  • a catalyst carrier for example, a porous material exists.
  • the selection means includes a floating means for floating the catalyst fine particles, the light particles contained in the catalyst raw material by the floating means. That is, the particle diameter is small / can be selected by floating the particles and supplied to the reactor as a catalyst for producing the carbon nanostructure. Therefore, according to this embodiment, it is possible to provide a production apparatus that can stably mass-produce carbon nanostructures that are not affected by variations in the particle diameters of the catalyst fine particles.
  • the floating means gas injection and ultrasonic vibration are applied to the catalyst fine particles deposited in the catalyst housing portion. Selected from dynamic, mechanical vibration or stirring means.
  • the catalyst fine particles are forcibly suspended by such various floating actions, the catalyst fine particles in the catalyst housing portion are forcibly blown up, and the particle size of the catalyst fine particles can be selected efficiently.
  • the inside of the catalyst housing can be maintained in an environment of only the catalyst, and there is no problem of contamination such as impurities due to mechanical parts.
  • the floating action of the floating means is stopped to remove the catalyst fine particles.
  • Select particle size by free fall or forced drop In the case of free fall, due to the difference in sedimentation speed due to free fall of catalyst fine particles, light catalyst fine particles can be accurately selected from various particle sizes contained in the catalyst raw material and supplied to the reactor. In addition, it is possible to realize a manufacturing apparatus that can stably mass-produce carbon nanostructures at low cost.
  • forced drop for example, an electromagnetic field can be applied to the charged catalyst fine particles to forcibly drop them, thereby enabling rapid particle diameter control.
  • the supply means has a conveying means force for quantitatively conveying the selected catalyst fine particles to the reaction furnace.
  • the carrier gas conveying means for supplying the raw material gas and the catalyst fine particles to the reaction furnace with a carrier gas. And the carrier gas conveying means introduces the carrier gas into the reaction furnace so that pressure fluctuations in the reaction furnace do not occur, so that catalyst fine particles having a selected particle size are introduced into the reaction furnace together with the source gas. When introduced, pressure fluctuations in the reaction furnace do not occur, and reaction field fluctuations necessary for the growth of carbon nanostructures do not occur. Therefore, according to the present embodiment, a production apparatus that can stably supply dispersed catalyst fine particles having a selected particle size to the reaction furnace and can continuously produce carbon nanostructures at a high yield. Can be realized.
  • the floating means comprises injection means for instantaneously injecting high-pressure gas into the catalyst housing portion, and the injection means The high-pressure gas is instantaneously sprayed onto the catalyst housing portion to float the catalyst fine particles in the catalyst housing portion, so that the high-pressure gas is efficiently and forcibly blown up regardless of the remaining amount of catalyst fine particles in the catalyst housing portion.
  • a manufacturing apparatus suitable for continuous production of nanostructures can be provided.
  • the floating means comprises a pulsed gas supply means for supplying a pulsed gas to the catalyst housing portion, and By spraying the pulsed gas onto the catalyst housing part by the pulsed gas supply means, the catalyst fine particles in the catalyst housing part are suspended, so that the supply of the pulse interval of the pulsed gas, etc.
  • Floating control for obtaining a floating state of carbon can be easily performed, contributing to a reduction in the manufacturing cost of carbon nanostructures.
  • the gas is intermittently sprayed, and the suspended catalyst fine particles are allowed to stand in a state where the spraying is stopped. Since the particle diameter is selected, the catalyst fine particles having different particle diameters can be selected with high accuracy from the difference in the settling speed of the suspended fine particles at the time of standing, and the production capable of realizing the high yield of carbon nanostructure production.
  • An apparatus can be provided.
  • the catalyst fine particles suspended in the catalyst housing portion are transferred to the reaction furnace by a carrier gas. Since the catalyst transporting means introduced into the reactor is included, the catalyst transporting means enables continuous selection of the production process leading to the reaction furnace with respect to the particle diameter selection, and mass production of carbon nanostructures with a high yield can be realized.
  • the eleventh aspect of the present invention when the gas is intermittently injected into the catalyst housing portion, the pressure in the reaction furnace is affected at least during the injection. For this reason, since it includes a switching means for discharging the gas in the catalyst housing part to a region different from the reactor, the gas in the catalyst housing part is separated from the reactor by the switching means when the gas is intermittently sprayed. It is possible to select the particle size in the catalyst container without discharging to different areas and affecting the reaction field of the reactor. The Therefore, according to the present embodiment, it is possible to provide a manufacturing apparatus capable of selecting the particle diameter in the catalyst housing portion without hindering the continuation of the manufacturing process leading to the reactor and realizing the mass production of the carbon nanostructure.
  • a carrier gas is vented to the reaction furnace to reduce the pressure fluctuation in the reaction furnace. Since the gas flow path of the carrier gas to be relaxed is provided, when the gas is intermittently supplied, the pressure fluctuation in the reaction furnace is relaxed by venting the carrier gas through the gas flow path, and the reaction furnace It is possible to select the particle size in the catalyst housing without affecting the reaction field. Therefore, according to this embodiment, it is possible to provide a manufacturing apparatus capable of selecting the particle diameter in the catalyst housing portion without hindering the continuous manufacturing process leading to the reactor and realizing the mass production of the carbon nanostructure. .
  • a production method for producing a carbon nanostructure by bringing a raw material gas and catalyst fine particles into contact with each other in a reaction furnace while flowing! It includes a selection process for selecting the particle size of the catalyst fine particles. Since the selected catalyst fine particles are supplied to the reaction furnace, the selection step can appropriately select and control the particle diameter of the catalyst fine particles so that the catalyst fine particles can be supplied to the reaction furnace. Carbon nanostructures that are not affected by variations in the particle size of the fine particles can be mass-produced stably and at low cost.
  • the particle diameter is selected by suspending the catalyst fine particles in the selection step, it is included in the catalyst raw material by a floating action.
  • Light-weight particles that is, small particles with small particle diameters, are selected and suspended.
  • Carbon nanostructures are supplied to the reactor as a catalyst for producing single-bon nanostructures and are not affected by variations in the particle diameter of the catalyst particles. Products can be mass-produced stably and at low cost.
  • the floating action of the catalyst fine particles is stopped, and the catalyst fine particles are removed. Since the particle size is selected by free-falling or forced-falling, sedimentation depends on the particle size due to floating of the catalyst fine particles and free-falling or forced-falling following suspension of the floating action. Due to the difference in speed, catalyst fine particles having a small particle size out of various particle sizes contained in the catalyst raw material can be accurately selected and supplied to the reactor, and the carbon nanostructure can be stabilized. Moreover, it can be mass-produced at low cost.
  • the selected catalyst fine particles are quantitatively transported and supplied to the reaction furnace, so that the catalyst whose particle diameter is appropriately controlled. Fine particles can be stably supplied to the reactor, and the carbon nanostructure can be mass-produced stably and at low cost.
  • the source gas and the catalyst fine particles are supplied to the reaction furnace by a carrier gas, and the pressure in the reaction furnace is increased. Since the carrier gas is introduced into the reaction furnace so as not to fluctuate, when the catalyst fine particles having the selected particle diameter are introduced into the reaction furnace together with the raw material gas, pressure fluctuations in the reaction furnace are caused. First, do not generate fluctuations in the reaction field necessary for the growth of carbon nanostructures! / Maintain the situation and stably supply catalyst fine particles with a selected particle size to the reactor. Carbon nanostructures can be continuously produced at a high yield.
  • the high-pressure gas is instantaneously sprayed onto the catalyst housing part to float the catalyst particles in the catalyst housing part. Therefore, it is efficiently and forcibly blown up regardless of the remaining amount of catalyst fine particles in the catalyst housing part, and contributes to efficient continuous production of carbon nanostructures.
  • the fine catalyst particles in the catalyst housing part are suspended by spraying the pulsed gas onto the catalyst housing part. Therefore, the supply control such as the pulse interval of the pulsed gas can easily perform the floating control for obtaining various floating states according to the various catalysts, and contributes to the reduction of the manufacturing cost of the carbon nanostructure.
  • the gas is intermittently sprayed, and floating catalyst fine particles are allowed to stand in a state where the spraying is stopped, so Because of the selection, catalyst fine particles with different particle diameters can be selected with high accuracy due to the difference in sedimentation speed of the suspended fine particles at the time of standing, and high yield of carbon nanostructure production is realized. can do.
  • the catalyst fine particles floating in the catalyst housing portion are transferred to the reaction furnace by a carrier gas. Therefore, the production process from the selection of the particle diameter to the reaction furnace can be continuously performed by the catalyst conveying means, and the mass production of the carbon nanostructure with high yield can be realized.
  • the gas in the catalyst housing portion when the gas is intermittently sprayed onto the catalyst housing portion, the gas in the catalyst housing portion is reacted with the reaction at least during the spraying. Since the gas is discharged to a different area from the furnace, the gas in the catalyst holding portion is discharged to a different area from the reaction furnace when the gas is intermittently injected, and the catalyst is stored without affecting the reaction field of the reaction furnace.
  • the particle size in the catalyst can be selected and the particle size in the catalyst housing can be selected without hindering the continuous process of the production process leading to the reactor, thereby contributing to the smooth mass production of carbon nanostructures.
  • the carrier gas when the gas is intermittently supplied, the carrier gas is passed through the gas flow path that reduces pressure fluctuations in the reaction furnace. Since the gas is supplied to the furnace, when the gas is intermittently supplied, the pressure fluctuation in the reaction furnace is reduced by the air flow of the carrier gas through the gas flow path, and the reaction field of the reaction furnace is not affected.
  • the particle diameter can be selected in the catalyst container, and the particle diameter in the catalyst container can be selected without hindering the continuation of the manufacturing process leading to the reactor, thereby contributing to the smooth mass production of carbon nanostructures.
  • FIG. 1 is a schematic configuration diagram showing an overall configuration of a carbon nanostructure manufacturing apparatus according to the present invention.
  • FIG. 2 is an enlarged schematic explanatory diagram of a portion A in FIG.
  • FIG. 3 is a schematic configuration diagram of a control system including an automatic valve control unit 50 used in the manufacturing apparatus according to the present invention.
  • FIG. 4 is a diagram showing a measurement result of a catalyst powder conveyance amount and one pulse irradiation time, which is one of verification experiments of catalyst floating treatment conditions according to the present invention.
  • FIG. 5 One pulse irradiation of catalyst powder transport amount, which is another verification experiment of the catalyst floating treatment conditions. It is a figure which shows the measurement result of a cycle time interval.
  • FIG. 6 is a diagram showing a measurement result of the amount of catalyst powder transported at rest, which is yet another verification experiment of the catalyst suspension treatment conditions.
  • FIG. 7 is a frequency-one particle size diagram showing a particle size distribution state of catalyst fine particles when the catalyst suspension treatment according to the present invention is performed.
  • FIG. 8 is a frequency-one particle size diagram showing the particle size distribution state of the raw material catalyst used in the catalyst suspension treatment according to the present invention.
  • FIG. 9 is an SEM photograph showing a production example of a carbon nanostructure according to the present invention.
  • FIG. 10 is a frequency diagram showing the diameter distribution of carbon nanostructures measured by the SEM photograph.
  • FIG. 11 is a scanning electron microscope (SEM) image of carbon nanostructures that exist in a single crimped form.
  • FIG. 12 is a transmission electron microscope (TEM) image of a carbon nanostructure that exists solely in a crimped form.
  • TEM transmission electron microscope
  • FIG. 13 is an X-ray diffraction profile of a crimped carbon nanotube (crimped CNT) according to the present invention.
  • FIG. 1 shows the overall configuration of a carbon nanostructure manufacturing apparatus according to the present invention.
  • the manufacturing apparatus of this embodiment is based on the CVD manufacturing method by catalyst vapor transport.
  • the reaction furnace 1 is a vertical quartz tube, and a heater 12 for thermally decomposing the raw material gas is provided on the outer periphery along the vertical longitudinal direction.
  • a raw material gas and a catalyst are introduced into the reactor 1 together with a carrier gas through a raw material and a catalyst supply pipe 3.
  • the reactor introduction tip 4 of the raw material and catalyst supply pipeline 3 is shown in FIG.
  • the raw material and catalyst supply pipe 3 has a double pipe structure composed of a quartz catalyst supply pipe 9 and a SUS raw material gas supply pipe 10 inserted into the catalyst supply pipe 9!
  • the catalyst in a dispersed state with the raw material gas introduced into the reaction furnace 1 from the reaction furnace introduction tip 4 is contacted in the gas phase in the heating atmosphere of the heater 12 and is thermally decomposed.
  • the part is converted into carbon nanostructures, and carbon nanostructures grow.
  • the raw material gas supply pipe 10 is composed of a raw material gas cylinder 31, a flow rate regulator 32 provided on the gas discharge side of the raw material gas cylinder 31, an on-off valve 33, a gas flow rate controller 34 also serving as a mass flow controller 34 and an on-off valve 35. Is composed.
  • hydrocarbon not only hydrocarbon but also organic gas such as sulfur-containing organic gas and phosphorus-containing organic gas can be used, and an organic gas suitable for producing a carbon nanostructure having a specific structure is selected. Also, hydrocarbons are preferred because they do not produce extra substances among organic gases. Hydrocarbons include alkane compounds such as methane and ethane, ethylene and butadiene.
  • Alkene compounds such as benzene, alkyne compounds such as acetylene, aryl hydrocarbon compounds such as benzene, toluene and styrene, aromatic hydrocarbons having condensed rings such as indene, naphthalene and phenanthrene, cyclobaraphs such as cyclopropane and cyclohexane Ini compounds, cycloolefin compounds such as cyclopentene, and alicyclic hydrocarbon compounds having a condensed ring such as steroids can be used. It is also possible to use a mixed hydrocarbon gas in which two or more of the above hydrocarbon compounds are mixed.
  • low molecular weights such as acetylene, arylene, ethylene, benzene, toluene and the like are preferable among the hydrocarbons.
  • high purity acetylene may be used, but general dissolved acetylene or a product obtained by purifying general dissolved acetylene may be used.
  • acetone, DMF (dimethylformamide, HC ON (CH 3) 2) or the like, which is a solvent for dissolved acetylene, may be contained as appropriate, or may not be present at all.
  • 16, 20, 27, and 36 are helium gas forces.
  • Inert Ar, Ne, Kr, CO, N, Xe, etc. are not limited to helium gas.
  • the carrier gas is simple.
  • a combination of two or more of the above gases and a very small amount of the component relative to the main component of the carrier gas may naturally be included even if the composition is not one.
  • a gas introduction path 5 for flowing the carrier gas into the furnace is connected.
  • catalyst and raw material gas are introduced from the upper part, so that a relatively high temperature distribution is generated in the lower part of the furnace, and an upward gas flow is generated by convection. Since this gas upward flow prevents smooth flow of the catalyst and raw material gas, by flowing 60 SCCM of the carrier gas helium from the gas introduction path 5, the gas upward flow due to convection is suppressed and the growth reaction of the carbon nanostructure is controlled. It can be promoted efficiently.
  • This upward flow suppression gas supply means is composed of a helium gas cylinder 36, a flow rate regulator 37 provided on the gas discharge side of the helium gas cylinder 36, an on-off valve 38, a gas flow rate controller 39 serving as a mass flow controller, and a gas introduction path 5. ing.
  • a discharge path 6 is provided on the lower end side of the reaction furnace 1.
  • the discharge side of the discharge channel 6 is introduced into the collection tank 7.
  • Acetone 41 is contained in the recovery tank 7, and unreacted raw material gas or carrier gas that has not contributed to the growth reaction of the carbon nanostructure flows through the acetone 41 in the recovery tank 7, and then the recovery tank 7 It is exhausted through 7 discharge pipes 8.
  • Produced in reactor 1 The carbon nanostructures discharged are discharged through the discharge path 6 and bubbled and recovered in the recovery tank 7 in a form that does not dissolve in acetone 41.
  • the carbon nanostructure recovered in the recovery tank 7 is taken out by removing the caseon.
  • the catalyst storage tank 2 is a catalyst housing portion that performs a particle size selection process of the catalyst fine particles.
  • Catalyst storage tank 2 is loaded with about 50 g of catalyst raw material powder 42.
  • a commercially available general screw feeder for supplying raw material powder regularly may be attached to the storage tank.
  • a high pressure gas gas introduction pipe 13 for introducing a catalyst floating action is introduced and arranged.
  • Helium gas cylinder 16, flow rate regulator 17 provided on the gas discharge side of helium gas cylinder 16, on-off valve 18, gas reservoir 19 for high-pressure pulse gas generation, electromagnetic on-off valve VI and high-pressure pulse gas introduction pipe 13 constitute catalyst floating action means Being! Speak.
  • helium gas in the gas reservoir 19 is generated in a pulsed manner by high pressure helium gas of 0.3 MPa by intermittent opening and closing of the electromagnetic on-off valve VI and injected from the tip of the high pressure pulse gas introduction pipe 13. Injecting means is included.
  • the electromagnetic on-off valve VI is controlled to open and close at an open / close interval of 1 time / day to 10000 times Z through the sequencer 51 under the control of the automatic valve control unit 50 shown in Fig. 3. Minute to 1000 times Z is economical from the viewpoint of carbon nanocoil productivity.
  • the automatic valve control unit 50 includes a microcomputer control unit that transmits a valve opening / closing control signal to the sequencer 51 based on a valve control program stored in advance.
  • the sequencer 51 receives the opening / closing or switching signal of the microcomputer control section, and controls the opening / closing or switching control signal of the electromagnetic opening / closing valve VI and the electromagnetic three-way valves V2 and V3 described later. Send to.
  • the high-pressure pulse gas is injected from the tip of the high-pressure pulse gas introduction pipe 13 and is sprayed onto the catalyst stored and stored in the catalyst storage tank 2, thereby floating the catalyst fine particles.
  • the catalyst storage tank 2 is provided with a catalyst transporting means for transporting the suspended catalyst fine particles to the catalyst supply pipe 9 side by means of a helium carrier gas and supplying it to the reaction furnace 1.
  • the catalyst transport means is a helium gas cylinder 20, a flow regulator 21 provided on the gas discharge side of the helium gas cylinder 20, an on-off valve 22, a gas flow controller 23 such as a mass flow controller, and a gas for introducing a carrier gas into the catalyst storage tank 2.
  • Introductory route 14 consists of four.
  • helium gas is used as the high-pressure gas for generating a floating action, like the carrier gas used for transporting the catalyst raw material gas.
  • the carrier gas inert Ar, Ne, Kr, CO, N, Xe, etc. are not limited to helium gas.
  • two or more types of carrier gas may be used even if they are not single composition.
  • the carrier gas is a gas that carries the raw material gas and the catalyst, and the raw material gas is consumed by the reaction, whereas the carrier gas has no reaction and is not consumed at all.
  • a very small amount of the component relative to the main component of the carrier gas is naturally included, and there is a case where the amount of the small amount of component is not limited.
  • the larger the particle diameter the faster the sedimentation speed. Therefore, the catalyst fine particles 43 suspended by the high-pressure pulse gas injected from the tip of the high-pressure nors gas introduction pipe 13 are separated by gravity. As a result, the heavy particles with large particle size settle and settle in the catalyst storage tank 2 again faster than the particles with small particle size. Therefore By utilizing this difference in sedimentation speed, the particle diameter of the catalyst fine particles can be selected easily and accurately. In other words, only the fine particles with small particle size used for the generation of carbon nanostructures are selected from the floating state, and the selected catalyst fine particles are selected as catalyst supply pipes.
  • the catalyst used varies depending on the type of carbon nanostructure. For example, iron, cobalt, nickel, iron alloy, conoret alloy, nickel alloy, iron oxide, conolic acid oxide, nickel Various catalysts such as oxides or combinations thereof can be used.
  • a ternary catalyst with three elements of indium In, aluminum Al, and chromium Cr in the iron-tin composition such as Fe—In—Sn 0, Fe A1 S A mixed catalyst such as n 0 and Fe 2 Cr 2 Sn 2 O can be used.
  • Catalyst stable supply processing means are provided.
  • This catalyst stable supply processing means is provided on the catalyst supply pipe 9 side, and the floating three-way valve V2 that is switched and controlled by the automatic valve control unit 50 in FIG. 3 and the floating catalyst fine particles in the reactor 1 by the second carrier gas. It consists of second catalyst transport means provided on the catalyst supply pipe 9 side for transport and supply.
  • This second catalyst transfer means is switched and controlled by a helium gas cylinder 27, a flow rate regulator 28 provided on the gas discharge side of the helium gas cylinder 27, an on-off valve 29, a gas flow rate controller 30 also having a mass flow controller force, and an automatic valve control unit 50. It consists of an electromagnetic three-way valve V3.
  • the electromagnetic three-way valve V2 is switched and controlled in two directions by the control of the automatic valve control unit 50, through the sequencer 51, in a state where the catalyst supply to the reactor 1 is cut off and in a state where it can be supplied.
  • the electromagnetic three-way valve V2 is in the catalyst supply cutoff state, as shown by the arrow a in FIG.
  • the gas in the catalyst storage tank 2 is not led to the catalyst supply pipe 9 side but is discharged to the discharge path side through the filter 26.
  • the electromagnetic three-way valve V3 enters the carrier gas supply state in which the carrier gas in the helium gas cylinder 27 joins the catalyst supply pipe 9 and is supplied to the reactor 1 through the gas supply path 11 communicating with the reactor 1, and the electromagnetic three-way valve V2 Even if the supply of the carrier gas from the helium gas cylinder 20 is cut off when the catalyst supply is cut off, the gas flow path to the reactor 1 is maintained at the same pressure. [0076] On the other hand, after the suspension of the catalyst by the high-pressure pulse gas injection and the subsequent standing, the electromagnetic three-way valve V2 is in a state where the catalyst can be supplied as shown by the arrow b in FIG.
  • the floating catalyst fine particles in the catalyst storage tank 2 are guided to the catalyst supply pipe 9 and supplied to the reactor 1.
  • the electromagnetic three-way valve V3 is in a carrier gas discharge state in which the gas is switched to a gas flow path for discharging the carrier gas from the helium gas cylinder 27 in order to carry out the catalyst transfer using only the carrier gas of the helium gas cylinder 20.
  • the catalyst floating is performed under pulse gas generation conditions in which the electromagnetic on-off valve VI is intermittently opened and closed 600 times Z minutes to generate a high pressure pulse gas of 0.3 MPa.
  • This high-pressure pulse gas was injected from the tip of the high-pressure pulse gas introduction pipe 13, and the irradiation time for irradiating the catalyst in the catalyst storage tank 2 was set to 1, 2, and 3 seconds.
  • the irradiation with high-pressure pulse gas is then stopped and left for 3 seconds.
  • the amount of floating catalyst conveyed to the reactor 1 was measured when the flow rate of the carrier gas supplied with 20 helium gas cylinders was 60 and 120 SCCM.
  • Figure 4 shows the measurement results.
  • the catalyst is Fe—I n—Sn—O. It was used.
  • the pulse irradiation time is set to 3 seconds. Under the conditions of standing for 3 seconds after irradiation with high-pressure pulse gas, after standing for 3 seconds, the carrier is transported for a certain period of time, followed by 3 seconds of pulse irradiation. In other words, the transfer time interval, that is, the pulse irradiation cycle time, was changed to 0.5, 1, and 3 minutes (min). The other conditions were the same as in Experimental Example 1, and the amount of floating catalyst transported to reactor 1 was measured when the helium carrier gas flow rate was 60 and 120 SCCM. Figure 5 shows the measurement results.
  • a safety valve 25 is installed in the lower part of the catalyst storage tank 2 through a gas discharge pipe 15 and a filter 24 in consideration of the use of a high-pressure gas gas.
  • the thermal decomposition method was used to decompose the raw material gas.
  • the laser beam decomposition method, the electron beam decomposition method, the ion beam decomposition method, the plasma decomposition method, and other decomposition methods are used. it can. In any case, carbon nanostructures are formed on the catalyst surface from these decomposition products.
  • the injection means for forcibly blowing up the catalyst fine particles by the high-pressure gas gas is introduced into the catalyst storage tank 2, and the inside of the catalyst storage tank 2 can be maintained in the environment of only the catalyst, Preferable without contamination problems such as impurities
  • an injecting device for blowing up the catalyst or a forced floating mechanism by stirring action may be provided at the bottom of the catalyst storage tank 2.
  • a commercially available general powder supply device such as a screw feeder may be added so that the amount of powder in the catalyst storage tank is constant. Further, a particle size measuring device for measuring the catalyst particle size such as laser light may be added.
  • the inside of the reactor 1 was heated at about 700 ° C, and the concentration was 8.4 (vol%) (DC H gas was used as the source gas, and He gas was used as the carrier gas. Gas (DC H gas was used as the source gas, and He gas was used as the carrier gas. Gas (DC H gas was used as the source gas, and He gas was used as the carrier gas.
  • Catalyst suspension conditions were such that the pulse irradiation time was 3 seconds, the standing time after high-pressure pulse gas irradiation was 3 seconds, and the pulse irradiation cycle time was 3 minutes. Due to this catalyst floating condition, the amount of catalyst input to the reactor 1 becomes 1.2 ⁇ 10 _1 (mgZmin). 11SCCM CH gas is raw material gas
  • Reactor 1 is supplied from cylinder 31 and 60 SCCM carrier gas is supplied to reactor 1 from gas cylinders 20 and 27.
  • the total gas flow supplied to reactor 1 is 131 SCCM when the carrier gas 60 SCCM for suppressing the upward flow of 36 helium gas cylinders is added.
  • the catalyst used was Fe—In—Sn—O.
  • FIG. 7 shows the particle size distribution of the selected catalyst fine particles supplied to the reactor 1 in the second production example.
  • Fig. 8 shows the particle size distribution of the raw material catalyst stored in catalyst storage tank 2. It can be seen that in the raw material catalyst in Fig. 8, many particles near lOOOnm are not suitable for carbon nanostructure growth. On the other hand, in the manufacturing method according to the present invention and the above-described manufacturing apparatus using the same, as shown in FIG. 7, particles of lOOOnm or more are appropriately removed, and particles of about 300 nm or less suitable for carbon nanostructure growth, In particular, there are many particles of less than about lOOnm!
  • the diameter of the crimped CNT is controlled to 300 nm or less.
  • the diameter of the crimped CNT is 300 ⁇ m or less.
  • carbon nanocoils and carbon nanotubes were only grown on a part of the carbon fiber morphology group, which has greatly different wire diameters.
  • the diameter is 300 ⁇ m or less.
  • a new kind of carbon nanostructure was prepared, in which a large number of crimped CNTs were mixed together in a crimped form intertwined.
  • this crimped form may be mixed with other carbon nanostructures, or may exist in the crimped form alone, and FIG. 11 shows a stray electron of the carbon nanostructure existing in the crimped form alone. It is a microscope (SEM) image.
  • SEM microscope
  • the three-dimensional shape of the crimped CNT has a non-periodic structure that is irregularly bent in an arbitrary direction in a three-dimensional space that does not repeat a regular bending pattern.
  • the above-mentioned crimped CNTs are bent approximately 180 degrees, the crimped CNTs are not continuously bent and two or more bending points are formed.
  • FIG. 12 is a transmission electron microscope (TEM) image of the carbon nanostructure that exists in a crimped form alone. It can be seen that the carbon nanostructure in the form of TEM image force shrinkage also forms a hollow carbon nanotube force. Furthermore, the two arrows shown in the figure indicate that the constricted CNTs have a bending force of approximately 180 degrees, and as described above, there are two or more bending points of the constricted CNT from the TEM image. It is clearly shown that it is formed and bends approximately 180 degrees.
  • TEM transmission electron microscope
  • FIG. 13 is an X-ray diffraction profile file of a crimped carbon nanotube (crimped CNT) according to the present invention. Further, FIG. 13 shows graphite crystals (Graphite), carbon nanotubes manufactured by S (CNT manufactured by S), carbon nanotubes manufactured by SU (CNT) manufactured by SU, and carbon nanocoils (CNC) as comparative examples. Show the line diffraction profile! In X-ray diffraction measurement, 1.54A Cu intrinsic X-ray is used, and each diffraction profile is plotted against this diffraction angle 20.
  • the surface spacing d is estimated to be about 3.69A It is done.
  • the half-value width ⁇ at the maximum peak of crimped CNT is estimated to be about 7.96 degrees.
  • the crystallite size of the crimped CNT crystal is estimated to be about 10.7A.
  • the crimped CNTs according to the present invention have the smallest crystallite size D and the larger interplanar spacing d compared to the above comparative example. This can be considered to reflect the fact that the crimped CNT has a three-dimensional and irregularly bent aperiodic structure, and such a carbon nanostructure has not been discovered so far. It is clear that the crimped CNT according to the present invention is a new kind of carbon nanostructure.
  • the method of the present invention and the device of the present invention can produce single-type carbon nanotubes and single-bonn nanocoils by adjusting the production conditions of the catalyst and the like as well as producing carbon nanostructures in a crimped form.
  • Various carbon nanostructures with uniform wire diameters It is a technology that can be manufactured. Therefore, according to the method and the device of the present invention, conventionally known carbon nanostructures can be efficiently produced.
  • the wire diameters of carbon nanostructures When the wire diameters of carbon nanostructures are made as uniform as possible, the physical, electronic, and mechanical properties of individual carbon nanostructures become the same, and high-quality carbon nanostructures can be obtained. It will be possible to supply to the market in large quantities.
  • the carbon nanostructure include, for example, carbon nanotubes, brush-like carbon nanotubes with many carbon nanotubes, carbon nanotwists with twisted carbon nanotubes, coiled carbon nanocoils, and spherical shell fullerenes. Needless to say, is included.
  • the wavelength is 1.
  • the diffraction profile obtained when 54A Cu intrinsic X-rays are irradiated the diffraction profile has a maximum peak corresponding to the layer spacing of the graphite crystal, and the peak position of this maximum peak is 2 ⁇ .
  • the carbon nanomaterial that exists in the range of 25 degrees to 25 degrees and has a half width in the range of 6 degrees to 8 degrees.
  • the crimped carbon nanotube is bent by approximately 180 degrees, a new type of carbon nanostructure having two or more bending points can be provided.
  • the light-weight particles contained in the catalyst raw material that is, particles having a small particle diameter are suspended and selected by the floating means to select a catalyst for producing a carbon nanostructure.
  • a production apparatus capable of stably mass-producing carbon nanostructures at low cost without being affected by variations in the particle diameter of catalyst fine particles. Can do.
  • the floating action of the floating means is stopped, and the catalyst fine particles are allowed to fall freely or forcibly, so that the difference in sedimentation speed is different. Therefore, it is possible to accurately select light-weight catalyst fine particles from various particle sizes contained in the catalyst raw material and supply them to the reactor, and to mass-produce carbon nanostructures stably and at low cost.
  • the manufacturing apparatus that can be realized can be realized.
  • catalyst fine particles having a particle diameter appropriately controlled can be stably supplied to the reaction furnace by the transport means, and the carbon nanostructure can be stably provided.
  • a manufacturing apparatus that can be mass-produced at low cost can be provided.
  • the carrier gas conveying means introduces the carrier gas into the reaction furnace so as not to cause a pressure fluctuation in the reaction furnace.
  • the catalyst fine particles having a selected particle diameter are stably supplied and supplied to the reaction furnace without causing pressure fluctuations in the reaction furnace. It is possible to realize a manufacturing apparatus that enables continuous production of carbon nanostructures at a high yield.
  • the high-pressure gas is instantaneously sprayed onto the catalyst housing portion by the spraying means, the catalyst fine particles in the catalyst housing portion are suspended, so that it can be efficiently and forcibly forced. It is possible to provide a manufacturing apparatus suitable for continuous production of carbon nanostructures.
  • the pulsed gas is sprayed onto the catalyst housing part by the pulsed gas supply means, the catalyst fine particles in the catalyst housing part are suspended, so that the pulse
  • supply control such as the pulse interval of the gaseous gas
  • the suspended catalyst fine particles are allowed to stand in a state where the spraying is stopped, and the particle diameter is selected.
  • catalyst fine particles having different particle diameters can be selected with high accuracy, and a production apparatus capable of realizing a high yield of carbon nanostructure production can be provided.
  • a carbon nanostructure that can continuously manufacture the production process from the selection of the particle diameter to the reaction furnace by the catalyst transport means and can achieve mass production with high yield.
  • a manufacturing apparatus can be provided.
  • the switching means releases the gas in the catalyst housing portion to a region different from the reaction furnace, thereby causing a reaction field of the reaction furnace.
  • a production apparatus capable of selecting the particle size in the catalyst housing without affecting the continuity of the production process leading to the reactor and realizing mass production of carbon nanostructures. Can be provided.
  • the fourteenth aspect of the present invention when the gas is intermittently supplied, pressure fluctuations in the reaction furnace are reduced by venting the carrier gas through the gas flow path, and the reaction furnace
  • the particle diameter can be selected in the catalyst housing without affecting the reaction field of the catalyst and preventing the continuation of the manufacturing process leading to the reactor, and mass production of carbon nanostructures can be realized.
  • a manufacturing apparatus can be provided.
  • the selection The particle size of the catalyst fine particles is appropriately selected and controlled according to the process, and can be supplied to the reactor, and the carbon nanostructure can be stabilized without being affected by the variation in the particle size of the catalyst fine particles present in the catalyst raw material. Can be mass-produced at low cost
  • the particle diameter is selected by suspending the catalyst fine particles in the selection step
  • the carbon nanostructure production catalyst contained in the catalyst raw material by the suspending action is used.
  • Appropriate catalyst fine particles are selected and supplied to the reactor, and carbon nanostructures that are not affected by variations in the particle size of the catalyst fine particles can be stably mass-produced at low cost.
  • the catalyst fine particles are suspended. Then, the floating action of the catalyst fine particles is stopped, and the catalyst fine particles are freely dropped to select the particle size. Therefore, the difference in the sedimentation speed due to the free fall causes various particle sizes contained in the catalyst raw material.
  • a catalyst fine particle having a small particle diameter, for example, about lOOOnm or less can be accurately selected and stably supplied to the reactor, and the carbon nanostructure can be mass-produced stably and at low cost.
  • the catalyst fine particles are quantitatively transported and supplied to the reaction furnace, the catalyst fine particles whose particle diameter is appropriately controlled are stabilized in the reaction furnace.
  • the carbon nanostructure can be supplied and mass-produced stably at low cost.
  • the nineteenth aspect of the present invention when catalyst fine particles having a particle size selected by a carrier gas are introduced into the reaction furnace together with the raw material gas, a pressure fluctuation is caused in the reaction furnace.
  • a pressure fluctuation is caused in the reaction furnace.
  • the catalyst fine particles in the catalyst housing portion are suspended by instantaneously injecting the high-pressure gas into the catalyst housing portion, the catalyst fine particles in the catalyst housing portion. Regardless of the remaining amount, it is efficiently and forcibly blown to contribute to efficient continuous production of carbon nanostructures.
  • the catalyst fine particles in the catalyst housing unit are suspended by spraying the pulsed gas on the catalyst housing unit, so that the pulse interval of the pulsed gas is supplied.
  • Control makes it possible to easily perform floating control for obtaining various floating states in accordance with various catalysts, and contributes to the reduction of the manufacturing cost of carbon nanostructures.
  • the gas is intermittently sprayed, and the floating catalyst fine particles are allowed to stand in a state where the spraying is stopped, and the particle size is selected. Due to the difference in the sedimentation rate of the fine particles, the catalyst fine particles having different particle diameters can be selected with high accuracy, and a high yield of carbon nanostructure production can be realized.
  • the catalyst fine particles suspended in the catalyst housing portion are introduced into the reactor by a carrier gas.
  • the production process from particle diameter selection to the reactor can be continued by the catalyst transport means, and mass production of carbon nanostructures with high yield can be realized.
  • the reaction field of the reactor is affected.
  • the particle size can be selected in the catalyst container, and the particle size in the catalyst container can be selected without hindering the continuous process of the production process leading to the reactor. Contribute to.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Textile Engineering (AREA)
  • Thermal Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)

Description

明 細 書
触媒粒径制御式カーボンナノ構造物の製造方法、製造装置及びカーボ ンナノ構造物
技術分野
[0001] 本発明はカーボンナノチューブやカーボンナノコイル等のカーボンナノ構造物を製 造する製造方法、製造装置及びカーボンナノ構造物に関する。
背景技術
[0002] カーボンナノ構造物とは炭素原子力 構成されるナノサイズの物質であり、例えば、 カーボンナノチューブ、カーボンナノチューブにビーズが形成されたビーズ付カーボ ンナノチューブ、カーボンナノチューブが多数林立したブラシ状カーボンナノチュー ブ、カーボンナノチューブが捩れを有したカーボンナノツイスト、コイル状のカーボン ナノコイル、球殻状のフラーレンなどである。
[0003] 例えば、カーボンナノコイルは、 1994年にァメリンクス等(Amelinckx, X. B. Zhang, D. Bernaerts, X. F. Zhang, V. Ivanov and J. B. Nagy, SCIENCE, 265 (1994) 635 (非 特許文献 1) )によって化学的気相成長法(Chemical Vapor Deposition,以下 CVD法 と称す)を使用して初めて合成された。以前カゝら製造されていたカーボンマイクロコィ ルがアモルファス構造であり、線の中心までカーボンが詰っている中実構造であるの に対し、カーボンナノコイルがグラフアイト結晶構造でチューブ構造であることも解明 された。
[0004] 彼らの製造方法は Co、 Fe、 Niのような単一金属触媒を微小粉に成形し、この触媒 近傍を 600〜700°Cにカロ熱し、この触媒に接触するようにアセチレンやベンゼンのよ うな有機ガスを流通させ、これらの有機分子を分解させる方法である。しかし、生成さ れたカーボンナノコイルの形状は様々であり、その収率も低くて偶然的に生成された に過ぎないものであった。つまり、工業的に利用できるものではなぐより効率的な製 造方法が求められた。
1999年にリー等(W. Li, S. Xie, W. Liu, R. Zhao, Y. Zhang, W. Zhou and G. Wa ng, J. Material Sci. , 34 (1999) 2745 (非特許文献 2) )が、新たにカーボンナノコイル の生成に成功した。彼らの製造方法は、グラフアイトシートの外周に鉄粒子を被覆し た触媒を中央に置き、この触媒近傍を-クロム線で 700°Cに加熱し、この触媒に接触 するように体積で 10%のアセチレンと 90%の窒素ガスの混合ガスを反応させる方法 である。しかし、この製造方法もコイル収率が小さぐ工業的量産法としては不十分な ものであった。
[0005] CVD法によるカーボンナノコイルの収率を増大させる鍵は適切な触媒の開発にあ る。この観点から、本発明者等の一部は、 Fe'In' Sn系触媒を開発して 90%以上の 収率を得る事に成功し、その成果を特開 2001— 192204 (特許文献 1)として公開し た。この触媒は、 In酸ィ匕物と Sn酸ィ匕物の混合薄膜を形成した ITO (Indium-Tin-Oxid e)基板の上に鉄薄膜を蒸着形成したものである。
[0006] また、本発明者等の一部は、 Fe · In ' Sn系触媒を別の方法で形成して、カーボンナ ノコイルを大量に製造することに成功し、その成果を特開 2001— 310130 (特許文 献 2)として公開した。この触媒は、 In有機化合物と Sn有機化合物を有機溶媒に混 合して有機液を形成し、この有機液を基板に塗布して有機膜を形成し、この有機膜 を焼成して In · Sn酸化物膜を形成し、この In · Sn酸化物膜の上に鉄薄膜を形成して 構成される。 In ' Sn酸ィ匕物膜は前述した ITO膜 (混合薄膜)に相当する。
[0007] さらに、本発明者等の一部は、触媒分散によるカーボンナノコイルの量産方法を特 開 2003— 26410 (特許文献 3)として公開した。この触媒気相搬送による CVD製法 は、加熱した反応炉内に炭化水素ガスを流通させ、この炭化水素ガス中に触媒を粒 子状に分散させ、炭化水素を触媒近傍で分解しながら触媒粒子の表面にカーボン ナノコイルを成長させる製法である。この製法によれば、分散させた触媒を用いて力 一ボンナノコイルを高密度に成長させ、カーボンナノコイルの成長と回収を繰り返す ことによってカーボンナノコイルの連続生産を可能にする。特許文献 1と特許文献 2は いずれも基板上に触媒を薄膜状に成膜してカーボンナノコイルの生産を行うものであ り、特許文献 3は反応炉内に触媒微粒子を噴霧してカーボンナノコイルを生産するも のである。
[0008」 2004年に元島等 (Shaoming Yang, Xiuqin Chen and Seiji Motojima, Diamond and Related Materials 13 (2004) 85-92 (非特許文献 3) )は、アセチレン一水素 硫化水 素 窒素ガス反応系で合金を触媒とする分解反応を行わせ、カーボンナノ構造体の 形態的特徴を調べている。鉄リッチ合金を触媒に用いた場合の生成物は二次元ジグ ザグ型構造のカーボンナノ繊維(CNF)であり、特に Fe— 38Cr— 4Mn— 4Mo合金 共存下では、ジグザグ型 CNFが 20〜50%、残部として捩れカーボンナノコイルが生 成されている。前記非特許文献 3には、前記ジグザグ型 CNFの形態が 6種に分類さ れている。これらの全ての形態において、前記ジグザグ型 CNFは約 500nm以上の 繊維幅を有し、前記ジグザグ型 CNFの形状は、規則的に湾曲する周期構造を有し ている。この周期構造において、ジグザグ型 CNFは、連続的に 180度以上湾曲して 形成されている。
特許文献 1 :特開 2001— 192204
特許文献 2:特開 2001— 310130
特許文献 3:特開 2003 - 26410
特干文献 1 :Amelinckx, X. B. Znang, D. Bernaerts, X. F. Zhang, V. Ivanov and J. B. Nagy, SCIENCE, 265 (1994) 635
非特許文献 2 : W. Li, S. Xie, W. Liu, R. Zhao, Y. Zhang, W. Zhou and G. Wang, J . Material Sci. , 34 (1999) 2745
非特許文献 3: Shaoming Yang, Xiuqinし hen and Seiji Motojima, Diamond and Relate d Materials 13 (2004) 85-92
発明の開示
発明が解決しょうとする課題
ところで、触媒原料の調達は触媒メーカ等から入手したり、あるいは別の触媒工程 において予め精製したりして行われる。しかし、触媒メーカ等からの入手段階で、ある いは別の触媒工程にぉ 、て精製した段階で、触媒微粒子の粒子径の分布にバラッ キがある。また、触媒自体の粒径が揃っている場合でも、触媒の表面状態や扱う雰囲 気中の湿度等の影響により触媒微粒子同士の凝集が避けられず、カーボンナノコィ ルの成長に寄与しない、 lOOOnm以上の径大の触媒二次粒子が触媒中に混在した り、触媒微粒子が過度に凝集して団子状態になる問題がある。カーボンナノコイルな どのカーボンナノ構造物は触媒微粒子の表面に成長していくため、適度な分散状態 で反応炉内に導入された触媒微粒子に上記の径大の粒子が混入すると、極端に線 径の太いカーボンナノ構造物が成長したり、触媒の過度の凝集によるカーボンナノ構 造物の収率低下な 、し歩留まりが安定しな 、事態を招くと 、う問題を生じて 、た。し 力も、触媒微粒子の粒子径が所定の範囲内にある触媒を予め選別して用意するに は処理工程を要し、生産価格のコストアップとなる問題を生じる。
[0010] 従って、本発明は、触媒原料に内在する触媒微粒子の粒子径のバラツキに影響さ れず、カーボンナノ構造物を安定して、かつ低コストに量産化できるカーボンナノ構 造物の製造方法、その製造方法に使用する製造装置を提供することを第 1の目的と する。また、本発明は、新規な形態を備えたカーボンナノ構造物の提供を第 2の目的 とする。
課題を解決するための手段
[0011] 本発明は上記課題を解決するためになされたものであり、本発明の第 1の形態は、 lnm〜300nmの線径を有した縮れ状のカーボンナノチューブであり、前記縮れ形 態は折曲点が不規則に入った立体形状であるカーボンナノ構造物である。
[0012] 本発明の第 2の形態は、前記第 1の形態において、波長が 1. 54Aの Cu固有 X線 を照射したときに得られる回折プロファイルにお 、て、前記回折プロファイルがグラフ アイト結晶の(002)反射に対応する最大ピークを有し、この最大ピークのピーク位置 力^ Θで 23度〜 25度に存在し、前記最大ピークの半価幅が 2 Θで 6度〜 8度である カーボンナノ構造物である。
[0013] 本発明の第 3の形態は、前記第 1又は第 2の形態において、前記縮れ状カーボン ナノチューブが略 180度折れ曲がる場合には、 2点以上の折曲点を有するカーボン ナノ構造物である。
[0014] 本発明の第 4の形態は、原料ガスと触媒微粒子を流動させながら反応炉で接触さ せてカーボンナノ構造物を製造する製造装置にぉ 、て、前記触媒微粒子の粒子径 を選択する選択手段と、この選択手段により選択された触媒微粒子を前記反応炉に 供給する供給手段とを少なくとも備えるカーボンナノ構造物の製造装置である。
[0015] 本発明の第 5の形態は、前記第 4の形態において、前記選択手段は前記触媒微粒 子を浮遊させる浮遊手段を含むカーボンナノ構造物の製造装置である。 [0016] 本発明の第 6の形態は、前記第 5の形態において、前記浮遊手段により前記触媒 微粒子を浮遊させた後、前記浮遊手段の浮遊作用を停止し、前記触媒微粒子を自 由落下又は強制落下させて粒子径を選択するカーボンナノ構造物の製造装置であ る。
[0017] 本発明の第 7の形態は、前記第 4の形態において、前記供給手段は、前記選択さ れた触媒微粒子を前記反応炉に定量的に搬送する搬送手段力 なるカーボンナノ 構造物の製造装置である。
[0018] 本発明の第 8の形態は、前記第 4〜第 7のいずれかの形態において、キャリアガス により前記原料ガス及び前記触媒微粒子を前記反応炉に供給するキャリアガス搬送 手段を備え、前記キャリアガス搬送手段は前記反応炉内における圧力変動が生じな いように前記キャリアガスを前記反応炉に導入するカーボンナノ構造物の製造装置 である。
[0019] 本発明の第 9の形態は、前記第 5又は第 6の形態において、前記浮遊手段が前記 触媒収容部に高圧ガスを瞬間的に噴射する噴射手段からなり、前記噴射手段により 前記高圧ガスを前記触媒収容部に瞬間的に噴き付けることにより前記触媒収容部の 触媒微粒子を浮遊させるカーボンナノ構造物の製造装置である。
[0020] 本発明の第 10の形態は、前記第 5又は第 6の形態において、前記浮遊手段が前 記触媒収容部にパルス状ガスを供給するパルス状ガス供給手段カゝらなり、前記パル ス状ガス供給手段により前記パルス状ガスを前記触媒収容部に噴き付けることにより 前記触媒収容部の触媒微粒子を浮遊させるカーボンナノ構造物の製造装置である。
[0021] 本発明の第 11の形態は、前記第 9又は第 10の形態において、前記ガスの噴き付 けが間欠的に行われ、噴き付け停止状態で浮遊触媒微粒子が静置され、触媒微粒 子の粒子径が選択されるカーボンナノ構造物の製造装置である。
[0022] 本発明の第 12の形態は、前記第 11の形態において、前記粒子径の選択を行った 後、前記触媒収容部内に浮遊している触媒微粒子をキャリアガスにより前記反応炉 に導入する触媒搬送手段を含むカーボンナノ構造物の製造装置である。
[0023] 本発明の第 13の形態は、前記第 11の形態において、前記触媒収容部に前記ガス を間欠的に噴き付けるとき、少なくとも噴き付け時に反応炉内の圧力に影響を及ぼさ ないために前記触媒収容部内のガスを前記反応炉と異なる領域に放出する切換手 段を含むカーボンナノ構造物の製造装置である。
[0024] 本発明の第 14の形態は、前記第 13の形態において、前記ガスを間欠的に供給す るとき、キャリアガスを前記反応炉に通気して、前記反応炉内の圧力変動を緩和する 前記キャリアガスのガス流路を設けたカーボンナノ構造物の製造装置である。
[0025] 本発明の第 15の形態は、原料ガスと触媒微粒子を流動させながら反応炉で接触さ せてカーボンナノ構造物を製造する製造方法において、前記触媒微粒子を気相に 浮遊させる浮遊工程と粒子径を選択する粒子径選択工程を含み、この粒子径選択 工程において選択された触媒微粒子を前記反応炉に供給するカーボンナノ構造物 の製造方法である。
[0026] 本発明の第 16の形態は、前記第 15の形態において、前記選択工程において、前 記触媒微粒子を浮遊させることにより粒子径を選択するカーボンナノ構造物の製造 方法である。
[0027] 本発明の第 17の形態は、前記第 15の形態において、前記触媒微粒子を浮遊させ た後、前記触媒微粒子の浮遊作用を停止し、前記触媒微粒子を自由落下又は強制 落下させて粒子径を選択するカーボンナノ構造物の製造方法である。
[0028] 本発明の第 18の形態は、前記第 15の形態において、前記選択された触媒微粒子 を前記反応炉に定量的に搬送供給するカーボンナノ構造物の製造方法である。
[0029] 本発明の第 19の形態は、前記第 15〜18のいずれかの形態において、キャリアガ スにより前記原料ガス及び前記触媒微粒子を前記反応炉に供給し、前記反応炉内 における圧力変動が生じないように前記キャリアガスを前記反応炉に導入するカーボ ンナノ構造物の製造方法である。
[0030] 本発明の第 20の形態は、前記第 16又は第 17の形態において、前記触媒収容部 に前記高圧ガスを瞬間的に噴き付けることにより前記触媒収容部の触媒微粒子を浮 遊させるカーボンナノ構造物の製造方法である。
[0031] 本発明の第 21の形態は、前記第 16又は第 17の形態において、前記触媒収容部 に前記パルス状ガスを噴き付けることにより前記触媒収容部の触媒微粒子を浮遊さ せるカーボンナノ構造物の製造方法である。 [0032] 本発明の第 22の形態は、前記第 20又は第 21の形態において、前記ガスを間欠的 に噴き付け、噴き付け停止状態で浮遊触媒微粒子を静置して、粒子径の選択を行う カーボンナノ構造物の製造方法である。
[0033] 本発明の第 23の形態は、前記第 22の形態において、前記粒子径の選択を行った 後、前記触媒収容部内に浮遊している触媒微粒子をキャリアガスにより前記反応炉 に導入するカーボンナノ構造物の製造方法である。
[0034] 本発明の第 24の形態は、前記第 22の形態にお 、て、前記触媒収容部に前記ガス を間欠的に噴き付けるとき、少なくとも噴き付け時に前記触媒収容部内のガスを前記 反応炉と異なる領域に放出するカーボンナノ構造物の製造方法である。
[0035] 本発明の第 26の形態は、前記第 24の形態において、前記ガスを間欠的に供給す るとき、前記反応炉内の圧力変動を緩和するガス流路を通じてキャリアガスを前記反 応炉に通気するカーボンナノ構造物の製造方法である。
発明の効果
[0036] 本発明の第 1の形態によれば、 Inn!〜 300nmの線径を有し、折曲点が不規則に 入った立体形状である縮れ形態で存在する新種のカーボンナノ構造物を提供するこ とができる。この縮れ形態は単独で存在する場合もあるし、他種のカーボンナノ物質( 他種とは縮れ形態以外を云う)と混合状態で存在する場合もある。前記縮れ形態で は、縮れ状のカーボンナノチューブ(「縮れ状 CNT」とも呼ぶ)が互いに絡み合った 状態を形成している。
本発明に至る経緯において、まず、本発明者等は、小型縦型反応炉においてカー ボンナノ構造物を効率よく生成を得るための実験研究を通じて、気相中に分散状態 で浮遊した触媒粉に C H等の炭化水素ガスを効率よく接触させ、かつ反応炉内に
2 2
おける圧力変動や炭化水素ガス濃度を安定化させるなどして「反応場における揺ら ぎ」を低減することが重要であることを解明した。触媒分散による製法において、「反 応場における揺らぎ」を低減した結果、直径 1 μ m以下の粒子径に制御した触媒を用 いることにより、直径 Inn!〜 300nmの線径に揃ったカーボンナノ構造物を製造する ことに成功した。このカーボンナノ構造物では、約 lOOnm以下の線径を有する縮れ 状カーボンナノチューブの割合が多ぐこの割合は、更に触媒の粒子径を制御し、そ の粒子径を選択することにより、調整することができる。従って、直径 Inn!〜 lOOnm の線径にカーボンナノ構造物を提供することができる。更に、触媒粉の種類を変更す ることにより、カーボンナノチューブやカーボンナノコイルなどの各種のカーボンナノ 構造物を選択的に製造することにも成功した。この研究の中で、縮れ状カーボンナノ チューブが多数絡み合って存在する新種のカーボンナノ構造物を発見するに至った 。この縮れ形態のカーボンナノ構造物は本発明者等によって初めて発見されたもの である。
[0037] 本発明の第 2の形態によれば、波長が 1. 54 Aの Cu固有 X線を照射したときに得ら れる回折プロファイルにおいて、前記回折プロファイルがグラフアイト結晶の(002)反 射に対応する最大ピークを有し、この最大ピークのピーク位置が 2 Θで 23度〜 25度 の範囲に存在するカーボンナノ物質を提供することができる。前記回折プロファイル において、前記最大ピークのピーク位置が 2 Θで 23度〜 25度の範囲に存在するか ら、ブラッグの法則における次の関係式
2d· sin 0 = λ (1) を用いて、前記縮れ状カーボンナノチューブ結晶の面間隔がおよそ 3. 56Α〜3. 8 6Αの範囲にあることがわかる。ここで、 dは縮れ状カーボンナノチューブ結晶におけ る面間隔、 Θはブラッグ角、 λは Cu固有 X線の波長え = 1. 54Aを示している。更に 、前記最大ピークの半価幅が 2 Θで 6度〜 8度であるから、回折プロファイルにおける ピークの半価幅 β と結晶子サイズ Dの関係を示すシエラーの式
1/2
β =0. 941 / (D-cos θ ) (2)
1/2
により、縮れ状カーボンナノチューブ結晶の結晶子サイズは、 2 Θが 23度である場合 、およそ 10. 6Α〜14. 1 Αの範囲にあることがわかる。また、 2 Θが 25度である場合 、(2)式より縮れ状カーボンナノチューブ結晶の結晶子サイズがおよそ 10. 6A〜14 . 2Aの範囲にあることがわかる。従って、本発明の第 2の形態によれば、前記縮れ状 カーボンナノチューブ結晶の面間隔が約 3. 56A〜3. 86Aの範囲にあり、縮れ状力 一ボンナノチューブ結晶の結晶子サイズがおよそ 10. 6A〜14. 2Aの範囲に制御 されたカーボンナノ構造物を提供することができる。
[0038] 本発明の第 3の形態によれば、前記縮れ状カーボンナノチューブが略 180度折れ 曲がる場合には、 2点以上の折曲点を有する新種のカーボンナノ構造物を提供する ことができる。従来、 1つの折曲点で略 180度折れ曲がるカーボンナノ繊維が発見さ れていたが、本発明に係る縮れ状カーボンナノチューブは、折曲点が 2つ以上あり、 各折曲点で段階的に折れ曲がることにより、前記縮れ状カーボンナノチューブが略 1 80度折れ曲がる新種のカーボンナノ構造物である。
[0039] 本発明の第 4の形態によれば、原料ガスと触媒微粒子を流動させながら反応炉で 接触させてカーボンナノ構造物を製造する製造装置にお!ヽて、前記触媒微粒子の 粒子径を選択する選択手段と、この選択手段により選択された触媒微粒子を前記反 応炉に供給する供給手段とを少なくとも備えるので、前記触媒微粒子の粒子径を適 切に選択して制御できる。したがって、前記触媒微粒子の粒子径制御が製造装置内 で可能となり、触媒原料に内在する触媒微粒子の粒子径のバラツキに影響されること なぐカーボンナノ構造物を安定して、かつ低コストにより量産化することができる。更 に、本形態によれば、種々のカーボンナノ構造物を製造することができると共に、 In m〜300nmの線径を有し、折曲点が不規則に入った立体形状である縮れ形態で存 在する新種のカーボンナノ構造物を製造することができる。
また、前記触媒微粒子として、触媒のみから構成される触媒微粒子又は Z及び担 体に触媒を担持させた触媒微粒子が使用される。触媒は製造されるカーボンナノ構 造物の種類毎に選択され、例えば金属触媒、合金触媒、酸化物触媒、炭化物触媒 など目的に応じて様々に選択される。これらの触媒を触媒担体に担持した触媒も本 発明の触媒微粒子に包含される。触媒担体としては、例えば多孔性物質が存在する
[0040] 本発明の第 5の形態によれば、前記第 4の形態において、前記選択手段は前記触 媒微粒子を浮遊させる浮遊手段を含むので、この浮遊手段により触媒原料に含まれ る軽量粒子、つまり粒子径の小さ!/、粒子を浮遊させて選択してカーボンナノ構造物 製造用触媒として前記反応炉に供給することができる。したがって、本形態によって、 触媒微粒子の粒子径のバラツキに影響されることなぐカーボンナノ構造物を安定し て、かつ低コストで量産することができる製造装置を提供することができる。また、前 記浮遊手段としては、触媒収容部に堆積された触媒微粒子にガス噴射、超音波振 動、機械的振動又は攪拌する手段から選択される。この様な各種の浮遊作用により 触媒微粒子を強制浮遊させるので、前記触媒収容部内の触媒微粒子を強制的に吹 き上げ、効率よく触媒微粒子の粒子径選択を行うことができる。しかも前記触媒収容 部内を触媒だけの環境に維持でき、機構部品による不純物などの汚染の問題も生じ ない。
[0041] 本発明の第 6の形態によれば、前記第 5の形態において、前記浮遊手段により前 記触媒微粒子を浮遊させた後、前記浮遊手段の浮遊作用を停止して前記触媒微粒 子を自由落下又は強制落下させて粒子径を選択する。自由落下の場合においては 、触媒微粒子の自由落下による沈降速度の違いから、触媒原料に含有される種々の 粒子径のうち軽量の触媒微粒子を的確に選択して前記反応炉に供給することができ 、カーボンナノ構造物を安定して、かつ低コストにより量産化することができる製造装 置を実現することができる。また、強制落下の場合においては、例えば帯電した触媒 微粒子に対し電磁場を印加して強制的に落下させ、急速な粒子径の制御が可能に なる。
[0042] 本発明の第 7の形態によれば、前記第 4の形態において、前記供給手段は、前記 選択された触媒微粒子を前記反応炉に定量的に搬送する搬送手段力 なるので、 粒子径を適切に制御された触媒微粒子を前記反応炉に安定供給することができ、力 一ボンナノ構造物を安定して、かつ低コストにより量産化することができる製造装置を 提供することができる。
[0043] 本発明の第 8の形態によれば、前記第 4〜第 7のいずれかの形態において、キヤリ ァガスにより前記原料ガス及び前記触媒微粒子を前記反応炉に供給するキャリアガ ス搬送手段を備え、前記キャリアガス搬送手段は前記反応炉内における圧力変動が 生じな 、ように前記キャリアガスを前記反応炉に導入するので、選択された粒子径の 触媒微粒子を前記原料ガスとともに前記反応炉に導入する際、前記反応炉内にお ける圧力変動を生じさせず、カーボンナノ構造物の成長に必要な反応場の揺らぎを 発生させない。したがって、本形態によって、選択された粒子径の触媒微粒子の分 散供給を前記反応炉に対して安定的に行うことができ、カーボンナノ構造物の高収 率連続生産が可能となる製造装置を実現することができる。 [0044] 本発明の第 9の形態によれば、前記第 5又は第 6の形態において、前記浮遊手段 が前記触媒収容部に高圧ガスを瞬間的に噴射する噴射手段からなり、前記噴射手 段により前記高圧ガスを前記触媒収容部に瞬間的に噴き付けることにより前記触媒 収容部の触媒微粒子を浮遊させるので、前記触媒収容部内の触媒微粒子の残量に 関係なく効率よく強制的に吹き上げ、カーボンナノ構造物の連続生産に好適な製造 装置を提供することができる。
[0045] 本発明の第 10の形態によれば、前記第 5又は第 6の形態において、前記浮遊手段 が前記触媒収容部にパルス状ガスを供給するパルス状ガス供給手段カゝらなり、前記 パルス状ガス供給手段により前記パルス状ガスを前記触媒収容部に噴き付けること により前記触媒収容部の触媒微粒子を浮遊させるので、パルス状ガスのパルス間隔 等の供給制御により、各種触媒に応じて種々の浮遊状態を得るための浮遊制御を簡 易に行うことができ、カーボンナノ構造物の製造コストの低減に寄与する。
[0046] 本発明の第 11の形態によれば、前記第 9又は第 10の形態において、前記ガスの噴 き付けが間欠的に行われ、噴き付け停止状態で浮遊触媒微粒子が静置され、粒子 径が選択されるので、前記静置時に浮遊微粒子の沈降速度の違いから、粒子径の 異なる触媒微粒子の選択を精度よく行うことができ、カーボンナノ構造物生産の高収 率を実現できる製造装置を提供することができる。
[0047] 本発明の第 12の形態によれば、前記第 11の形態において、前記粒子径の選択を 行った後、前記触媒収容部内に浮遊している触媒微粒子をキャリアガスにより前記反 応炉に導入する触媒搬送手段を含むので、前記触媒搬送手段によって粒子径選択 力も前記反応炉に至る製造工程を連続ィ匕でき、カーボンナノ構造物の高収率による 量産化を実現できる。
[0048] 本発明の第 13の形態によれば、前記第 11の形態において、前記触媒収容部に前 記ガスを間欠的に噴き付けるとき、少なくとも噴き付け時に反応炉内の圧力に影響を 及ぼさな 、ために前記触媒収容部内のガスを前記反応炉と異なる領域に放出する 切換手段を含むので、前記ガスの間欠的噴き付け時には前記切換手段によって前 記触媒収容部内のガスを前記反応炉と異なる領域に放出して、前記反応炉の反応 場に影響を与えることなぐ前記触媒収容部内における粒子径選択を行うことができ る。したがって、本形態によって、前記反応炉に至る製造工程の連続化を妨げること なぐ前記触媒収容部内の粒子径選択を行え、カーボンナノ構造物の量産化を実現 できる製造装置を提供することができる。
[0049] 本発明の第 14の形態によれば、前記第 13の形態において、前記ガスを間欠的に 供給するとき、キャリアガスを前記反応炉に通気して、前記反応炉内の圧力変動を緩 和する前記キャリアガスのガス流路を設けたので、前記ガスの間欠的供給時には前 記ガス流路を通じての前記キャリアガスの通気により前記反応炉内の圧力変動を緩 和し、前記反応炉の反応場に影響を与えることなぐ前記触媒収容部内における粒 子径選択を行うことができる。したがって、本形態によって、前記反応炉に至る製造 工程の連続ィヒを妨げることなぐ前記触媒収容部内の粒子径選択を行え、カーボン ナノ構造物の量産化を実現できる製造装置を提供することができる。
[0050] 本発明の第 15の形態によれば、原料ガスと触媒微粒子を流動させながら反応炉で 接触させてカーボンナノ構造物を製造する製造方法にお!ヽて、前記触媒微粒子の 粒子径を選択する選択工程を含み、この選択工程にお!ヽて選択された触媒微粒子 を前記反応炉に供給するので、前記選択工程により前記触媒微粒子の粒子径を適 切に選択して制御し、前記反応炉へ供給可能となり、触媒原料に内在する触媒微粒 子の粒子径のバラツキに影響されることなぐカーボンナノ構造物を安定して、かつ 低コストにより量産化することができる。
[0051] 本発明の第 16の形態によれば、前記第 15の形態において、前記選択工程におい て、前記触媒微粒子を浮遊させることにより粒子径を選択するので、浮遊作用により 触媒原料に含まれる軽量粒子、つまり粒子径の小さ ヽ粒子を浮遊させて選択して力 一ボンナノ構造物製造用触媒として前記反応炉に供給して、触媒微粒子の粒子径 のバラツキに影響されることなぐカーボンナノ構造物を安定して、かつ低コストで量 産することができる。
[0052] 本発明の第 17の形態によれば、前記第 15の形態において、前記選択工程におい て、前記触媒微粒子を浮遊させた後、前記触媒微粒子の浮遊作用を停止し、前記 触媒微粒子を自由落下又は強制落下させて粒子径を選択するので、触媒微粒子の 浮遊と、浮遊作用の停止に続く自由落下又は強制落下により、粒径に依存した沈降 速度の違いから、触媒原料に含有される種々の粒子径のうち粒子径の小さい触媒微 粒子を的確に選択して前記反応炉に供給することができ、カーボンナノ構造物を安 定して、かつ低コストにより量産化することができる。
[0053] 本発明の第 18の形態によれば、前記第 15の形態において、前記選択された触媒 微粒子を前記反応炉に定量的に搬送供給するので、粒子径を適切に制御された触 媒微粒子を前記反応炉に安定供給し、カーボンナノ構造物を安定して、かつ低コスト により量産化することができる。
[0054] 本発明の第 19の形態によれば、前記第 15〜18のいずれかの形態において、キヤ リアガスにより前記原料ガス及び前記触媒微粒子を前記反応炉に供給し、前記反応 炉内における圧力変動が生じないように前記キャリアガスを前記反応炉に導入する ので、選択された粒子径の触媒微粒子を前記原料ガスとともに前記反応炉に導入す る際、前記反応炉内における圧力変動を生じさせず、カーボンナノ構造物の成長に 必要な反応場の揺らぎを発生させな!/ヽ状況を維持して、選択された粒子径の触媒微 粒子の分散供給を前記反応炉に対して安定的に行え、カーボンナノ構造物を高収 率に連続生産することができる。
[0055] 本発明の第 20の形態によれば、前記第 16又は第 17の形態において、前記触媒 収容部に前記高圧ガスを瞬間的に噴き付けることにより前記触媒収容部の触媒微粒 子を浮遊させるので、前記触媒収容部内の触媒微粒子の残量に関係なく効率よく強 制的に吹き上げ、カーボンナノ構造物の効率的連続生産に寄与する。
[0056] 本発明の第 21の形態によれば、前記第第 16又は第 17の形態において、前記触 媒収容部に前記パルス状ガスを噴き付けることにより前記触媒収容部の触媒微粒子 を浮遊させるので、パルス状ガスのパルス間隔等の供給制御により、各種触媒に応じ て種々の浮遊状態を得るための浮遊制御を簡易に行うことができ、カーボンナノ構造 物の製造コストの低減に寄与する。
[0057] 本発明の第 22の形態によれば、前記第 20又は第 21の形態において、前記ガスを 間欠的に噴き付け、噴き付け停止状態で浮遊触媒微粒子を静置して、粒子径の選 択を行うので、前記静置時に浮遊微粒子の沈降速度の違いから、粒子径の異なる触 媒微粒子の選択を精度よく行うことができ、カーボンナノ構造物生産の高収率を実現 することができる。
[0058] 本発明の第 23の形態によれば、前記第 22の形態において、前記粒子径の選択を 行った後、前記触媒収容部内に浮遊している触媒微粒子をキャリアガスにより前記反 応炉に導入するので、前記触媒搬送手段によって粒子径選択から前記反応炉に至 る製造工程を連続ィ匕でき、カーボンナノ構造物の高収率による量産化を実現できる。
[0059] 本発明の第 24の形態によれば、前記第 22の形態において、前記触媒収容部に前 記ガスを間欠的に噴き付けるとき、少なくとも噴き付け時に前記触媒収容部内のガス を前記反応炉と異なる領域に放出するので、前記ガスの間欠的噴き付け時には前記 触媒収容部内のガスを前記反応炉と異なる領域に放出して、前記反応炉の反応場 に影響を与えることなぐ前記触媒収容部内における粒子径選択を行え、前記反応 炉に至る製造工程の連続ィヒを妨げることなぐ前記触媒収容部内の粒子径選択をし て、カーボンナノ構造物の円滑な量産化に寄与する。
[0060] 本発明の第 25の形態によれば、前記第 24の形態において、前記ガスを間欠的に 供給するとき、前記反応炉内の圧力変動を緩和するガス流路を通じてキャリアガスを 前記反応炉に通気するので、前記ガスの間欠的供給時には前記ガス流路を通じて の前記キャリアガスの通気により前記反応炉内の圧力変動を緩和して、前記反応炉 の反応場に影響を与えることなぐ前記触媒収容部内における粒子径選択を行え、 前記反応炉に至る製造工程の連続化を妨げることなぐ前記触媒収容部内の粒子径 選択をして、カーボンナノ構造物の円滑な量産化に寄与する。
図面の簡単な説明
[0061] [図 1]本発明に係るカーボンナノ構造物の製造装置の全体構成を示す概略構成図で ある。
[図 2]図 1の A部分の拡大概略説明図である。
[図 3]本発明に係る製造装置に用いる自動バルブ制御部 50を含む制御システムの 概略構成図である。
[図 4]本発明に係る触媒浮遊処理条件の検証実験の一つである、触媒紛搬送量一 パルス照射時間の計測結果を示す図である。
[図 5]前記触媒浮遊処理条件の別の検証実験である、触媒紛搬送量一パルス照射 サイクル時間間隔の計測結果を示す図である。
[図 6]前記触媒浮遊処理条件のさらに別の検証実験である、触媒紛搬送量一静置時 間の計測結果を示す図である。
[図 7]本発明に係る触媒浮遊処理したときの触媒微粒子の粒子径分布状態を示す度 数一粒径図である。
[図 8]本発明に係る触媒浮遊処理に使用した原料触媒の粒子径分布状態を示す度 数一粒径図である。
[図 9]本発明によるカーボンナノ構造物の製造例を示す SEM写真である。
[図 10]前記 SEM写真カゝら計測したカーボンナノ構造物の線径分布を示す度数一線 径図である。
[図 11]縮れ形態単独で存在するカーボンナノ構造物の走査型電子顕微鏡 (SEM) 像である。
[図 12]縮れ形態単独で存在するカーボンナノ構造物の透過型電子顕微鏡 (TEM) 像である。
[図 13]本発明に係る縮れ状カーボンナノチューブ (縮れ状 CNT)の X線回折プロファ ィルである。
符号の説明
1 反応炉
2 触媒貯留槽
3 原料及び触媒供給管路
4 (原料及び触媒供給管路 3の)反応炉導入先端部
5 ガス導入路
6 排出路
7 回収槽
8 排出管
9 触媒供給管
10 原料ガス供給管
11 ガス供給路 加熱ヒータ
高圧パルスガス導入管 ガス導入路
ガス放出管
ヘリウムガスボンベ
流量レギユレータ
開閉弁
高圧パルスガス発生用ガス溜め部 ヘリウムガスボンベ
流量レギユレータ
開閉弁
ガス流量制御器
フイノレタ
安全弁
ヘリウムガスボンベ
流量レギユレータ
開閉弁
ガス流量制御器
原料ガスボンベ
流量レギユレータ
開閉弁
ガス流量制御器
開閉弁
ヘリウムガスボンベ
流量レギユレータ
開閉弁
ガス流量制御器
アセトン 42 触媒原料粉末
50 自動バルブ制御部
51 シーケンサ
VI 電磁開閉弁
V2 電磁三方弁
V3 電磁三方弁
発明を実施するための最良の形態
[0063] 以下に、本発明にかかる、カーボンナノコイル等のカーボンナノ構造物の製造装置 及びそれを用いたカーボンナノ構造物の製造方法の実施形態を添付する図面を参 照して詳細に説明する。
[0064] 図 1は本発明に係るカーボンナノ構造物の製造装置の全体構成を示す。本形態の 製造装置は触媒気相搬送による CVD製法によるものである。
[0065] 反応炉 1は縦型石英管カゝらなり、外周部に原料ガスを熱分解するための加熱ヒータ 12が鉛直長手方向に沿って設けられて 、る。反応炉 1には原料及び触媒供給管路 3を通じてキャリアガスとともに原料ガス及び触媒が導入される。原料及び触媒供給 管路 3の反応炉導入先端部 4は図 2に示す。原料及び触媒供給管路 3は石英製触 媒供給管 9と、触媒供給管 9の内部に挿通させた SUS製原料ガス供給管 10からなる 二重管構造となって!/ヽる。反応炉導入先端部 4より反応炉 1に導入された原料ガスと 分散状態にある触媒は加熱ヒータ 12の加熱雰囲気中で気相中で接触し熱分解され 、触媒微粒子の表面に原料ガスの一部がカーボンナノ構造物に変換され、カーボン ナノ構造物の成長が起きる。原料ガス供給管 10は、原料ガスボンベ 31、原料ガスボ ンべ 31のガス排出側に設けた流量レギユレータ 32、開閉弁 33、マスフローコントロー ラカもなるガス流量制御器 34及び開閉弁 35によって原料ガス供給手段を構成して いる。
[0066] 原料ガスとしては、炭化水素のみならず硫黄含有有機ガス、リン含有有機ガスなど の有機ガスが利用でき、特定構造のカーボンナノ構造物の生成に好適な有機ガスが 選択される。また、有機ガスの中でも余分な物質を生成しない意味で炭化水素が好 適である。炭化水素としては、メタン、ェタンなどのアルカン化合物、エチレン、ブタジ ェンなどのアルケン化合物、アセチレンなどのアルキン化合物、ベンゼン、トルエン、 スチレンなどのァリール炭化水素化合物、インデン、ナフタリン、フエナントレンなどの 縮合環を有する芳香族炭化水素、シクロプロパン、シクロへキサンなどのシクロバラフ インィ匕合物、シクロペンテンなどのシクロォレフインィ匕合物、ステロイドなどの縮合環を 有する脂環式炭化水素化合物などが利用できる。また、以上の炭化水素化合物を 2 種以上混合した混合炭化水素ガスを使用することも可能である。特に、望ましくは炭 化水素の中でも低分子、例えば、アセチレン、ァリレン、エチレン、ベンゼン、トルエン などが好適である。特に、アセチレンについては高純度なものでも良いが、一般の溶 解アセチレン若しくは一般の溶解アセチレンを精製したものを用いても良 、。また、 当然に、溶解アセチレンの溶媒であるアセトン、 DMF (ジメチルホルムアマイド、 HC ON (CH ) )等は適宜含まれていても良いし、全くなくても良い。キャリアガスボンベ
3 2
16、 20、 27、 36はヘリウムガス力 成る力 特にヘリウムガスに限るものではなぐ不 活性な Ar、 Ne、 Kr、 CO、 N、 Xe等も利用できる。また、キャリアガスに関しては単
2 2
一組成でなくとも二種以上の上記ガスの組み合わせ並びに、キャリアガス主成分に 対して非常に微量な成分は当然含まれている場合がある。
[0067] 反応炉 1には。原料及び触媒供給管路 3とは別に、キャリアガスを炉内に流すため のガス導入路 5が接続されて 、る。縦型炉内では上部より触媒や原料ガスを導入す るため、炉内に下方が比較的高い温度分布が生じ、対流によるガス上昇流が発生す る。このガス上昇流によって触媒及び原料ガスの円滑な流下が妨げられるため、ガス 導入路 5よりキャリアガスのヘリウムを 60SCCM流すことにより、対流によるガス上昇 流を抑制し、カーボンナノ構造物の成長反応を効率よく促進することができる。この上 昇流抑制ガス供給手段は、ヘリウムガスボンベ 36、ヘリウムガスボンベ 36のガス排出 側に設けた流量レギユレータ 37、開閉弁 38、マスフローコントローラ力 なるガス流 量制御器 39及びガス導入路 5によって構成されている。
[0068] 反応炉 1の下端側には排出路 6が設けられている。排出路 6の排出側は回収槽 7に 導入されている。回収槽 7にはアセトン 41が収容されており、カーボンナノ構造物の 成長反応に寄与しな力つた未反応の原料ガスやキャリアガスは回収槽 7のアセトン 4 1内を流通した後、回収槽 7の排出管 8を通じて排気される。反応炉 1において生成さ れたカーボンナノ構造物は排出路 6を通じて排出され、アセトン 41に溶解しない形態 で回収槽 7にバブリング回収される。回収槽 7に回収されたカーボンナノ構造物はァ セトンを除去することにより取り出される。
触媒貯留槽 2は触媒微粒子の粒子径選択処理を行う触媒収容部である。触媒貯留 槽 2には触媒原料粉末 42が約 50g装填される。貯留槽には原料粉末を定期的に供 給する市販の一般的なスクリューフィーダ一を取り付けてもよい。触媒貯留槽 2内部 には触媒浮遊作用を施すための高圧ノ ルスガス導入管 13が導入配置されている。 ヘリウムガスボンベ 16、ヘリウムガスボンベ 16のガス排出側に設けた流量レギユレ一 タ 17、開閉弁 18、高圧パルスガス発生用ガス溜め部 19、電磁開閉弁 VI及び高圧 パルスガス導入管 13によって触媒浮遊作用手段が構成されて!ヽる。この触媒浮遊作 用手段にはガス溜め部 19のヘリウムガスを電磁開閉弁 VIの間欠的開閉により 0. 3 MPaの高圧ヘリウムガスをパルス状に発生させ、高圧パルスガス導入管 13の先端よ り噴射させる噴射手段が含まれている。電磁開閉弁 VIは図 3に示す自動バルブ制 御部 50の制御下でシーケンサ 51を介して 1回/日〜10000回 Z分の開閉間隔で開 閉制御されるが、実用上は 1回 Z分〜 1000回 Z分がカーボンナノコイルの生産性か らも経済的である。自動バルブ制御部 50は図示しないが、予め格納されたバルブ制 御プログラムに基づきノ レブ開閉制御信号をシーケンサ 51に送信するマイコン制御 部からなる。シーケンサ 51は該マイコン制御部力もの開閉又は切換信号を受信し、 電磁開閉弁 VI、後述の電磁三方弁 V2、 V3の開閉又は切換え制御信号を制御対 象の各弁 V1〜V3のバルブ制御部に送信する。高圧パルスガスは高圧パルスガス 導入管 13の先端より噴射され、触媒貯留槽 2内に堆積収納されている触媒に噴き付 けられることにより触媒微粒子を浮遊させる。触媒貯留槽 2には、ヘリウムのキャリアガ スによって浮遊触媒微粒子を触媒供給管 9側に搬送し、反応炉 1に供給する触媒搬 送手段が設けられている。触媒搬送手段はヘリウムガスボンベ 20、ヘリウムガスボン ベ 20のガス排出側に設けた流量レギユレータ 21、開閉弁 22、マスフローコントローラ カゝらなるガス流量制御器 23及び触媒貯留槽 2にキャリアガスを導入するガス導入路 1 4からなる。本実施形態においては浮遊作用発生のための高圧ノ ルスガスとして、触 媒ゃ原料ガスの搬送に用いるキャリアガスと同様にヘリウムガスを用いている。なお、 キャリアガスとしては、特にヘリウムガスに限るものではなぐ不活性な Ar、 Ne、 Kr、 C O、 N、 Xe等も利用できる。また、キャリアガスに関しては単一組成でなくとも二種以
2 2
上の上記ガスの組み合わせ並びに、キャリアガス主成分に対して非常に微量な成分 は当然含まれて ヽる場合がある。キャリアガスは原料ガスや触媒を搬送するガスであ り、原料ガスが反応により消耗されるのに対し、キャリアガスは全く無反応で消耗しな い特徴がある。但し、キャリアガス主成分に対して非常に微量な成分については当然 含まれて 、る場合があり、微量な成分につ!、てその限りでな!、場合も当然ありうる。
[0070] 触媒微粒子の沈降時間について計算モデルによって説明する。静止流体中にお ける触媒微粒子の粒子径と沈降時間に関する関係を調べるために、下記のストーク スの沈降式 ESを用いた。
Figure imgf000022_0001
Ut:沈降速度 (終末速度) (m/s)
D:粒子径 (m)
p s :粒子密度 (kgZm3)
p t:流体密度(kgZm3)
g :重力加速度 (mZs2)
μ :流体粘性係数 (kgZm' s)
[0072] 上記の式 ESを用いて、モデルとして鉄微粒子を想定し、流体はヘリウムとし、粒子 径を 0. 1 μ m及び 1 μ mについて沈降速度を計算した。その結果、ヘリウム中での鉄 微粒子の沈降速度は粒子径 0. 1 μ mの場合約 10_7mZsとなり、粒子径 1 μ mの場 合約 10_5mZsとなる。したがって、このモデル計算から、これら微粒子はほぼ浮遊 状態であり、流体中での沈降速度はガス流速と同じであることが判明した。このことか ら反応炉への触媒投入はあらかじめガス中に浮遊させた触媒微粒子を加熱下の炉 内に直接導入することが好ま 、と 、える。
[0073] 上記のモデル計算力 分力るように、粒子径のおおきいものほど沈降速度が早い ため、高圧ノルスガス導入管 13の先端より噴射された高圧パルスガスによって浮遊 状態となった触媒微粒子 43は重力によって自由落下し、粒子径の大きい重い粒子 は粒子径の小さい粒子よりも早く沈降し再び触媒貯留槽 2内に堆積する。したがって 、この沈降速度差を利用することによって触媒微粒子の粒子径の選択を簡易に、か つ精度良く行うことができる。すなわち、カーボンナノ構造物の生成に使用する粒子 径の小さ!ヽ微粒子のみを浮遊状態より選択し、選択された触媒微粒子を触媒供給管
9を通じて反応炉 1に導くことができる。
[0074] 使用される触媒はカーボンナノ構造物の種類に応じて異なる力 例えば鉄、コバル ト、ニッケル、鉄合金、コノ レト合金、ニッケル合金、鉄酸化物、コノルト酸ィ匕物、 -ッ ケル酸化物、又はこれらの組み合わせなど各種の触媒を利用できる。特に、カーボン ナノコイルの製造においては、鉄'スズ系組成にインジウム In、アルミニウム Al、クロム Crの 3種類の元素をカ卩えた 3成分系の触媒、例えば、 Fe— In— Sn 0、 Fe A1 S n 0、 Fe Cr Sn Oなどの混合触媒を用いることができる。
[0075] 触媒貯留槽 2には、触媒浮遊処理と、選択された浮遊触媒微粒子の反応炉 1への 搬送供給処理とを反応炉 1における反応場への影響を与えな!/ヽように、触媒安定供 給処理手段を設けている。この触媒安定供給処理手段は、触媒供給管 9側に設けら れ、図 3の自動バルブ制御部 50により切換制御される電磁三方弁 V2と、第 2キャリア ガスによって浮遊触媒微粒子を反応炉 1に搬送供給する、触媒供給管 9側に設けた 第 2の触媒搬送手段とからなる。この第 2の触媒搬送手段はヘリウムガスボンベ 27、 ヘリウムガスボンベ 27のガス排出側に設けた流量レギユレータ 28、開閉弁 29、マス フローコントローラ力もなるガス流量制御器 30及び自動バルブ制御部 50により切換 制御される電磁三方弁 V3からなる。電磁三方弁 V2は自動バルブ制御部 50の制御 によりシーケンサ 51を介して反応炉 1側への触媒供給遮断状態と供給可能状態の 2 方向に切換制御される。電磁開閉弁 VIの間欠的開閉による高圧パルスガス噴射に よる触媒の浮遊処理中及びその後の静置状態中は、電磁三方弁 V2は触媒供給遮 断状態となり、図 1の矢印 aによって示すように、触媒貯留槽 2内のガスを触媒供給管 9側に導かず、フィルタ 26を通じて排出路側に放出させる。このとき、電磁三方弁 V3 はヘリウムガスボンベ 27のキャリアガスを、触媒供給管 9と合流し反応炉 1に連通する ガス供給路 11を通じて反応炉 1に供給するキャリアガス供給状態となり、電磁三方弁 V2が触媒供給遮断状態となってヘリウムガスボンベ 20からのキャリアガスの供給が 遮断されても、反応炉 1へのガス流通路内を同一の圧力状態に維持する。 [0076] 一方、高圧パルスガス噴射による触媒の浮遊処理及びその後の静置を終了した後 は、図 1の矢印 bによって示すように、電磁三方弁 V2は触媒供給可能状態となり、へ リウムガスボンベ 20からのキャリアガスの供給を受けて触媒貯留槽 2内の浮遊触媒微 粒子を触媒供給管 9側に導き反応炉 1に供給する。このとき、電磁三方弁 V3はへリウ ムガスボンベ 20のキャリアガスのみによる触媒搬送を行わせるために、ヘリウムガス ボンべ 27からのキャリアガスを排出させるガス流路に切り換えるキャリアガス排出状態 となる。上記の触媒安定供給処理手段を備えることにより、選択した触媒微粒子の供 給状態と、触媒の浮遊作用時の触媒微粒子非供給状態において、反応炉 1を炉内 に圧力変動を生じさせずに一定の圧力環境に維持させることができる。すなわち、触 媒の浮遊作用時においても触媒供給管 9側へのガス流通を遮断せずに触媒搬送を 続けると、高圧パルスガス噴射による圧力変動が生じて、その圧力変動が反応炉 1内 に伝播して反応場に揺らぎを生じさせ、カーボンナノ構造物の安定成長に影響を与 えるが、本実施形態においては、触媒微粒子の粒子径選択を前段工程で行う際、そ の前段工程を遮断しても上記の触媒安定供給処理手段におけるヘリウムガスボンベ 27からのキャリアガス供給によりガス流通状態を維持し、反応炉 1における反応場の 揺らぎを生じさせず、安定したカーボンナノ構造物の連続生産を行うことができる。
[0077] 次に、上記構成に力かる製造装置において、自動バルブ制御部 50によって行われ る電磁開閉弁 VI、電磁三方弁 V2、 V3の開閉制御による触媒浮遊処理条件の検証 実験について説明する。
<実験例 1 >
まず、触媒浮遊は電磁開閉弁 VIを 600回 Z分で間欠的に開閉して、 0. 3MPaの 高圧パルスガスを発生させるパルスガス発生条件で行われる。この高圧パルスガスを 高圧パルスガス導入管 13の先端より噴射させ、触媒貯留槽 2内の触媒に照射する照 射時間を 1、 2、 3秒とした。浮遊作用の後、次に高圧パルスガスを照射を停止し、 3秒 間静置状態にする。以上の触媒浮遊'静置の条件下において、ヘリウムガスボンベ 2 0力も供給されるキャリアガスの流量を 60、 120SCCMとしたとき、反応炉 1に搬送さ れる浮遊触媒の搬送量を計測した。その計測結果を図 4に示す。なお、触媒は Fe— I n— Sn— O を使用した.
[0078] 図 4の触媒粉搬送量と高圧ガスのパルス照射時間との測定結果から、高圧パルス ガス照射時間が少ない場合触媒粉搬送量の低下傾向が認められる。したがって、こ の実験例からは高圧ガスのパルス照射時間は 3秒が適切といえる。
[0079] <実験例 2>
パルス照射時間を 3秒とし、高圧パルスガス照射後 3秒間静置する条件にぉ ヽて、 3秒間静置後に一定搬送時間浮遊触媒のキャリア搬送した後、次に行う 3秒パルス 照射 · 3秒静置の実行サイクル、換言すると、搬送時間間隔、つまりパルス照射サイク ル時間を 0. 5、 1、 3分 (min)と変えた。その他の条件は実験例 1と同様にして、へリウ ムキャリアガスの流量を 60、 120SCCMとしたとき、反応炉 1に搬送される浮遊触媒 の搬送量を計測した。その計測結果を図 5に示す。
[0080] 図 5の触媒粉搬送量とパルス照射サイクル時間との測定結果から、パルス照射サイ クル時間は 3分が適切といえる。
[0081] <実験例 3 >
ノルス照射時間を 3秒とし、高圧ノルスガス照射後の静置時間を 0. 5、 3、 10秒と 変え、その他の条件を実験例 1, 2と同様にして、ヘリウムキャリアガスの流量を 60、 1 20SCCMとしたとき、反応炉 1に搬送される浮遊触媒の搬送量を計測した。その計 測結果を図 6に示す。
[0082] 図 6の触媒粉搬送量と静置時間との測定結果から、静置時間 10秒では長すぎて触 媒の沈降が促進されてしまうため、静置時間は 3秒が適切といえる。
[0083] なお、触媒貯留槽 2の下部には、高圧ノ ルスガスの使用を考慮して、ガス放出管 1 5、フィルタ 24を介して安全弁 25が設置されている。また、上記の反応炉 1において は原料ガスを分解するのに熱分解法を利用したが、例えばレーザービーム分解法、 電子ビーム分解法、イオンビーム分解法、プラズマ分解法、その他の分解法が利用 できる。いずれにしても、これらの分解物から触媒表面にカーボンナノ構造物が形成 されること〖こなる。さら〖こ、本実施形態においては高圧ノ ルスガスによる触媒微粒子 を強制的に吹き上げる噴射手段を触媒貯留槽 2に導入しており、触媒貯留槽 2内を 触媒だけの環境に維持でき、機構部品による不純物などの汚染の問題も生じず好ま しいが、汚染等の問題がない触媒環境を維持する限り、触媒貯留槽 2底部に触媒吹 き上げ用噴射装置や攪拌作用による強制的浮遊機構を設けてもよい。
[0084] 連続的に CVDをおこなう際に、触媒貯留槽の粉体量を一定にする様にスクリュー フィーダ一等の市販の一般的な粉体供給装置を附加してもよい。また、レーザー光 等の触媒粒子径を計測するための粒子径測定装置等を附加しても良い。
[0085] 次に、上記製造装置を使用したカーボンナノ構造物の製造実験例を説明する。
まず、反応炉 1の炉内を約 700°Cの加熱条件で、原料ガスとして濃度 8. 4 (vol%) (DC Hガスを使用し、キャリアガスとして Heガスを用いた。原料ガスの C Hガスは(
2 2 2 2 株)サーンガス-チゴゥ製の超高純度アセチレン (99. 999%)を用いた。
[0086] 触媒浮遊条件はパルス照射時間を 3秒、高圧パルスガス照射後の静置時間を 3秒 、パルス照射サイクル時間を 3分とした。この触媒浮遊条件により、反応炉 1に対して の触媒投入量が 1. 2 X 10_1 (mgZmin)となる。 11SCCMの C Hガスが原料ガス
2 2
ボンべ 31から反応炉 1に供給され、 60SCCMのキャリアガスがガスボンベ 20、 27か ら反応炉 1に供給される。反応炉 1に供給されるトータルガス流量はヘリウムガスボン ベ 36力 の上昇流抑制用キャリアガス 60SCCMをカ卩えると、 131SCCMとなる。な お、触媒は Fe— In— Sn— Oを使用した。
[0087] 上記製法条件による第 1の製造例においては、反応炉 1による CVD処理を 8時間 連続稼働したとき、回収槽 7より 1. 4gのカーボンナノコイル等のカーボンナノ構造物 が最終的に回収できた。
[0088] また、上記の触媒浮遊条件下にお!/、て、原料ガス供給量、触媒投入量及びキヤリ ァガス流量を変えて第 2及び第 3の 8時間連続生産実験を行った。第 2の製造例では 、反応炉 1に対しての触媒投入量を 1. 5 X 10_1 (mgZmin)とし、また 120SCCMの キャリアガスを用いて 14. 5SCCMの C Hガスを供給して、トータルガス流量を 194.
2 2
5SCCMとした。この第 2の製造例においては 2. 9gのカーボンナノコイル等のカー ボンナノ構造物が最終的に得られた。第 3の製造例では、触媒投入量を 2. 3 X 10"1 (mg/min)とし、また 180SCCMのキャリアガスを用いて 21. 9SCCMの C Hガス
2 2 を供給して、トータルガス流量を 262SCCMとした。この第 3の製造例においては 3. 9gのカーボンナノコイル等のカーボンナノ構造物が最終的に得られた。以上の第 1 〜第 3の製造例力 分力るように、本発明に係る製法及びそれを用いた上記製造装 置においては、 8時間 CVD連続処理を通じて回収されたカーボンナノ構造物の量が 1. 4g、 2. 9g、 3. 9gと漸増しており、 CVD中は連続的に触媒微粒子と C Hガスが
2 2 順次接触し効率よく反応して ヽることが実証された。
[0089] 次に、上記の第 2の製造例を基に触媒浮遊による触媒微粒子の粒子径選択の実 測例を示す。第 2の製造例にお 、て反応炉 1に供給された選択触媒微粒子の粒径 分布を図 7に示す。図 8は触媒貯留槽 2内に堆積収納されている原料触媒の粒径分 布を示す。図 8の原料触媒ではカーボンナノ構造物成長に適切でない lOOOnm付 近の粒子が多く分布していることが分かる。一方、本発明に係る製法及びそれを用い た上記製造装置においては、図 7から分力るように、 lOOOnm以上の粒子が適宜除 かれ、カーボンナノ構造物成長に好適な約 300nm以下の粒子、特に約 lOOnm以 下の粒子が多!、と!/、つた優れた粒子径選択効果を奏する。
[0090] また、第 2の製造例において製造回収されたカーボンナノ構造物を走査型電子顕 微鏡 (SEM)で観察した。その SEM写真を図 9に示す。この写真中央力 分力るよう にカーボンナノコイルの成長が確認されたと同時に、本発明者等は、元々カーボンナ ノコイルの製造を最終目的物として鋭意研究してきた力 驚くべきことに本発明による 触媒微粒子の粒子径制御によって新規構造のカーボンナノ構造物の生成に成功し ていることに気付いた。写真中央のカーボンナノコイルの周辺には、縮れたカーボン チューブ (縮れ状 CNT)が多数存在する。図 10は図 9の SEM写真カゝら計測した線 径分布を示す。この線径分布から、前記縮れ状 CNTの線径が 300nm以下に制御さ れて ヽることが分かる。殊に lOOnm以下の線径を有する縮れ状 CNTが多数存在し ていることが判明した。従来の製法では、個々に大きく異なる線径カもなるカーボンフ アイバー形態群の一部にカーボンナノコイルやカーボンナノチューブが成長するだけ であったが、本発明においては直径 300 μ m以下の線径で揃った、縮れ状 CNTが 多数絡み合った縮れ形態で混在する新種のカーボンナノ構造物を得ることができた 。この縮れ形態は縮れ具合は様々で、激しく縮れる場合力も緩やかに縮れる場合ま で広範囲であり、その縮れ具合を数学的に屈曲度で定義することはな力なか困難で あるから、ここでは縮れ形態を縮れ状 CNTが互いに絡み合った形態と定義しておく。 上述したように、この縮れ形態のカーボンナノ構造物は本発明者等によって初めて 発見されたものである。
[0091] 更に、この縮れ形態は他のカーボンナノ構造物と混在する場合と、縮れ形態単独 で存在する場合があり、図 11は、縮れ形態単独で存在するカーボンナノ構造物の走 查型電子顕微鏡 (SEM)像である。前記縮れ状 CNTの立体形状は、図に示されるよ うに、規則的な折曲パターンを繰り返すものではなぐ 3次元空間内の任意の方向へ 不規則に折れ曲がる非周期構造を有している。更に、図中の矢印で示すように、前 記縮れ状 CNTが略 180度折れ曲がる場合、縮れ状 CNTが連続的に湾曲せずに、 2 点以上の折曲点が形成されている。
[0092] 図 12は、縮れ形態単独で存在するカーボンナノ構造物の透過型電子顕微鏡 (TE M)像である。この TEM像力 縮れ形態のカーボンナノ構造物が中空状のカーボン ナノチューブ力も形成されていることが判る。更に、図に示した 2つの矢印は、前記縮 れ状 CNTが略 180度折れ曲力^を示しており、上述のように、 TEM像から縮れ状 C NTが 2点以上の折曲点が形成されて略 180度折れ曲がることが明確に示されてい る。
[0093] 図 13は、本発明に係る縮れ状カーボンナノチューブ (縮れ状 CNT)の X線回折プ 口ファイルである。更に、図 13には、比較例としてグラフアイト結晶(Graphite)、 S社 製カーボンナノチューブ(S社製 CNT)、 SU社製カーボンナノチューブ(SU社製 CN T)及びカーボンナノコイル(CNC)の X線回折プロファイルを示して!/、る。 X線回折測 定においては、 1. 54Aの Cu固有 X線が用いられ、この回折角 2 0に対して各回折 プロファイルがプロットされて 、る。比較例として示したグラフアイト結晶の回折プロフ アイルでは、グラフアイト結晶の(002)反射に対応するピーク(「(002)ピーク」と呼ぶ )が 2 0 = 26. 38度の位置に観測されている。ブラッグの法則における次の関係式
2d· sin 0 = λ (1)
から、グラフアイト結晶における(002)面の面間隔 dは、 d= 3. 3756 Aとなる。
[0094] 本発明に係る縮れ状 CNTの回折プロファイルおける最大ピークは、グラフアイト結 晶の回折プロファイルにおける(002)反射に対応しており、前記最大ピークは 2 0 = 約 24. 1度にピーク位置があり、上記の(1)式力 その面間隔 dが約 3. 69Aと見積も られる。更に、縮れ状 CNTの最大ピークにおける半価幅 β は、約 7. 96度と見積
1/2
もられ、回折プロファイルにおけるピークの半価幅 j8 と結晶子サイズ Dの関係を示
1/2
すシエラーの式
β =0. 941 / (D-cos 0 ) (2)
1/2
から、縮れ状 CNT結晶の結晶子サイズは、およそ 10. 7Aと見積もられる。
[0095] 図に示した他の比較例(S社製 CNT、 SU社製 CNT及び CNC)にお!/、ても前記(0 02)反射に対応する最大ピークが観測されており、グラフアイト結晶の回折プロフアイ ルにおける(002)ピークと、この(002)ピークに対応する S社製 CNT、 SU社製 CNT 、 CNC、縮れ状 CNTの各最大ピークのピーク位置と半価幅は系統的に変化してい る。即ち、前記グラフアイト結晶、 S社製 CNT、 SU社製 CNT、 CNC、縮れ状 CNTの 順に、それらのピーク位置は面間隔が拡がる方向へ変化し、それらの半価幅 13
1/2が 増大し、結晶子サイズ Dが減少する方向へ変化している。
[0096] 図中に示されて!/、るように、 S社製 CNT、 SU社製 CNT、 CNCの最大ピークのピー ク位置は、夫々、 2 0 = 26. 3度、 26. 1度、 25. 3度であり、前記(1)式から、 S社製 CNT、 SU社製 CNT、 CNCにおける面間隔 d力 夫々、 d= 3. 39 A、 3. 41 A、 3. 52 Aと見積もられる。更に、 S社製 CNT、 SU社製 CNT、 CNCの各回折プロフアイ ルにおける最大ピークの半価幅 13 力も、 (2)式より、 S社製 CNT、 SU社製 CNT、
1/2
CNCの結晶子サイズ Dが、夫々、およそ 143. 9A、 49. lA、 13. 4Aと見積もられ る。従って、バルタ結晶(D=∞)であるグラフアイトと比較すると、結晶性が低減し、結 晶子サイズが減少すると伴に面間隔が増大する傾向にあることが分かる。本発明に 係る縮れ状 CNTは、上記の比較例と比べ、最も結晶子サイズ Dが小さぐ面間隔 dが 大きくなつている。これは、縮れ状 CNTが立体的に且つ不規則に折れ曲がる非周期 構造を有することを反映して 、ると考えることができ、このようなカーボンナノ構造物は 、これまでに発見されておらず、本発明に係る縮れ状 CNTが新種のカーボンナノ構 造物であることは明らかである。
[0097] 本発明方法と本発明装置は、縮れ形態のカーボンナノ構造物を製造するだけでな ぐ触媒などの製造条件を調整することにより、単一種のカーボンナノチューブや力 一ボンナノコイルを製造することもでき、線径の揃った各種のカーボンナノ構造物を 製造できる技術である。従って、本発明方法及び本発明装置によれば、従来から知 られているカーボンナノ構造物を効率的に製造することが可能になる。しかもこれら のカーボンナノ構造物の線径を極力均一化することが可能になり、線径の揃った力 一ボンナノ構造物を安価に量産できる特徴を有して 、る。カーボンナノ構造物の線 径が極力均一化されると、個々のカーボンナノ構造物の物理的'ィ匕学的 ·電子的'機 械的特性が同一になり、高品質のカーボンナノ構造物を大量に市場に提供すること が可能になる。上記のカーボンナノ構造物としては、例えば、カーボンナノチューブ、 カーボンナノチューブが多数林立したブラシ状カーボンナノチューブ、カーボンナノ チューブが捩れを有したカーボンナノツイスト、コイル状のカーボンナノコイル、球殻 状のフラーレンなどが含まれることは云うまでもない。
[0098] 本発明は上記実施形態に限定されるものではなぐ本発明の技術的思想を逸脱し ない範囲における種々の変形例、設計変更などをその技術的範囲内に包含すること は云うまでもない。
産業上の利用可能性
[0099] 本発明の第 1、第 2又は第 3の形態によれば、 Inn!〜 300nmの線径を有し、折曲 点が不規則に入った立体形状である縮れ形態で存在するカーボンナノ構造物を提 供することができ、特に、第 2の形態によれば、波長が 1. 54Aの Cu固有 X線を照射 したときに得られる回折プロファイルにおいて、前記回折プロファイルがグラフアイト結 晶の層間隔に対応する最大ピークを有し、この最大ピークのピーク位置が 2 Θで 23 度〜 25度の範囲に存在し、その半価幅が 6度〜 8度の範囲にあるカーボンナノ物質 を提供することができる。更に、第 3の形態によれば、前記縮れ状カーボンナノチュー ブが略 180度折れ曲がる場合には、 2点以上の折曲点を有する新種のカーボンナノ 構造物を提供することができる。
[0100] 第 4の形態の発明によれば、前記触媒微粒子の粒子径を適切に選択して制御する ことにより、カーボンナノ構造物を安定して、かつ低コストにより量産化できる製造装 置を提供することができる。
[0101] 第 5の形態の発明によれば、前記浮遊手段により触媒原料に含まれる軽量粒子、 つまり粒子径の小さい粒子を浮遊させて選択してカーボンナノ構造物製造用触媒と して前記反応炉に供給することができ、触媒微粒子の粒子径のバラツキに影響され ることなく、カーボンナノ構造物を安定して、かつ低コストで量産することができる製造 装置を提供することができる。
[0102] 第 6の形態の発明によれば、前記触媒微粒子を浮遊させた後、前記浮遊手段の浮 遊作用を停止して前記触媒微粒子を自由落下又は強制落下させて、沈降速度の違 いから、触媒原料に含有される種々の粒子径のうち軽量の触媒微粒子を的確に選 択して前記反応炉に供給することができ、カーボンナノ構造物を安定して、かつ低コ ストにより量産化することができる製造装置を実現することができる。
[0103] 第 7の形態の発明によれば、前記搬送手段により、粒子径を適切に制御された触 媒微粒子を前記反応炉に安定供給することができ、カーボンナノ構造物を安定して、 かつ低コストにより量産化することができる製造装置を提供することができる。
[0104] 第 8の形態の発明によれば、前記キャリアガス搬送手段は前記反応炉内における 圧力変動が生じないように前記キャリアガスを前記反応炉に導入するので、選択され た粒子径の触媒微粒子を前記原料ガスとともに前記反応炉に導入する際、前記反 応炉内における圧力変動を生じさせずに、選択された粒子径の触媒微粒子の分散 供給を前記反応炉に対して安定的に行うことができ、カーボンナノ構造物の高収率 連続生産が可能となる製造装置を実現することができる。
[0105] 第 9の形態の発明によれば、前記噴射手段により前記高圧ガスを前記触媒収容部 に瞬間的に噴き付けることにより前記触媒収容部の触媒微粒子を浮遊させるので、 効率よく強制的に吹き上げ、カーボンナノ構造物の連続生産に好適な製造装置を提 供することができる。
[0106] 本発明の第 10の形態によれば、前記パルス状ガス供給手段により前記パルス状ガ スを前記触媒収容部に噴き付けることにより前記触媒収容部の触媒微粒子を浮遊さ せるので、パルス状ガスのパルス間隔等の供給制御により、各種触媒に応じて種々 の浮遊状態を得るための浮遊制御を簡易に行うことができ、製造コストの低減に寄与 するカーボンナノ構造物の製造装置を提供することができる。
[0107] 本発明の第 11の形態によれば、前記ガスの噴き付けが間欠的に行われ、噴き付け 停止状態で浮遊触媒微粒子が静置され、粒子径が選択されるので、前記静置時に 浮遊微粒子の沈降速度の違!、から、粒子径の異なる触媒微粒子の選択を精度よく 行うことができ、カーボンナノ構造物生産の高収率を実現できる製造装置を提供する ことができる。
[0108] 本発明の第 12の形態によれば、前記触媒搬送手段によって粒子径選択から前記 反応炉に至る製造工程を連続ィ匕でき、高収率による量産化を実現できるカーボンナ ノ構造物の製造装置を提供することができる。
[0109] 本発明の第 13の形態によれば、前記ガスの間欠的噴き付け時には前記切換手段 によって前記触媒収容部内のガスを前記反応炉と異なる領域に放出して、前記反応 炉の反応場に影響を与えることなぐまた前記反応炉に至る製造工程の連続化を妨 げることなぐ前記触媒収容部内における粒子径選択を行うことができ、カーボンナノ 構造物の量産化を実現できる製造装置を提供することができる。
[0110] 本発明の第 14の形態によれば、前記ガスの間欠的供給時には前記ガス流路を通 じての前記キャリアガスの通気により前記反応炉内の圧力変動を緩和し、前記反応 炉の反応場に影響を与えることなぐまた前記反応炉に至る製造工程の連続化を妨 げることなぐ前記触媒収容部内における粒子径選択を行うことができ、カーボンナノ 構造物の量産化を実現できる製造装置を提供することができる。
[0111] 本発明の第 15の形態に力かるカーボンナノ構造物を製造する製造方法によれば、 前記選択工程にお!ヽて選択された触媒微粒子を前記反応炉に供給するので、前記 選択工程により前記触媒微粒子の粒子径を適切に選択して制御し、前記反応炉へ 供給可能となり、触媒原料に内在する触媒微粒子の粒子径のバラツキに影響される ことなぐカーボンナノ構造物を安定して、かつ低コストにより量産化することができる
[0112] 本発明の第 16の形態によれば、前記選択工程において、前記触媒微粒子を浮遊 させることにより粒子径を選択するので、浮遊作用により触媒原料に含まれるカーボ ンナノ構造物製造用触媒として適切な触媒微粒子を選択して前記反応炉に供給し、 触媒微粒子の粒子径のバラツキに影響されることなぐカーボンナノ構造物を安定し て、かつ低コストで量産することができる。
[0113] 本発明の第 17の形態によれば、前記選択工程において、前記触媒微粒子を浮遊 させた後、前記触媒微粒子の浮遊作用を停止し、前記触媒微粒子を自由落下させ て粒子径を選択するので、自由落下による沈降速度の違いから、触媒原料に含有さ れる種々の粒子径のうち粒子径の小さい、例えば約 lOOOnm以下の触媒微粒子を 的確に選択して前記反応炉に安定供給することができ、カーボンナノ構造物を安定 して、かつ低コストにより量産化することができる。
[0114] 本発明の第 18の形態によれば、前記選択された触媒微粒子を前記反応炉に定量 的に搬送供給するので、粒子径を適切に制御された触媒微粒子を前記反応炉に安 定供給し、カーボンナノ構造物を安定して、かつ低コストにより量産化することができ る。
[0115] 本発明の第 19の形態によれば、キャリアガスにより選択された粒子径の触媒微粒 子を前記原料ガスとともに前記反応炉に導入する際、前記反応炉内における圧力変 動を生じさせず、カーボンナノ構造物の成長に必要な反応場の揺らぎを発生させな Vヽ状況を維持して、選択された粒子径の触媒微粒子の分散供給を前記反応炉に対 して安定的に行え、カーボンナノ構造物を高収率に連続生産することができる。
[0116] 本発明の第 20の形態によれば、前記触媒収容部に前記高圧ガスを瞬間的に噴き 付けることにより前記触媒収容部の触媒微粒子を浮遊させるので、前記触媒収容部 内の触媒微粒子の残量に関係なく効率よく強制的に吹き上げ、カーボンナノ構造物 の効率的連続生産に寄与する。
[0117] 本発明の第 21の形態によれば、前記触媒収容部に前記パルス状ガスを噴き付け ることにより前記触媒収容部の触媒微粒子を浮遊させるので、パルス状ガスのパルス 間隔等の供給制御により、各種触媒に応じて種々の浮遊状態を得るための浮遊制 御を簡易に行うことができ、カーボンナノ構造物の製造コストの低減に寄与する。
[0118] 本発明の第 22の形態によれば、前記ガスを間欠的に噴き付け、噴き付け停止状態 で浮遊触媒微粒子を静置して、粒子径の選択を行うので、前記静置時に浮遊微粒 子の沈降速度の違!、から、粒子径の異なる触媒微粒子の選択を精度よく行うことが でき、カーボンナノ構造物生産の高収率を実現することができる。
[0119] 本発明の第 23の形態によれば、前記粒子径の選択を行った後、前記触媒収容部 内に浮遊している触媒微粒子をキャリアガスにより前記反応炉に導入するので、前記 触媒搬送手段によって粒子径選択から前記反応炉に至る製造工程を連続化でき、 カーボンナノ構造物の高収率による量産化を実現できる。
[0120] 本発明の第 24の形態によれば、少なくとも前記ガス噴き付け時に前記触媒収容部 内のガスを前記反応炉と異なる領域に放出するので、前記反応炉の反応場に影響 を与えることなぐ前記触媒収容部内における粒子径選択を行え、前記反応炉に至 る製造工程の連続ィ匕を妨げることなぐ前記触媒収容部内の粒子径選択をして、力 一ボンナノ構造物の円滑な量産化に寄与する。
[0121] 本発明の第 25の形態によれば、前記ガスの間欠的供給時には前記ガス流路を通 じての前記キャリアガスの通気により前記反応炉内の圧力変動を緩和して、前記反 応炉の反応場に影響を与えることなぐ前記触媒収容部内における粒子径選択を行 え、前記反応炉に至る製造工程の連続ィ匕を妨げることなぐ前記触媒収容部内の粒 子径選択をして、カーボンナノ構造物の円滑な量産化に寄与する。

Claims

請求の範囲
[1] Inn!〜 300nmの線径を有した縮れ状のカーボンナノチューブであり、前記縮れ形 態は折曲点が不規則に入った立体形状であることを特徴とするカーボンナノ構造物
[2] 波長が 1. 54 Aの Cu固有 X線を照射したときに得られる回折プロファイルにおいて 、前記回折プロファイルがグラフアイト結晶の(002)反射に対応する最大ピークを有 し、この最大ピークのピーク位置が 2 Θで 23度〜 25度に存在し、前記最大ピークの 半価幅が 2 Θで 6度〜 8度である請求項 1に記載のカーボンナノ構造物。
[3] 前記縮れ状カーボンナノチューブが略 180度折れ曲がる場合には、 2点以上の折 曲点を有する請求項 1又は 2に記載のカーボンナノ構造物。
[4] 原料ガスと触媒微粒子を流動させながら反応炉で接触させてカーボンナノ構造物 を製造する製造装置において、前記触媒微粒子の粒子径を選択する選択手段と、こ の選択手段により選択された触媒微粒子を前記反応炉に供給する供給手段とを少 なくとも備えることを特徴とするカーボンナノ構造物の製造装置。
[5] 前記選択手段は前記触媒微粒子を浮遊させる浮遊手段を含む請求項 4に記載の カーボンナノ構造物の製造装置。
[6] 前記浮遊手段により前記触媒微粒子を浮遊させた後、前記浮遊手段の浮遊作用 を停止し、前記触媒微粒子を自由落下又は強制落下させて粒子径を選択する請求 項 5に記載のカーボンナノ構造物の製造装置。
[7] 前記供給手段は、前記選択された触媒微粒子を前記反応炉に定量的に搬送する 搬送手段からなる請求項 4に記載のカーボンナノ構造物の製造装置。
[8] キャリアガスにより前記原料ガス及び前記触媒微粒子を前記反応炉に供給するキ ャリアガス搬送手段を備え、前記キャリアガス搬送手段は前記反応炉内における圧 力変動が生じな 、ように前記キャリアガスを前記反応炉に導入する請求項 4〜7の 、 ずれかに記載のカーボンナノ構造物の製造装置。
[9] 前記浮遊手段が前記触媒収容部に高圧ガスを瞬間的に噴射する噴射手段からな り、前記噴射手段により前記高圧ガスを前記触媒収容部に瞬間的に噴き付けること により前記触媒収容部の触媒微粒子を浮遊させる請求項 5又は 6に記載のカーボン ナノ構造物の製造装置。
[10] 前記浮遊手段が前記触媒収容部にパルス状ガスを供給するパルス状ガス供給手 段力 なり、前記パルス状ガス供給手段により前記パルス状ガスを前記触媒収容部 に噴き付けることにより前記触媒収容部の触媒微粒子を浮遊させる請求項 5又は 6に 記載のカーボンナノ構造物の製造装置。
[11] 前記ガスの噴き付けが間欠的に行われ、噴き付け停止状態で浮遊触媒微粒子が 静置され、触媒微粒子の粒子径が選択される請求項 9又は 10の 、ずれかに記載の カーボンナノ構造物の製造装置。
[12] 前記粒子径の選択を行った後、前記触媒収容部内に浮遊している触媒微粒子を キャリアガスにより前記反応炉に導入する触媒搬送手段を含む請求項 11に記載の力 一ボンナノ構造物の製造装置。
[13] 前記触媒収容部に前記ガスを間欠的に噴き付けるとき、少なくとも噴き付け時に反 応炉内の圧力に影響を及ぼさな 、ために前記触媒収容部内のガスを前記反応炉と 異なる領域に放出する切換手段を含む請求項 11に記載のカーボンナノ構造物の製 造装置。
[14] 前記ガスを間欠的に供給するとき、キャリアガスを前記反応炉に通気して、前記反 応炉内の圧力変動を緩和する前記キャリアガスのガス流路を設けた請求項 13に記 載のカーボンナノ構造物の製造装置。
[15] 原料ガスと触媒微粒子を流動させながら反応炉で接触させてカーボンナノ構造物 を製造する製造方法にぉ ヽて、前記触媒微粒子を気相に浮遊させる浮遊工程と粒 子径を選択する粒子径選択工程を含み、この粒子径選択工程にお!ヽて選択された 触媒微粒子を前記反応炉に供給することを特徴とするカーボンナノ構造物の製造方 法。
[16] 前記選択工程において、前記触媒微粒子を浮遊させることにより粒子径を選択す る請求項 15に記載のカーボンナノ構造物の製造方法。
[17] 前記選択工程にお!、て、前記触媒微粒子を浮遊させた後、前記触媒微粒子の浮 遊作用を停止し、前記触媒微粒子を自由落下又は強制落下させて粒子径を選択す る請求項 15に記載のカーボンナノ構造物の製造方法。
[18] 前記選択された触媒微粒子を前記反応炉に定量的に搬送供給する請求項 15に 記載のカーボンナノ構造物の製造方法。
[19] キャリアガスにより前記原料ガス及び前記触媒微粒子を前記反応炉に供給し、前記 反応炉内における圧力変動が生じないように前記キャリアガスを前記反応炉に導入 する請求項 15〜18のいずれかに記載のカーボンナノ構造物の製造方法。
[20] 前記触媒収容部に前記高圧ガスを瞬間的に噴き付けることにより前記触媒収容部 の触媒微粒子を浮遊させる請求項 16又は 17に記載のカーボンナノ構造物の製造 方法。
[21] 前記触媒収容部に前記パルス状ガスを噴き付けることにより前記触媒収容部の触 媒微粒子を浮遊させる請求項 16又は 17に記載のカーボンナノ構造物の製造方法。
[22] 前記ガスを間欠的に噴き付け、噴き付け停止状態で浮遊触媒微粒子を静置して、 触媒微粒子の粒子径の選択を行う請求項 20又は 21のいずれかに記載のカーボン ナノ構造物の製造方法。
[23] 前記粒子径の選択を行った後、前記触媒収容部内に浮遊している触媒微粒子を キャリアガスにより前記反応炉に導入する請求項 22に記載のカーボンナノ構造物の 製造方法。
[24] 前記触媒収容部に前記ガスを間欠的に噴き付けるとき、少なくとも噴き付け時に前 記触媒収容部内のガスを前記反応炉と異なる領域に放出する請求項 22に記載の力 一ボンナノ構造物の製造方法。
[25] 前記ガスを間欠的に供給するとき、前記反応炉内の圧力変動を緩和するためにガ ス流路を通じてキャリアガスを前記反応炉に通気する請求項 24に記載のカーボンナ ノ構造物の製造方法。
PCT/JP2005/012909 2004-07-16 2005-07-13 触媒粒径制御式カーボンナノ構造物の製造方法、製造装置及びカーボンナノ構造物 WO2006013706A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US11/632,466 US20080063589A1 (en) 2004-07-16 2005-07-13 Production Method for Carbon Nano Structure of Catalyst Particle Diameter Control Mode, Production Device, and Carbon Nano Structure
EP05765739A EP1790613A4 (en) 2004-07-16 2005-07-13 METHOD OF CARBON NANOSTRUCTURE MANUFACTURING, CYLINDER CONTROL OF CATALYST PARTICLE DIAMETERS, MANUFACTURING DEVICE THEREFOR AND CARBON NANOSTRUCTURE
CNA2005800238269A CN101018737A (zh) 2004-07-16 2005-07-13 催化剂粒径控制式碳纳米结构物的制造方法、制造装置以及碳纳米结构物
JP2006531353A JPWO2006013706A1 (ja) 2004-07-16 2005-07-13 触媒粒径制御式カーボンナノ構造物の製造方法、製造装置及びカーボンナノ構造物
KR1020077002354A KR100887588B1 (ko) 2004-07-16 2005-07-13 촉매 입경 제어식 카본 나노구조물의 제조방법, 제조장치및 카본 나노구조물

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-209908 2004-07-16
JP2004209908 2004-07-16

Publications (1)

Publication Number Publication Date
WO2006013706A1 true WO2006013706A1 (ja) 2006-02-09

Family

ID=35787001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/012909 WO2006013706A1 (ja) 2004-07-16 2005-07-13 触媒粒径制御式カーボンナノ構造物の製造方法、製造装置及びカーボンナノ構造物

Country Status (6)

Country Link
US (1) US20080063589A1 (ja)
EP (1) EP1790613A4 (ja)
JP (1) JPWO2006013706A1 (ja)
KR (1) KR100887588B1 (ja)
CN (1) CN101018737A (ja)
WO (1) WO2006013706A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017057751A1 (ja) * 2015-10-01 2018-08-09 株式会社名城ナノカーボン カーボンナノチューブの製造装置および製造方法
WO2019216343A1 (ja) * 2018-05-11 2019-11-14 株式会社日清製粉グループ本社 微粒子の製造方法、及び微粒子の製造装置
JP2019210173A (ja) * 2018-06-01 2019-12-12 東洋インキScホールディングス株式会社 カーボンナノチューブ、カーボンナノチューブ分散液およびその利用
JP2020002007A (ja) * 2019-09-05 2020-01-09 東洋インキScホールディングス株式会社 カーボンナノチューブ分散液およびその利用
WO2021029212A1 (ja) * 2019-08-09 2021-02-18 学校法人早稲田大学 カーボンナノチューブの製造装置および製造方法
JP2021031321A (ja) * 2019-08-21 2021-03-01 D−Power株式会社 カーボンナノチューブ(cnt)製造に使用する材料の供給装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8119074B2 (en) * 2008-12-17 2012-02-21 Centro de Investigacion en Materiales Avanzados, S.C Method and apparatus for the continuous production of carbon nanotubes
KR101102814B1 (ko) 2008-12-22 2012-01-05 제일모직주식회사 탄소나노튜브 합성용 유동층 반응기, 그 제조방법 및 이를 통해 합성된 탄소나노튜브
JP6106086B2 (ja) * 2010-09-23 2017-03-29 インディアン インスティテュート オブ テクノロジー カーンプル カーボンナノファイバー/カーボンナノコイル被覆基材およびナノコンポジット
RU2490205C2 (ru) * 2011-03-04 2013-08-20 Общество с ограниченной ответственностью "НаноТехЦентр" Способ получения углеродных наноматериалов
GB201321440D0 (en) * 2013-12-05 2014-01-22 Q Flo Ltd Process
CN113957570B (zh) * 2021-11-23 2022-08-05 东华大学 一种制备多壁高纯碳纳米管纤维的装置及制备方法
US20240101427A1 (en) * 2022-09-27 2024-03-28 University Of Central Florida Research Foundation, Inc. Low temperature photochemical patterning of carbon nano- and microstructures
CN115770561B (zh) * 2022-10-20 2023-06-02 西北民族大学 一种脉冲浸涂式微通道纳米催化剂涂层的制备及应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03104927A (ja) * 1989-06-28 1991-05-01 Central Glass Co Ltd コイル状炭素繊維および炭素複合材料
JP2001526164A (ja) * 1997-12-08 2001-12-18 ナノグラム・コーポレーション 炭素製造用触媒
JP2003213530A (ja) * 2002-01-08 2003-07-30 Futaba Corp カーボンナノ繊維の製造方法及びその方法を用いて製造されたカーボンナノ繊維を用いた電子デバイス,二次電池又は燃料電池電極,水素吸蔵体,複合材及び電磁波吸収材。
JP2005232667A (ja) * 2003-08-26 2005-09-02 Showa Denko Kk 縮れ状炭素繊維とその製法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3491747B2 (ja) * 1999-12-31 2004-01-26 喜萬 中山 カーボンナノコイルの製造方法及び触媒
JP3585033B2 (ja) * 2000-04-29 2004-11-04 喜萬 中山 カーボンナノコイル生成用のインジウム・スズ・鉄系触媒の製造方法
JP3822806B2 (ja) * 2001-07-11 2006-09-20 喜萬 中山 カーボンナノコイルの量産方法
JP2003137519A (ja) * 2002-10-21 2003-05-14 National Institute Of Advanced Industrial & Technology カーボンナノチューブ製造用触媒分散液及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03104927A (ja) * 1989-06-28 1991-05-01 Central Glass Co Ltd コイル状炭素繊維および炭素複合材料
JP2001526164A (ja) * 1997-12-08 2001-12-18 ナノグラム・コーポレーション 炭素製造用触媒
JP2003213530A (ja) * 2002-01-08 2003-07-30 Futaba Corp カーボンナノ繊維の製造方法及びその方法を用いて製造されたカーボンナノ繊維を用いた電子デバイス,二次電池又は燃料電池電極,水素吸蔵体,複合材及び電磁波吸収材。
JP2005232667A (ja) * 2003-08-26 2005-09-02 Showa Denko Kk 縮れ状炭素繊維とその製法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
KICHAMBARE P.D. ET AL: "Thin film metallic catalyst coatings for the growth of multiwalled carbon nanotubes by pyrolysis of xylene", CARBON, vol. 40, 2002, pages 1903 - 1909, XP004371640 *
PAN L. ET AL: "Fe-In-Sn-O Kongo Shokubai de Sakusei shita Carbon Nonocoil no Denkai Hoshutsu Tokusei", JAPAN HARCOPY 2003 RONBUNSHU, 2003, pages 143 - 146, XP003006485 *
QIAN W. ET AL: "Effect of adding nickel to iron-alumina catalysts on the morphology of as-grown carbon nanotubes", CARBON, vol. 41, 2003, pages 2487 - 2493, XP004458776 *
QIN Y. ET AL: "Helical carbon nanofibers prepared by pyrolysis of acetylene with a catalyst derived from the decomposition of copper tartrate", CARBON, vol. 41, 2003, pages 3063 - 3074, XP004470649 *
See also references of EP1790613A4 *
THE SOCIETY OF CHEMICAL ENGINEERS, JAPAN, CHEMICAL ENGINEERING OF JAPAN BENRAN, 25 February 1999, pages: 856 - 861, XP003006486 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019064918A (ja) * 2015-10-01 2019-04-25 株式会社名城ナノカーボン カーボンナノチューブの製造装置および製造方法
JPWO2017057751A1 (ja) * 2015-10-01 2018-08-09 株式会社名城ナノカーボン カーボンナノチューブの製造装置および製造方法
JPWO2019216343A1 (ja) * 2018-05-11 2021-07-08 株式会社日清製粉グループ本社 微粒子の製造方法、及び微粒子の製造装置
WO2019216343A1 (ja) * 2018-05-11 2019-11-14 株式会社日清製粉グループ本社 微粒子の製造方法、及び微粒子の製造装置
US12037250B2 (en) 2018-05-11 2024-07-16 Nisshin Seifun Group Inc. Microparticle production method and microparticle production apparatus
JP7216082B2 (ja) 2018-05-11 2023-01-31 株式会社日清製粉グループ本社 微粒子の製造方法、及び微粒子の製造装置
JP2019210173A (ja) * 2018-06-01 2019-12-12 東洋インキScホールディングス株式会社 カーボンナノチューブ、カーボンナノチューブ分散液およびその利用
US11286164B2 (en) 2018-06-01 2022-03-29 Toyo Ink Sc Holdings Co., Ltd. Carbon nanotube, carbon nanotube dispersion, and use thereof
JP7158646B2 (ja) 2019-08-09 2022-10-24 学校法人早稲田大学 カーボンナノチューブの製造装置および製造方法
CN114174220A (zh) * 2019-08-09 2022-03-11 学校法人早稻田大学 碳纳米管的制造装置和制造方法
JP2021028284A (ja) * 2019-08-09 2021-02-25 学校法人早稲田大学 カーボンナノチューブの製造装置および製造方法
WO2021029212A1 (ja) * 2019-08-09 2021-02-18 学校法人早稲田大学 カーボンナノチューブの製造装置および製造方法
CN114174220B (zh) * 2019-08-09 2023-06-30 学校法人早稻田大学 碳纳米管的制造装置和制造方法
JP2021031321A (ja) * 2019-08-21 2021-03-01 D−Power株式会社 カーボンナノチューブ(cnt)製造に使用する材料の供給装置
JP7088150B2 (ja) 2019-09-05 2022-06-21 東洋インキScホールディングス株式会社 カーボンナノチューブ分散液およびその利用
JP2020002007A (ja) * 2019-09-05 2020-01-09 東洋インキScホールディングス株式会社 カーボンナノチューブ分散液およびその利用

Also Published As

Publication number Publication date
EP1790613A1 (en) 2007-05-30
US20080063589A1 (en) 2008-03-13
CN101018737A (zh) 2007-08-15
JPWO2006013706A1 (ja) 2008-07-31
EP1790613A4 (en) 2009-05-27
KR100887588B1 (ko) 2009-03-10
KR20070062968A (ko) 2007-06-18

Similar Documents

Publication Publication Date Title
WO2006013706A1 (ja) 触媒粒径制御式カーボンナノ構造物の製造方法、製造装置及びカーボンナノ構造物
CA2559070C (en) Single, multi-walled, functionalized and doped carbon nanotubes and composites thereof
Hong et al. Controlling the growth of single-walled carbon nanotubes on surfaces using metal and non-metal catalysts
JP4678687B2 (ja) カーボンナノ構造物の製造方法及び同製造装置
EP1904670B1 (en) Methods for growing and harvesting carbon nanotubes
Qin CVD synthesis of carbon nanotubes
JP3491747B2 (ja) カーボンナノコイルの製造方法及び触媒
US7651668B2 (en) Production method and production device for carbon nano structure
JP5574264B2 (ja) カーボンナノチューブ配向集合体生産用基材及びカーボンナノチューブ配向集合体の製造方法
Rakov Materials made of carbon nanotubes. The carbon nanotube forest
KR20120002980A (ko) 탄소 나노튜브를 섬유에 주입하기 위한 수직로의 사용 방법 및 장치
WO2004085309A1 (ja) カーボンナノ構造物の高効率合成方法、装置及びカーボンナノ構造物
KR20080111534A (ko) 유동층에서 탄소 나노튜브를 제조하는 방법
JP2004517789A (ja) 高温一酸化炭素気体からの単層カーボンナノチューブの結晶核形成および成長
KR100875861B1 (ko) 카본 나노 코일 제조용 촉매, 그 제조방법 및 카본 나노 코일 제조방법
WO2013081499A2 (en) Method and apparatus for producing long carbon nanotubes
Shukrullah et al. Mass production of carbon nanotubes using fluidized bed reactor: A short review
JP5364904B2 (ja) カーボンナノファイバー集合体の製造方法
Sehrawat et al. Floating catalyst chemical vapour deposition (FCCVD) for direct spinning of CNT aerogel: A review
JP5802992B2 (ja) 湿式触媒を用いた配向cnt製造方法
An et al. Controllable synthesis of carbon nanotubes
JP2003081617A (ja) カーボンナノチューブの製造方法およびその製造装置
JP4674355B2 (ja) 原料吹き付け式高効率カーボンナノ構造物製造方法及び装置
JP2009018953A (ja) カーボンナノ構造物の製造方法およびカーボンナノ構造物の製造装置
WO2003066521A1 (fr) Procede et appareil de production d&#39;une fine matiere carbonee

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006531353

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200580023826.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077002354

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2005765739

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005765739

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11632466

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 11632466

Country of ref document: US