WO2006013695A1 - 炭酸ガス吸収材、それを用いた炭酸ガス分離方法、および炭酸ガス分離装置 - Google Patents

炭酸ガス吸収材、それを用いた炭酸ガス分離方法、および炭酸ガス分離装置 Download PDF

Info

Publication number
WO2006013695A1
WO2006013695A1 PCT/JP2005/012420 JP2005012420W WO2006013695A1 WO 2006013695 A1 WO2006013695 A1 WO 2006013695A1 JP 2005012420 W JP2005012420 W JP 2005012420W WO 2006013695 A1 WO2006013695 A1 WO 2006013695A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
absorbent
gas
substance
temperature
Prior art date
Application number
PCT/JP2005/012420
Other languages
English (en)
French (fr)
Inventor
Yoshinori Saito
Yukio Sakabe
Original Assignee
Murata Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co., Ltd. filed Critical Murata Manufacturing Co., Ltd.
Priority to JP2006531333A priority Critical patent/JP3938212B2/ja
Priority to EP05765471A priority patent/EP1852179A4/en
Publication of WO2006013695A1 publication Critical patent/WO2006013695A1/ja
Priority to US11/670,552 priority patent/US7670410B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0211Compounds of Ti, Zr, Hf
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/006Alkaline earth titanates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/76Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by a space-group or by other symmetry indications
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/88Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by thermal analysis data, e.g. TGA, DTA, DSC
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S502/00Catalyst, solid sorbent, or support therefor: product or process of making
    • Y10S502/525Perovskite

Definitions

  • Carbon dioxide absorber Carbon dioxide separation method using the same, and carbon dioxide separator
  • the present invention relates to a carbon dioxide absorbent that can be used repeatedly by absorbing carbon dioxide under a high temperature condition and releasing and regenerating the carbon dioxide absorbed under a predetermined condition.
  • the present invention relates to a carbon dioxide separation method using carbon dioxide and a carbon dioxide separation apparatus.
  • a multilayer ceramic electronic component such as a multilayer ceramic capacitor is usually obtained by molding a ceramic slurry mainly composed of a dielectric raw material powder such as sodium titanate into a sheet shape, and then obtaining the obtained ceramic green sheet (dielectric). Printed on the body sheet), punched out the necessary parts, and laminated.
  • the unnecessary part after punching out the ceramic green sheet may be recovered and reused as a ceramic raw material.
  • the dielectric of the dielectric obtained after firing Reuse may be restricted due to the fact that the characteristics may vary and the electrode components printed on the ceramic green sheet may become impurities and adversely affect the characteristics.
  • waste of titanate ceramic material mainly composed of barium titanate is generated, and an effective recycling method has been studied.
  • lithium silicate has a problem in that the strength of the absorbent material is reduced by stress due to repeated use in which the volume change during absorption and desorption of carbon dioxide gas is large.
  • lithium silicate (Li SiO 2) reacts with carbon dioxide as shown in chemical formula (1) below.
  • the carbon dioxide gas is absorbed at a high temperature exceeding 500 ° C.
  • Patent Document 1 Japanese Patent Laid-Open No. 2000-262890
  • the present invention solves the above-described problems, and can absorb carbon dioxide in a temperature range of about 500 ° C or higher, and it has little expansion when carbon dioxide is absorbed and has excellent durability.
  • Another object of the present invention is to provide a carbon dioxide absorbent, a carbon dioxide separation method using the same, and a carbon dioxide separator.
  • the carbon dioxide gas absorbent of the present invention includes a component substance X, which is at least one of Sr and Ba, and Ti, in a molar ratio (XZTi): 1 It is characterized by having as a main component a complex oxide containing 8 to 2.2.
  • the component substance X which is at least one of Sr and Ba, and Ti are mixed at a molar ratio (XZTi): 0.9 to 1.1.
  • XZTi molar ratio
  • it is characterized in that it is obtained by firing a material whose main crystal structure is a pebskite structure in the presence of at least one of strontium carbonate and barium carbonate.
  • the component substance X which is at least one of Sr and Ba, and Ti are mixed in a molar ratio (XZTi): 0.9 to 1.1.
  • XZTi molar ratio
  • the main component of which is a substance whose main crystal structure is a perovskite structure Is obtained by firing in the presence of at least one of strontium carbonate and barium carbonate.
  • a part of the component substance X is substituted with Ca.
  • the ratio of Ca to X is 1.0 or less in terms of molar ratio (CaZX).
  • the carbon dioxide absorbent of claim 5 comprising the component substance X, which is at least one of Sr and Ba, Ca, and Ti, a substance whose main crystal structure is a perovskite structure, It is obtained by firing in the presence of at least one of calcium carbonate, strontium carbonate and barium carbonate.
  • a part of the Ti is substituted with Zr, and the ratio of Zr to Ti is 0.25 or less in terms of molar ratio (ZrZTi).
  • the carbon dioxide absorbent of claim 7 is characterized in that an apparent specific surface area is 0.25 m 2 Zg or more.
  • the carbon dioxide absorbent of claim 8 is a pellet-like carbon dioxide absorbent, which is formed into a pellet and then fired at 1000 to L at 100 ° C. It is said.
  • the carbon dioxide separation method of the present invention includes:
  • the carbon dioxide absorbed by the carbon dioxide absorbent is
  • a carbon dioxide absorption mechanism that makes carbon dioxide absorb the carbon dioxide by contacting with an air stream containing carbon dioxide under the conditions of A carbon dioxide absorbent that absorbs carbon dioxide in contact with an air stream containing carbon dioxide, pressure: under reduced pressure below lOOOPa,
  • a carbon dioxide release mechanism that releases carbon dioxide by heating under the conditions of
  • the carbon dioxide absorbent of the present invention (Claim 1) is composed of a component substance X, which is at least one of Sr and Ba, and Ti, in a molar ratio (XZTi): 1. 8 to 2.2.
  • the main component is a composite oxide containing, and specific substances are represented by the general formula: Ba TiO and the general formula: Sr TiO.
  • the carbon dioxide absorbent of the present invention may contain impurities such as Mg, Si, Mn, Na and Ni as impurities, and may further contain rare earth such as Dy as impurities.
  • the carbon dioxide absorbent (for example, Ba TiO 3) of the present invention is, for example, a barium titanate.
  • BaTiO 3 is calcined in the presence of barium carbonate (BaCO 3) and is expressed by the following chemical formula (2).
  • the substance represented by Ba TiO has the reaction of the following chemical formula (3) under specific conditions.
  • the carbon dioxide absorbing material of the present invention absorbs and releases carbon dioxide using the reactions of the chemical formulas (3) and (4).
  • the carbon dioxide absorbent of the present invention absorbs carbon dioxide at a high temperature of 500 to 900 ° C, particularly in the range of pressure: 1. OX 10 4 to 1. OX 10 6 Pa, particularly near normal pressure. Have the ability to
  • the carbon dioxide absorbing material of the present invention that has absorbed carbon dioxide releases carbon dioxide under the conditions of pressure: lOOOPa or lower, temperature: 750 ° C or higher, and is regenerated into Ba TiO Sr TiO, etc.
  • the carbon dioxide gas absorbent according to claim 2 contains component substance X, which is at least one of Sr and Ba, and Ti in a molar ratio (XZTi): 0.9 to 1.1. Obtained by calcining a substance whose main crystal structure is a perovskite structure in the presence of at least one of strontium carbonate and barium carbonate, and by the reaction represented by the above chemical formula (2). It is a material that is easily and reliably manufactured. Therefore, it is possible to economically provide a substance having the effect exhibited by the carbon dioxide gas absorbing material according to the invention of claim 1.
  • component substance X which is at least one of Sr and Ba
  • Ti in a molar ratio (XZTi): 0.9 to 1.1. Obtained by calcining a substance whose main crystal structure is a perovskite structure in the presence of at least one of strontium carbonate and barium carbonate, and by the reaction represented by the above chemical formula (2). It is a material that is easily and reliably manufactured
  • the carbon dioxide gas absorbent of the present invention is a molar ratio (XZTi): 0.9 to the component substance X, which is at least one of Sr and Ba, and Ti.
  • X which is at least one of Sr and Ba
  • Green sheets, green sheet waste materials, green sheet laminate waste materials, and green sheets used in the manufacturing process of electronic components which are mainly composed of substances whose main crystal structure is the velovskite structure. At least one of the precursors can be obtained by calcination in the presence of at least one of strontium carbonate and barium carbonate.
  • a substance containing the component substance X which is at least one of Sr and Ba, and Ti in a molar ratio (XZTi): 0.9 to 1.1, and the main crystal structure of which is a perovskite structure (Eg, BaTi 2 O 3) is at least one of strontium carbonate and barium carbonate (BaCO 3) as described above.
  • It may contain impurities such as Mg, Si, Mn, Na, and Ni, and it may contain rare earth such as Dy as impurities.
  • the green sheet is composed mainly of, for example, BaTiO, and a binder or the like.
  • the added slurry is formed into a sheet, and is used as a raw material for manufacturing the carbon dioxide absorbent of the present invention when it is manufactured for the manufacture of electronic components but is no longer needed. can do.
  • the green sheet waste material is an unnecessary sheet after a necessary portion is taken out from the green sheet, and these are preferably used as a raw material for producing the carbon dioxide absorbent of the present invention. be able to.
  • the green sheet laminate waste material is, for example, an unfired laminate waste material obtained by laminating and pressing the green sheet printed with the electrode material, and these also absorb carbon dioxide gas of the present invention. It can utilize suitably as a raw material at the time of manufacturing a material.
  • the green sheet precursor is, for example, a method in which BaTiO is separated into a dispersant together with a binder.
  • Such as dispersed ceramic slurry or BaTiO prepared for dispersion in a dispersant Such as dispersed ceramic slurry or BaTiO prepared for dispersion in a dispersant.
  • a part of the component substance X is also replaced with Ca.
  • the ratio of Ca to X is 1.0 or less in terms of molar ratio (CaZX), it can be effectively used as a carbon dioxide absorbent. In other words, up to 1Z2 (molar ratio) of X can be substituted with Ca.
  • the ratio of Ca to X exceeds 1.0 in terms of molar ratio (CaZX) because the ratio of Ca Ti 2 O having substantially no carbon dioxide absorption performance increases.
  • the value of the component substance X in the case where X is partially substituted with Ca means X before being substituted with Ca.
  • the molar ratio (XZTi) between component substance X and Ti is considered to be 1.8 to 2.2.
  • a substance containing at least one of the constituent substances X, Ca, and Ti, the main crystal structure of which is a perovskite structure, is Sr and Ba.
  • a portion of X is replaced by Ca, and the ratio of Ca to X is the mole ratio (CaZX) Therefore, it is possible to obtain a substance effective as a carbon dioxide absorbing material that is 1.0 or less.
  • the ratio of Zr to Ti exceeds 0.25 in terms of molar ratio (ZrZTi)
  • the ratio of Ba ZrO which has a high carbon dioxide gas release temperature, is not preferable.
  • an apparent specific surface area should be 0.25 m 2 / g or more. In this case, it is possible to obtain a high carbon dioxide absorption rate, and to suppress the occurrence of cracks due to volume expansion and contraction when the absorption and release of carbon dioxide gas are repeated. It becomes possible to improve.
  • the porosity when the apparent specific surface area is 0.25 m 2 / g is about 20%. Considering that the shape of the material is irregular, it is possible to provide a carbon dioxide gas absorbent with stable characteristics by measuring with an apparent specific surface area rather than porosity. 3 ⁇ 4 "Oh.
  • the carbon dioxide absorption performance can be further improved.
  • the carbon dioxide absorbent of the present invention is more stable in terms of heat compared to, for example, a lithium silicate-based carbon dioxide absorbent, but the absorptance changes depending on the sintered state. There is a case.
  • the carbon dioxide separation method of the present invention uses the carbon dioxide absorbent according to any one of Claims 1 to 8, and pressure: 1. OX 10 4 to l. OX 10 6 Pa, temperature: the process of absorbing carbon dioxide under the condition of 500-900 ° C, and the carbon dioxide absorbed by the carbon dioxide absorbent, pressure: lOOOPa or less, temperature: 750 ° C or more This process is used to efficiently absorb carbon dioxide at high temperatures and release the absorbed carbon dioxide (regeneration of carbon dioxide absorbent). This makes it possible to separate carbon dioxide gas at high temperatures economically and efficiently.
  • carbon dioxide is released (desorbed) under a reduced pressure of a pressure of lOOOPa or less, so that a high concentration of carbon dioxide can be recovered.
  • the carbon dioxide separator according to the present invention uses the carbon dioxide absorbent according to any one of Claims 1 to 8 at a pressure of 1.0 x 10 4 to 1.0 x. 10 6 Pa, temperature: 500-900 ° C Under the conditions, a carbon dioxide absorption mechanism that allows carbon dioxide gas to be absorbed by the carbon dioxide absorber by contacting with a gas stream containing carbon dioxide, and a carbon dioxide absorber that absorbs carbon dioxide by contacting the gas stream containing carbon dioxide.
  • FIG. 1 is a diagram showing the results of examining the crystal phase of a carbon dioxide absorbent material according to an example (Example 1) of the present invention by X-ray diffraction analysis.
  • FIG. 2 is a diagram showing a test apparatus used for examining the carbon dioxide absorption performance (reaction rate with carbon dioxide) for the carbon dioxide absorbent used in the example of the present invention (Example 1). .
  • FIG. 3 is a graph showing the relationship between the carbon dioxide absorption performance (reaction rate with carbon dioxide) and the temperature investigated for the carbon dioxide absorbent that works on the example of the present invention (Example 1).
  • FIG. 4 is a view showing a test apparatus used for investigating carbon dioxide gas release performance (carbon dioxide gas release rate) for a carbon dioxide gas absorbent material according to an example (Example 1) of the present invention.
  • FIG. 5 is a graph showing the relationship between the carbon dioxide release performance (carbon dioxide release rate) and the temperature investigated for the carbon dioxide absorbent that works on the example of the present invention (Example 1).
  • FIG. 6 shows the results of TG-DTA analysis performed on the first carbon dioxide absorbent of Example 1.
  • FIG. 7 is a diagram showing a schematic configuration of a carbon dioxide gas separating apparatus which is related to an embodiment (Example 3) of the present invention.
  • FIG. 6 is a diagram showing a chart of TG-DTA analysis of samples Nos. 12, 13, and 14 fired with C.
  • FIG. 9 The relationship between the specific surface area and the maximum amount of carbon dioxide absorbed in the carbon dioxide absorbent obtained in Example 4, and the carbon dioxide absorbent obtained in Example 5
  • FIG. 6 is a diagram showing the relationship between the specific surface area and the maximum absorption amount of carbon dioxide gas examined. Explanation of symbols
  • the obtained powder was fired at 1200 ° C for 2 hours to obtain a carbon dioxide gas absorbent (ceramic powder) mainly composed of BaTiO.
  • Ba (Ti) is a substance containing Ba and Ti in a molar ratio (BaZ Ti): 0.99 to: L 01, and the main crystal structure is a perovskite structure (BaTiO). Unnecessary parts after removing necessary parts from the green sheet
  • Green sheet is degreased at 500 ° C and ceramic powder with BaTiO content of 87%
  • This ceramic powder mainly contains Ca, Zr, Si, and Na oxides in the balance.
  • BaCO was added to the ceramic powder in an amount such that the molar ratio of BaTiO and BaCO was lZl, and water was further added. The mixture was mixed for 2 hours in a ball mill.
  • this carbon dioxide absorber is composed of Ba TiO monoclinic crystal and Ba TiO orthorhombic crystal.
  • the first carbon dioxide absorbent and the second carbon dioxide absorbent prepared as described above were examined for carbon dioxide absorption performance using a test apparatus as shown in FIG. 2, and carbon dioxide was absorbed.
  • the carbon dioxide gas release characteristics of the later carbon dioxide gas absorbent were investigated.
  • the test apparatus of FIG. 2 uses a tube furnace, and is composed of carbon dioxide (CO) and nitrogen gas (N
  • the temperature can be controlled in the range from room temperature to 1300 ° C.
  • both the first carbon dioxide absorbent and the second carbon dioxide absorbent absorb carbon dioxide at about 500 ° C, with an absorption peak around 700 ° C. Yes, it was confirmed to show superior adsorption performance up to around 900 ° C [0050] From this result, it is certain that the first and second carbon dioxide absorbents exhibit carbon dioxide absorbent performance in the range of 500 to 900 ° C, that is, can be used as carbon dioxide absorbents. i3 ⁇ 4.
  • the carbon dioxide absorbent 3 is disposed in the center of the gas absorption pipe 1, and a mixed gas of carbon dioxide and nitrogen gas is heated every minute while the inside of the gas absorption pipe 1 is heated to a predetermined temperature by the heater 2.
  • a mixed gas of carbon dioxide and nitrogen gas is heated every minute while the inside of the gas absorption pipe 1 is heated to a predetermined temperature by the heater 2.
  • the carbon dioxide gas release rate (reaction rate) in FIG. 5 is obtained based on the above equation (a), and the carbon dioxide absorption reaction rate obtained in equation (a) is 1.
  • the release rate (reaction rate) in Fig. 5 becomes 0 and absorbed!
  • the release rate (reaction rate) is -1.0.
  • both the first and second carbon dioxide absorbents have the same tendency with respect to the release of carbon dioxide, and carbon dioxide is efficiently used at a temperature of 750 ° C or higher. It was confirmed that it could be released well.
  • the carbon dioxide release characteristics were examined at a pressure of lOOPa.
  • carbon dioxide can be released efficiently by releasing (desorbing) carbon dioxide under a reduced pressure of less than lOOOPa.
  • Example 1 carbon dioxide is used as a raw material from BaTiO powder and unnecessary green sheets.
  • the green sheet itself in a state of being treated, or a green sheet coated with a conductive paste, a green sheet precursor (for example, a cell in which BaTiO is dispersed in a dispersant together with a binder).
  • a green sheet precursor for example, a cell in which BaTiO is dispersed in a dispersant together with a binder.
  • 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 was blended in the proportions (molar ratio) as shown in Table 1 and mixed for 2 hours with a ball mill.
  • the first carbon dioxide absorbent of Example 1 that is, the molar ratio of BaTiO and BaCO is 1 with respect to BaTiO powder.
  • thermogravimetric analysis differential thermal analysis
  • FIG. 6 shows the results of TG-DTA analysis performed on the first carbon dioxide absorbent of Example 1 above.
  • the volume ratio of CO and N in the atmospheric gas is CO: 20 and N: 80.
  • Example 1 The weight of the first carbon dioxide absorbent in Example 1 above (Sample A in Tables 1 and 2) increased by absorption of carbon dioxide from 618 ° C, and when it reached 1021 ° C or higher, Release reduces weight and returns to original weight.
  • the maximum value of TG indicates the maximum absorption amount of carbon dioxide gas. Therefore, in the case of a substance that can be effectively used as a carbon dioxide gas absorbent by this method, the weight change due to the absorption and release of carbon dioxide gas. Can be confirmed.
  • Table 2 shows a composite oxide produced by the method of Example 2 (sample Nos. 1 to 10) and the first carbon dioxide absorbent (Example 1) of Example 1 by TG-DTA analysis.
  • the carbon dioxide absorption start temperature, the carbon dioxide release start temperature, and the maximum carbon dioxide absorption (TG maximum value) investigated for sample A) in Table 2 are shown.
  • the carbon dioxide gas release requires treatment at a high temperature of 900 ° C or higher, but the carbon dioxide gas release temperature can be reduced by reducing the pressure of the reaction system. Can be reduced.
  • BaTiO powder, SrTiO powder, and CaTiO powder are used as raw materials.
  • BaTiO, SrTiO, CaTiO, etc. are used as a raw material, and a binder is used as the raw material.
  • impurities such as Mg, Si, Mn, Na, and Ni and rare earth such as Dy are included as impurities, but it is confirmed that the same effects as in the case of each sample in Table 2 can be obtained. Has been.
  • Fig. 7 is a diagram showing a schematic configuration of a carbon dioxide gas separating apparatus according to an embodiment of the present invention.
  • This carbon dioxide separator absorbs and separates carbon dioxide in combustion exhaust gas (carbon dioxide-containing gas) with the carbon dioxide absorbent according to the present invention, and then absorbs the carbon dioxide.
  • a carbon dioxide separator that releases and recovers the exhaust gas, and includes a switching valve 10 that switches the flow of combustion exhaust gas, and two mechanisms A and B that function as a carbon dioxide absorption mechanism and a carbon dioxide release mechanism. ing.
  • FIG. 7 shows a state in which the switching valve 10 is set so that carbon dioxide-containing gas (raw material gas) is supplied to the left-hand mechanism part A, and the left-hand mechanism part A is shown. Shows a state in which the right side functions as a carbon dioxide absorbing mechanism, and the right mechanism B functions as a carbon dioxide releasing mechanism that releases carbon dioxide.
  • Each mechanism part A and B includes a container 11, a heater 12, and a carbon dioxide gas absorbent (first carbon dioxide absorbent of Example 1) 3 according to the present invention filled in the container 11. It has.
  • Acid gas absorption mechanism part A absorbs carbon dioxide gas.
  • the outlet side force of the container 11 is also sucked in vacuum, the pressure is reduced to a pressure of lOOOPa or less (for example, lOOPa), and the carbonic acid in the container 11 is heated by the heater 12.
  • lOOOPa a pressure of lOOOPa or less
  • the carbonic acid in the container 11 is heated by the heater 12.
  • carbon dioxide release reaction of carbon dioxide absorbent that has absorbed carbon dioxide is expressed by the following chemical formula (4).
  • the changeover valve is configured so that combustion exhaust gas is supplied to the right mechanism section B. 10 is switched, combustion exhaust gas is supplied to mechanism B, and carbon dioxide is absorbed by carbon dioxide absorbent 3 filled in mechanism B (carbon dioxide absorption mechanism) B.
  • mechanism part A vacuum suction is performed from the outlet side of container 11, the pressure is reduced to a reduced pressure state (for example, lOOPa) of lOOOPa or less, and carbon dioxide gas that has absorbed carbon dioxide in container 11 by heater 12 is used.
  • the absorbent 3 is heated to 850 ° C. to release carbon dioxide from the carbon dioxide absorbent 3, and the released carbon dioxide is recovered and the carbon dioxide absorbent 3 that has absorbed carbon dioxide is regenerated.
  • each mechanism part A and B force is switched by providing a switching valve. This can be done easily.
  • Example 3 the charcoal required to absorb lmol of carbon dioxide (CO).
  • the weight of the acid gas absorbent was 386 g and the volume was 83 mL.
  • the first carbon dioxide absorbent of Example 1 is 20 vol% under the conditions of pressure: normal pressure and temperature: about 700 ° C.
  • Carbon dioxide gas is absorbed by the carbon dioxide absorber by contacting with the combustion exhaust gas, and the carbon dioxide absorber that has absorbed the carbon dioxide gas is heated at a predetermined temperature (850 ° C) under reduced pressure (lOOPa), Since carbon dioxide gas is released, the carbon dioxide absorption mechanism section reliably absorbs carbon dioxide gas at high temperatures, and the carbon dioxide release mechanism section releases the absorbed carbon dioxide gas (carbon dioxide absorber).
  • the carbon dioxide gas can be separated and recovered at high temperature economically, stably and efficiently.
  • Example 3 the mechanism part A and the mechanism part B are installed in parallel, the flow of combustion exhaust gas is switched by the switching valve 10, and the mechanism part A and the mechanism part B alternately turn into a carbon dioxide absorption mechanism.
  • the carbon dioxide gas release mechanism and the carbon dioxide gas release mechanism are configured as dedicated mechanisms with different structures.
  • the absorption mechanism can be configured to absorb only carbon dioxide, and the carbon dioxide release mechanism can be configured to only release carbon dioxide. In that case, it is necessary to refill the carbon dioxide absorbent as appropriate.
  • the amount of BaCO added to the BaTiO and BaCO molar ratio is lZl.
  • the mixture obtained as described above was dried at 120 ° C. for 10 hours, Granulation was performed to obtain a spherical granule having a particle diameter of 2 to 5 mm.
  • the spherical granulated material is degreased at 500 ° C. for 2 hours, and then calcined at a predetermined temperature in the range of 1000 to 1200 ° C. for 2 hours, and a carbon dioxide gas absorbent containing Ba TiO as a main component.
  • the obtained carbon dioxide absorbing material was examined for the non-surface area, the maximum amount of carbon dioxide absorbed, and the occurrence of cracks after carbon dioxide absorption.
  • the maximum absorption of carbon dioxide is the maximum value of TG in TG-DTA analysis, measured under the conditions of a temperature increase of 10 ° CZmin and a CO concentration of 20%.
  • the crack state after carbon dioxide absorption is the result of observing the sample after carbon dioxide absorption with a microscope (500 times).
  • FIG. 4 is a diagram showing a chart of TG-DTA analysis of samples Nos. 12, 13, and 14 fired with C.
  • Unnecessary part (unnecessary green sheet) after removing necessary part from green sheet mainly composed of 3 was degreased at 500 ° C to produce ceramic powder with 87% BaTiO content
  • This ceramic powder contains mainly oxides of Ca, Zr, Si and Na in the balance.
  • the mixture was mixed for 2 hours in a ball mill. Then, the mixture obtained as described above was dried at 120 ° C. for 10 hours, and then granulated with a binder, to obtain spherical granules having a particle diameter of 2 to 5 mm.
  • the obtained granulated material is degreased at 500 ° C. for 2 hours, and then calcined at a predetermined temperature in the range of 1000 to 1200 ° C. for 2 hours to obtain a carbon dioxide absorbent mainly composed of Ba TiO. Obtained. [0090] Then, the obtained carbon dioxide absorbent was examined for the non-surface area, the maximum amount of carbon dioxide absorbed, and the occurrence of cracks after carbon dioxide absorption.
  • the amount of charge in the sheath in Table 4 indicates the amount of charge of the granule to the heat treatment sheath used at the time of firing.
  • Example 4 As shown in Table 4, as in Example 4, when the firing temperature was 1150 ° C or higher (Sample Nos. 24, 25 and 29), the specific surface area decreased and the maximum absorption of carbon dioxide gas was observed. It was confirmed that the amount decreased.
  • the obtained carbon dioxide absorbent ie, sample numbers 21, 22, 23, Samples 26, 27, and 28 (carbon dioxide absorber) have a large specific surface area and maximum absorption of carbon dioxide, and no cracks are observed after carbon dioxide absorption. It is important to have a special characteristic.
  • FIG. 9 shows the relationship between the specific surface area and the maximum amount of carbon dioxide absorbed in the carbon dioxide absorbent obtained in Example 4 above, and the carbon dioxide absorbent obtained in Example 5 above.
  • FIG. 5 is a graph showing the relationship between the specific surface area and the maximum carbon dioxide absorption amount investigated.
  • any of the carbon dioxide absorbents of Examples 4 and 5 when the specific surface area was less than 0.25 m 2 / g, the maximum absorption rate of carbon dioxide gas was reduced, and the specific surface area was 0.25 mVg or more. I want to do it.
  • a carbon dioxide gas absorbent (Ba TiO 2) having an average particle diameter of 2 mm, which corresponds to the first carbon dioxide absorbent of Example 1 above.
  • the nitrogen gas inlet temperature was controlled to 750 ° C.
  • a gas containing sulfur dioxide in the proportion of lOOppm in carbon dioxide is circulated at a rate of INLZh (the concentration of carbon dioxide is 5 mol%) to absorb carbon dioxide. Went.
  • concentration of sulfur dioxide and sulfur in the resulting gas was Oppm.
  • the carbon dioxide gas was absorbed by supplying a carbon dioxide gas containing sulfur dioxide at a rate of lOOppm in the same manner as in Example 6. During the carbon dioxide absorption operation, the sulfur dioxide concentration in the gas discharged from the carbon dioxide absorber became Oppm.
  • a carbon dioxide gas absorbent (Ba TiO 2) having an average particle diameter of 2 mm, which corresponds to the first carbon dioxide absorbent of Example 1 above.
  • the nitrogen gas inlet temperature was controlled to 750 ° C.
  • the present invention is not limited to the above-described embodiments.
  • the ratio of component substances X and Ti, which are at least one of Sr and Ba, contained in the carbon dioxide absorbent, and the carbon dioxide absorption conditions can be made within the scope of the invention regarding the release conditions, the specific configuration of the carbon dioxide absorption mechanism and carbon dioxide release mechanism constituting the carbon dioxide separator, etc. It is.
  • the carbon dioxide absorbent of the present invention comprises component substance X, which is at least one of Sr and Ba, and Ti. , Molar ratio (XZTi): 1.
  • the main component is a composite oxide containing a ratio of 8 to 2.2. It absorbs and absorbs carbon dioxide in a temperature range of about 500 ° C or higher.
  • the carbon dioxide gas can be efficiently released under conditions of pressure: 1000 Pa or lower and temperature: 750 ° C. or higher. Therefore, by using this carbon dioxide absorbent, absorption and separation and recovery of carbon dioxide are performed, so that separation and recovery of carbon dioxide at high temperatures can be performed economically and efficiently.
  • carbon dioxide gas can be recovered (desorbed) at a reduced pressure of less than lOOOPa.
  • a substance in which a part of X constituting the carbon dioxide absorbing material is replaced by Ca within a predetermined range is also effective as a carbon dioxide absorbing material.
  • the present invention provides carbon dioxide from gases containing carbon dioxide generated in various fields, such as removal of carbon dioxide from combustion exhaust gas generated in factories and removal of carbon dioxide from exhaust gas from automobile engines. It can be widely applied to gas separation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Treating Waste Gases (AREA)

Abstract

 SrとBaの少なくとも1種である成分物質Xと、Tiとを、モル比(X/Ti):1.8~2.2の割合で含む複合酸化物を主成分とする。  また、XとTiを、モル比(X/Ti):0.9~1.1の割合で含むペロブスカイト構造の物質、または、それらを含むグリーンシート、グリーンシート廃材、グリーンシート積層体廃材、グリーンシート前駆物の少なくとも1種を炭酸ストロンチウムおよび炭酸バリウムの少なくとも1種の存在下に焼成する。  本願発明の炭酸ガス吸収材3を用いて、1.0×104~1.0×106Pa、500~900°Cで炭酸ガスを吸収させる炭酸ガス吸収機構部Aと、吸収させた炭酸ガスを1000Pa以下、750°C以上で放出させる炭酸ガス放出機構部Bを備えた構成とする。

Description

明 細 書
炭酸ガス吸収材、それを用いた炭酸ガス分離方法、および炭酸ガス分離 装置
技術分野
[0001] 本願発明は、高温条件下で炭酸ガスを吸収し、所定の条件下で吸収した炭酸ガス を放出して再生されることにより、繰り返して使用することが可能な炭酸ガス吸収材、 それを用いた炭酸ガス分離方法、および炭酸ガス分離装置に関する。
背景技術
[0002] 積層セラミックコンデンサなどの積層セラミック電子部品は、通常、例えば、チタン酸 ノ リウムなどの誘電体原料粉末を主成分とするセラミックスラリーをシート状に成型し 、得られたセラミックグリーンシート (誘電体シート)に電極を印刷し、必要な部分を打 ち抜 、て積層する工程を経て製造されて 、る。
[0003] しかし、セラミックグリーンシートを打ち抜いた後の不要部分は、回収して、セラミック 原料として再使用される場合もあるが、再分散後の粒度分布の違いにより焼成後に 得られる誘電体の誘電特性にばらつきが生じる場合があること、セラミックグリーンシ ート上に印刷されて残留する電極成分が不純物となり、特性に悪影響を与える場合 があることなどの理由により、再利用が制約される場合が少なくないのが実情である。 このため、チタン酸バリウムを主成分とするチタネート系セラミックス材料の廃棄物が 生じ、有効な再利用方法が検討されるに至っている。
[0004] 一方、炭化水素を主成分とする燃料を利用するエネルギープラントや、 自動車から 排出される炭酸ガス (CO )の、高温ィ匕での分離を目的とした炭酸ガス吸収材として、
2
一般式: Li Si Oで表されるリチウムシリケートからなる群より選ばれる少なくとも 1種 以上を含有することを特徴とする炭酸ガス吸収材が提案されて!ヽる (特許文献 1参照 )。そして、この炭酸ガス吸収材は、軽量で、かつ約 500°Cを超える温度域で炭酸ガ スを吸収する作用を有するとされている。
[0005] し力しながら、リチウムシリケートは、炭酸ガスの吸収及び脱離時の体積変化が大き ぐ繰り返し使用によるストレスにより、吸収材の強度が低下するという問題点がある。 すなわち、リチウムシリケ一ト (Li SiO )は、下記の化学式 (1)のように炭酸ガスと反応
4 4
して、 500°Cを超える高温下で炭酸ガスを吸収する作用を奏する。
Li SiO +CO → Li SiO +Li CO (1)
4 4 2 2 3 2 3
[0006] しかし、このリチウムシリケートは、炭酸ガスを吸収すると体積が約 1. 4倍に膨張す るため、炭酸ガスの吸収と放出を繰り返すと、強度が低下して崩壊するため、耐用性 に欠けるという問題点がある。
特許文献 1:特開 2000— 262890号公報
発明の開示
発明が解決しょうとする課題
[0007] 本願発明は、上記問題点を解決するものであり、約 500°C以上の温度域において 炭酸ガスを吸収することが可能で、炭酸ガスを吸収した場合の膨張が少なく耐用性 に優れた炭酸ガス吸収材、それを用いた炭酸ガス分離方法、および炭酸ガス分離装 置を提供することを課題とする。
課題を解決するための手段
[0008] 上記課題を解決するために、本願発明(請求項 1)の炭酸ガス吸収材は、 Srおよび Baの少なくとも 1種である成分物質 Xと、 Tiとを、モル比 (XZTi) : 1. 8〜2. 2の割合 で含む複合酸化物を主成分とすることを特徴として ヽる。
[0009] また、請求項 2の炭酸ガス吸収材は、 Srおよび Baの少なくとも 1種である前記成分 物質 Xと、 Tiとを、モル比 (XZTi) : 0. 9〜1. 1の割合で含み、主たる結晶構造がぺ 口ブスカイト構造である物質を、炭酸ストロンチウムおよび炭酸バリウムの少なくとも 1 種の存在下に焼成することにより得られたものであることを特徴としている。
[0010] また、請求項 3の炭酸ガス吸収材は、 Srと Baの少なくとも 1種である前記成分物質 Xと、 Tiとを、モル比 (XZTi) : 0. 9〜1. 1の割合で含み、主たる結晶構造がぺロブ スカイト構造である物質を主成分とする、電子部品の製造工程で用いられたグリーン シート、グリーンシート廃材、グリーンシート積層体廃材、およびグリーンシート前駆物 の少なくとも 1種を、炭酸ストロンチウムおよび炭酸バリウムの少なくとも 1種の存在下 に焼成することにより得られたものであることを特徴としている。
[0011] また、請求項 4の炭酸ガス吸収材は、前記成分物質 Xの一部が Caで置換されてお り、かつ、 Xに対する Caの割合がモル比(CaZX)で 1. 0以下であることを特徴として いる。
[0012] また、請求項 5の炭酸ガス吸収材は、 Srおよび Baの少なくとも 1種である前記成分 物質 Xと、 Caと、 Tiとを含み、主たる結晶構造がぺロブスカイト構造である物質を、炭 酸カルシウム、炭酸ストロンチウムおよび炭酸バリウムの少なくとも 1種の存在下に焼 成することにより得られたものであることを特徴としている。
[0013] また、請求項 6の炭酸ガス吸収材は、前記 Tiの一部が Zrで置換されており、 Tiに対 する Zrの割合がモル比 (ZrZTi)で 0. 25以下であることを特徴として 、る。
[0014] また、請求項 7の炭酸ガス吸収材は、見かけの比表面積が 0. 25m2Zg以上である ことを特徴としている。
[0015] また、請求項 8の炭酸ガス吸収材は、ペレット状の炭酸ガス吸収材であって、ペレツ ト状に成形した後、 1000〜: L 100°Cで焼成したものであることを特徴としている。
[0016] また、本願発明(請求項 9)の炭酸ガス分離方法は、
請求項 1〜8のいずれかに記載の炭酸ガス吸収材を用いて、
圧力: 1. O X 104〜l. O X 106Paゝ
温度: 500〜900。C
の条件下で炭酸ガスを吸収させる工程と、
前記炭酸ガス吸収材に吸収させた炭酸ガスを、
圧力: lOOOPa以下、
温度: 750°C以上
の条件下で放出させる工程と
を具備することを特徴として 、る。
[0017] また、本願発明(請求項 10)の炭酸ガス分離装置は、
請求項 1〜8のいずれかに記載の炭酸ガス吸収材を、
圧力: 1. 0 X 104〜1. 0 X 106Paゝ
温度: 500〜900。C
の条件下で炭酸ガスを含む気流と接触させて炭酸ガスを前記炭酸ガス吸収材に吸 収させる炭酸ガス吸収機構部と、 炭酸ガスを含む気流と接触して炭酸ガスを吸収した炭酸ガス吸収材を、 圧力: lOOOPa以下の減圧下、
温度: 750°C以上
の条件で加熱して、炭酸ガスを放出させる炭酸ガス放出機構部と
を具備することを特徴として 、る。
発明の効果
[0018] 本願発明(請求項 1)の炭酸ガス吸収材は、 Srおよび Baの少なくとも 1種である成分 物質 Xと、 Tiとを、モル比 (XZTi) : 1. 8〜2. 2の割合で含む複合酸化物を主成分と するものであり、具体的な物質としては、一般式: Ba TiO、一般式: Sr TiOで示さ
2 4 2 4 れる化合物を主成分とする物質などが挙げられる。
なお、本願発明の炭酸ガス吸収材は、不純物として Mg、 Si、 Mn、 Na、 Niなどの不 純物を含んでいてもよぐさらに、 Dyなどの希土類を不純物として含んでいてもよい。
[0019] また、本願発明の炭酸ガス吸収材 (例えば、 Ba TiO )は、例えば、チタン酸バリウ
2 4
ム(BaTiO )を、炭酸バリウム (BaCO )の存在下に焼成し、下記の化学式 (2)で示さ
3 3
れる反応を生起させること〖こより得ることがでさる。
BaTiO + BaCO → Ba TiO + CO † (2)
3 3 2 4 2
そして、この Ba TiOで示される物質は、特定の条件下で、下記の化学式 (3)の反
2 4
応により炭酸ガスを吸収して BaTiOになる。
3
Ba TiO +CO → BaTiO + BaCO (3)
2 4 2 3 3
また、炭酸ガスを吸収することにより生じた BaTiOは、所定の圧力条件下(1000P
3
a以下の減圧下)に、所定の温度以上(750°C以上)に加熱することにより、下記の化 学式 (4)の反応により炭酸ガスを放出して、 Ba TiOに戻る。
2 4
BaTiO + BaCO → Ba TiO +CO † (4)
3 3 2 4 2
すなわち、本願発明の炭酸ガス吸収材は、この化学式 (3)および (4)の反応を利用し て炭酸ガスの吸収 ·放出を行うものである。
なお、チタン酸ストロンチウム(SrTiO )を原料として用いる場合にも、上記のチタン
3
酸バリウム (BaTiO )の場合に準じる反応により、炭酸ガス吸収材と有効な一般式: S
3
r TiOで表される物質を得ることが可能である。 [0020] 本願発明の炭酸ガス吸収材は、圧力:1. O X 104〜1. O X 106Paの範囲、特に常 圧付近では、 500〜900°Cというような高温下で炭酸ガスを吸収する能力を備えてい る。
一方、炭酸ガスを吸収した本願発明の炭酸ガス吸収材は、圧力: lOOOPa以下、温 度: 750°C以上の条件下で炭酸ガスを放出して、 Ba TiO Sr TiOなどに再生され、
2 4. 2 4
繰り返して炭酸ガスの吸収に供することが可能であり、炭酸ガス吸収時の体積膨張が 10%程度と低 ヽことから、繰り返し使用によるストレスの発生が小さく優れた耐用性を 実現することができる。
[0021] また、請求項 2の炭酸ガス吸収材は、 Srおよび Baの少なくとも 1種である成分物質 Xと、 Tiとを、モル比 (XZTi) : 0. 9〜1. 1の割合で含み、主たる結晶構造がぺロブ スカイト構造である物質を、炭酸ストロンチウムおよび炭酸バリウムの少なくとも 1種の 存在下に焼成することにより得られたものであり、上述の化学式 (2)に示される反応に より容易かつ確実に製造される物質である。したがって、請求項 1の発明にかかる炭 酸ガス吸収材が奏する効果を有する物質を経済的に提供することが可能になる。
[0022] また、本願発明の炭酸ガス吸収材は、請求項 3のように、 Srと Baの少なくとも 1種で ある前記成分物質 Xと、 Tiとを、モル比 (XZTi) : 0. 9〜1. 1の割合で含み、主たる 結晶構造がベロブスカイト構造である物質を主成分とする、電子部品の製造工程で 用いられたグリーンシート、グリーンシート廃材、グリーンシート積層体廃材、およびグ リーンシート前駆物の少なくとも 1種を、炭酸ストロンチウムおよび炭酸バリウムの少な くとも 1種の存在下に焼成することにより得ることができる。
[0023] Srと Baの少なくとも 1種である前記成分物質 Xと、 Tiとを、モル比(XZTi) : 0. 9〜1 . 1の割合で含み、主たる結晶構造がぺロブスカイト構造である物質 (例えば、 BaTi O )は、上述のように、炭酸ストロンチウムおよび炭酸バリウム(BaCO )の少なくとも 1
3 3
種の存在下に焼成することにより、下記の化学式 (2)で示される反応を生起させること により得ることができる。
BaTiO +BaCO → Ba TiO +CO † (2)
3 3 2 4 2
なお、 BaTiOに代えて SrTiOを用いた場合にも、上記の BaTiOの場合に準じる
3 3 3
反応により、炭酸ガス吸収材と有効な一般式: Sr TiOで表される物質を得ることが可 能である。
なお、ぺロブスカイト構造を有する物質 (例えば、 BaTiO )としては、不純物として
3
Mg、 Si、 Mn、 Na、 Niなどの不純物を含んでいてもよぐさらに、 Dyなどの希土類を 不純物として含んで 、てもよ 、。
[0024] なお、グリーンシートとは、例えば、 BaTiOを主成分とし、これにバインダーなどが
3
添加されたスラリーをシート状に成形したものであり、電子部品の製造用に作製され たがその後に不要になったような場合に、本願発明の炭酸ガス吸収材を製造する際 の原料として利用することができる。
[0025] また、グリーンシート廃材とは、上記のグリーンシートから必要部分を取り出した後の 不要シートなどであり、これらは本願発明の炭酸ガス吸収材を製造する際の原料とし て好適に利用することができる。
[0026] また、グリーンシート積層体廃材とは、例えば、電極材料を印刷した上記グリーンシ 一トを積層して圧着した未焼成の積層体の廃材などであり、これらも本願発明の炭酸 ガス吸収材を製造する際の原料として好適に利用することができる。
[0027] また、グリーンシート前駆物とは、例えば、 BaTiOをバインダーとともに分散剤に分
3
散させたセラミックスラリーや、分散剤に分散させるために用意された BaTiOなどで
3 あり、用意はしたが電子部品の製造に不要になったような場合に、本願発明の炭酸 ガス吸収材を製造する際の原料として利用することができる。
[0028] また、請求項 4の炭酸ガス吸収材のように、請求項 1〜3のいずれかに記載の炭酸 ガス吸収材において、成分物質 Xの一部が Caで置換されている場合にも、 Xに対す る Caの割合がモル比(CaZX)で 1. 0以下である場合には、炭酸ガス吸収材として 有効に利用することができる。すなわち、最大で Xの 1Z2 (モル比)までを Caで置換 することができる。
ただし、 Xに対する Caの割合がモル比(CaZX)で 1. 0を超えると、炭酸ガス吸収 性能を実質的に有しない Ca Ti Oの割合が高くなるため好ましくない。
3 2 7
なお、本願発明において、この請求項 4の発明のように、 Xの一部が Caで置換され た構成の場合における成分物質 Xの値は、 Caで置換される前の Xを意味するもので あり、例えば、成分物質 Xと、 Tiとのモル比 (XZTi) : 1. 8〜2. 2である場合において 、モル比で Xの 1Z2が Caで置換された場合にも、成分物質 Xと Tiとのモル比(XZTi )は 1. 8〜2. 2であるとみなす考え方をとつている。
[0029] また、請求項 5の炭酸ガス吸収材のように、 Srおよび Baの少なくとも 1種である成分 物質 Xと、 Caと、 Tiとを含み、主たる結晶構造がぺロブスカイト構造である物質を、炭 酸カルシウム、炭酸ストロンチウムおよび炭酸バリウムの少なくとも 1種の存在下に焼 成することにより、 Xの一部が Caで置換されており、かつ、 Xに対する Caの割合がモ ル比(CaZX)で 1. 0以下である、炭酸ガス吸収材として有効な物質を得ることができ る。
[0030] また、請求項 6の炭酸ガス吸収材のように、請求項 1〜5のいずれかに記載の炭酸 ガス吸収材において、複合酸ィ匕物中の Tiの一部が Zrで置換されている場合にも、 Ti に対する Zrの割合がモル比 (ZrZTi)で 0. 25以下である場合には、炭酸ガス吸収 材として有効に利用することが可能である。
ただし、 Tiに対する Zrの割合がモル比 (ZrZTi)で 0. 25を超えると、炭酸ガス放出 温度の高い Ba ZrOの割合が高くなるため好ましくない。
2 4
[0031] また、請求項 7の炭酸ガス吸収材のように、請求項 1〜6のいずれかに記載の炭酸 ガス吸収材において、見かけの比表面積が 0. 25m2/g以上になるようにした場合、 高い炭酸ガス吸収率を得ることが可能になるとともに、炭酸ガスの吸収と放出を繰り 返した際の体積膨張 '収縮に起因してクラックが発生することを抑制して、耐用性を 向上させることが可能になる。
[0032] なお、本願発明の炭酸ガス吸収材において、見かけの比表面積が 0. 25m2/gの ときの空孔率は約 20%であることが確認されており、本願発明の炭酸ガス吸収材の 形状が不定形であることを考慮すれば、空孔率よりもむしろ見かけの比表面積で定 量ィ匕することにより、特性の安定した炭酸ガス吸収材を提供することが可能になり有 ¾ "あ 。
[0033] また、請求項 8の炭酸ガス吸収材のように、請求項 2, 3, 5,および 7のいずれかに 記載の炭酸ガス吸収材において、ペレット状に成形した後、 1000〜: L 100°Cで焼成 したペレット状の炭酸ガス吸収材の場合、大きさが数 mmのペレット状吸収材であって も、炭酸ガスの吸収性能が高ぐ安定性および耐用性に優れ、し力も低コストの炭酸 ガス吸収材を提供することが可能になる。
また、見かけの比表面積が 0. 25m2/g以上という要件を備えた炭酸ガス吸収材の 場合、さらに炭酸ガスの吸収性能を向上させることが可能になる。
[0034] なお、本願発明の炭酸ガス吸収材は、例えば、リチウムシリケート系の炭酸ガス吸 収材と比較して、熱的な面で安定であるが、その焼結状態によって吸収率が変化す る場合がある。
[0035] なお、粉末状の吸収材の場合は、 1100°Cを超える温度で焼成しても、吸収性能の 低下は認められないが、ペレット状の吸収材の場合、 1100°Cを超える温度で焼成す ると、得られる炭酸ガス吸収材の焼結密度が高くなり、吸収率の低下や、炭酸ガス吸 収時にクラックの発生を招く場合がある。
しかし、 1100°Cを超える温度で焼成したペレット状の吸収材であっても、これを粉 砕し、粉末状の吸収材として使用する場合には、吸収率の低下は認められない。
[0036] 一方、 1000〜: L 100°Cの温度で焼成することにより、内部に空隙を確保して、比表 面積を 0. 25m2/g以上とすることが可能になるとともに、炭酸ガスの吸収と放出を繰 り返した際の体積膨張 '収縮に起因してクラックが発生することを抑制して、耐用性を 向上させることが可能になる。
[0037] また、本願発明(請求項 9)の炭酸ガス分離方法は、請求項 1〜8の 、ずれかに記 載の炭酸ガス吸収材を用いて、圧力: 1. O X 104〜l. O X 106Pa、温度: 500〜900 °Cの条件下で炭酸ガスを吸収させる工程と、前記炭酸ガス吸収材に吸収させた炭酸 ガスを、圧力: lOOOPa以下、温度: 750°C以上の条件下で放出させる工程とを具備 しており、高温下での炭酸ガスの吸収と、吸収した炭酸ガスの放出(炭酸ガス吸収材 の再生)を効率よく行うことが可能で、この方法を用いることにより、高温下での炭酸 ガスの分離を経済的に、し力も効率よく行うことが可能になる。
なお、本願発明の炭酸ガス分離方法においては、炭酸ガスの放出 (脱着)を圧力: lOOOPa以下の減圧下で行うようにして 、るため、高濃度の炭酸ガスを回収すること が可能になる。
[0038] また、本願発明(請求項 10)の炭酸ガス分離装置は、請求項 1〜8のいずれかに記 載の炭酸ガス吸収材を、圧力: 1. 0 X 104〜1. 0 X 106Pa、温度: 500〜900°Cの条 件下で炭酸ガスを含む気流と接触させて炭酸ガスを前記炭酸ガス吸収材に吸収させ る炭酸ガス吸収機構部と、炭酸ガスを含む気流と接触して炭酸ガスを吸収した炭酸 ガス吸収材を、圧力: lOOOPa以下の減圧下、温度: 750°C以上の条件で加熱して、 炭酸ガスを放出させる炭酸ガス放出機構部とを具備しており、炭酸ガス吸収機構部 において、高温下での炭酸ガスの吸収を確実に行い、炭酸ガス放出機構部におい て、吸収した炭酸ガスの放出(炭酸ガス吸収材の再生)を確実に行うことができること から、この炭酸ガス分離装置を用いることにより、高温下での炭酸ガスの分離を経済 的に、し力も効率よく行うことが可能になる。
図面の簡単な説明
[図 1]本願発明の実施例(実施例 1)にカゝかる炭酸ガス吸収材の結晶相を X線回折分 析により調べた結果を示す図である。
[図 2]本願発明の実施例(実施例 1)にカゝかる炭酸ガス吸収材について、炭酸ガス吸 収性能 (炭酸ガスとの反応率)を調べるために用いた試験装置を示す図である。
[図 3]本願発明の実施例(実施例 1)に力かる炭酸ガス吸収材について調べた炭酸ガ ス吸収性能 (炭酸ガスとの反応率)と温度の関係を示す図である。
[図 4]本願発明の実施例(実施例 1)にカゝかる炭酸ガス吸収材について、炭酸ガス放 出性能 (炭酸ガスの放出率)を調べるために用いた試験装置を示す図である。
[図 5]本願発明の実施例(実施例 1)に力かる炭酸ガス吸収材について調べた炭酸ガ ス放出性能 (炭酸ガスの放出率)と温度の関係を示す図である。
[図 6]実施例 1の第 1の炭酸ガス吸収材について行った、 TG— DTA分析の結果を示 す図である。
[図 7]本願発明の実施例 (実施例 3)にカゝかる炭酸ガス分離装置の概略構成を示す図 である。
[図 8]実施 f列 4【こお!ヽて、 1100。C、 1150。C、 1200。Cで焼成した試料番号 12, 13, 14の試料の TG— DTA分析のチャートを示す図である。
[図 9]実施例 4にお ヽて得た炭酸ガス吸収材につ ヽて調べた比表面積と炭酸ガス最 大吸収量の関係と、実施例 5にお 、て得た炭酸ガス吸収材につ 、て調べた比表面 積と炭酸ガス最大吸収量の関係を示す図である。 符号の説明
[0040] 1 ガス吸収管
2 ヒータ
3 炭酸ガス吸収材
10 切替弁
11 容器
12 ヒータ
A, B 機構部
発明を実施するための最良の形態
[0041] 以下に本願発明の実施例を示して、本願発明の特徴とするところをさらに詳しく説 明する。
実施例 1
[0042] [本願発明の第 1の炭酸ガス吸収材の作製]
BaTiO粉末に対して、 BaTiOと BaCOのモル比が 1/1となる量の BaCOを添カロ
3 3 3 3 し、さらに水を加えて、ボールミルで 2時間混合を行った。
それから、混合物を 120°Cで 10時間乾燥した後、得られた粉末を 1200°C、 2時間 の条件で焼成し、 Ba TiOを主成分とする炭酸ガス吸収材 (セラミックス粉末)を得た
2 4
[0043] [本願発明の第 2の炭酸ガス吸収材の作製]
積層セラミックスコンデンサを製造する場合に用いられる、 Baと Tiを、モル比(BaZ Ti) : 0. 99〜: L 01の割合で含み、主たる結晶構造がぺロブスカイト構造である物質 (BaTiO )を主成分とするグリーンシートから必要部分を取り出した後の不要部分 (不
3
要グリーンシート)を、 500°Cで脱脂し、 BaTiOの含有量が 87%のセラミックス粉末と
3
した。
なお、このセラミック粉末は残部に、 Ca、 Zr、 Si、 Naの酸化物を主として含有するも のである。
[0044] それから、第 1の炭酸ガス吸収材の作製方法の場合と同様に、このセラミックス粉末 に、 BaTiOと BaCOのモル比が lZlとなる量の BaCOを添加し、さらに水をカ卩えて 、ボールミルで 2時間混合を行った。
その後、混合物を 120°Cで 10時間乾燥した後、得られた粉末を 1200°C、 2時間の 条件で焼成し、 Ba TiOを主成分とする炭酸ガス吸収材 (セラミックス粉末)を得た。
2 4
[0045] そして、 X線回折分析によりこの炭酸ガス吸収材の結晶相を調べた。その結果を図 1に示す。
図 1に示すように、この炭酸ガス吸収材は、 Ba TiO単斜晶と、 Ba TiO斜方晶の
2 4 2 4 両方を含んでおり、図 1の X線回折チャートからは、 Ba TiO単斜晶の占める割合が
2 4
、 Ba TiO斜方晶の占める割合よりもやや多いことがわかる。
2 4
なお、 Ba TiO単斜晶と、 Ba TiO斜方晶の性質には大きな差異はなぐ炭酸ガス
2 4 2 4
吸収材としての特性にも有意な差のな 、ことが確認されて 、る。
[0046] [特性の測定]
上述のようにして作製した第 1の炭酸ガス吸収材および第 2の炭酸ガス吸収材につ いて、図 2に示すような試験装置を用いて炭酸ガス吸収性能を調べるとともに、炭酸 ガスを吸収した後の炭酸ガス吸収材の炭酸ガス放出特性を調べた。
[0047] 図 2の試験装置は、管型炉を利用したものであって、炭酸ガス (CO )と窒素ガス (N
2
2 )の混合ガスが供給されるガス吸収管 1と、ガス吸収管 1の外周側に配設され、ガス 吸収管 1の内部を加熱するヒータ 2とを備えており、ガス吸収管 1の内部を常温〜 13 00°Cの範囲で温度制御することができるように構成されて 、る。
[0048] そして、この試験装置のガス吸収管 1の中央に、 1. 5gの炭酸ガス吸収材 3を配置し 、ヒータ 2によりガス吸収管 1の内部を所定の温度に加熱しながら炭酸ガスと窒素ガス の混合ガスを毎分 500mLの割合で供給して、炭酸ガス吸収材の重量変化 (炭酸ガス の吸収の挙動)を調べた。
そして、炭酸ガス吸収材の重量変化から、下記の式 (a)により、炭酸ガス吸収材と、 炭酸ガスとの反応率を算出した。
反応率 = CO吸着量 (mol%)ZBa TiO含有量 (mol%) (a)
2 2 4
[0049] その結果を図 3に示す。図 3に示すように、第 1の炭酸ガス吸収材と、第 2の炭酸ガ ス吸収材のいずれについても、約 500°Cで炭酸ガスの吸収が起こり、 700°C付近に 吸収のピークがあり、 900°C付近まで優位性のある吸着性能を示すことが確認された [0050] この結果から、この第 1および第 2の炭酸ガス吸収材は、 500〜900°Cの範囲で炭 酸ガス吸収性能を発揮すること、すなわち炭酸ガス吸収材として使用できることが確 f*i¾ れ 。
[0051] また、炭酸ガスを吸収した炭酸ガス吸収材につ 、て、以下の方法で炭酸ガス放出 特性を調べた。
上述のようにして、ガス吸収管 1の中央に炭酸ガス吸収材 3を配置し、ヒータ 2により ガス吸収管 1の内部を所定の温度に加熱しながら炭酸ガスと窒素ガスの混合ガスを 毎分 500mLの割合で供給した後、炭酸ガスの供給を止め、図 4に示すように、ガス吸 収管 1の入口側を閉止し、出口側力 ロータリーポンプで所定の真空度 (この実施例 では lOOPa)になるように吸引しながら、炭酸ガス吸収材 3の重量変化 (炭酸ガスの 放出の挙動)を調べた。そして、炭酸ガス吸収材 3の重量の減少量力も炭酸ガスの放 出率を求めた。その結果を図 5に示す。
[0052] なお、図 5における炭酸ガスの放出率 (反応率)は、上記の式 (a)に基づいて求めた ものであり、式 (a)において求めた炭酸ガス吸収の反応率が 1. 0の状態のときに図 5 の放出率 (反応率)が 0となり、吸収されて!、た炭酸ガスがすべて放出されたとき (炭 酸ガス吸収の反応率が 0のとき)に図 5の放出率 (反応率)がー 1. 0となるような概念 である。
[0053] 図 5に示すように、炭酸ガスの放出に関しても、第 1および第 2の炭酸ガス吸収材は 、いずれも同様の傾向を示しており、 750°C以上の温度で炭酸ガスを効率よく放出さ せることが可能になることが確認された。なお、この試験では、 lOOPaの圧力で炭酸 ガス放出特性を調べたが、圧力: lOOOPa以下の減圧下で炭酸ガスの放出 (脱着)を 行うことにより、効率よく炭酸ガスを放出させることが可能であることが確認されている また、本願発明のように、圧力: lOOOPa以下の減圧下で炭酸ガスの放出 (脱着)を 行うことにより、高濃度の炭酸ガスを回収することが可能になる。
[0054] なお、上記実施例 1では、 BaTiO粉末および不要グリーンシートを原料として炭酸
3
ガス吸収材を製造する場合を例にとって説明したが、本願発明においては、例えば、 BaTiOを主成分とし、これにバインダーなどが添加されたスラリーをシート状に成形
3
した状態のグリーンシートそのものや、グリーンシートに導電ペーストを塗布したもの、 グリーンシート前駆物(例えば、 BaTiOをバインダーとともに分散剤に分散させたセ
3
ラミックスラリーや、分散剤に分散させる前の BaTiOなど)などを原料とすることも可
3
能であり、その場合にも上記実施例 1の場合と同様の作用効果を得ることができる。 実施例 2
[0055] BaTiO、 SrTiO、 CaTiO、 BaCO、 SrCO、 CaCO、および BaZrOの各原料
3 3 3 3 3 3 3 を、表 1に示すような割合 (モル比)で配合し、ボールミルで 2時間混合を行った。
[0056] [表 1]
Figure imgf000015_0001
[0057] 次に、混合物を 120°Cで 10時間乾燥した後、得られた粉末を 1200°C、 2時間の条 件で焼成し、複合酸化物粉末 (炭酸ガス吸収材 (セラミックス粉末) )を得た。
[0058] それから、得られた複合酸化物を用いて、 COと Nの割合力 体積比で CO: 20、 N : 80の割合の混合ガス雰囲気中で、 TG— DTA分析 (熱重量分析 示差熱分析
2
)を行った。
[0059] また、すでに炭酸ガス吸収材としての効果が確認されて 、る、上記実施例 1の第 1 の炭酸ガス吸収材(すなわち、 BaTiO粉末に対して、 BaTiOと BaCOのモル比が 1
3 3 3
Z1となる量の BaCOを添カ卩し、混合した後、 1200°C、 2時間の条件で焼成すること
3
により得た Ba TiOを主成分とする炭酸ガス吸収材)についても、同じ条件で TG— D
2 4
TA分析 (熱重量分析—示差熱分析)を行った。
[0060] 図 6に上記実施例 1の第 1の炭酸ガス吸収材について行った、 TG— DTA分析の 結果を示す。
図 6に示すように、 COと Nの割合が、体積比で CO : 20、 N : 80の雰囲気ガス中
2 2 2 2
での上記実施例 1の第 1の炭酸ガス吸収材 (表 1および表 2の試料 A)の重量は、 61 8°Cから炭酸ガスの吸収により増大し、 1021°C以上になると炭酸ガスの放出により重 量が低下し、元の重量に戻る。ここで、 TG最大値が、炭酸ガスの最大吸収量を示す したがって、この方法により、炭酸ガス吸収材として有効に使用することが可能な物 質の場合には、炭酸ガスの吸放出による重量変化を確認することができる。
[0061] 表 2は TG— DTA分析により、この実施例 2の方法で製造した複合酸化物 (試料番 号 1〜10の試料)と、実施例 1の第 1の炭酸ガス吸収材 (表 1および表 2の試料 A)に ついて調べた炭酸ガス吸収開始温度、炭酸ガス放出開始温度、炭酸ガスの最大吸 収量 (TG最大値)を示すものである。
[0062] [表 2]
炭酸ガス 炭酸ガス
T G最大値
試料番号 吸収開始温度 放出開始温度
(%)
(°C) (。C)
1 669 1045 12. 9
2 629 1088 12. 3
3 638 1050 11. 6
4 598 920 7. 0
5 488 933 8. 4
6 498 999 10. 4
7 643 1056 12. 4
8 601 922 7. 2
9 512 1052 12. 4
10 610 1036 9. 5
A 608 1021 10. 6
[0063] 表 2より、各試料間で、炭酸ガス吸収開始温度、炭酸ガス放出開始温度、および炭 酸ガスの最大吸収量に差は認められる力 いずれの試料も炭酸ガスの最大吸収量( TG最大値)は相当に大きぐすべての試料が炭酸ガス吸収材として使用することが 可能なものであることがわ力る。
[0064] また、表 2より、 Srを含有させた場合には、放出開始温度が高温側になり、 TGの最 大値が大きくなる傾向があることがわかる。
[0065] また、 Srおよび Baの少なくとも 1種である成分物質 Xに対する Caの割合がモル比( CaZX)で 1. 0以下となるような割合で Caを含有させた場合にも、 TGの最大値は小 さくなるが、放出開始温度が低温になり、より容易に炭酸ガスを回収することが可能に なることがわ力る。
また、 Ca含有量の少ない領域では、 TGの最大値はそれほど変わらず、吸収開始 温度が低くなることから、低温での吸収効率が向上することがわかる。 [0066] なお、試料番号 10の試料のように、 Tiの一部を Zrに置換した物質も、炭酸ガス吸 収材として使用することが可能である。
[0067] なお、表 2に示した各試料では、炭酸ガスの放出には、 900°C以上の高温での処 理が必要となるが、反応系を減圧にすることにより、炭酸ガス放出温度を低下させるこ とが可能である。
[0068] また、上記実施例では、 BaTiO粉末、 SrTiO粉末、および、 CaTiO粉末を原料
3 3 3
として炭酸ガス吸収材を製造する場合を例にとって説明したが、本願発明において は、例えば、 BaTiO、 SrTiO、 CaTiOなどを原料として用い、これにバインダーな
3 3 3
どを添加したスラリーをシート状に成形した状態のセラミックグリーンシート、セラミック グリーンシートに導電性ペーストを塗布したもの、グリーンシートを積層した未焼成の 積層体廃材、グリーンシート前駆物(例えば、 BaCO、 SrTiO、 CaTiOなどをバイン
3 3 3
ダ一とともに分散剤に分散させたセラミックスラリー、分散剤に分散させる前の BaTiO 、 SrTiO、 CaTiOなど)を原料とすることも可能である。なお、このような材料を用い
3 3 3
る場合、 Mg、 Si、 Mn、 Na、 Niなどの不純物や、 Dyなどの希土類を不純物として含 むことになるが、表 2の各試料の場合と同様の作用効果を得ることができることが確認 されている。
実施例 3
[0069] 図 7は本願発明の一実施例にカゝかる炭酸ガス分離装置の概略構成を示す図であ る。
[0070] この炭酸ガス分離装置は、燃焼排ガス (炭酸ガス含有ガス)中の炭酸ガスを本願発 明の炭酸ガス吸収材により吸収、分離した後、炭酸ガスを吸収した炭酸ガス吸収材 力 炭酸ガスを放出させて回収するための炭酸ガス分離装置であり、燃焼排ガスの 流れを切り替える切替弁 10と、炭酸ガス吸収機構部および炭酸ガス放出機構部とし て機能する二つの機構部 A, Bを備えている。
[0071] なお、図 7においては、切替弁 10により、左側の機構部 Aに炭酸ガス含有ガス (原 料ガス)が供給されるように設定された状態を示しており、左側の機構部 Aが炭酸ガ ス吸収機構部として機能し、右側の機構部 Bが炭酸ガスを放出させる炭酸ガス放出 機構部として機能する状態を示して 、る。 各機構部 Aおよび Bはいずれも、容器 11と、ヒータ 12と、容器 11の内部に充填され た本願発明にかかる炭酸ガス吸収材 (実施例 1の第 1の炭酸ガス吸収材) 3とを備え ている。
[0072] そして、図 7に示すように、左側の機構部 Aに燃焼排ガスが供給されるように切替弁 10を切り替えた状態で、燃焼排ガス (この実施例 3では、圧力:常圧、温度:約 700°C 、炭酸ガス (CO )含有率: 20vol%の燃焼排ガス)を供給することにより、機構部 (炭
2
酸ガス吸収機構部) Aで炭酸ガスの吸収が行なわれる。
[0073] 一方、機構部 (炭酸ガス放出機構部) Bでは、容器 11の出口側力も真空吸引して、 圧力を lOOOPa以下の減圧状態 (例えば lOOPa)とし、ヒータ 12により容器 11内の炭 酸ガスを吸収した炭酸ガス吸収材 3を 850°Cに加熱することにより、炭酸ガス吸収材 3から炭酸ガスが放出され、放出された炭酸ガスが高濃度で回収されるとともに、炭 酸ガスを吸収した炭酸ガス吸収材 3が再生され、再使用に供されること〖こなる。
[0074] なお、炭酸ガス分離装置における、炭酸ガス吸収材による炭酸ガスの吸収反応は 下記の化学式 (3)の通りであり、
Ba TiO +CO→BaTiO +BaCO (3)
2 4 2 3 3
また、炭酸ガスを吸収した炭酸ガス吸収材カもの炭酸ガスの放出反応は、下記の 化学式 (4)の通りである。
BaTiO +BaCO → Ba TiO +CO † (4)
3 3 2 4 2
[0075] そして、機構部 (炭酸ガス吸収機構部) Aに充填された炭酸ガス吸収材 3の炭酸ガ ス吸収性能が低下すると、右側の機構部 Bに燃焼排ガスが供給されるように切替弁 1 0を切り替え、燃焼排ガスを機構部 Bに供給し、機構部 (炭酸ガス吸収機構部) Bに充 填された炭酸ガス吸収材 3により炭酸ガスの吸収を行う。
[0076] 一方、機構部 Aでは、容器 11の出口側から真空吸引して、圧力を lOOOPa以下の 減圧状態 (例えば lOOPa)とし、ヒータ 12により容器 11内の、炭酸ガスを吸収した炭 酸ガス吸収材 3を 850°Cに加熱して、炭酸ガス吸収材 3から炭酸ガスを放出させ、放 出させた炭酸ガスを回収するとともに、炭酸ガスを吸収した炭酸ガス吸収材 3を再生 させる。
そして、これを繰り返すことにより、長期間にわたって、安定して炭酸ガスの分離、回 収を行わせることが可能になる。
なお、機構部 Aと機構部 Bを交互に炭酸ガス吸収機構部と炭酸ガス放出機構部に 切り替える際の、各機構部 A、 B力 排出されるガスの流路の切り替えは、切替弁を 設けることで容易に行うことが可能である。
[0077] なお、この実施例 3において、 lmolの炭酸ガス(CO )を吸収するために必要な炭
2
酸ガス吸収材の重量は 386gであり、体積は 83mLであった。
なお、この体積 (83mL)は、真比重力も計算したものであり、空隙率を 40%とすると 、 lmolの炭酸ガス (CO )を吸収するために必要な炭酸ガス吸収材の量 (容積)は 13
2
9mLとなる。
[0078] 上述のように、本願発明の炭酸ガス分離装置によれば、実施例 1の第 1の炭酸ガス 吸収材を、圧力:常圧、温度:約 700°Cの条件下で 20vol%の燃焼排ガスと接触させ て炭酸ガスを炭酸ガス吸収材に吸収させるとともに、炭酸ガスを吸収した炭酸ガス吸 収材を、減圧下(lOOPa)で所定の温度(850°C)〖こ加熱して、炭酸ガスを放出させる ようにしているので、炭酸ガス吸収機構部において、高温下での炭酸ガスの吸収を 確実に行い、炭酸ガス放出機構部において、吸収した炭酸ガスの放出 (炭酸ガス吸 収材の再生)を確実に行うことができることから、高温下での炭酸ガスの分離、回収を 経済的に、かつ、安定して効率よく行うことができる。
[0079] また、実施例 3では、機構部 Aと機構部 Bを並列に設置し、切替弁 10により燃焼排 ガスの流れを切り替えて、機構部 Aと機構部 Bが交互に炭酸ガス吸収機構部としての 機能と、炭酸ガス放出機構部としての機能を果たすようにしているが、炭酸ガス吸収 機構部と炭酸ガス放出機構部とを異なる構造を備えた専用の機構部として構成し、 炭酸ガス吸収機構部は炭酸ガスの吸収のみ、炭酸ガス放出機構部は炭酸ガスの放 出のみを行うように構成することも可能である。なお、その場合には、適宜、炭酸ガス 吸収材の詰め替えなどを行うことが必要になる。
実施例 4
[0080] BaTiO粉末に対して、 BaTiOと BaCOのモル比が lZlとなる量の BaCOを添カロ
3 3 3 3 し、さらに水を加えて、ボールミルで 2時間混合を行った。
そして、上述のようにして得た混合物を 120°Cで 10時間乾燥した後、ノ インダをカロ えて造粒し、粒径が 2〜5mmの球状の造粒体を得た。
それから、球状の造粒体を、 500°Cで 2時間脱脂した後、 1000〜1200°Cの範囲 内の所定の温度で 2時間の焼成を行い、 Ba TiOを主成分とする炭酸ガス吸収材を
2 4
得た。
[0081] そして、得られた炭酸ガス吸収材につ!/、て、非表面積、炭酸ガスの最大吸収量、お よび炭酸ガス吸収後のクラックの発生状態を調べた。
その結果を表 3に示す。
[0082] [表 3]
Figure imgf000021_0001
[0083] なお、表 3にお 、て、比表面積は BET法で測定した結果である。
また、炭酸ガスの最大吸収量は、 TG— DTA分析における TG最大値であり、昇温 10°CZmin、 CO濃度 20%の条件で測定したものである。
2
さらに、炭酸ガス吸収後のクラック状態は、炭酸ガス吸収後の試料を顕微鏡(500 倍)により観察した結果である。
[0084] 表 3に示すように、焼成温度が 1000°Cである試料番号 11の試料 (炭酸ガス吸収材 )の場合および、焼成温度が 1100°Cである試料番号 12の試料 (炭酸ガス吸収材)の 場合、比表面積が 0. 53m2/g (試料番号 11) ,および 0. 32m2/g (試料番号 12) で、 0. 25m2Zgより大きぐ炭酸ガスの最大吸収量も 10. 5重量% (試料番号 11)、 1 0. 6重量% (試料番号 12)と大きぐし力も炭酸ガス吸収後のクラックの発生も認めら れず、良好な結果が得られた。
[0085] これに対し、焼成温度が 1150°Cである試料番号 13の試料 (炭酸ガス吸収材)の場 合、比表面積が 0. 16m2Zgと小さぐ炭酸ガスの最大吸収量も 6. 9重量%と少なか つた。また、微小ではあった力 炭酸ガス吸収後のクラックの発生も認められた。
[0086] また、焼成温度が 1200°Cである試料番号 14の試料 (炭酸ガス吸収材)の場合、比 表面積が 0. l lm2Zgと小さぐ炭酸ガスの最大吸収量も 3. 4重量%と少なかった。 さらに、炭酸ガス吸収後には、クラックの発生が認められた。
[0087] なお、図 8は、 1100。C、 1150。C、 1200。Cで焼成した試料番号 12, 13,および 14 の試料の TG— DTA分析のチャートを示す図である。
図 8より、試料番号 12の比表面積が大きい試料の場合には、約 900°Cから 1000°C の間にある炭酸ガスの最大吸収量が大きな値になっているのに対し、試料番号 13お よび 14の比表面積が小さい試料の場合には、約 900°Cから 1000°Cの間にある炭酸 ガスの最大吸収量が低下していることがわかる。したがって、試料番号 13および 14 の試料 (炭酸ガス吸収材)では、十分な炭酸ガス吸収量が得られな!/ヽことは明らかで ある。
実施例 5
[0088] 積層セラミックスコンデンサを製造する工程で、 Baと Tiを、モル比(B/Ti): 0. 99 〜1. 01の割合で含み、主たる結晶構造がぺロブスカイト構造である物質 (BaTiO )
3 を主成分とするグリーンシートから必要部分を取り出した後の不要部分 (不要グリーン シート)を、 500°Cで脱脂し、 BaTiOの含有量が 87%のセラミックス粉末を作製した
3 なお、このセラミック粉末は残部に、 Ca、 Zr、 Si、 Naの酸化物を主として含有するも のである。
[0089] それから、第 1の炭酸ガス吸収剤の作製方法の場合と同様に、このセラミックス粉末 に、 BaTiOと BaCOのモル比が lZlとなる量の BaCOを添加し、さらに水をカ卩えて
3 3 3
、ボールミルで 2時間混合を行った。 それから、上述のようにして得た混合物を 120 °Cで 10時間乾燥した後、バインダをカ卩えて造粒し、粒径が 2〜5mmの球状の造粒体 を得た。
得られた造粒体を、 500°Cで 2時間脱脂した後、 1000〜1200°Cの範囲内の所定 の温度で 2時間の焼成を行い、 Ba TiOを主成分とする炭酸ガス吸収材を得た。 [0090] そして、得られた炭酸ガス吸収材につ!/、て、非表面積、炭酸ガスの最大吸収量、お よび炭酸ガス吸収後のクラックの発生状態を調べた。
その結果を表 4に示す。
[0091] [表 4]
Figure imgf000023_0001
[0092] なお、表 4のさや内チャージ量は、焼成時に用いた熱処理用のさやへの、上記造 粒体のチャージ量を示して 、る。
なお、表 4における、比表面積、炭酸ガスの最大吸収量、および炭酸ガス吸収後の クラック状態は、上記表 3の場合と同様の方法で測定、観察したものである。
[0093] 表 4に示すように、実施例 4の場合と同様に、焼成温度が 1150°C以上になると (試 料番号 24, 25および 29)、比表面積が低下し、炭酸ガスの最大吸収量が低下するこ とが確認された。
[0094] また、炭酸ガスの最大吸収量が低下した試料番号 24, 25および 29の試料のうち、 さや内チャージ量が lOOgの試料番号 24および 25の試料においては、炭酸ガス吸 収後、試料表面にクラックの発生が認められた。 [0095] なお、炭酸ガスの最大吸収量が低下した試料番号 24, 25および 29の試料のうち、 さや内チャージ量が 200gの試料番号 29の試料においては、試料番号 24, 25に比 ベて比表面積は大きくなつている力 これは焼成雰囲気中の炭酸ガス濃度が増大し たこと〖こよるちのと考免られる。
[0096] また、表 4より、焼成温度が 1100〜: L 100°Cの範囲にある場合には、チャージ量に 関わらず、得られる炭酸ガス吸収材 (すなわち、試料番号 21, 22, 23, 26, 27, 28 の試料 (炭酸ガス吸収材))は、比表面積および炭酸ガスの最大吸収量が大きぐか つ、炭酸ガス吸収後のクラックの発生も認められず、炭酸ガス吸収材として必要な特 '性を備えて ヽることがゎカゝる。
[0097] [比表面積と炭酸ガス最大吸収量の関係について]
図 9は上記実施例 4にお 、て得た炭酸ガス吸収材につ 、て調べた比表面積と炭酸 ガス最大吸収量の関係と、上記実施例 5にお 、て得た炭酸ガス吸収材につ!/、て調べ た比表面積と炭酸ガス最大吸収量の関係を示す図である。
[0098] 図 9に示すように、実施例 5の炭酸ガス吸収材の場合、最大吸収量が実施例 4の炭 酸ガス吸収材の場合よりも小さくなつているが、これは、実施例 5の炭酸ガス吸収材の 場合、試料 (原料)中に含まれる不純物により、 Ba TiOの
2 4 含有率が実施例 4の炭酸 ガス吸収材の場合よりも低くなつたことによるものである。
また、実施例 4および 5のいずれの炭酸ガス吸収材においても、比表面積が 0. 25 m2/g未満になると炭酸ガスの最大吸収率が低下しており、比表面積を 0. 25mVg 以上とすることが望ま 、ことがわかる。
実施例 6
[0099] 外部に電熱ヒーターを備えた内径 22mm、長さ 300mmのステンレス製容器に、上記 実施例 1の第 1の炭酸ガス吸収材に相当する、平均粒子径 2mmの炭酸ガス吸収材( Ba TiO ) 22g (約 lOmL)を充填し、 19NL/hで窒素ガスを流通させ、電熱ヒーター
2 4
により窒素ガス入口温度を 750°Cに制御した。
そして、流通させた窒素温度が安定した後に、炭酸ガスに lOOppmの割合で二酸 化硫黄を含有させたガスを INLZhの速度で流通させ (炭酸ガス濃度は 5mol%となる )、炭酸ガスの吸収を行った。炭酸ガスの吸収操作中、炭酸ガス吸収装置から排出さ れるガス中の二酸ィ匕硫黄濃度は Oppmとなった。
実施例 7
[0100] 窒素ガス入口温度を 900°Cに制御した以外は実施例 6と同じ方法により、炭酸ガス に lOOppmの割合で二酸化硫黄を含有させたガスを供給して、炭酸ガスの吸収操作 を行ったところ、炭酸ガスの吸収操作中、炭酸ガス吸収装置カゝら排出されるガス中の 二酸化硫黄濃度は Oppmとなった。
上記実施例 6およびこの実施例 7より、本吸収材を用いた場合、炭酸ガスを吸収す る際に、ガス中に含まれる硫黄酸ィ匕物ガスを同時に除去することが可能であることが 確認された。
実施例 8
[0101] 外部に電熱ヒーターを備えた内径 22mm、長さ 300mmのステンレス製容器に、上記 実施例 1の第 1の炭酸ガス吸収材に相当する、平均粒子径 2mmの炭酸ガス吸収材( Ba TiO ) 22g (約 lOmL)を充填し、 19NL/hで窒素ガスを流通させ、電熱ヒーター
2 4
により窒素ガス入口温度を 750°Cに制御した。
そして、流通させた窒素温度が安定した後に、炭酸ガスに 120ppmの割合で窒素 酸ィ匕物(一酸化窒素 Z二酸化窒素 = 1Z1)を含有させたガスを INLZhの速度で流 通させ (炭酸ガス濃度は 5mol%となる)、炭酸ガスの吸収を行った。炭酸ガスの吸収 操作中、炭酸ガス吸収装置力も排出されるガス中の窒素酸ィ匕物濃度は 70ppmとなつ た。
この実施例 8より、本吸収材を用いた場合、炭酸ガスを吸収する際に、ガス中に含 まれる窒素酸ィ匕物ガスを同時に除去することが可能であることが確認された。
[0102] なお、本願発明は、上記の各実施例に限定されるものではなぐ炭酸ガス吸収材に 含まれる Srおよび Baの少なくとも 1種である成分物質 Xと Tiの割合、炭酸ガスの吸収 条件および放出条件、炭酸ガス分離装置を構成する炭酸ガス吸収機構部や炭酸ガ ス放出機構部の具体的な構成などに関し、発明の範囲内において、種々の応用、変 形をカ卩えることが可能である。
産業上の利用可能性
[0103] 本願発明の炭酸ガス吸収材は、 Srと Baの少なくとも 1種である成分物質 Xと、 Tiとを 、モル比 (XZTi) : 1. 8〜2. 2の割合で含む複合酸ィ匕物を主成分とするものであり、 約 500°C以上の温度域で炭酸ガスを吸収し、かつ、吸収した炭酸ガスを圧力: 1000 Pa以下、温度: 750°C以上の条件下で効率よく放出させることができる。したがって、 この炭酸ガス吸収材を用いて、炭酸ガスの吸収分離、回収を行うことにより、高温下 での炭酸ガスの分離、回収を経済的に、し力も効率よく行うことができる。また、炭酸 ガスの放出(脱着)を圧力: lOOOPa以下の減圧下で行うことにより、高濃度の炭酸ガ スを回収することができる。また、上記炭酸ガス吸収材を構成する Xの一部が所定の 範囲で Caにより置換された物質も炭酸ガスの吸収材として有効である。
それゆえ、本願発明は、工場において発生する燃焼排ガス中の炭酸ガスの除去や 、自動車エンジンからの排ガス中の炭酸ガスの除去をはじめ、種々の分野で発生す る炭酸ガスを含むガスからの炭酸ガスの分離に広く適用することが可能である。

Claims

請求の範囲
[1] Srおよび Baの少なくとも 1種である成分物質 Xと、 Tiとを、モル比(XZTi): 1. 8〜 2. 2の割合で含む複合酸化物を主成分とすることを特徴とする炭酸ガス吸収材。
[2] Srおよび Baの少なくとも 1種である前記成分物質 Xと、 Tiとを、モル比 (XZTi) : 0.
9〜1. 1の割合で含み、主たる結晶構造がぺロブスカイト構造である物質を、炭酸ス トロンチウムおよび炭酸バリウムの少なくとも 1種の存在下に焼成することにより得られ たものであることを特徴とする請求項 1記載の炭酸ガス吸収材。
[3] Srと Baの少なくとも 1種である前記成分物質 Xと、 Tiとを、モル比(XZTi) : 0. 9〜1
. 1の割合で含み、主たる結晶構造がぺロブスカイト構造である物質を主成分とする、 電子部品の製造工程で用いられたグリーンシート、グリーンシート廃材、グリーンシー ト積層体廃材、およびグリーンシート前駆物の少なくとも 1種を、炭酸ストロンチウムお よび炭酸バリウムの少なくとも 1種の存在下に焼成することにより得られたものであるこ とを特徴とする請求項 1または 2記載の炭酸ガス吸収材。
[4] 前記成分物質 Xの一部が Caで置換されており、 Xに対する Caの割合がモル比(Ca ZX)で 1. 0以下であることを特徴とする請求項 1〜3のいずれかに記載の炭酸ガス 吸収材。
[5] Srおよび Baの少なくとも 1種である前記成分物質 Xと、 Caと、 Tiとを含み、主たる結 晶構造がベロブスカイト構造である物質を、炭酸カルシウム、炭酸ストロンチウムおよ び炭酸バリウムの少なくとも 1種の存在下に焼成することにより得られたものであること を特徴とする請求項 4記載の炭酸ガス吸収材。
[6] 前記 Tiの一部が Zrで置換されており、 Tiに対する Zrの割合がモル比 (ZrZTi)で 0
. 25以下であることを特徴とする請求項 1〜5のいずれかに記載の炭酸ガス吸収材。
[7] 見かけの比表面積が 0. 25m2/g以上であることを特徴とする請求項 1〜6のいず れかに記載の炭酸ガス吸収材。
[8] ペレット状の炭酸ガス吸収材であって、ペレット状に成形した後、 1000-1100°C で焼成したものであることを特徴とする請求項 2, 3, 5,および 7のいずれかに記載の 炭酸ガス吸収材。
[9] 請求項 1〜8のいずれかに記載の炭酸ガス吸収材を用いて、 圧力: 1. 0 X 104〜1. 0 X 106Paゝ
温度: 500〜900。C
の条件下で炭酸ガスを吸収させる工程と、
前記炭酸ガス吸収材に吸収させた炭酸ガスを、
圧力: lOOOPa以下、
温度: 750°C以上
の条件下で放出させる工程と
を具備することを特徴とする炭酸ガス分離方法。
請求項 1〜8のいずれかに記載の炭酸ガス吸収材を、
圧力: 1. 0 X 104〜1. 0 X 106Paゝ
温度: 500〜900。C
の条件下で炭酸ガスを含む気流と接触させて炭酸ガスを前記炭酸ガス吸収材に吸 収させる炭酸ガス吸収機構部と、
炭酸ガスを含む気流と接触して炭酸ガスを吸収した炭酸ガス吸収材を、
圧力: lOOOPa以下の減圧下、
温度: 750°C以上
の条件で加熱して、炭酸ガスを放出させる炭酸ガス放出機構部と
を具備することを特徴とする炭酸ガス分離装置。
PCT/JP2005/012420 2004-08-03 2005-07-05 炭酸ガス吸収材、それを用いた炭酸ガス分離方法、および炭酸ガス分離装置 WO2006013695A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006531333A JP3938212B2 (ja) 2004-08-03 2005-07-05 炭酸ガス吸収材、それを用いた炭酸ガス分離方法、および炭酸ガス分離装置
EP05765471A EP1852179A4 (en) 2004-08-03 2005-07-05 CARBON DIOXIDE ABSORBENT MATERIAL AND METHOD AND DEVICE FOR SEPARATING CARBON DIOXIDE
US11/670,552 US7670410B2 (en) 2004-08-03 2007-02-02 Carbon-dioxide-gas absorber, method for separating carbon-dioxide-gas using carbon-dioxide-gas absorber, and apparatus for separating carbon-dioxide-gas including carbon-dioxide-gas absorber

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2004227173 2004-08-03
JP2004-227173 2004-08-03
JP2004-268848 2004-09-15
JP2004268848 2004-09-15
JP2004-348990 2004-12-01
JP2004348990 2004-12-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/670,552 Continuation US7670410B2 (en) 2004-08-03 2007-02-02 Carbon-dioxide-gas absorber, method for separating carbon-dioxide-gas using carbon-dioxide-gas absorber, and apparatus for separating carbon-dioxide-gas including carbon-dioxide-gas absorber

Publications (1)

Publication Number Publication Date
WO2006013695A1 true WO2006013695A1 (ja) 2006-02-09

Family

ID=35786990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/012420 WO2006013695A1 (ja) 2004-08-03 2005-07-05 炭酸ガス吸収材、それを用いた炭酸ガス分離方法、および炭酸ガス分離装置

Country Status (4)

Country Link
US (1) US7670410B2 (ja)
EP (1) EP1852179A4 (ja)
JP (1) JP3938212B2 (ja)
WO (1) WO2006013695A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007099663A1 (ja) * 2006-02-28 2007-09-07 Murata Manufacturing Co., Ltd. 炭酸ガス吸収材およびそれを用いた炭酸ガス吸収方法
JP2008074630A (ja) * 2006-09-19 2008-04-03 Matsushita Electric Ind Co Ltd ペロブスカイト化合物粉末の製造方法およびこのペロブスカイト化合物粉末を用いたセラミック電子部品
WO2008038484A1 (en) * 2006-09-28 2008-04-03 Murata Manufacturing Co., Ltd. Method of separating/recovering carbon dioxide
JP2008208148A (ja) * 2007-02-23 2008-09-11 Iwatani Internatl Corp 高一酸化炭素濃度合成ガスの製造方法及び製造装置
JP2009119337A (ja) * 2007-11-13 2009-06-04 Murata Mfg Co Ltd 炭酸ガスの吸収・放出方法
JP2009172479A (ja) * 2008-01-22 2009-08-06 Fujitsu Ltd 二酸化炭素除去装置および二酸化炭素の除去方法
KR101770701B1 (ko) * 2012-12-21 2017-09-06 삼성전자주식회사 티탄산 바륨을 포함한 이산화탄소 흡착제, 이를 포함한 이산화탄소 포집 모듈, 및 이를 이용한 이산화탄소 분리 방법
JP2018162176A (ja) * 2017-03-24 2018-10-18 Dowaエレクトロニクス株式会社 ペロブスカイト型複合酸化物粉末およびその製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006137211A1 (ja) * 2005-06-24 2006-12-28 Murata Manufacturing Co., Ltd. 燃料電池用改質装置
US8137435B2 (en) * 2009-03-31 2012-03-20 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Carbon dioxide recovery from low concentration sources
FR2946263A1 (fr) 2009-06-05 2010-12-10 Centre Nat Rech Scient Utilisation d'un oxyde complexe a base de lithium pour le stockage du co2
ES2616028T3 (es) * 2011-01-20 2017-06-09 Saudi Arabian Oil Company Método de adsorción reversible sobre sólido y sistema que utiliza calor residual para recuperación y almacenamiento a bordo de CO2
US9248395B2 (en) * 2012-03-26 2016-02-02 Samsung Electronics Co., Ltd. Adsorbent for carbon dioxide, method of preparing the same, and capture module for carbon dioxide including the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05103938A (ja) 1991-10-11 1993-04-27 Mitsubishi Heavy Ind Ltd 圧力温度スイング吸着法による混合ガスの分離方法
JPH05293364A (ja) * 1992-04-16 1993-11-09 Osaka Gas Co Ltd 二酸化炭素の除去剤、除去方法、及び除去剤処理方法
JPH0871385A (ja) 1994-08-31 1996-03-19 Kyocera Corp 二酸化炭素分離体
JPH10272336A (ja) * 1997-03-31 1998-10-13 Nissan Motor Co Ltd 二酸化炭素吸収材および排ガス中の二酸化炭素の分離回収方法
JP2001219058A (ja) * 2000-02-07 2001-08-14 Sharp Corp 二酸化炭素除去剤及びそれを用いた除去装置、除去方法、フィルター、空気調和機
JP2002282685A (ja) * 2001-03-28 2002-10-02 Toshiba Corp 炭酸ガス吸収材および燃焼装置
JP2004085099A (ja) 2002-08-27 2004-03-18 Mayekawa Mfg Co Ltd 排出co2の回収システム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS553104A (en) * 1978-06-21 1980-01-10 Toshiba Corp Method of manufacturing discharge lamp
US4829033A (en) * 1986-05-05 1989-05-09 Cabot Corporation Barium titanate powders
US6482387B1 (en) * 1996-04-22 2002-11-19 Waltraud M. Kriven Processes for preparing mixed metal oxide powders
US6387845B1 (en) 1999-03-23 2002-05-14 Kabushiki Kaisha Toshiba Carbon dioxide gas absorbent containing lithium silicate
JP3396642B2 (ja) 1999-03-23 2003-04-14 株式会社東芝 炭酸ガス吸収材、炭酸ガス分離方法および炭酸ガス分離装置
JP3770096B2 (ja) * 2001-03-12 2006-04-26 株式会社村田製作所 チタン酸バリウム粉末の製造方法、誘電体セラミック、ならびに積層セラミックコンデンサ
US20020179887A1 (en) * 2001-05-01 2002-12-05 Yongxian Zeng Supported perovskite-type oxides and methods for preparation thereof
JP4200427B2 (ja) * 2001-12-28 2008-12-24 株式会社村田製作所 複合酸化物粉末の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05103938A (ja) 1991-10-11 1993-04-27 Mitsubishi Heavy Ind Ltd 圧力温度スイング吸着法による混合ガスの分離方法
JPH05293364A (ja) * 1992-04-16 1993-11-09 Osaka Gas Co Ltd 二酸化炭素の除去剤、除去方法、及び除去剤処理方法
JPH0871385A (ja) 1994-08-31 1996-03-19 Kyocera Corp 二酸化炭素分離体
JPH10272336A (ja) * 1997-03-31 1998-10-13 Nissan Motor Co Ltd 二酸化炭素吸収材および排ガス中の二酸化炭素の分離回収方法
JP2001219058A (ja) * 2000-02-07 2001-08-14 Sharp Corp 二酸化炭素除去剤及びそれを用いた除去装置、除去方法、フィルター、空気調和機
JP2002282685A (ja) * 2001-03-28 2002-10-02 Toshiba Corp 炭酸ガス吸収材および燃焼装置
JP2004085099A (ja) 2002-08-27 2004-03-18 Mayekawa Mfg Co Ltd 排出co2の回収システム

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
J. N. LIN: "Effects of isovalent substitutions on lattice softening and transition character of BaTi03 solid solutions", J. APPL. PHYS., vol. 68, no. 3, 1 August 1990 (1990-08-01), pages 985 - 993
K.-H. FELGNER: "On the formation of BaTi03 from BaC03 and Ti02 by microwave and conventional heating", MATERIALS LETTERS, vol. 58, May 2004 (2004-05-01), pages 1943 - 1947
M. MURATA: "Differential Reaction Rate Determination of Barium Orthotitanate in Barium Titanate Powder", ANALYTICAL CHEMISTRY, vol. 47, no. 8, July 1975 (1975-07-01), pages 1467 - 1469
S. HODJATI: "Absorption/desorption of NOx process on perovskites: performances to remove NOx from a lean exhaust gas", APPLIED CATALYSIS B: ENVIRONMENTAL, vol. 26, 2000, pages 5 - 16
See also references of EP1852179A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007099663A1 (ja) * 2006-02-28 2007-09-07 Murata Manufacturing Co., Ltd. 炭酸ガス吸収材およびそれを用いた炭酸ガス吸収方法
US7621980B2 (en) 2006-02-28 2009-11-24 Murata Manufacturing Co., Ltd. Carbon dioxide absorbent and carbon dioxide absorption method using the same
EP1990091A4 (en) * 2006-02-28 2011-05-11 Murata Manufacturing Co CARBON DIOXIDE ABSORBING ELEMENT AND METHOD FOR ABSORPTION OF CARBON DIOXIDE
JP2008074630A (ja) * 2006-09-19 2008-04-03 Matsushita Electric Ind Co Ltd ペロブスカイト化合物粉末の製造方法およびこのペロブスカイト化合物粉末を用いたセラミック電子部品
WO2008038484A1 (en) * 2006-09-28 2008-04-03 Murata Manufacturing Co., Ltd. Method of separating/recovering carbon dioxide
JPWO2008038484A1 (ja) * 2006-09-28 2010-01-28 株式会社村田製作所 二酸化炭素の分離回収方法
JP2008208148A (ja) * 2007-02-23 2008-09-11 Iwatani Internatl Corp 高一酸化炭素濃度合成ガスの製造方法及び製造装置
JP2009119337A (ja) * 2007-11-13 2009-06-04 Murata Mfg Co Ltd 炭酸ガスの吸収・放出方法
JP2009172479A (ja) * 2008-01-22 2009-08-06 Fujitsu Ltd 二酸化炭素除去装置および二酸化炭素の除去方法
KR101770701B1 (ko) * 2012-12-21 2017-09-06 삼성전자주식회사 티탄산 바륨을 포함한 이산화탄소 흡착제, 이를 포함한 이산화탄소 포집 모듈, 및 이를 이용한 이산화탄소 분리 방법
JP2018162176A (ja) * 2017-03-24 2018-10-18 Dowaエレクトロニクス株式会社 ペロブスカイト型複合酸化物粉末およびその製造方法

Also Published As

Publication number Publication date
EP1852179A1 (en) 2007-11-07
JPWO2006013695A1 (ja) 2008-05-01
JP3938212B2 (ja) 2007-06-27
US20070125229A1 (en) 2007-06-07
US7670410B2 (en) 2010-03-02
EP1852179A4 (en) 2008-05-28

Similar Documents

Publication Publication Date Title
WO2006013695A1 (ja) 炭酸ガス吸収材、それを用いた炭酸ガス分離方法、および炭酸ガス分離装置
US7621980B2 (en) Carbon dioxide absorbent and carbon dioxide absorption method using the same
EP2644265B1 (en) Method of preparing an adsorbent for carbon dioxide, adsorbent obtainable by the method, and capture module for carbon dioxide including the same
CN105452192B (zh) 用于催化剂一体化的成形的陶瓷基材组合物
KR101770701B1 (ko) 티탄산 바륨을 포함한 이산화탄소 흡착제, 이를 포함한 이산화탄소 포집 모듈, 및 이를 이용한 이산화탄소 분리 방법
JP5457962B2 (ja) 二酸化炭素捕捉材
JP2004313916A (ja) 二酸化炭素の吸脱着材及び吸脱着装置
JP4837651B2 (ja) 酸化ニッケルの製造方法
JP4855012B2 (ja) 酸素イオン伝導体および酸素分離膜並びに炭化水素の酸化用反応装置
KR102255235B1 (ko) 알칼리금속 복염을 포함하는 이산화탄소 흡착제 및 그 제조 방법
JP4819099B2 (ja) 二酸化炭素吸収剤、二酸化炭素分離回収装置、及び二酸化炭素分離回収方法
JP2014223587A (ja) 排ガス浄化用触媒担体、排ガス浄化用触媒担体の製造方法、および排ガス浄化用触媒、排ガス浄化用触媒の製造方法
JP2008062188A (ja) 酸素分離膜
KR101580384B1 (ko) 미량 산소를 제거하기 위한 세라믹 흡착제
JP5044973B2 (ja) 炭酸ガス吸収材、その製造方法および炭酸ガス吸収方法
JP7461364B2 (ja) セリウム元素及びジルコニウム元素を含有する複合酸化物の粉末、及びこれを使用した排ガス浄化用触媒組成物、並びにその製造方法
JP2008080211A (ja) 炭酸ガス吸収材、それを用いた炭酸ガス分離方法、および炭酸ガス分離装置
CN105408284B (zh) 用于催化剂整合的成型陶瓷基材组合物
JP2008104992A (ja) 炭酸ガス吸収材、それを用いた炭酸ガス分離方法、および炭酸ガス分離装置
JP4855013B2 (ja) 酸素分離膜および炭化水素の酸化用反応装置
JP2016526006A (ja) 触媒の一体化のための成形セラミック基材組成物
KR101869461B1 (ko) 산소 제거 촉매제를 이용한 메탄 혼합 가스의 산소 제거 방법, 이에 사용되는 페롭스카이트 산소 제거 촉매제, 및 이를 이용하는 매립가스 메탄 직접 전환 기술을 적용한 매립 가스 정제 장치
JP3850843B2 (ja) 炭酸ガス吸収材、炭酸ガスの吸収方法、炭酸ガス吸収装置、炭酸ガス分離装置及びリチウム複合酸化物の製造方法
JP2008142635A (ja) 炭酸ガス吸収材、それを用いた炭酸ガス分離方法および炭酸ガス分離装置
JP3576823B2 (ja) 炭酸ガス吸収材、その製造方法および炭酸ガス分離装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2006531333

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580026127.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 11670552

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 11670552

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2005765471

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005765471

Country of ref document: EP