WO2008038484A1 - Method of separating/recovering carbon dioxide - Google Patents

Method of separating/recovering carbon dioxide Download PDF

Info

Publication number
WO2008038484A1
WO2008038484A1 PCT/JP2007/066535 JP2007066535W WO2008038484A1 WO 2008038484 A1 WO2008038484 A1 WO 2008038484A1 JP 2007066535 W JP2007066535 W JP 2007066535W WO 2008038484 A1 WO2008038484 A1 WO 2008038484A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
gas
release
absorbent
carbon
Prior art date
Application number
PCT/JP2007/066535
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshinori Saito
Masaru Fujino
Original Assignee
Murata Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co., Ltd. filed Critical Murata Manufacturing Co., Ltd.
Priority to JP2008536307A priority Critical patent/JPWO2008038484A1/en
Publication of WO2008038484A1 publication Critical patent/WO2008038484A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0211Compounds of Ti, Zr, Hf
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/041Oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/3433Regenerating or reactivating of sorbents or filter aids other than those covered by B01J20/3408 - B01J20/3425
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/345Regenerating or reactivating using a particular desorbing compound or mixture
    • B01J20/3458Regenerating or reactivating using a particular desorbing compound or mixture in the gas phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/3483Regenerating or reactivating by thermal treatment not covered by groups B01J20/3441 - B01J20/3475, e.g. by heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/40Alkaline earth metal or magnesium compounds
    • B01D2251/404Alkaline earth metal or magnesium compounds of calcium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/40Alkaline earth metal or magnesium compounds
    • B01D2251/408Alkaline earth metal or magnesium compounds of barium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/112Metals or metal compounds not provided for in B01D2253/104 or B01D2253/106
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40083Regeneration of adsorbents in processes other than pressure or temperature swing adsorption
    • B01D2259/40088Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Abstract

Carbon dioxide absorbed can be efficiently released in a shorter period and the carbon dioxide can be recovered after having been converted to carbon monoxide, which is usable in a wider range of applications. A carbon dioxide absorber is caused to absorb carbon dioxide. Thereafter, the carbon dioxide absorber having carbon dioxide absorbed therein is heated while feeding hydrogen gas or a hydrocarbon gas thereto to release the carbon dioxide. In the release step, the absorber may be heated at a temperature of 800-1,000°C. The carbon dioxide absorber may be one comprising an oxide of an alkali earth metal as the main component or one comprising, as the main component, a composite oxide including an alkaline earth metal oxide. The carbon dioxide absorber may be one comprising a composite oxide selected among Ba2TiO4, Sr2TiO4, and Ba3Ca2Ti2O9 as the main component.

Description

明 細 書  Specification
二酸化炭素の分離回収方法  Carbon dioxide separation and recovery method
技術分野  Technical field
[0001] 本願発明は、二酸化炭素の分離回収方法に関し、詳しくは、二酸化炭素を吸収し TECHNICAL FIELD [0001] The present invention relates to a method for separating and recovering carbon dioxide.
、所定の条件下で吸収した二酸化炭素を放出させることが可能な二酸化炭素吸収材 を用いて二酸化炭素を分離回収する方法に関する。 The present invention also relates to a method for separating and recovering carbon dioxide using a carbon dioxide absorbent capable of releasing carbon dioxide absorbed under predetermined conditions.
背景技術  Background art
[0002] 高温の排気ガスから二酸化炭素を分離する方法としては、例えば、リチウムシリケート を二酸化炭素の吸収材として用い、 500°C以上の温度で排気ガスから二酸化炭素を 分離する方法が提案されて!/、る (特許文献 1参照)。  [0002] As a method for separating carbon dioxide from high-temperature exhaust gas, for example, a method of separating carbon dioxide from exhaust gas at a temperature of 500 ° C or higher using lithium silicate as a carbon dioxide absorbent has been proposed. ! /, Ru (see Patent Document 1).
[0003] また、その他にも、リチウムシリケートを二酸化炭素の吸収材として用い、含炭素燃 料の水蒸気改質後の二酸化炭素を含むガスを 400°C〜700°Cの温度で吸収材と接 触させ、二酸化炭素と吸収材を反応させることにより二酸化炭素を吸収させた後、二 酸化炭素を吸収した吸収材を 700〜900°Cの温度で再生させる方法が提案されて いる(特許文献 2参照)。  [0003] Besides, lithium silicate is used as an absorbent for carbon dioxide, and the gas containing carbon dioxide after steam reforming of the carbon-containing fuel is contacted with the absorbent at a temperature of 400 ° C to 700 ° C. A method has been proposed in which carbon dioxide is absorbed by allowing the carbon dioxide and the absorbent material to react with each other, and then the absorbent material that has absorbed carbon dioxide is regenerated at a temperature of 700 to 900 ° C (Patent Document 2). reference).
[0004] しかしながら、上記特許文献 1および 2の方法の場合、二酸化炭素を高濃度で回収 するためには、吸収温度よりも高温で処理することが必要となり、非常に多くのェネル ギーを消費するという問題点がある。  [0004] However, in the case of the methods described in Patent Documents 1 and 2, in order to recover carbon dioxide at a high concentration, it is necessary to perform treatment at a temperature higher than the absorption temperature, which consumes a great deal of energy. There is a problem.
[0005] また、仮に高濃度で二酸化炭素の回収を可能にすることができたとしても、回収さ れる二酸化炭素の有効利用に対する方策が明確になって!/、な!/、ため、地下や海中 への貯留などの技術が必要となり、技術的、経済的な負担が大きレ、と!/、う問題点があ 特許文献 1 :特開 2000— 262890号公報  [0005] Even if it is possible to recover carbon dioxide at a high concentration, measures for effective use of the recovered carbon dioxide have become clear! /, Na! / Technology such as storage in the sea is required, and the technical and economic burdens are large! /, And there is a problem of patent document 1: JP 2000-262890 A
特許文献 2:特開 2003— 054927号公報  Patent Document 2: Japanese Patent Laid-Open No. 2003-054927
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] 本願発明は、上述のような従来の技術の課題を解決するものであり、吸収した二酸 化炭素をより短時間に効率よく放出させることが可能であるとともに、二酸化炭素を、 さらに用途の広い一酸化炭素に転換して回収することが可能な二酸化炭素の分離 回収方法を提供することを目的とする。 [0006] The present invention solves the above-mentioned problems of the prior art, and the absorbed diacid It is possible to provide a method for separating and recovering carbon dioxide capable of efficiently releasing carbonized carbon in a shorter time and converting carbon dioxide into carbon monoxide, which is more versatile. Objective.
課題を解決するための手段  Means for solving the problem
[0007] 上記課題を解決するために、本願発明(請求項 1)の二酸化炭素の分離回収方法 は、 [0007] In order to solve the above problems, the method for separating and recovering carbon dioxide according to the present invention (Claim 1) comprises:
(a)二酸化炭素吸収材に二酸化炭素を吸収させる吸収工程と、  (a) an absorption process in which carbon dioxide absorbing material absorbs carbon dioxide;
(b)二酸化炭素を吸収した二酸化炭素吸収材力 二酸化炭素を放出させる放出ェ 程と  (b) Carbon dioxide absorbent material that absorbed carbon dioxide Release process that releases carbon dioxide and
を具備する二酸化炭素の分離回収方法であって、  A carbon dioxide separation and recovery method comprising:
前記 (b)の放出工程において、二酸化炭素を吸収した二酸化炭素吸収材を、水素 ガスまたは炭化水素系ガスを供給しつつ加熱して二酸化炭素を放出させること を特徴としている。  In the releasing step (b), the carbon dioxide absorbing material that has absorbed carbon dioxide is heated while supplying hydrogen gas or hydrocarbon gas to release carbon dioxide.
[0008] また、請求項 2の二酸化炭素の分離回収方法は、請求項 1の発明の構成において 、前記 (b)の放出工程における加熱温度を 800〜; 1000°Cとすることを特徴としている [0008] Further, the method for separating and recovering carbon dioxide according to claim 2 is characterized in that, in the configuration of the invention according to claim 1, the heating temperature in the releasing step (b) is 800 to 1000 ° C.
Yes
[0009] また、請求項 3の二酸化炭素の分離回収方法は、請求項 1または 2の発明の構成 において、前記二酸化炭素吸収材が、アルカリ土類金属の酸化物を主たる成分とす るもの、またはアルカリ土類金属酸化物を含有する複合酸化物を主たる成分とするも のであることを特徴として!/、る。  [0009] Further, the method for separating and recovering carbon dioxide according to claim 3 is the structure of the invention according to claim 1 or 2, wherein the carbon dioxide absorbent mainly comprises an alkaline earth metal oxide, Alternatively, the main component is a composite oxide containing an alkaline earth metal oxide.
[0010] また、請求項 4の二酸化炭素の分離回収方法は、請求項 3の発明の構成において 、前記二酸化炭素吸収材が、 Ba TiO 、 Sr TiO、および Ba Ca Ti Oのいずれかの  [0010] Further, in the method for separating and recovering carbon dioxide according to claim 4, in the configuration of the invention according to claim 3, the carbon dioxide absorbent is any one of BaTiO3, SrTiO2, and BaCaTiO.
2 4 2 4 3 2 2 9  2 4 2 4 3 2 2 9
複合酸化物を主たる成分とするものであることを特徴としている。  It is characterized by having a composite oxide as a main component.
発明の効果  The invention's effect
[0011] 本願発明(請求項 1)の二酸化炭素の分離回収方法においては、二酸化炭素を吸 収した二酸化炭素吸収材力 二酸化炭素を放出させる際に、二酸化炭素を吸収した 二酸化炭素吸収材を、水素ガスまたは炭化水素系ガスを供給しつつ加熱して二酸 化炭素を放出させるようにしているので、二酸化炭素を、一酸化炭素に転換して回収 すること力 Sでさる。 [0011] In the carbon dioxide separation and recovery method of the present invention (Claim 1), the carbon dioxide absorbent that absorbs carbon dioxide When carbon dioxide is released, the carbon dioxide absorbent that absorbs carbon dioxide is used. Since carbon dioxide is released by heating while supplying hydrogen gas or hydrocarbon gas, carbon dioxide is converted to carbon monoxide and recovered. The power S to do.
[0012] 例えば、炭化水素系ガスであるメタンをスイープガスとして用い、二酸化炭素の放 出工程で、メタンを供給しつつ加熱して二酸化炭素を放出させることにより、放出され る二酸化炭素が、下記の式 (1)に示すように、メタンと反応し、一酸化炭素と水素が生 成される。  [0012] For example, by using methane, which is a hydrocarbon-based gas, as a sweep gas, and releasing carbon dioxide by heating while supplying methane in the carbon dioxide emission step, the carbon dioxide released is As shown in Equation (1), carbon monoxide and hydrogen are produced by reacting with methane.
CO + CH→2CO + 2H …… (1)  CO + CH → 2CO + 2H ...... (1)
[0013] また、スイープガスとして水素ガスを用い、二酸化炭素の放出工程で、水素ガスを 供給しつつ加熱して二酸化炭素を放出させることにより、放出される二酸化炭素が、 下記の式 (2)に示すように、水素と反応し、一酸化炭素と水が生成される。  [0013] Further, when hydrogen gas is used as the sweep gas and carbon dioxide is released by heating while supplying hydrogen gas in the carbon dioxide releasing step, the carbon dioxide released is expressed by the following formula (2) As shown in Fig. 1, it reacts with hydrogen to produce carbon monoxide and water.
CO +H→CO + H 0 …… (2)  CO + H → CO + H 0 …… (2)
[0014] 特に、メタンと反応させた際の(上記の反応式 (1)参照)、一酸化炭素と水素の混合 ガスは合成ガスと呼ばれ、メタノール(CH OH) ,ホルムアルデヒド(HCHO)などの C  [0014] In particular, when it is reacted with methane (see the above reaction formula (1)), the mixed gas of carbon monoxide and hydrogen is called synthesis gas, and it contains methanol (CH OH), formaldehyde (HCHO) C
3  Three
数が 1の物質を合成する、レ、わゆる C 1化学の基本的な材料として有用なものであり、 この一酸化炭素と水素の混合ガスから、以下の式 (3)や (4)に示す反応により、メタノ ールゃ各種炭化水素などを合成することができる。  It is useful as a basic material for the so-called C 1 chemistry to synthesize a substance with the number 1. From this mixed gas of carbon monoxide and hydrogen, the following equations (3) and (4) By the reaction shown, methanol can synthesize various hydrocarbons.
CO + 2H → CH OH …… (3)  CO + 2H → CH OH …… (3)
2 3  twenty three
CO + 2H → l/n-(-CH2-)- +H O …… (4)  CO + 2H → l / n-(-CH2-)-+ H O ...... (4)
2 n 2  2 n 2
[0015] また、二酸化炭素吸収材が放出する二酸化炭素がメタンと反応することにより、気 相中の二酸化炭素分圧の上昇が抑制されるため、減圧などの操作を行わなくても、 効率よく二酸化炭素を放出させることが可能で、短時間で二酸化炭素吸収材の再生 を fiうこと力 Sできる。  [0015] Further, since carbon dioxide released from the carbon dioxide absorbent reacts with methane, an increase in the partial pressure of carbon dioxide in the gas phase is suppressed, so that it is possible to efficiently perform operations without performing decompression or the like. It is possible to release carbon dioxide and to regenerate the carbon dioxide absorbent in a short time.
[0016] このように、本願発明によれば、二酸化炭素を、二酸化炭素よりもさらに用途の広い 一酸化炭素に転換して回収することができるとともに、効率よく二酸化炭素吸収材の 再生(二酸化炭素の放出)を行うことが可能で、従来の方法に比べて、二酸化炭素の 放出と、二酸化炭素吸収材の再生に要するエネルギーを抑制することができるため、 本願発明の二酸化炭素の分離回収方法は、極めて有意義である。  Thus, according to the present invention, carbon dioxide can be recovered by being converted to carbon monoxide, which is more versatile than carbon dioxide, and the carbon dioxide absorbent can be efficiently regenerated (carbon dioxide Release of carbon dioxide and the energy required for the regeneration of the carbon dioxide absorbent can be suppressed as compared with the conventional method. , Very meaningful.
[0017] また、請求項 2の二酸化炭素の分離回収方法のように、二酸化炭素の放出工程に おける加熱温度を 800〜; 1000°Cとすることにより、二酸化炭素の放出工程で、さらに 効率よく二酸化炭素を一酸化炭素と水素に転換させることが可能になり、本願発明を より実 ¾]あらしめること力できる。 [0017] Further, as in the method for separating and recovering carbon dioxide according to claim 2, the heating temperature in the carbon dioxide releasing step is set to 800 to 1000 ° C. Carbon dioxide can be efficiently converted into carbon monoxide and hydrogen, and the present invention can be realized more effectively.
[0018] なお、本願発明の二酸化炭素の分離回収方法において、放出工程の温度条件を  [0018] In the carbon dioxide separation and recovery method of the present invention, the temperature condition of the release step is
800〜; 1000°Cの範囲とすることが好ましいのは、放出工程の温度条件が 800°C未 満になると一酸化炭素の生成割合が低下する傾向があり、また、放出工程の温度条 件が 1000°Cを超えると、メタンの熱分解によるコーキングが激しくなるとともに、二酸 化炭素吸収材の焼結による劣化が起こりやすくなることによる。  It is preferable to set the temperature in the range of 800 to 1000 ° C. When the temperature condition of the release process is less than 800 ° C, the carbon monoxide production rate tends to decrease, and the temperature condition of the release process When the temperature exceeds 1000 ° C, coking due to thermal decomposition of methane becomes severe and deterioration due to sintering of the carbon dioxide absorber is likely to occur.
[0019] また、請求項 3の二酸化炭素の分離回収方法の場合、二酸化炭素吸収材として、 アルカリ土類金属の酸化物を主たる成分とするもの、またはアルカリ土類金属酸化物 を含有する複合酸化物を主たる成分とするものを用いて!/、るので、二酸化炭素の一 酸化炭素と水素への転換の効率を向上させることが可能になり、本願発明をより実効 あらしめること力 Sでさる。  [0019] In the method for separating and recovering carbon dioxide according to claim 3, the carbon dioxide absorbent is mainly composed of an alkaline earth metal oxide, or a composite oxide containing an alkaline earth metal oxide. Therefore, it is possible to improve the efficiency of the conversion of carbon dioxide to carbon monoxide and hydrogen, and to make the present invention more effective. .
[0020] なお、アルカリ土類金属の酸化物としては、例えば、 CaO、 SrOなどが例示される。  [0020] Examples of the alkaline earth metal oxide include CaO and SrO.
また、アルカリ土類金属酸化物を含有する複合酸化物を主たる成分とするものとし ては、 Ba TiO、 Sr TiO、 Ba Ca Ti Oなどが例示される。  Examples of the main component of the composite oxide containing an alkaline earth metal oxide include Ba TiO, Sr TiO, and Ba Ca Ti O.
2 4 2 4 3 2 2 9  2 4 2 4 3 2 2 9
[0021] また、請求項 4の二酸化炭素の分離回収方法のように、二酸化炭素吸収材として、 Ba TiO、 Sr TiO、および Ba Ca Ti Oのいずれかの複合酸化物を主たる成分とす [0021] Further, as in the carbon dioxide separation and recovery method according to claim 4, the main component is a composite oxide of Ba TiO, Sr TiO, and Ba Ca Ti O as a carbon dioxide absorbent.
2 4 2 4 3 2 2 9 2 4 2 4 3 2 2 9
るものを用いた場合、高温での二酸化炭素の吸収が可能になるとともに、二酸化炭 素の一酸化炭素と水素への転換の効率を向上させることが可能になり、本願発明を さらに実 らしめること力できる。  Can be used to absorb carbon dioxide at high temperatures and improve the efficiency of conversion of carbon dioxide to carbon monoxide and hydrogen, further realizing the present invention. I can do it.
[0022] なお、二酸化炭素吸収材としては、再生温度や再生時の反応速度などの見地から 、 Ba TiOが最も効果的なものの 1つである力 それ以外にも Sr TiOや Ba Ca Ti O  [0022] As the carbon dioxide absorbent, Ba TiO is one of the most effective forces from the standpoint of the regeneration temperature and the reaction rate during regeneration. In addition, Sr TiO and Ba Ca Ti O
2 4 2 4 3 2 2 なども使用可能であり、通常再生温度が 800°C以下である CaOも加圧下で再生す 2 4 2 4 3 2 2 etc. can be used, and CaO with a normal regeneration temperature of 800 ° C or less is also regenerated under pressure.
9 9
ることにより同様の ¾]果を得ることができる。  The same results can be obtained.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0023] 以下に本願発明の実施例を示して、本願発明の特徴とするところをさらに詳しく説 明する。 [0023] The features of the present invention will be described in more detail with reference to the following examples of the present invention.
実施例 1 [0024] 外部に電熱ヒーターを備えた内径 22mm、長さ 300mmの、筒状のステンレス製容 器に、平均粒子径 2mmの Ba TiO (二酸化炭素吸収材)を 22g (約 10mU充填した Example 1 [0024] A cylindrical stainless steel container having an inner diameter of 22 mm and a length of 300 mm equipped with an external electric heater was filled with 22 g (approximately 10 mU) of Ba TiO (carbon dioxide absorbent) having an average particle diameter of 2 mm.
2 4 それから、このステンレス製容器に、 18NL/hの割合で窒素ガスを流通させ、伝熱 ヒーターにより窒素ガス入口温度を 700°Cに制御した。  2 4 Then, nitrogen gas was circulated through this stainless steel container at a rate of 18 NL / h, and the nitrogen gas inlet temperature was controlled at 700 ° C by a heat transfer heater.
流通させた窒素ガス温度が安定した後に、二酸化炭素を 2NL/hの速度で流通さ せ(二酸化炭素濃度は 10mol%)、二酸化炭素の吸収を開始した。  After the circulated nitrogen gas temperature was stabilized, carbon dioxide was circulated at a rate of 2 NL / h (carbon dioxide concentration was 10 mol%), and carbon dioxide absorption was started.
なお、 Ba TiO (二酸化炭素吸収材)による二酸化炭素の吸収の反応は、下記の式  The reaction of carbon dioxide absorption by Ba TiO (carbon dioxide absorbent) is expressed by the following equation:
2 4  twenty four
(5)の通りである。  (5)
Ba TiO + CO → BaTiO +BaCO …… (5)  Ba TiO + CO → BaTiO + BaCO …… (5)
2 4 2 3 3  2 4 2 3 3
[0025] 二酸化炭素吸収材を通過したガス中の二酸化炭素濃度の経時変化を、ガス分析 装置(島津製作所製ガスクロマトグラフ)により測定し、二酸化炭素濃度が入口濃度と 等しくなつた時点で二酸化炭素の吸収繰作を終了した。  [0025] The time-dependent change in the carbon dioxide concentration in the gas that passed through the carbon dioxide absorbent was measured by a gas analyzer (Gas Chromatograph manufactured by Shimadzu Corporation). When the carbon dioxide concentration became equal to the inlet concentration, Absorption cycle was completed.
[0026] このようにして二酸化炭素を吸収させた二酸化炭素吸収材を、容器に装備された 電熱ヒーターを用いて加熱し、二酸化炭素吸収材の温度を 900°Cに制御しつつ、メ タンを 10NL/hの割合で流通させ、二酸化炭素吸収材に吸収された二酸化炭素を 放出させた。  [0026] The carbon dioxide absorbent that has absorbed carbon dioxide in this manner is heated using an electric heater equipped in the container, and the temperature of the carbon dioxide absorbent is controlled at 900 ° C, while the methane is removed. Carbon dioxide absorbed by the carbon dioxide absorbent was released at a rate of 10 NL / h.
二酸化炭素を吸収した二酸化炭素吸収材からの二酸化炭素の放出反応は、下記 の式 (6)の通りである。  The release reaction of carbon dioxide from the carbon dioxide absorbent that has absorbed carbon dioxide is expressed by the following equation (6).
BaTiO +BaCO → Ba TiO + CO † …… (6)  BaTiO + BaCO → Ba TiO + CO † (6)
3 3 2 4 2  3 3 2 4 2
[0027] そして、放出工程における排出ガス組成の経時変化を上記ガス分析装置で測定し 、二酸化炭素の放出が完了するまでの時間と、放出工程における二酸化炭素と一酸 化炭素の比率(CO/ (CO + CO):容積比率)を測定した。その結果を表 1に示す。 実施例 2  [0027] Then, the time-dependent change in the exhaust gas composition in the release process was measured with the gas analyzer, and the time until the release of carbon dioxide was completed and the ratio of carbon dioxide and carbon monoxide in the release process (CO / (CO + CO): volume ratio) was measured. The results are shown in Table 1. Example 2
[0028] 二酸化炭素放出時の吸収材温度を 800°Cに制御したこと以外は、実施例 1と同じ 方法により、二酸化炭素の放出工程における二酸化炭素と一酸化炭素の比率の測 定を行った。その結果を表 1に示す。  [0028] The ratio of carbon dioxide to carbon monoxide in the carbon dioxide release process was measured by the same method as in Example 1 except that the absorbent material temperature during carbon dioxide release was controlled to 800 ° C. . The results are shown in Table 1.
実施例 3 [0029] 二酸化炭素放出時の吸収材温度を 1000°Cに制御したこと以外は、実施例 1と同じ 方法により、二酸化炭素の放出工程における二酸化炭素と一酸化炭素の比率の測 定を行った。その結果を表 1に示す。 Example 3 [0029] The ratio of carbon dioxide to carbon monoxide in the carbon dioxide releasing step was measured by the same method as in Example 1 except that the absorbent material temperature during carbon dioxide release was controlled to 1000 ° C. . The results are shown in Table 1.
実施例 4  Example 4
[0030] 二酸化炭素放出時に流通させるガス (スイープガス)として水素ガスを用いたこと以 外は、実施例 1と同じ方法により、二酸化炭素の放出工程における二酸化炭素と一 酸化炭素の比率の測定を行った。その結果を表 1に示す。  [0030] The ratio of carbon dioxide and carbon monoxide in the carbon dioxide releasing step was measured by the same method as in Example 1 except that hydrogen gas was used as the gas to be circulated when carbon dioxide was released (sweep gas). went. The results are shown in Table 1.
実施例 5  Example 5
[0031] 外部に電熱ヒーターを備えた内径 22mm、長さ 300mmの、筒状のステンレス製容 器に、平均粒子径 2mmの Sr TiO (二酸化炭素吸収材)を 18g (約 10mL)充填した  [0031] A cylindrical stainless steel container having an inner diameter of 22 mm and a length of 300 mm equipped with an external electric heater was filled with 18 g (about 10 mL) of Sr TiO (carbon dioxide absorbent) having an average particle diameter of 2 mm.
2 4 それから、このステンレス製容器に、 18NL/hで窒素ガスを流通させ、伝熱ヒータ 一により窒素ガス入口温度を 700°Cに制御した。  2 4 Then, nitrogen gas was circulated through this stainless steel container at 18 NL / h, and the nitrogen gas inlet temperature was controlled at 700 ° C by a heat transfer heater.
流通させた窒素ガス温度が安定した後に、二酸化炭素を 2NL/hの速度で流通さ せ(二酸化炭素濃度は 10mol%)、二酸化炭素の吸収を開始した。  After the circulated nitrogen gas temperature was stabilized, carbon dioxide was circulated at a rate of 2 NL / h (carbon dioxide concentration was 10 mol%), and carbon dioxide absorption was started.
なお、 Sr TiO (二酸化炭素吸収材)による二酸化炭素の吸収の反応は、下記の式 (  The reaction of carbon dioxide absorption by Sr TiO (carbon dioxide absorbent) is expressed by the following formula (
2 4  twenty four
7)の通りである。  7) It is as follows.
Sr TiO + CO → SrTiO + SrCO …… (7)  Sr TiO + CO → SrTiO + SrCO …… (7)
2 4 2 3 3  2 4 2 3 3
[0032] 二酸化炭素吸収材を通過したガス中の二酸化炭素濃度の経時変化を、ガス分析 装置(島津製作所製ガスクロマトグラフ)により測定し、二酸化炭素濃度が入口濃度と 等しくなつた時点で二酸化炭素の吸収繰作を終了した。  [0032] The time-dependent change in the carbon dioxide concentration in the gas that passed through the carbon dioxide absorbent was measured by a gas analyzer (Gas Chromatograph manufactured by Shimadzu Corporation). When the carbon dioxide concentration became equal to the inlet concentration, Absorption cycle was completed.
[0033] それから、二酸化炭素を吸収させた二酸化炭素吸収材を、容器に装備された電熱 ヒーターを用いて加熱し、二酸化炭素吸収材の温度を 900°Cに制御しつつ、メタンを 10NL/hの割合で流通させ、二酸化炭素吸収材に吸収された二酸化炭素を放出さ せた。  [0033] Then, the carbon dioxide absorbent that has absorbed carbon dioxide is heated using an electric heater equipped in the container, and the temperature of the carbon dioxide absorbent is controlled at 900 ° C, while methane is reduced to 10 NL / h. The carbon dioxide absorbed in the carbon dioxide absorbent was released.
二酸化炭素を吸収した二酸化炭素吸収材からの二酸化炭素の放出反応は、下記 の式 (8)の通りである。  The release reaction of carbon dioxide from a carbon dioxide absorbent that has absorbed carbon dioxide is expressed by the following equation (8).
SrTiO + SrCO → Sr TiO + CO † …… (8) [0034] そして、放出工程における排出ガス組成の経時変化を上記ガス分析装置で測定し 、放出工程における二酸化炭素と一酸化炭素の比率を測定した。その結果を表 1に 示す。 SrTiO + SrCO → Sr TiO + CO † (8) [0034] Then, the time-dependent change in the exhaust gas composition in the release process was measured with the gas analyzer, and the ratio of carbon dioxide and carbon monoxide in the release process was measured. The results are shown in Table 1.
実施例 6  Example 6
[0035] 外部に電熱ヒーターを備えた内径 22mm、長さ 300mmの、筒状のステンレス製容 器に、平均粒子径 2mmの CaO (二酸化炭素吸収材)を 14g (約 10mU充填した。 それから、このステンレス製容器に、 18NL/hで窒素ガスを流通させ、伝熱ヒータ 一により窒素ガス入口温度を 600°Cに制御した。  [0035] A cylindrical stainless steel container having an inner diameter of 22 mm and a length of 300 mm equipped with an external electric heater was charged with 14 g (about 10 mU) of CaO (carbon dioxide absorbent) having an average particle diameter of 2 mm. Nitrogen gas was circulated through a stainless steel container at 18 NL / h, and the temperature of the nitrogen gas inlet was controlled at 600 ° C with a heat transfer heater.
流通させた窒素ガス温度が安定した後に、二酸化炭素を 2NL/hの速度で流通さ せ(二酸化炭素濃度は 10mol%)、二酸化炭素の吸収を開始した。  After the circulated nitrogen gas temperature was stabilized, carbon dioxide was circulated at a rate of 2 NL / h (carbon dioxide concentration was 10 mol%), and carbon dioxide absorption was started.
なお、 CaO (二酸化炭素吸収材)による二酸化炭素の吸収の反応は、下記の式 (9) の通りである。  The reaction of carbon dioxide absorption by CaO (carbon dioxide absorbent) is expressed by the following equation (9).
CaO + CO → CaCO …… (9)  CaO + CO → CaCO …… (9)
[0036] 二酸化炭素吸収材を通過したガス中の二酸化炭素濃度の経時変化を、ガス分析 装置(島津製作所製ガスクロマトグラフ)により測定し、二酸化炭素濃度が入口濃度と 等しくなつた時点で二酸化炭素の吸収繰作を終了した。  [0036] The time-dependent change in the carbon dioxide concentration in the gas that passed through the carbon dioxide absorbent was measured with a gas analyzer (Gas Chromatograph made by Shimadzu Corporation), and when the carbon dioxide concentration became equal to the inlet concentration, Absorption cycle was completed.
[0037] それから、二酸化炭素を吸収させた二酸化炭素吸収材を、容器に装備された電熱 ヒーターを用いて加熱し、二酸化炭素吸収材の温度を 900°Cに制御しつつ、メタンを 10NL/hの割合で流通させ、二酸化炭素吸収材に吸収された二酸化炭素を放出さ せた。  [0037] Then, the carbon dioxide absorbing material that has absorbed carbon dioxide is heated using an electric heater equipped in the container, and the temperature of the carbon dioxide absorbing material is controlled at 900 ° C, while methane is reduced to 10 NL / h. The carbon dioxide absorbed in the carbon dioxide absorbent was released.
二酸化炭素を吸収した二酸化炭素吸収材からの二酸化炭素の放出反応は、下記 の式 (10)の通りである。  The release reaction of carbon dioxide from the carbon dioxide absorbent that has absorbed carbon dioxide is expressed by the following equation (10).
CaCO → CaO + CO † …… (10)  CaCO → CaO + CO † (10)
[0038] 放出工程における排出ガス組成の経時変化を上記ガス分析装置で測定し、放出 工程における二酸化炭素と一酸化炭素の比率を測定した。その結果を表 1に示す。 実施例 7  [0038] The time-dependent change in the exhaust gas composition in the release process was measured with the gas analyzer, and the ratio of carbon dioxide and carbon monoxide in the release process was measured. The results are shown in Table 1. Example 7
[0039] 二酸化炭素放出時の吸収材温度を 700°Cに制御した以外は、実施例 6と同じ方法 により、二酸化炭素の放出工程における二酸化炭素と一酸化炭素の比率の測定を 行った。その結果を表 1に示す。 [0039] The ratio of carbon dioxide to carbon monoxide in the carbon dioxide release process was measured by the same method as in Example 6 except that the absorbent material temperature during carbon dioxide release was controlled at 700 ° C. went. The results are shown in Table 1.
[比較例 1]  [Comparative Example 1]
[0040] 二酸化炭素放出時に流通させるガスとして、窒素ガスを用いたこと(窒素(N2)ガス 流通量 10NL/h)以外は、実施例 1と同じ方法により、二酸化炭素の放出が完了す るまでの時間と、放出工程における二酸化炭素と一酸化炭素の比率の測定を行った 。その結果を表 1に示す。 [0040] The release of carbon dioxide is completed by the same method as in Example 1 except that nitrogen gas is used as the gas to be circulated at the time of carbon dioxide release (nitrogen (N 2 ) gas flow rate: 10 NL / h). And the ratio of carbon dioxide and carbon monoxide in the release process was measured. The results are shown in Table 1.
[0041] [評価]  [0041] [Evaluation]
実施例 1〜 7及び比較例 1についての、上述の測定結果を示す表 1を参照しつつ、 実施例;!〜 7および比較例 1につ!/、て評価を行った。  With reference to Table 1 showing the above-described measurement results for Examples 1 to 7 and Comparative Example 1, evaluation was performed for Examples;! To 7 and Comparative Example 1.
[0042] [表 1] [0042] [Table 1]
Figure imgf000009_0001
表 1に示すように、実施例 1〜3のように、二酸化炭素の放出工程において、 800°C 以上の温度条件でメタンを流通させた場合、高!/、割合で一酸化炭素が生成すること が確認された。 なお、このときの反応式は、式 (1)の反応式の通りである。
Figure imgf000009_0001
As shown in Table 1, as in Examples 1 to 3, when methane is circulated at a temperature condition of 800 ° C or higher in the carbon dioxide release step, carbon monoxide is produced at a high rate of /. It was confirmed. The reaction formula at this time is the same as the formula (1).
CO + CH→2CO + 2H …… (1)  CO + CH → 2CO + 2H ...... (1)
[0044] また、実施例 4に示すように、メタンの代わりに水素を流通させるようにした場合にも 、高!/、割合で一酸化炭素が生成することが確認された。 [0044] Further, as shown in Example 4, it was confirmed that carbon monoxide was produced at a high rate at a high rate even when hydrogen was circulated instead of methane.
なお、このときの反応式は、上述の式 (2)の反応式の通りである。  The reaction formula at this time is the same as the above-described reaction formula (2).
CO +H→CO + H 0 …… (2)  CO + H → CO + H 0 …… (2)
[0045] また、実施例 5のように、二酸化炭素吸収材として、他のアルカリ土類金属酸化物を 含有する複合酸化物(実施例 5では Sr TiO )を用いた場合や、実施例 6のように、二 [0045] Further, as in Example 5, when a composite oxide containing another alkaline earth metal oxide (Sr TiO in Example 5) is used as the carbon dioxide absorbent, Like, two
2 4  twenty four
酸化炭素吸収材として、アルカリ土類金属酸化物(実施例 6では CaO)を用いた場合 にも、二酸化炭素の放出工程 (放出工程での温度条件は実施例 5および 6とも 900 °C)で、スイープガスとして炭化水素系ガス(実施例 5および 6ではメタンガス)を流通 させることにより、高い割合で一酸化炭素が生成することが確認された。  Even when an alkaline earth metal oxide (CaO in Example 6) is used as the carbon oxide absorbent, the carbon dioxide release process (temperature conditions in the release process are 900 ° C in both Examples 5 and 6). It was confirmed that carbon monoxide was produced at a high rate by circulating a hydrocarbon gas (methane gas in Examples 5 and 6) as the sweep gas.
[0046] また、二酸化炭素吸収材として、 CaOを用い、二酸化炭素の放出工程の温度条件 を 700°Cとした実施例 7の場合、一酸化炭素が生成する割合は、 0. 38と必ずしも高 くはないことがわかる。この結果から、二酸化炭素とメタンの反応は高温で(800°C以 上)進行しやすいことがわかる。ただし、実施例 7の場合も、一酸化炭素が確実に生 成することが確認されており、本願発明の基本的な効果が得られることが確認された [0046] In addition, in Example 7 in which CaO was used as the carbon dioxide absorbent and the temperature condition of the carbon dioxide release process was 700 ° C, the rate of carbon monoxide formation was not necessarily as high as 0.38. I understand that it is not. This result shows that the reaction between carbon dioxide and methane tends to proceed at high temperatures (above 800 ° C). However, also in Example 7, it was confirmed that carbon monoxide was reliably generated, and it was confirmed that the basic effect of the present invention was obtained.
[0047] この実施例 7の結果からもわかるように、二酸化炭素とメタンの反応は高温において 進みやすぐ 700°Cの条件でも一酸化炭素の生成は可能であるが、実施例;!〜 6のよ うに、二酸化炭素の放出工程の温度条件は 800°C以上とすることが望ましい。 [0047] As can be seen from the results of Example 7, the reaction between carbon dioxide and methane proceeds at a high temperature, and carbon monoxide can be generated immediately at 700 ° C. As described above, it is desirable that the temperature condition of the carbon dioxide release process is 800 ° C or higher.
[0048] なお、放出工程の温度条件が 1000°C以上の高温である場合にも、一酸化炭素を 得ることは可能である力 メタンの熱分解によるコーキングが激しくなるとともに、二酸 化炭素吸収材の焼結による劣化が起こりやすくなるため、 1000°C以下の温度で放 出することが望ましい。  [0048] It is possible to obtain carbon monoxide even when the temperature condition of the releasing process is a high temperature of 1000 ° C or higher. Coking due to thermal decomposition of methane becomes intense, and carbon dioxide is absorbed. It is desirable to release at a temperature of 1000 ° C or less because deterioration due to sintering of the material is likely to occur.
[0049] また、本願発明のように、二酸化炭素の放出工程において、スイープガスとして炭 化水素系ガスまたは水素ガスを流通させながら加熱を行って、二酸化炭素の放出を 行うようにした場合、放出された二酸化炭素はその場でメタンと反応して一酸化炭素 となり、気相中の二酸化炭素の分圧が低く保たれるため、二酸化炭素の放出が促進 される。 [0049] Further, as in the present invention, in the carbon dioxide release process, when carbon dioxide gas or hydrogen gas is heated as a sweep gas while heating is performed to release carbon dioxide, the release is performed. Carbon dioxide reacted with methane on the spot to produce carbon monoxide Thus, since the partial pressure of carbon dioxide in the gas phase is kept low, the release of carbon dioxide is promoted.
[0050] 一方、従来のように、炭化水素系ガスや水素ガスをスイープガスとして用いず、二酸 化炭素放出時に流通させるガスとして、窒素ガスを用いた比較例 1の場合には、二酸 化炭素の放出によって反応管内の二酸化炭素分圧が上昇し、二酸化炭素の放出が 抑制されるため、実施例 1の場合の二酸化炭素の放出時間: 30minに比べて、 10倍 の 300minを要すること、すなわち、本願発明(実施例 1)の方法によれば、比較例 1 の方法に比べて、二酸化炭素の放出時間を 1/10に短縮できることが確認された。  [0050] On the other hand, in the case of Comparative Example 1 in which nitrogen gas is used as a gas to be circulated at the time of carbon dioxide release without using a hydrocarbon-based gas or hydrogen gas as a sweep gas as in the conventional case, the diacid Since the carbon dioxide partial pressure in the reaction tube rises due to the release of carbon fluoride and the release of carbon dioxide is suppressed, the release time of carbon dioxide in Example 1 should be 10 times 300 min compared to 30 min. That is, according to the method of the present invention (Example 1), it was confirmed that the carbon dioxide release time can be shortened to 1/10 as compared with the method of Comparative Example 1.
[0051] なお、上記実施例では、放出工程で流通させるスイープガスとして、炭化水素系ガ スとしてメタンを用いた場合および水素を用いた場合を例にとって説明した力 本願 発明の二酸化炭素の分離回収方法においては、二酸化炭素の放出工程において、 メタン以外の炭化水素系ガス、例えば、プロパン、ブタンなどを用いることも可能であ また、 目的に応じて、炭化水素系ガスと水素を混合した混合ガスを用いることも可能 であり、さらには、炭化水素系ガスや水素ガスと他のガスとの混合ガス、例えば炭化 水素系ガスと水蒸気や酸素との混合ガスやこれを改質することによって得られる一酸 化炭素と水素の混合ガスなどを用いることも可能である。 [0051] It should be noted that in the above-described embodiment, the power described by taking as an example the case where methane is used as the hydrocarbon-based gas and the case where hydrogen is used as the sweep gas to be circulated in the release process. In the method, it is possible to use a hydrocarbon-based gas other than methane, for example, propane, butane, etc., in a carbon dioxide releasing step. Also, depending on the purpose, a mixed gas in which a hydrocarbon-based gas and hydrogen are mixed. Furthermore, it is also possible to use a hydrocarbon-based gas or a mixed gas of hydrogen gas and other gas, for example, a mixed gas of hydrocarbon-based gas and water vapor or oxygen, or obtained by reforming it. It is also possible to use a mixed gas of carbon monoxide and hydrogen.
[0052] また、上記実施例では、二酸化炭素吸収材として、粒状の二酸化炭素吸収材を用 いた場合を例にとって説明したが、二酸化炭素吸収材は粒状の形態のものに限らず 、粉末状の形態のもの、立方体、直方体、球状などの種々の形状に成形した成形体 、シート状の成形体、さらには、それらを組み合わせた形状を有する構造体など、種 々の形態のものを使用することが可能である。  [0052] In the above embodiment, the case where a granular carbon dioxide absorbing material is used as the carbon dioxide absorbing material has been described as an example. However, the carbon dioxide absorbing material is not limited to a granular form, and is in the form of a powder. Use of various forms such as forms, molded bodies formed into various shapes such as cubes, rectangular parallelepipeds, and spheres, sheet-like molded bodies, and structures having a combination of them. Is possible.
また、上記実施例では、二酸化炭素吸収材として、 Ba TiO Sr TiO、および CaO  In the above embodiment, Ba TiO Sr TiO and CaO are used as the carbon dioxide absorbent.
2 4、 2 4  2 4, 2 4
を用いた場合について説明した力 二酸化炭素吸収材として、 Ba Ca Ti Oを用い  The force explained when using BaCa Ti O as a carbon dioxide absorber
3 2 2 9 た場合にも上記実施例の場合とほぼ同様の効果が得られることが確認されている。  In the case of 3 2 2 9, it has been confirmed that substantially the same effect as in the case of the above embodiment can be obtained.
[0053] なお、本願発明はさらにその他の点においても上記の各実施例の構成に限定され るものではなぐ二酸化炭素の吸収条件、放出条件などに関し、発明の範囲内にお いて、種々の応用、変形を加えることが可能である。 産業上の利用可能性 [0053] It should be noted that the invention of the present application is not limited to the configuration of each of the above embodiments in other respects, but relates to carbon dioxide absorption conditions, release conditions, etc., and various applications within the scope of the invention. It is possible to add deformation. Industrial applicability
上述のように、本願発明によれば、吸収した二酸化炭素をより短時間に効率よく放 出させるとことが可能になるとともに、二酸化炭素を、さらに用途の広い一酸化炭素に 転換して回収することが可能になる。  As described above, according to the present invention, absorbed carbon dioxide can be efficiently released in a shorter time, and carbon dioxide can be recovered by converting it to carbon monoxide, which is more versatile. It becomes possible.
したがって、本願発明は、水素製造プロセスにおける燃焼前の二酸化炭素の分離 、回収、工場において発生する燃焼排ガス中の二酸化炭素の分離、回収などの分離 に広く適用することが可能である。  Therefore, the present invention can be widely applied to separation and recovery of carbon dioxide before combustion in the hydrogen production process and separation and recovery of carbon dioxide in combustion exhaust gas generated in a factory.

Claims

請求の範囲 The scope of the claims
[1] (a)二酸化炭素吸収材に二酸化炭素を吸収させる吸収工程と、  [1] (a) an absorption process in which carbon dioxide absorbent absorbs carbon dioxide;
(b)二酸化炭素を吸収した二酸化炭素吸収材力 二酸化炭素を放出させる放出ェ 程と  (b) Carbon dioxide absorbent material that absorbed carbon dioxide Release process that releases carbon dioxide and
を具備する二酸化炭素の分離回収方法であって、  A carbon dioxide separation and recovery method comprising:
前記 (b)の放出工程において、二酸化炭素を吸収した二酸化炭素吸収材を、水素 ガスまたは炭化水素系ガスを供給しつつ加熱して二酸化炭素を放出させること を特徴とする、二酸化炭素の分離回収方法。  In the release step (b), the carbon dioxide absorbent that has absorbed carbon dioxide is heated while supplying hydrogen gas or a hydrocarbon-based gas to release carbon dioxide. Method.
[2] 前記 (b)の放出工程における加熱温度を 800〜; 1000°Cとすることを特徴とする、請 求項 1に記載の二酸化炭素の分離回収方法。 [2] The method for separating and recovering carbon dioxide according to claim 1, wherein the heating temperature in the releasing step (b) is 800 to 1000 ° C.
[3] 前記二酸化炭素吸収材が、アルカリ土類金属の酸化物を主たる成分とするもの、ま たはアルカリ土類金属酸化物を含有する複合酸化物を主たる成分とするものである ことを特徴とする、請求項 1または 2のいずれかに記載の二酸化炭素の分離回収方 法。 [3] The carbon dioxide absorbent is mainly composed of an alkaline earth metal oxide or a composite oxide containing an alkaline earth metal oxide. The method for separating and recovering carbon dioxide according to any one of claims 1 and 2.
[4] 前記二酸化炭素吸収材が、 Ba TiO Sr TiO、および Ba Ca Ti Oの!/、ずれかの  [4] The carbon dioxide absorbing material is Ba TiO Sr TiO and Ba Ca Ti O!
2 4、 2 4 3 2 2 9  2 4, 2 4 3 2 2 9
複合酸化物を主たる成分とするものであることを特徴とする、請求項 3記載の二酸化 炭素の分離回収方法。  4. The method for separating and recovering carbon dioxide according to claim 3, wherein the main component is a composite oxide.
PCT/JP2007/066535 2006-09-28 2007-08-27 Method of separating/recovering carbon dioxide WO2008038484A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008536307A JPWO2008038484A1 (en) 2006-09-28 2007-08-27 Carbon dioxide separation and recovery method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006265982 2006-09-28
JP2006-265982 2006-09-28

Publications (1)

Publication Number Publication Date
WO2008038484A1 true WO2008038484A1 (en) 2008-04-03

Family

ID=39229923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/066535 WO2008038484A1 (en) 2006-09-28 2007-08-27 Method of separating/recovering carbon dioxide

Country Status (2)

Country Link
JP (1) JPWO2008038484A1 (en)
WO (1) WO2008038484A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023037652A1 (en) 2021-09-08 2023-03-16 国立研究開発法人産業技術総合研究所 Carbon monoxide production method and device used therefor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004292525A (en) * 2003-03-26 2004-10-21 Jfe Engineering Kk Apparatus for separating and converting carbon dioxide into fuel and method therefor and apparatus for separating and recovering carbon dioxide and method therefor
WO2006013695A1 (en) * 2004-08-03 2006-02-09 Murata Manufacturing Co., Ltd. Carbon dioxide absorbing material, and method and apparatus for separating carbon dioxide using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004292525A (en) * 2003-03-26 2004-10-21 Jfe Engineering Kk Apparatus for separating and converting carbon dioxide into fuel and method therefor and apparatus for separating and recovering carbon dioxide and method therefor
WO2006013695A1 (en) * 2004-08-03 2006-02-09 Murata Manufacturing Co., Ltd. Carbon dioxide absorbing material, and method and apparatus for separating carbon dioxide using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023037652A1 (en) 2021-09-08 2023-03-16 国立研究開発法人産業技術総合研究所 Carbon monoxide production method and device used therefor

Also Published As

Publication number Publication date
JPWO2008038484A1 (en) 2010-01-28

Similar Documents

Publication Publication Date Title
JP3988787B2 (en) Carbon dioxide absorbing material and carbon dioxide absorbing method using the same
Ávalos-Rendón et al. CO2 chemisorption and cyclability analyses of lithium aluminate polymorphs (α-and β-Li5AlO4)
JP5858926B2 (en) Carbon monoxide production method and production apparatus
CN102427879B (en) Catalyst for reforming tar-containing gas, method for producing catalyst for reforming tar-containing gas, method for reforming tar-containing gas using catalyst for reforming tar-containing gas, and method for regenerating catalyst for reforming tar
JP4496208B2 (en) Carbon dioxide absorbent, carbon dioxide separator and reformer
JP2009106812A (en) Carbon dioxide absorber, carbon dioxide separator, reformer and producing method of carbon dioxide absorber
JP2006298707A (en) Method for separating and recovering carbon dioxide and separating and recovering apparatus of carbon dioxide
WO2006013695A1 (en) Carbon dioxide absorbing material, and method and apparatus for separating carbon dioxide using the same
WO2006137211A1 (en) Reforming apparatus for fuel cell
JP4746457B2 (en) Carbon dioxide absorber, carbon dioxide separator and reformer
Zhang et al. Simultaneous CO2 capture and thermochemical heat storage by modified carbide slag in coupled calcium looping and CaO/Ca (OH) 2 cycles
JP5535990B2 (en) Shift catalyst, gas purification method and equipment
Wang et al. Synthesis of LiF-containing Li4SiO4 as highly efficient CO2 sorbents
WO2012057161A1 (en) Method for producing carbon monoxide and production apparatus
WO2008038484A1 (en) Method of separating/recovering carbon dioxide
JP6111070B2 (en) Carbon monoxide production method and production apparatus
JP4835070B2 (en) Carbon dioxide absorbent having steam reforming catalyst function, method for producing the same, and method for reforming fuel gas in hydrogen production system
JP4819099B2 (en) Carbon dioxide absorbent, carbon dioxide separation and recovery device, and carbon dioxide separation and recovery method
JP2007254238A (en) Method for producing hydrogen
JP5044973B2 (en) Carbon dioxide absorbing material, method for producing the same, and carbon dioxide absorbing method
JP2005015294A (en) Chemical reaction apparatus
CN113646259B (en) Utilization of CO in a countercurrent reactor 2 Captured oxygen combustion
Nakagaki Enhanced hydrogen production process from coal integrated with CO2 separation using dual chemical looping
KR101869461B1 (en) Method for removing oxygen in methane mixture gas by using oxygen catalyst, perovskite type oxygen removing catalyst used in the same, and land fill gas refine device applying land fill gas mathane direct converting technology using the same
JP3782311B2 (en) Chemical reactor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07806088

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008536307

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07806088

Country of ref document: EP

Kind code of ref document: A1