JPWO2008038484A1 - Carbon dioxide separation and recovery method - Google Patents

Carbon dioxide separation and recovery method Download PDF

Info

Publication number
JPWO2008038484A1
JPWO2008038484A1 JP2008536307A JP2008536307A JPWO2008038484A1 JP WO2008038484 A1 JPWO2008038484 A1 JP WO2008038484A1 JP 2008536307 A JP2008536307 A JP 2008536307A JP 2008536307 A JP2008536307 A JP 2008536307A JP WO2008038484 A1 JPWO2008038484 A1 JP WO2008038484A1
Authority
JP
Japan
Prior art keywords
carbon dioxide
absorbent
gas
absorbed
release
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008536307A
Other languages
Japanese (ja)
Inventor
斉藤 芳則
芳則 斉藤
藤野 優
優 藤野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Publication of JPWO2008038484A1 publication Critical patent/JPWO2008038484A1/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0211Compounds of Ti, Zr, Hf
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/041Oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/3433Regenerating or reactivating of sorbents or filter aids other than those covered by B01J20/3408 - B01J20/3425
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/345Regenerating or reactivating using a particular desorbing compound or mixture
    • B01J20/3458Regenerating or reactivating using a particular desorbing compound or mixture in the gas phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/3483Regenerating or reactivating by thermal treatment not covered by groups B01J20/3441 - B01J20/3475, e.g. by heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/40Alkaline earth metal or magnesium compounds
    • B01D2251/404Alkaline earth metal or magnesium compounds of calcium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/40Alkaline earth metal or magnesium compounds
    • B01D2251/408Alkaline earth metal or magnesium compounds of barium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/112Metals or metal compounds not provided for in B01D2253/104 or B01D2253/106
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40083Regeneration of adsorbents in processes other than pressure or temperature swing adsorption
    • B01D2259/40088Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

吸収した二酸化炭素をより短時間に効率よく放出させることを可能にするとともに、二酸化炭素を、より用途の広い一酸化炭素に転換して回収することを可能にする。二酸化炭素吸収材に二酸化炭素を吸収させた後、二酸化炭素を吸収した二酸化炭素吸収材を、水素ガスまたは炭化水素系ガスを供給しつつ加熱して二酸化炭素を放出させる。また、放出工程における加熱温度を800〜1000℃とする。また、二酸化炭素吸収材として、アルカリ土類金属の酸化物を主たる成分とするもの、またはアルカリ土類金属酸化物を含有する複合酸化物を主たる成分とするものを用いる。また、二酸化炭素吸収材として、Ba2TiO4、Sr2TiO4、およびBa3Ca2Ti2O9のいずれかの複合酸化物を主たる成分とするものを用いる。The absorbed carbon dioxide can be efficiently released in a shorter time, and the carbon dioxide can be recovered by being converted to carbon monoxide, which is more versatile. After carbon dioxide is absorbed by the carbon dioxide absorbent, the carbon dioxide absorbent that has absorbed carbon dioxide is heated while supplying hydrogen gas or hydrocarbon gas to release carbon dioxide. Moreover, the heating temperature in a discharge | emission process shall be 800-1000 degreeC. Further, as the carbon dioxide absorbent, a material mainly composed of an alkaline earth metal oxide or a material mainly composed of a composite oxide containing an alkaline earth metal oxide is used. Further, as the carbon dioxide absorbing material, a material mainly composed of a composite oxide of Ba2TiO4, Sr2TiO4, and Ba3Ca2Ti2O9 is used.

Description

本願発明は、二酸化炭素の分離回収方法に関し、詳しくは、二酸化炭素を吸収し、所定の条件下で吸収した二酸化炭素を放出させることが可能な二酸化炭素吸収材を用いて二酸化炭素を分離回収する方法に関する。   The present invention relates to a method for separating and recovering carbon dioxide. Specifically, the present invention separates and recovers carbon dioxide using a carbon dioxide absorbent capable of absorbing carbon dioxide and releasing the carbon dioxide absorbed under predetermined conditions. Regarding the method.

高温の排気ガスから二酸化炭素を分離する方法としては、例えば、リチウムシリケートを二酸化炭素の吸収材として用い、500℃以上の温度で排気ガスから二酸化炭素を分離する方法が提案されている(特許文献1参照)。 As a method for separating carbon dioxide from high-temperature exhaust gas, for example, a method of separating carbon dioxide from exhaust gas at a temperature of 500 ° C. or higher using lithium silicate as a carbon dioxide absorbent has been proposed (Patent Literature). 1).

また、その他にも、リチウムシリケートを二酸化炭素の吸収材として用い、含炭素燃料の水蒸気改質後の二酸化炭素を含むガスを400℃〜700℃の温度で吸収材と接触させ、二酸化炭素と吸収材を反応させることにより二酸化炭素を吸収させた後、二酸化炭素を吸収した吸収材を700〜900℃の温度で再生させる方法が提案されている(特許文献2参照)。   Besides, lithium silicate is used as an absorbent for carbon dioxide, and a gas containing carbon dioxide after steam reforming of carbon-containing fuel is brought into contact with the absorbent at a temperature of 400 ° C. to 700 ° C. to absorb carbon dioxide and A method has been proposed in which carbon dioxide is absorbed by reacting the material, and then the absorbent that has absorbed carbon dioxide is regenerated at a temperature of 700 to 900 ° C. (see Patent Document 2).

しかしながら、上記特許文献1および2の方法の場合、二酸化炭素を高濃度で回収するためには、吸収温度よりも高温で処理することが必要となり、非常に多くのエネルギーを消費するという問題点がある。   However, in the case of the methods described in Patent Documents 1 and 2, in order to recover carbon dioxide at a high concentration, it is necessary to perform treatment at a temperature higher than the absorption temperature, which consumes a great amount of energy. is there.

また、仮に高濃度で二酸化炭素の回収を可能にすることができたとしても、回収される二酸化炭素の有効利用に対する方策が明確になっていないため、地下や海中への貯留などの技術が必要となり、技術的、経済的な負担が大きいという問題点がある。
特開2000−262890号公報 特開2003−054927号公報
Even if it is possible to recover carbon dioxide at a high concentration, there is no clear policy for effective use of the recovered carbon dioxide, so technologies such as storage underground or in the sea are necessary. Therefore, there is a problem that the technical and economic burden is large.
JP 2000-262890 A JP 2003-054927 A

本願発明は、上述のような従来の技術の課題を解決するものであり、吸収した二酸化炭素をより短時間に効率よく放出させることが可能であるとともに、二酸化炭素を、さらに用途の広い一酸化炭素に転換して回収することが可能な二酸化炭素の分離回収方法を提供することを目的とする。   The present invention solves the above-mentioned problems of the conventional technology, and can absorb the absorbed carbon dioxide more efficiently in a shorter time, and can further reduce carbon dioxide to a versatile monoxide. An object of the present invention is to provide a method for separating and recovering carbon dioxide that can be recovered by conversion to carbon.

上記課題を解決するために、本願発明(請求項1)の二酸化炭素の分離回収方法は、
(a)二酸化炭素吸収材に二酸化炭素を吸収させる吸収工程と、
(b)二酸化炭素を吸収した二酸化炭素吸収材から二酸化炭素を放出させる放出工程と
を具備する二酸化炭素の分離回収方法であって、
前記(b)の放出工程において、二酸化炭素を吸収した二酸化炭素吸収材を、水素ガスまたは炭化水素系ガスを供給しつつ加熱して二酸化炭素を放出させること
を特徴としている。
In order to solve the above problems, the carbon dioxide separation and recovery method of the present invention (Claim 1) includes:
(a) an absorption step of causing the carbon dioxide absorbent to absorb carbon dioxide;
(b) a method for separating and recovering carbon dioxide, comprising the step of releasing carbon dioxide from a carbon dioxide absorbent that has absorbed carbon dioxide,
In the releasing step (b), the carbon dioxide absorbing material that has absorbed carbon dioxide is heated while supplying hydrogen gas or hydrocarbon gas to release carbon dioxide.

また、請求項2の二酸化炭素の分離回収方法は、請求項1の発明の構成において、前記(b)の放出工程における加熱温度を800〜1000℃とすることを特徴としている。   The method for separating and recovering carbon dioxide according to claim 2 is characterized in that, in the configuration of the invention according to claim 1, the heating temperature in the releasing step (b) is 800 to 1000 ° C.

また、請求項3の二酸化炭素の分離回収方法は、請求項1または2の発明の構成において、前記二酸化炭素吸収材が、アルカリ土類金属の酸化物を主たる成分とするもの、またはアルカリ土類金属酸化物を含有する複合酸化物を主たる成分とするものであることを特徴としている。   According to a third aspect of the present invention, there is provided a method for separating and recovering carbon dioxide, wherein the carbon dioxide absorbent is mainly composed of an alkaline earth metal oxide, or an alkaline earth material. It is characterized in that the main component is a composite oxide containing a metal oxide.

また、請求項4の二酸化炭素の分離回収方法は、請求項3の発明の構成において、前記二酸化炭素吸収材が、Ba2TiO4、Sr2TiO4、およびBa3Ca2Ti29のいずれかの複合酸化物を主たる成分とするものであることを特徴としている。According to a fourth aspect of the present invention, there is provided a method for separating and recovering carbon dioxide, wherein the carbon dioxide absorbent is composed of Ba 2 TiO 4 , Sr 2 TiO 4 , and Ba 3 Ca 2 Ti 2 O 9 . It is characterized in that any composite oxide is the main component.

本願発明(請求項1)の二酸化炭素の分離回収方法においては、二酸化炭素を吸収した二酸化炭素吸収材から二酸化炭素を放出させる際に、二酸化炭素を吸収した二酸化炭素吸収材を、水素ガスまたは炭化水素系ガスを供給しつつ加熱して二酸化炭素を放出させるようにしているので、二酸化炭素を、一酸化炭素に転換して回収することができる。   In the carbon dioxide separation and recovery method of the present invention (Claim 1), when carbon dioxide is released from the carbon dioxide absorbent that has absorbed carbon dioxide, the carbon dioxide absorbent that has absorbed carbon dioxide is treated with hydrogen gas or carbonization. Since carbon dioxide is released by heating while supplying the hydrogen-based gas, the carbon dioxide can be converted into carbon monoxide and recovered.

例えば、炭化水素系ガスであるメタンをスイープガスとして用い、二酸化炭素の放出工程で、メタンを供給しつつ加熱して二酸化炭素を放出させることにより、放出される二酸化炭素が、下記の式(1)に示すように、メタンと反応し、一酸化炭素と水素が生成される。
CO2+CH4→2CO+2H2 ……(1)
For example, methane, which is a hydrocarbon-based gas, is used as a sweep gas, and carbon dioxide is released by heating while supplying methane and releasing carbon dioxide in the carbon dioxide releasing step. ) Reacts with methane to produce carbon monoxide and hydrogen.
CO 2 + CH 4 → 2CO + 2H 2 (1)

また、スイープガスとして水素ガスを用い、二酸化炭素の放出工程で、水素ガスを供給しつつ加熱して二酸化炭素を放出させることにより、放出される二酸化炭素が、下記の式(2)に示すように、水素と反応し、一酸化炭素と水が生成される。
CO2+H2→CO+H20 ……(2)
Further, when hydrogen gas is used as the sweep gas and carbon dioxide is released by heating while supplying hydrogen gas in the carbon dioxide releasing step, the carbon dioxide released is expressed by the following equation (2). It reacts with hydrogen to produce carbon monoxide and water.
CO 2 + H 2 → CO + H 2 0 (2)

特に、メタンと反応させた際の(上記の反応式(1)参照)、一酸化炭素と水素の混合ガスは合成ガスと呼ばれ、メタノール(CH3OH),ホルムアルデヒド(HCHO)などのC数が1の物質を合成する、いわゆるC1化学の基本的な材料として有用なものであり、この一酸化炭素と水素の混合ガスから、以下の式(3)や(4)に示す反応により、メタノールや各種炭化水素などを合成することができる。
CO+2H2 → CH3OH ……(3)
CO+2H2 → 1/n-(-CH2-)-n+H2O ……(4)
In particular, when reacted with methane (see the above reaction formula (1)), the mixed gas of carbon monoxide and hydrogen is called synthesis gas, and the C number of methanol (CH 3 OH), formaldehyde (HCHO), etc. Is useful as a basic material of so-called C1 chemistry for synthesizing a substance of 1. From this mixed gas of carbon monoxide and hydrogen, methanol is reacted by the reactions shown in the following formulas (3) and (4). And various hydrocarbons can be synthesized.
CO + 2H 2 → CH 3 OH (3)
CO + 2H 2 → 1 / n-(-CH2-)- n + H 2 O (4)

また、二酸化炭素吸収材が放出する二酸化炭素がメタンと反応することにより、気相中の二酸化炭素分圧の上昇が抑制されるため、減圧などの操作を行わなくても、効率よく二酸化炭素を放出させることが可能で、短時間で二酸化炭素吸収材の再生を行うことができる。   In addition, since the carbon dioxide released by the carbon dioxide absorbent reacts with methane, the increase in the partial pressure of carbon dioxide in the gas phase is suppressed. The carbon dioxide absorbent can be regenerated in a short time.

このように、本願発明によれば、二酸化炭素を、二酸化炭素よりもさらに用途の広い一酸化炭素に転換して回収することができるとともに、効率よく二酸化炭素吸収材の再生(二酸化炭素の放出)を行うことが可能で、従来の方法に比べて、二酸化炭素の放出と、二酸化炭素吸収材の再生に要するエネルギーを抑制することができるため、本願発明の二酸化炭素の分離回収方法は、極めて有意義である。   Thus, according to the present invention, carbon dioxide can be recovered by converting it to carbon monoxide, which is more versatile than carbon dioxide, and the carbon dioxide absorbent is efficiently regenerated (carbon dioxide release). The carbon dioxide separation and recovery method of the present invention is extremely meaningful because the energy required for carbon dioxide emission and carbon dioxide absorbent regeneration can be suppressed as compared with conventional methods. It is.

また、請求項2の二酸化炭素の分離回収方法のように、二酸化炭素の放出工程における加熱温度を800〜1000℃とすることにより、二酸化炭素の放出工程で、さらに効率よく二酸化炭素を一酸化炭素と水素に転換させることが可能になり、本願発明をより実効あらしめることができる。   Further, as in the carbon dioxide separation and recovery method of claim 2, by setting the heating temperature in the carbon dioxide releasing step to 800 to 1000 ° C., the carbon dioxide is more efficiently converted into carbon monoxide in the carbon dioxide releasing step. Can be converted to hydrogen, and the present invention can be made more effective.

なお、本願発明の二酸化炭素の分離回収方法において、放出工程の温度条件を800〜1000℃の範囲とすることが好ましいのは、放出工程の温度条件が800℃未満になると一酸化炭素の生成割合が低下する傾向があり、また、放出工程の温度条件が1000℃を超えると、メタンの熱分解によるコーキングが激しくなるとともに、二酸化炭素吸収材の焼結による劣化が起こりやすくなることによる。   In the carbon dioxide separation and recovery method of the present invention, it is preferable that the temperature condition of the releasing step is in the range of 800 to 1000 ° C. The carbon monoxide production ratio is when the temperature condition of the releasing step is less than 800 ° C. Further, when the temperature condition of the release process exceeds 1000 ° C., coking due to thermal decomposition of methane becomes intense and deterioration due to sintering of the carbon dioxide absorbent is likely to occur.

また、請求項3の二酸化炭素の分離回収方法の場合、二酸化炭素吸収材として、アルカリ土類金属の酸化物を主たる成分とするもの、またはアルカリ土類金属酸化物を含有する複合酸化物を主たる成分とするものを用いているので、二酸化炭素の一酸化炭素と水素への転換の効率を向上させることが可能になり、本願発明をより実効あらしめることができる。   In the method for separating and recovering carbon dioxide according to claim 3, the carbon dioxide absorbent is mainly composed of an alkaline earth metal oxide or a complex oxide containing an alkaline earth metal oxide. Since what is used as a component is used, the efficiency of conversion of carbon dioxide into carbon monoxide and hydrogen can be improved, and the present invention can be made more effective.

なお、アルカリ土類金属の酸化物としては、例えば、CaO、SrOなどが例示される。
また、アルカリ土類金属酸化物を含有する複合酸化物を主たる成分とするものとしては、Ba2TiO4、Sr2TiO4、Ba3Ca2Ti29などが例示される。
Examples of the alkaline earth metal oxide include CaO and SrO.
Examples of the main component of the composite oxide containing an alkaline earth metal oxide include Ba 2 TiO 4 , Sr 2 TiO 4 , Ba 3 Ca 2 Ti 2 O 9 and the like.

また、請求項4の二酸化炭素の分離回収方法のように、二酸化炭素吸収材として、Ba2TiO4、Sr2TiO4、およびBa3Ca2Ti29のいずれかの複合酸化物を主たる成分とするものを用いた場合、高温での二酸化炭素の吸収が可能になるとともに、二酸化炭素の一酸化炭素と水素への転換の効率を向上させることが可能になり、本願発明をさらに実効あらしめることができる。Further, as in the carbon dioxide separation and recovery method of claim 4 , the composite oxide of Ba 2 TiO 4 , Sr 2 TiO 4 , and Ba 3 Ca 2 Ti 2 O 9 is mainly used as the carbon dioxide absorbent. When the component is used, carbon dioxide can be absorbed at a high temperature, and the efficiency of conversion of carbon dioxide into carbon monoxide and hydrogen can be improved. It can be tightened.

なお、二酸化炭素吸収材としては、再生温度や再生時の反応速度などの見地から、Ba2TiO4が最も効果的なものの1つであるが、それ以外にもSr2TiO4やBa3Ca2Ti29なども使用可能であり、通常再生温度が800℃以下であるCaOも加圧下で再生することにより同様の効果を得ることができる。As a carbon dioxide absorbing material, Ba 2 TiO 4 is one of the most effective materials from the viewpoint of the regeneration temperature and the reaction rate during regeneration, but other than that, Sr 2 TiO 4 and Ba 3 Ca are used. 2 Ti 2 O 9 or the like can also be used, and CaO having a normal regeneration temperature of 800 ° C. or lower can be regenerated under pressure to obtain the same effect.

以下に本願発明の実施例を示して、本願発明の特徴とするところをさらに詳しく説明する。   The features of the present invention will be described in more detail below with reference to examples of the present invention.

外部に電熱ヒーターを備えた内径22mm、長さ300mmの、筒状のステンレス製容器に、平均粒子径2mmのBa2Ti04(二酸化炭素吸収材)を22g(約10mL)充填した。
それから、このステンレス製容器に、18NL/hの割合で窒素ガスを流通させ、伝熱ヒーターにより窒素ガス入口温度を700℃に制御した。
流通させた窒素ガス温度が安定した後に、二酸化炭素を2NL/hの速度で流通させ(二酸化炭素濃度は10mol%)、二酸化炭素の吸収を開始した。
なお、Ba2Ti04(二酸化炭素吸収材)による二酸化炭素の吸収の反応は、下記の式(5)の通りである。
Ba2TiO4+CO2 → BaTiO3+BaCO3 ……(5)
A cylindrical stainless steel container having an inner diameter of 22 mm and a length of 300 mm equipped with an external electric heater was filled with 22 g (about 10 mL) of Ba 2 Ti0 4 (carbon dioxide absorbent) having an average particle diameter of 2 mm.
Then, nitrogen gas was circulated through this stainless steel container at a rate of 18 NL / h, and the nitrogen gas inlet temperature was controlled at 700 ° C. by a heat transfer heater.
After the circulated nitrogen gas temperature was stabilized, carbon dioxide was circulated at a rate of 2 NL / h (carbon dioxide concentration was 10 mol%), and carbon dioxide absorption was started.
Incidentally, the reaction of carbon dioxide absorption by Ba 2 Ti0 4 (carbon dioxide absorbent) is defined in Equation (5) below.
Ba 2 TiO 4 + CO 2 → BaTiO 3 + BaCO 3 (5)

二酸化炭素吸収材を通過したガス中の二酸化炭素濃度の経時変化を、ガス分析装置(島津製作所製ガスクロマトグラフ)により測定し、二酸化炭素濃度が入口濃度と等しくなった時点で二酸化炭素の吸収繰作を終了した。   The change in carbon dioxide concentration in the gas that has passed through the carbon dioxide absorbent is measured with a gas analyzer (Gas Chromatograph manufactured by Shimadzu Corporation). Ended.

このようにして二酸化炭素を吸収させた二酸化炭素吸収材を、容器に装備された電熱ヒーターを用いて加熱し、二酸化炭素吸収材の温度を900℃に制御しつつ、メタンを10NL/hの割合で流通させ、二酸化炭素吸収材に吸収された二酸化炭素を放出させた。
二酸化炭素を吸収した二酸化炭素吸収材からの二酸化炭素の放出反応は、下記の式(6)の通りである。
BaTiO3+BaCO3 → Ba2TiO4 +CO2↑ ……(6)
The carbon dioxide absorbing material that has absorbed carbon dioxide in this way is heated using an electric heater equipped in the container, and the temperature of the carbon dioxide absorbing material is controlled at 900 ° C., while methane is at a rate of 10 NL / h. The carbon dioxide absorbed in the carbon dioxide absorbent was released.
The release reaction of carbon dioxide from the carbon dioxide absorbing material that has absorbed carbon dioxide is represented by the following formula (6).
BaTiO 3 + BaCO 3 → Ba 2 TiO 4 + CO 2 ↑ (6)

そして、放出工程における排出ガス組成の経時変化を上記ガス分析装置で測定し、二酸化炭素の放出が完了するまでの時間と、放出工程における二酸化炭素と一酸化炭素の比率(CO/(CO2+CO):容積比率)を測定した。その結果を表1に示す。Then, the time-dependent change of the exhaust gas composition in the release process is measured by the gas analyzer, and the time until the release of carbon dioxide is completed and the ratio of carbon dioxide and carbon monoxide in the release process (CO / (CO 2 + CO ): Volume ratio). The results are shown in Table 1.

二酸化炭素放出時の吸収材温度を800℃に制御したこと以外は、実施例1と同じ方法により、二酸化炭素の放出工程における二酸化炭素と一酸化炭素の比率の測定を行った。その結果を表1に示す。   The ratio of carbon dioxide and carbon monoxide in the carbon dioxide releasing step was measured by the same method as in Example 1 except that the absorbent material temperature during carbon dioxide release was controlled to 800 ° C. The results are shown in Table 1.

二酸化炭素放出時の吸収材温度を1000℃に制御したこと以外は、実施例1と同じ方法により、二酸化炭素の放出工程における二酸化炭素と一酸化炭素の比率の測定を行った。その結果を表1に示す。 The ratio of carbon dioxide and carbon monoxide in the carbon dioxide releasing step was measured by the same method as in Example 1 except that the absorbent material temperature during carbon dioxide release was controlled to 1000 ° C. The results are shown in Table 1.

二酸化炭素放出時に流通させるガス(スイープガス)として水素ガスを用いたこと以外は、実施例1と同じ方法により、二酸化炭素の放出工程における二酸化炭素と一酸化炭素の比率の測定を行った。その結果を表1に示す。   The ratio of carbon dioxide and carbon monoxide in the carbon dioxide releasing step was measured by the same method as in Example 1 except that hydrogen gas was used as the gas (sweep gas) to be circulated at the time of carbon dioxide release. The results are shown in Table 1.

外部に電熱ヒーターを備えた内径22mm、長さ300mmの、筒状のステンレス製容器に、平均粒子径2mmのSr2Ti04(二酸化炭素吸収材)を18g(約10mL)充填した。
それから、このステンレス製容器に、18NL/hで窒素ガスを流通させ、伝熱ヒーターにより窒素ガス入口温度を700℃に制御した。
流通させた窒素ガス温度が安定した後に、二酸化炭素を2NL/hの速度で流通させ(二酸化炭素濃度は10mol%)、二酸化炭素の吸収を開始した。
なお、Sr2Ti04(二酸化炭素吸収材)による二酸化炭素の吸収の反応は、下記の式(7)の通りである。
Sr2TiO4+CO2 → SrTiO3+SrCO3 ……(7)
A cylindrical stainless steel container having an inner diameter of 22 mm and a length of 300 mm equipped with an external electric heater was filled with 18 g (about 10 mL) of Sr 2 Ti0 4 (carbon dioxide absorbent) having an average particle diameter of 2 mm.
Then, nitrogen gas was passed through the stainless steel container at 18 NL / h, and the nitrogen gas inlet temperature was controlled at 700 ° C. by a heat transfer heater.
After the circulated nitrogen gas temperature was stabilized, carbon dioxide was circulated at a rate of 2 NL / h (carbon dioxide concentration was 10 mol%), and carbon dioxide absorption was started.
The reaction of carbon dioxide absorption by Sr 2 Ti0 4 (carbon dioxide absorbent) is as shown in the following formula (7).
Sr 2 TiO 4 + CO 2 → SrTiO 3 + SrCO 3 (7)

二酸化炭素吸収材を通過したガス中の二酸化炭素濃度の経時変化を、ガス分析装置(島津製作所製ガスクロマトグラフ)により測定し、二酸化炭素濃度が入口濃度と等しくなった時点で二酸化炭素の吸収繰作を終了した。   The change in carbon dioxide concentration in the gas that has passed through the carbon dioxide absorbent is measured with a gas analyzer (Gas Chromatograph manufactured by Shimadzu Corporation). Ended.

それから、二酸化炭素を吸収させた二酸化炭素吸収材を、容器に装備された電熱ヒーターを用いて加熱し、二酸化炭素吸収材の温度を900℃に制御しつつ、メタンを10NL/hの割合で流通させ、二酸化炭素吸収材に吸収された二酸化炭素を放出させた。
二酸化炭素を吸収した二酸化炭素吸収材からの二酸化炭素の放出反応は、下記の式(8)の通りである。
SrTiO3+SrCO3 → Sr2TiO4 +CO2↑ ……(8)
Then, the carbon dioxide absorbent that has absorbed carbon dioxide is heated using an electric heater equipped in the container, and the temperature of the carbon dioxide absorbent is controlled at 900 ° C., and methane is circulated at a rate of 10 NL / h. The carbon dioxide absorbed by the carbon dioxide absorbent was released.
The release reaction of carbon dioxide from the carbon dioxide absorbing material that has absorbed carbon dioxide is represented by the following formula (8).
SrTiO 3 + SrCO 3 → Sr 2 TiO 4 + CO 2 ↑ (8)

そして、放出工程における排出ガス組成の経時変化を上記ガス分析装置で測定し、放出工程における二酸化炭素と一酸化炭素の比率を測定した。その結果を表1に示す。   And the time-dependent change of the exhaust gas composition in a discharge process was measured with the said gas analyzer, and the ratio of the carbon dioxide and carbon monoxide in a discharge process was measured. The results are shown in Table 1.

外部に電熱ヒーターを備えた内径22mm、長さ300mmの、筒状のステンレス製容器に、平均粒子径2mmのCaO(二酸化炭素吸収材)を14g(約10mL)充填した。
それから、このステンレス製容器に、18NL/hで窒素ガスを流通させ、伝熱ヒーターにより窒素ガス入口温度を600℃に制御した。
流通させた窒素ガス温度が安定した後に、二酸化炭素を2NL/hの速度で流通させ(二酸化炭素濃度は10mol%)、二酸化炭素の吸収を開始した。
なお、CaO(二酸化炭素吸収材)による二酸化炭素の吸収の反応は、下記の式(9)の通りである。
CaO+CO2 → CaCO3 ……(9)
A cylindrical stainless steel container having an inner diameter of 22 mm and a length of 300 mm equipped with an external electric heater was charged with 14 g (about 10 mL) of CaO (carbon dioxide absorbent) having an average particle diameter of 2 mm.
Then, nitrogen gas was circulated through this stainless steel container at 18 NL / h, and the nitrogen gas inlet temperature was controlled at 600 ° C. by a heat transfer heater.
After the circulated nitrogen gas temperature was stabilized, carbon dioxide was circulated at a rate of 2 NL / h (carbon dioxide concentration was 10 mol%), and carbon dioxide absorption was started.
The reaction of carbon dioxide absorption by CaO (carbon dioxide absorbent) is as shown in the following formula (9).
CaO + CO 2 → CaCO 3 (9)

二酸化炭素吸収材を通過したガス中の二酸化炭素濃度の経時変化を、ガス分析装置(島津製作所製ガスクロマトグラフ)により測定し、二酸化炭素濃度が入口濃度と等しくなった時点で二酸化炭素の吸収繰作を終了した。   The change in carbon dioxide concentration in the gas that has passed through the carbon dioxide absorbent is measured with a gas analyzer (Gas Chromatograph manufactured by Shimadzu Corporation). Ended.

それから、二酸化炭素を吸収させた二酸化炭素吸収材を、容器に装備された電熱ヒーターを用いて加熱し、二酸化炭素吸収材の温度を900℃に制御しつつ、メタンを10NL/hの割合で流通させ、二酸化炭素吸収材に吸収された二酸化炭素を放出させた。
二酸化炭素を吸収した二酸化炭素吸収材からの二酸化炭素の放出反応は、下記の式(10)の通りである。
CaCO3 → CaO +CO2↑ …… (10)
Then, the carbon dioxide absorbent that has absorbed carbon dioxide is heated using an electric heater equipped in the container, and the temperature of the carbon dioxide absorbent is controlled at 900 ° C., and methane is circulated at a rate of 10 NL / h. The carbon dioxide absorbed by the carbon dioxide absorbent was released.
The release reaction of carbon dioxide from the carbon dioxide absorbent that has absorbed carbon dioxide is represented by the following formula (10).
CaCO 3 → CaO + CO 2 ↑ …… (10)

放出工程における排出ガス組成の経時変化を上記ガス分析装置で測定し、放出工程における二酸化炭素と一酸化炭素の比率を測定した。その結果を表1に示す。   The time-dependent change of the exhaust gas composition in the release process was measured with the gas analyzer, and the ratio of carbon dioxide and carbon monoxide in the release process was measured. The results are shown in Table 1.

二酸化炭素放出時の吸収材温度を700℃に制御した以外は、実施例6と同じ方法により、二酸化炭素の放出工程における二酸化炭素と一酸化炭素の比率の測定を行った。その結果を表1に示す。
[比較例1]
The ratio of carbon dioxide and carbon monoxide in the carbon dioxide releasing step was measured by the same method as in Example 6 except that the absorbent material temperature at the time of carbon dioxide release was controlled at 700 ° C. The results are shown in Table 1.
[Comparative Example 1]

二酸化炭素放出時に流通させるガスとして、窒素ガスを用いたこと(窒素(N2)ガス流通量10NL/h)以外は、実施例1と同じ方法により、二酸化炭素の放出が完了するまでの時間と、放出工程における二酸化炭素と一酸化炭素の比率の測定を行った。その結果を表1に示す。Except that nitrogen gas was used as the gas to be circulated at the time of carbon dioxide release (nitrogen (N 2 ) gas flow rate 10 NL / h), the time until the release of carbon dioxide was completed by the same method as in Example 1. The ratio of carbon dioxide and carbon monoxide in the release process was measured. The results are shown in Table 1.

[評価]
実施例1〜7及び比較例1についての、上述の測定結果を示す表1を参照しつつ、実施例1〜7および比較例1について評価を行った。
[Evaluation]
Examples 1 to 7 and Comparative Example 1 were evaluated with reference to Table 1 showing the above measurement results for Examples 1 to 7 and Comparative Example 1.

Figure 2008038484
Figure 2008038484

表1に示すように、実施例1〜3のように、二酸化炭素の放出工程において、800℃以上の温度条件でメタンを流通させた場合、高い割合で一酸化炭素が生成することが確認された。
なお、このときの反応式は、式(1)の反応式の通りである。
CO2+CH4→2CO+2H2 ……(1)
As shown in Table 1, it was confirmed that carbon monoxide was produced at a high rate when methane was circulated at a temperature condition of 800 ° C. or higher in the carbon dioxide releasing step as in Examples 1 to 3. It was.
In addition, the reaction formula at this time is as the reaction formula of Formula (1).
CO 2 + CH 4 → 2CO + 2H 2 (1)

また、実施例4に示すように、メタンの代わりに水素を流通させるようにした場合にも、高い割合で一酸化炭素が生成することが確認された。
なお、このときの反応式は、上述の式(2)の反応式の通りである。
CO2+H2→CO+H20 ……(2)
In addition, as shown in Example 4, it was confirmed that carbon monoxide was produced at a high rate even when hydrogen was circulated instead of methane.
In addition, the reaction formula at this time is as the above-described reaction formula (2).
CO 2 + H 2 → CO + H 2 0 (2)

また、実施例5のように、二酸化炭素吸収材として、他のアルカリ土類金属酸化物を含有する複合酸化物(実施例5ではSr2Ti04)を用いた場合や、実施例6のように、二酸化炭素吸収材として、アルカリ土類金属酸化物(実施例6ではCaO)を用いた場合にも、二酸化炭素の放出工程(放出工程での温度条件は実施例5および6とも900℃)で、スイープガスとして炭化水素系ガス(実施例5および6ではメタンガス)を流通させることにより、高い割合で一酸化炭素が生成することが確認された。Further, as in Example 5, when a composite oxide containing other alkaline earth metal oxide (Sr 2 Ti0 4 in Example 5) is used as the carbon dioxide absorbent, or as in Example 6. In addition, even when an alkaline earth metal oxide (CaO in Example 6) is used as the carbon dioxide absorbent, the carbon dioxide releasing step (the temperature conditions in the releasing step are 900 ° C. in both Examples 5 and 6). Thus, it was confirmed that carbon monoxide was generated at a high rate by circulating a hydrocarbon-based gas (methane gas in Examples 5 and 6) as the sweep gas.

また、二酸化炭素吸収材として、CaOを用い、二酸化炭素の放出工程の温度条件を700℃とした実施例7の場合、一酸化炭素が生成する割合は、0.38と必ずしも高くはないことがわかる。この結果から、二酸化炭素とメタンの反応は高温で(800℃以上)進行しやすいことがわかる。ただし、実施例7の場合も、一酸化炭素が確実に生成することが確認されており、本願発明の基本的な効果が得られることが確認された。   In the case of Example 7 in which CaO is used as the carbon dioxide absorbent and the temperature condition of the carbon dioxide releasing step is 700 ° C., the rate of carbon monoxide generation is not necessarily as high as 0.38. Recognize. From this result, it can be seen that the reaction between carbon dioxide and methane tends to proceed at a high temperature (800 ° C. or higher). However, also in Example 7, it was confirmed that carbon monoxide was reliably generated, and it was confirmed that the basic effect of the present invention was obtained.

この実施例7の結果からもわかるように、二酸化炭素とメタンの反応は高温において進みやすく、700℃の条件でも一酸化炭素の生成は可能であるが、実施例1〜6のように、二酸化炭素の放出工程の温度条件は800℃以上とすることが望ましい。   As can be seen from the results of Example 7, the reaction between carbon dioxide and methane is likely to proceed at a high temperature, and carbon monoxide can be produced even at 700 ° C. However, as in Examples 1 to 6, The temperature condition of the carbon releasing process is desirably 800 ° C. or higher.

なお、放出工程の温度条件が1000℃以上の高温である場合にも、一酸化炭素を得ることは可能であるが、メタンの熱分解によるコーキングが激しくなるとともに、二酸化炭素吸収材の焼結による劣化が起こりやすくなるため、1000℃以下の温度で放出することが望ましい。   It is possible to obtain carbon monoxide even when the temperature condition of the release process is a high temperature of 1000 ° C. or higher. However, coking due to thermal decomposition of methane becomes intense and the carbon dioxide absorbent is sintered. It is desirable to release at a temperature of 1000 ° C. or lower because deterioration tends to occur.

また、本願発明のように、二酸化炭素の放出工程において、スイープガスとして炭化水素系ガスまたは水素ガスを流通させながら加熱を行って、二酸化炭素の放出を行うようにした場合、放出された二酸化炭素はその場でメタンと反応して一酸化炭素となり、気相中の二酸化炭素の分圧が低く保たれるため、二酸化炭素の放出が促進される。   Further, as in the present invention, in the carbon dioxide release step, when carbon dioxide is released by heating while circulating a hydrocarbon gas or hydrogen gas as a sweep gas, the released carbon dioxide Reacts with methane on the spot to become carbon monoxide, and the partial pressure of carbon dioxide in the gas phase is kept low, thus promoting the release of carbon dioxide.

一方、従来のように、炭化水素系ガスや水素ガスをスイープガスとして用いず、二酸化炭素放出時に流通させるガスとして、窒素ガスを用いた比較例1の場合には、二酸化炭素の放出によって反応管内の二酸化炭素分圧が上昇し、二酸化炭素の放出が抑制されるため、実施例1の場合の二酸化炭素の放出時間:30minに比べて、10倍の300minを要すること、すなわち、本願発明(実施例1)の方法によれば、比較例1の方法に比べて、二酸化炭素の放出時間を1/10に短縮できることが確認された。   On the other hand, in the case of Comparative Example 1 in which nitrogen gas is used as a gas to be circulated at the time of carbon dioxide release without using a hydrocarbon-based gas or hydrogen gas as a sweep gas as in the prior art, the inside of the reaction tube is released by the carbon dioxide release. Since the carbon dioxide partial pressure of the carbon dioxide increases and the release of carbon dioxide is suppressed, the time required for carbon dioxide release in Example 1 is 300 times that of 30 minutes, that is, the invention of the present application (implemented). According to the method of Example 1), it was confirmed that the carbon dioxide release time can be shortened to 1/10 compared with the method of Comparative Example 1.

なお、上記実施例では、放出工程で流通させるスイープガスとして、炭化水素系ガスとしてメタンを用いた場合および水素を用いた場合を例にとって説明したが、本願発明の二酸化炭素の分離回収方法においては、二酸化炭素の放出工程において、メタン以外の炭化水素系ガス、例えば、プロパン、ブタンなどを用いることも可能である。
また、目的に応じて、炭化水素系ガスと水素を混合した混合ガスを用いることも可能であり、さらには、炭化水素系ガスや水素ガスと他のガスとの混合ガス、例えば炭化水素系ガスと水蒸気や酸素との混合ガスやこれを改質することによって得られる一酸化炭素と水素の混合ガスなどを用いることも可能である。
In the above embodiment, the case where methane is used as the hydrocarbon-based gas and the case where hydrogen is used as the sweep gas to be circulated in the release step has been described as an example. In the carbon dioxide releasing step, it is also possible to use hydrocarbon gases other than methane, such as propane and butane.
Further, depending on the purpose, it is possible to use a mixed gas in which a hydrocarbon gas and hydrogen are mixed, and further, a hydrocarbon gas or a mixed gas of hydrogen gas and another gas, for example, a hydrocarbon gas. It is also possible to use a mixed gas of carbon monoxide and water vapor or oxygen, or a mixed gas of carbon monoxide and hydrogen obtained by reforming it.

また、上記実施例では、二酸化炭素吸収材として、粒状の二酸化炭素吸収材を用いた場合を例にとって説明したが、二酸化炭素吸収材は粒状の形態のものに限らず、粉末状の形態のもの、立方体、直方体、球状などの種々の形状に成形した成形体、シート状の成形体、さらには、それらを組み合わせた形状を有する構造体など、種々の形態のものを使用することが可能である。
また、上記実施例では、二酸化炭素吸収材として、Ba2TiO4、Sr2TiO4、およびCaOを用いた場合について説明したが、二酸化炭素吸収材として、Ba3Ca2Ti29を用いた場合にも上記実施例の場合とほぼ同様の効果が得られることが確認されている。
Further, in the above embodiment, the case where a granular carbon dioxide absorbent is used as the carbon dioxide absorbent has been described as an example. However, the carbon dioxide absorbent is not limited to a granular form, and is in a powder form. It is possible to use various forms such as a molded body formed into various shapes such as a cube, a rectangular parallelepiped, and a sphere, a sheet-shaped molded body, and a structure having a combination of them. .
In the above embodiment, use as a carbon dioxide absorbent, Ba 2 TiO 4, Sr 2 TiO 4, and has been described using the CaO, the carbon dioxide absorbent, the Ba 3 Ca 2 Ti 2 O 9 Even in this case, it has been confirmed that substantially the same effect as in the case of the above embodiment can be obtained.

なお、本願発明はさらにその他の点においても上記の各実施例の構成に限定されるものではなく、二酸化炭素の吸収条件、放出条件などに関し、発明の範囲内において、種々の応用、変形を加えることが可能である。   In addition, the invention of the present application is not limited to the configuration of each of the above embodiments in other respects, and various applications and modifications are made within the scope of the invention with respect to carbon dioxide absorption conditions and release conditions. It is possible.

上述のように、本願発明によれば、吸収した二酸化炭素をより短時間に効率よく放出させるとことが可能になるとともに、二酸化炭素を、さらに用途の広い一酸化炭素に転換して回収することが可能になる。
したがって、本願発明は、水素製造プロセスにおける燃焼前の二酸化炭素の分離、回収、工場において発生する燃焼排ガス中の二酸化炭素の分離、回収などの分離に広く適用することが可能である。
As described above, according to the present invention, the absorbed carbon dioxide can be efficiently released in a shorter time, and the carbon dioxide can be recovered by converting it to carbon monoxide, which is more versatile. Is possible.
Therefore, the present invention can be widely applied to separation and recovery of carbon dioxide before combustion in the hydrogen production process and separation and recovery of carbon dioxide in combustion exhaust gas generated in a factory.

Claims (4)

(a)二酸化炭素吸収材に二酸化炭素を吸収させる吸収工程と、
(b)二酸化炭素を吸収した二酸化炭素吸収材から二酸化炭素を放出させる放出工程と
を具備する二酸化炭素の分離回収方法であって、
前記(b)の放出工程において、二酸化炭素を吸収した二酸化炭素吸収材を、水素ガスまたは炭化水素系ガスを供給しつつ加熱して二酸化炭素を放出させること
を特徴とする、二酸化炭素の分離回収方法。
(a) an absorption step of causing the carbon dioxide absorbent to absorb carbon dioxide;
(b) a method for separating and recovering carbon dioxide, comprising the step of releasing carbon dioxide from a carbon dioxide absorbent that has absorbed carbon dioxide,
In the release step of (b), the carbon dioxide absorbing material that has absorbed carbon dioxide is heated while supplying hydrogen gas or a hydrocarbon-based gas to release carbon dioxide. Method.
前記(b)の放出工程における加熱温度を800〜1000℃とすることを特徴とする、請求項1に記載の二酸化炭素の分離回収方法。   The method for separating and recovering carbon dioxide according to claim 1, wherein the heating temperature in the releasing step (b) is 800 to 1000 ° C. 前記二酸化炭素吸収材が、アルカリ土類金属の酸化物を主たる成分とするもの、またはアルカリ土類金属酸化物を含有する複合酸化物を主たる成分とするものであることを特徴とする、請求項1または2のいずれかに記載の二酸化炭素の分離回収方法。   The carbon dioxide absorbent is characterized in that the main component is an oxide of an alkaline earth metal or a composite oxide containing an alkaline earth metal oxide. 3. The method for separating and recovering carbon dioxide according to either 1 or 2. 前記二酸化炭素吸収材が、Ba2TiO4、Sr2TiO4、およびBa3Ca2Ti29のいずれかの複合酸化物を主たる成分とするものであることを特徴とする、請求項3記載の二酸化炭素の分離回収方法。The carbon dioxide absorbent is mainly composed of a composite oxide of Ba 2 TiO 4, Sr 2 TiO 4 , and Ba 3 Ca 2 Ti 2 O 9. The method for separating and recovering carbon dioxide as described.
JP2008536307A 2006-09-28 2007-08-27 Carbon dioxide separation and recovery method Pending JPWO2008038484A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006265982 2006-09-28
JP2006265982 2006-09-28
PCT/JP2007/066535 WO2008038484A1 (en) 2006-09-28 2007-08-27 Method of separating/recovering carbon dioxide

Publications (1)

Publication Number Publication Date
JPWO2008038484A1 true JPWO2008038484A1 (en) 2010-01-28

Family

ID=39229923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008536307A Pending JPWO2008038484A1 (en) 2006-09-28 2007-08-27 Carbon dioxide separation and recovery method

Country Status (2)

Country Link
JP (1) JPWO2008038484A1 (en)
WO (1) WO2008038484A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023037652A1 (en) 2021-09-08 2023-03-16 国立研究開発法人産業技術総合研究所 Carbon monoxide production method and device used therefor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004292525A (en) * 2003-03-26 2004-10-21 Jfe Engineering Kk Apparatus for separating and converting carbon dioxide into fuel and method therefor and apparatus for separating and recovering carbon dioxide and method therefor
WO2006013695A1 (en) * 2004-08-03 2006-02-09 Murata Manufacturing Co., Ltd. Carbon dioxide absorbing material, and method and apparatus for separating carbon dioxide using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004292525A (en) * 2003-03-26 2004-10-21 Jfe Engineering Kk Apparatus for separating and converting carbon dioxide into fuel and method therefor and apparatus for separating and recovering carbon dioxide and method therefor
WO2006013695A1 (en) * 2004-08-03 2006-02-09 Murata Manufacturing Co., Ltd. Carbon dioxide absorbing material, and method and apparatus for separating carbon dioxide using the same

Also Published As

Publication number Publication date
WO2008038484A1 (en) 2008-04-03

Similar Documents

Publication Publication Date Title
WO2011065194A1 (en) Anti-shift reaction catalyst, and process for production of synthetic gas using same
JP3988787B2 (en) Carbon dioxide absorbing material and carbon dioxide absorbing method using the same
Ávalos-Rendón et al. CO2 chemisorption and cyclability analyses of lithium aluminate polymorphs (α-and β-Li5AlO4)
JP5402683B2 (en) Reverse shift reaction catalyst, method for producing the same, and method for producing synthesis gas
JP5810537B2 (en) How to use carbon oxide-containing gas
JP4496208B2 (en) Carbon dioxide absorbent, carbon dioxide separator and reformer
JP2009106812A (en) Carbon dioxide absorber, carbon dioxide separator, reformer and producing method of carbon dioxide absorber
WO2006137211A1 (en) Reforming apparatus for fuel cell
WO2012153762A1 (en) Reverse shift reaction catalyst, and method for producing synthetic gas using same
JP5761710B2 (en) Ammonia decomposition method and method for regenerating catalyst for ammonia decomposition
JP2007253116A (en) Carbon dioxide absorbing material, apparatus for separating carbon dioxide and reforming apparatus
JPWO2008038484A1 (en) Carbon dioxide separation and recovery method
JP2014073436A (en) Hydrocarbon reforming catalyst, as well as hydrocarbon reforming method and tar reforming method using the same
KR100899306B1 (en) Calcium based high temperature carbon dioxide absorbent
Tian et al. Oxygen nonstoichiometry and defect models of brownmillerite-structured Ca2MnAlO5+ δ for chemical looping air separation
JP4835070B2 (en) Carbon dioxide absorbent having steam reforming catalyst function, method for producing the same, and method for reforming fuel gas in hydrogen production system
WO2013020052A1 (en) A cost-effective catalyst for gasification of powder river basin coal
JP4613180B2 (en) Method and apparatus for producing high carbon monoxide concentration synthesis gas
Guo et al. Residual steam/CH4 reforming strategy over pinewood-derived 10Ni-xNb2O5-yCaO/Al2O3 for in situ desulfurization from industrial raw syngas
Gao et al. A Dual Modification Method to Prepare Carbide Slag into Highly Active CaO-Based Solar Energy Storage Materials
JP5176399B2 (en) Hydrocarbon production method and methane oxidative coupling catalyst used therefor
Nakagaki Enhanced hydrogen production process from coal integrated with CO2 separation using dual chemical looping
KR101869461B1 (en) Method for removing oxygen in methane mixture gas by using oxygen catalyst, perovskite type oxygen removing catalyst used in the same, and land fill gas refine device applying land fill gas mathane direct converting technology using the same
JP2007296422A (en) Carbon dioxide-absorbing material, its manufacturing method, and carbon dioxide-absorbing method
Hernández-Fontes et al. Enhanced hydrogen production via assisted biomass gasification using lithium manganate as a bifunctional material

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120316

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121218