WO2006011336A1 - 高周波プラズマ処理装置および高周波プラズマ処理方法 - Google Patents

高周波プラズマ処理装置および高周波プラズマ処理方法 Download PDF

Info

Publication number
WO2006011336A1
WO2006011336A1 PCT/JP2005/012184 JP2005012184W WO2006011336A1 WO 2006011336 A1 WO2006011336 A1 WO 2006011336A1 JP 2005012184 W JP2005012184 W JP 2005012184W WO 2006011336 A1 WO2006011336 A1 WO 2006011336A1
Authority
WO
WIPO (PCT)
Prior art keywords
high frequency
plasma processing
closed space
processing apparatus
electric field
Prior art date
Application number
PCT/JP2005/012184
Other languages
English (en)
French (fr)
Inventor
Kazuhiro Nishikawa
Kazuki Ohki
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Publication of WO2006011336A1 publication Critical patent/WO2006011336A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32091Radio frequency generated discharge the radio frequency energy being capacitively coupled to the plasma

Definitions

  • the present invention relates to a high frequency plasma processing apparatus and a high frequency plasma processing method.
  • the size of substrates used in the manufacturing process is also increasing.
  • the glass substrate for the liquid crystal display device used is called the sixth generation, and the size of the substrate reaches 1.8 m wide by 1.5 m high.
  • the trend toward larger substrates is expected to continue.
  • a thin film is formed on the surface of a processing object by irradiating a high frequency plasma onto the processing object such as a substrate, etc.
  • a high frequency plasma in which processing such as etching is performed on the surface of the object to be processed, and surface treatment of the object to be processed is performed.
  • further improvement of plasma processing capability is required, for example, speeding up of plasma processing and quality improvement of plasma processing.
  • a high frequency is proposed to further increase the frequency of the high frequency than the present situation. Specifically, it has been proposed that a higher frequency than the 13.56 MHz high frequency conventionally used for general purpose is used. For example, it has been proposed to use a high frequency having a high frequency of 30 MHz to 100 MHz. As the frequency increases, the wavelength of the high frequency used for plasma processing tends to be shorter.
  • the size of the substrate is increased, the size of the substrate and the wavelength of the high frequency are approaching due to the increase of the frequency of the used high frequency.
  • the frequency is 13.56 MHz
  • the wavelength is about 22 m
  • the wavelength of the high frequency is Is 3m
  • the size of the substrate is close to the wavelength of the high frequency.
  • the discharge electrode for generating the plasma to be processed since the dimensions of the discharge electrode for generating the plasma to be processed are formed to roughly correspond to the size of the substrate, the discharge electrode itself is also larger and closer to the wavelength of the high frequency. In the situation. Conventionally, the size of the discharge electrode is sufficiently smaller than the high frequency wavelength used for processing. Therefore, in the high frequency plasma processing apparatus in which the discharge electrodes are formed in a flat plate shape and the main surfaces of the electrodes are arranged parallel to each other, the electric field generated between the electrodes is the surface of the substrate. It was possible to perform almost uniform plasma processing because it was almost uniform over the whole.
  • Japanese Patent Application Laid-Open No. 2002-327276 a cycle in which two feeding parts are formed for the discharge electrode of the plasma generating apparatus and a high frequency of the same frequency is fed to each of them is different from that in the cycle different from that of the cycle.
  • a plasma chemical vapor deposition apparatus is disclosed which performs processing uniformly on a time-averaged object by alternately performing a cycle of supplying high frequency power.
  • Japanese Patent Application Laid-Open No. 5-29273 discloses a plasma processing apparatus for averaging the throughput of plasma processing by rotating one of two electrodes facing each other.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-327276
  • Patent Document 2 Japanese Patent Application Laid-Open No. 5-29273
  • An object of the present invention is to provide a high frequency plasma processing apparatus and a high frequency plasma processing method capable of performing uniform plasma processing even on a large object with a simple configuration.
  • a reaction container for forming a gas atmosphere for forming plasma a discharge electrode disposed inside the reaction container, and an inside of the reaction container
  • electromagnetic field control means for controlling the high frequency electric field distribution.
  • the electromagnetic field control means is disposed outside the reaction vessel and includes a closed space means electromagnetically communicating with the reaction vessel and configured to substantially prevent the leakage of high frequency waves to the outside.
  • the high frequency electric field distribution is formed to be changed by changing at least one of the configuration of the above and the configuration inside the closed space means.
  • the electromagnetic field control means is configured to be able to change the shape of the electromagnetic closed space formed by the closed space means.
  • the configuration of the closed space means can be easily changed.
  • the electromagnetic field control means is formed so that the volume of the closed space means can be changed.
  • the volume of the closed space means can be changed.
  • the electromagnetic field control means is formed such that at least a part of the electromagnetic partition of the closed space means moves.
  • the electromagnetic field control means has an electromagnetically sealed closed space chamber except for a portion electromagnetically communicating with the reaction vessel, and is movable inside the closed space chamber.
  • An electromagnetic shielding material is formed.
  • the electromagnetic field control means has a closed space chamber that is electromagnetically sealed except for a portion electromagnetically communicating with the reaction container, and can be taken in and out of the closed space chamber.
  • a shield shirt is formed.
  • the electromagnetic field control means is formed so as to be able to change the average relative dielectric constant inside the closed space means.
  • the electromagnetic field control means has a closed space chamber that is electromagnetically sealed except for a portion electromagnetically connected to the reaction vessel, and the relative dielectric constant is provided inside the closed space chamber.
  • the force is greater than S 1! /, So that it can be filled or drained.
  • the electromagnetic field control means has a closed space chamber that is electromagnetically sealed except for a portion electromagnetically connected to the reaction vessel, and the relative dielectric constant is provided inside the closed space chamber.
  • Force A solid dielectric is placed that is larger than force.
  • the solid dielectric is movably formed inside the closed space.
  • the electromagnetic field control means includes a closed space chamber sealed electromagnetically except for a portion electromagnetically communicating with the reaction container, and the electromagnetically communicating portion is electrically Transmission window having a typical insulating property.
  • the discharge electrode is disposed on the inner side of the reaction container of the transmission window, and the propagation electrode electrically connected to the high frequency power source is disposed on the outer side of the reaction container of the transmission window.
  • the discharge electrode and the propagation electrode are disposed so as to sandwich the transmission window.
  • the propagation electrode is formed to be smaller than the discharge electrode in plan view, and the propagation electrode is formed to be movable along the surface of the transmission window.
  • a reaction container for forming a gas atmosphere for forming plasma a discharge electrode disposed inside the reaction container, a discharge electrode and a high frequency power source And a plurality of spare electrodes connected to the discharge electrode, and an electromagnetic field control means for controlling a high frequency electric field distribution inside the reaction vessel.
  • impedance variable means for changing the impedance of the high frequency electric path is formed in at least one of a plurality of high frequency electric paths between the resonator and the auxiliary electrode.
  • impedance variable means for changing the impedance of the high frequency electrical path is formed in the high frequency electrical path between the discharge electrode and the resonator.
  • variable impedance means includes a capacitor of variable capacity.
  • the variable impedance means has a function of substantially cutting the high frequency electrical path.
  • the high frequency electrical path is cut off.
  • the high frequency electric field distribution inside the reaction vessel can be greatly varied.
  • the high frequency electric field distribution can be largely varied. Also, the controllability of the high frequency electric field distribution is improved.
  • the plasma processing operation is automatically performed after the electromagnetic field control means is automatically driven.
  • the electromagnetic field control means is formed to be able to change the high frequency electric field distribution when performing the plasma processing.
  • the electromagnetic field control means is formed to be able to change the high frequency electric field distribution continuously.
  • the processing amount in a predetermined time becomes uniform as compared with the case where the high frequency electric field distribution is changed stepwise in a discontinuous manner. That is, the controllability of the time integration of the high frequency electric field distribution is improved, and the averaging of the plasma processing amount in a predetermined time becomes easy.
  • the electromagnetic field control means is formed to be able to control the rate of change of the high frequency electric field distribution.
  • the plasma processing time in each high frequency electric field distribution can be controlled with higher accuracy, and more uniform plasma processing can be performed.
  • the electromagnetic field control means is formed to be able to periodically and periodically change the high frequency electric field distribution.
  • the electromagnetic field control means is formed to be able to change the high frequency electric field distribution such that the time for which the plasma processing is performed is an integral multiple of a half cycle. It is done. By adopting this configuration, plasma processing is periodically repeated. Since the plasma processing is not completed in the middle of the half cycle, uniform plasma processing can be performed.
  • the discharge electrode is formed such that the largest dimension of the discharge surface is larger than the half wavelength of the high frequency wave introduced into the reaction vessel.
  • the high frequency electric field distribution formed on the discharge surface of the discharge electrode may be reversed in positive and negative. Therefore, the uniformity of plasma processing can be dramatically improved.
  • a discharge electrode is disposed inside a reaction container for forming a gas atmosphere for forming plasma, including a plurality of plasma processing steps.
  • a closed space means electromagnetically communicating with the reaction vessel and having a function of substantially preventing leakage of high frequency waves to the outside is provided outside the reaction vessel.
  • the plurality of plasma processing steps are performed by changing at least one of the configuration of the closed space means and the configuration of the inside of the closed space means in each of the plasma processing steps so that the high frequency electric field of the inside of the reaction vessel is changed.
  • the process of adjusting the distribution and processing with the plasma of each high frequency electric field distribution is included.
  • a discharge electrode is disposed inside a reaction container for forming a gas atmosphere for forming plasma, and high frequency plasma is generated to perform processing.
  • a closed space means electromagnetically communicating with the reaction vessel and having a function of substantially preventing leakage of high frequency waves to the outside is formed on the outside of the reaction vessel to construct the closed space means.
  • changing the high frequency electric field distribution inside the reaction container by changing at least one of the internal configurations of the closed space means.
  • time-averaged plasma processing can be performed.
  • the plasma processing time can be shortened without interrupting the plasma processing and changing the configuration for changing the high frequency electric field distribution.
  • the above-described invention includes the step of processing while continuously changing the high frequency electric field distribution.
  • time averaging of the high frequency electric field distribution can be easily performed as compared with the case where the high frequency electric field distribution is changed discontinuously.
  • uniform plasma processing can be easily performed by continuously fluctuating the high frequency electric field distribution at a constant speed.
  • impedance matching can be easily performed by the resonator, and stable plasma processing can be performed while maintaining constant power input to the high frequency plasma.
  • the above invention preferably includes the step of performing processing while controlling the rate of change of the high frequency electric field distribution.
  • the speed can be controlled so that the time integral value of the electric field intensity at each position of the object to be processed becomes uniform, and more uniform plasma processing can be performed.
  • the above invention preferably includes the step of performing the process while periodically changing the high frequency electric field distribution.
  • the variation of the high-frequency electric field distribution is performed so that the time required for the plasma processing for a half period of the variation period is divided by an integer of 1 or more.
  • the treatment is performed such that the half wavelength of the high frequency wave introduced into the reaction vessel is smaller than the maximum dimension of the discharge surface of the discharge electrode.
  • positive and negative inversion occurs in the electric field distribution formed on the upper surface of the object to be treated.
  • the high-frequency electric field distribution is changed compared to when static plasma processing is performed with the high-frequency electric field distribution fixed.
  • the present invention it is possible to provide a high frequency plasma processing apparatus and a high frequency plasma processing method capable of performing uniform plasma processing even on a large object with a simple configuration.
  • FIG. 1 is a schematic cross-sectional view of a high frequency plasma processing apparatus in a first embodiment.
  • FIG. 2 is a circuit diagram of a resonator.
  • FIG. 3 is a first state diagram of the high-frequency plasma processing apparatus in the first embodiment.
  • FIG. 4 is a second state diagram of the high-frequency plasma processing apparatus in the first embodiment.
  • FIG. 5 is a third state diagram of the high-frequency plasma processing apparatus in the first embodiment.
  • FIG. 6 is a high frequency electric field distribution in a first state of the high frequency plasma processing apparatus in the first embodiment.
  • FIG. 7 is a high frequency electric field distribution of a second state of the high frequency plasma processing apparatus in the first embodiment.
  • FIG. 8 is a high frequency electric field distribution in a third state of the high frequency plasma processing apparatus in the first embodiment.
  • FIG. 9 is a schematic cross-sectional view of a first high-frequency plasma processing apparatus in a second embodiment.
  • FIG. 10 is a schematic cross-sectional view of a second high-frequency plasma processing apparatus in a second embodiment.
  • FIG. 11 is a schematic cross-sectional view of a third high-frequency plasma processing apparatus in a second embodiment.
  • FIG. 12 is a schematic cross-sectional view of a fourth high-frequency plasma processing apparatus in a second embodiment.
  • FIG. 13 is a schematic cross-sectional view of a fifth high-frequency plasma processing apparatus in a second embodiment.
  • FIG. 14 is a schematic cross-sectional view of a first high-frequency plasma processing apparatus in a third embodiment.
  • FIG. 15 is an enlarged side view of a portion of the movable electric path member of the first high-frequency plasma processing apparatus in the third embodiment.
  • FIG. 16 is a schematic cross-sectional view of a second high-frequency plasma processing apparatus in a third embodiment.
  • FIG. 17 is a schematic cross-sectional view of a third high-frequency plasma processing apparatus in a third embodiment.
  • FIG. 18 is a schematic cross-sectional view of a high frequency plasma processing apparatus in a fourth embodiment.
  • FIG. 19 is a model shape diagram of a simulation in the fourth embodiment.
  • FIG. 20 is a graph showing a first result of simulation in the fourth embodiment.
  • FIG. 21 is a graph showing a second result of the simulation in the fourth embodiment.
  • FIG. 22 is a graph showing the third result of the simulation in the fourth embodiment.
  • FIG. 23 is a graph showing a fourth result of the simulation in the fourth embodiment. Explanation of sign
  • FIG. 1 is a schematic cross-sectional view of a plasma processing apparatus in the present embodiment.
  • the plasma processing apparatus in the present embodiment is provided with a reaction vessel 5 for forming a gas atmosphere for forming plasma.
  • the reaction vessel 5 is formed in a rectangular box shape and includes a portion formed of a conductive material.
  • the reaction container 5 is connected to a gas supply device for supplying a reaction gas for generating plasma, and a gas exhaust device for exhausting or depressurizing the inside of the reaction container.
  • the reaction vessel 5 is connected to an air supply pipe for introducing a reaction gas and an exhaust pipe for exhausting the gas.
  • the air supply pipe and the exhaust pipe have valves for sealing the inside of the reaction vessel 5 It is arranged (not shown).
  • Reaction vessel 5 includes a transmission window 16 formed on the side and having electrical insulation.
  • the transmission windows 16 are formed on two of the side surfaces of the reaction vessel 5 facing each other.
  • the transmission window 16 is formed in a flat plate shape so as to have a rectangular planar shape.
  • the transmission window 16 is formed to electromagnetically communicate the inside and the outside of the reaction vessel 5.
  • the transmission window 16 is formed to keep the inside of the reaction container 5 airtight. That is, the transmission window 16 is formed so as to be permeable to the electromagnetic field and to be impermeable to the gas such as the reaction gas filled inside the reaction vessel 5.
  • the reaction vessel 5 is formed to be airtight.
  • a discharge electrode 2 and a counter electrode 3 for generating plasma are formed inside the reaction vessel 5.
  • Each of the discharge electrode 2 and the counter electrode 3 is formed in a flat plate shape, and arranged so that the main surfaces of each other are substantially parallel.
  • the discharge electrode 2 and the counter electrode 3 are disposed apart from each other.
  • the discharge electrode 2 and the counter electrode 3 are formed of a material having conductivity. In the present embodiment, the discharge electrode 2 and the counter electrode 3 are formed to have substantially the same planar shape.
  • the counter electrode 3 is grounded.
  • the discharge electrode 2 and the counter electrode 3 are disposed substantially at the center in the width direction of the reaction vessel 5.
  • a resonator 4 is connected to the discharge electrode 2 via a feed rod 7.
  • the resonator 4 is connected to the high frequency power source 1.
  • a through hole is formed on the upper surface of the reaction vessel 5, and a conductive feed rod 7 is disposed through the through hole.
  • An insulator 15 is disposed inside the through hole so as to surround the feed rod 7. The through holes are formed small to reduce high frequency leakage from between the through holes and the feed rod 7.
  • the capacitor capacity in this portion is preferably small enough to be ignored as a high frequency electric path.
  • the capacitor capacity be formed to be sufficiently smaller than the capacitor capacity determined by the discharge electrode 2 and the counter electrode 3
  • the electromagnetic shielding material 34 and the conductive casing of resonator 4 form the same. No electromagnetic waves leak to the outside, because they are covered with the formed electromagnetic shield.
  • the insulator 15 is formed so as to maintain the airtightness of the inside of the reaction vessel 5 and further maintain the insulation between the power feed rod 7 and the reaction vessel 5.
  • the resonator 4 is disposed on the upper surface of the reaction vessel 5 via the electromagnetic shield material 34.
  • the plasma processing apparatus is provided outside the reaction vessel 5 and includes electromagnetic field control means for controlling the high frequency electric field distribution inside the reaction vessel 5.
  • the electromagnetic field control means includes a closed space 6, a movable electromagnetic shield 26 and a support bar 27.
  • the electromagnetic field control means includes closed space means electromagnetically communicating with the reaction vessel and configured to substantially prevent the leakage of high frequency waves to the outside.
  • the closed space means includes a closed space chamber 6.
  • the closed space 6 is formed outside the reaction vessel 5 so as to protrude outward on the side where the transmission window 16 is disposed.
  • the closed space 6 is formed of a material that blocks high frequency.
  • the closed space chamber 6 is formed of a conductive material, and is formed in a rectangular box shape so as to prevent high frequency leakage to the outside.
  • the closed space chamber 6 is arranged to cover the transmission window 16.
  • the closed space chamber 6 is formed larger than the planar shape of the transmission window 16 so that the transmission window 16 can not be seen from the outside.
  • the inside of the closed space chamber 6 is in electromagnetic communication with the inside of the reaction vessel via the transmission window 16. In this manner, the closed space 6 is electromagnetically sealed except for the transmission window 16.
  • a movable electromagnetic shielding material 26 is disposed inside the closed space chamber 6.
  • the movable electromagnetic shield material 26 is formed in a flat plate shape, and is disposed so that the main surface thereof is substantially parallel to the main surface of the transmission window 16.
  • a support rod 27 is fixed to the movable electromagnetic shield 26 so that the axial direction is perpendicular to the main surface of the movable electromagnetic shield 26.
  • the movable electromagnetic shield member 26 is formed to be movable in the direction shown by the arrow 51 by moving the support bar 27.
  • the support rod 27 is formed to pass through the closed space 6, and the through portion is formed so as to substantially prevent leakage of high frequency waves.
  • the closed space 6 and the support bar 27 are formed to slide, and are formed so as not to leak high frequency waves from the gap.
  • Movable electromagnetic shield material 26 is formed inside each of two closed space chambers 6 formed on the side of reaction vessel 5. It is arranged. Each movable electromagnetic shielding material 26 is formed so as to be movable independently.
  • the internal configuration of the closed space means is formed to be changeable.
  • two electromagnetic field control means are formed on the side surface of the reaction vessel, and each of the electromagnetic field control means is formed so as to have a symmetrical configuration when the electrode center is the axis of symmetry.
  • two movable electromagnetic shield members 26 are formed to move independently when performing plasma processing. Also, the two movable electromagnetic shield members 26 are formed so as to move continuously. Further, the high-frequency plasma processing apparatus in the present embodiment includes movable electromagnetic shielding material control means capable of individually controlling the moving speed of the two movable electromagnetic shielding materials 26, and the speed of each movable electromagnetic shielding material 26. It is formed to be able to control individually and continuously!
  • the movable electromagnetic shielding material control means is formed so as to be able to move the two movable electromagnetic shielding materials 26 periodically. That is, they are formed so that the same movement can be repeated.
  • the movable electromagnetic shield material 26 is formed to be capable of repeating reciprocating motion in the direction of the arrow 51.
  • the movable electromagnetic shield material control means is formed to be able to move the two movable electromagnetic shield materials 26 so as to be an integral multiple of a half cycle of this period during which the plasma processing is performed. ing. That is, it is formed such that plasma processing can be performed so that the time of half cycle (half cycle) in which the high frequency electric field distribution fluctuates becomes the time obtained by dividing the time required for plasma processing by an integer of 1 or more. ing.
  • the high-frequency plasma processing apparatus in the present embodiment is provided with automatic processing control means (not shown) for automatically performing plasma processing operation after the above-mentioned electromagnetic field control means is automatically driven. That is, when plasma processing is stopped, in order to perform the next plasma processing, the movable electromagnetic shielding material is moved to the optimum position, and automatic processing control is automatically started after the movement is completed. Means are provided.
  • the high frequency plasma processing apparatus in the present embodiment has a high frequency power input to the discharge electrode.
  • the maximum dimension of the discharge electrode is formed to be larger than the half wavelength of.
  • the maximum dimension of the discharge electrode refers to the maximum length of the linear length of the possible end of the discharge electrode when the discharge electrode is viewed in plan. For example, if the planar shape of the discharge electrode is rectangular, the diagonal length is the largest dimension.
  • FIG. 2 shows an explanatory diagram of an electric circuit inside the resonator in the present embodiment.
  • the resonator includes a conductive case 12, and an electric circuit is formed inside the conductive case 12.
  • the electrical circuit of the resonator includes an impedance matching coil 13 and two impedance matching capacitors 14a and 14b.
  • the impedance matching capacitors 14a and 14b are variable capacitance capacitors whose capacitance can be adjusted.
  • the resonator is formed so as to be able to match the impedance by adjusting the capacitance of the impedance matching capacitors 14a and 14b.
  • Conductive casing 12 is connected to ground 39 and electrically grounded.
  • the conductive casing 12 also has a function of an electromagnetic shield that prevents leakage of the electromagnetic field to the outside.
  • the power input end of the resonator is connected to the high frequency power source, and the power output end is connected to the discharge electrode.
  • the circuit configuration of the resonator shown in FIG. 2 is an example, and any resonator may be used as long as it can perform impedance matching. Alternatively, the function of the resonator may be provided inside the high frequency power supply.
  • FIG. 3 shows a cross-sectional view of a first state of the high-frequency plasma processing apparatus in the present embodiment.
  • the movable electromagnetic shield material 26 is disposed approximately at the center of the movable range. In FIG. 3, it is disposed at a substantially central portion in the direction of depth of the closed space 6.
  • the two movable electromagnetic shielding members 26 are arranged such that the positions (electrode centers) at the middle points in the width direction of the discharge electrodes 2 are separated by the same distance. That is, with the center in the width direction of the discharge electrode 2 as the origin, the internal configuration of the closed space means is disposed so as to be symmetrical in the left-right direction.
  • a substrate 8 as an object to be processed is disposed on the main surface of the counter electrode 3 inside the reaction vessel 5.
  • the substrate 8 is disposed to face the main surface discharge electrode 2 to be processed.
  • the inside of the reaction vessel 5 is exhausted using a gas exhaust device (not shown).
  • plasma treatment is performed inside the reaction vessel 5 using a gas supply device (not shown). Introduce the reaction gas to
  • the reactive gas to be introduced is appropriately selected according to the plasma treatment.
  • oxygen may be used as a reaction gas to oxidize or incinerate the organic matter.
  • a gas containing a halogen gas such as CF or SF is selected as the reaction gas.
  • Oxygen, water, hydrogen, or other gas may be added to these reaction gases, and a gas for plasma treatment may be introduced as appropriate.
  • a reactive gas is introduced into the reaction container 5 to form a gas atmosphere for forming a plasma
  • a high frequency voltage is applied to the discharge electrode 2 from the high frequency power source 1 through the resonator 4.
  • a plasma of the introduced reaction gas is generated between the discharge electrode 2 and the counter electrode 3.
  • the plasma is treated by the surface force plasma of the substrate 8 disposed on the surface of the counter electrode 3.
  • an electric field distribution is formed with a metal container such as a reaction vessel serving as a partition of an electromagnetic field or a closed space chamber as a boundary.
  • a metal container such as a reaction vessel serving as a partition of an electromagnetic field or a closed space chamber as a boundary.
  • the conductive portion of the reaction vessel 5 and the portion surrounded by the closed space 6 and the movable electromagnetic shielding material 26 become the boundary of the electromagnetic field, and the electromagnetic field is closed. Space is formed.
  • plasma treatment is carried out, and the high frequency electric field distribution inside the reaction container is changed using an electromagnetic field control means in the middle of the plasma processing. That is, in a state where plasma is formed, the electromagnetic field control means is driven.
  • FIG. 4 shows a cross-sectional view of a second state of the high-frequency plasma processing apparatus in the present embodiment.
  • the movable electromagnetic shielding material 26 In the second state, as shown by the arrow 52, the movable electromagnetic shielding material 26 is moved to the left in FIG. In the second state, one movable electromagnetic shield material 26 approaches the transmission window 16. The other movable electromagnetic shield 26 is away from the transmission window 16.
  • the two movable electromagnetic shielding members 26 translate in parallel by the same length. That is, in the present embodiment, the volume of the closed space of the electromagnetic field does not change, and the shape of the space changes.
  • FIG. 5 shows a cross-sectional view of a third state of the high-frequency plasma processing apparatus in the present embodiment.
  • the two movable electromagnetic shield members 26 1S are moved to the right in FIG.
  • one movable electromagnetic shield member 26 is moved away from the transmission window 16.
  • the other movable electromagnetic shield material 26 is moved so as to approach the transmission window 16.
  • Each of the two movable electromagnetic shielding members 26 translates only for the same length. That is, the shape of the space is changing without changing the volume of the electromagnetic closed space.
  • the above first state force is continuously changed to the third state.
  • the movement of the movable electromagnetic shielding material is periodically repeated. That is, by moving the support rods in and out periodically, the two movable electromagnetic shielding members are periodically moved.
  • FIG. 6 shows a graph of the high frequency electric field distribution in the reaction container and in the closed space in the first state shown in FIG.
  • the graph shows the electric field strength in a cross section perpendicular to the main surface of the discharge electrode through the electrode center.
  • the electrode center is the center in the width direction of the discharge electrode in FIG.
  • the high frequency electric field distribution is as shown in FIG. As shown in 6, it has a shape that is symmetrical with respect to the electrode center with the electrode center as the maximum value. Also, as the distance from the center of the electrode increases, the electric field strength becomes weaker.
  • FIG. 7 shows a graph of the high frequency electric field distribution in the reaction container and in the closed space in the second state shown in FIG. As shown by the arrow 52, the high frequency electric field distribution moves in the direction in which the movable electromagnetic shielding material moves as well as the state force having a peak at the center of the electrode.
  • FIG. 8 shows a graph of the high frequency electric field distribution in the reaction container and in the closed space in the third state shown in FIG.
  • the high-frequency electric field distribution moves in the direction in which the movable electromagnetic shielding material moves as well as the state force having a peak at the electrode center.
  • the first state to the third state are continuously repeated while performing plasma processing. That is, the high frequency electric field distribution is continuously changed.
  • the electric field strength of the plasma is strong. Much more processing is done. That is, the plasma processing speed also has a distribution corresponding to the electric field distribution.
  • the most plasma processing is performed on the position of the electrode center on the surface of the substrate.
  • the electromagnetic field control means is fixed in the above-described first state and the electric field strength inside the reaction container is constant, a distribution corresponding to the high frequency electric field distribution is generated in the processing amount for the substrate.
  • the high frequency electric field distribution is continuously changed during the plasma processing. Therefore, the plasma throughput can be made uniform over the entire surface of the substrate, and uniform plasma processing can be performed even on a large substrate.
  • electromagnetic field control means for controlling the high frequency electric field distribution inside the reaction vessel is provided, and the electromagnetic field control means is disposed outside the reaction vessel, and leakage of high frequency waves to the outside is provided. It is formed to fluctuate the high frequency electric field distribution inside the reaction vessel by changing the internal configuration of the closed space means.
  • uniform plasma processing can be performed on a large-sized workpiece with a simple configuration. That is, by fluctuating the high frequency electric field distribution, it is possible to average out the plasma processing amount at each position of the object to be treated.
  • the internal space of the closed space means to be changed, the high frequency electric field distribution inside the reaction vessel without moving or rotating the components inside the reaction vessel. Can be varied. Therefore, it is possible to prevent the generation of particles due to the movement of the components inside the reaction vessel, the disturbance of the gas flow, and the like, and uniform plasma processing can be performed.
  • the internal configuration of the closed space means disposed outside the reaction container is formed so as to be changeable.
  • Many reaction vessels require airtightness, so it is difficult to change the shape of the reaction vessel, or complex mechanisms are required.
  • the closed space means outside the reaction vessel do not require air tightness.
  • the closed space means should be able to seal the electromagnetic field to such an extent that an electromagnetic shielding effect to shut off the electromagnetic field can be obtained. For this reason, changing the configuration inside the closed space means can be easily realized, and the electromagnetic field control means can be easily formed.
  • the closed space means has a closed space chamber that is electromagnetically sealed except for the part that is in electromagnetic communication with the reaction container, and is provided inside the closed space chamber.
  • a movable electromagnetic shield material is formed.
  • the configuration inside the closed space can be easily changed, and the function of fluctuating the high frequency electric field distribution and the function of shielding the electromagnetic field can be separated. For this reason, driving of the electromagnetic field control means can be performed safely and with good controllability.
  • a transmission window having electrical insulation is disposed in the portion of the reaction vessel and the closed space chamber that is in electromagnetic communication.
  • the electromagnetic field control means in the present embodiment is formed so as to be able to change the high frequency electric field distribution inside the reaction container when performing the plasma processing. That is, the high-frequency plasma processing apparatus in the present embodiment is formed to be able to move the movable electromagnetic shielding material when performing plasma processing.
  • the high frequency electric field distribution can be dynamically changed while performing plasma processing. As a result, it is possible to shorten the time for a series of plasma processing which eliminates the need for separately applying time for changing the high frequency electric field distribution separately from the plasma processing.
  • the electromagnetic field control means is formed so as to be able to change the high frequency electric field distribution continuously.
  • the movable electromagnetic shielding material can be moved continuously during plasma processing.
  • the electromagnetic field control means is formed to be able to control the rate of change of the high frequency electric field distribution.
  • the moving speed of the movable electromagnetic shielding material can be controlled.
  • the electromagnetic field control means is formed so as to be able to periodically and periodically change the high frequency electric field distribution.
  • the two movable electromagnetic shielding members 26 are formed so as to be able to move periodically. That is, the first state, the second state, and the third state can be periodically repeated.
  • the electromagnetic field control means is formed to be able to change the high frequency electric field distribution inside the reaction vessel so that it becomes an integral multiple of a half cycle while plasma processing is being performed.
  • the time during which plasma processing is performed is formed so as to be an integral multiple of the time it takes to move forward or backward during reciprocation of two movable electromagnetic shielding members.
  • the movable electromagnetic shielding material moves to a position of the second state or the third state at the end of the plasma processing. Is done.
  • uniform plasma processing can be performed because the plasma processing is periodically and repeatedly performed and the plasma processing is not completed in the middle of a half cycle.
  • the high-frequency plasma processing apparatus in the present embodiment has a function of automatically performing the plasma processing operation after the movable electromagnetic shield material is automatically moved.
  • the electromagnetic field control means is driven while performing the plasma processing, but as described later, the electromagnetic field control means is driven while the plasma processing is temporarily stopped to be formed.
  • the plasma processing may be resumed with different high frequency electric field distributions.
  • the discharge electrode is formed such that the maximum dimension of the discharge surface is larger than the half wavelength of the high frequency wave introduced into the inside of the reaction vessel.
  • the diagonal length of the rectangular shape of the planar shape of the discharge electrode is formed to be longer than the half wavelength of the introduced high frequency.
  • the high frequency electric field distribution formed in the discharge surface area of the discharge electrode may be reversed in positive and negative. For this reason, the change in the electric field intensity of the high frequency electric field distribution on the surface of the object to be processed becomes large, and by changing the high frequency electric field distribution during the plasma processing, it is possible to perform plasma processing with extremely high uniformity. That is, the high frequency electric field distribution is changed as compared with the static plasma processing without changing the high frequency electric field distribution during the plasma processing. Dynamic plasma processing can dramatically improve the uniformity of plasma processing.
  • the closed space means is formed on the outside of the reaction vessel by electromagnetically communicating with the reaction vessel and having a function of substantially preventing leakage of high frequency waves to the outside.
  • the process of force S, etc. is performed without changing the high frequency electric field distribution inside the reaction vessel. That is, the high frequency electric field distribution is changed at the same time as the plasma processing is performed.
  • the plasma processing method is not particularly limited to this mode, and includes a plurality of plasma processing steps, and in each plasma processing step, processing is performed using plasma of each high frequency electric field distribution by changing the configuration of the closed space means. It does not matter.
  • the force by which the movable electromagnetic shielding material is moved during the plasma processing is subjected to one plasma processing, then the plasma is extinguished once, and the electromagnetic shielding material is removed.
  • the same reaction gas plasma may be formed again to continue the plasma processing.
  • one plasma treatment may be divided into three steps, and in each step, plasma treatment in the first state force third state in the present embodiment may be sequentially performed. Even by adopting this method, uniform plasma processing can be performed.
  • the case where the surface of the substrate is treated uniformly has been described as an example, but the speed of driving the electromagnetic field control means may be irregular, or a specific high frequency electric field distribution may be used. It is possible to perform many plasma processes at specific locations as needed. That is, plasma processing having a distribution can be performed.
  • the movable electromagnetic shields disposed laterally on both sides of the reaction vessel are moved at the same speed, but the present invention is not particularly limited to this form, and movable electromagnetic shields may be moved at different speeds. You may move the shield material. Alternatively, only one of the movable electromagnetic shielding materials may be moved. Also, it may include irregular movements such as temporarily stopping one of the movable electromagnetic shielding materials while moving.
  • two electrodes are arranged to be symmetrical with respect to the electrode center.
  • the electromagnetic field control means is formed, it is not particularly limited to this form, and the electromagnetic field control means may be formed asymmetrically with respect to the center of the electrode. Or, electromagnetic field control means
  • the transmission window formed in the portion where the reaction vessel and the electromagnetic field control means are in electromagnetic communication it is preferable not to block the electromagnetic field toward the inside and outside of the reaction vessel.
  • the maximum dimension of the transmission window is preferably at least 0.1 times or more the wavelength corresponding to the high frequency. More preferably, it is 0.3 times or more.
  • viewports for observing the inside of the reaction vessel are formed of sapphire or the like which is an insulating material, but they are formed to be sufficiently small with respect to the wavelength of the high frequency used.
  • the transmission window it is preferable that the transmission window be formed sufficiently large to transmit an electromagnetic field that can not block such an electromagnetic field.
  • the transmission window and the movable electromagnetic shield material are formed in a flat plate shape, the present invention is not particularly limited to this embodiment, and any shape can be adopted. .
  • the plasma processing method one and the same reactive gas is introduced to perform the plasma processing a plurality of times, but the present invention is not particularly limited thereto, and the respective plasmas are not limited.
  • Different reactive gases may be introduced in the process step. That is, after one plasma process is completed, exhaust may be performed by an exhaust device, different reactive gases may be introduced into the reaction container, and different plasma processes may be performed on the same substrate.
  • the processing time of the plasma processing needs to be the same in each step depending on the desired plasma processing distribution (for example, processing for performing equalization). You may change it. Alternatively, the voltage of the high frequency applied to the discharge electrode may be changed in each process.
  • the high frequency plasma processing apparatus includes the reaction container, the discharge electrode, and the counter electrode in the same manner as the high frequency plasma processing apparatus in the first embodiment.
  • the configuration of the closed space means included in the electromagnetic field control means is different from that of the high frequency plasma processing apparatus in the first embodiment.
  • two closed space means are formed on the side surfaces facing each other among the side surfaces of the reaction container.
  • FIG. 9 is a schematic cross-sectional view of a first high-frequency plasma processing apparatus in the present embodiment.
  • the closed space means includes a bellows-type electromagnetic shield 28 and a movable electromagnetic shield 26.
  • the closed space means is disposed so as to cover the transmission window 16 formed in the reaction vessel 5.
  • the bellows type electromagnetic shielding material 28 is formed to be stretchable, and is formed to extend and contract in the direction perpendicular to the main surface of the transmission window 16.
  • the bellows type electromagnetic shielding material 28 is formed of a conductive material capable of blocking the applied high frequency.
  • a movable electromagnetic shield 26 is formed at the other end of the bellows type electromagnetic shield 28.
  • the movable electromagnetic shielding member 26 is formed in a flat plate shape, and is formed so as to completely close the opening of the other end of the bellows type electromagnetic shielding member 28.
  • the movable electromagnetic shield member 26 is formed in a flat plate shape, and a support rod 27 is connected to the main surface of the movable electromagnetic shield member 26 in a direction perpendicular to the main surface.
  • the closed space means is formed so that the configuration of the closed space means can be changed by moving the support bar 27 in the direction of the arrow 54.
  • the closed space means is formed such that the shape of the space is changed by moving the support bar 27. That is, by expanding and contracting the bellows type electromagnetic shielding material 28, the space shape of the closed space means is changed.
  • the volume of the closed space means is formed to change as the space shape of the closed space means changes. Also, at least a part of the electromagnetic partition of the closed space means is formed to move.
  • Two closed space means formed on the side of the reaction vessel are formed to be independently controlled.
  • FIG. 10 is a schematic cross-sectional view of a second high-frequency plasma processing apparatus in the present embodiment. Show.
  • the closed space means in the second high frequency plasma processing apparatus includes an electromagnetic shield tube 21 and a movable electromagnetic shield material 29.
  • an electromagnetic shield tube 21 having one end opened is formed.
  • the electromagnetic shield tube 21 is formed along the outer edge of the transmission window 16.
  • the electromagnetic shield tube 21 is annularly formed, and a movable electromagnetic shield material 29 having a shape conforming to the sectional shape of the electromagnetic shield tube 21 is formed inside.
  • the movable electromagnetic shield material 29 includes a flat portion and a projection formed to project a flat portion of the force along the inner surface of the electromagnetic shield tube 21.
  • a slight gap is formed between the movable electromagnetic shield material 29 and the electromagnetic shield tube 21. This gap is formed so small that an applied high frequency wave substantially leaks to the outside.
  • a support rod 27 is connected to the flat portion of the movable electromagnetic shield member 29 so as to extend perpendicularly to the main surface of the flat portion.
  • the movable electromagnetic shield member 29 is formed to move in the direction shown by the arrow 55 by moving the support bar 27 in the direction shown by the arrow 55.
  • at least a part of the electromagnetic partition of the closed space means is formed to move.
  • the space shape of the closed space means and the volume of the closed space means are formed to change.
  • the two closed space means are formed to be independently controlled. That is, two movable electromagnetic shielding members 29 are formed to move independently of one another!
  • the first high-frequency plasma processing apparatus and the second high-frequency plasma processing apparatus in the present embodiment are configured such that the space shape of the electromagnetic closed space formed by the closed space means can be changed. It is done.
  • FIG. 11 shows a schematic cross-sectional view of a third high-frequency plasma processing apparatus in the present embodiment.
  • the closed space means in the third high-frequency plasma processing apparatus includes a closed space chamber 22 formed to close the transmission window 16 outside the transmission window 16 and an electromagnetic shield shirt capable of entering and exiting the closed space chamber 22. Including.
  • movable electromagnetic shield material 30 and support bar 31 are formed as an electromagnetic shield shirter.
  • an insertion port 35 is formed in the closed space chamber 22 so that the movable electromagnetic shield material 30 can be taken in and out of the closed space chamber 22.
  • the movable electromagnetic shield member 30 is formed so as to be able to be moved in and out of the closed space chamber 22 by moving the support bar 31 in the direction indicated by the arrow 56 !.
  • the movable electromagnetic shielding material 30 is formed of a conductive material.
  • the movable electromagnetic shield material 30 is formed in a plate shape, and is formed so that the planar shape follows the planar shape of the transmission window 16. Furthermore, the movable electromagnetic shield material 30 is formed so that the planar shape thereof follows the cross-sectional shape of the closed space chamber 22.
  • the insertion port 35 is formed to conform to the shape of the movable electromagnetic shielding material 30.
  • the movable electromagnetic shield material 30 is disposed in the vicinity of the transmission window 16.
  • the movable electromagnetic shielding member 30 and the insertion port 35 are formed such that high frequency waves do not leak to the outside even when the movable electromagnetic shielding member 30 is positioned at a shifted position.
  • the movable electromagnetic shield material 30 when the movable electromagnetic shield material 30 is completely inserted into the closed space 22, the movable electromagnetic shield material 30 is taken in and out, and the movable electromagnetic shield material 30.
  • the gap between the movable electromagnetic shielding material 30 and the crucible inlet 35 is formed so as to be sufficiently smaller than the wavelength of the high frequency in any case when it is extracted from the inside of the closed space chamber 22.
  • FIG. 12 shows a schematic cross-sectional view of a fourth high-frequency plasma processing apparatus in the present embodiment.
  • the closed space means of the fourth high frequency plasma processing apparatus includes a closed space chamber 23 and a closed space chamber 24 which are electromagnetically sealed except for the portion of the transmission window 16 communicating with the reaction container 5 electromagnetically.
  • the closed space chamber 23 and the closed space chamber 24 are each formed of a conductive material.
  • the closed space chamber 23 and the closed space chamber 24 are each connected to the silicone oil tank 10.
  • the silicone oil 9 is filled in the silicone oil tank 10.
  • the closed space chambers 23 and 24 are formed to close the respective transmission windows 16.
  • the closed space chambers 23 and 24 are formed so as to cover the transmission window 16 and are formed so as not to leak the inputted high frequency to the outside.
  • Through holes 36 and 37 are formed at the bottom of the closed space chambers 23 and 24, and the silicon oil tank 10 is connected to the through holes 36 and 37.
  • the through holes 36 and 37 are formed to be sufficiently smaller than the wavelength of the inputted high frequency so that the high frequency wave does not leak to the outside.
  • the internal space of the closed space chamber 23 is formed in a substantially rectangular parallelepiped shape.
  • the silicone oil tank 10 silicone oil 9 is supplied by silicone oil supply means such as a pump (not shown). , Is supplied to the inside of the closed space chamber 23. That is, in the closed space means in the present embodiment, as shown by the arrow 57, the inside of the closed space chamber 23 is formed so as to be filled with silicone oil.
  • the silicone oil supply means is formed and can be filled or drained with silicone oil to any height of the closed chamber 23.
  • a closed space chamber 24 is formed on the side of the reaction container 5 opposite to the side where the closed space chamber 23 is formed so as to close the transmission window 16.
  • the closed space chamber 24 includes a laterally extending portion extending in a rectangular shape and a portion formed to extend downward from the rectangular portion.
  • the silicone oil 9 is supplied or discharged to the inside of the closed space 24 as shown by the arrow 57 by a silicone oil supply means such as a pump (not shown).
  • the amount of silicone oil injected into the closed space chamber 23 and the closed space chamber 24 is formed so as to be independently controllable. Further, the above-mentioned silicone oil supply means is formed so as to be able to continuously and gradually carry out the silicone oil into and out of the closed space chambers 23 and 24. Also, the silicone oil supply means may be configured to control the rate of injection and discharge of liquid.
  • the average relative permittivity in the inside of the closed space means can be changed. It is formed. Further, in the fourth high frequency plasma processing apparatus, the configuration of the closed space means respectively formed on both sides of the reaction container 5 is different. That is, the closed space means is formed to be asymmetrical with respect to the symmetry axis passing through the electrode center.
  • FIG. 13 shows a schematic cross-sectional view of a fifth high-frequency plasma processing apparatus in the present embodiment.
  • the closed space means in the fifth high frequency plasma processing apparatus includes a closed space chamber 25 and a movable electromagnetic shielding material 50.
  • the closed space means is formed to be symmetrical with respect to the electrode center.
  • the closed space chamber 25 is formed to close the transmission window 16 and is formed to extend in the vertical direction of the reaction vessel 5.
  • a movable electromagnetic shield material 50 is formed inside the closed space chamber 25.
  • the movable electromagnetic shielding material 50 is formed in a box shape with one side open. Movable electromagnetic shield material 50 is disposed so that the open side faces reaction vessel 5. It is done.
  • a substantially central portion in the longitudinal direction is partitioned by a partitioning electromagnetic shield material 38.
  • the partition electromagnetic shield material 38 is formed in a plate shape, and is formed to divide a space surrounded by the movable electromagnetic shield material 50 into two spaces.
  • the movable electromagnetic shield 50 and the partition electromagnetic shield 38 are made of a conductive material!
  • the solid dielectric 11 is disposed in one of the spaces separated by the partitioning electromagnetic shielding material 38.
  • the solid dielectric 11 is a member having a relative permittivity of greater than 1.
  • Nothing is filled in the other space separated by the partition electromagnetic shielding material 38, and the relative electric conductivity is 1.
  • the movable electromagnetic shield material 50 is formed so as to be able to move the inside of the closed space chamber 25 in the direction indicated by the arrow 58.
  • the solid dielectric 11 is formed to be movable inside the closed space 25.
  • the moving means is formed so that the movable electromagnetic shielding material 50 moves in the direction indicated by the arrow 58 together with the solid dielectric 11 (not shown).
  • the moving means is formed so that movable electromagnetic shielding members 50 disposed on both sides of the reaction vessel can be independently controlled.
  • Movable electromagnetic shield material 50 is solid relative to the entire main surface of transmission window 16 by moving movable electromagnetic shield material 50 upward in the direction indicated by arrow 58 in FIG.
  • the dielectrics 11 are arranged to face each other. Further, by moving the movable electromagnetic shield material 50 downward in the direction indicated by the arrow 58 in FIG. 13, the solid dielectric 11 does not face the main surface of the transmission window 16.
  • the space divided by the electromagnetic shielding material 38 is formed to face each other.
  • a bellows type electromagnetic shield material is included in the closed space means.
  • an electromagnetic shielding tube and a movable electromagnetic shielding material are included in the closed space means.
  • the third high-frequency plasma processing apparatus shown in FIG. Means include an electromagnetic shield shirt.
  • the bellows-type electromagnetic shield 28 is expanded and contracted.
  • the expansion and contraction of the bellows type electromagnetic shield material 28 changes the shape and volume of the closed space means, and the high frequency electric field distribution inside the reaction vessel fluctuates.
  • the electromagnetic field control means is formed such that at least a part of the electromagnetic partition of the closed space means moves.
  • the electromagnetic partition wall can be easily provided with a movable function as compared with a reaction container or a casing of a resonator, so that the plasma processing apparatus can be easily designed and the configuration can be simplified.
  • the radio frequency current flows in the surface portion which is the inner side of the closed space means in the electromagnetic partition, it can be in a grounded state in which the current does not flow in the outer surface portion. Therefore, there is no need to consider electrical insulation etc. when attaching the support means of the electromagnetic bulkhead to move the electromagnetic bulkhead.
  • the high frequency current can be easily removed, and the closed space means can be formed with an easy configuration.
  • the number of components for forming the closed space means can be reduced, and the configuration can be simplified.
  • a closed space chamber is formed on the side surface of the reaction container as a closed space means. And high frequency leakage to the outside can be reliably shut off. For example, since the closed space chamber is formed, high frequency can be prevented from leaking to the outside even if a gap is generated between the movable electromagnetic shield material and the closed space chamber due to a defect of the movable electromagnetic shield material or the like.
  • an electromagnetic shield shirt that can be taken in and out of the closed space 22 is formed.
  • the volume inside the closed space means can be rapidly changed, and the high frequency electric field distribution formed inside the reaction container can be rapidly changed.
  • an electromagnetic shield shirt is disposed near the transmission window!
  • the electromagnetic closed space can be largely changed, and the high frequency electric field distribution can be largely changed.
  • the force with which one electromagnetic shield shirt is formed for one closed space chamber is not particularly limited to this embodiment, and a plurality of electromagnetic shields may be used for one closed space chamber. Shirts may be formed. By adopting this configuration, the magnitude of changing the high frequency electric field distribution can be appropriately changed as needed.
  • a force that prevents the high frequency from leaking to the outside by making the inlet of the electromagnetic shield shirt sufficiently small in particular, this embodiment.
  • a metal seal gate valve may be disposed.
  • the closed space means includes the closed space chambers 23 and 24, and the silicon oil tank 10 is connected to the closed space chambers 23 and 24 to close the silicon oil. It is formed to be able to inject and drain into the interior of the space chamber. That is, the electromagnetic field control means is formed so as to be able to change the average transmissivity inside the closed space means.
  • a solid dielectric is disposed instead of the liquid so that the solid dielectric can move inside the closed space 25.
  • silicone oil generally has a specific electric conductivity of 2 or more.
  • the silicone oil 9 is contained in the closed space 23 and the closed space 24. By injecting into at least one side, it is possible to increase the average relative permittivity in the closed space. Further, by discharging the injected silicone oil 9 also from the closed space force, it is possible to reduce the average relative dielectric constant of the above closed space chamber.
  • the wavelength of high frequency becomes short. For this reason, raising the relative permittivity has substantially the same effect as reducing the volume of the electromagnetic closed space. Also, conversely, lowering the relative permittivity of the electromagnetic closed space has the same effect as increasing the volume of the electromagnetic closed space. Therefore, by injecting or discharging the silicone oil into at least one of the closed space chamber 23 and the closed space chamber 24, the high frequency electric field distribution in the reaction container can be varied. Silicone oil may be injected or discharged before or after each plasma treatment, or may be injected or discharged when plasma treatment is performed.
  • the force using silicone oil as the liquid to be injected into the closed space chamber is not particularly limited to silicone oil, and it may be a liquid having a characteristic that the relative dielectric constant is larger than 1. Alternatively, if the liquid has an average relative permittivity changed inside the closed space chamber by injecting into the closed space chamber.
  • the high frequency electric field distribution inside the reaction container can be continuously changed. Furthermore, by controlling the rate of injection or discharge of liquid, the rate of fluctuation of the high frequency electric field distribution can be easily controlled.
  • movable solid dielectric 11 is disposed inside closed space chamber 25.
  • the average relative permittivity of the closed space of the electromagnetic field formed outside the transmission window 16 is obtained. Can change.
  • the reaction container 5 is Outside Can increase the average transmissivity of the electromagnetic closed space.
  • the movable electromagnetic shield material 50 is disposed so that the solid dielectric 11 and the transmission window 16 do not face each other.
  • the average relative transmissivity of a closed space can be about 1. That is, by arranging the movable electromagnetic shielding material so that the space where the solid dielectric is not disposed in the space partitioned by the partition electromagnetic seal material faces the transmission window, the average relative permittivity can be increased. It can be made almost one.
  • the average relative permittivity of the inside of the closed space chamber can be largely changed.
  • the high frequency electric field distribution can be greatly varied.
  • the average relative permittivity of the closed space means can be rapidly changed, and the high frequency electric field distribution can be rapidly changed.
  • the electromagnetic field control means By disposing a movable solid dielectric inside the closed space chamber, using a high dielectric material having a dielectric loss smaller than that of a liquid, or heat resistance, as the electromagnetic field control means. Can. As a result, dielectric loss in the electromagnetic field control means can be reduced. Alternatively, it is possible to form an electromagnetic field control means resistant to heating by high frequency plasma.
  • the solid dielectric for example, alumina, aluminum nitride or the like can be used.
  • the present invention is not particularly limited thereto.
  • the movable electromagnetic shielding material 26 may be moved gradually to fluctuate the high frequency electric field distribution inside the reaction container 5! / ⁇ .
  • two closed space means are formed symmetrically with respect to the center of the force electrode as a symmetry axis, but the present invention is not particularly limited to this embodiment.
  • the number of means may be one, and the means may be formed asymmetrically with the center of the electrode as the axis, which is the same as the plasma processing apparatus in the first embodiment.
  • the high frequency plasma processing apparatus in the present embodiment differs from the high frequency plasma processing apparatus in the first embodiment in the configuration of the closed space means.
  • FIG. 14 shows a schematic cross-sectional view of a first high-frequency plasma processing apparatus in the present embodiment.
  • the reaction vessel 45 is formed of a conductive material, and includes a box-shaped portion having one side open.
  • the reaction vessel 45 is formed on the side wall on which the counter electrode is disposed, and includes a transmission window 17 having electrical insulation.
  • the transmission window 17 is formed at the top of the reaction container 45.
  • the transmission window 17 is joined to the conductive portion of the reaction vessel 45 and is formed so as to ensure the airtightness of the inside of the reaction vessel 45 !.
  • a flat discharge electrode 32 and a flat counter electrode 3 are disposed inside the reaction vessel 45.
  • the discharge electrode 32 is joined to the transmission window 17 so that the main surface is in contact with the main surface of the transmission window 17.
  • movable electric path member 19 is disposed as a propagation electrode electrically connected to the high frequency power supply. It is placed.
  • the movable electrical path member 19 is formed to be movable in the direction indicated by the arrow 59 by a moving means (not shown).
  • the movable electric path member 19 is formed to be movable along the main surface of the transmission window 17 !.
  • the movable electric path member 19 includes a contact portion 41 formed in a flat plate shape.
  • the main surface of the contact portion 41 is in contact with the main surface of the transmission window 17.
  • the portion sandwiched between the contact portion 41 and the discharge electrode 32 has a function of a capacitor, and a high frequency electrical path is obtained. Is formed. That is, a high frequency is introduced from the movable electric path member 19 to the discharge electrode 32 through the capacitor.
  • the movable electric path member 19 is formed to be smaller than the discharge electrode 32 when viewed in plan. That is, in FIG. 14, the contact portion 41 of the movable electric path member 19 is formed to be smaller than the discharge electrode 32 when the high-frequency plasma processing apparatus is viewed from the upper side.
  • a fixed electric path member 18 is formed above the transmission window 17 so as to face the movable electric path member 19.
  • the fixed electrical path member 18 is formed in a flat plate shape, and is disposed such that the extending direction is substantially parallel to the moving direction of the movable electrical path member 19.
  • FIG. 15 shows a side view of the movable electrical path member 19 and the fixed electrical path member 18 as viewed from the side.
  • the movable electrical path member 19 includes an opposing portion 42 formed in a flat plate shape.
  • the fixed electrical path member 18 is disposed such that the main surface thereof is substantially parallel to the main surface of the facing portion 42.
  • the facing portion 42 is disposed to be separated from the fixed electrical path member 18. Further, the gap between the facing portion 42 and the fixed electrical path member 18 is formed so as to be kept constant even if the movable electrical path member 19 moves.
  • the movable electrical path member 19 and the fixed electrical path member 18 are formed to have the function of a capacitor having a constant capacitance.
  • an electromagnetic shield member 34 is formed around the movable electric path member 19 and the fixed electric path member 18 so as to prevent high frequency leakage to the outside.
  • a resonator 4 for applying a high frequency to the discharge electrode is disposed on the top of the electromagnetic shield material 34.
  • the resonator 4 includes a conductive case, and a portion of the case is joined to the electromagnetic shield material 34.
  • the resonator 4 is connected to the high frequency power source 1.
  • the closed space means for forming an electromagnetic closed space includes the electromagnetic shield material 34 and the resonator 4.
  • the internal configuration of the closed space means is formed to change.
  • FIG. 16 shows a schematic cross-sectional view of a second high frequency plasma processing apparatus in the present embodiment.
  • two movable electric path members 19 are formed on the main surface of the transmission window 17.
  • Each movable electrical path member 19 is formed to be independently movable in a direction parallel to the main surface of the fixed electrical path member 18 as shown by the arrow 60.
  • Each movable electrical path member 19 is configured to move at a fixed distance relative to the fixed electrical path member 18.
  • the other configuration is the same as that of the first high frequency plasma processing apparatus in the present embodiment.
  • FIG. 17 shows a schematic cross-sectional view of a third high-frequency plasma processing apparatus in the present embodiment.
  • the third high frequency plasma processing apparatus two movable electric path members 20 are provided.
  • the contact portion 41 is formed on each of the movable electric path members 20, as in the second high-frequency plasma processing apparatus in the present embodiment.
  • each movable electric path member 20 is formed to be movable in a direction substantially parallel to the main surface of fixed electric path member 18 as shown by arrow 60. It is.
  • variable capacitor portion 43 In the third high frequency plasma processing apparatus, movable electric path member 20 includes variable capacitor portion 43.
  • the variable capacitor portion 43 is disposed apart from each other in the form of two flat plate electrodes.
  • the two electrodes are connected by an electrically insulating insulating member, and are formed such that the distance between the two electrodes can be changed in a state in which the main surfaces of the V's are substantially parallel to each other. .
  • the contact portion 41 is in contact with the main surface of the transmission window 17.
  • the movable electrical path member 20 is formed such that the facing portion 44 is movable in the vertical direction.
  • the distance between the two electrodes of the variable capacitor section 43 is adjusted by moving the facing section 44 in the vertical direction, and the capacitance of the variable capacitor section 43 can be adjusted.
  • the facing portion 44 moves in the direction indicated by the arrow 61, the main surface of the facing portion 44 and the main surface of the fixed electric path member 18 are formed substantially in parallel.
  • the other configuration is the same as that of the high-frequency plasma processing apparatus in the first embodiment, and therefore the description will not be repeated here.
  • the high frequency from the high frequency power source 1 is introduced to the discharge electrode 32 through the resonator 4, the fixed electric path member 18 and the movable electric path member 19.
  • movable electric path member 19 as a propagation electrode inside closed space means is formed movably as shown by arrow 59. ing.
  • the reaction vessel is The internal components of H can form a stable plasma without movement. Also, by continuously moving the movable electrical path member along the surface of the transmission window, it is possible to continuously perform the variation of the high frequency electric field distribution. Further, by changing the moving speed of the movable electrical path member, the speed of fluctuation of the high frequency electric field distribution can be easily changed. Thus, it is possible to provide a plasma processing apparatus which is excellent in controllability and can perform uniform plasma processing.
  • the movable electric path member 19 and the discharge electrode 32 are arranged so as to sandwich the transmission window 17 having an insulating property.
  • the introduction position of the high frequency to the discharge electrode can be easily changed by penetrating the partition of the airtight reaction vessel and forming the movable electrode. be able to.
  • movable electric path member 19 is formed to be smaller than discharge electrode 32 in plan view.
  • the contact portion 41 is formed to be smaller than the discharge electrode 32 in plan view.
  • the applicants of the present invention have confirmed by an electromagnetic field simulation that the high frequency electric field distribution inside the reaction container can be largely changed depending on the feeding position at the discharge electrode. According to this simulation result, when power is supplied from the surface opposite to the discharge surface of the discharge electrode, the high-frequency electric field distribution generated between the discharge electrode and the counter electrode when the power supply position with respect to the discharge electrode is moved. The peak is responsible for moving the feeding position in the direction of movement. The results of this simulation will be described in detail in the fourth embodiment.
  • the transmission window 17 As a material of the transmission window 17, it is preferable to use a material having a high relative electric conductivity. For example, it is preferably made of a material such as alumina. By adopting this configuration, it is possible to increase the capacitance of the capacitive coupling portion formed by sandwiching the electrically insulating transmission window 17, and the movable electrical path member can be made with a sufficiently small impedance. 19 and the discharge electrode 32 can be connected.
  • the fixed electric path member and the movable electric path member are separated by a predetermined distance. That is, although the capacitive coupling portion having the function of the capacitor is formed, the present invention is not particularly limited to this form, and the fixed electric path member and the movable electric path member may be infected.
  • two movable electric path members 19 are formed.
  • the number of feed paths for the discharge electrode 32 can be two, and the high frequency electric field distribution inside the reaction container 45 can be variously changed.
  • the movable electric path member 19 force is not particularly limited to this form, and three or more movable electric path members 19 may be formed. .
  • one fixed electric path member 18 is formed, but the present invention is not particularly limited to this form.
  • plate-like ones are formed so that the main surfaces of each other are substantially parallel.
  • a plurality of fixed electric path members may be formed, and a plurality of movable electric path members may be formed for each fixed electric path member.
  • a variable capacitor section 43 is formed in the movable electric path member 20.
  • a variable capacitor portion is formed as an impedance variable portion that changes the impedance of the high frequency electric path.
  • the electrical path can be substantially cut off, and the high frequency electric field distribution inside the reaction vessel is rapidly changed.
  • a specific movable electrical path member of the plurality of movable electrical path members may be electrically connected, and the other movable electrical path members may be disconnected. That is, any one of the plurality of movable electrical path members can be easily selected.
  • the force at which variable capacitor portion 43 is formed on movable electric path member 20 is not particularly limited to this embodiment, and it is possible to adjust the impedance of the high-frequency electric path. As long as it has it.
  • a coil having a variable inductance instead of the capacitor portion, a coil having a variable inductance may be connected.
  • FIGS. 18 to 23 A high frequency plasma processing apparatus and a high frequency plasma processing method according to a fourth embodiment of the present invention will be described with reference to FIGS. 18 to 23.
  • FIG. 18 is a schematic cross-sectional view of the high-frequency plasma processing apparatus in the present embodiment.
  • the reaction vessel 46 is formed of a material having conductivity and is formed into a box shape.
  • a flat discharge electrode 40 and a flat counter electrode 3 are disposed inside the reaction vessel 46 so that the main surfaces of the reaction container 46 are substantially parallel to each other.
  • a plurality of feed rods 7 as spare electrodes are disposed so as to penetrate the reaction vessel 46.
  • the feed rod 7 is formed in a rod-like shape, and is fixed to the reaction vessel 46 via the insulator 48.
  • the insulator 48 is formed of an electrically insulating material.
  • three feed rods 7 are arranged symmetrically about the center of the discharge electrode 40.
  • the feed rod 7 is disposed on a straight line.
  • variable capacitor 33 is one for each feed rod 7 It is arranged one by one.
  • Each of the plurality of variable capacitors 33 is formed to be able to change the capacitance independently.
  • Each variable capacitor 33 is connected to a resonator. That is, in the present embodiment, impedance variable means is disposed between the resonator and the spare electrode.
  • An electromagnetic shielding material 47 is formed around the feed rod 7 and the variable capacitor 33.
  • the electromagnetic shielding material 47 is formed in a plate shape and is formed to surround the plurality of variable capacitors 33.
  • the resonator 4 is disposed on the top of the electromagnetic shielding material 47.
  • the insulator 48 is formed so thin that the leakage of high frequency waves from the inside of the reaction vessel 46 is suppressed.
  • impedance variable means for changing the impedance of the high frequency electric path is formed in a plurality of high frequency electric paths between the resonator and the feed rod.
  • the capacity of the variable capacitor as the impedance variable means it is possible to adjust the power supply ratio of each feed rod to the discharge electrode. That is, the magnitude of the power supply can be changed for each position of the discharge electrode to which the feed rod is connected.
  • the high frequency electric field distribution formed inside the reaction container can be varied, and a high frequency plasma processing apparatus capable of performing uniform plasma processing even on a large object with a simple configuration is provided. can do.
  • variable impedance means by changing the impedance continuously by means of the variable impedance means, it is possible to change the size of the high frequency power supply to the spare electrode, and continuously change the high frequency electric field distribution inside the reaction vessel. be able to. Alternatively, it is possible to control the distribution shape of the high frequency electric field distribution by adjusting the impedance variable means. As a result, in the plasma processing, the processing of the processing object can be performed while changing the high frequency electric field distribution, and the uniform plasma processing can be performed. Thus, in the present embodiment, the high frequency electric field distribution can be easily controlled.
  • a force in which three feed rods are formed as a spare electrode is not particularly limited to this form, and a plurality of feed rods may be formed.
  • the form of this implementation In the state, the force with which the feed rod is disposed in a straight line is not particularly limited to this form, and the feed rod may be disposed at an arbitrary position. The regular arrangement of the feed rods enables easy control of the high frequency electric field distribution.
  • the impedance variable means is connected to all the spare electrodes, but the present invention is not particularly limited to this embodiment, and it is not limited to at least one or more spare electrodes. , Impedance variable means is connected, and it does not matter!
  • a variable capacitor capable of changing the capacitance is disposed as the impedance variable means.
  • the present invention is not particularly limited to this embodiment, and the impedance of the high frequency electrical path may be adjusted. I hope you can.
  • a variable capacitor instead of a variable capacitor, a variable coil with a variable inductance may be disposed.
  • the conditions of the conducted electromagnetic field simulation are as follows.
  • a high-frequency three-dimensional electromagnetic field simulator HFSS High-Frequency Structure Simulator, ver. 8.5. 04, manufactured by Ansoft 'Japan Co., Ltd.
  • FIG. 19 shows a perspective view of a model of the electrode in the electromagnetic field simulator.
  • the discharge electrode 40 and the counter electrode 3 are formed such that the planar shapes of the respective main surfaces are square.
  • the discharge electrode 40 and the counter electrode 3 are parallel plate electrodes arranged so that their main surfaces are substantially parallel to each other.
  • Each electrode has a size of 1200 ⁇ I 200 ⁇ 50 mm.
  • the distance between the discharge electrode 40 and the counter electrode 3 is 30 mm.
  • the frequency of the high frequency is 108.5 MHz.
  • the feed rod 7 is formed in a rod-like shape, and is formed such that high frequency power is fed along the axial direction of the feed rod 7.
  • the feed rod 7 is formed in a cylindrical shape so that the circular diameter of the cross section is 50 mm.
  • the feed rods 7 are equally spaced with the center point 70 as the origin (0, 0), assuming that the center of gravity of the square center of gravity (that is, the center of the electrode) which is the planar shape of the discharge electrode 40 is set. It is placed.
  • the impedance changing means in the fourth embodiment is set to be disposed at a position approximately 100 mm away from the discharge electrode 40. Also, simulation is performed by setting the feed rod 7, the discharge electrode 40 and the counter electrode 3 as a conductor having electrical conductivity.
  • the figure shows the high frequency electric field distribution in the X direction when power is supplied to each one point. This high frequency electric field distribution is each distribution in the cross section parallel to the X direction through the center point (origin). Each high frequency electric field distribution is standardized so that the maximum value is 1.
  • the horizontal axis is the distance in the X direction from the central point (origin), and the vertical axis is the electric field strength.
  • the electric field is formed so as to be symmetrical with the center point as the boundary.
  • the peak of the high frequency electric field distribution is also shifted corresponding to the shifted position as shown in the graph of point A or point C. That is, it can be seen that when the feeding position in the discharge electrode is moved, the peak of the high frequency electric field distribution also moves following the movement of the feeding position.
  • the electric field distribution can be varied by changing the power feeding position to the discharge electrode. That is, in the third embodiment, the high frequency electric field distribution can be changed by moving the movable electric path member. In the fourth embodiment, the capacitance of the variable capacitor portion is changed, or the variable capacitor is changed. The high frequency electric field distribution can be changed by cutting a part of the electric path in the part.
  • the high-frequency electrical path is branched to feed power simultaneously to a plurality of feeding positions (Case 1), changing the feeding positions sequentially Power supply (case 2) Force It is important to be able to equalize the whole high frequency electric field distribution.
  • the time integral value of the electric field strength generally corresponds to the amount of plasma processing, if the power supply position is sequentially changed and the high frequency electric field distribution is changed to perform the plasma processing, the amount of plasma processing is averaged, Uniform plasma processing can be performed.
  • the effect of homogenizing plasma processing generated by performing plasma processing while continuously fluctuating the high frequency electric field distribution is the maximum value of the discharge surface of the discharge electrode. This is particularly noticeable when the dimensions are larger than the half-wavelength of the high frequency introduced into the reaction vessel. This is considered to be due to inversion of the high frequency electric field distribution formed between the discharge electrode and the counter electrode. Next, possible reasons will be described using a graph in which a high frequency electric field distribution is virtually formed.
  • FIG. 22 is a cross-sectional view of the high-frequency electric field distribution in the case where plasma processing is sequentially performed by changing the feeding position up to A point force F point with equal intervals in one direction in the discharge electrode.
  • the high frequency is larger in the electrode size than the half wavelength of the high frequency. Since the size of the electrode is larger than the half wavelength of the high frequency, there is a region where the electric field is positive and a region where the electric field is negative, between the discharge electrode and the counter electrode.
  • the combined high frequency electric field distribution has a substantially mountain shape with the electrode center as the central axis. At points A and F, etc., strong electric Have a field strength but cancel each other to reduce the electric field strength at both ends of the electrode. The asymmetry of the high frequency electric field distribution is emphasized, and the high frequency electric field distribution remains large.
  • the plasma processing distribution is generated according to the added high frequency electric field distribution. That is, the amount of plasma processing near the center of the electrode increases, and as it moves toward both ends of the electrode, the amount of plasma processing decreases.
  • the throughput of plasma processing does not depend on the positive or negative of the electric field at a certain moment but depends on the electric field strength which is an absolute value.
  • FIG. 23 shows the distribution of electric field strength when power is fed individually to each feeding position up to point A and point F.
  • FIG. 23 shows the high-frequency electric field intensity distribution normalized by adding the feeds from point A to point F.
  • This high frequency electric field intensity distribution corresponds to, for example, plasma processing distribution in the case where the plasma processing is performed while sequentially shifting the feeding position, such as point A, point B, point C, and so on.
  • the added high-frequency electric field strength distribution in FIG. 23 can perform uniform plasma processing independently of the position of the discharge electrode.
  • the influence of the high-frequency electric field distribution is particularly remarkable if the electric field distribution at a certain moment is reversed to the positive or negative polarity, in other words, the size of the electrode is larger than the half wavelength of the high frequency.
  • it is useful to perform dynamic processing that fluctuates the high frequency electric field distribution.
  • the high-frequency electric field distribution is changed by changing the feeding position with respect to the discharge electrode.
  • the present invention is not limited to this embodiment, and as shown in the first to third embodiments.
  • the high frequency electric field distribution may be varied.
  • the electromagnetic field control means in each embodiment may be combined.
  • the present invention can be advantageously applied to a high-frequency plasma processing apparatus or a high-frequency plasma processing apparatus that performs plasma processing of a large object such as a large substrate by using a reaction of high-frequency plasma.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

 高周波プラズマ処理装置は、プラズマを形成するガス雰囲気を形成するための反応容器(5)と、反応容器(5)の内部に配置された放電電極(2)と、反応容器(5)の内部の高周波電界分布を制御するための電磁界制御手段とを備える。電磁界制御手段は、反応容器(5)の外側に配置され、電磁的に反応容器(5)と連通して、外部への高周波の漏洩を実質的に防ぐように形成された閉空間室(6)を含み、閉空間室(6)の内部の可動電磁シールド材(26)を移動することによって、高周波電界分布が変動するように形成されている。

Description

高周波プラズマ処理装置および高周波プラズマ処理方法
技術分野
[0001] 本発明は、高周波プラズマ処理装置および高周波プラズマ処理方法に関する。
背景技術
[0002] 近年にお!、ては、表示装置の大型化に伴って、フラットパネルディスプレイ(FPD) の大型化が進んでいる。フラットパネルディスプレイの大型化に伴って、製造工程に おいて使用される基板についても大型化が進んでいる。たとえば、液晶表示装置に おいては、使用される液晶表示装置用のガラス基板は第 6世代と呼ばれ、基板の大 きさが横 1. 8mX縦 1. 5mまでに至っている。基板の大型化の傾向は、近年の技術 動向を鑑みれば、さらに継続して進むことが予測される状況にある。
[0003] 半導体装置や表示装置の製造にお!、て用いられる処理方法の中に、高周波ブラ ズマを基板などの被処理物に照射して、被処理物の表面に薄膜を形成したり、被処 理物の表面に対してエッチングなどの加工を行なったり、被処理物の表面処理を行 なったりする高周波プラズマ処理がある。高周波プラズマ処理においては、たとえば 、プラズマ処理の高速化やプラズマ処理の高品質化などの、さらなるプラズマ処理能 力の向上が要求されている。
[0004] プラズマ処理能力を向上させる方法の 1つに、高周波の周波数を現状よりもさらに 高くする高周波化が提案されている。具体的には、従来において汎用的に使用され ている 13. 56MHzの高周波よりもさらに高 、周波数の高周波が用いられることが提 案されている。たとえば、 30MHz〜100MHzの高い周波数を有する高周波を用い ることが提案されている。高周波化が進むと、プラズマ処理に用いられる高周波の波 長は短くなる傾向にある。
[0005] このように、基板が大きくなる一方で、用いられる高周波の周波数が高くなることに より、基板の大きさと高周波の波長とが近づいてきている。たとえば、周波数が 13. 5 6MHzであれば波長は約 22mになり、 lm以下程度の大きさを有する基板に対して は、波長は十分に長い一方で、周波数が 100MHzであれば、高周波の波長は 3m 程度になるため、基板の大きさと高周波の波長とが近くなる。
[0006] また、処理を行なうプラズマを発生させるための放電電極の寸法は、概ね基板の大 きさに対応させて形成するため、放電電極自体も大きくなつて、高周波の波長と近く なっている状況にある。従来においては、放電電極の大きさは、処理に用いられる高 周波の波長に比べて十分に小さい。このため、放電電極が平板状に形成され、電極 の主表面同士が互いに平行になるように配置された高周波プラズマ処理装置にぉ 、 ては、電極同士の間に発生する電界は、基板の表面全体に対してほぼ均一になるた め、ほぼ均一のプラズマ処理を行なうことが可能であった。
[0007] これに対し、上記のように高周波の波長と放電電極との大きさとが近づく近年の状 況においては、たとえば上記の高周波プラズマ処理装置で、電極同士の間の電界は 、基板の表面に対して不均一になる。このため、この電界に依存して発生するプラズ マも不均一になり、プラズマ処理の均一性も悪ィ匕すると!、う問題が生じて 、る。
[0008] 特開 2002— 327276号公報においては、プラズマ発生装置の放電電極に対して 、 2箇所の給電部を形成して、それぞれに同一の周波数の高周波を給電するサイク ルと、異なる周波数の高周波を給電するサイクルとを交互に行なうことによって、時間 平均的に被処理物に対して均一に処理を行なうプラズマ化学蒸着装置が開示され ている。また、特開平 5— 29273号公報においては、互いに対向する 2つの電極のう ち一方の電極を回転することによって、プラズマ処理の処理量の平均化を図るプラズ マ処理装置が開示されている。
特許文献 1:特開 2002— 327276号公報
特許文献 2:特開平 5 - 29273号公報
発明の開示
発明が解決しょうとする課題
[0009] 上記の特開 2002— 327276号公報に開示されたプラズマ処理装置においては、 互いに異なる 2つの周波数の高周波を給電する必要があるため、少なくとも 2台の電 源が必要であるという問題があった。また、一方の電源には、周波数を変化させる機 能を有するものを用いらなければならず、高周波プラズマ処理装置が高価になるとい う問題があった。 [0010] また、一般的に、異なる複数の電源を用いる場合には、互いの高周波が干渉し合う という問題が生じる。たとえば、高周波電源力も出力された高周波を効率よく放電電 極へ投入するための共振器に対して、十分なインピーダンス整合をとることができず 、電力反射が大きくなつてしまうという問題があった。
[0011] この問題に対しては、高周波の位相を調整する手段を形成して、それぞれの高周 波の位相を制御して、互いの干渉を抑制する方法が用いられる。し力しながら、高周 波同士の干渉を抑制するための条件は明確でなぐそれぞれの装置ごとに、最適な 互 、の位相関係を模索しなければならな 、と 、う問題があった。
[0012] さらには、同じ構造を有する装置であっても、それぞれの装置には機体差があるた め、高周波同士の干渉を抑制する条件が、画一的に見出すことができないという問 題があった。特に、上記の特開 2002— 327276号公報に開示されたプラズマ処理 装置においては、一方の電源の周波数を変化させるため、高周波同士の干渉を抑 制することがさらに難しくなるという問題があった。
[0013] 上記の特開平 5— 29273号公報に開示されたプラズマ処理装置においては、高周 波を供給する電源は 1つでよぐ複数の高周波同士が干渉するという問題は生じない 。し力しながら、特開平 5— 29273号公報におけるプラズマ処理装置においては、反 応容器の内部において、構成物を回転させるなどの運動が行なわれるため、反応容 器の内部にパーティクルが発生して、プラズマ処理に悪影響を及ぼすという問題があ つた o
[0014] たとえば、反応容器の内部の構成物が運動することに伴って、反応容器の内部に 充填されたガスが乱流の状態になりやすぐプラズマ処理を行なう処理量が不均一に なるという問題があった。
[0015] この処理の不均一の問題を回避するためには、反応容器の内部に充填されたガス の流れを調整できるように、反応容器の内部の構成物を設計する必要がある。このた め、装置を設計する上での制約が増えるという問題が生じる。このように、反応容器の 内部の構成物を動かすなどの動的にプラズマ処理の均一化を図る高周波プラズマ 処理装置においては、動的な手段の副作用として、新たな別の問題が生じていた。 課題を解決するための手段 [0016] 本発明は、簡単な構成で、大型の被処理物に対しても均一なプラズマ処理を行なう ことができる高周波プラズマ処理装置および高周波プラズマ処理方法を提供すること を目的とする。
[0017] 本発明に基づく高周波プラズマ処理装置の第 1の局面では、プラズマを形成する ガス雰囲気を形成するための反応容器と、反応容器の内部に配置された放電電極と 、反応容器の内部の高周波電界分布を制御するための電磁界制御手段とを備える。 電磁界制御手段は、反応容器の外側に配置され、電磁的に反応容器と連通して、外 部への高周波の漏洩を実質的に防ぐように形成された閉空間手段を含み、閉空間 手段の構成および閉空間手段の内部の構成のうち少なくとも一方を変更することによ つて、高周波電界分布が変動するように形成されている。この構成を採用すること〖こ より、構成が簡単で、大型の被処理物に対して、均一なプラズマ処理を行なうことが できる高周波プラズマ処理装置を提供することができる。
[0018] 上記発明において好ましくは、電磁界制御手段は、閉空間手段によって形成され る電磁的な閉空間の空間形状が変更可能に形成されている。この構成を採用するこ とにより、容易に閉空間手段の構成を変更することができる。
[0019] 上記発明において好ましくは、電磁界制御手段は、閉空間手段の体積が変更可能 に形成されている。この構成を採用することにより、閉空間手段の体積が一定で、閉 空間手段の空間形状を変化させる場合に比べて、閉空間手段の機構や駆動におけ る制約を少なくすることができ、高周波プラズマ処理装置の設計が容易になるととも に、高周波プラズマ処理装置の構成が簡単になる。
[0020] 上記発明において好ましくは、電磁界制御手段は、閉空間手段の電磁的な隔壁の 少なくとも一部が移動するように形成されている。この構成を採用することにより、容 易な構造で、閉空間手段の空間形状を変化させることができる。
[0021] 上記発明において好ましくは、電磁界制御手段は、反応容器に電磁的に連通する 部分を除いて、電磁的に密閉された閉空間室を有し、閉空間室の内部に移動可能 な電磁シールド材が形成されている。この構成を採用することにより、閉空間手段に おいて、電磁波の漏洩を閉空間室で完全に防止することができる。すなわち、電磁 界の遮蔽を完全に行なうことができる。 [0022] 上記発明において好ましくは、電磁界制御手段は、反応容器に電磁的に連通する 部分を除いて、電磁的に密閉された閉空間室を有し、閉空間室に出し入れが可能な 電磁シールドシャツタが形成されている。この構成を採用することにより、閉空間手段 の構成を迅速に変化させることができる。また、電磁シールドシャツタは、大きな移動 ストロークを必要とせず、閉空間手段の体積を大きく変化させることができるため、高 周波プラズマ処理装置の小型化を図ることができる。
[0023] 上記発明において好ましくは、電磁界制御手段は、閉空間手段の内部における平 均的な比誘電率が変更可能に形成されている。この構成を採用することにより、閉空 間手段の内部の構成を容易に変更することができる。
[0024] 上記発明において好ましくは、電磁界制御手段は、反応容器に電磁的に連通する 部分を除いて、電磁的に密閉された閉空間室を有し、閉空間室の内部に、比誘電率 力 S 1より大き!/、液体を注入または排出できるように形成されて 、る。この構成を採用す ることにより、閉空間室の内部の平均的な比透電率を容易に変更することができる。
[0025] 上記発明において好ましくは、電磁界制御手段は、反応容器に電磁的に連通する 部分を除いて、電磁的に密閉された閉空間室を有し、閉空間室の内部に、比誘電率 力 より大きい固体誘電体が配置されている。固体誘電体は、閉空間室の内部で移 動可能に形成されている。この構成を採用することにより、閉空間室の内部の平均の 比透電率を大きく変化させることができ、反応容器の内部の高周波電界分布を大きく 変動させることができる。また、閉空間手段の平均的な比透電率を速く変化させること ができ、高周波電界分布を迅速に変動させることができる。
[0026] 上記発明において好ましくは、電磁界制御手段は、反応容器に電磁的に連通する 部分を除いて、電磁的に密閉された閉空間室を含み、電磁的に連通する部分は、電 気的な絶縁性を有する透過窓を有する。この構成を採用することにより、反応容器の 内部をガス雰囲気を形成するための十分な気密性を容易に確保することができるとと もに、電磁的に連通する部分を有する閉空間手段を容易に形成することができる。
[0027] 上記発明において好ましくは、透過窓の反応容器の内部の側に、放電電極が配置 され、透過窓の反応容器の外部の側に、高周波電源と電気的に接続された伝播電 極が配置され、放電電極と伝播電極とが、透過窓を挟むように配置されている。この 構成を採用することにより、透過窓を介してコンデンサの機能を有する容量結合部を 形成することができ、反応容器を貫通する給電ポートなどを形成する必要がなぐ構 成を簡単にすることができる。また、放電電極の任意の位置に、給電を行なうことがで きる。
[0028] 上記発明において好ましくは、伝播電極は、平面視したときに放電電極よりも小さく なるように形成され、伝播電極は、透過窓の表面に沿って移動可能に形成されてい る。この構成を採用することにより、プラズマを発生させるための放電電極への給電 位置を移動させることができ、伝播電極を移動させることにより、反応容器の内部の 高周波電界分布を変動させることができる。
[0029] 本発明に基づく高周波プラズマ処理装置の第 2の局面では、プラズマを形成する ガス雰囲気を形成するための反応容器と、反応容器の内部に配置された放電電極と 、放電電極と高周波電源との間のインピーダンス整合を行なうための共振器および 放電電極に接続された複数の予備電極と、反応容器の内部の高周波電界分布を制 御するための電磁界制御手段とを備える。電磁界制御手段は、共振器と予備電極と の間の複数の高周波電気経路のうち、少なくとも 1つ以上の経路に、高周波電気経 路のインピーダンスを変化させるインピーダンス可変手段が形成されて 、る。この構 成を採用することにより、簡単な構成で、大型の被処理物に対しても均一なプラズマ 処理を行なうことができる高周波プラズマ処理装置を提供することができる。
[0030] 上記発明において好ましくは、放電電極と共振器との間の高周波電気経路に、高 周波電気経路のインピーダンスを変化させるインピーダンス可変手段が形成されて いる。この構成を採用することにより、放電電極に対する高周波を変化させることがで き、さらに容易に高周波電界分布を変動させることができる。また、複雑な高周波電 界分布の変動を行なうことができる。
[0031] 上記発明において好ましくは、インピーダンス可変手段は、容量可変のコンデンサ を含む。この構成を採用することにより、容易にインピーダンス可変手段を形成するこ とがでさる。
[0032] 上記発明において好ましくは、インピーダンス可変手段は、実質的に高周波電気 経路を切断する機能を有する。この構成を採用することにより、高周波電気経路を切 断して、反応容器の内部の高周波電界分布を大きく変動させることができる。特に、 高周波電気経路が複数形成されて ヽた場合に、一部の高周波電気経路を切断する ことにより、高周波電界分布を大きく変動させることができる。また、高周波電界分布 の制御性が向上する。
[0033] 上記発明において好ましくは、自動的に電磁界制御手段が駆動した後に、自動的 にプラズマ処理動作を実施する機能を有する。この構成を採用することにより、プラズ マを形成するプラズマ処理を複数の工程に分割して、処理を行なう高周波電界分布 の状態を変更して繰り返し行なうプラズマ処理を自動的に行なうことができる。
[0034] 上記発明にお 、て好ましくは、電磁界制御手段は、プラズマ処理を行なって 、ると きに、高周波電界分布を変更できるように形成されている。この構成を採用することに より、高周波電界分布を変動させるために、プラズマ処理を中断する必要がなぐプ ラズマ処理を行な 、ながら、高周波電界分布を変動させることができる。
[0035] 上記発明において好ましくは、電磁界制御手段は、高周波電界分布を連続的に変 更できるように形成されている。この構成を採用することにより、不連続的に段階的に 高周波電界分布を変動させる場合に比べて、所定時間における処理量が均一にな る。すなわち、高周波電界分布の時間積分の制御性が向上して、所定時間における プラズマ処理量の平均化が容易になる。
[0036] 上記発明において好ましくは、電磁界制御手段は、高周波電界分布の変化の速度 を制御できるように形成されている。この構成を採用することにより、それぞれの高周 波電界分布におけるプラズマ処理時間をより高精度に制御することができ、より均一 なプラズマ処理を行なうことができる。
[0037] 上記発明において好ましくは、電磁界制御手段は、高周波電界分布を繰り返して 周期的に変動させることができるように形成されている。この構成を採用することによ り、所定の時間におけるプラズマ処理量を均一にすることができる。すなわち、プラズ マ処理量の時間平均化を容易に行なうことができる。
[0038] 上記発明にお!/、て好ましくは、電磁界制御手段は、プラズマ処理が行なわれる時 間が半周期の整数倍になるように、高周波電界分布を変動させることができるように 形成されている。この構成を採用することにより、プラズマ処理が周期的に繰返して 行なわれ、かつ、半周期の途中でプラズマ処理が終了することがないため、均一なプ ラズマ処理を行なうことができる。
[0039] 上記発明にお 、て好ましくは、放電電極は、放電面の最大寸法が、反応容器内に 導入される高周波の半波長よりも大きくなるように形成されている。この構成の高周波 プラズマ処理装置においては、放電電極の放電面に形成される高周波電界分布は 正負が反転し得る。このため、プラズマ処理の均一性を飛躍的に向上させることがで きる。
[0040] 本発明に基づく高周波プラズマ処理方法の第 1の局面では、複数回のプラズマ処 理工程を含み、プラズマを形成するガス雰囲気を形成するための反応容器の内部に 放電電極を配置して、高周波プラズマを発生させて処理を行なう高周波プラズマ処 理方法において、電磁的に反応容器と連通して、外部への高周波の漏洩を実質的 に防ぐ機能を有する閉空間手段を反応容器の外側に形成して、複数回のプラズマ 処理工程は、それぞれのプラズマ処理工程において、閉空間手段の構成および閉 空間手段の内部の構成のうち少なくとも一方を変更することによって、反応容器の内 部の高周波電界分布を調整して、それぞれの高周波電界分布のプラズマによって処 理を行なう工程を含む。この方法を採用することにより、それぞれのプラズマ処理工 程において、異なる高周波電界分布を有するプラズマで、被処理物の処理を行なう ことができ、高周波電界分布を平均化させることができる。この結果、簡単な構成で、 大型の被処理物に対しても均一なプラズマ処理を行なうことができる高周波プラズマ 処理方法を提供することができる。
[0041] 本発明に基づく高周波プラズマ処理方法の第 2の局面では、プラズマを形成する ガス雰囲気を形成するための反応容器の内部に放電電極を配置して、高周波プラズ マを発生させて処理を行なう高周波プラズマ処理方法において、電磁的に反応容器 と連通して、外部への高周波の漏洩を実質的に防ぐ機能を有する閉空間手段を反 応容器の外側に形成して、閉空間手段の構成および閉空間手段の内部の構成のう ち少なくとも一方を変更することによって、反応容器の内部の高周波電界分布を変動 させながら処理を行なう工程を含む。この方法を採用することにより、高周波電界分 布の変動に伴って生じるプラズマ処理の分布を変動させることができ、均一なプラズ マ処理を行なうことができる。すなわち、時間平均化されたプラズマ処理を行なうこと ができる。このように、簡単な構成で、大型の被処理物に対しても均一なプラズマ処 理を行なうことができる高周波プラズマ処理方法を提供することができる。また、ブラ ズマ処理を中断して、高周波電界分布を変化させるための構成の変更を行なう必要 がなぐ全体のプラズマ処理時間を短縮することができる。
[0042] 上記発明において好ましくは、高周波電界分布を連続的に変動させながら処理を 行なう工程を含む。この方法を採用することにより、不連続的に高周波電界分布を変 動させる場合に比べて、高周波電界分布の時間平均化を容易に行なうことができる。 たとえば、一定の速度で連続的に高周波電界分布を変動させることにより、容易に均 一なプラズマ処理を行なうことができる。また、共振器によるインピーダンス整合を容 易に行なうことができ、高周波プラズマに投入する電力を一定に維持して、安定した プラズマ処理を行なうことができる。
[0043] 上記発明において好ましくは、高周波電界分布の変動の速度を制御しながら処理 を行なう工程を含む。この方法を採用することにより、被処理物のそれぞれの位置に おける電界強度の時間積分値が均一になるように、速度を制御することができ、より 均一なプラズマ処理を行なうことができる。
[0044] 上記発明において好ましくは、高周波電界分布を周期的に変動させながら処理を 行なう工程を含む。この方法を採用することにより、一時的な外乱が生じて、一時的 に高周波電界分布が乱れたとしても、この乱れを平均化することができ、均一なブラ ズマ処理を行なうことができる。
[0045] 上記発明において好ましくは、高周波電界分布の変動を、変動周期の半周期の時 間力 プラズマ処理に要する時間を 1以上の整数で除した時間になるように行なう。こ の方法を採用することにより、半周期の途中で、プラズマ処理が終了することがなぐ 均一なプラズマ処理を行なうことができる。
[0046] 上記発明において好ましくは、反応容器内に導入する高周波の半波長が、放電電 極の放電面の最大寸法よりも小さくなるようにして処理を行なう。この方法においては 、被処理物の上面に形成される電界分布に正負の反転が生じる。高周波電界分布 を一定にして静的なプラズマ処理を行なう場合に比べて、高周波電界分布を変化さ せながらプラズマ処理を行なうことによって、プラズマ処理を均一に行なえる効果が 顕著になる。
発明の効果
[0047] 本発明によれば、簡単な構成で、大型の被処理物に対しても均一なプラズマ処理 を行なうことができる高周波プラズマ処理装置および高周波プラズマ処理方法を提 供することができる。
図面の簡単な説明
[0048] [図 1]実施の形態 1における高周波プラズマ処理装置の概略断面図である。
[図 2]共振器における回路図である。
[図 3]実施の形態 1における高周波プラズマ処理装置の第 1の状態図である。
[図 4]実施の形態 1における高周波プラズマ処理装置の第 2の状態図である。
[図 5]実施の形態 1における高周波プラズマ処理装置の第 3の状態図である。
[図 6]実施の形態 1における高周波プラズマ処理装置の第 1の状態の高周波電界分 布である。
[図 7]実施の形態 1における高周波プラズマ処理装置の第 2の状態の高周波電界分 布である。
[図 8]実施の形態 1における高周波プラズマ処理装置の第 3の状態の高周波電界分 布である。
[図 9]実施の形態 2における第 1の高周波プラズマ処理装置の概略断面図である。
[図 10]実施の形態 2における第 2の高周波プラズマ処理装置の概略断面図である。
[図 11]実施の形態 2における第 3の高周波プラズマ処理装置の概略断面図である。
[図 12]実施の形態 2における第 4の高周波プラズマ処理装置の概略断面図である。
[図 13]実施の形態 2における第 5の高周波プラズマ処理装置の概略断面図である。
[図 14]実施の形態 3における第 1の高周波プラズマ処理装置の概略断面図である。
[図 15]実施の形態 3における第 1の高周波プラズマ処理装置の可動電気経路部材の 部分の拡大側面図である。
[図 16]実施の形態 3における第 2の高周波プラズマ処理装置の概略断面図である。
[図 17]実施の形態 3における第 3の高周波プラズマ処理装置の概略断面図である。 [図 18]実施の形態 4における高周波プラズマ処理装置の概略断面図である。
[図 19]実施の形態 4におけるシミュレーションのモデル形状図である。
[図 20]実施の形態 4におけるシミュレーションの第 1の結果を示すグラフである。
[図 21]実施の形態 4におけるシミュレーションの第 2の結果を示すグラフである。
[図 22]実施の形態 4におけるシミュレーションの第 3の結果を示すグラフである。
[図 23]実施の形態 4におけるシミュレーションの第 4の結果を示すグラフである。 符号の説明
[0049] 1 高周波電源、 2, 32, 40 放電電極、 3 対向電極、 4 共振器、 5, 45, 46 反 応容器、 6, 22〜25 閉空間室、 7 給電棒、 8 基板 (被処理物)、 9 シリコンオイル 、 10 シリコンオイルタンク、 11 固体誘電体、 12 導電性筐体、 13 インピーダンス 整合用コイル、 14a, 14b インピーダンス整合用コンデンサ、 15, 48 絶縁体、 16, 17 透過窓、 18 固定電気経路部材、 19, 20 可動電気経路部材、 21 電磁シー ルド管、 26, 29, 30, 50 可動電磁シールド材、 27, 31 支持棒、 28 蛇腹型電磁 シールド材、 33 可変コンデンサ、 34, 47 電磁シールド材、 35 挿入口、 36, 37 貫通口、 38 仕切り電磁シールド材、 39 アース、 41 接触部、 42, 44 対向部、 4 3 可変コンデンサ部、 51-61 矢印、 70 中心点。
発明を実施するための最良の形態
[0050] (実施の形態 1)
図 1から図 8を参照して、本発明に基づく実施の形態 1における高周波プラズマ処 理装置および高周波プラズマ処理方法について説明する。
[0051] 図 1は、本実施の形態におけるプラズマ処理装置の概略断面図である。本実施の 形態におけるプラズマ処理装置は、プラズマを形成するガス雰囲気を形成するため の反応容器 5を備える。反応容器 5は、直方体状の箱型に形成され、導電性を有す る材料から形成されて ヽる部分を含む。
[0052] 反応容器 5には、プラズマを発生させるための反応ガスを供給するガス供給装置と 、反応容器の内部を排気したり、減圧したりするためのガス排気装置とが接続されて いる。反応容器 5には、反応ガスを導入する給気管と、ガスを排気する排気管とが接 続されている。給気管および排気管には、反応容器 5の内部を気密するための弁が 配置されている(図示せず)。
[0053] 反応容器 5は、側面に形成され、電気的な絶縁性を有する透過窓 16を含む。本実 施の形態においては、透過窓 16は、反応容器 5の側面のうち互いに対向する 2つの 側面に形成されている。透過窓 16は、平面形状が長方形になるように平板状に形成 されている。透過窓 16は、反応容器 5の内部と外部とを、電磁的に連通するように形 成されている。透過窓 16は、反応容器 5の内部の気密性を保てるように形成されてい る。すなわち、透過窓 16は、電磁界を透過して、反応容器 5の内部に充填される反 応ガスなどのガスを通さないように形成されている。このように、反応容器 5は、気密 可能に形成されている。
[0054] 反応容器 5の内部には、プラズマを発生させるための放電電極 2および対向電極 3 が形成されている。放電電極 2および対向電極 3は、それぞれが平板状に形成され、 互 ヽの主表面がほぼ平行になるように配置されて ヽる。放電電極 2と対向電極 3とは 、互いに離れて配置されている。放電電極 2および対向電極 3は、導電性を有する材 料から形成されている。本実施の形態においては、放電電極 2および対向電極 3は、 平面形状がほぼ同じになるように形成されている。対向電極 3は、接地されている。 放電電極 2および対向電極 3は、反応容器 5の幅方向の略中央に配置されている。
[0055] 放電電極 2には、給電棒 7を介して、共振器 4が接続されて 、る。共振器 4は、高周 波電源 1に接続されている。本実施の形態においては、反応容器 5の上面に、貫通 孔が形成され、貫通孔を通して、導電性を有する給電棒 7が配置されている。この貫 通孔の内部には、絶縁体 15が給電棒 7を取囲むように配置されている。貫通孔は、 貫通孔と給電棒 7との間からの高周波漏洩を低減するように小さく形成されている。
[0056] ただし、給電棒 7と反応容器 5との間隔が狭すぎる場合には、コンデンサの機能を 有して高周波電気経路が形成されうる。この部分のコンデンサ容量は、高周波電気 経路として無視できる程度に小さいことが好ましぐ特に、放電電極 2と対向電極 3と によって定まるコンデンサ容量よりも十分に小さくなるように形成されることが好ましい
[0057] 本実施の形態においては、反応容器 5に形成された貫通孔力 僅かな高周波が漏 洩した場合にぉ 、ても、電磁シールド材 34および共振器 4の導電性筐体によって形 成された電磁シールドで覆われて ヽるため、外部に電磁波が漏洩することは無 、。
[0058] 絶縁体 15は、反応容器 5の内部の気密性を保持して、さらに、給電棒 7と反応容器 5との絶縁性を保つことができるように形成されている。反応容器 5の上面には、電磁 シールド材 34を介して、共振器 4が配置されて ヽる。
[0059] 本実施の形態にぉ ヽて、プラズマ処理装置は、反応容器 5の外側に配置され、反 応容器 5の内部の高周波電界分布を制御するための電磁界制御手段を備える。電 磁界制御手段は、閉空間室 6、可動電磁シールド材 26および支持棒 27を含む。電 磁界制御手段は、電磁的に反応容器と連通して、外部への高周波の漏洩を実質的 に防ぐように形成された閉空間手段を含む。本実施の形態においては、閉空間手段 は、閉空間室 6を含む。
[0060] 閉空間室 6は、反応容器 5の外側にぉ ヽて、透過窓 16が配置された側面に、外側 に突出するように形成されている。閉空間室 6は、高周波を遮断する材料で形成され ている。本実施の形態においては、閉空間室 6は、導電性を有する材料で形成され、 外部への高周波の漏洩を防ぐように、直方体状の箱型に形成されている。
[0061] 閉空間室 6は、透過窓 16を覆うように配置されている。閉空間室 6は、透過窓 16が 外部から見えないように、透過窓 16の平面形状よりも大きく形成されている。閉空間 室 6の内部は、反応容器の内部と透過窓 16を介して電磁的に連通している。このよう に、閉空間室 6は、透過窓 16の部分を除いて、電磁的に密閉されている。
[0062] 閉空間室 6の内部には、可動電磁シールド材 26が配置されている。可動電磁シー ルド材 26は、平板状に形成され、主表面が透過窓 16の主表面とほぼ平行になるよう に配置されている。可動電磁シールド材 26には、可動電磁シールド材 26の主表面 に対して、軸方向が垂直になるように支持棒 27が固定されている。可動電磁シール ド材 26は、支持棒 27を動かすことによって、矢印 51に示す方向に移動可能に形成 されている。
[0063] 支持棒 27は、閉空間室 6を貫通するように形成され、この貫通部は、高周波が実質 的に漏れないように形成されている。たとえば、閉空間室 6と、支持棒 27とが摺動す るように形成され、隙間から高周波が漏れないように形成されている。可動電磁シー ルド材 26は、反応容器 5の側面に形成されたそれぞれの 2つの閉空間室 6の内部に 配置されている。それぞれの可動電磁シールド材 26は、それぞれが独立して移動可 能なように形成されている。
[0064] このように、本実施の形態においては、閉空間手段の内部の構成が変更できるよう に形成されている。また、電磁界制御手段が反応容器の側面に 2つ形成され、それ ぞれの電磁界制御手段は、電極中心を対称軸としたときに、左右対称の構成になる ように形成されている。
[0065] また、本実施の形態においては、プラズマ処理を行なっているときに、 2つの可動電 磁シールド材 26が独立して移動するように形成されている。また、 2つの可動電磁シ 一ルド材 26は、それぞれが連続的に移動するように形成されている。また、本実施の 形態における高周波プラズマ処理装置は、 2つの可動電磁シールド材 26の移動速 度を個別に制御することができる可動電磁シールド材制御手段を備え、それぞれの 可動電磁シールド材 26の速度を個別に連続的に制御できるように形成されて!ヽる。
[0066] また、本実施の形態にお!、ては、可動電磁シールド材制御手段は、 2つの可動電 磁シールド材 26を周期的に移動させることができるように形成されている。すなわち、 同じ移動を繰り返し行なえるように形成されている。本実施の形態においては、図 1 において、可動電磁シールド材 26が、矢印 51の方向の往復運動を繰り返して行な えるように形成されている。
[0067] さらに、可動電磁シールド材制御手段は、プラズマ処理が行なわれる時間力 この 周期の半周期の整数倍になるように、 2つの可動電磁シールド材 26を移動させること ができるように形成されている。すなわち、高周波電界分布が変動する周期の半分の 周期(半周期)の時間が、プラズマ処理に要する時間を 1以上の整数で除した時間に なるようにプラズマ処理を行なうことができるように形成されている。
[0068] 本実施の形態における高周波プラズマ処理装置は、自動的に上記の電磁界制御 手段が駆動した後に、自動的にプラズマ処理動作を行なう自動処理制御手段を備え る(図示せず)。すなわち、プラズマ処理を停止しているときに、次のプラズマ処理を 行なうために、可動電磁シールド材が最適な位置に移動して、移動が完了した後に 自動的にプラズマ処理が開始する自動処理制御手段を備える。
[0069] 本実施の形態における高周波プラズマ処理装置は、放電電極に投入される高周波 の半波長よりも放電電極の最大寸法が大きくなるように形成されている。ここで、放電 電極の最大寸法とは、放電電極を平面的に見たときの取り得る端力 端の直線的な 長さのうち、最大の長さをいう。たとえば、放電電極の平面形状が長方形である場合 には、対角の長さが最大寸法になる。
[0070] 図 2に、本実施の形態における共振器の内部の電気回路の説明図を示す。共振器 は、導電性筐体 12を備え、導電性筐体 12の内部に電気回路が形成されている。共 振器の電気回路は、インピーダンス整合用コイル 13と、 2つのインピーダンス整合用 コンデンサ 14a, 14bとを含む。インピーダンス整合用コンデンサ 14a, 14bは、容量 を調整できる容量可変コンデンサである。共振器は、インピーダンス整合用コンデン サ 14a, 14bの静電容量を調整することによって、インピーダンスを整合できるように 形成されている。
[0071] 導電性筐体 12は、アース 39に接続され、電気的に接地されている。導電性筐体 1 2は、外部への電磁界の漏洩を防ぐ電磁シールドの機能も有している。共振器の電 力入力端は高周波電源に接続され、電力出力端は放電電極に接続されている。図 2 に示す共振器の回路構成は、一例を示すものであり、共振器としてはインピーダンス 整合が行なえるものであればよい。または、高周波電源の内部に、共振器の機能が 備えられていても構わない。
[0072] 図 3に、本実施の形態における高周波プラズマ処理装置の第 1の状態の断面図を 示す。第 1の状態においては、可動電磁シールド材 26が、移動可能な範囲における ほぼ中央に配置されている。図 3においては、閉空間室 6の奥行の方向におけるほ ぼ中央の部分に配置されている。 2つの可動電磁シールド材 26は、放電電極 2の幅 方向の中点となる位置 (電極中心)力 それぞれが同じ距離のみ離れるように配置さ れている。すなわち、放電電極 2の幅方向の中央を原点として、閉空間手段の内部 の構成が左右対称になるように配置されて 、る。
[0073] 初めに、反応容器 5の内部の対向電極 3の主表面に、処理を行なう被処理物として の基板 8を配置する。基板 8は、処理を行なう主表面力 放電電極 2に向力うように配 置される。次に、図示しないガス排気装置を用いて反応容器 5の内部を排気する。こ の後に、図示しないガス供給装置を用いて、反応容器 5の内部に、プラズマ処理を行 なうための反応ガスを導入する。
[0074] 導入する反応ガスは、プラズマ処理に応じて、適宜選定される。たとえば、基板など の表面の有機物を除去するのであれば、有機物を酸化または灰化するために反応 ガスとして酸素を用いればよい。また、 Sほたは酸ィ匕 Siのエッチング処理を行なうの であれば、 CF、 SFなどのハロゲンガスを含むガスを反応ガスとして選択する。また
4 6
、 Siなどの成膜を行なうのであれば、 SiH、 Si Hなどのシラン系特殊材料ガス類を
4 2 6
反応ガスとして用いてもよい。これらの反応ガスに対して、酸素、水、水素、またはそ の他のガスを添カ卩してもよぐプラズマ処理を行なうためのガスを適宜導入する。
[0075] 反応容器 5の内部に反応性ガスを導入して、プラズマを形成するガス雰囲気を形成 した後に、高周波電源 1から共振器 4を通して高周波電圧を放電電極 2に印加する。 放電電極 2と対向電極 3との間には、導入された反応ガスのプラズマが発生する。こ のプラズマにより、対向電極 3の表面に配置された基板 8の表面力 プラズマによって 処理される。
[0076] 高周波電源 1から、共振器 4を通して放電電極 2に高周波が導入されると、電磁界 の隔壁となる反応容器、閉空間室などの金属物を境界として電界分布が形成される 。本実施の形態においては、反応容器 5の導電性を有する部分と、閉空間室 6およ び可動電磁シールド材 26とに囲まれた部分とが電磁界の境界となって、電磁界の閉 空間が形成される。
[0077] 本実施の形態にぉ 、ては、プラズマ処理を行なって 、る途中に、電磁界制御手段 を用いて、反応容器の内部の高周波電界分布を変化させる。すなわち、プラズマが 形成されている状態で、電磁界制御手段を駆動させる。
[0078] 図 4に、本実施の形態における高周波プラズマ処理装置の第 2の状態の断面図を 示す。第 2の状態においては、矢印 52に示すように、可動電磁シールド材 26が、図 4 における左側に移動している。第 2の状態においては、一方の可動電磁シールド材 2 6が透過窓 16に近づいている。他方の可動電磁シールド材 26が、透過窓 16から遠 ざかっている。 2つの可動電磁シールド材 26は、同じ長さのみ平行移動している。す なわち、本実施の形態においては、電磁界の閉空間の体積は変わらずに、空間形 状が変化している。 [0079] 図 5に、本実施の形態における高周波プラズマ処理装置の第 3の状態の断面図を 示す。第 3の状態においては、矢印 53に示すように、 2つの可動電磁シールド材 26 1S 図 5の向力つて右側に移動している。第 3の状態においては、一方の可動電磁シ 一ルド材 26が透過窓 16から離れるように移動している。また、他方の可動電磁シー ルド材 26が透過窓 16に近づくように移動している。 2つの可動電磁シールド材 26は 、それぞれが同じ長さのみ平行移動している。すなわち、電磁的な閉空間の体積は 変わらずに、空間形状が変化している。
[0080] 本実施の形態にぉ 、ては、プラズマ処理を行な 、ながら、上記の第 1の状態力 第 3の状態まで、連続的に変化させている。また、上記の可動電磁シールド材の移動を 周期的に繰り返し行なっている。すなわち、支持棒を周期的に出し入れすることによ り、 2つの可動電磁シールド材を周期的に移動して 、る。
[0081] 図 6に、図 3に示す第 1の状態における反応容器の内部および閉空間室の内部の 高周波電界分布のグラフを示す。グラフは、電極中心を通って、放電電極の主表面 に垂直な断面における電界強度を示す。電極中心は、図 3における放電電極の幅方 向の中心である。反応容器の幅方向におけるほぼ中央部分に放電電極および対向 電極が配置され、それぞれの可動電磁シールド材が透過窓カゝら等距離を開けて配 置された場合には、高周波電界分布は、図 6に示すように、電極中心を最大値として 電極中心に対して左右対称になるような形状を有する。また、電極中心から遠ざかる に従って、電界強度が弱くなる分布になる。
[0082] 図 7に、図 4に示す第 2の状態における反応容器の内部および閉空間室の内部の 高周波電界分布のグラフを示す。矢印 52に示すように、高周波電界分布は、電極中 心にピークがある状態力も可動電磁シールド材が動いた向きに移動する。
[0083] 図 8に、図 5に示す第 3の状態における反応容器の内部および閉空間室の内部の 高周波電界分布のグラフを示す。矢印 53に示すように、高周波電界分布は、電極中 心にピークがある状態力も可動電磁シールド材が動いた向きに移動する。本実施の 形態においては、プラズマ処理を行ないながら、第 1の状態から第 3の状態までを連 続的に繰り返している。すなわち、連続的に高周波電界分布を変化させている。
[0084] 基板などの被処理物に対するプラズマ処理においては、プラズマの電界強度が強 いほど、多くの処理が行なわれる。すなわち、プラズマ処理速度も電界分布に対応し た分布を有する。図 3および図 6に示す第 1の状態においては、基板の表面における 電極中心の位置に対して、最も多くのプラズマ処理が行なわれる。図 4および図 7に 示す第 2の状態、または、図 5および図 8に示す第 3の状態においては、それぞれ、 電極中心カゝら離れた高周波電界分布のピークに対応する位置に対して、最も多くの プラズマ処理が行なわれる。
[0085] たとえば、電磁界制御手段が上記の第 1の状態に固定され、反応容器内部の電界 強度が一定であれば、基板に対する処理量に高周波電界分布に対応する分布が生 じる。しかし、本実施の形態においては、プラズマ処理を行なっているときに、連続的 に高周波電界分布を変更している。したがって、プラズマ処理量を基板の表面全体 にわたつて均一化することができ、大型の基板に対しても一様なプラズマ処理を行な うことができる。
[0086] 本実施の形態においては、反応容器の内部の高周波電界分布を制御するための 電磁界制御手段を備え、電磁界制御手段は、反応容器の外側に配置され、外部へ の高周波の漏洩を実質的に防ぐように形成された閉空間手段を含み、閉空間手段 の内部の構成を変更することによって、反応容器の内部の高周波電界分布が変動 するように形成されている。この構成を採用することにより、簡単な構成で、大型の被 処理物に対して均一なプラズマ処理を行なうことができる。すなわち、高周波電界分 布を変動させることにより、被処理物のそれぞれの位置におけるプラズマ処理量を平 均ィ匕させることができる。
[0087] また、閉空間手段の内部の構成を変更するように形成されていることによって、反応 容器の内部の構成物を移動したり回転したりせずに、反応容器の内部の高周波電界 分布を変動させることができる。したがって、反応容器の内部の構成物の運動に起因 するパーティクルの発生や、ガスの流れの乱れなどを防止することができ、均一なプ ラズマ処理を行なうことができる。
[0088] また、本実施の形態にお!、ては、反応容器の外側に配置された閉空間手段の内部 の構成が変更可能に形成されている。反応容器は、気密性が必要なものが多ぐ反 応容器の形状を変更することが困難であったり、複雑な機構が必要であったりするの に対して、反応容器の外部の閉空間手段は、気密性を必要としない。閉空間手段は 、電磁界を遮断する電磁シールド効果が得られる程度に、電磁界が密閉できればよ い。このため、閉空間手段の内部の構成を変化させることを、容易に実現することが でき、容易に電磁界制御手段を形成することができる。
[0089] また、本実施の形態においては、閉空間手段は、反応容器に電磁的に連通する部 分を除いて、電磁的に密閉された閉空間室を有し、閉空間室の内部に移動可能な 電磁シールド材が形成されている。この構成を採用することにより、反応容器の外部 の閉空間手段において、電磁波の漏洩を閉空間室で完全に防止することができる。 すなわち、電磁界の遮蔽を完全に行なうことができる。したがって、電磁界の隔壁の 強度を強くすることができる。
さらに、電磁シールド材を移動させることによって容易に閉空間の内部の構成を変更 することができ、高周波電界分布を変動させる機能と電磁界を遮蔽する機能とを分離 することができる。このため、電磁界制御手段の駆動を、安全にかつ制御性よく行なう ことができる。
[0090] さらに、本実施の形態においては、反応容器と、閉空間室の電磁的に連通する部 分には、電気的な絶縁性を有する透過窓が配置されている。この構成を採用すること により、反応容器の内部をガス雰囲気を形成するための十分な気密性を容易に確保 できるとともに、電磁的に連通する部分を有する閉空間手段を容易に形成することが できる。
[0091] また、本実施の形態における電磁界制御手段は、プラズマ処理を行なって 、るとき に、反応容器の内部の高周波電界分布を変更できるように形成されている。すなわ ち、本実施の形態における高周波プラズマ処理装置は、プラズマ処理を行なってい るときに、可動電磁シールド材を移動できるように形成されている。この構成を採用す ることにより、高周波電界分布を変動させるために、プラズマ処理を中断する必要が なぐプラズマ処理を行ないながら、高周波電界分布を変化させることができる。言い 換えれば、プラズマ処理を行ないながら、高周波電界分布を動的に変動させることが できる。この結果、プラズマ処理とは別に高周波電界分布を変化させるための時間を 別途かける必要がなぐ一連のプラズマ処理の時間短縮を図ることができる。 [0092] また、電磁界制御手段は、高周波電界分布を連続的に変更できるように形成され ている。本実施の形態においては、プラズマ処理を行なっているときに、連続的に可 動電磁シールド材を移動できるように形成されている。この構成を採用することにより 、不連続的に段階的に高周波電界分布を変動させる場合に比べて、高周波電界分 布の所定時間における処理量が均一になる。すなわち、プラズマ処理量の所定時間 における平均化が容易になって、高周波電界分布の時間積分の制御性が向上する
[0093] また、共振器力も放電電極までのインピーダンスが不連続的に変動する場合には、 瞬間的にインピーダンス整合を行なうことが困難であるため、プラズマ処理中に、イン ピーダンスの不整合が生じて、安定したプラズマ処理を行なうことができずに、不均 一なプラズマ処理になる可能性がある。しかし、高周波電界分布を連続的に変化さ せること〖こよって、高周波電源に接続された共振器力も放電電極までのインピーダン スが連続的に変化するため、共振器におけるインピーダンス整合を容易に行なうこと ができ、安定したプラズマ処理を行なうことができる。
[0094] また、電磁界制御手段は、高周波電界分布の変化の速度を制御できるように形成 されている。本実施の形態においては、可動電磁シールド材の移動速度を制御でき るように形成されている。この構成を採用することにより、それぞれの時点での高周波 電界分布に関する情報を基に、高周波電界分布を変動させる速度を最適化すること ができ、高周波電界分布の変動を最適な割合で加速または減速することができる。こ のため、それぞれの高周波電界分布におけるプラズマ処理時間をより高精度に制御 することができ、より均一なプラズマ処理を行なうことができる。
[0095] また、電磁界制御手段は、高周波電界分布を繰返して、周期的に変動させることが できるように形成されている。本実施の形態においては、 2つの可動電磁シールド材 26を、周期的に移動させることができるように形成されている。すなわち、第 1の状態 、第 2の状態および第 3の状態を、周期的に繰返すことができるように形成されている 。この構成を採用することにより、所定の時間におけるプラズマ処理量を均一にする ことができる。すなわち、プラズマ処理量の時間平均化を容易に行なうことができる。 たとえば、一時的に高周波電界分布の変化の速度が速くなつていたとしても、時間平 均化を行なうことによって、プラズマ処理量の均一化を図ることができる。
[0096] さらに、電磁界制御手段は、プラズマ処理が行なわれている間に、半周期の整数 倍になるように、反応容器の内部の高周波電界分布を変動させることができるように 形成されている。本実施の形態においては、プラズマ処理が行なわれる時間力 2つ の可動電磁シールド材カ 往復運動において往路または復路に力かる時間の整数 倍になるように形成されて 、る。
[0097] たとえば、プラズマ処理が可動電磁シールド材が第 2の状態力 始まった場合に、 プラズマ処理の終了時には、可動電磁シールド材が第 2の状態または第 3の状態の 位置になるように移動が行なわれる。この構成を採用することにより、プラズマ処理が 周期的に繰返して行なわれ、かつ、半周期の途中でプラズマ処理が終了することが な 、ため、均一なプラズマ処理を行なうことができる。
[0098] 本実施の形態における高周波プラズマ処理装置は、自動的に可動電磁シールド 材が移動した後、自動的にプラズマ処理動作を実施する機能を有する。本実施の形 態においては、プラズマ処理を行ないながら電磁界制御手段を駆動しているが、後 述するように、プラズマ処理を一時停止した状態で電磁界制御手段を駆動して、形 成される高周波電界分布が異なる状態にして、プラズマ処理を再開してもよい。上記 の構成を採用することにより、所望のプラズマ処理を複数の工程に分割して処理を行 なうときに、高周波電界分布を変化させて繰り返し行なうプラズマ処理を自動的に行 なうことができる。
[0099] また、本実施の形態にお!、ては、放電電極は、放電面の最大寸法が、反応容器の 内部に導入される高周波の半波長よりも大きくなるように形成されている。本実施の 形態においては、放電電極の平面形状の長方形の対角の長さが、導入される高周 波の半波長よりも長くなるように形成されている。この構成の高周波プラズマ処理装 置においては、放電電極の放電面領域に形成される高周波電界分布は正負が反転 し得る。このため、被処理物の表面における高周波電界分布の電界強度の変化は大 きくなり、プラズマ処理中に高周波電界分布を変動させることによって、極めて均一 性の高いプラズマ処理を行なうことができる。すなわち、プラズマ処理中に高周波電 界分布を変動させな 、静的なプラズマ処理に比べて、高周波電界分布を変動させる 動的なプラズマ処理を行なうことによって、プラズマ処理の均一性を飛躍的に向上さ せることができる。
[0100] 本実施の形態においては、電磁的に反応容器と連通して、外部への高周波の漏洩 を実質的に防ぐ機能を有する閉空間手段を反応容器の外側に形成して、閉空間手 段の構成を変更することによって、反応容器の内部の高周波電界分布を変動させな 力 Sら処理を行なっている。すなわち、プラズマ処理を行なうと同時に、高周波電界分 布を変動させている。プラズマ処理方法としては、特にこの形態に限られず、複数回 のプラズマ処理工程を含み、それぞれのプラズマ処理工程において、閉空間手段の 構成を変更することによって、それぞれの高周波電界分布のプラズマによって処理を 行なっても構わない。
[0101] たとえば、本実施の形態にお!、ては、プラズマ処理中に可動電磁シールド材が移 動している力 1つのプラズマ処理を行なった後に、プラズマを一度消滅させ、電磁 シールド材を移動させた後に、再度同じ反応ガスのプラズマを形成して、プラズマ処 理を継続しても構わない。たとえば、 1つのプラズマ処理を 3つの工程に分割して、そ れぞれの工程において、本実施の形態における第 1の状態力 第 3の状態のプラズ マ処理を順次行なってもよい。この方法を採用することによつても、均一なプラズマ処 理を行なうことができる。
[0102] または、本実施の形態においては、基板の表面を均一に処理する場合を例に挙げ て説明したが、電磁界制御手段を駆動する速度を不規則にしたり、特定の高周波電 界分布のみの処理を行なったりして、必要に応じて特定の位置におけるプラズマ処 理を多く行なうことができる。すなわち、分布を有するプラズマ処理を行なうことができ る。
[0103] 本実施の形態においては、反応容器の両側の側方に配置された可動電磁シール ド材を、同じ速度で移動させたが、特にこの形態に限られず、互いに異なる速度で可 動電磁シールド材を移動させても構わない。または、一方の可動電磁シールド材の みを移動させても構わない。また、移動している途中に一方の可動電磁シールド材を 一時停止させるなどの不規則な動きを含んで ヽても構わな 、。
[0104] さらには、本実施の形態においては、電極中心に対して、対称になるように 2つの 電磁界制御手段が形成されているが、特にこの形態に限られず、電極中心に対して 非対称に電磁界制御手段が形成されていても構わない。または、電磁界制御手段は
、 1つのみであっても、 3個以上形成されていても構わない。
[0105] また、反応容器と電磁界制御手段とが電磁的に連通する部分に形成された透過窓 としては、反応容器の内側カゝら外側に向けて電磁界を遮断することがないように形成 されていることが好ましい。高周波電磁界を効率よく透過させるため、透過窓の最大 寸法は、高周波の周波数に対応する波長に対して、少なくとも 0. 1倍以上であること が好ましい。さらに好ましくは、 0. 3倍以上である。この構成を採用することにより、透 過窓を透過する際の電磁界の遮断を抑制することができる。たとえば、反応容器の内 部を観察するためのビューポートは、絶縁材料であるサファイアなどによって形成さ れるが、これらは使用する高周波の波長に対して、十分に小さくなるように形成されて いる。透過窓としては、このような電磁界の遮断を行なうことがなぐ電磁界を透過でき るように十分大きく形成されて ヽることが好ま ヽ。
[0106] また、本実施の形態にお!ヽては、透過窓や可動電磁シールド材は、平板状に形成 されているが、特にこの形態に限られず、任意の形状を採用することができる。
[0107] また、本実施の形態においては、プラズマ処理方法として、 1つの同じ反応性ガス を導入して、複数回のプラズマ処理を行なったが、特にこの形態に限られず、それぞ れのプラズマ処理の工程において、異なる反応性ガスを導入してもよい。すなわち、 1つのプラズマ処理を終了した後に、排気装置によって排気して、異なる反応性ガス を反応容器の内部に導入して、同一の基板に対して異なるプラズマ処理を行なって も構わない。
[0108] また、複数にプラズマ処理を分割した場合、プラズマ処理の処理時間は、それぞれ の工程において、同じである必要はなぐ所望とするプラズマ処理分布 (たとえば均 一化を行なう処理)に応じて、変更しても構わない。または、それぞれの工程におい て、放電電極に印加する高周波の電圧を変化させても構わな ヽ。
[0109] (実施の形態 2)
図 9から図 13を参照して、本発明に基づく実施の形態 2における高周波プラズマ処 理装置および高周波プラズマ処理方法について説明する。 [0110] 高周波プラズマ処理装置が、反応容器、放電電極、対向電極を含むことは、実施 の形態 1における高周波プラズマ処理装置と同様である。本実施の形態においては 、電磁界制御手段に含まれる閉空間手段の構成が、実施の形態 1における高周波プ ラズマ処理装置と異なる。本実施の形態においては、反応容器の側面のうち、互い に対向する側面に、 2つの閉空間手段が形成されている。
[0111] 図 9は、本実施の形態における第 1の高周波プラズマ処理装置の概略断面図であ る。第 1の高周波プラズマ処理装置においては、閉空間手段が、蛇腹型電磁シール ド材 28および可動電磁シールド材 26を含む。閉空間手段は、反応容器 5に形成さ れた透過窓 16を覆うように配置されている。蛇腹型電磁シールド材 28は、伸縮可能 なように形成され、透過窓 16の主表面と垂直な方向に伸縮するように形成されて!ヽる 。蛇腹型電磁シールド材 28は、印加される高周波を遮断できる導電性の材料で形成 されている。
[0112] 蛇腹型電磁シールド材 28の一方の端部は、反応容器 5および透過窓 16に接続さ れている。蛇腹型電磁シールド材 28の他方の端部には、可動電磁シールド材 26が 形成されている。可動電磁シールド材 26は、平板状に形成され、蛇腹型電磁シール ド材 28の他方の端部の開口を完全に塞ぐように形成されている。可動電磁シールド 材 26は、平板状に形成され、可動電磁シールド材 26の主表面に、該主表面に垂直 な向きに支持棒 27が接続されている。
[0113] 閉空間手段は、支持棒 27を矢印 54の方向に移動することによって、閉空間手段の 構成が変更できるように形成されている。閉空間手段は、支持棒 27を移動することに より、空間形状が変化するように形成されている。すなわち、蛇腹型電磁シールド材 2 8が伸縮することにより、閉空間手段の空間形状が変化するように形成されている。ま た、第 1の高周波プラズマ処理装置においては、閉空間手段の空間形状が変化する ことにより、閉空間手段の体積が変化するように形成されている。また、閉空間手段の 電磁的な隔壁の少なくとも一部が移動するように形成されて 、る。反応容器の側面に 形成された 2つの閉空間手段は、それぞれが独立に制御されるように形成されている
[0114] 図 10に、本実施の形態における第 2の高周波プラズマ処理装置の概略断面図を 示す。第 2の高周波プラズマ処理装置における閉空間手段は、電磁シールド管 21お よび可動電磁シールド材 29を含む。
[0115] 反応容器 5の透過窓 16のまわりには、一方の端部が開口した電磁シールド管 21が 形成されている。電磁シールド管 21は、透過窓 16の外縁に沿って形成されている。 電磁シールド管 21は、環状に形成され、内部には電磁シールド管 21の断面形状に 沿う形状を有する可動電磁シールド材 29が形成されて 、る。可動電磁シールド材 29 は、平板状の部分と、電磁シールド管 21の内面に沿って平板状の部分力 突出する ように形成された突出部とを含む。可動電磁シールド材 29と電磁シールド管 21との 間には、わずかな隙間が形成されている。この隙間は、印加される高周波が外部に 実質的に漏れな ヽように十分に小さく形成されて ヽる。
[0116] 可動電磁シールド材 29の平板状の部分には、平板状の部分の主表面に垂直に延 在するように、支持棒 27が接続されている。可動電磁シールド材 29は、支持棒 27が 、矢印 55に示す方向に移動することによって、矢印 55に示す方向に移動するように 形成されている。このように、第 2の高周波プラズマ処理装置においては、閉空間手 段の電磁的な隔壁の少なくとも一部が移動するように形成されている。また、閉空間 手段の空間形状および、閉空間手段の体積が変更するように形成されている。 2つ の閉空間手段は、それぞれが独立して制御されるように形成されている。すなわち、 2つの可動電磁シールド材 29が互いに独立して移動するように形成されて!、る。
[0117] このように、本実施の形態における第 1の高周波プラズマ処理装置および第 2の高 周波プラズマ処理装置は、閉空間手段によって形成される電磁的な閉空間の空間 形状が変更可能に形成されている。
[0118] 図 11に、本実施の形態における第 3の高周波プラズマ処理装置の概略断面図を 示す。第 3の高周波プラズマ処理装置における閉空間手段は、透過窓 16の外側に 透過窓 16を塞ぐように形成された閉空間室 22と、閉空間室 22に出し入れが可能な 電磁シールドシャツタとを含む。
[0119] 第 3の高周波プラズマ処理装置においては、電磁シールドシャツタとして可動電磁 シールド材 30および支持棒 31が形成されている。また、閉空間室 22の内部に可動 電磁シールド材 30の出し入れが可能なように、閉空間室 22に挿入口 35が形成され ている。可動電磁シールド材 30は、支持棒 31を矢印 56に示す方向に移動すること によって、閉空間室 22への出し入れができるように形成されて!、る。
[0120] 可動電磁シールド材 30は、導電性を有する材料で形成されている。可動電磁シー ルド材 30は、板状に形成され、平面形状が透過窓 16の平面形状に沿うように形成さ れている。さらに、可動電磁シールド材 30は、平面形状が閉空間室 22の断面形状 に沿うように形成されている。挿入口 35は、可動電磁シールド材 30の形状に沿うよう に形成されている。可動電磁シールド材 30は、透過窓 16の近傍に配置されている。
[0121] 可動電磁シールド材 30および挿入口 35は、可動電磁シールド材 30カ^、ずれの位 置にあっても高周波が外部に漏れな 、ように形成されて 、る。本実施の形態にぉ ヽ ては、可動電磁シールド材 30が完全に閉空間室 22に挿入されたとき、可動電磁シ 一ルド材 30の出し入れを行なって 、るとき、および可動電磁シールド材 30を閉空間 室 22の内部から取出したときのいずれにおいても、可動電磁シールド材 30と揷入口 35との隙間が高周波の波長よりも十分に小さくなるように形成されている。
[0122] 図 12に、本実施の形態における第 4の高周波プラズマ処理装置の概略断面図を 示す。第 4の高周波プラズマ処理装置の閉空間手段は、透過窓 16の電磁的に反応 容器 5に連通する部分を除いて、電磁的に密閉された閉空間室 23および閉空間室 24を含む。閉空間室 23および閉空間室 24は、それぞれが導電性を有する材料で 形成されている。閉空間室 23および閉空間室 24は、それぞれがシリコンオイルタン ク 10に接続されている。シリコンオイルタンク 10の内部には、シリコンオイル 9が充填 されている。
[0123] 閉空間室 23, 24は、それぞれの透過窓 16を塞ぐように形成されている。閉空間室 23, 24は、透過窓 16を覆うように形成され、投入される高周波が外部に漏れないよう に形成されている。閉空間室 23, 24の底部には、貫通口 36, 37が形成され、貫通 口 36, 37には、シリコンオイルタンク 10が接続されている。貫通口 36, 37は、高周 波が外部に漏れないように、投入される高周波の波長に対して、十分に小さくなるよ うに形成されている。
[0124] 閉空間室 23は、内部の空間がほぼ直方体状に形成されている。シリコンオイルタン ク 10のシリコンオイル 9は、図示しないポンプなどのシリコンオイル供給手段によって 、閉空間室 23の内部に供給される。すなわち、本実施の形態における閉空間手段 には、矢印 57に示すように、閉空間室 23の内部にシリコンオイルが充填されるように 形成されている。シリコンオイル供給手段は、閉空間室 23の任意の高さまでシリコン オイルを充填でき、または排出できるように形成されて ヽる。
[0125] 反応容器 5の側面において、閉空間室 23が形成されている側と反対側には、透過 窓 16を塞ぐように閉空間室 24が形成されている。閉空間室 24は、側方に向力つて 直方体状に延在する部分と、該直方体状の部分から下側に向かって延びるように形 成された部分とを含む。シリコンオイル 9は、図示しないポンプなどのシリコンオイル供 給手段によって、矢印 57に示すように閉空間室 24の内部に供給され、または排出さ れる。
[0126] 閉空間室 23および閉空間室 24に注入されるシリコンオイルの量は、それぞれが独 立して制御可能なように形成されている。また、上記のシリコンオイル供給手段は、閉 空間室 23, 24へのシリコンオイルの出し入れを連続的に徐々に行なうことができるよ うに形成されている。また、シリコンオイル供給手段は、液体の注入の速度および排 出の速度を制御できるように形成されて 、る。
[0127] このように、第 4の高周波プラズマ処理装置においては、シリコンオイルを閉空間室 の内部に充填することによって、閉空間手段の内部の平均的な比透電率が変更でき るように形成されている。また、第 4の高周波プラズマ処理装置においては、反応容 器 5の両側にそれぞれ形成された閉空間手段の構成が異なる。すなわち、電極中心 を通る対称軸に対して、閉空間手段が非対称になるように形成されている。
[0128] 図 13に、本実施の形態における第 5の高周波プラズマ処理装置の概略断面図を 示す。第 5の高周波プラズマ処理装置における閉空間手段は、閉空間室 25および 可動電磁シールド材 50を含む。閉空間手段は、電極中心に対して対称になるように 形成されている。
[0129] 閉空間室 25は、透過窓 16を塞ぐように形成され、反応容器 5の上下方向に延在す るように形成されている。閉空間室 25の内部には、可動電磁シールド材 50が形成さ れている。可動電磁シールド材 50は、一方の側が開口した箱型になるように形成さ れている。可動電磁シールド材 50は、開口した側が反応容器 5に向くように、配置さ れている。
[0130] 可動電磁シールド材 50は、長手方向のほぼ中央部分が仕切り電磁シールド材 38 で仕切られている。仕切り電磁シールド材 38は、板状に形成され、可動電磁シール ド材 50で囲まれる空間を 2つの空間に分割するように形成されている。可動電磁シー ルド材 50および仕切り電磁シールド材 38は、導電性を有する材料で形成されて!、る
[0131] 可動電磁シールド材 50において、仕切り電磁シールド材 38で区切られた一方の 空間には、固体誘電体 11が配置されている。固体誘電体 11は、比透電率が 1よりも 大きな部材である。仕切り電磁シールド材 38で区切られた他方の空間には、何も充 填されておらず、比透電率は 1である。可動電磁シールド材 50は、閉空間室 25の内 部を矢印 58に示す方向に移動可能に形成されて 、る。
[0132] 固体誘電体 11は、閉空間室 25の内部において、移動可能なように形成されている 。本実施の形態においては、可動電磁シールド材 50が固体誘電体 11とともに、矢印 58に示す方向に移動するように移動手段が形成されて!、る(図示せず)。移動手段 は、反応容器の両側に配置された可動電磁シールド材 50が、それぞれ独立して制 御可能なように形成されて 、る。
[0133] 可動電磁シールド材 50は、図 13において、矢印 58に示す方向のうち、可動電磁 シールド材 50が上側に向力つて移動することにより、透過窓 16の主表面全体に対し て、固体誘電体 11が対向するように配置される。また、可動電磁シールド材 50は、図 13において、矢印 58に示す方向のうち、下側に向力つて移動することにより、透過 窓 16の主表面に対して、固体誘電体 11が対向せずに仕切り電磁シールド材 38で 仕切られた空間が対向するように形成されている。
[0134] 上記以外の構成については、実施の形態 1における高周波プラズマ処理装置と同 様であるので、ここでは説明を繰返さない。
[0135] 本実施の形態において、図 9に示す第 1の高周波プラズマ処理装置においては、 閉空間手段に蛇腹型電磁シールド材が含まれる。また、図 10に示す第 2の高周波プ ラズマ処理装置にぉ 、ては、閉空間手段に電磁シールド管および可動電磁シールド 材が含まれる。また、図 11に示す第 3の高周波プラズマ処理装置においては、閉空 間手段に電磁シールドシャツタが含まれる。これらのうち、いずれかの閉空間手段を 含むことによって、実施の形態 1と同様に、反応容器の内部における高周波電界分 布を変動させることができ、簡単な構成で大型の被処理物に対して均一なプラズマ 処理を行なうことができる高周波プラズマ処理装置を提供することができる。
[0136] 図 9に示す第 1の高周波プラズマ処理装置においては、矢印 54に示す方向に、可 動電磁シールド材 26を動かすことによって、蛇腹型電磁シールド材 28が伸縮する。 蛇腹型電磁シールド材 28が伸縮することにより、閉空間手段の空間形状および体積 が変化して、反応容器の内部の高周波電界分布が変動する。
[0137] 図 10に示す第 2の高周波プラズマ処理装置においては、矢印 55に示す方向に、 可動電磁シールド材 29を移動することによって、可動電磁シールド材 29および電磁 シールド管 21によって囲まれる閉空間手段の空間形状および体積が変化して、反応 容器の内部の高周波電界分布が変動する。
[0138] 第 1の高周波プラズマ処理装置および第 2の高周波プラズマ処理装置においては 、電磁界制御手段は、閉空間手段の電磁的な隔壁の少なくとも一部が移動するよう に形成されている。この構成を採用することにより、容易な構造で、閉空間手段の空 間形状を変化させることができる。電磁的な隔壁は、反応容器や共振器の筐体などと 比べて、可動機能を付与することが容易であるため、容易にプラズマ処理装置の設 計を行なえるとともに、構成が簡単になる。
[0139] さらに、電磁的な隔壁には、閉空間手段の内側となる表面部に高周波電流が流れ るものの、外側の表面部に電流が流れることがなぐ接地状態にすることができる。し たがって、電磁的な隔壁を移動させるために電磁的な隔壁の支持手段を取付ける場 合に、電気的な絶縁性などを配慮する必要がない。このように、電磁的な隔壁を移動 させるための移動手段には、高周波電流が流れることを容易に排除することができ、 容易な構成で閉空間手段を形成することができる。
[0140] 第 2の高周波プラズマ処理装置においては、閉空間手段を形成するための部品の 点数を少なくすることができ、構成をより簡単にすることができる。一方で、実施の形 態 1における高周波プラズマ処理装置や本実施の形態における第 3のプラズマ処理 装置のように、反応容器の側面に閉空間手段として閉空間室が形成されることにより 、外部への高周波の漏れを確実に遮断することができる。たとえば、閉空間室が形成 されること〖こより、可動電磁シールド材の不具合などによって可動電磁シールド材と 閉空間室との間に隙間が生じても、高周波が外部に漏洩することを防止できる。
[0141] 図 11に示す第 3の高周波プラズマ処理装置においては、閉空間室 22に出し入れ が可能な電磁シールドシャツタが形成されて 、る。電磁シールドシャツタを移動させる ことにより、閉空間手段の内部の体積を急激に変化させることができ、反応容器の内 部に形成される高周波電界分布を急激に変動させることができる。
[0142] 本実施の形態にぉ 、ては、電磁シールドシャツタが透過窓の近傍に配置されて!ヽ る。この構成を採用することにより、電磁的な閉空間を大きく変化させることができ、大 きく高周波電界分布を変化させることができる。また、本実施の形態においては、 1つ の閉空間室に対して 1つの電磁シールドシャツタが形成されている力 特にこの形態 に限られず、 1つの閉空間室に対して、複数の電磁シールドシャツタが形成されてい てもよい。この構成を採用することにより、高周波電界分布を変化させる大きさを、必 要に応じて適宜変更することができる。
[0143] 第 3の高周波プラズマ処理装置において、本実施の形態においては、電磁シール ドシャツタの揷入口を十分に小さくすることにより、外部に高周波が漏洩することを防 止している力 特にこの形態に限られず、たとえば、メタルシールのゲートバルブが配 置されていてもよい。
[0144] 図 12に示す第 4の高周波プラズマ処理装置においては、閉空間手段が閉空間室 23, 24を含み、閉空間室 23, 24にシリコンオイルタンク 10が接続され、シリコンオイ ルを閉空間室の内部に注入および排出できるように形成されている。すなわち、電磁 界制御手段は、閉空間手段の内部における平均的な比透電率が変更可能に形成さ れている。図 13に示す第 5の高周波プラズマ処理装置においては、液体の代わりに 固体誘電体が配置され、固体誘電体が閉空間室 25の内部を移動できるように形成 されている。これらのうちいずれかの構成を採用することによつても、構成が簡単で大 型の被処理物に対して均一なプラズマ処理を行なうことができる。
[0145] 第 4の高周波プラズマ処理装置において、シリコンオイルは、一般的に比透電率が 2以上の値を有する。このシリコンオイル 9を、閉空間室 23および閉空間室 24のうち 少なくとも一方に注入することによって、閉空間室の内部の平均的な比透電率を上 昇させることができる。また、注入したシリコンオイル 9を閉空間室力も排出することに よって、上記の閉空間室の平均的な比誘電率を低下させることができる。
[0146] 一般的に、比透電率が高い領域においては、高周波の波長が短くなる。このため、 比透電率を上昇させることにより、実質的に電磁的な閉空間の体積を減少させること と同等の効果がある。また、逆に、電磁的な閉空間の比透電率を下げることは、電磁 的な閉空間の体積を大きくすることと同様の効果がある。したがって、閉空間室 23お よび閉空間室 24のうち少なくとも一方の内部にシリコンオイルを注入または排出する ことによって、反応容器の内部の高周波電界分布を変動させることができる。シリコン オイルの注入または排出においては、それぞれのプラズマ処理の前に行なうほか、 プラズマ処理を行なって ヽるときに、注入または排出を行なってもよ!/ヽ。
[0147] 第 4の高周波プラズマ処理装置においては、閉空間手段および閉空間手段の内部 において、機械的に駆動される部分がないために、駆動系の動作不良による高周波 の漏洩を防止することができる。本実施の形態においては、閉空間室に注入する液 体としてシリコンオイルを用いた力 特にシリコンオイルに限られず、比誘電率が 1より も大きい特性を有する液体であればよい。または、閉空間室の内部に注入することに よって、閉空間室の内部の平均的な比透電率が変化する液体であればょ 、。
[0148] また、閉空間室に液体を連続的に注入または排出することによって、反応容器の内 部の高周波電界分布を連続的に変化させることができる。さらに、液体の注入の速度 または排出の速度を制御することによって、高周波電界分布の変動の速度を容易に 帘 U御することができる。
[0149] 図 13に示す第 5の高周波プラズマ処理装置においては、液体を閉空間室に注入 または排出する代わりに、閉空間室 25の内部に移動可能な固体誘電体 11が配置さ れている。第 5の高周波プラズマ処理装置においては、矢印 58に示すように可動電 磁シールド材 50を移動させることによって、透過窓 16の外側に形成される電磁界の 閉空間の平均的な比透電率を変化させることができる。
[0150] 図 13の向かって左側の閉空間手段に示すように、固体誘電体 11と透過窓 16とが 対向するように、可動電磁シールド材 50が配置された場合には、反応容器 5の外部 における電磁的な閉空間の平均的な比透電率を高くすることができる。また、図 13の 向かって右側の閉空間手段のように、固体誘電体 11と透過窓 16とが対向しないよう に、可動電磁シールド材 50が配置されることによって、反応容器の外部の電磁的な 閉空間の平均的な比透電率を 1程度にすることができる。すなわち、仕切り電磁シー ル材で区切られた空間のうち、固体誘電体が配置されていない空間が透過窓と対向 するように可動電磁シールド材を配置することにより、平均的な比透電率をほぼ 1に することができる。
[0151] このように、閉空間室の内部に移動可能な固体誘電体を配置することによって、閉 空間室の内部の平均の比透電率を大きく変化させることができ、反応容器の内部の 高周波電界分布を大きく変動させることができる。また、閉空間手段の平均的な比透 電率を速く変化させることができ、高周波電界分布を迅速に変動させることができる。
[0152] また、閉空間室の内部に移動可能な固体誘電体を配置することによって、液体に 比べて誘電損失の小さ 、材料、または耐熱性の高 ヽ材料を電磁界制御手段に用い ることができる。この結果、電磁界制御手段における誘電損失を低減することができ る。または、高周波プラズマによる加熱に対して耐性を有する電磁界制御手段を形 成することができる。固体誘電体としては、たとえば、アルミナ、窒化アルミニウムなど を用いることができる。
[0153] 第 5の高周波プラズマ処理装置おいては、透過窓 16全体に対して固体誘電体 11 が対向する場合と、全く対向しない場合との例を挙げて説明したが、特にこの形態に 限られず、たとえば、プラズマ処理を行なっているときに、徐々に可動電磁シールド 材 26を移動させて、反応容器 5の内部の高周波電界分布を変動させても構わな!/ヽ。
[0154] また、図 13に示す第 5の高周波プラズマ処理装置においては、 2つの閉空間手段 力 電極中心を対称軸として左右対称に形成されているが、特にこの形態に限られ ず、閉空間手段が 1つであってもよいし、電極中心を軸として非対称に形成されてい ても構わな 、ことは実施の形態 1におけるプラズマ処理装置と同様である。
[0155] その他の作用、効果およびプラズマ処理方法については、実施の形態 1と同様で あるので、ここでは説明を繰返さない。
[0156] (実施の形態 3) 図 14から図 17を参照して、本発明に基づく実施の形態 3における高周波プラズマ 処理装置および高周波プラズマ処理方法にっ 、て説明する。本実施の形態におけ る高周波プラズマ処理装置は、実施の形態 1における高周波プラズマ処理装置と閉 空間手段の構成が異なる。
[0157] 図 14に、本実施の形態における第 1の高周波プラズマ処理装置の概略断面図を 示す。反応容器 45は、導電性の材料で形成され、一の面が開口した箱型の部分を 含む。反応容器 45は、対向電極が配置されている側の側壁に形成され、電気的に 絶縁性を有する透過窓 17を含む。本実施の形態においては、反応容器 45の上部に 透過窓 17が形成されている。透過窓 17は、反応容器 45の導電性の部分に接合され 、反応容器 45の内部の気密性が確保されるように形成されて!、る。
[0158] 反応容器 45の内部には、平板状の放電電極 32と平板状の対向電極 3が配置され ている。放電電極 32は、主表面が透過窓 17の主表面に接するように、透過窓 17に 接合されている。
[0159] 透過窓 17の主表面のうち、放電電極 32が配置されている側と反対側の主表面に は、高周波電源と電気的に接続された伝播電極として、可動電気経路部材 19が配 置されている。可動電気経路部材 19は、図示しない移動手段によって、矢印 59に示 す方向に移動できるように形成されている。可動電気経路部材 19は、透過窓 17の主 表面に沿って移動可能なように形成されて!、る。
[0160] 可動電気経路部材 19は、平板状に形成された接触部 41を含む。接触部 41の主 表面は、透過窓 17の主表面と接触している。透過窓 17を挟むように、接触部 41およ び放電電極 32が配置されていることによって、接触部 41と放電電極 32とに挟まれる 部分がコンデンサの機能を有して、高周波の電気経路が形成されている。すなわち、 放電電極 32には、コンデンサを介して、可動電気経路部材 19から高周波が導入さ れている。
[0161] 可動電気経路部材 19は、平面視したときに、放電電極 32よりも小さくなるように形 成されている。すなわち、図 14においては、高周波プラズマ処理装置を上側から透 視したときに、放電電極 32よりも可動電気経路部材 19の接触部 41の方が小さくなる ように形成されている。 [0162] 透過窓 17の上方には、可動電気経路部材 19に対向するように、固定電気経路部 材 18が形成されている。固定電気経路部材 18は、平板状に形成され、延在方向が 、可動電気経路部材 19の移動方向とほぼ平行になるように配置されている。
[0163] 図 15に、可動電気経路部材 19および固定電気経路部材 18を側方から見たときの 側面図を示す。可動電気経路部材 19は、平板状に形成された対向部 42を含む。固 定電気経路部材 18は、主表面が対向部 42の主表面とほぼ平行になるように配置さ れている。対向部 42は、固定電気経路部材 18と離間するように配置されている。ま た、対向部 42と固定電気経路部材 18との間の隙間は、可動電気経路部材 19が移 動しても一定に保たれるように形成されている。このように、可動電気経路部材 19と、 固定電気経路部材 18とは、容量が一定のコンデンサの機能を有するように形成され ている。
[0164] 図 14を参照して、可動電気経路部材 19と、固定電気経路部材 18の周りには、外 部への高周波の漏洩を防ぐように、電磁シールド材 34が形成されている。電磁シー ルド材 34の上部には、放電電極に高周波を印加するための共振器 4が配置されて いる。共振器 4は、導電性の筐体を含み、この筐体の一部が電磁シールド材 34に接 合されている。共振器 4は、高周波電源 1に接続されている。
[0165] 本実施の形態において、電磁的な閉空間を形成するための閉空間手段は、電磁 シールド材 34および共振器 4を含む。本実施の形態においては、閉空間手段の内 部の構成が変化するように形成されて ヽる。
[0166] 図 16に、本実施の形態における第 2の高周波プラズマ処理装置の概略断面図を 示す。第 2の高周波プラズマ処理装置においては、可動電気経路部材 19が透過窓 17の主表面に 2つ形成されている。それぞれの可動電気経路部材 19は、矢印 60に 示すように固定電気経路部材 18の主表面に平行な方向に、独立して移動可能なよ うに形成されている。それぞれの可動電気経路部材 19は、固定電気経路部材 18に 対して一定の間隔をあけて移動するように形成されている。その他の構成について は、本実施の形態における第 1の高周波プラズマ処理装置と同様である。
[0167] 図 17に、本実施の形態における第 3の高周波プラズマ処理装置の概略断面図を 示す。第 3の高周波プラズマ処理装置においては、可動電気経路部材 20が 2つ配 置され、それぞれの可動電気経路部材 20に、接触部 41が形成されていることは、本 実施の形態における第 2の高周波プラズマ処理装置と同様である。それぞれの可動 電気経路部材 20が、矢印 60に示すように、固定電気経路部材 18の主表面とほぼ平 行な方向に移動可能に形成されていることも、第 2の高周波プラズマ処理装置と同様 である。
[0168] 第 3の高周波プラズマ処理装置においては、可動電気経路部材 20が、可変コンデ ンサ部 43を含む。可変コンデンサ部 43は、平板状の 2枚の電極力 互いに離れて配 置されている。この 2枚の電極は、電気的に絶縁性を有する絶縁部材で連結され、互 V、の主表面がほぼ平行な状態で、 2枚の電極同士の間隔を変更できるように形成さ れている。
[0169] 接触部 41は、透過窓 17の主表面と接触している。可動電気経路部材 20は、矢印 61に示すように、対向部 44が上下方向に移動可能に形成されている。対向部 44が 上下方向に移動することによって、可変コンデンサ部 43の 2枚の電極同士の間隔が 調整され、可変コンデンサ部 43の静電容量を調整できるように形成されている。対向 部 44が矢印 61に示す方向に移動する際に、対向部 44の主表面と固定電気経路部 材 18の主表面とは、ほぼ平行になるように形成されている。
[0170] その他の構成については、実施の形態 1における高周波プラズマ処理装置と同様 であるので、ここでは説明を繰返さない。
[0171] 高周波電源 1からの高周波は、共振器 4、固定電気経路部材 18および可動電気経 路部材 19を通って、放電電極 32に導入される。
[0172] 図 14に示す本実施の形態における第 1の高周波プラズマ処理装置においては、 閉空間手段の内部の伝播電極としての可動電気経路部材 19が、矢印 59に示すよう に移動可能に形成されている。この構成を採用することにより、可動電気経路部材 1 9の移動に伴って、放電電極 32に対する高周波の導入経路を変更することができる 。この結果、反応容器の内部の高周波電界分布を変動させることができ、容易な構 成で均一なプラズマ処理を行なうことができる高周波プラズマ処理装置を提供するこ とがでさる。
[0173] また、可動電気経路部材 19は、反応容器の外部に配置されているため、反応容器 の内部の構成物は動かずに、安定したプラズマを形成することができる。また、可動 電気経路部材を透過窓の表面に沿って連続的に移動させることにより、高周波電界 分布の変動を連続的に行なうことができる。また、可動電気経路部材の移動速度を 変更することにより、高周波電界分布の変動の速度を容易に変更することができる。 このように、制御性に優れ、均一なプラズマ処理を行なうことができるプラズマ処理装 置を提供することができる。
[0174] 可動電気経路部材 19と放電電極 32とは、絶縁性を有する透過窓 17を挟むよう〖こ 配置されている。この構成を採用することにより、可動電気経路部材 19と放電電極 3 2との間に、コンデンサの機能を有する、いわゆる容量結合部を形成することができる 。容量結合部で高周波電気経路を形成することにより、気密された反応容器の隔壁 を貫通して、さらに移動可能な電極を形成する必要がなぐ容易に放電電極に対す る高周波の導入位置を変更することができる。
[0175] また、本実施の形態においては、可動電気経路部材 19は、平面視したときに放電 電極 32よりも小さくなるように形成されている。特に、平面視したときに、接触部 41が 放電電極 32よりも小さくなるように形成されている。この構成を採用することにより、伝 播電極と放電電極との相対的な位置を容易に変更することができ、反応容器の内部 の高周波電界分布を容易〖こ変動させることができる。
[0176] なお、本出願人らは、電磁界シミュレーションにより、反応容器の内部の高周波電 界分布は、放電電極における給電位置に依存して、大きく変化し得ることを確認して いる。このシミュレーション結果によれば、放電電極の放電面と反対側の面から給電 を行なった場合、放電電極に対する給電位置を移動させたときに、放電電極と対向 電極との間に生じる高周波電界分布のピークは、給電位置を移動した向きに移動す ることが分力つている。このシミュレーションの結果は、実施の形態 4において詳しく説 明する。
[0177] 透過窓 17の材質としては、高い比透電率を有する材料を用いることが好ましい。た とえば、アルミナなどの材料によって形成されることが好ましい。この構成を採用する こと〖こよって、電気的に絶縁性を有する透過窓 17を挟んで構成される容量結合部の 静電容量を大きくすることができ、十分に小さなインピーダンスで可動電気経路部材 19と放電電極 32とを接続させることができる。
[0178] 本実施の形態においては、固定電気経路部材と可動電気経路部材とは、所定の 間隔を空けて離れていた。すなわち、コンデンサの機能を有する容量結合部が形成 されていたが、特にこの形態に限られず、固定電気経路部材と可動電気経路部材と が接虫していても構わない。
[0179] 図 16に示す第 2の高周波プラズマ処理装置においては、可動電気経路部材 19が 、 2つ形成されている。この構成を採用することにより、放電電極 32に対する給電経 路を 2つにすることができ、反応容器 45の内部の高周波電界分布を多様に変化させ ることができる。第 2の高周波プラズマ処理装置においては、可動電気経路部材 19 力^つ形成されている力 特にこの形態に限られず、 3つ以上の可動電気経路部材 1 9が形成されて ヽても構わな 、。
[0180] または、本実施の形態においては、固定電気経路部材 18が 1つ形成されているが 、特にこの形態に限られず、たとえば、互いの主表面がほぼ平行になるように、板状 の固定電気経路部材が複数形成され、それぞれの固定電気経路部材に対して、複 数の可動電気経路部材が形成されて 、ても構わな ヽ。
[0181] 図 17に示す第 3の高周波プラズマ処理装置においては、可動電気経路部材 20に 可変コンデンサ部 43が形成されている。この構成を採用することにより、放電電極 32 に対するそれぞれの可動電気経路部材力 の給電割合を制御することができる。す なわち、それぞれの可動電気経路部材の可変コンデンサ部の容量を変更することに よって、放電電極 32に対する給電の割合を変更することができる。したがって、反応 容器 5の内部の高周波電界分布の形状をさらに多様に変化させることができる。
[0182] 本実施の形態においては、高周波電気経路のインピーダンスを変化させるインピー ダンス可変部として、可変コンデンサ部が形成されている。この構成を採用することに より、 2枚の電極間同士の距離を幾何学的に変化させるのみで、可変コンデンサ部の 容量が大きく変化する。このため、容易に高周波電気経路のインピーダンスを調整す ることがでさる。
[0183] また、容量を調整できるコンデンサ部の電極同士の距離を十分に離せば、実質的 に電気経路を切断することができ、急激に反応容器の内部の高周波電界分布を変 ィ匕させることができる。または、必要に応じて、複数の可動電気経路部材のうち、特定 の可動電気経路部材のみを電気的に接続して、他の可動電気経路部材は切断する ことができる。すなわち、複数の可動電気経路部材のうち、任意のものを容易に選択 することができる。
[0184] 第 3の高周波プラズマ処理装置においては、可動電気経路部材 20に、可変コンデ ンサ部 43が形成されている力 特にこの形態に限られず、高周波電気経路のインピ 一ダンスを調整できる機能を有していればよい。たとえば、可動電気経路部材におい て、コンデンサ部の代わりに、インダクタンスが可変のコイルが接続されていてもよい
[0185] その他の作用、効果およびプラズマ処理方法については実施の形態 1と同様であ るのでここでは説明を繰返さな 、。
[0186] (実施の形態 4)
図 18から図 23を参照して、本発明に基づく実施の形態 4における高周波プラズマ 処理装置および高周波プラズマ処理方法について説明する。
[0187] 図 18は、本実施の形態における高周波プラズマ処理装置の概略断面図である。本 実施の形態において、反応容器 46は、導電性を有する材料から形成され、箱型にな るように形成されている。反応容器 46の内部には、互いの主表面がほぼ平行になる ように、平板状の放電電極 40および平板状の対向電極 3が配置されて ヽる。
[0188] 反応容器 46の一の面には、反応容器 46を貫通するように、予備電極としての給電 棒 7が複数配置されている。給電棒 7は、棒状に形成され、絶縁体 48を介して反応 容器 46に固定されている。絶縁体 48は、電気的に絶縁性を有する材料で形成され ている。
[0189] 本実施の形態においては、 3本の給電棒 7が放電電極 40の電極中心を中心にして 対称に配置されている。給電棒 7は、一直線上に配置されている。
[0190] 給電棒 7の一方の端部は、放電電極 40に接合固定されている。放電電極 40は、給 電棒 7を介して反応容器 46に固定されている。給電棒 7の他方の端部は、高周波電 気経路のインピーダンスを変化させるためのインピーダンス可変手段としての可変コ ンデンサ 33に接続されている。可変コンデンサ 33は、それぞれの給電棒 7に対して 1 つずつ配置されている。複数の可変コンデンサ 33は、それぞれが独立して容量を変 更できるように形成されている。それぞれの可変コンデンサ 33は、共振器に接続され ている。すなわち、本実施の形態においては、共振器と予備電極との間に、インピー ダンス可変手段が配置されて 、る。
[0191] 給電棒 7および可変コンデンサ 33のまわりには、電磁シールド材 47が形成されて いる。電磁シールド材 47は、板状に形成され、複数の可変コンデンサ 33を取囲むよ うに形成されている。電磁シールド材 47の上部には、共振器 4が配置されている。本 実施の形態においては、絶縁体 48は非常に薄く形成され、反応容器 46の内部から の高周波の漏洩を抑制して 、る。
[0192] その他の構成については実施の形態 1と同様であるので、ここでは説明を繰返さな い。
本実施の形態における電磁界制御手段は、共振器と給電棒との間の複数の高周 波電気経路に、高周波電気経路のインピーダンスを変化させるインピーダンス可変 手段が形成されて 、る。インピーダンス可変手段としての可変コンデンサの容量を変 更することによって、放電電極に対するそれぞれの給電棒の給電割合を調整するこ とができる。すなわち、給電棒が接続された放電電極のそれぞれの位置に対する給 電の大きさを変更することができる。この結果、反応容器の内部に形成される高周波 電界分布を変動させることができ、簡単な構成で、大型の被処理物に対しても均一な プラズマ処理を行なうことができる高周波プラズマ処理装置を提供することができる。
[0193] また、インピーダンス可変手段によって、連続的にインピーダンスを変化させること により、予備電極に対する高周波の給電の大きさを変化させることができ、連続的に 反応容器の内部の高周波電界分布を変動させることができる。または、インピーダン ス可変手段を調整することにより、高周波電界分布の分布形状を制御することができ る。この結果、プラズマ処理において、高周波電界分布を変動させながら被処理物 の処理を行なうことができ、均一なプラズマ処理を行なうことができる。このように、本 実施の形態においては、容易に高周波電界分布を制御することができる。
[0194] 本実施の形態においては、予備電極としての給電棒が 3本形成されている力 特に この形態に限られず、給電棒は複数形成されていれば構わない。また、本実施の形 態においては、給電棒が一直線上に配置されている力 特にこの形態に限られず、 任意の位置に給電棒が配置されても構わない。給電棒が、規則的に配置されている ことによって、高周波電界分布の制御を容易に行なうことができる。
[0195] また、本実施の形態においては、すべての予備電極に対応して、インピーダンス可 変手段が接続されているが、特にこの形態に限られず、少なくとも 1つ以上の予備電 極に対して、インピーダンス可変手段が接続されて 、れば構わな!/、。
[0196] また、本実施の形態においてはインピーダンス可変手段として、容量を変更するこ とができる可変コンデンサが配置されているが、特にこの形態に限られず、高周波電 気経路のインピーダンスを調整することができればよい。たとえば、可変コンデンサの 代わりに、インダクタンスが可変の可変コイルが配置されて 、ても構わな 、。
[0197] 以下に、電磁界シミュレーションにより得られた、放電電極に対する給電位置を変 化させることによって変化する反応容器の内部の高周波電界分布について説明する 。このシミュレーションは、実施の形態 3における高周波プラズマ処理装置および実 施の形態 4における高周波プラズマ処理装置に対応する。
[0198] 行なった電磁界シミュレーションの条件は次の通りである。シミュレータとしては、高 周波 3次元電磁界シミュレータ HFSS (High- Frequency Structure Simulator, ver.8.5 .04、アンソフト'ジャパン株式会社製)を用いた。図 19に、電磁界シミュレータにおけ る電極のモデル形状の斜視図を示す。放電電極 40と対向電極 3とは、それぞれの主 表面の平面形状が、正方形になるように形成されている。放電電極 40と対向電極 3と は、互いの主表面同士がほぼ平行になるように配置された平行平板型電極である。 それぞれの電極の大きさは、 1200 X I 200 X 50mmとしている。放電電極 40と対向 電極 3との電極間の距離は、 30mmとしている。高周波の周波数は、 108. 5MHzで ある。
[0199] 放電電極 40の主表面には、一定の間隔をあけて給電棒 7が 9個形成されている。
給電棒 7は、棒状に形成され、給電棒 7の軸方向に沿って高周波が給電されるように 形成されている。給電棒 7は、断面の円形の直径が 50mmになるような円柱状に形 成されている。給電棒 7は、放電電極 40の平面形状である正方形の重心位置 (すな わち電極中心)を中心点 70としたときに、中心点 70を原点 (0, 0)として等間隔に配 置されている。
[0200] 図 19においては、 X方向および Y方向を放電電極 40の 1辺と平行な方向になるよう に形成した座標系にお 、て、 X方向に 300mmおよび Y方向に 300mmの間隔をあ けて、給電棒 7が等間隔に配置されている。給電棒 7は、放電電極 40の主表面のうち 、対向電極 3に向カゝぅ側と反対側の面に接続されている。
[0201] 実施の形態 4におけるインピーダンス可変手段は、放電電極 40からほぼ 100mm 離れた位置に配置されるように設定した。また、給電棒 7、放電電極 40および対向電 極 3は、電気的に導電性を有する導体に設定して、シミュレーションを行なっている。
[0202] 図 20に、給電位置を、 A点(X= 300mm, Y=Omm)、 B点(X=Omm, Y=Omm )、 C点 (X=— 300mm、 Y=Omm)と設定した場合に、それぞれの一点に対して給 電を行なった場合の、 X方向の高周波電界分布を示す。この高周波電界分布は、中 心点 (原点)を通って、 X方向に平行な断面におけるそれぞれの分布である。それぞ れの高周波電界分布は、最高値が 1となるように規格ィ匕されている。
[0203] 横軸が、中心点 (原点)からの X方向の距離であり、縦軸は電界強度である。図 20 に示すように、給電位置が中心点である B点である場合には、電界は、中心点を境界 にして、左右対称になるように形成されている。これに対して、給電位置を原点からず らすと、 A点または C点のグラフに示すように、ずらす位置に対応して高周波電界分 布のピークも移動することがわかる。すなわち、放電電極における給電位置を移動す ると、高周波電界分布のピークも給電位置の移動に追従して移動することがわかる。
[0204] このように、放電電極への給電位置を変化させることによって、電界分布を変動させ ることができる。すなわち、実施の形態 3においては、可動電気経路部材を移動させ ることにより、高周波電界分布を変化させることができ、実施の形態 4においては、可 変コンデンサ部の容量を変化させたり、可変コンデンサ部において一部の電気経路 を切断したりすることにより、高周波電界分布を変化させることができる。
[0205] 図 21に、本シミュレータのモデルにおいて、 9点の給電位置から、同位相で同時に 均一に給電を行なった場合 (ケース 1)と、 9点のそれぞれの位置力 個別に順に給 電を行なって電界強度の総和を計算した場合 (ケース 2)との高周波電界分布を示す [0206] 図 21に示すように、ケース 1に比べてケース 2の方力 高周波電界分布の均一性が 高いことがわかる。すなわち、ケース 1よりもケース 2の方力 直線に近い形状を有して いることが分かる。したがって、放電電極に対する給電位置を複数箇所形成した場合 、たとえば、高周波電気経路を分岐させて複数の給電位置に対して同時に給電を行 なう(ケース 1)よりも、給電を行なう位置を順に変更して給電を行なった方 (ケース 2) 力 全体の高周波電界分布を均一化できることが分力る。
[0207] 電界強度の時間積分値は、概ねプラズマ処理量に対応するため、給電位置を順次 変更して、高周波電界分布を変動させてプラズマ処理を行なうと、プラズマ処理量が 平均化されて、均一なプラズマ処理を行なうことができる。
[0208] 前述のように、プラズマ処理を行なっている際に、連続的に高周波電界分布を変動 させながらプラズマ処理を行なうことによって生じるプラズマ処理の均一化の効果は、 放電電極の放電面の最大寸法が、反応容器の内部に導入される高周波の半波長よ りも大きい場合において特に顕著になる。これは、放電電極と対向電極との間に形成 される高周波電界分布が、反転することに起因すると考えられる。次に、考えられる 理由について高周波電界分布を仮想的に形成したグラフを用いて説明する。
[0209] 図 22は、放電電極における一方向に等間隔をあけて、 A点力 F点まで給電位置 を変化させて順次プラズマ処理を行なった場合の高周波電界分布の断面図である。 この高周波は、高周波の半波長よりも電極の大きさの方が大きくなつている。高周波 の半波長よりも電極の大きさが大きいため、放電電極と対向電極の間においては、電 界が正になる領域と、電界が負になる領域とを有して 、る。
[0210] A点力 F点までの全ての点に対して、同時に給電を行なった場合には、正の電界 の成分と負の電界の成分と力 互いに打消し合うことになる。たとえば、図 22の向か つて右方において、 A点における給電の電界成分は負の値を有するが、 F点におけ る給電の電界成分は正の値を有するため、互いに打消される。これらの打消しの効 果を考慮した総和が、すべての位置から給電を行なった場合の高周波電界分布に なる。この高周波電界分布を図 22に、実線で示してある。
[0211] 図 22の実線に示すように、足し合わせた高周波電界分布は、電極中心を中心軸と してほぼ山型の形状を有する。 A点および F点などは、電極の両端において強い電 界強度を有するが、互いに打消されて電極の両端における電界強度は小さくなる。 なお、高周波電界分布の非対称性が強調され、高周波電界分布は大きいままである
。図 22の実線に示す高周波電界分布で、プラズマ処理を行なえば、足し合わせた高 周波電界分布に応じてプラズマ処理分布が生じることになる。すなわち電極中心付 近のプラズマ処理量が多くなり、電極の両端に向力うにつれて、プラズマ処理量が少 なくなる。
[0212] 次に、それぞれの給電位置に対して、順次給電を行なった場合におけるプラズマ 処理について検討する。プラズマ処理の処理量は、ある瞬間における電界の正また は負に依存せずに、絶対値である電界強度に依存する。
[0213] 図 23に、 A点力 F点までのそれぞれの給電位置に対して、個別に給電を行なつ ていた場合の電界強度の分布を示す。さらに、 A点から F点まで行なった給電を足し 合わせて規格化した高周波電界強度分布を実線にて示して!/、る。この高周波電界 強度分布は、たとえば、 A点、 B点、 C点…と、順次給電位置をずらしながら、プラズ マ処理を行なった場合のプラズマ処理分布に対応する。図 22における足し合わせた 高周波電界分布と比較すると、図 23における足し合わせた高周波電界強度分布は 、放電電極の位置にあまり依存せず、均一なプラズマ処理を行なえることがわかる。
[0214] すなわち、ある瞬間における電界分布が正負反転する程度、換言すれば、高周波 の半波長よりも電極の大きさが大きくなる程度であれば、特に顕著に高周波電界分 布の影響が大きくなり、プラズマ処理の均一化を行なう際に、高周波電界分布を変動 させる動的な処理を行なうことが有用になる。
[0215] なお、本シミュレーションにおいては、放電電極に対する給電位置を変動させて、 高周波電界分布を変動させたが、特にこの形態に限られず、実施の形態 1から実施 の形態 3に示したように、高周波電界分布を変動させても構わない。または、それぞ れの実施の形態における電磁界制御手段を組合せても構わない。
[0216] その他の作用、効果、およびプラズマ処理方法については、実施の形態 1と同様で あるのでここでは説明を繰返さな 、。
[0217] なお、今回開示した上記実施の形態はすべての点で例示であって制限的なもので はない。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求 の範囲と均等の意味および範囲内でのすべての変更を含むものである。
産業上の利用可能性
本発明は、高周波プラズマの反応を利用して、大型基板などの大型の被処理物の プラズマ処理を行なう高周波プラズマ処理装置または高周波プラズマ処理装置に有 利に適用されうる。

Claims

請求の範囲
[1] プラズマを形成するガス雰囲気を形成するための反応容器と、
前記反応容器の内部に配置された放電電極と、
前記反応容器の内部の高周波電界分布を制御するための電磁界制御手段と を備え、前記電磁界制御手段は、
前記反応容器の外側に配置され、電磁的に前記反応容器と連通して、外部への高 周波の漏洩を実質的に防ぐように形成された閉空間手段を含み、
前記閉空間手段の構成および前記閉空間手段の内部の構成のうち少なくとも一方 を変更することによって、前記高周波電界分布が変動するように形成された、高周波 プラズマ処理装置。
[2] 前記電磁界制御手段は、前記閉空間手段によって形成される電磁的な閉空間の 空間形状が変更可能に形成された、請求項 1に記載の高周波プラズマ処理装置。
[3] 前記電磁界制御手段は、前記閉空間手段の体積が変更可能に形成された、請求 項 2に記載の高周波プラズマ処理装置。
[4] 前記電磁界制御手段は、前記閉空間手段の電磁的な隔壁の少なくとも一部が移 動するように形成された、請求項 2に記載の高周波プラズマ処理装置。
[5] 前記電磁界制御手段は、前記反応容器に電磁的に連通する部分を除!、て、電磁 的に密閉された閉空間室を有し、前記閉空間室の内部に移動可能な電磁シールド 材が形成された、請求項 1に記載の高周波プラズマ処理装置。
[6] 前記電磁界制御手段は、前記反応容器に電磁的に連通する部分を除!、て、電磁 的に密閉された閉空間室を有し、前記閉空間室に出し入れが可能な電磁シールドシ ャッタが形成された、請求項 1に記載の高周波プラズマ処理装置。
[7] 前記電磁界制御手段は、前記閉空間手段の内部における平均的な比誘電率が変 更可能に形成された、請求項 1に記載の高周波プラズマ処理装置。
[8] 前記電磁界制御手段は、前記反応容器に電磁的に連通する部分を除!、て、電磁 的に密閉された閉空間室を有し、前記閉空間室の内部に、比誘電率が 1より大きい 液体を注入または排出できるように形成された、請求項 7に記載の高周波プラズマ処 理装置。
[9] 前記電磁界制御手段は、前記反応容器に電磁的に連通する部分を除!、て、電磁 的に密閉された閉空間室を有し、
前記閉空間室の内部に、比誘電率が 1より大きい固体誘電体が配置され、 前記固体誘電体は、前記閉空間室の内部で移動可能に形成された、請求項 1〖こ 記載の高周波プラズマ処理装置。
[10] 前記電磁界制御手段は、前記反応容器に電磁的に連通する部分を除いて、電磁 的に密閉された閉空間室を含み、
前記電磁的に連通する部分は、電気的な絶縁性を有する透過窓を有する、請求項 1に記載の高周波プラズマ処理装置。
[11] 前記透過窓の前記反応容器の内部の側に、前記放電電極が配置され、
前記透過窓の前記反応容器の外部の側に、前記高周波電源と電気的に接続され た伝播電極が配置され、
前記放電電極と前記伝播電極とが、前記透過窓を挟むように配置された、請求項 1 に記載の高周波プラズマ処理装置。
[12] 前記伝播電極は、平面視したときに前記放電電極よりも小さくなるように形成され、 前記伝播電極は、前記透過窓の表面に沿って移動可能に形成された、請求項 11 に記載の高周波プラズマ処理装置。
[13] 前記放電電極と前記共振器との間の高周波電気経路に、前記高周波電気経路の インピーダンスを変化させるインピーダンス可変手段が形成された、請求項 1に記載 の高周波プラズマ処理装置。
[14] 前記インピーダンス可変手段は、容量可変のコンデンサを含む、請求項 13に記載 の高周波プラズマ処理装置。
[15] 前記インピーダンス可変手段は、実質的に前記高周波電気経路を切断する機能を 有する請求項 13に記載の高周波プラズマ処理装置。
[16] 自動的に前記電磁界制御手段が駆動した後に、自動的にプラズマ処理動作を実 施する機能を有する、請求項 1に記載の高周波プラズマ処理装置。
[17] 前記電磁界制御手段は、プラズマ処理を行なっているときに、前記高周波電界分 布を変更できるように形成された、請求項 1に記載の高周波プラズマ処理装置。
[18] 前記電磁界制御手段は、前記高周波電界分布を連続的に変更できるように形成さ れた、請求項 17に記載の高周波プラズマ処理装置。
[19] 前記電磁界制御手段は、前記高周波電界分布の変化の速度を制御できるように形 成された、請求項 18に記載の高周波プラズマ処理装置。
[20] 前記電磁界制御手段は、前記高周波電界分布を繰り返して周期的に変動させるこ とができるように形成された、請求項 17に記載の高周波プラズマ処理装置。
[21] 前記電磁界制御手段は、プラズマ処理が行なわれる時間が、半周期の整数倍にな るように、前記高周波電界分布を変動するように形成された、請求項 20に記載の高 周波プラズマ処理装置。
[22] 前記放電電極は、放電面の最大寸法が、前記反応容器内に導入される高周波の 半波長よりも大きくなるように形成された、請求項 1に記載の高周波プラズマ処理装 置。
[23] プラズマを形成するガス雰囲気を形成するための反応容器と、
前記反応容器の内部に配置された放電電極と、
前記放電電極と高周波電源との間のインピーダンス整合を行なうための共振器お よび前記放電電極に接続された複数の予備電極と、
前記反応容器の内部の高周波電界分布を制御するための電磁界制御手段と を備え、前記電磁界制御手段は、
前記共振器と前記予備電極との間の複数の高周波電気経路のうち、少なくとも 1つ 以上の経路に、前記高周波電気経路のインピーダンスを変化させるインピーダンス 可変手段が形成された、高周波プラズマ処理装置。
[24] 前記インピーダンス可変手段は、容量可変のコンデンサを含む、請求項 23に記載 の高周波プラズマ処理装置。
[25] 前記インピーダンス可変手段は、実質的に前記高周波電気経路を切断する機能を 有する請求項 23に記載の高周波プラズマ処理装置。
[26] 自動的に前記電磁界制御手段が駆動した後に、自動的にプラズマ処理動作を実 施する機能を有する、請求項 23に記載の高周波プラズマ処理装置。
[27] 前記電磁界制御手段は、プラズマ処理を行なって 、るときに、前記高周波電界分 布を変更できるように形成された、請求項 23に記載の高周波プラズマ処理装置。
[28] 前記電磁界制御手段は、前記高周波電界分布を連続的に変更できるように形成さ れた、請求項 27に記載の高周波プラズマ処理装置。
[29] 前記電磁界制御手段は、前記高周波電界分布の変化の速度を制御できるように形 成された、請求項 28に記載の高周波プラズマ処理装置。
[30] 前記電磁界制御手段は、前記高周波電界分布を繰り返して周期的に変動させるこ とができるように形成された、請求項 27に記載の高周波プラズマ処理装置。
[31] 前記電磁界制御手段は、プラズマ処理が行なわれる時間が、半周期の整数倍にな るように、前記高周波電界分布を変動するように形成された、請求項 30に記載の高 周波プラズマ処理装置。
[32] 前記放電電極は、放電面の最大寸法が、前記反応容器内に導入される高周波の 半波長よりも大きくなるように形成された、請求項 23に記載の高周波プラズマ処理装 置。
[33] 複数回のプラズマ処理工程を含み、
プラズマを形成するガス雰囲気を形成するための反応容器の内部に放電電極を配 置して、高周波プラズマを発生させて処理を行なう高周波プラズマ処理方法におい て、
電磁的に前記反応容器と連通して、外部への高周波の漏洩を実質的に防ぐ機能 を有する閉空間手段を前記反応容器の外側に形成して、
前記複数回の前記プラズマ処理工程は、それぞれの前記プラズマ処理工程にお いて、前記閉空間手段の構成および前記閉空間手段の内部の構成のうち少なくとも 一方を変更することによって、前記反応容器の内部の高周波電界分布を調整して、 それぞれの前記高周波電界分布のプラズマによって処理を行なう工程を含む、高周 波プラズマ処理方法。
[34] 前記反応容器内に導入する高周波の半波長が、前記放電電極の放電面の最大寸 法よりも小さくなるようにして処理を行なう、請求項 33に記載の高周波プラズマ処理 方法。
[35] プラズマを形成するガス雰囲気を形成するための反応容器の内部に放電電極を配 置して、高周波プラズマを発生させて処理を行なう高周波プラズマ処理方法におい て、
電磁的に前記反応容器と連通して、外部への高周波の漏洩を実質的に防ぐ機能 を有する閉空間手段を前記反応容器の外側に形成して、
前記閉空間手段の構成および前記閉空間手段の内部の構成のうち少なくとも一方 を変更することによって、前記反応容器の内部の高周波電界分布を変動させながら 処理を行なう工程を含む、高周波プラズマ処理方法。
[36] 前記高周波電界分布を連続的に変動させながら処理を行なう工程を含む、請求項
35に記載の高周波プラズマ処理方法。
[37] 前記高周波電界分布の変動の速度を制御しながら処理を行なう工程を含む、請求 項 35に記載の高周波プラズマ処理方法。
[38] 前記高周波電界分布を周期的に変動させながら処理を行なう工程を含む、請求項
35に記載の高周波プラズマ処理方法。
[39] 前記高周波電界分布の変動を、変動周期の半周期の時間が、プラズマ処理に要 する時間を 1以上の整数で除した時間になるように行なう、請求項 38に記載の高周 波プラズマ方法。
[40] 前記反応容器内に導入する高周波の半波長が、前記放電電極の放電面の最大寸 法よりも小さくなるようにして処理を行なう、請求項 35に記載の高周波プラズマ処理 方法。
PCT/JP2005/012184 2004-07-29 2005-07-01 高周波プラズマ処理装置および高周波プラズマ処理方法 WO2006011336A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004222225A JP3896128B2 (ja) 2004-07-29 2004-07-29 高周波プラズマ処理装置および高周波プラズマ処理方法
JP2004-222225 2004-07-29

Publications (1)

Publication Number Publication Date
WO2006011336A1 true WO2006011336A1 (ja) 2006-02-02

Family

ID=35786087

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/012184 WO2006011336A1 (ja) 2004-07-29 2005-07-01 高周波プラズマ処理装置および高周波プラズマ処理方法

Country Status (2)

Country Link
JP (1) JP3896128B2 (ja)
WO (1) WO2006011336A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102197464A (zh) * 2008-11-18 2011-09-21 东京毅力科创株式会社 等离子体处理装置
WO2021173225A1 (en) * 2020-02-28 2021-09-02 Applied Materials, Inc. Shunt door for magnets in a plasma chamber

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4838612B2 (ja) * 2006-03-28 2011-12-14 東京エレクトロン株式会社 プラズマ処理装置
WO2009059640A1 (en) * 2007-11-08 2009-05-14 Applied Materials Inc., A Corporation Of The State Of Delaware Electrode arrangement with movable shield
CN101911840B (zh) * 2007-12-25 2013-04-17 应用材料公司 用于等离子体室的电极的非对称性射频驱动装置
JP5584412B2 (ja) * 2008-12-26 2014-09-03 株式会社メイコー プラズマ処理装置
JP6554055B2 (ja) * 2016-03-22 2019-07-31 富士フイルム株式会社 プラズマ生成装置、プラズマ生成方法およびプラズマ処理方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63243277A (ja) * 1987-03-31 1988-10-11 Hitachi Ltd プラズマ成膜装置
JPH04128393A (ja) * 1990-09-19 1992-04-28 Yuuha Mikakutou Seimitsu Kogaku Kenkyusho:Kk ラジカル反応による無歪精密加工装置
JPH06333697A (ja) * 1993-05-21 1994-12-02 Hitachi Ltd マイクロ波プラズマ処理装置
JPH0757894A (ja) * 1993-08-20 1995-03-03 Mitsubishi Heavy Ind Ltd マイクロ波による放電発生方法及び装置
JPH0757892A (ja) * 1993-08-09 1995-03-03 Yuuha Mikakutou Seimitsu Kogaku Kenkyusho:Kk 高周波電力供給装置
JPH11340150A (ja) * 1998-05-29 1999-12-10 Mitsubishi Heavy Ind Ltd プラズマ化学蒸着装置
JP2002359232A (ja) * 2001-05-31 2002-12-13 Tokyo Electron Ltd プラズマ処理装置
JP2003224000A (ja) * 2002-01-30 2003-08-08 Alps Electric Co Ltd プラズマ処理装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63243277A (ja) * 1987-03-31 1988-10-11 Hitachi Ltd プラズマ成膜装置
JPH04128393A (ja) * 1990-09-19 1992-04-28 Yuuha Mikakutou Seimitsu Kogaku Kenkyusho:Kk ラジカル反応による無歪精密加工装置
JPH06333697A (ja) * 1993-05-21 1994-12-02 Hitachi Ltd マイクロ波プラズマ処理装置
JPH0757892A (ja) * 1993-08-09 1995-03-03 Yuuha Mikakutou Seimitsu Kogaku Kenkyusho:Kk 高周波電力供給装置
JPH0757894A (ja) * 1993-08-20 1995-03-03 Mitsubishi Heavy Ind Ltd マイクロ波による放電発生方法及び装置
JPH11340150A (ja) * 1998-05-29 1999-12-10 Mitsubishi Heavy Ind Ltd プラズマ化学蒸着装置
JP2002359232A (ja) * 2001-05-31 2002-12-13 Tokyo Electron Ltd プラズマ処理装置
JP2003224000A (ja) * 2002-01-30 2003-08-08 Alps Electric Co Ltd プラズマ処理装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102197464A (zh) * 2008-11-18 2011-09-21 东京毅力科创株式会社 等离子体处理装置
WO2021173225A1 (en) * 2020-02-28 2021-09-02 Applied Materials, Inc. Shunt door for magnets in a plasma chamber
US11959174B2 (en) 2020-02-28 2024-04-16 Applied Materials, Inc. Shunt door for magnets in plasma process chamber

Also Published As

Publication number Publication date
JP2006040810A (ja) 2006-02-09
JP3896128B2 (ja) 2007-03-22

Similar Documents

Publication Publication Date Title
KR101891445B1 (ko) 플라즈마 처리 장치 및 그것에 이용하는 배기 구조
EP1617457B1 (en) Ultra high speed uniform plasma processing system
KR102121655B1 (ko) 플라즈마 처리 장치
KR100530821B1 (ko) 플라즈마 처리 장치
JP4826483B2 (ja) プラズマ処理装置
JP3792089B2 (ja) プラズマプロセス装置
WO2006011336A1 (ja) 高周波プラズマ処理装置および高周波プラズマ処理方法
JP5013393B2 (ja) プラズマ処理装置と方法
KR100884413B1 (ko) 플라즈마 처리 장치
KR101672856B1 (ko) 플라즈마 처리 장치
KR101925972B1 (ko) 플라즈마 처리 장치 및 이에 이용되는 배기 구조
JP2006041539A (ja) デュアル反応チャンバプラズマ処理装置
US20090288773A1 (en) Multiple-electrode plasma processing systems with confined process chambers and interior-bussed electrical connections with the electrodes
TWI284367B (en) Inductor-coupled plasma processing device
KR101290832B1 (ko) 기판 처리 장치 및 반도체 장치의 제조 방법
KR102021169B1 (ko) 기판 처리 장치
JP2007103519A (ja) プラズマ処理装置と方法
CN103187234B (zh) 一种用于等离子体处理装置的可调节约束装置
KR101892958B1 (ko) 플라즈마 처리 장치
KR101747490B1 (ko) 진공 장치 및 밸브 제어 방법
JP2007048748A (ja) 真空反応室及びその処理方法
CN101267708B (zh) 等离子处理装置及等离子处理方法
KR100994463B1 (ko) 플라즈마 처리장치
KR101902095B1 (ko) 플라즈마 처리 장치
JP2010272551A (ja) 基板処理装置及び基板処理方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase