WO2006009227A1 - 光ディスク装置 - Google Patents

光ディスク装置 Download PDF

Info

Publication number
WO2006009227A1
WO2006009227A1 PCT/JP2005/013425 JP2005013425W WO2006009227A1 WO 2006009227 A1 WO2006009227 A1 WO 2006009227A1 JP 2005013425 W JP2005013425 W JP 2005013425W WO 2006009227 A1 WO2006009227 A1 WO 2006009227A1
Authority
WO
WIPO (PCT)
Prior art keywords
tilt
optical disc
optical disk
optical
disk device
Prior art date
Application number
PCT/JP2005/013425
Other languages
English (en)
French (fr)
Inventor
Kenji Kondo
Shin-Ichi Yamada
Yasumori Hino
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to JP2006529284A priority Critical patent/JP4330629B2/ja
Priority to CN2005800322979A priority patent/CN101027722B/zh
Priority to US11/572,429 priority patent/US8098555B2/en
Publication of WO2006009227A1 publication Critical patent/WO2006009227A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0945Methods for initialising servos, start-up sequences
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/095Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following specially adapted for discs, e.g. for compensation of eccentricity or wobble
    • G11B7/0956Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following specially adapted for discs, e.g. for compensation of eccentricity or wobble to compensate for tilt, skew, warp or inclination of the disc, i.e. maintain the optical axis at right angles to the disc
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1392Means for controlling the beam wavefront, e.g. for correction of aberration
    • G11B7/13925Means for controlling the beam wavefront, e.g. for correction of aberration active, e.g. controlled by electrical or mechanical means
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B2007/0003Recording, reproducing or erasing systems characterised by the structure or type of the carrier
    • G11B2007/0009Recording, reproducing or erasing systems characterised by the structure or type of the carrier for carriers having data stored in three dimensions, e.g. volume storage
    • G11B2007/0013Recording, reproducing or erasing systems characterised by the structure or type of the carrier for carriers having data stored in three dimensions, e.g. volume storage for carriers having multiple discrete layers

Definitions

  • the present invention relates to an optical disc apparatus that reproduces a signal on an optical disc (including various types of optical discs for reproduction and recording / reproducing) by using a light source such as a laser.
  • the present invention relates to an optical disc apparatus having coma aberration correcting means for correcting coma aberration.
  • the angle at which the data surface of the optical disc deviates from the direction perpendicular to the optical axis of the light beam applied to the optical disc is called a tilt angle, and tilt occurs when the tilt angle is not zero.
  • the tilt generated in optical discs and optical disc devices causes noticeable deterioration of recording or playback signal jitter, making it difficult to ensure performance.
  • FIG. 7 is a schematic diagram showing how the intensity distribution of the light beam projected onto the data surface of the optical disk changes due to the occurrence of tilt.
  • FIG. 8 is a characteristic diagram showing the tilt generated and the jitter and error rate of the reproduced signal at that time. As can be seen from FIG. 7 and FIG. 8, coma occurs due to tilt, and as a result, the jitter of the reproduced signal deteriorates and the error rate increases.
  • FIG. 9 is a block diagram showing a configuration of a conventional optical disc apparatus.
  • an optical head 100 includes a light source 101, a collimator lens 102, a polarization beam splitter 103, a 1Z4 wavelength plate 104, an objective lens 105, a condenser lens 107, and a detector.
  • the light source 101 emits a light beam to the data surface of the optical disc 106.
  • Light source 101 emits a light beam to the data surface of the optical disc 106.
  • a semiconductor laser element For example, a semiconductor laser element.
  • the collimator lens 102 converts a light beam (diverged light) emitted from the light source 101 into parallel light.
  • the polarization beam splitter 103 totally reflects the linearly polarized light of the light beam emitted from the light source 101, and totally transmits the linearly polarized light in the direction orthogonal to the linearly polarized light of the light beam emitted from the light source 101. It is.
  • the 1Z4 wavelength plate 104 is an optical element that converts the polarization of transmitted light from circularly polarized light to linearly polarized light, or from linearly polarized light to circularly polarized light.
  • the objective lens 105 focuses the light beam on the data surface of the optical disk 106.
  • the condensing lens 107 condenses the light beam transmitted through the polarization beam splitter 103 on the detector 108.
  • the detector 108 is an element that converts received light into an electrical signal, and has a plurality of regions.
  • the preamplifier 109 is an electric element that converts an output current from each region of the detector 108 into a voltage.
  • the FE signal generation unit 110 is an electric circuit that generates a focus error signal (FE signal) corresponding to the convergence state of the light beam on the data surface of the optical disc 106 from a plurality of output signals of the preamplifier 109.
  • the focus control unit 111 is a circuit that outputs a focus control signal based on the signal from the FE signal generation unit 910.
  • the focus driver 112 is a circuit that outputs a focus actuator drive signal based on the focus control signal.
  • the focus actuator 113 is an element that moves the objective lens 105 in a direction perpendicular to the data surface of the optical disk 106 (hereinafter, this direction is referred to as a focus direction).
  • the The chinolet sensor 900 includes a light source 901 and a detector 902.
  • the light source 901 emits a light beam with respect to the data surface of the optical disc 106.
  • a light emitting diode For example, a light emitting diode.
  • the detector 902 is an element that receives an optical beam emitted from the light source 901 and reflected by the data surface of the optical disc 106, and converts it into an electrical signal, and has a plurality of regions.
  • the tilt signal generation unit 903 is an electric circuit that generates a tilt signal corresponding to the tilt between the data surface of the optical disc 106 and the optical axis based on the output signal from the detector 902.
  • the tilt control unit 904 is a circuit that outputs a tilt control signal based on the tilt signal.
  • the tilt drive unit 905 is a circuit that outputs a tilt actuator drive signal based on a signal output from the tilt control unit 904.
  • the tilt actuator 906 is an element that tilts the optical axis of the light beam applied to the optical disc 106 by tilting the optical head 100.
  • the linearly polarized light of the light beam emitted from the light source 101 is incident on the collimator lens 102 and converted into parallel light by the collimator lens 102.
  • the light beam that has been collimated by the collimator lens 102 is incident on the polarization beam splitter 103.
  • the light beam reflected from the polarization beam splitter 103 is circularly polarized by the 1Z4 wavelength plate 104.
  • the light beam that has been circularly polarized by the 1Z4 wavelength plate 104 is incident on the objective lens 105 and converged on the optical disk 106.
  • the light beam reflected by the optical disk 106 passes through the polarization beam splitter 103 and enters the condenser lens 107.
  • the light beam incident on the condenser lens 107 is incident on the detector 908.
  • the light beam incident on the detector 908 is converted into an electric signal in each region.
  • the electric signal converted in each area of the detector 908 is converted into a voltage by the preamplifier 909.
  • the plurality of output signals of the preamplifier 909 are calculated into FE signals by the FE generator 910.
  • the FE signal that is an output signal from the FE generation unit 910 is input to the focus control unit 111, and includes, for example, a phase compensation circuit and a low-frequency compensation circuit configured by a digital filter by a digital signal processor (hereinafter referred to as DSP).
  • DSP digital signal processor
  • the A focus drive signal from the focus control unit 111 is input to the focus drive unit 112, amplified, and output to the focus actuator 113.
  • the focus control is performed to control the convergence state of the light beam on the data surface of the optical disc 106 so as to always be a predetermined convergence state.
  • the light beam emitted from the light source 901 to the optical disc 106 is reflected by the optical disc 106 and enters the detector 902.
  • the light beam incident on the detector 902 is converted into an electric signal in each region.
  • a plurality of output signals from the detector 902 are calculated as tilt signals by a tilt signal generation unit 903.
  • the tilt signal which is an output signal from the tilt signal generation unit 903, is input to the tilt control unit 904, and passes through a phase compensation circuit and a low-frequency compensation circuit configured by a digital filter using a DSP as in the focus control system.
  • Tilt drive signal Tilt drive signal.
  • the tilt drive signal from the tilt control unit 904 is input to the tilt drive unit 905, amplified, and output to the tilt actuator 906.
  • the conventional tilt control has the following problems.
  • the tilt sensor 900 In tilt detection using the tilt sensor 900, it is difficult in terms of spatial arrangement to match the detection position by the tilt sensor 900 with the position of the light beam irradiated on the data surface of the optical disc 106. This is because the optical head (in particular, the objective lens 105) is always present vertically below the irradiation position on the data surface of the light beam. For this reason, the tilt sensor 900 detects the tilt of the optical disc 106 at a certain distance from the light beam position. As a result, when the data surface of the optical disk 106 has a curved surface, the tilt sensor 900 cannot accurately detect the tilt at the light beam position, and cannot perform accurate tilt control. Occurs.
  • the tilt actuator 906 is a mechanism for tilting the optical head 100, it is difficult to reduce the size of the optical disc apparatus.
  • the tilt sensor itself increases the cost of the optical disc apparatus.
  • the present invention has been made to solve at least one of the above-described problems, and includes an optical disc apparatus including a tilt detection unit that uses a focus drive signal and a tilt correction unit that performs tilt correction by tilting the lens 106. Is to provide.
  • the optical disk apparatus of the present invention includes an optical head that irradiates an optical disk with a light beam, an optical head moving unit that moves the optical head in a radial direction of the optical disk, and a diameter of the light beam on the optical disk.
  • a coma aberration correcting unit that corrects coma in the direction and a tilt detecting unit that detects a tilt in the radial direction of the optical disc.
  • the correction amount of the coma aberration correcting unit is a predetermined amount regardless of the position of the optical head.
  • the predetermined value is the head movement.
  • the optical head is moved over a predetermined moving range by a moving means, and is determined based on an intermediate value between the maximum value and the minimum value of the tilt detected by the tilt detecting means within the predetermined moving range. .
  • the predetermined movement range is a range between a substantially innermost position of the optical disc and a substantially outermost position of the optical disc, and the predetermined value is a value before the substantially innermost position of the optical disc.
  • the tilt may be determined based on an intermediate value between the tilt detected by the tilt detector and the tilt position detected by the tilt detector.
  • the optical disk has a plurality of data layers, and the correction amount of the coma aberration correcting unit may be a predetermined value for each data layer regardless of the position of the optical head.
  • the optical disc apparatus of the present invention further comprises aberration correction means for correcting aberrations other than the radial coma of the light beam on the optical disc, and the coma aberration correction means corrects the coma aberration.
  • the aberration correction means may be configured to correct aberrations other than coma aberration.
  • the aberration correction means may include spherical aberration correction means for correcting spherical aberration.
  • the optical disk apparatus of the present invention starts up the optical disk apparatus, if the inclination of the optical disk detected by the tilt detection means exceeds a predetermined angle, the optical disk apparatus is restarted. It may be configured.
  • the reactivation of the optical disc device may be performed based on the tilt of the optical disc detected by the tilt detection means at the outer peripheral position of the optical disc.
  • the optical disc apparatus of the present invention further includes a correction amount determination unit that determines a correction amount of the coma aberration correction unit based on the tilt of the optical disk detected by the tilt detection unit, If the correction amount determined by the correction amount determination means exceeds a predetermined value when starting up, the optical disk device may be restarted.
  • the tilt of the optical disc detected by the tilt detection means again exceeds a predetermined angle during the restart of the optical disc device. In such a case, the recording operation by the optical disk device may be prohibited.
  • the correction amount determined by the correction amount determination means when the correction amount determined by the correction amount determination means again exceeds a predetermined value during the restart of the optical disc device, the recording operation by the optical disc device is performed. It is configured to ban.
  • the optical disc apparatus of the present invention includes an optical head that irradiates an optical disc with a light beam, an optical head moving unit that moves the optical head in a radial direction of the optical disc, and a radial direction of the light beam on the optical disc.
  • Coma aberration correcting means for correcting the coma aberration of the optical disk, and tilt detecting means for detecting the tilt in the radial direction of the optical disc.
  • the correction amount of the coma aberration correcting means depends on the position of the optical head by the optical head moving means. It is a predetermined value. Thereby, the correction amount of the coma aberration correcting means does not change according to the change in the position of the optical head. As a result, it is possible to shorten the access time of the optical head and improve the performance of the optical disc apparatus.
  • the predetermined value is obtained by moving the optical head over a predetermined moving range by the optical head moving unit, and the maximum value of the tilt detected by the tilt detecting unit within the predetermined moving range and It is determined based on the intermediate value of the minimum values.
  • the tilt margin becomes the widest as an optical disk device, and an optically good light spot can always be realized over the entire circumference of the optical disk. As a result, it is possible to improve the reliability of the recording / reproducing operation of the optical disc apparatus.
  • the predetermined movement range may be a range between a substantially innermost position of the optical disc and a substantially outermost position of the optical disc.
  • the predetermined value is detected by the tilt detecting means at the substantially innermost position of the optical disc and detected by the tilt detecting means at the substantially innermost position of the optical disc. It is determined on the basis of an intermediate value with the inclination of the optical disk. As a result, the tilt detection time can be shortened, and the startup time of the optical disk device can be shortened. As a result, the performance of the optical disk device can be improved.
  • the optical disc may have a plurality of data layers.
  • the frame The correction amount of the difference correction means is a predetermined value for each data layer regardless of the position of the optical head.
  • the optical disc apparatus of the present invention further includes an aberration correction unit that corrects aberrations other than the radial coma of the light beam on the optical disc, and the coma aberration correction unit corrects the coma aberration.
  • the aberration correction means corrects aberrations other than coma.
  • the tilt margin of the optical disk device is widened, and aberrations other than coma generated by coma aberration correction can be corrected.
  • the reliability of the recording / reproducing operation of the optical disc apparatus can be improved.
  • the optical disc apparatus of the present invention is configured such that the aberration correction means includes spherical aberration correction means for correcting spherical aberration.
  • the tilt margin can be widened as an optical disc apparatus, and spherical aberration generated by coma aberration correction can be corrected.
  • the reliability of the recording / reproducing operation of the optical disc apparatus can be improved.
  • the optical disc apparatus of the present invention starts up the optical disc apparatus, if the tilt of the optical disc detected by the tilt detecting means exceeds a predetermined angle, the optical disc apparatus is restarted. It is configured. As a result, it is possible to start the optical disk apparatus avoiding the influence of the thermal shock tilt. As a result, the reliability of the recording / reproducing operation of the optical disc apparatus can be improved.
  • the optical disc apparatus of the present invention is configured to restart the optical disc apparatus based on the tilt of the optical disc detected by the tilt detection means at the outer peripheral position of the optical disc. As a result, it is possible to start up the optical disk apparatus avoiding the influence of the thermal shock tilt. As a result, the reliability of the recording / reproducing operation of the optical disc apparatus can be improved.
  • the optical disc apparatus of the present invention further comprises correction amount determination means for determining a correction amount of the coma aberration correction means based on the tilt of the optical disk detected by the tilt detection means, and the optical disc apparatus comprises If the correction amount determined by the correction amount determination means exceeds a predetermined value when starting up, restart the optical disc device. It is configured as follows. As a result, it becomes possible to start the optical disk apparatus while avoiding the influence of the thermal shock tilt. As a result, it becomes possible to improve the reliability of the recording / reproducing operation of the optical disc apparatus.
  • the optical disc device of the present invention when the tilt of the optical disc detected by the tilt detection means again exceeds a predetermined angle during the restart of the optical disc device, the recording operation by the optical disc device is performed. Is prohibited. This makes it possible to prevent excessive light emission of the light source. As a result, the performance of the optical disc apparatus can be improved.
  • the optical disc apparatus of the present invention performs recording by the optical disc apparatus when the correction amount determined by the correction amount determination means again exceeds a predetermined value during restart of the optical disc apparatus. Prohibit operation. Thereby, it is possible to prevent excessive light emission of the light source. As a result, it is possible to improve the performance of the optical disc apparatus.
  • FIG. 1 is a block diagram of an optical disc device according to a first embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing the relative position between the data surface of the tilted optical disk 106 and the objective lens 105, and the relationship between the position of the optical head and the focus drive signal in Embodiment 1 of the present invention.
  • FIG. 3 is a schematic diagram showing coma aberration correction operation by the objective lens 105 in Embodiment 1 of the present invention.
  • FIG. 4 is a flowchart showing a start-up procedure of the apparatus including correction of coma aberration and spherical aberration in Embodiment 1 of the present invention.
  • FIG. 5 is a schematic diagram for explaining a procedure for calculating a lens tilt driving value for correcting coma aberration in the first embodiment of the present invention.
  • FIG. 6 is a characteristic diagram showing the time characteristic of the thermal shock tilt in Embodiment 1 of the present invention.
  • FIG. 7 is a schematic diagram showing a change in intensity distribution of a light beam on an optical disk when tilt occurs, for explaining the conventional technique.
  • FIG. 8 shows a disc tilt amount when a tilt occurs, for explaining the conventional technique. And characteristic chart showing the jitter and error rate of the reproduced signal at that time
  • FIG. 9 is a block diagram of a conventional optical disc apparatus.
  • FIG. 10 is a block diagram of an optical disc device according to a second embodiment of the present invention.
  • FIG. 11 is a schematic diagram showing the base material thickness of a double-layer DVD-ROM disc and the base material thickness of a double-layer Blu-ray Disc in Embodiment 2 of the present invention.
  • FIG. 1 is a block diagram showing a configuration of the optical disc apparatus according to the first embodiment.
  • the same parts as those in the conventional optical disk apparatus are denoted by the same reference numerals, and description thereof is omitted.
  • an adder 114 is an electric circuit that adds a focus drive signal and an output from a microcomputer 116 (hereinafter referred to as a microcomputer).
  • the subtractor 115 is an electric circuit that subtracts the force driving signal and the output from the microcomputer 116 (hereinafter referred to as a microcomputer).
  • the first focus drive unit 112a is a circuit that outputs a focus actuator drive signal based on the output signal from the adder 114.
  • the second focus driving unit 112b is a circuit that outputs a focus actuator driving signal based on the output signal from the subtractor 115.
  • the first focus actuator 113a and the second focus actuator 113b are mounted symmetrically in the radial direction of the optical disc 106 with the objective lens 105 interposed therebetween.
  • the first focus actuator 113b The second focus actuator is an element that moves the inner peripheral side of the objective lens 105 in the focus direction.
  • the memory 117 is a storage circuit that stores data.
  • the collimator lens transfer motor drive unit 118 is a circuit that amplifies and outputs a collimator lens transfer motor drive signal that also outputs the microcomputer 116 force.
  • the collimator lens transfer motor 119 is an element that moves the collimator lens 102 in parallel to the direction of the light beam.
  • the transfer motor drive unit 120 is a circuit that amplifies and outputs a transfer motor drive signal output from the microcomputer 116.
  • the transfer motor 121 is an optical head 100 Is an element that moves the optical disk 106 in the radial direction of the optical disk 106.
  • the optical head 100 includes the light source 101, the collimator lens 102, the polarization beam splitter 103, the 1Z4 wavelength plate 104, the objective lens 105, the condenser lens 107, the detector 108, and the focus.
  • the actuators 113a and 113b and a collimator lens transfer motor 119 are included.
  • the optical head moving means includes a microcomputer 116, a transfer motor drive unit 120, and a transfer motor 121.
  • the coma aberration correcting means includes a microcomputer 116, an adder 114, a subtractor 115, focus drive units 112a and 112b, focus actuators 113a and 113b, and an objective lens 105.
  • the tilt detection means includes an optical head 100, a preamplifier 109, an FE generation unit 110, a focus control unit 111, a microcomputer 116, a memory 117, an adder 114, a subtractor 115, focus drive units 112a and 112b, and an optical head moving unit. It is constituted by.
  • the aberration correction means is constituted by a microcomputer 116, a collimator lens transfer motor drive unit 118, a collimator lens transfer motor 119, and a collimator lens 102.
  • the light beam emitted from the light source 101 enters the objective lens 105 through the collimator lens 102, the polarization beam splitter 103, and the 1Z4 wavelength plate 104, and the optical disk. Converge on 106.
  • the light beam reflected by the optical disk 106 is incident on the detector 108 through the polarization beam splitter 103 and the condenser lens 107.
  • the light beam incident on the detector 108 is converted into an electric signal in each region.
  • the electrical signal converted in each area of the detector 108 is converted into a voltage by the preamplifier 109.
  • a plurality of output signals of the preamplifier 109 are calculated into FE signals by the FE generator 110.
  • the FE signal which is an output signal from the FE generation unit 110, is input to the focus control unit 111, passes through the phase compensation circuit and the low frequency compensation circuit, and becomes a focus drive signal.
  • the focus drive signal from the focus control unit 111 and the output signal from the microcomputer 116 are added by the adder 114.
  • the output signal from the adder 114 is input to the first focus driver 112a, amplified, and output to the first focus actuator 113a.
  • the focus drive signal from the focus control unit 111 is input to the positive terminal of the subtractor 115, and the output signal from the microcomputer 116 is input to the negative terminal of the subtractor 115 and subtracted. Results are output.
  • the output signal from the subtractor 115 is input to the second focus driver 112b, amplified, and output to the second focus actuator 113b.
  • focus control for controlling the convergence state of the light beam on the data surface of the optical disc 106 so as to always become a predetermined convergence state is realized.
  • the inclination of the axis of the light beam with respect to the data surface of the optical disc can be divided into components in the radial direction of the optical disc and in the circumferential direction of the optical disc.
  • the reproduction signal processing circuit is configured so that the influence of the tilt of the circumferential component is generally removed by signal processing.
  • the tilt in the radial direction of the optical disk is handled.
  • the tilt in the radial direction (radial tilt) of the optical disc is simply referred to as tilt.
  • FIG. 2 (a) is a schematic diagram showing the relative positions of the objective lens 105 and the data surface of the optical disc 106 when the optical disc 106 is tilted.
  • FIG. 2 (b) is a schematic diagram showing the relationship between the position of the optical head (hereinafter referred to as the radial position) with respect to the radial direction of the optical disc and the focus drive signal value at the radial position.
  • the focus control operation is performed by driving the focus actuator so that the light beam is always in a predetermined convergence state on the data surface of the optical disc 106. Therefore, during the focus control, the distance between the data surface of the optical disk 106 and the objective lens 105 is constant (L) regardless of the radial position.
  • the position of the objective lens 105 changes correspondingly, so the difference in the position of the objective lens 105 at the radial positions dl and d2 is Zr.
  • This Zr is equal to the height difference Zd of the data surface at the radial positions dl and d2 of the optical disk 106. Since the inclination ⁇ d of the disc with respect to the horizontal plane and the angle ⁇ r between the horizontal plane and the line connecting the position of the object lens 105 at the radial positions dl and d2 are equal, the difference R between Zr and the radial positions d 1 and d2 The slope of the 106 data plane can be obtained by the following equation (1).
  • the change in the focus drive signal value with respect to the radial position is substantially equivalent to the change in the amount of warping of the data surface in the radial direction. Therefore, the tilt can be detected by using this relationship and detecting the focus drive signal value for each predetermined radial position.
  • the first focus actuator 113a and the second focus actuator 113b are attached symmetrically in the radial direction of the optical disc 106 with the objective lens 105 interposed therebetween.
  • the first focus actuator 113 a is attached to the outer peripheral side of the objective lens 105
  • the second focus actuator 113 b is attached to the inner peripheral side of the objective lens 105.
  • both ends of the objective lens 105 are in the focus direction (shown in the figure). Displace by the same amount FO in the vertical direction.
  • the microcomputer inputs the signals input from the focus control unit 111 to the first focus drive unit 112a and the second focus drive unit 112b via the adder 114 and the subtractor 115.
  • the microcomputer inputs the signals input from the focus control unit 111 to the first focus drive unit 112a and the second focus drive unit 112b via the adder 114 and the subtractor 115.
  • the tilt of the objective lens 105 (hereinafter referred to as a lens tilt) can be operated.
  • the lens tilt drive signal gives a difference to the input signals to the first focus drive unit 112a and the second focus drive unit 112b to generate a lens tilt in the radial direction, whereby the optical disc 106 has a radial direction. It is possible to cancel coma aberration generated by tilting.
  • VI is expressed by the following equation (5) using equations (3) and (4).
  • Vl Kf / KlXVf / R (5)
  • the coma aberration can be reduced by determining the lens tilt drive value VI using the focus drive value difference Vf that is the result of detecting the tilt. Become.
  • a blue-violet laser having a wavelength of 405 nm is used as the light source 101.
  • the objective lens 105 With a numerical aperture (NA) of 0.85, the density of the optical disk is increased. At this time, if the objective lens 105 is realized with a single lens, the lens thickness must be increased in order to achieve a high NA of 0.85.
  • the tilt detection described above cannot always be detected due to its nature. For this reason, when there is a temperature difference between the optical disk 106 and the optical disk device, the tilt changes rapidly in a short time when the optical disk is inserted into the device. There is a problem. Therefore, it is difficult to ensure the performance of the device due to these problems.
  • FIG. 4 is a flowchart showing a series of procedures during the activation of the apparatus. The flowchart will be described below.
  • step S3 If it is determined in step S3 that the thermal shock tilt is detected, it is determined whether or not it is the first time that the thermal shock tilt is determined (S7). If this is the first time, the start-up of the device is interrupted and a certain time is waited (S8). Then start over from step SO. If it is determined in step S7 that it is the second time, the mode is set to prohibit the recording operation (S9). Thereafter, steps S4 to S6 are executed.
  • step S1 will be described with reference to FIG.
  • Fig. 5 (a) shows the shape of the disk to be tilt-detected and the focus drive value for detection. It is the schematic diagram which showed the setting of the detection radius position.
  • the microcomputer 116 sequentially moves the optical head 100 to the detection radius positions A to D by the optical head moving means, detects the force driving value at each radial position, and stores it in the memory 117.
  • the focus drive value detection result is shown in Fig. 5 (b).
  • the microcomputer 116 calculates the tilt at the substantially innermost circumference and the substantially outermost circumference from the detection result of the focus drive value stored in the memory 117 using the formula (3), and stores the calculated tilt in the memory 117.
  • the result of tilt detection is shown in Fig. 5 (c).
  • step S 2 will be described with reference to FIG.
  • the microcomputer 116 calculates an intermediate value between the tilts of the substantially innermost circumference and the substantially outermost circumference from the tilt detection result in step S1. Further, the lens tilt drive value is calculated from the calculated intermediate value of tilt and Equation (5).
  • step S3 will be described.
  • the thermal shock tilt has a time characteristic as shown in FIG. 6, and the tilt change on the outer periphery becomes very large. Therefore, (determination 1) the absolute value of the substantially outermost tilt detected in step S1 is larger than the predetermined value, and (determination 2) the absolute value of the lens tilt drive value calculated in step S2 is larger than the predetermined value. If any one of these forces satisfies the judgment, it is judged as thermal shock tilt.
  • step S 5 will be described.
  • the microcomputer 116 moves the head to the test zone by the optical head moving means. If no signal is recorded in the test zone, record it.
  • the signal output from the microcomputer 116 to the signal collimator lens transfer motor drive unit 118 and the signal amplified by the collimator lens transfer motor drive unit 118 drives the collimator transfer motor 119 to change the position of the collimator lens 102.
  • the distance between the collimator lens 102 and the light source 101 changes, the light emitted from the collimator lens 102 changes to a parallel light divergent light and a convergent light. The spherical aberration on the surface will change.
  • the microcomputer 116 reproduces the recorded signal by changing the position of the collimator lens 102, and detects the jitter of the reproduced signal (not shown), thereby adjusting the spherical aberration so that the reproduction jitter becomes the best. be able to.
  • the aberration caused by the lens tilt generally increases with the characteristic of the function of the second order or higher with respect to the lens tilt. For this reason, even if the spherical aberration is corrected as in the present embodiment, other aberrations are generated and the light spot is optically degraded. If appropriate recording is attempted in this state, there is a limit to the increase in the light emission power of the semiconductor laser, which is a force light source that compensates for the deterioration caused by aberrations by the increase in recording power. Therefore, in order to protect the light source, it is necessary to prevent the recording operation when the lens tilt as the optical disk apparatus exceeds a predetermined angle.
  • the tilt margin is always widened as an optical disc apparatus.
  • the lens tilt for correcting coma aberration is not changed depending on the radial position, and in the search operation in which the position of the optical head 100 changes greatly, the spherical aberration is corrected corresponding to the change of the lens tilt. Therefore, the search operation execution time is shortened and the performance of the optical disc apparatus is improved.
  • the tilt detection is performed only at the substantially innermost circumference and the substantially outermost circumference, the tilt detection time is shortened, that is, the startup time of the optical disk apparatus is shortened, and the performance of the optical disk apparatus is improved.
  • the thermal shock tilt is determined when the apparatus is started up. If it is determined that the thermal shock tilt has occurred, it is configured to wait until it is settled. Enables start-up without impact and improves the reliability of recording and playback operations of optical disc devices [0110] Furthermore, even if the influence of thermal shock tilt is avoided, if the lens tilt for correcting the disc tilt or coma aberration is large, the recording operation is prohibited after the device is started, so the light source can be protected. The performance of the optical disk device is improved.
  • the operation procedure at the time of starting the apparatus has been described as an example.
  • the present invention is not limited by the timing of executing the series of operations. For example, if the tilt detection is performed again after startup in order to follow the time change of the tilt and the lens tilt is changed according to the result, the same series of operations described above can be used to solve the problem. An effect is obtained.
  • the calculation of the lens tilt driving value is obtained from the intermediate value of the tilt detected at the substantially innermost and outermost circumferences, and the intermediate value force between the maximum value and the minimum value of the tilt in the radial direction is obtained. It is good also as a thing. This is because the optical disk has a thin disk shape, and the cross-sectional shape in the radial direction is generally a so-called warp-shaped warp or slant shape. In this case, the tilt is monotonously increasing or monotonically decreasing, and the tilts at the innermost and outermost circumferences are equal to the minimum value and maximum value (or maximum value and minimum value) of the tilt in the radial direction.
  • the tilt margin as the optical disc apparatus becomes the widest, so that the reliability of the recording / reproducing operation of the optical disc apparatus is improved.
  • the collimator lens 1 corrects the spherical aberration in S5 of FIG.
  • FIG. 10 is a block diagram showing a configuration of the optical disc apparatus according to the second embodiment.
  • the same parts as those in the first embodiment and the conventional optical disc apparatus are denoted by the same reference numerals, and the description thereof is omitted.
  • the optical disc 206 is an optical disc (multilayer optical disc) having two or more data layers.
  • the optical disk 206 is assumed to be a two-layer optical disk having two data layers.
  • the optical disk apparatus shown in FIG. 10 can perform a recording / reproducing operation on a two-layer optical disk.
  • the optical disk apparatus according to the present embodiment improves the reliability of the recording / reproducing performance with respect to the two-layer optical disk by performing coma aberration correction using the objective lens 105 as in the first embodiment. be able to.
  • the base material thickness of each layer is 0.573 mm (L0 layer) and 0.628 mm (L1 layer) as shown in Fig. 11 (a), which is generated by tilting. Since the coma aberration is proportional to the substrate thickness as described above, the ratio of the coma aberration generated in the L1 layer to the coma aberration generated in the L0 layer is 0.628 / 0.573.
  • the substrate thickness of each layer is 0.1 mm (L0 layer) as shown in Fig. 11 (b). ) And 0.075 mm (Ll layer), and the ratio of coma generated in the L1 layer to coma generated in the L0 layer is 0.075 / 0.1.
  • the error in correcting coma aberration between layers is about 30%, and this error amount cannot be ignored in recording / reproducing with respect to a high-density optical disc.
  • the lens tilt drive amount in each of the two layers is determined as follows.
  • ⁇ L0 is expressed by the following equation (6). Is done.
  • VLO lens tilt drive signal value
  • VLO ⁇ d / Kl (7)
  • the coma generated by the tilt ⁇ d is proportional to the base material thickness, and the base material thickness of the disk is a known value determined by the standard. Assuming that the substrate thickness is tLO and tLl, respectively, the lens tilt amount ⁇ L1 that cancels the coma aberration generated by the tilt ⁇ d in the L1 layer is expressed by the following equation (8).
  • the lens tilt drive signal VL1 in the L1 layer is expressed by the following equation (9).
  • VL1 ⁇ d X tLl / tLO / Kl (9)
  • the lens tilt drive signals VL0 and VL1 are determined using ⁇ d and the substrate thickness ratio tLlZtLO, which are the results of detecting the tilt. It becomes possible to reduce coma in each layer.
  • the lens tilt drive signal which is the output signal from the microcomputer 116, is set to VL0 for the L0 layer, and to LV1 for the L1 layer, so that optimal coma aberration correction is achieved for each layer.
  • the action can be performed.
  • optically good light spots can always be realized in each layer as a multilayer optical disc device, and the reliability of the recording / reproducing operation of the optical disc device is improved.
  • the optical disk has two data layers, the L0 layer and the L1 layer.
  • the number of layers is not limited.
  • the lens tilt drive signal for each layer is obtained using the lens tilt drive signal VL0 for the L0 layer and the substrate thickness ratio of the L0 layer and the substrate thickness of the other layers. The same effect for solving the problem can be obtained by determining and performing the coma aberration correction operation.
  • the lens tilt drive signal VL0 for the L0 layer is used as a reference, and the lens tilt drive signal for each layer is determined using the base material thickness ratio of the other layers to the L0 layer. It is not limited to the method of determining the standard. Based on the lens tilt drive signal in at least one of the data layers, the lens tilt drive signal for each layer is determined using the base material thickness ratio obtained from the base material thickness of that layer and the other layer. Aberration correction By performing the work, the same effect for solving the problem can be obtained.
  • the substrate thickness ratio is calculated with the substrate thickness of each layer as a known value, and the lens tilt drive signal for each layer is determined using the substrate thickness ratio.
  • the method for calculating the material thickness ratio is not limited. For example, when the optical disk apparatus has a base material thickness detecting unit that detects the base material thickness of each layer, the detection result force base material thickness may be calculated. Even in this case, the same effect for solving the problem can be obtained by determining the lens tilt driving signal for each layer using the thickness of the base material and performing the coma aberration correcting operation.
  • the optical disc apparatus of the present invention has the effect that the radial tilt margin is always wide with respect to the optical disc having the radial tilt and has the effect of correcting other aberrations, and the reliability of the apparatus for recording and reproducing the optical disc is improved. It is useful as a method of raising.
  • the optical disc apparatus of the present invention has an effect that the adjustment time at the time of activation can be shortened, and is useful as a method for improving the performance of the apparatus for reproducing and recording an optical disc.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Recording Or Reproduction (AREA)
  • Optical Head (AREA)

Abstract

 本発明の光ディスク装置は、チルト検出手段とコマ収差補正手段と球面収差補正手段を備え、チルト検出結果に基づきコマ収差補正手段の補正量を光ディスクの全周に渡り一定となるように決定し、その後球面収差補正手段により球面収差を補正する。これにより、チルトマージンを確保しつつ、コマ収差補正手段により発生した球面収差を補正することが可能となり、光ディスク装置の再生記録の信頼性を向上できる。また、本発明の光ディスク装置は、起動時に熱衝撃チルトが発生している場合には熱衝撃チルトが収まるまで待つ構成とした。これにより、熱衝撃チルトによる影響を避けた起動が可能となり、光ディスク装置の記録再生動作の信頼性が向上する。

Description

明 細 書
光ディスク装置
技術分野
[0001] 本発明は、レーザ等の光源を用いて光ディスク(再生専用、記録再生用などの各種 の光ディスクを含む)上の信号を再生する光ディスク装置、特に光ビームの光ディスク の上における径方向のコマ収差を補正するコマ収差補正手段を有する光ディスク装 置に関するものである。
背景技術
[0002] 光ディスク装置において、光ディスクに照射される光ビームの光軸に垂直な方向か ら、光ディスクのデータ面がずれる角度をチルト角と呼び、チルト角がゼロでない場合 をチルトが発生するという。光ディスクの高密度化に伴い、光ディスクや光ディスク装 置で発生するチルトによって、記録あるいは再生信号のジッタの劣化が顕著となり、 '性能の確保が困難となっている。
[0003] 図 7は、光ディスクのデータ面に投影される光ビームの強度分布がチルトの発生に よってどのように変化するかを示した模式図である。また、図 8は、発生するチルトとそ のときの再生信号のジッタ及びエラー率を示す特性図である。図 7及び図 8からわか るように、チルトによってコマ収差が発生し、その結果、再生信号のジッタ悪化および エラー率上昇を引き起こす。
[0004] チルトにより発生する収差が許容値を超えると、最適な状態での記録または再生が 行えなくなり、データの信頼性が低下するという問題が生じる。さらにこのチルトに対 する収差の許容幅は、光ディスクの記録密度が増大するにつれて狭くなり、装置の記 録再生性能の確保が困難となる。
[0005] 高密度光ディスクへの録再性能を確保するために、従来の光ディスク装置では、光 学系および駆動系のメカニカルな位置合わせ調整だけでなく、装置動作中にチルト を検出し、その検出結果に応じて対物レンズを傾斜させるといったチルト制御を導入 することで、コマ収差を補正し、最適な記録および再生を実現している(例えば、特許 文献 1参照)。 [0006] 以下では従来の光ディスク装置の構成について説明する。
[0007] 図 9は、従来の光ディスク装置の構成を示すブロック図である。
[0008] 図 9において、光ヘッド 100は、光源 101と、コリメータレンズ 102と、偏光ビームス プリッタ 103と、 1Z4波長板 104と、対物レンズ 105と、集光レンズ 107と、ディテクタ
108と、フォーカスァクチユエータ 117とを含む。
[0009] 光源 101は、光ディスク 106のデータ面に対して光ビームを出射する。光源 101は
、例えば、半導体レーザ素子である。
[0010] コリメータレンズ 102は、光源 101から出射された光ビーム (発散光)を平行光に変 換する。
[0011] 偏光ビームスプリッタ 103は、光源 101から出射された光ビームの直線偏光を全反 射し、光源 101から出射された光ビームの直線偏光と直交する方向の直線偏光を全 透過する光学素子である。
[0012] 1Z4波長板 104は、透過する光の偏光を円偏光から直線偏光に、もしくは直線偏 光から円偏光に変換する光学素子である。
[0013] 対物レンズ 105は、光ディスク 106のデータ面に光ビームを集光する。
[0014] 集光レンズ 107は、偏光ビームスプリッタ 103を透過した光ビームをディテクタ 108 に集光する。
[0015] ディテクタ 108は、受光した光を電気信号に変換する素子であり、複数の領域を有 している。
[0016] プリアンプ 109は、ディテクタ 108の各領域からの出力電流を電圧に変換する電気 素子である。
[0017] FE信号生成部 110は、プリアンプ 109の複数の出力信号から、光ディスク 106の データ面上における光ビームの収束状態に対応するフォーカスエラー信号 (FE信号 )を生成する電気回路である。フォーカス制御部 111は、 FE信号生成部 910からの 信号に基づき、フォーカス制御信号を出力する回路である。フォーカス駆動部 112は 、フォーカス制御信号に基づいてフォーカスァクチユエータ駆動信号を出力する回路 である。フォーカスァクチユエータ 113は、対物レンズ 105を光ディスク 106のデータ 面に対して垂直方向(以下この方向をフォーカス方向と称す)に移動させる要素であ る。チノレトセンサ 900は、光源 901と、ディテクタ 902とを含む。
[0018] 光源 901は、光ディスク 106のデータ面に対して光ビームを出射する。光源 901は
、例えば、発光ダイオードである。
[0019] ディテクタ 902は、光源 901から出射され光ディスク 106のデータ面で反射した光ビ 一ムを受光し、電気信号に変換する素子であり、複数の領域を有している。
[0020] チルト信号生成部 903は、ディテクタ 902からの出力信号に基づき、光ディスク 106 のデータ面と光軸との傾きに対応するチルト信号を生成する電気回路である。
[0021] チルト制御部 904は、チルト信号に基づき、チルト制御信号を出力する回路である
[0022] チルト駆動部 905は、チルト制御部 904から出力される信号に基づいてチルトァク チユエータ駆動信号を出力する回路である。
[0023] チルトァクチユエータ 906は、光ヘッド 100を傾けることで光ディスク 106に照射され る光ビームの光軸を傾ける要素である。
[0024] 以上のように構成された従来の光ディスク装置のフォーカス制御動作およびチルト 制御動作について、図 9を用いて説明する。
[0025] 光源 101から出射された光ビームの直線偏光は、コリメータレンズ 102に入射され、 コリメータレンズ 102によって平行光にされる。コリメータレンズ 102によって平行光に された光ビームは、偏光ビームスプリッタ 103に入射される。偏光ビームスプリッタ 10 3を反射した光ビームは、 1Z4波長板 104で円偏光にされる。 1Z4波長板 104で円 偏光にされた光ビームは、対物レンズ 105に入射され、光ディスク 106上に収束され る。光ディスク 106で反射した光ビームは、偏光ビームスプリッタ 103を透過し、集光 レンズ 107に入射される。集光レンズ 107に入射された光ビームは、ディテクタ 908に 入射される。ディテクタ 908に入射された光ビームは各領域で電気信号に変換される 。ディテクタ 908の各領域で変換された電気信号は、プリアンプ 909で電圧に変換さ れる。プリアンプ 909の複数の出力信号は、 FE生成部 910で FE信号に演算される。 FE生成部 910からの出力信号である FE信号は、フォーカス制御部 111に入力され 、例えばディジタルシグナルプロセッサ(以降、 DSPと称する)によるディジタルフィル タで構成された位相補償回路、低域補償回路を通過して、フォーカス駆動信号とな る。フォーカス制御部 111からのフォーカス駆動信号は、フォーカス駆動部 112に入 力、増幅されてフォーカスァクチユエータ 113に出力される。以上の動作によって、光 ディスク 106のデータ面上における光ビームの収束状態を常に所定の収束状態にな るように制御するフォーカス制御が実現される。
[0026] 次にチルト制御動作について説明する。
[0027] 光源 901から光ディスク 106に出射された光ビームは、光ディスク 106で反射され、 ディテクタ 902に入射される。ディテクタ 902に入射された光ビームは各領域で電気 信号に変換される。ディテクタ 902からの複数の出力信号は、チルト信号生成部 903 でチルト信号に演算される。チルト信号生成部 903からの出力信号であるチルト信号 は、チルト制御部 904に入力され、フォーカス制御系と同様に DSPによるディジタル フィルタで構成された位相補償回路、低域補償回路を通過して、チルト駆動信号とな る。チルト制御部 904からのチルト駆動信号は、チルト駆動部 905に入力、増幅され てチルトァクチユエータ 906に出力される。以上の動作によって、光ディスク 106のデ ータ面に光ビームが常に直交して照射されるように制御するチルト制御が実現される 特許文献 1 :特開平 2— 122432号公報
発明の開示
発明が解決しょうとする課題
[0028] 従来のチルト制御においては、以下に示す課題があった。
[0029] チルトセンサ 900を用いたチルト検出では、チルトセンサ 900による検出位置と光 ディスク 106のデータ面に照射された光ビームの位置とを一致させることが空間的な 配置上困難である。なぜなら、光ビームのデータ面上の照射位置の垂直下方には光 ヘッド(特に対物レンズ 105)が常に存在する力もである。このため、チルトセンサ 900 は、光ビーム位置から多少距離を置 、た位置における光ディスク 106の傾きを検出 することとなる。その結果、光ディスク 106のデータ面が曲面形状になっている場合、 チルトセンサ 900は、光ビーム位置におけるチルトを正確に検出できず、正確なチル ト制御をおこなうことができな 、と 、う問題が生じる。
[0030] また、チルトセンサ 900の個々の特性ばらつきと、チルトセンサ 900と光ヘッド 100 や光ディスク 106を回転させる駆動機構との間に生じる組み立て時の配置誤差等に よって、チルトセンサ 900で検出したチルトと実際のチルトとの間にずれ (ゼロ点オフ セット)が発生する。このゼロ点オフセットを所定値以下にするために、装置の組立ェ 程において各光ディスク装置ごとに精密な調整が必要となる。その結果、光ディスク 装置の生産コストが上昇するという問題が生じる。
[0031] さらに、装置の組立工程においてゼロ点オフセットが調整されていても、チルトセン サ 900の経時変化や温度特性によって誤差が発生し得る。このような組み立て後の 誤差によって、チルトセンサ 900では正確なチルト制御ができないという問題も生じる
[0032] 近年市販される情報機器は、外形力 、さいということが強く求められることが多い。
し力し、上述の従来の光ディスク装置では、チルトセンサの取り付けスペースを確保 するため、光ヘッドを小型化することが難しくなる。さらに、チルトァクチユエータ 906 が光ヘッド 100を傾ける機構となって 、ることから、光ディスク装置を小型化すること が困難になる。また、チルトセンサ自体が光ディスク装置のコストを上昇させる要因に もなる。
[0033] 本発明は上記課題の少なくとも 1つを解決するためになされたものでフォーカス駆 動信号を用いたチルト検出手段およびレンズ 106を傾けることでチルト補正を行うチ ルト補正手段を含む光ディスク装置を提供するものである。
[0034] 本光ディスク装置のチルト検出手段およびチルト補正手段を用いることで、適切な チルト制御が可能となるため、光ディスク装置の記録再生動作の信頼性が向上する。
[0035] さらに本光ディスク装置のチルト検出手段およびチルト補正手段を用いることで、光 ディスク装置の小型化と生産コストの抑制が可能となる。
課題を解決するための手段
[0036] 本発明の光ディスク装置は、光ビームを光ディスクに照射する光ヘッドと、前記光へ ッドを前記光ディスクの径方向に移動する光ヘッド移動手段と、前記光ディスク上の 前記光ビームの径方向のコマ収差を補正するコマ収差補正手段と、前記光ディスク の径方向の傾きを検出するチルト検出手段とを備え、前記コマ収差補正手段の補正 量は、前記光ヘッドの位置によらず所定の値であり、前記所定の値は、前記ヘッド移 動手段によって前記光ヘッドを所定の移動範囲にわたって移動させ、前記所定の移 動範囲内において前記チルト検出手段によって検出された傾きの最大値および最 小値の中間値に基づ 、て決定される。
[0037] 前記所定の移動範囲は、前記光ディスクの略最内周位置と前記光ディスクの略最 外周位置との間の範囲であり、前記所定の値は、前記光ディスクの略最内周位置前 記チルト検出手段によって検出された傾きと前記光ディスクの略最外周位置前記チ ルト検出手段によって検出された傾きとの中間値に基づいて決定されてもよい。
[0038] 前記光ディスクは、複数のデータ層を有しており、前記コマ収差補正手段の補正量 は、各データ層毎に、前記光ヘッドの位置によらず所定の値であってもよい。
[0039] 本発明の光ディスク装置は、前記光ディスク上の前記光ビームの径方向のコマ収 差以外の収差を補正する収差補正手段をさらに備え、前記コマ収差補正手段によつ てコマ収差を補正した後に、前記収差補正手段によってコマ収差以外の収差を補正 するように構成されて 、てもよ 、。
[0040] 前記収差補正手段は、球面収差を補正する球面収差補正手段を含んで!/、てもよ い。
[0041] 本発明の光ディスク装置は、前記光ディスク装置を起動する時に、前記チルト検出 手段によって検出された前記光ディスクの傾きが所定の角度を超える場合には、前 記光ディスク装置の起動をやり直すように構成されて ヽてもよ ヽ。
[0042] 前記光ディスク装置の起動のやり直しは、前記光ディスクの外周位置において前記 チルト検出手段によって検出された前記光ディスクの傾きに基づいて行われてもよい
[0043] 本発明の光ディスク装置は、前記チルト検出手段によって検出された前記光デイス クの傾きに基づいて前記コマ収差補正手段の補正量を決定する補正量決定手段を さらに備え、前記光ディスク装置を起動する時に、前記補正量決定手段によって決 定された補正量が所定の値を超える場合には、前記光ディスク装置の起動をやり直 すように構成されて 、てもよ 、。
[0044] 本発明の光ディスク装置は、前記光ディスク装置の起動のやり直しの中で、前記チ ルト検出手段によって検出された前記光ディスクの傾きが所定の角度を再び超える 場合には、前記光ディスク装置による記録動作を禁止するように構成されていてもよ い。
[0045] 本発明の光ディスク装置は、前記光ディスク装置の起動のやり直しの中で、前記補 正量決定手段によって決定された補正量が所定の値を再び超える場合には、前記 光ディスク装置による記録動作を禁止するように構成されて 、てもよ 、。
発明の効果
[0046] 本発明の光ディスク装置は、光ビームを光ディスクに照射する光ヘッドと、前記光へ ッドを光ディスクの径方向に移動する光ヘッド移動手段と、前記光ディスク上の前記 光ビームの径方向のコマ収差を補正するコマ収差補正手段と、光ディスクの径方向 の傾きを検出するチルト検出手段とを備え、前記コマ収差補正手段の補正量は前記 光ヘッド移動手段による前記光ヘッドの位置によらず所定の値である。これにより、前 記光ヘッドの位置の変化に応じて前記コマ収差補正手段の補正量を変えることがな い。その結果、前記光ヘッドのアクセス時間を短縮し、光ディスク装置の性能を向上 させることが可會 になる。
[0047] さらに、前記所定の値は、前記光ヘッド移動手段によって前記光ヘッドを所定の移 動範囲にわたって移動させ、前記所定の移動範囲内において前記チルト検出手段 によって検出された傾きの最大値および最小値の中間値に基づいて決定される。こ れにより、光ディスク装置としてチルトマージンが最も広くなり、光ディスクの全周に渡 つて常に光学的に良好な光スポットを実現することができる。その結果、光ディスク装 置の記録再生動作の信頼性を向上させることが可能になる。
[0048] 前記所定の移動範囲は、前記光ディスクの略最内周位置と前記光ディスクの略最 外周位置との間の範囲であってもよい。この場合には、前記所定の値は、前記光ディ スクの略最内周位置において前記チルト検出手段で検出された光ディスクの傾きと 前記光ディスクの略最外周位置において前記チルト検出手段で検出された光デイス クの傾きとの中間値に基づいて決定される。これにより、チルト検出時間を短縮し、光 ディスク装置の起動時間を短縮することが可能にある。その結果、光ディスク装置の 性能を向上させることが可能になる。
[0049] 前記光ディスクは、複数のデータ層を有していてもよい。この場合には、前記コマ収 差補正手段の補正量は、各データ層毎に、前記光ヘッドの位置によらず所定の値で ある。
[0050] 本発明の光ディスク装置は、前記光ディスク上の前記光ビームの径方向のコマ収 差以外の収差を補正する収差補正手段をさらに備え、前記コマ収差補正手段によつ てコマ収差を補正した後に、前記収差補正手段によってコマ収差以外の収差を補正 するように構成されている。これにより、光ディスク装置としてチルトマージンが広くなり 、かつ、コマ収差補正により発生するコマ収差以外の収差も補正することが可能とな る。その結果、光ディスク装置の記録再生動作の信頼性を向上させることが可能にな る。
[0051] 本発明の光ディスク装置は、前記収差補正手段が球面収差を補正する球面収差 補正手段を含むように構成されている。これにより、光ディスク装置としてチルトマ一 ジンが広くなり、かつ、コマ収差補正により発生する球面収差も補正することが可能と なる。その結果、光ディスク装置の記録再生動作の信頼性を向上させることが可能に なる。
[0052] 本発明の光ディスク装置は、前記光ディスク装置を起動する時に、前記チルト検出 手段によって検出された前記光ディスクの傾きが所定の角度を超える場合には、前 記光ディスク装置の起動をやり直すように構成されている。これにより、熱衝撃チルト による影響を避けた光ディスク装置の起動が可能となる。その結果、光ディスク装置 の記録再生動作の信頼性を向上させることが可能になる。
[0053] 本発明の光ディスク装置は、前記光ディスクの外周位置において前記チルト検出 手段によって検出された前記光ディスクの傾きに基づいて前記光ディスク装置の起 動のやり直しを行うように構成されている。これにより、熱衝撃チルトによる影響を避け た光ディスク装置の起動が可能となる。その結果、光ディスク装置の記録再生動作の 信頼性を向上させることが可能になる。
[0054] 本発明の光ディスク装置は、前記チルト検出手段によって検出された前記光デイス クの傾きに基づいて前記コマ収差補正手段の補正量を決定する補正量決定手段を さらに備え、前記光ディスク装置を起動する時に、前記補正量決定手段によって決 定された補正量が所定の値を超える場合には、前記光ディスク装置の起動をやり直 すように構成されている。これにより、熱衝撃チルトによる影響を避けた光ディスク装 置の起動が可能となる。その結果、光ディスク装置の記録再生動作の信頼性を向上 させることが可會 になる。
[0055] 本発明の光ディスク装置は、前記光ディスク装置の起動のやり直しの中で、前記チ ルト検出手段によって検出された前記光ディスクの傾きが所定の角度を再び超える 場合には、光ディスク装置による記録動作を禁止する。これにより、光源の過大発光 を防ぐことが可能となる。その結果、光ディスク装置の性能を向上させることが可能に なる。
[0056] 本発明の光ディスク装置は、前記光ディスク装置の起動のやり直しの中で、前記補 正量決定手段によって決定された補正量が所定の値を再び超える場合には、光ディ スク装置による記録動作を禁止する。これにより、光源の過大発光を防ぐことが可能と なる。その結果、光ディスク装置の性能を向上させることが可能になる。
図面の簡単な説明
[0057] [図 1]図 1は本発明の実施の形態 1の光ディスク装置のブロック図
[図 2]図 2は本発明の実施の形態 1における、チルトを持つ光ディスク 106のデータ面 と対物レンズ 105との相対位置および、光ヘッドの位置とフォーカス駆動信号の関係 を示した模式図
[図 3]図 3は本発明の実施の形態 1における、対物レンズ 105によるコマ収差補正動 作を示した模式図
[図 4]図 4は本発明の実施の形態 1における、コマ収差および球面収差の補正を含ん だ装置の起動手順を示すフローチャート
[図 5]図 5は本発明の実施の形態 1における、起動時のチルト検出動作力もコマ収差 補正のためのレンズチルト駆動値を算出するまでの手順を説明するための模式図 [図 6]図 6は本発明の実施の形態 1における、熱衝撃チルトの時間特性を示した特性 図
[図 7]図 7は従来の技術を説明するための、チルトが発生した場合の光ディスク上の 光ビームの強度分布変化を示す模式図
[図 8]図 8は従来の技術を説明するための、チルトが発生した場合のディスクチルト量 とそのときの再生信号のジッタ及びエラー率を示す特性図
[図 9]図 9は従来の技術の光ディスク装置のブロック図
[図 10]図 10は本発明の実施の形態 2の光ディスク装置のブロック図
[図 11]図 11は本発明の実施の形態 2における、 2層 DVD— ROMディスクの基材厚 と 2層 Blu— ray Discの基材厚を示した模式図
符号の説明
100 光ヘッド
101 光源
102 コリメータレンズ
103 偏光ビームスプリッタ
104 1Z4波長板
105 対物レンズ
106 光ディスク
107 集光レンズ
108 ディテクタ
109 プリアンプ
110 フォーカスエラー(FE)信号生成部
111 フォーカス制御部
112 フォーカス駆動部
113 フォーカスァクチユエータ
114 加算器
115 減算器
116 マイクロコンピュータ(マイコン)
117 メモリ
118 コリメータレンズ移送モータ駆動部
119 コリメータレンズ移送モータ
120 移送モータ駆動部
121 移送モータ 900 チルトセンサ
901 光源
902 ディテクタ
903 チルト信号生成部
904 チルト制御部
905 チルト駆動部
906 チルトァクチユエータ
発明を実施するための最良の形態
[0059] 以下、図面を参照しながら、本発明の実施の形態を説明する。
[0060] (実施の形態 1)
図 1は、実施の形態 1における光ディスク装置の構成を示すブロック図である。なお 、従来の光ディスク装置と同様の部分には同じ番号を付し、説明を省略する。
[0061] 図 1において、加算器 114は、フォーカス駆動信号とマイクロコンピュータ 116 (以 降、マイコンと称す)からの出力を加算する電気回路である。減算器 115は、フォー力 ス駆動信号とマイクロコンピュータ 116 (以降、マイコンと称す)からの出力を減算する 電気回路である。第 1のフォーカス駆動部 112aは、加算器 114からの出力信号に基 づ 、てフォーカスァクチユエータ駆動信号を出力する回路である。第 2のフォーカス 駆動部 112bは、減算器 115からの出力信号に基づいてフォーカスァクチユエータ駆 動信号を出力する回路である。第 1のフォーカスァクチユエータ 113aおよび第 2のフ オーカスァクチユエータ 113bは、対物レンズ 105を挟んで光ディスク 106の径方向に 対称に取り付けられており、第 1のフォーカスァクチユエータは対物レンズ 105の外周 側をフォーカス方向に移動させる要素であり、第 2のフォーカスァクチユエータは対物 レンズ 105の内周側をフォーカス方向に移動させる要素である。メモリ 117は、データ を格納する記憶回路である。コリメータレンズ移送モータ駆動部 118は、マイコン 116 力も出力されるコリメータレンズ移送モータ駆動信号を増幅し出力する回路である。コ リメータレンズ移送モータ 119は、光ビームの方向に対して平行にコリメータレンズ 10 2を移動させる要素である。移送モータ駆動部 120は、マイコン 116から出力される 移送モータ駆動信号を増幅し出力する回路である。移送モータ 121は、光ヘッド 100 を光ディスク 106の径方向に移動させる要素である。
[0062] 以上のように、光ヘッド 100は、光源 101と、コリメータレンズ 102と、偏光ビームス プリッタ 103と、 1Z4波長板 104と、対物レンズ 105と、集光レンズ 107と、ディテクタ 108と、フォーカスァクチユエータ 113a、 113bと、コリメータレンズ移送モータ 119と を含む。また、光ヘッド移動手段は、マイコン 116と移送モータ駆動部 120と移送モ ータ 121とによって構成されている。また、コマ収差補正手段は、マイコン 116と加算 器 114と減算器 115とフォーカス駆動部 112a、 112bとフォーカスァクチユエータ 11 3a、 113bと対物レンズ 105とによって構成されている。また、チルト検出手段は、光 ヘッド 100とプリアンプ 109と FE生成部 110とフォーカス制御部 111とマイコン 116と メモリ 117と加算器 114と減算器 115とフォーカス駆動部 112a、 112bと光ヘッド移動 手段とによって構成されている。また、収差補正手段は、マイコン 116とコリメータレン ズ移送モータ駆動部 118とコリメータレンズ移送モータ 119とコリメータレンズ 102とに よって構成されている。
[0063] 以上のように構成された光ディスク装置のフォーカス制御動作にっ 、て説明する。
[0064] 従来の光ディスク装置の動作説明で述べたように、光源 101から出射された光ビー ムは、コリメータレンズ 102、偏光ビームスプリッタ 103、 1Z4波長板 104を経て対物 レンズ 105に入射され、光ディスク 106上に収束される。光ディスク 106で反射した光 ビームは、偏光ビームスプリッタ 103、集光レンズ 107を経てディテクタ 108に入射さ れる。ディテクタ 108に入射された光ビームは各領域で電気信号に変換される。ディ テクタ 108の各領域で変換された電気信号は、プリアンプ 109で電圧に変換される。 プリアンプ 109の複数の出力信号は、 FE生成部 110で FE信号に演算される。 FE生 成部 110からの出力信号である FE信号は、フォーカス制御部 111に入力され、位相 補償回路、低域補償回路を通過して、フォーカス駆動信号となる。
[0065] フォーカス制御部 111からのフォーカス駆動信号とマイコン 116からの出力信号と は、加算器 114で加算される。加算器 114からの出力信号は第 1のフォーカス駆動 部 112aに入力、増幅されて第 1のフォーカスァクチユエータ 113aに出力される。また 、フォーカス制御部 111からのフォーカス駆動信号は減算器 115の正の端子へ入力 され、マイコン 116からの出力信号は、減算器 115の負の端子へ入力され、減算され た結果が出力される。減算器 115からの出力信号は第 2のフォーカス駆動部 112bに 入力、増幅されて第 2のフォーカスァクチユエータ 113bに出力される。
[0066] 以上の動作によって、光ディスク 106のデータ面上における光ビームの収束状態を 常に所定の収束状態になるように制御するフォーカス制御が実現される。
[0067] 次に本発明におけるフォーカス駆動信号を用いたチルト検出原理について図 2を 用いて説明する。
[0068] 光ディスクのデータ面に対する光ビームの軸の傾きは、光ディスクの半径方向およ び光ディスクの周方向の各成分に分けることができる。このうち周方向成分のチルト による影響は、一般に信号処理によって除去するように再生信号処理回路は構成さ れる。本発明では、光ディスクの半径方向のチルトを取り扱う。以下では、光ディスク の半径方向のチルト(ラジアル方向のチルト)を単にチルトと呼ぶ。
[0069] 図 2 (a)は、光ディスク 106にチルトが存在した場合の対物レンズ 105と光ディスク 1 06のデータ面との相対位置を示した模式図である。また図 2 (b)は、光ディスクの径 方向に対する光ヘッドの位置(以降、半径位置と称する)とその半径位置におけるフ オーカス駆動信号値との関係を示した模式図である。
[0070] 前記したように光ディスク装置では、光ディスク 106のデータ面上において光ビーム が常に所定の収束状態になるようフォーカスァクチユエータを駆動させることにより、 フォーカス制御動作を行っている。したがって、フォーカス制御が行われている間、 光ディスク 106のデータ面と対物レンズ 105との距離は半径位置に関わらず一定 (L) となる。光ディスク 106が傾いている場合、それに対応して対物レンズ 105の位置は 変化するため、半径位置 dlおよび d2における対物レンズ 105の位置の差は Zrとなる
[0071] この Zrは光ディスク 106の半径位置 dlおよび d2におけるデータ面の高さの差 Zdに 等しくなる。ディスクの水平面に対する傾き Θ dと、半径位置 dlおよび d2における対 物レンズ 105の位置を結ぶ線と水平面とがなす角 Θ rは等しいため、 Zrと半径位置 d 1および d2の差 Rとから光ディスク 106のデータ面の傾きを次式(1)により求めること ができる。
[0072] Θ d= 0 r=tan- l (Zr/R) (1) また、フォーカスァクチユエータ 113a、 bを制御するための駆動入力であるフォー力 ス駆動信号値と、対物レンズ 105の変位との関係はあら力じめ分力つているため、対 物レンズ 105のフォーカス方向の位置はフォーカス駆動信号値から求めることができ る。ここで、フォーカス駆動信号値と対物レンズ 105のフォーカス方向の変位量との 関係を Kf、半径位置 dlおよび d2におけるフォーカス駆動信号値の差が Vfとすると、 式(1)より、 0 dは次式(2)で表される。
[0073] Θ d = tan - 1 (Kf X Vf /R) (2)
ここで、例えば、 CDあるいは DVDといった光ディスク 106において生じる傾きは 1 度程度であるため、 Θ dを次式(3)のように近似しても誤差はほとんどない。
[0074] Θ d=Kf XVf/R (3)
以上のように、半径位置に対するフォーカス駆動信号値の変化は、半径方向に対 するデータ面の反り量の変化とほぼ等価となる。したがって、この関係を利用し、所定 の半径位置ごとのフォーカス駆動信号値を検出することで、チルトを検出することが できる。
[0075] 次に本実施の形態における対物レンズ 105によるコマ収差補正動作について図 3 を用いて説明する。
[0076] 図 3 (a)に示すように、第 1のフォーカスァクチユエータ 113aおよび第 2のフォーカス ァクチユエータ 113bは、対物レンズ 105を挟んで光ディスク 106の径方向に対称に 取り付けられている。また、第 1のフォーカスァクチユエータ 113aは対物レンズ 105の 外周側、第 2のフォーカスァクチユエータ 113bは対物レンズ 105の内周側に取り付 けられている。
[0077] 第 1のフォーカス駆動部 112aおよび第 2のフォーカス駆動部 112bに等し 、電圧が 入力された場合、図 3 (b)に示すように、対物レンズ 105の両端はフォーカス方向(図 の上下方向)に同一量 FOだけ変位する。
[0078] 一方、第 1のフォーカス駆動部 112aおよび第 2のフォーカス駆動部 112bに入力さ れる電圧に差がある場合、図 3 (c)に示すように、対物レンズ 105の両端におけるフォ 一カス方向の変位量はそれぞれ Fin、 Foutとなり Finと Foutの間には差が発生する 。この変位量の差は入力される電圧差に対応しており、その結果、対物レンズ 105は 光ディスク 106の半径方向 0に傾く。
[0079] 本実施の形態では、フォーカス制御部 111から第 1のフォーカス駆動部 112aおよ び第 2のフォーカス駆動部 112bへ入力される信号に対し、加算器 114および減算器 115を介してマイコン 116からの出力信号 (以降、レンズチルト駆動信号と称する)を 加算もしくは減算する構成とすることで、対物レンズ 105の傾き(以降、レンズチルトと 称す)を操作することが可能である。
[0080] また、光ビームの光軸に対して対物レンズ 105の光軸が光ディスク 106の半径方向 に傾くと、半径方向にコマ収差が発生する。さらに、光ディスク 106が光ビームの光軸 に対して半径方向に傾いた場合も半径方向にコマ収差が発生する。
[0081] したがって、レンズチルト駆動信号によって第 1のフォーカス駆動部 112aおよび第 2フォーカス駆動部 112bへの入力信号に差を与えて半径方向にレンズチルトを発生 させることで、光ディスク 106が持つ半径方向のチルトで発生するコマ収差を相殺さ せることができる。
[0082] ここで、レンズチルト駆動信号値 VIとレンズチルト量 θ 1との関係はあらかじめ分かつ ているため、その関係を K1とおくと次式 (4)で表される。
[0083] 0 1=K1XV1 (4)
また、ディスクのチルト Θ dと Θ 1が等しい場合にコマ収差が相殺できるとすれば、 VI は式(3)、(4)を用いて次式(5)で表される。
[0084] Vl=Kf/KlXVf/R (5)
すなわち、光ディスク 106に径方向のチルトが存在する場合、そのチルトを検出した 結果であるフォーカス駆動値の差 Vfを用いてレンズチルト駆動値 VIを決定すればコ マ収差を低減することが可能となる。
[0085] ところで、一般に光ビームの光軸に対して対物レンズ 105を傾けるとコマ収差以外 にも別の収差が発生する。
[0086] 光ディスクの高密度化に伴い、レンズチルトにより発生するコマ収差以外の収差に より、記録再生の性能確保が困難になることがあり、これはレンズチルトによるコマ収 差補正の課題となる。
[0087] 例えば、 Blu—ray Discにおいては、光源 101に波長 405nmの青紫色レーザを 用い、対物レンズ 105の開口数 (NA)を 0. 85とすることで光ディスクの高密度化を 実現している。このとき対物レンズ 105を単レンズで実現すると、 0. 85という高 NAを 実現するために、レンズの厚みは大きくならざるを得な 、。
[0088] このような光学系においては、光ビームの光軸に対して対物レンズ 105を傾けると、 コマ収差だけでなく球面収差も同時に発生する。
[0089] また、前述したチルト検出は、その性質上常時検出ができない。そのため、光デイス ク 106と光ディスク装置内に温度差がある場合、光ディスクを装置に挿入すると短時 間で急激にチルトが変化する 、わゆる熱衝撃チルトが発生し、チルト制御の誤差が 大きくなるという課題がある。したがって、これらの課題のために、装置の性能を確保 することが困難になる。
[0090] これらの課題を解決するために、本実施の形態のチルト制御は装置起動中に以下 の手順で行われる。図 4は装置起動中の一連の手順を示したフローチャートである。 以下ではフローチャートの説明をする。
[0091] まず、装置起動開始力 チルト検出までの動作を行う(SO)。内周および外周でフォ 一カス駆動値によるチルト検出を行う(Sl)。次に、検出結果力 コマ収差補正のた めのレンズチルト駆動値を計算する(S2)。次に、熱衝撃チルトが発生しているか否 かの判定を行う(S3)。熱衝撃チルトが発生していないと判定された場合はマイコン 1 16がレンズチルト駆動値を出力する(S4)。レンズチルトにより発生した収差を補正し て(S5)、一連の手順は終了する。その後、装置の起動を最後まで行う(S6)。
[0092] またステップ S3で熱衝撃チルトと判定された場合は、熱衝撃チルトと判定されたこと がはじめてであるかどうか判定する(S7)。はじめてである場合は、装置の起動を中断 し一定時間のウェイトをする(S8)。その後、ステップ SOからやり直す。またステップ S 7で 2回目であると判定された場合は、以降、記録動作を禁止するモードに設定する (S9)。その後、ステップ S4〜S6を実行する。
[0093] 以下では各ステップについて詳細に説明する力 本実施の形態ではレンズチルト によって球面収差が発生する系を考えるものとして 、る。
[0094] まず、ステップ S1について図 5を用いて説明する。
[0095] 図 5 (a)はチルト検出の対象とするディスク形状と検出のためのフォーカス駆動値の 検出半径位置の設定を示した模式図である。マイコン 116は光ヘッド 100を光ヘッド 移動手段により検出半径位置 A〜Dに順次移動させ、各半径位置におけるフォー力 ス駆動値を検出し、メモリ 117に保存する。フォーカス駆動値検出結果は図 5 (b)とな る。マイコン 116はメモリ 117に保存されたフォーカス駆動値の検出結果から、略最 内周および略最外周におけるチルトを式(3)を用いて算出し、メモリ 117に保存する 。チルト検出結果は図 5 (c)となる。
[0096] 次にステップ S 2について図 5 (d)を用いて説明する。
[0097] マイコン 116はステップ S1でのチルト検出結果から、略最内周および略最外周の チルトの中間値を算出する。さらに算出されたチルトの中間値と式 (5)から、レンズチ ルト駆動値を算出する。
[0098] 次にステップ S3について説明する。
[0099] 熱衝撃チルトは図 6に示すような時間特性を持っており、外周におけるチルト変化 が非常に大きくなることが分かる。したがって、(判定 1)ステップ S1で検出された略最 外周のチルトの絶対値が所定値より大きい、(判定 2)ステップ S2で算出されたレンズ チルト駆動値の絶対値が所定値より大きい、のうちのいずれ力 1つの判定を満たす場 合に熱衝撃チルトと判定される。
[0100] 次にステップ S 5について説明する。
[0101] マイコン 116は光ヘッド移動手段により、ヘッドをテストゾーンへ移動させる。テスト ゾーンに信号が記録されていない場合は記録を行う。マイコン 116から信号コリメ一 タレンズ移送モータ駆動部 118に出力し、コリメータレンズ移送モータ駆動部 118に よって増幅された信号がコリメータ移送モータ 119を駆動し、コリメータレンズ 102の 位置を変える。コリメータレンズ 102と光源 101の距離が変わると、コリメータレンズ 10 2から出射される光が平行光力 発散光および収束光に変化するため、対物レンズ 1 05から光ディスク 106に収束された光ビームのデータ面上における球面収差が変化 することになる。したがって、マイコン 116によりコリメータレンズ 102の位置を変えて 記録された信号を再生し、その再生信号のジッタを検出する(図示しない)ことで、再 生ジッタが最も良くなるように球面収差を調整することができる。
[0102] 最後にステップ S7〜S9について説明する。 [0103] 熱衝撃チルトの回避手段として、ディスク 106の温度が光ディスク装置内の温度に なじむまで待つ必要がある。そのため、熱衝撃チルトであると判断された場合は、温 度がなじむために一定時間のウェイトをして再起動を行う構成としている。さらに、ゥ エイト後の再起動にぉ ヽても熱衝撃チルトと判定された場合は、熱衝撃チルトではな くディスクチルトが非常に大き 、ディスクであると判断できる。チルトが大き 、ディスク に対してもレンズチルトによるコマ収差補正は可能である力 この場合、以下に挙げ る問題が発生する。
[0104] すなわち、レンズチルトにより発生する収差はレンズチルトに対して 2次かそれ以上 の次数の関数の特性で増加するのが一般的である。そのため、本実施の形態のよう に球面収差を補正したとしても、その他の収差が発生し、光スポットは光学的に劣化 した状態となる。この状態で適切な記録を行おうとした場合、収差による劣化分を記 録パワーの上昇で補うことになる力 光源となる半導体レーザの発光パワーの上昇に は当然限界がある。したがって、光源保護のために光ディスク装置としてレンズチルト が所定の角度以上になる場合は、記録動作を行わないようにする必要がある。
[0105] 以上のような構成にすることで、光ディスク装置として常にチルトマージンが広くなり
、かつ、コマ収差補正により発生する球面収差も補正することが可能となる。
[0106] したがって、光ディスクの全周に渡って常に光学的に良好な光スポットが実現できる ため、光ディスク装置の記録再生動作の信頼性が向上する。
[0107] また、コマ収差補正のためのレンズチルトを半径位置によって変化しない構成にし ており、光ヘッド 100の位置が大きく変化する検索動作において、レンズチルトの変 化に対応して球面収差の補正を行う必要がないため、検索動作実行時間の短縮に つながり、光ディスク装置の性能が向上する。
[0108] また、チルト検出を略最内周と略最外周のみで行っているため、チルト検出時間の 短縮、すなわち光ディスク装置の起動時間の短縮につながり、光ディスク装置の性能 が向上する。
[0109] また、装置起動時に熱衝撃チルトの判定を行!、、熱衝撃チルトが発生して 、ると判 定される場合はそれが収まるまで待つ構成となっているため、熱衝撃チルトによる影 響を避けた起動が可能となり、光ディスク装置の記録再生動作の信頼性が向上する [0110] さらに、熱衝撃チルトによる影響を避けてもディスクチルトまたはコマ収差補正のた めのレンズチルトが大きい場合、装置起動後に記録動作を禁止するような構成にした ので、光源保護が可能となり、光ディスク装置の性能が向上する。
[0111] なお、以上では一例として装置起動時の動作手順での説明をしたが、本発明はそ の一連の動作を実行するタイミングで限定を受けるものではない。例えば、チルトの 時間的変化に追従するために、起動後に再びチルト検出を行い、その結果に従って レンズチルトを変更しょうとする場合にも前述した一連の動作を行えば、課題解決の ための同様の効果が得られる。
[0112] また、レンズチルト駆動値の算出を略最内周と略最外周で検出されたチルトの中間 値から求めるものとした力 径方向に渡るチルトの最大値と最小値の中間値力 求め るものとしてもよい。なぜなら、光ディスクは薄い円盤状であり、一般的に径方向の断 面形状はいわゆる御椀状の反りまたはたれ形状となる。この場合、チルトは単調増加 もしくは単調減少であり、最内周と最外周におけるチルトが径方向のチルトの最小値 と最大値 (もしくは最大値と最小値)と等し 、ためである。
[0113] この場合、光ディスク装置としてのチルトマージンが最も広くなるため、光ディスク装 置の記録再生動作の信頼性が向上につながる。
[0114] さらに、本実施の形態では、図 4の S5における球面収差の補正をコリメータレンズ 1
02の位置変化とテストゾーンにおける信号再生ジッタ変化の関係を見るという方式で 行っている力 その方式により限定を受けるものではない。
[0115] (実施の形態 2)
図 10は、実施の形態 2における光ディスク装置の構成を示すブロック図である。な お、実施の形態 1および従来の光ディスク装置と同様の部分には同じ番号を付し、説 明を省略する。
[0116] 光ディスク 206は、 2つ以上の複数のデータ層を有する光ディスク(多層光ディスク) である。ここでは、光ディスク 206は、 2つのデータ層を有する 2層光ディスクであるも のとする。図 10の光ディスク装置は、 2層光ディスクへの記録再生動作を行うことがで きる。 [0117] また、本実施の形態の光ディスク装置は、実施の形態 1と同様に、対物レンズ 105 を用 、たコマ収差補正を行うことにより、 2層光ディスクに対する記録再生性能の信頼 性を向上させることができる。
[0118] 一般に、チルトによって発生するコマ収差は基材厚に比例することが知られている ため、多層光ディスクにおいては、例えば、ディスクの反りや垂れといったディスクチ ルトによって各データ層で発生するコマ収差はデータ層間で異なる。
[0119] 光ディスクの高密度化に伴い、各データ層間で発生するコマ収差の差により記録 再生の性能を確保することが困難になることがあり、これはレンズチルトによるコマ収 差補正の課題となる。
[0120] 例えば、 2層 DVD— ROMディスクにおいては、図 11 (a)に示すように各層の基材 厚は 0. 573mm (L0層)および 0. 628mm (L1層)であり、チルトによって発生するコ マ収差は前記したように基材厚に比例するため、 L0層で発生するコマ収差に対して L1層で発生するコマ収差の比は 0. 628/0. 573となる。
[0121] 例えば、 2層 DVD— ROMに対して、 L0層でのコマ収差補正を行った場合、その ままの状態で L1層に移動したとすると、層間でのコマ収差補正の誤差は約 10%であ ることになる。
[0122] 一方、例えば、 DVD— ROMディスクよりも高密度化された 2層 Blu— ray Discに おいては、図 11 (b)に示すように各層の基材厚は 0. lmm(L0層)および 0. 075m m (Ll層)であり、 L0層で発生するコマ収差に対して L1層で発生するコマ収差の比 は 0. 075/0. 1となる。
[0123] したがってこの場合、層間でのコマ収差補正の誤差は約 30%となり、高密度化した 光ディスクに対する記録再生にお 、てこの誤差量は無視できな 、量となり得る。
[0124] この課題を解決するために、本実施の形態では 2層の各層(L0層、 L1層)における レンズチルト駆動量の決定を以下のように行う。
[0125] 実施の形態 1と同様に、例えば、 L0層において検出されたチルト Θ dとレンズチルト 量 Θ L0が等しい場合にコマ収差が相殺できるとすれば Θ L0は次式 (6)で表される。
[0126] 0 LO= θ ά (6)
レンズチルト駆動信号値 VL0とレンズチルト量 Θ L0との関係は実施の形態 1と同様 にあら力じめ分力つているため、その関係を Klとおくと VLOは次式(7)で表される。
[0127] VLO = Θ d/Kl (7)
また前記したように、チルト Θ dで発生するコマ収差は基材厚に比例し、ディスクの 基材厚は規格により決められた既知の値であるため、 LO層の基材厚と L1層の基材 厚とをそれぞれ tLO、 tLlとすると、 L1層においてチルト Θ dで発生したコマ収差を相 殺するレンズチルト量 Θ L1は次式(8)で表される。
[0128] 0 L1 = 0 LO X tLl/tLO (8)
従って、 L1層におけるレンズチルト駆動信号 VL1は次式(9)で表される。
[0129] VL1 = Θ d X tLl/tLO/Kl (9)
すなわち、光ディスク 206に径方向のチルトが存在する場合、そのチルトを検出した 結果である Θ dと基材厚比 tLlZtLOを用いてレンズチルト駆動信号 VL0、 VL1を決 定すれば、 L0層、 L1層の各層においてコマ収差を低減することが可能となる。
[0130] すなわち、マイコン 116からの出力信号であるレンズチルト駆動信号を、 L0層の場 合には VL0にし、 L1層の場合には LV1にすることで各層にお 、て最適なコマ収差 補正動作を行うことができる。
[0131] 以上のような構成にすることで、多層光ディスク装置として各層で常に光学的に良 好な光スポットが実現できるため、光ディスク装置の記録再生動作の信頼性が向上 する。
[0132] なお、本実施の形態では、データ層が L0層、 L1層の 2つである光ディスクとしたが 、その層数に限定を受けるものではない。つまり、 3つ以上の層を持つ場合でも、 L0 層のレンズチルト駆動信号 VL0と L0層および他層の基材厚カゝらの基材厚比とを用 いて各層毎のレンズチルト駆動信号を決定し、コマ収差補正動作を行うことにより、課 題解決のための同様の効果が得られる。
[0133] さらに、本実施の形態では、 L0層のレンズチルト駆動信号 VL0を基準とし、 L0層 に対する他層の基材厚比を用いて各層毎のレンズチルト駆動信号を決定したが、そ の基準の決定方法に限定を受けるものではない。複数のデータ層のうち少なくとも 1 つの層におけるレンズチルト駆動信号を基準として、その層と他層の基材厚から求め られる基材厚比を用いて各層毎のレンズチルト駆動信号を決定し、コマ収差補正動 作を行うことにより、課題解決のための同様の効果が得られる。
[0134] また、本実施の形態では、各層の基材厚を既知の値として基材厚比を算出し、その 基材厚比を用いて各層毎のレンズチルト駆動信号を決定したが、基材厚比の算出方 法に限定を受けるものではない。例えば、光ディスク装置が各層の基材厚を検出す る基材厚検出部を有している場合には、その検出結果力 基材厚を算出するように してもよい。この場合においても、その基材厚を用いて各層毎のレンズチルト駆動信 号を決定し、コマ収差補正動作を行うことにより、課題解決のための同様の効果が得 られる。
産業上の利用可能性
[0135] 本発明の光ディスク装置は、ラジアルチルトを持つ光ディスクに対して、常にラジア ルチルトマ一ジンが広ぐかつ、他の収差を補正する効果を有し、光ディスクを記録 再生する装置の信頼性を上げる方法として有用である。
[0136] さらに、本発明の光ディスク装置は、起動時の調整時間の短縮が可能となる効果を 有し、光ディスクを再生記録する装置の性能を向上する方法として有用である。

Claims

請求の範囲
[1] 光ビームを光ディスクに照射する光ヘッドと、
前記光ヘッドを前記光ディスクの径方向に移動する光ヘッド移動手段と、 前記光ディスク上の前記光ビームの径方向のコマ収差を補正するコマ収差補正手 段と、
前記光ディスクの径方向の傾きを検出するチルト検出手段と
を備え、
前記コマ収差補正手段の補正量は、前記光ヘッドの位置によらず所定の値であり、 前記所定の値は、前記ヘッド移動手段によって前記光ヘッドを所定の移動範囲に わたって移動させ、前記所定の移動範囲内において前記チルト検出手段によって検 出された傾きの最大値および最小値の中間値に基づ 、て決定される、光ディスク装 置。
[2] 前記所定の移動範囲は、前記光ディスクの略最内周位置と前記光ディスクの略最 外周位置との間の範囲であり、前記所定の値は、前記光ディスクの略最内周位置前 記チルト検出手段によって検出された傾きと前記光ディスクの略最外周位置前記チ ルト検出手段によって検出された傾きとの中間値に基づいて決定される、請求項 1に 記載の光ディスク装置。
[3] 前記光ディスクは、複数のデータ層を有しており、
前記コマ収差補正手段の補正量は、各データ層毎に、前記光ヘッドの位置によら ず所定の値である、請求項 1に記載の光ディスク装置。
[4] 前記光ディスク上の前記光ビームの径方向のコマ収差以外の収差を補正する収差 補正手段をさらに備え、
前記コマ収差補正手段によってコマ収差を補正した後に、前記収差補正手段によ つてコマ収差以外の収差を補正するように構成されている、請求項 1に記載の光ディ スク装置。
[5] 前記収差補正手段は、球面収差を補正する球面収差補正手段を含む、請求項 4 に記載の光ディスク装置。
[6] 前記光ディスク装置を起動する時に、前記チルト検出手段によって検出された前記 光ディスクの傾きが所定の角度を超える場合には、前記光ディスク装置の起動をやり 直すように構成されて 、る、請求項 1に記載の光ディスク装置。
[7] 前記光ディスク装置の起動のやり直しは、前記光ディスクの外周位置において前記 チルト検出手段によって検出された前記光ディスクの傾きに基づ!/、て行われる、請求 項 6に記載の光ディスク装置。
[8] 前記チルト検出手段によって検出された前記光ディスクの傾きに基づいて前記コマ 収差補正手段の補正量を決定する補正量決定手段をさらに備え、
前記光ディスク装置を起動する時に、前記補正量決定手段によって決定された補 正量が所定の値を超える場合には、前記光ディスク装置の起動をやり直すように構 成されている、請求項 6に記載の光ディスク装置。
[9] 前記光ディスク装置の起動のやり直しの中で、前記チルト検出手段によって検出さ れた前記光ディスクの傾きが所定の角度を再び超える場合には、前記光ディスク装 置による記録動作を禁止するように構成されている、請求項 6に記載の光ディスク装 置。
[10] 前記光ディスク装置の起動のやり直しの中で、前記補正量決定手段によって決定 された補正量が所定の値を再び超える場合には、前記光ディスク装置による記録動 作を禁止するように構成されて ヽる、請求項 9に記載の光ディスク装置。
PCT/JP2005/013425 2004-07-23 2005-07-21 光ディスク装置 WO2006009227A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006529284A JP4330629B2 (ja) 2004-07-23 2005-07-21 光ディスク装置
CN2005800322979A CN101027722B (zh) 2004-07-23 2005-07-21 光盘设备
US11/572,429 US8098555B2 (en) 2004-07-23 2005-07-21 Optical disk device with coma aberration correction

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004216468 2004-07-23
JP2004-216468 2004-07-23

Publications (1)

Publication Number Publication Date
WO2006009227A1 true WO2006009227A1 (ja) 2006-01-26

Family

ID=35785335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/013425 WO2006009227A1 (ja) 2004-07-23 2005-07-21 光ディスク装置

Country Status (4)

Country Link
US (1) US8098555B2 (ja)
JP (1) JP4330629B2 (ja)
CN (1) CN101027722B (ja)
WO (1) WO2006009227A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1953747A2 (en) 2007-01-31 2008-08-06 Funai Electric Co., Ltd. Optical disc apparatus
JP2010102777A (ja) * 2008-10-23 2010-05-06 Teac Corp 光ディスク装置
JP2011090745A (ja) * 2009-10-23 2011-05-06 Hitachi Consumer Electronics Co Ltd 光ディスク装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4803235B2 (ja) * 2008-10-08 2011-10-26 船井電機株式会社 光ピックアップ装置
JP2010244669A (ja) * 2009-03-16 2010-10-28 Sony Corp 記録再生装置、及びその調整方法
JP5928154B2 (ja) * 2012-05-22 2016-06-01 船井電機株式会社 光ディスク装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1083549A (ja) * 1996-09-05 1998-03-31 Sanyo Electric Co Ltd ディスクプレーヤーのティルト制御方法
JPH1083537A (ja) * 1996-09-11 1998-03-31 Nec Corp 光ディスク装置のチルト補正方法および光ディスク装置
JPH10162395A (ja) * 1996-11-29 1998-06-19 Sanyo Electric Co Ltd ディスク記録再生装置のチルトサーボ機構及びチルトサーボ方法
JP2003281761A (ja) * 2001-12-19 2003-10-03 Matsushita Electric Ind Co Ltd 光ディスク装置
WO2003083850A2 (en) * 2002-04-02 2003-10-09 Koninklijke Philips Electronics N.V. Method and device for performing tilt correction using multi-dimensional actuator
JP2004171615A (ja) * 2002-11-18 2004-06-17 Toshiba Corp ディスク状記録媒体の記録再生装置及び記録再生装置のチルト制御方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100327203B1 (ko) * 1998-03-14 2002-05-09 윤종용 틸트검출패턴을가지는광디스크기록매체,그리고이에적합한틸트검출방법
JP2001043605A (ja) 1999-07-28 2001-02-16 Sony Corp 光ディスク駆動装置
JP2001256712A (ja) 2000-03-10 2001-09-21 Matsushita Electric Ind Co Ltd ディスク装置
JP2002140831A (ja) 2000-11-02 2002-05-17 Sharp Corp 光ピックアップ装置
JP2004519806A (ja) * 2001-03-09 2004-07-02 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 傾斜制御装置及び方法
JP2002358690A (ja) * 2001-05-30 2002-12-13 Pioneer Electronic Corp 収差補正機能付き光学式読取装置
US7054241B2 (en) 2001-12-19 2006-05-30 Matsushita Electric Industrial Co., Ltd. Optical disc apparatus
JP4256788B2 (ja) 2002-03-04 2009-04-22 パナソニック株式会社 光ヘッド及びそれを用いた光記録再生装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1083549A (ja) * 1996-09-05 1998-03-31 Sanyo Electric Co Ltd ディスクプレーヤーのティルト制御方法
JPH1083537A (ja) * 1996-09-11 1998-03-31 Nec Corp 光ディスク装置のチルト補正方法および光ディスク装置
JPH10162395A (ja) * 1996-11-29 1998-06-19 Sanyo Electric Co Ltd ディスク記録再生装置のチルトサーボ機構及びチルトサーボ方法
JP2003281761A (ja) * 2001-12-19 2003-10-03 Matsushita Electric Ind Co Ltd 光ディスク装置
WO2003083850A2 (en) * 2002-04-02 2003-10-09 Koninklijke Philips Electronics N.V. Method and device for performing tilt correction using multi-dimensional actuator
JP2004171615A (ja) * 2002-11-18 2004-06-17 Toshiba Corp ディスク状記録媒体の記録再生装置及び記録再生装置のチルト制御方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1953747A2 (en) 2007-01-31 2008-08-06 Funai Electric Co., Ltd. Optical disc apparatus
JP2008186537A (ja) * 2007-01-31 2008-08-14 Funai Electric Co Ltd 光ディスク装置
EP1953747A3 (en) * 2007-01-31 2008-09-03 Funai Electric Co., Ltd. Optical disc apparatus
US8488427B2 (en) 2007-01-31 2013-07-16 Funai Electric Co., Ltd. Optical disc apparatus capable of performing recording and/or reproducing of information with reducing aberration
JP2010102777A (ja) * 2008-10-23 2010-05-06 Teac Corp 光ディスク装置
JP2011090745A (ja) * 2009-10-23 2011-05-06 Hitachi Consumer Electronics Co Ltd 光ディスク装置

Also Published As

Publication number Publication date
CN101027722A (zh) 2007-08-29
JPWO2006009227A1 (ja) 2008-05-01
US20090122663A1 (en) 2009-05-14
US8098555B2 (en) 2012-01-17
CN101027722B (zh) 2011-08-10
JP4330629B2 (ja) 2009-09-16

Similar Documents

Publication Publication Date Title
WO2010038311A1 (ja) 光ディスクドライブ装置及び追加記録方法
EP1589529A2 (en) Method for adjusting focus or tracking detection unit, and optical disc device
JP4330629B2 (ja) 光ディスク装置
JP2005332558A (ja) フォーカス検出手段またはトラッキング検出手段の調整方法および光ディスク装置
US7406007B2 (en) Optical disc apparatus and spherical aberration correction controlling apparatus
JP4732511B2 (ja) 光学式記録再生装置
EP1953747B1 (en) Optical disc apparatus
JP2008545216A (ja) 現在の層を決定するための球面収差の最適化方法及び装置
JP2006134498A (ja) 光学的情報記録再生装置
JP4622965B2 (ja) 光ディスク再生装置
US7894313B2 (en) Optical disc recording and reproducing apparatus
JP4399333B2 (ja) 光ディスク装置および球面収差補正制御装置
JP4399324B2 (ja) 収差補正装置、並びに光ピックアップの制御装置、制御方法及び制御プログラム
JP5227030B2 (ja) 光ディスク装置
JP2008112555A (ja) 光ピックアップ、光ディスクドライブ、光情報記録再生装置及びチルト調整方法
US7983121B2 (en) Optical axis shift correcting device and method, and computer program
US20080089193A1 (en) Apparatus and method for controlling focus jump between recording layers in high-density multi-layer disk
JP4332799B2 (ja) 光ピックアップ、ディスクドライブ装置並びに光ピックアップにおけるフォーカスバイアス及び球面収差に関する調整値検出方法
WO2007132980A1 (en) Apparatus, optical disc drive, and method of controlling the optical disc drive
JP2012169019A (ja) 光ディスク装置
JP5397395B2 (ja) 光ディスク装置
JP4699423B2 (ja) 光ディスク装置
JP2004171695A (ja) 光ヘッド装置、及び、光学的情報記録・再生装置
JP2008108378A (ja) 光ディスク装置
JP2006012296A (ja) 光ディスク装置及び層間ジャンプ制御方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006529284

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 200580032297.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 11572429

Country of ref document: US

122 Ep: pct application non-entry in european phase