WO2006005662A1 - Abgasturbolader - Google Patents

Abgasturbolader Download PDF

Info

Publication number
WO2006005662A1
WO2006005662A1 PCT/EP2005/052796 EP2005052796W WO2006005662A1 WO 2006005662 A1 WO2006005662 A1 WO 2006005662A1 EP 2005052796 W EP2005052796 W EP 2005052796W WO 2006005662 A1 WO2006005662 A1 WO 2006005662A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
sensor element
internal combustion
combustion engine
gas turbocharger
Prior art date
Application number
PCT/EP2005/052796
Other languages
English (en)
French (fr)
Inventor
Johannes Ante
Fernando-Monge Villalobos
Markus Gilch
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to JP2007520797A priority Critical patent/JP2008506074A/ja
Priority to US11/632,080 priority patent/US20070186551A1/en
Priority to DE112005001127.5T priority patent/DE112005001127B4/de
Publication of WO2006005662A1 publication Critical patent/WO2006005662A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/02Arrangement of sensing elements
    • F01D17/06Arrangement of sensing elements responsive to speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D21/00Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
    • F01D21/02Shutting-down responsive to overspeed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/02Gas passages between engine outlet and pump drive, e.g. reservoirs
    • F02B37/025Multiple scrolls or multiple gas passages guiding the gas to the pump drive
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/48Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage
    • G01P3/481Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals
    • G01P3/487Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals delivered by rotating magnets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/48Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage
    • G01P3/481Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals
    • G01P3/488Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals delivered by variable reluctance detectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/01Purpose of the control system
    • F05D2270/02Purpose of the control system to control rotational speed (n)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/304Spool rotational speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to a ⁇ bgasturbolader for a Brenn ⁇ combustion engine, with a compressor and a turbine, wherein in the compressor, a compressor is rotatably mounted and in the turbine, a turbine wheel is rotatably mounted and the compressor is mechanically connected by means of a rotatably mounted turbo shaft with the turbine wheel and wherein the exhaust turbocharger has a device for detecting the rotational speed of the turbo shaft.
  • the power generated by an internal combustion engine depends on the air mass and the corresponding amount of fuel that can be provided to the engine for combustion. If one wants to increase the power of the internal combustion engine, more combustion air and more fuel must be supplied. This increase in performance is achieved in a naturally aspirated engine by increasing the displacement or by increasing the speed. An increase in displacement, however, generally leads to heavier in size larger and therefore more expensive internal combustion engines. The increase in rotational speed brings about considerable problems and disadvantages, especially with larger internal combustion engines, and is limited for technical reasons.
  • An exhaust-gas turbocharger essentially consists of a flow compressor and a turbine, which are connected to a common shaft and rotate at the same speed.
  • the turbine sets the normally useless exhausting energy of the exhaust gas into rotation energy and drives the compressor.
  • the compressor sucks in fresh air and conveys the pre-compressed air to the individual cylinders of the engine.
  • the larger amount of air in the cylinders can be fed an increased amount of fuel, whereby the internal combustion engine gives more power.
  • the combustion process is also favorably influenced, so that the internal combustion engine achieves a better overall efficiency.
  • the torque curve of a combustion engine charged with a turbocharger can be made extremely favorable.
  • Series suction engines existing in vehicle manufacturers can be substantially optimized by the use of an exhaust gas turbocharger without great constructional influences on the internal combustion engine.
  • Supercharged internal combustion engines generally have a lower specific fuel consumption and have a lower pollutant emission.
  • turbochargers are generally quieter than naturally aspirated engines of the same power, since the exhaust gas turbocharger itself acts like an additional silencer. In internal combustion engines with a large operating speed range, for example in internal combustion engines for passenger cars, a high charge pressure is required even at low engine speeds.
  • a wastegate valve a so-called waste gate valve
  • a wastegate valve By choosing a suitable turbine housing, a high charge pressure is quickly built up even at low engine speeds.
  • the charge pressure control valve (waste gate valve) then limits the charge pressure to a constant value as the engine speed increases.
  • turbochargers with variable turbine geometry (VTG) are used.
  • the maximum permissible rotational speed of the combination of turbine wheel and turbo shaft which is also referred to as a rotor of the turbocharger
  • the rotational speed of the running gear is exceeded excessively, this would be destroyed, which amounts to a total damage of the turbocharger.
  • modern and small turbochargers with significantly smaller turbine and compressor wheel diameters which have an improved rotational acceleration behavior due to a considerably smaller mass moment of inertia, are affected by the problem of exceeding the permissible maximum rotational speed.
  • the wastegate valves have proven to be actuated according to the prior art by a signal resulting from the generated boost pressure. If the boost pressure exceeds a predetermined threshold value, then the wastegate valve opens and directs a portion of the exhaust gas mass flow past the turbine. This consumes less power due to the reduced mass flow, and the compressor performance decreases to the same extent. The charging pressure and the rotational speed of the turbine wheel and of the compressor wheel are reduced.
  • this control is relatively sluggish, since the pressure build-up occurs at a speed overrun of the running tool with a time offset. Therefore, the speed control for the turbocharger must intervene with the charge pressure monitoring in the highly dynamic range (load change) by correspondingly early boost pressure reduction, which leads to a loss of efficiency.
  • the object of the present invention is therefore to specify an exhaust-gas turbocharger for an internal combustion engine in which the rotational speed of the rotating parts (turbine wheel, compressor wheel, turbo shaft) is detected simply and inexpensively and without significant structural interference with the construction of existing turbochargers can be.
  • the means for detecting the speed of the. and / or in the compressor-side end of the turbo shaft has an element for Varia ⁇ tion of a magnetic field, wherein the variation of the magnetic field in response to the rotation of the turbo shaft takes place and wherein in the vicinity of the element for varying the magnetic field, a sensor element is arranged, the Varia tion of the magnetic field detected and converted into electrically evaluable signals.
  • turbocharger the compressor-side end of the turbo shaft is easily accessible, whereby commercially available sensor elements, such as, for example, Hall sensor elements, magnetoresistive sensor elements or inductive sensor elements, can be placed here without or with only minor interventions in the design of existing turbochargers With the signal generated by the sensor element, the wastegate can be controlled very quickly and precisely, or the turbine geometry of VTG superchargers can be changed in order to avoid an overspeed of the rotor.
  • the turbocharger can thus always be operated very close to its speed limit, whereby it reaches its maximum efficiency. A relatively large safety distance to the maximum speed limit, as is customary with pressure-controlled turbochargers, is not required.
  • the sensor element is designed as a Hall sensor element.
  • Hall sensor elements are very good for detecting the variation of a magnetic field and are therefore very good for speed detection to use. Hall sensor elements are very inexpensive to acquire commercially and they can also be used at temperatures up to about 160 ° C.
  • the sensor element is magnetoresistive
  • MR magnetic resonance
  • the sensor element is designed as an inductive sensor element.
  • inductive sensor elements are well suited for detecting the variation of a magnetic field.
  • the sensor element is arranged in the axial extension of the turbo shaft.
  • the sensor element is arranged next to the compressor end of the turbo shaft.
  • the variation of the magnetic field generated by a bar magnet arranged in the compressor-side end of the turbo shaft can be detected particularly well, since the poles move the bar magnet one after the other past the sensor element.
  • the sensor element is integrated in a sensor which is connected via a spacer with an adapter, wherein the adapter can be placed on the air inlet of the compressor housing.
  • the sensor element is integrated into a sensor which, together with a distancing piece, forms an insertion finger, which can be inserted into the air inlet through a recess in the compressor housing.
  • a plug-in finger forms a very compact component, which only slightly reduces the cross-section of the air inlet.
  • the installation of such a Einsteckfingers in a recess in the compressor housing is very simple, which is a great advantage especially when mounting the sensor element on the turbocharger.
  • the sensor element is integrated in a sensor which can be placed on the outer wall of the compressor housing in the region of the air inlet.
  • no Ein ⁇ handle on the compressor housing or in the air inlet of the turbo charger must be made.
  • the cross-section of the air inlet is fully retained and no undesirable effects in the air flow in front of the compressor wheel can be caused by the sensor element or the sensor.
  • a star magnet which is arranged in the compressor-side end of the turbo shaft, generates a sufficiently strong variation of the magnetic field during the rotation of the turbo shaft in the sensor element arranged on the outer wall of the compressor housing, so that a sensor in this sensor The speed of Tur ⁇ bowelle corresponding electrical signal can be generated.
  • the element is designed to vary a magnetic field as a bar magnet.
  • a diametrically polarized bar magnet rotating with the turbo shaft generates a readily measurable variation of the magnetic field in its surroundings, as a result of which the rotational speed of the turbo shaft, the compressor wheel and the turbine wheel can be easily detected.
  • the element for varying a magnetic field is designed in the form of two magnetic dipoles, the north pole of the first dipole being the south pole of the second dipole is facing.
  • Two magnetic dipoles perform the same function as a bar magnet, but they are lighter than a bar magnet, which is very advantageous.
  • the element for varying a magnetic field is designed as a nut made of ferromagnetic material.
  • the power tool (turbo shaft and turbine wheel) is usually connected to the compressor wheel by means of a nut in any case. If this nut is made of ferromagnetic material, due to its geometric shape, it is able to vary a magnetic field when it is rotated in it. By this embodiment, the variation of the magnetic field takes place by a component already present in the turbocharger.
  • the nut If the nut is permanently magnetized, it simultaneously generates the magnetic field, which varies as it rotates in the sensor element. Such multiple functions of a component are to evaluate for cost reasons as very beneficial.
  • the element for varying a magnetic field is designed as a slot in the compressor-side end of the turbo shaft.
  • a slot in a ferromagnetic material an externally applied magnetic field can be well varied.
  • the magnetic flux is conducted according to the slit rotating in the field. This simple and cost-effective measure leads to a readily measurable variation of the magnetic field in the sensor element.
  • At least one flux guide body is arranged in such a way that it transmits the magnetic field. see flow of magnetic field collects and conducts to the sensor element.
  • the sensor element can also be arranged relatively far from the element for varying the magnetic field.
  • the sensor element are arranged on the outside of the compressor housing, which is particularly favorable, since in this An ⁇ order the sensor can be easily replaced in case of repair.
  • the element for varying the magnetic field and the sensor element are surrounded by a magnetic shield, which shields the element for varying the magnetic field and the sensor element against external magnetic interference fields.
  • Magnetic fields generated outside the turbocharger can lead to faulty speed measurements in the turbocharger.
  • the magnetic shield keeps these interference fields away from the magnetic field variation element and from the sensor element, thereby promoting error-free measurement.
  • the element for varying the magnetic field, the sensor element and the flux guide body are surrounded by the magnetic shield, which shields the element for varying the magnetic field, the sensor element and the flux guide against external magnetic interference fields.
  • Magnetic Stör ⁇ fields can also sprinkle in the flux guide, which is prevented by the shield.
  • a part of the compressor housing is designed as a magnetic shield.
  • the compressor housing assumes a further function, which saves costs, material and weight. It has similar advantages when a part of the flux-conducting body is designed as a magnetic shielding. In both cases, the production of the system facilitates considerably.
  • the sensor element and / or the flux guide body are / is integrated in a fastening system for a suction hose.
  • the fastening system can be designed, for example, as a hose clamp. If the fastening system accommodates the sensor element and / or the flux guide body, these components are very easy to assemble. In addition, cost and space savings result from this development.
  • the flux guide body and / or the magnetic shield and / or the sensor element and / or the magnetic field sensor and / or the connector housing and / or the fastening system is / are completely or partially encapsulated in plastic. This results in production advantages and the overmolded components are effectively protected against environmental influences.
  • FIG. 2 the turbine wheel, the turbo shaft and the compressor wheel
  • FIG. 3 shows a compressor with an air inlet and an air outlet
  • FIG. 4 shows the compressor shown in FIG. 3 as a partial section
  • FIG. 5 the adapter
  • FIG. 6 a closer view of the adapter from FIG. 5,
  • FIG. 7 shows an improved holder of the magnetic field sensor
  • FIG. 8 shows a partial section of the adapter known from FIG. 7,
  • FIG. 9 shows a further possible embodiment of the invention
  • FIG. 10 the compressor in conjunction with a curved adapter
  • FIG. 11 a further embodiment
  • FIG. 12 a partial section of the illustration from FIG. 11,
  • FIGS. 13-15 schematic representations of the measuring principle
  • FIGS. 16-19 various embodiments of the element for the
  • FIG. 20 a a principle of the signal generation
  • FIG. 20b shows a representation of the FIG. 20a rotated by 90 degrees
  • FIG. 21a another principle of the signal generation
  • FIG. 21b shows a representation of the illustration from FIG. 21a rotated by 90 degrees
  • FIG. 22a a third principle of the signal generation
  • FIG. 22b shows a representation of the illustration from FIG. 22a rotated by 90 degrees
  • FIG. 23 shows a further embodiment
  • FIG. 24a an embodiment in which the sensor element is integrated in the compressor housing
  • FIG. 24b a representation of the illustration from FIG. 24a rotated by 90 degrees
  • Figure 25 an embodiment in which the sensor element is set auf ⁇ on the outer wall of the compressor housing.
  • FIG. 26 an embodiment in which the sensor element is connected to a fastening system
  • FIGS. 27a to d show various embodiments of the flux-conducting body.
  • FIG. 1 shows a conventional exhaust gas turbocharger 1 with a turbine 2 and a compressor 3.
  • the compressor wheel 9 is rotatably mounted and connected to the turbo shaft 5.
  • the turbo shaft 5 is also rotatably mounted and connected to the turbine wheel 4 at its other end.
  • Turbine inlet 7 is let into the turbine 2 hot exhaust gas from an unspecified here internal combustion engine, wherein the turbine wheel 4 is set in rotation.
  • the exhaust gas flow leaves the turbine 2 through the turbine outlet 8.
  • the turbine wheel 4 is connected to the compressor wheel 9.
  • the turbine 2 drives the compressor 3.
  • air is sucked through the air inlet 24 and compressed and fed via the air outlet 6 of the internal combustion engine.
  • the turbine wheel 4 is usually made of a highly heat-resistant austenitic nickel compound, which is also suitable for the high temperatures when using the turbocharger for charging gasoline engines. It is produced by a fine casting process and is connected to the turbo shaft 5, which is generally made of high-quality steel, for example by friction welding.
  • the component made of turbine wheel 4 and turbo shaft 5 is also referred to as a rotor or a running tool.
  • the compressor wheel 9 is also produced, for example, from an aluminum alloy by means of a precision casting process.
  • the compressor wheel 9 is attached to the compressor-side end 10 of the turbo shaft 5 usually with a fastener 11. This fastener 11 may be, for example, a cap nut 27, the turbine 9 with a
  • the rotor forms a solid unit with the compressor wheel 9. Since the compressor If sorrad 9 generally consists of an aluminum alloy, it is problematic to determine the rotational speed of the compressor wheel with a measurement based on a magnetic field change.
  • Figure 3 shows a compressor 3 with an air inlet 24 and an air outlet 6.
  • an adapter 12 is arranged an ⁇ , which is connected to the compressor housing 17, for example with a screw 18.
  • a plug housing is integrated, which forms a magnetic field sensor 14 with a sensor element 19 ei ⁇ . The signals detected by the magnetic field sensor 14 can be fed to the subsequent electronics via the connection pins 15 arranged in the plug housing 13.
  • FIG. 4 shows the compressor 3 shown in Figure 3 as a partial section.
  • the compressor housing 17, which is connected to the adapter 12 by means of the screw 18, can be seen.
  • the cut-open compressor housing 17 exposes the compressor wheel 9 and the turbo shaft 5.
  • a device 26 for detecting the rotational speed of the turbo shaft 5 can be seen. This device will be described in more detail in FIG.
  • FIG. 5 again shows the adapter 12, which by means of
  • Screw 18 is connected to the compressor housing 17.
  • the partial section through the adapter 12 now shows the magnetic field sensor 14, which in this exemplary embodiment contains a sensor element 19 and a magnet 20.
  • the magnet 20 can be designed both as an electric and as a permanent magnet.
  • the magnetic field generated by the magnet 20 continues through the sensor element 19 and reaches the element 21 for variation of the magnetic field.
  • the element 21 for the variation of Magnetic field is integrated into the compressor-side end 10 of the turbo shaft 5.
  • the element 21 for varying the magnetic field is realized as a slot in the compressor-side end 10 of the turbo shaft 5.
  • the compressor-side end 10 of the turbo shaft 5 consists of magnetically conductive material (ferromagnetic / soft magnetic material)
  • the magnetic field generated by the magnet 20 is permanently changed by the slot during the rotation of the turbo shaft 5, and by the rotation of the turbo shaft 5 generated change in the magnetic field is detected by the sensor element 19 and converted into an electrically evaluable signal.
  • the sensor element 19 is arranged in the vicinity of the element 21 for varying the magnetic field. In the vicinity in this context means a position of the sensor element 19, in which it can detect well the magnetic field changes produced by the element 21 for the variation of the magnetic field, in order to obtain a well measurable (distinct above the electronic noise of the Sensor element) to generate electrical signal.
  • This electrical signal generated in the sensor element 19 as a function of the rotational speed of the turbo shaft 5 is supplied to the connection pins 15 in the plug housing 13 via electrical leads 29.
  • the electrical signals generated by the sensor element 19 proportional to the rotational speed of the turbo shaft 5 are available for further processing by the subsequent vehicle electronics.
  • the known from Figure 5 adapter 12 is shown in Figure 6 ein ⁇ times closer.
  • the magnetic field sensor 14 includes electrical lines 29 and a spacer 22 that precisely positions the sensor element 19 in front of or next to the element 21 for varying the magnetic field. field is placed when the adapter 12 is connected to the Kompressorge ⁇ housing 17.
  • the plug housing 13 receives the connection pins 15 and is likewise connected to the adapter 12.
  • the magnetic field sensor 14 and the adapter can be produced here in one piece by injection molding. Via the connection pins 15, the electrical signals generated by the sensor element 19 are made available to subsequent evaluation electronics.
  • the distance piece 22 is kept relatively narrow and thus reduces the cross section of the air inlet 24 of the compressor 3 only insignificantly.
  • FIG. 7 An improved mounting of the magnetic field sensor 14 is shown in FIG. 7.
  • at least one web 23 is formed next to the spacer 22 for holding the magnetic field sensor 14.
  • the webs 23 reduce the cross section of the air inlet 24 of the compressor 3 only insignificantly, but contribute to an increased stability of the construction of the adapter 12 and the magnetic field sensor 14.
  • the webs 23 can be easily formed in the above-mentioned injection molding.
  • the magnetic field sensor 14 must be held exactly opposite the element 21 for varying the magnetic field, which is ensured by the webs 23.
  • FIG. 8 shows a partial section of the device known from FIG.
  • Adapters 12 Here, the webs 23, which are used for precise Gar ⁇ tion of the magnetic field sensor 14, clearly visible.
  • a seal 16 is provided, which is clearly visible in FIG. 8.
  • FIG. 9 shows a further possible embodiment of the invention.
  • the sensor element 19 is now arranged next to the element 21 for varying the magnetic field.
  • the variation of the magnetic field is now generated by the fastening element 11, which may be formed, for example, as a nut made of ferromagnetic material. Die ⁇ ses fastener 11 now fulfills a dual function, since on the one hand the compressor wheel 9 ver ⁇ with the turbo shaft 5 binds and can be used by its arrangement at the compressor end of the turbo shaft 5 for the variation of the magnetic field.
  • the magnetic field to be varied is generated by the magnet 20, which is integrated in the magnetic field sensor 14.
  • the sensor element 19 can be seen, which detects the variation of the magnetic field and converts it into electrical signals.
  • Exhaust gas turbochargers 1 are thermally highly stressed components in which temperatures up to 1000 ° C arise. With known sensor elements 19, such as Hall sensors or magnetoresistive sensors, can not be measured at these temperatures. At the compressor end 10 of the turbo shaft 5, significantly lower temperature loads result. In the air inlet 24 of a com- pressors 3 usually occur temperatures of about 140 0 C in continuous operation and 160 to 170 ° C for peak load. As a result of the magnetic field sensor 14 arranged in the cold intake air flow, its temperature load is considerably reduced in comparison with installation at other points of the exhaust gas turbocharger.
  • FIG. 10 shows the compressor 3 in conjunction with a curved adapter 12.
  • the magnetic field sensor 14 is also here
  • the spacer 22 now extends in the direction of the imaginary continuation of the turbo shaft 5.
  • the plug housing 13 is located.
  • the electrical lines 29 can be seen. which guide the electrical signals generated by the sensor element 19 to the plug housing 13 and the connection pins 15 located therein.
  • the curved adapter 12 can be used advantageously above all if only a small space in the engine compartment is available, as a result of which the lines for the intake air must be laid close to the turbocharger 1.
  • webs 23 can be seen, which ensure a particularly accurate and low-vibration mounting of the magnetic field sensor 14.
  • the cross section of the air inlet 24 of the turbocharger 1 is reduced only to a small extent, whereby no performance loss of the exhaust gas turbocharger 1 are to be expected.
  • Figure 11 shows a further embodiment in which the magnetic field sensor 14 is held by a tripod of webs 23. It can be clearly seen that the three webs 23 and the spacer 22 affect the cross section of the air inlet 24 only to a very small extent. However, the formation of the webs 23 ensures an exact positioning of the magnetic field sensor 14 in front of the compressor-side end 10 of the turbo shaft 5. In addition, the webs 23 prevent movements of the magnetic field sensor 14 relative to the compressor end 10 of the turbo shaft 5.
  • FIG. 12 A partial section of the illustration from FIG. 11 is shown in FIG. 12.
  • the arrangement of the magnetic field sensor 14 in front of the element 21 for varying the magnetic field can be clearly seen in FIG.
  • the magnetic field is The magnetic field is passed through the sensor element 19 and is changed during the rotation of the turbo shaft 5 by the element 21 for varying the magnetic field.
  • the change in the magnetic field is proportional to the speed of the turbo shaft 5 and is detected by the sensor element 19 and converted into electrical signals.
  • the electrical signals are routed via electrical lines in the spacer 22 to the connection pins 15 in the plug housing 13, where they are available for evaluation by subsequent vehicle electronics.
  • Webs 23 hold the Magnetfeld ⁇ sensor 14 fixed in the desired position.
  • a magnet 20 is formed in the compressor-side end 10 of the turbo shaft 5, which serves as an element 21 for varying the magnetic field.
  • the variation of the magnetic field results when the turbo shaft 5 rotates and the time-varying magnetic field 25 is detected in the sensor element 19.
  • the magnetic field sensor 14 with the sensor element 19, the electrical leads 29 in the spacer 22 and the An ⁇ connecting pins 15 is formed here as Einsteckfinger 28 which is inserted ge only through the wall of the compressor housing 17 and fixed there.
  • the embodiment of magnetic field sensor 14 as insertion finger 28 represents an embodiment of magnetic field sensor 14 which is very cost-effective for the user since only very small changes are required at existing series turbocharger in order to use magnetic field sensor 14 for speed measurement can.
  • FIG. 14 shows a similar construction to that shown in FIG. 13, wherein the compressor housing 17 now has a curved air inlet 24.
  • the Magnet ⁇ field sensor 14 is formed as Einsteckfinger 28, which is arranged along the imaginary extension of the turbo shaft 5.
  • the magnetic field 25 is shown in FIG. 14 with the aid of field lines passing through the sensor element 19 and whose field strength changes as the turboshaft 5 rotates, thus producing electrical signals in the sensor element 19 number of turbo shaft 5 are proportional. These electrical signals are conducted via the electrical leads 29 to the An ⁇ connection pins 15.
  • FIG. 15 shows a construction in which the magnetic field sensor 14 is also embodied as an insertion finger 28, but which is designed so that the sensor element 19 is held laterally next to the element 21 for varying the magnetic field and the compressor end 10 of the turbo shaft 5.
  • the field lines of the magnetic field 25 pass through the sensor element 19, the magnetic field intensity in the sensor element 19 being varied during rotation of the turbo shaft 5 and a signal proportional to the speed of the turbo shaft 5 being generated in the sensor element 19.
  • FIGS. 16 to 19 show various embodiments of the element 21 for varying the magnetic field 25.
  • the element 21 for varying the magnetic field 25 is arranged in the compressor-side end 10 of the turbo shaft 5.
  • the element 21 for varying the magnetic field 25 is designed in the form of two permanent magnets 20.
  • the perma- Magnets 20 are arranged so that the south pole S of the upper magnet faces the north pole N of the lower magnet, resulting in a magnetic field 25 corresponding to that of a bar magnet with a north pole N and a south pole S.
  • the element for varying the magnetic field is embodied as an insert 30 made of magnetically conductive material.
  • This insert 30 is sickle-shaped integrated into the compressor-side end 10 of the turbo shaft 5.
  • the magnetic field must be generated by a correspondingly placed magnet 20, which conducts the magnetic field lines through the compressor-side end 10 of the turbo shaft 5.
  • a sensor element 19 arranged in this magnetic field then detects the variation of the magnetic field 25 during the rotation of the turbo shaft 5.
  • a bar magnet having a north pole N and a south pole S is arranged in the compressor-side end 10 of the turbo shaft 5.
  • This bar magnet 20 is at the same time the element 21 for varying the magnetic field 25.
  • the variation of the magnetic field 25 in the sensor element 19, not shown here, follows during the rotation of the turbo shaft 5.
  • FIG. 19 shows a further embodiment of the element 21 for varying the magnetic field 25.
  • the element 21 for varying the magnetic field 25 is designed as a slot 31 in the compressor end 10 of the turbo shaft 5.
  • the compressor-side end 10 of the turbo shaft 5 should consist of ferromagnetic (eg soft magnetic) material.
  • the magnetic field 25 is generated by a magnet 20 which is arranged correspondingly outside the compressor-side end 10 of the turbine bowl 5. The variation of the Magnetic field then takes place during the rotation of the turbo shaft 5 through the slot 31 in the compressor-side end 10 of the turbo shaft 5.
  • FIG. 20a the principle of signal generation in the sensor element 19 is shown in principle by an element 21 for varying the magnetic field.
  • the magnetic field variation element 21 is formed as a permanent magnet 20 integrated in the compressor-side end 10 of the turbo shaft 5.
  • the magnetic field 25 generated by this magnet 20 is indicated by field lines.
  • the field lines of the magnetic field 25 pass through the sensor element 19, whereby the field strength of the magnetic field 25 varies during the rotation of the turbo shaft 5 in the sensor element 19, which causes an electrical signal in the sensor 19 proportional to the speed of the turbo-roll 5. Via electrical lines 29, this electrical signal can be made available to the following vehicle electronics.
  • FIG. 20b A representation rotated by 90 degrees of Figure 20a is shown in Figure 20b.
  • the magnetic field 20, which here represents the element 21 for varying the magnetic field 25, outgoing field lines, penetrate the sensor element 19 with a high field strength. If the compressor wheel 9 and the turbo shaft 5 are now rotated, the element 21 rotates with the purpose of varying the magnetic field 25, and the sensor element 19 is supplied with a lower field strength by the magnetic field 25. If the sensor element 19 is designed, for example, as a Hall sensor, this field strength variation results in a corresponding electrical signal. If the sensor element 19 is designed as a magnetoresistive sensor, then the variation of the gradient of the magnetic field 25 in the sensor element 19 results in the corresponding electrical signal. In both cases is generated to the speed of the turbo shaft 5 proportional signal that can be evaluated accordingly.
  • the element 21 for varying the magnetic field 25 is formed as an insert 30 of ferromagnetic (eg soft magnetic) material in the compressor-side end 10 of the turbo shaft 5.
  • the magnet 20, which is arranged in front of the turbo shaft 5, generates a magnetic field 25.
  • the magnetic field 25 passes through the sensor element 19.
  • the crescent-shaped insert 30 rotates from ferromagnetic material.
  • the insert 30 made of ferromagnetic material produces a variation of the magnetic field 25 in the sensor element 19.
  • the insert 30 made of ferromagnetic material changes the field strength as well as the gradient of the magnetic field 25 in the sensor element 19.
  • both Hall elements and magnetoresistive elements as sensor element 19 come into question for the purpose of dedicating the rotational speed of the turbo shaft.
  • the image known from FIG. 21a is 90 in FIG. 21b
  • the element 21 for varying the magnetic field 25 which is formed as a sickle-shaped Ein ⁇ position 30 of ferromagnetic material in the compressor side end 10 of the turbo shaft 5.
  • the rotation of the turbo shaft 5 generates the variation of the magnetic field 25 due to the arrangement of the element 21 at the compressor end 10 of the turbo shaft 5.
  • Figure 22a shows the formation of the element 21 for varying the magnetic field 25 as a nut 27 made of ferromagnetic Mate ⁇ rial.
  • the nut 27 may also be a so-called cap nut.
  • the nut 27 now fulfills a double function. For one thing, she presses the compressor 9 against a Seat of the turbo shaft 5 and thus connects the compressor wheel 9 with the running gear. On the other hand, it varies the magnetic field 25 generated by the magnet 20 in the sensor element 19. This can be seen particularly well in FIG. 22b.
  • the nut 27 is both fastening element 11 for the compressor wheel 9 and element 21 for the variation of the magnetic field 25.
  • the magnetic field 25 is generated by the magnet 20 and passes through the sensor element 19. Due to the polygonal configuration of the nut 27 made of ferromagnetic material both the field strength and the gradient of the magnetic field 25 in the sensor element 19 varies.
  • Both changes can be converted by corresponding sensor elements into electrical signals.
  • FIG. 23 shows an embodiment in which the magnetic field sensor 14 with its sensor element 19 is arranged laterally of the turbo shaft 5 in the air inlet of the compressor housing 17.
  • the element 21 for varying the magnetic field 25 is embodied here as a magnet 20 arranged in the compressor-side end 10 of the turbo shaft 5 or in the nut 27. If the magnet 20 generates a magnetic field 25 of sufficiently high field strength, then the field strength coupled in the sensor element 19 is sufficient to generate a sufficiently high electrical signal which is proportional to the rotational speed of the turbo shaft 5.
  • FIG. 24 a shows the embodiment known from FIG. 23, with the sensor element 19 now being integrated into the compressor housing 17.
  • flow guide bodies 32 are arranged on the compressor housing 17 which concentrate the magnetic flux generated by the magnet 20 and guide it to the sensor element 19 , This is indicated graphically in FIG. 24a by a larger one Number of magnetic field lines 25 is curved toward the Flußleit stresses 32 out.
  • the magnetic flux collected in this way is sufficient to generate in the sensor element 19 correspondingly high electrical signals, which are supplied via electrical lines 29 to a subsequent evaluation electronics.
  • a magnetic shield 34 is arranged inside the compressor housing 17. This magnetic shield comprises the sensor element 19 and the element 21 for varying the magnetic field 25.
  • the magnetic shield 34 may also be advantageously integrated into the compressor housing 17.
  • FIG. 24b shows the arrangement from FIG. 24a rotated by 90 degrees.
  • a knurled nut 27 is shown, which may be formed as an element for varying the magnetic field.
  • the element 21 for varying the magnetic field 25 in the compressor end 10 of the turbo shaft 5 is arranged.
  • the sensor element 19 receives a bundled magnetic flux through the flux guide 32.
  • the sensor element 19 can advantageously be integrated in the relatively little thermally loaded part of the compressor housing 17.
  • the magnetic field strength supplied by the flux-conducting bodies 32 is sufficient to produce sufficiently large electrical signals (signals which clearly emerge from the electrical noise) in the sensor element 19.
  • a magnetic shield is provided which, unlike in FIG. 24 a, comprises the compressor housing 17.
  • the sensor element 17, the element 21 for variation of the magnetic field 25 and the flux guide 32 of the magnetic shield 34 are also included.
  • the sensor element 19 is placed on the outer wall 33 of the compressor housing 17. This is the sensor element 19 integrated into a magnetic field sensor 14, which is glued, for example, on the outer wall 33.
  • a magnetic field sensor 14 which is glued, for example, on the outer wall 33.
  • FIG. 26 shows an arrangement similar to that of FIG. 25, but in FIG. 26, a suction hose 36 is applied to the compressor housing 17, through which the combustion air to be compressed is supplied to the air inlet 24.
  • Fixing system 35 which may be formed, for example, as a hose clamp, attaches the suction hose 36 to the compressor housing 17 in the region of the air inlet 24.
  • the magnetic field sensor 14 is connected to the fastening system 35.
  • the fastening system 35 thus assumes the task of fastening the suction hose 36 and carries the magnetic field sensor 14.
  • FIGS. 27a to 27d show various embodiments of the flux-conducting body 32.
  • FIG. 27a shows the air inlet 24 and the element 21 for varying the magnetic field 25.
  • the magnetic field 25 varied by the element 21 for varying the magnetic field 25 is conducted by the flux guide 32 to the magnetic field sensor 14 where it is converted into electrical signals corresponding to the position of the magnetic field sensor Ele ⁇ Mentes 21 for the variation of the magnetic field 25 correspond.
  • FIGS. 27b, c, d also include the element 21 for varying the magnetic field 25, the air inlet 24, and at least one flux guide body 32.
  • the magnetic shield 34 shields external magnetic interference fields so that they are in the magnetic field sensor 14 do not disturb generated signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Supercharger (AREA)

Abstract

Die Erfindung betrifft einen Abgasturbolader (1) für eine Brennkraftmaschine, mit einer Einrichtung (26) zur Erfassung der Drehzahl der Turbowelle (5). Die Einrichtung (26) zur Erfassung der Drehzahl weist an dem und/oder in dem kompressorseitigen Ende (10) der Turbowelle (5) ein Element (21) zur Variation eines Magnetfeldes auf, wobei die Variation des Magnet- feldes (25) in Abhängigkeit von der Drehung der Turbowelle (5) erfolgt, und wobei in der Nähe des Elementes (21) zur Variation des Magnetfeldes (25) ein Sensorelement (19) angeordnet ist, das die Variation des Magnetfeldes erfasst und in elektrische au swertbare Signale umwandelt.

Description

Abgasturbolader
Die Erfindung betrifft einen Äbgasturbolader für eine Brenn¬ kraftmaschine, mit einem Kompressor und einer Turbine, wobei in dem Kompressor eine Kompressorrad drehbar gelagert ist und in der Turbine ein Turbinenrad drehbar gelagert ist und das Kompressorrad mittels einer drehbar gelagerten Turbowelle mit dem Turbinenrad mechanisch verbunden ist und wobei der Abgas¬ turbolader eine Einrichtung zur Erfassung der Drehzahl der Turbowelle aufweist.
Die von einer Brennkraftmaschine erzeugte Leistung hängt von der Luftmasse und der entsprechenden Kraftstoffmenge ab, die der Maschine zur Verbrennung zur Verfügung gestellt werden kann. Will man die Leistung der Brennkraftmaschine steigern, muss mehr Verbrennungsluft und mehr Kraftstoff zugeführt wer¬ den. Diese Leistungssteigerung wird bei einem Saugmotor durch eine Hubraumvergrößerung oder durch die Erhöhung der Drehzahl erreicht. Eine Hubraumvergrößerung führt aber grundsätzlich zu schwereren in den Abmessungen größeren und damit teureren Brennkraftmaschinen. Die Steigerung der Drehzahl bringt be¬ sonders bei größeren Brennkraftmaschinen erhebliche Probleme und Nachteile mit sich und ist aus technischen Gründen be¬ grenzt.
Eine viel genutzte technische Lösung zur Steigerung der Leis¬ tung einer Brennkraftmaschine ist die Aufladung. Damit be¬ zeichnet man die Vorverdichtung der Verbrennungsluft durch einen Abgasturbolader oder auch mittels eines vom Motor me- chanisch angetriebenen Verdichters. Ein Abgasturbolader be¬ steht im Wesentlichen aus einem Strömungsverdichter und einer Turbine, die mit einer gemeinsamen Welle verbunden sind und mit der gleichen Drehzahl rotieren. Die Turbine setzt die normalerweise nutzlos verpuffende Energie des Abgases in Ro¬ tationsenergie um und treibt den Verdichter an. Der Verdich¬ ter saugt Frischluft an und fördert die vorverdichtete Luft zu den einzelnen Zylindern des Motors. Der größeren Luftmenge in den Zylindern kann eine erhöhte Kraftstoffmenge zugeführt werden, wodurch die Verbrennungskraftmaschine mehr Leistung abgibt. Der Verbrennungsvorgang wird zudem günstig beein— flusst, so dass die Verbrennungskraftmaschine einen besseren Gesamtwirkungsgrad erzielt. Darüber hinaus kann der Drehmo- mentverlauf einer mit einem Turbolader aufgeladenen Brenn¬ kraftmaschine äußerst günstig gestaltet werden. Bei Fahrzeug¬ herstellern vorhandene Seriensaugmotoren können durch den Einsatz eines Abgasturboladers ohne große konstruktive Ein¬ griffe an der Brennkraftmaschine wesentlich optimiert werden. Aufgeladene Brennkraftmaschinen haben in der Regel einen ge¬ ringeren spezifischen Kraftstoffverbrauch und weisen eine ge¬ ringere Schadstoffemission auf. Darüber hinaus sind Turbomo¬ toren in der Regel leiser als Saugmotoren gleicher Leistung, da der Abgasturbolader selbst wie ein zusätzlicher Schall- dämpfer wirkt. Bei Brennkraftmaschinen mit einem großen Be- triebsdrehzahlbereich, zum Beispiel bei Brennkraftmaschinen für Personenkraftwagen, wird schon bei niedrigen Motordreh¬ zahlen ein hoher Ladedruck gefordert. Dafür wird bei diesen Turboladern ein Ladedruckregelventil, ein so genanntes Waste- Gate—Ventil, eingeführt. Durch die Wahl eines entsprechenden Turbinengehäuses wird schon bei niedrigen Motordrehzahlen schnell ein hoher Ladedruck aufgebaut. Das Ladedruckregelven¬ til (Waste-Gate-Ventil) begrenzt dann bei steigender Motor¬ drehzahl den Ladedruck auf einen gleich bleibenden Wert. Al- ternativ kommen Turbolader mit variabler Turbinengeometrie (VTG) zum Einsatz.
Bei zunehmender Abgasmenge kann die maximal zulässige Dreh¬ zahl der Kombination aus Turbinenrad und Turbowelle, die auch als Laufzeug des Turboladers bezeichnet wird, überschritten werden. Bei einer unzulässigen Überschreitung der Drehzahl des Laufzeuges würde dieses zerstört werden, was einem Total¬ schaden des Turboladers gleichkommt. Gerade moderne und klei¬ ne Turbolader mit deutlich kleineren Turbinen- und Kompres¬ sorraddurchmessern, die durch ein erheblich kleineres Massen¬ trägheitsmoment ein verbessertes Drehbeschleunigungsverhalten aufweisen, werden vom Problem des Überschreitens der zulässi¬ gen Höchstdrehzahl betroffen. Je nach Auslegung des Turbola¬ ders führt schon eine Überschreitung der Drehzahlgrenze um etwa 5 % zur kompletten Zerstörung des Turboladers.
Zur Drehzahlbegrenzung haben sich die Ladedruckregelventile bewährt, die nach dem Stand der Technik von einem aus dem er¬ zeugten Ladedruck resultierenden Signal angesteuert werden. Überschreitet der Ladedruck einen vorgegebenen Schwellwert, so öffnet das Ladedruckregelventil und leitet einen Teil des Abgasmassenstroms an der Turbine vorbei. Diese nimmt wegen des verringerten Massenstroms weniger Leistung auf, und die Kompressorleistung geht in gleichem Maße zurück. Der Lade¬ druck und die Drehzahl des Turbinenrades und des Kompressor¬ rades werden verringert. Diese Regelung ist jedoch relativ träge, da der Druckaufbau bei einer Drehzahlüberschreitung des Laufzeuges mit einem zeitlichen Versatz erfolgt. Deshalb muss die Drehzahlregelung für den Turbolader mit der Lade¬ drucküberwachung im hochdynamischen Bereich (Lastwechsel) durch entsprechend frühzeitige Ladedruckreduzierung eingrei- fen, was zu einem Wirkungsgradverlust führt.
Eine direkte Messung der Drehzahl am Kompressorrad oder am Turbinenrad gestaltet sich schwierig, da zum Beispiel das Turbinenrad thermisch extrem belastet ist (bis zu 1000 0C) , was eine Drehzahlmessung mit herkömmlichen Methoden am Turbi¬ nenrad verhindert. In einer Veröffentlichung der acam- Messelektronic GmbH vom April 2001 wird vorgeschlagen, die Kompressorschaufelimpulse im Wirbelstromprinzip zu messen und auf diese Art die Drehzahl des Kompressorrades zu bestimmen. Dieses Verfahren ist aufwendig und teuer, da zumindest ein Wirbelstromsensor im Gehäuse des Kompressors integriert wer¬ den müsste, was wegen der hohen Präzision, mit der Bauteile eines Turboladers gefertigt sind, äußerst schwierig sein dürfte. Neben der präzisen Integration des Wirbelstromsensors im Kompressorgehäuse entstehen Abdichtungsprobleme, die auf Grund der hohen thermischen Belastung eines Turboladers nur mit aufwendigen Eingriffen in die Bauweise des Turboladers zu bewältigen sind.
Die Aufgabe der vorliegenden Erfindung ist es daher, einen Abgasturbolader für eine Brennkraftmaschine anzugeben, bei dem die Drehzahl der rotierenden Teile (Turbinenrad, Kompres- sorrad, Turbowelle) einfach und kostengünstig sowie ohne we¬ sentliche bauliche Eingriffe in die Bauweise bestehender Tur¬ bolader erfasst werden kann.
Diese Aufgabe wird erfindungsgemäß dadurch gelöst, dass die Einrichtung zur Erfassung der Drehzahl an dem. und/oder in dem kompressorseitigen Ende der Turbowelle ein Element zur Varia¬ tion eines Magnetfeldes aufweist, wobei die Variation des Magnetfeldes in Abhängigkeit von der Drehung des Turbowelle erfolgt und wobei in der Nähe des Elementes zur Variation des Magnetfeldes ein Sensorelement angeordnet ist, das die Varia¬ tion der Magnetfeldes erfasst und in elektrisch auswertbare Signale umwandelt. Vorteilhaft bei der Anordnung des Elementes an dem und/oder in dem kompressorseitigen Ende der Turbowelle ist, das dieser Bereich des Turboladers thermisch relativ wenig belastet ist, da er weit vom heißen Abgasström entfernt liegt und durch den Frischluftstrom gekühlt wird. Darüber hinaus ist das kompres— sorseitige Ende der Turbowelle gut zugänglich, wodurch hier ohne oder nur mit geringen Eingriffen in die Bauweise beste¬ hender Turbolader kommerziell verfügbare Sensorelemente, wie zum Beispiel Hall-Sensorelemente, magnetoresistive Sensorele- mente oder induktive Sensorelemente, platziert werden können, was eine kostengünstige Drehzahlmessung im Turbolader ermög¬ licht- Mit dem vom Sensorelement erzeugten Signal kann sehr schnell und präzise das Ladedruckregelventil angesteuert wer¬ den oder die Turbinengeometrie von VTG Ladern verändert wer- den, um eine Drehzahlüberschreitung des Laufzeuges zu vermei¬ den. Der Turbolade kann somit immer sehr nahe an seiner Dreh¬ zahlgrenze betrieben werden, wodurch er seinen maximalen Wir¬ kungsgrad erreicht. Ein relativ großer Sicherheitsabstand zur maximalen Drehzahlgrenze, wie er bei druckgesteuerten Turbo- ladern üblich ist, wird nicht benötigt.
Bei einer ersten Weiterbildung ist das Sensorelement als Hall-Sensorelement ausgebildet. Hall—Sensorelemente eignen sich sehr gut zur Erfassung der Variation eines Magnetfeldes und sind daher sehr gut zur Drehzahlerfassung zu verwenden. Hall—Sensorelemente sind sehr kostengünstig kommerziell zu erwerben und sie sind auch bei Temperaturen bis etwa 160°C einsetzbar.
Alternativ dazu ist das Sensorelement als magnetoresitives
(MR) Sensorelement ausgebildet. MR Sensorelemente sind ihrer¬ seits gut zur Erfassung der Variation eines Magnetfeldes ge¬ eignet und kostengünstig kommerziell erwerbbar. Bei einer nächsten alternativen Ausgestaltung ist das Sensor¬ element als induktives Sensorelement ausgebildet. Auch induk¬ tive Sensorelemente eigenen sich bestens zur Erfassung der Variation eines Magnetfeldes.
Bei einer nächsten Ausgestaltung ist das Sensorelement in der axialen Verlängerung der Turbowelle angeordnet. Bei dieser Anordnung des Sensorelementes wird der Luftstrom im luftein- lass des Kompressors in nur sehr geringem Maße vom Sensorele- ment selber behindert. Der Wirkungsgrad des Turboladers bleibt dadurch vollständig erhalten.
Alternativ dazu ist das Sensorelement neben dem kompressor- seitigen Ende der Turbowelle angeordnet. Bei dieser Ausge- staltung kann die von einem im kompressorseitigen Ende der Turbowelle angeordneten Stabmagneten erzeugte Variation des Magnetfeldes besonders gut erfasst werden, da sich die Pole das Stabmagneten nacheinander am Sensorelement vorbeibewegen.
Bei einer Ausgestaltung der Erfindung ist das Sensorelement in einen Sensor integriert, der über ein Distanzstück mit ei¬ nem Adapter verbunden ist, wobei der Adapter auf den Luftein- lass des Kompressorgehäuses aufsetzbar ist. Durch die Verwen¬ dung eines Adapters sind am Kompressorgehäuse keinerlei bau— liehe Veränderungen notwendig, um die Drehzahlerfassung im
Turbolader zu realisieren. Dies ist insbesondere im Hinblick auf die komplizierte Bauform von Kompressorgehäusen ein ent¬ scheidender Vorteil.
Alternativ dazu ist das Sensorelement in einen Sensor integ¬ riert, der zusammen mit einem Distarizstück einen Einsteckfin¬ ger bildet, welcher durch eine Ausnehmung im Kompressorgehäu¬ se in den Lufteinlass einsteckbar ist. Ein solcher Einsteck- finger bildet ein sehr kompaktes Bauteil, das den Querschnitt des Lufteinlasses nur wenig verringert. Der Einbau eines sol¬ chen Einsteckfingers in eine Ausnehmung im Kompressorgehäuse gestaltet sich sehr einfach, was vor allem bei der Montage des Sensorelementes am Turbolader ein großer Vorteil ist.
Gemäß einer nächsten alternativen Ausführungsform ist das Sensorelement in einen Sensor integriert, der auf die Außen¬ wand des Kompressorgehäuses im Bereich des Lufteinlasses auf- setzbar ist. Bei dieser Ausführungsform muss keinerlei Ein¬ griff am Kompressorgehäuse oder in dem Lufteinlass des Turbo¬ laders vorgenommen werden. Der Querschnitt des Lufteinlasses bleibt vollständig erhalten und es können keine unerwünschten Effekte in der Luftströmung vor dem Kompressorrad durch das Sensorelement oder den Sensor hervorgerufen werden. Ein star¬ ker Magnet zum Beispiel, der im kompressorseitigen Ende der Turbowelle angeordnet ist, erzeugt bei der Drehung der Turbo¬ welle im auf der Außenwand des Kompressorgehäuses angeordne¬ ten Sensorelement eine ausreichend starke Variation des Mag- netfeldes, so dass in diesem Sensor ein der Drehzahl der Tur¬ bowelle entsprechendes elektrisches Signal erzeugt werden kann.
Bei einer nächsten Ausgestaltung ist das Element zur Variati— on eines Magnetfeldes als Stabmagnet ausgebildet. Ein mit der Turbowelle rotierender, diametral polarisierter Stabmagnet erzeugt in seiner Umgebung eine gut messbare Variation des Magnetfeldes, womit die Drehzahl der Turbowelle, des Kompres¬ sorrades und des Turbinenrades gut erfassbar ist.
Alternativ dazu ist das Element zur Variation eines Magnet¬ feldes in Form zweier magnetischer Dipole ausgebildet, wobei der Nordpol des ersten Dipols dem Südpol des zweiten Dipols zugewandt ist. Zwei magnetische Dipole erfüllen die gleiche Funktion wie ein Stabmagnet, sie sind jedoch leichter als ein Stabmagnet, was sehr vorteilhaft ist.
Bei einer nächsten alternativen Ausführungsform ist das Ele¬ ment zur Variation eines Magnetfeldes als Mutter aus ferro- magnetischem Material ausgebildet. Das Laufzeug (Turbowelle und Turbinenrad) wird in der Regel ohnehin mittels einer Mut¬ ter mit dem Kompressorrad verbunden. Wenn diese Mutter aus ferromagnetischem Material besteht, ist sie aufgrund ihrer geometrischen Form in der Lage ein Magnetfeld zu variieren, wenn sie in diesem gedreht wird. Durch diese Ausführungsform erfolgt die Variation des Magnetfeldes durch ein ohnehin im Turbolader vorhandenes Bauteil.
Ist die die Mutter permanent magnetisiert, erzeugt sie gleichzeitig das magnetische Feld, das bei ihrer Drehung im Sensorelement variiert. Derartige Mehrfachfunktionen eines Bauelementes sind aus Kostengründen als sehr vorteilhaft zu bewerten.
Bei einer nächsten Ausgestaltung der Erfindung ist das Ele¬ ment zur Variation eines Magnetfeldes als Schlitz in dem kom- pressorseitigen Ende der Turbowelle ausgebildet. Mit einem Schlitz in einem ferromagnetischen Material kann ein von au¬ ßen angelegtes Magnetfeld gut variiert werden. Der magneti¬ sche Fluss wird entsprechend der sich im Feld drehenden Schlitzung geleitet. Diese einfache und kostengünstige Ma߬ nahme führt zu einer gut messbaren Variation des magnetischen Feldes im Sensorelement.
Bei einer Weiterbildung der Erfindung ist mindestens ein Flussleitkörper dergestalt angeordnet, dass er den magneti- sehen Fluss des Magnetfeldes sammelt und zum Sensorelement leitet. Unter Verwendung eines Flussleitkörpers kann das Sen- sorelement auch relativ weit vom Element zur Variation des Magnetfeldes angeordnet sein. Durch den Flussleitkörper wird ein ausreichend starker magnetischer Fluss durch das Sensor¬ element geleitet, so dass ein gut verwertbares elektrisches Signal im Sensor entsteht. Distanzen von 2 bis 10 cm zwischen dem Element zur Variation des Magnetfeldes und dem Sensorele¬ ment können mit Flussleitkörpern leicht überbückt werden. So kann auch bei großen Turboladern mit einem großflächigen
Lufteinlass das Sensorelement außen am Kompressorgehäuse an¬ geordnet werden, was besonders günstig ist, da bei dieser An¬ ordnung der Sensor im Reparaturfall sehr leicht getauscht werden kann.
Bei einer nächsten Weiterbildung sind das Element zur Varia¬ tion de.s Magnetfeldes und das Sensorelement von einer magne¬ tischen Abschirmung umgeben, die das Element zur Variation des Magnetfeldes und das Sensorelement gegen äußere magneti- sehe Störfelder abschirmt. Außerhalb des Turboladers erzeugte magnetische Felder können zu fehlerhaften Drehzahlmessungen im Turbolader führen. Die magnetische Abschirmung hält diese Störfelder vom Element zur Variation des Magnetfeldes und von dem Sensorelement fern, wodurch eine fehlerfreie Messung un- terstützt wird.
Zusätzlich ist es vorteilhaft, wenn das Element zur Variation des Magnetfeldes, das Sensorelement und der Flussleitkörper von der magnetischen Abschirmung umgeben sind, die das Ele— ment zur Variation des Magnetfeldes, das Sensorelement und den Flussleitkörper gegen äußere magnetische Störfelder ab¬ schirmt. Auch in den Flussleitkörper können magnetische Stör¬ felder einstreuen, was durch die Abschirmung verhindert wird. Bei einer Ausgestaltung ist ein Teil des Kompressorgehäuses als magnetische Abschirmung ausgebildet. Hierdurch übernimmt das Kompressorgehäuse eine weitere Funktion, was Kosten, Ma¬ terial und Gewicht spart. Ähnliche Vorteile hat es, wenn ein Teil des Flussleitkörpers als magnetische Abschirmung ausge¬ bildet ist. In beiden Fällen erleichtert sich die Fertigung des Systems erheblich.
Bei einer nächsten Weiterbildung sind/ist das Sensorelement und/oder der Flussleitkörper in ein Befestigungssystem für einen Ansaugschlauch integriert. Das Befestigungssystem kann zum Beispiel als Schlauchschelle ausgebildet sein. Wenn das Befestigungssystem das Sensorelement und/oder den Flussleit¬ körper aufnimmt, sind diese Bauteile sehr einfach zu montie- ren. Darüber hinaus ergeben sich durch diese Weiterbildung Kosten— und Bauraumersparnisse.
Es ist auch vorteilhaft, wenn der Flussleitkörper und/oder die magnetische Abschirmung und/oder das Sensorelement und/oder der Magnetfeldsensor und/oder das Steckergehäuse und/oder das Befestigungssystem ganz oder teilweise mit Kunststoff umspritzt ist/sind. Dadurch ergeben sich Ferti¬ gungsvorteile und die umspritzten Bauteile werden wirksam vor Umwelteinflüssen geschützt-
Ausführungsformen der Erfindung werden in den Figuren bei¬ spielhaft dargestellt. Es zeigen:
Figur 1: einen üblichen Abgasturbolader,
Figur 2: das Turbinenrad, die Turbowelle und das Kompres¬ sorrad, Figur 3: einen Kompressor mit einem Lufteinlass und einem Luftauslass,
Figur 4: den in Figur 3 dargestellten Kompressor als Teil- schnitt,
Figur 5: den Adapter,
Figur 6: eine nähere Darstellung des Adapters aus Figur 5,
Figur 7: eine verbesserte Halterung des Magnetfeldsensors,
Figur 8: einen Teilschnitt des aus Figur 7 bekannten Adap¬ ters,
Figur 9: eine weitere mögliche Ausführungsform der Erfin¬ dung,
Figur 10: den Kompressor in Verbindung mit einem gekrümmten Adapter,
Figur 11: ein weiteres Ausführungsbeispiel,
Figur 12: einen Teilschnitt der Darstellung aus Figur 11,
Figuren 13 - 15: schematische Darstellungen des Messprinzips,
Figuren 16 - 19: verschiedene Ausführungsformen des Elementes zur
Variation des Magnetfeldes,
Figur 20a: ein Prinzip der Signalerzeugung,
Figur 20b: eine um 90 Grad gedrehte Darstellung der Abbildung aus Figur 20a,
Figur 21a: ein weiteres Prinzip der Signalerzeugung,
Figur 21b: eine um 90 Grad gedrehte Darstellung der Abbildung aus Figur 21a,
Figur 22a: ein drittes Prinzip der Signalerzeugung,
Figur 22b: eine um 90 Grad gedrehte Darstellung der Abbildung aus Figur 22a,
Figur 23: eine weitere Ausführungsform,
Figur 24a: eine Ausführungsform bei der das Sensorelement in das Kompressorgehäuse integriert ist,
Figur 24b: eine um 90 Grad gedrehte Darstellung der Abbildung aus Figur 24a,
Figur 25: eine Ausführungsform, bei der das Sensorelement auf der Außenwand des Kompressorgehäuses aufge¬ setzt ist.
Figur 26: eine Ausführungsform, bei der das Sensorelement mit einem Befestigungssystem verbunden ist,
Figur 27a bis d: verschiedene Ausführungsformen des Flussleitkör- pers. Figur 1 zeigt einen üblichen Abgasturbolader 1 mit einer Tur¬ bine 2 und einem Kompressor 3. Im Kompressor 3 ist das Kom¬ pressorrad 9 drehbar gelagert und mit der Turbowelle 5 ver¬ bunden. Auch die Turbowelle 5 ist drehbar gelagert und an ih- rem anderen Ende mit dem Turbinenrad 4 verbunden. Über den
Turbineneinlass 7 wird heißes Abgas von einer hier nicht dar¬ gestellten Verbrennungskraftmaschine in die Turbine 2 einge¬ lassen, wobei das Turbinenrad 4 in Drehung versetzt wird. Der Abgasstrom verlässt die Turbine 2 durch den Turbinenauslass 8. Über die Turbowelle 5 ist das Turbinenrad 4 mit dem Kom¬ pressorrad 9 verbunden. Damit treibt die Turbine 2 den Kom¬ pressor 3 an. In den Kompressor 3 wird Luft durch den Luft— einlass 24 eingesaugt und verdichtet und über den Luftauslass 6 der Verbrennungskraftmaschine zugeführt.
Figur 2 zeigt das Turbinenrad 4, die Turbowelle 5 und das Kompressorrad 9. Das Turbinenrad 4 besteht in der Regel aus einer hochwarmfesten austenitischen Nickelverbindung, die auch für die hohen Temperaturen beim Einsatz des Turboladers zur Aufladung von Ottomotoren geeignet ist. Es wird im Fein¬ gussverfahren hergestellt und ist mit der Turbowelle 5, die in der Regel aus hochvergütetem Stahl besteht, zum Beispiel durch Reibschweißung verbunden. Das Bauteil aus Turbinenrad 4 und Turbowelle 5 wird auch als Läufer oder Laufzeug bezeich- net. Das Kompressorrad 9 wird zum Beispiel aus einer Alumini¬ umlegierung ebenfalls in einem Feingussverfahren hergestellt. Das Kompressorrad 9 wird an dem kompressorseitigen Ende 10 der Turbowelle 5 in der Regel mit einem Befestigungselement 11 befestigt. Dieses Befestigungselement 11 kann zum Beispiel eine Hutmutter 27 sein, die das Turbinenrad 9 mit einer
Dichtbuchse, einem Lagerbund und einer Distanzbuchse gegen den Turbowellenbund fest verspannt. So bildet das Laufzeug eine feste Einheit mit dem Kompressorrad 9. Da das Kompres— sorrad 9 in der Regel aus einer Aluminiumlegierung besteht, ist es problematisch, hier mit einer auf einer Magnetfeldän¬ derung basierende Messung die Drehzahl des Kompressorrades zu bestimmen.
Figur 3 zeigt einen Kompressor 3 mit einem Lufteinlass 24 und einem Luftauslass 6. Am Lufteinlass 24 ist ein Adapter 12 an¬ geordnet, der mit dem Kompressorgehäuse 17 zum Beispiel mit einer Schraube 18 verbunden ist. In den Adapter 12 ist ein Steckergehäuse integriert, das mit einem Sensorelement 19 ei¬ nen Magnetfeldsensor 14 bildet. Die vom Magnetfeldsensor 14 erfassten Signale können über die im Steckergehäuse 13 ange¬ ordneten Anschlusspins 15 einer nachfolgenden Elektronik zu¬ geführt werden.
Figur 4 zeigt den in Figur 3 dargestellten Kompressor 3 als Teilschnitt. Zu erkennen ist wiederum das Kompressorgehäuse 17, das mit dem Adapter 12 mittels der Schraube 18 verbunden ist. Das aufgeschnittene Kompressorgehäuse 17 legt das κom- pressorrad 9 und die Turbowelle 5 frei. Am kompressorseitigen Ende 10 der Turbowelle 5 ist eine Einrichtung 26 zur Erfas¬ sung der Drehzahl der Turbowelle 5 erkennbar. Diese Einrich¬ tung soll in Figur 5 näher beschrieben werden.
Figur 5 zeigt wiederum den Adapter 12, der mittels der
Schraube 18 mit dem Kompressorgehäuse 17 verbunden ist. Der Teilschnitt durch den Adapter 12 zeigt nun den Magnetfeldsen¬ sor 14, der in diesem Ausführungsbeispiel ein Sensorelement 19 und einen Magneten 20 enthält. Der Magnet 20 kann sowohl als Elektro- als auch als Permanentmagnet ausgeführt sein. Das von dem Magnet 20 erzeugte Magnetfeld setzt sich durch das Sensorelement 19 fort und erreicht das Element 21 zur Va¬ riation des Magnetfeldes. Das Element 21 zur Variation des Magnetfeldes ist in das kompressorseitige Ende 10 der Turbo¬ welle 5 integriert. In diesem Ausführungsbeispiel ist das Element 21 zur Variation des Magnetfeldes als Schlitz im kom- pressorseitigen Ende 10 der Turbowelle 5 realisiert. Da das kompressorseitige Ende 10 der Turbowelle 5 aus magnetisch leitendem Material (ferromagnetisches / weichmagnetisches Ma¬ terial) besteht, wird durch den Schlitz das vom Magnet 20 er¬ zeugte Magnetfeld bei der Drehung der Turbowelle 5 permanent verändert, und die durch die Drehung der Turbowelle 5 erzeug- te Veränderung des magnetischen Feldes wird von dem Sensor— element 19 erfasst und in ein elektrisch auswertbares Signal umgesetzt. Dazu ist das Sensorelement 19 in der Nähe des Ele¬ mentes 21 zur Variation des Magnetfeldes angeordnet. In der Nähe bedeutet in diesem Zusammenhang eine Position des Sen- sorelements 19, in der es die von dem Element 21 zur Variati¬ on des Magnetfeldes erzeugen Magnetfeldänderungen gut erfas¬ sen kann, um ein gut messbares (deutliche über dem elektroni¬ schen Rauschen des Sensorelementes) elektrisches Signal zu erzeugen. Dieses in Abhängigkeit von der Drehzahl der Turbo- welle 5 im Sensorelement 19 erzeugte elektrische Signal wird über elektrische Leitungen 29 den Anschlusspins 15 im Ste¬ ckergehäuse 13 zugeleitet. Damit stehen die vom Sensorelement 19 erzeugten zur Drehzahl der Turbowelle 5 proportionalen elektrischen Signale einer weiteren Verarbeitung durch die nachfolgende Fahrzeugelektronik zur Verfügung.
Der aus Figur 5 bekannte Adapter 12 wird in Figur 6 noch ein¬ mal näher dargestellt. Gut zu erkennen ist der Magnetfeldsen¬ sor 14 in dem, entsprechend des Ausführungsbeispiels, der Magnet 20 und das Sensorelement 19 angeordnet ist. Darüber hinaus beinhaltet der Magnetfeldsensor 14 elektrische Leitun¬ gen 29 und ein Distanzstück 22, das das Sensorelement 19 prä¬ zise vor oder neben dem Element 21 zur Variation des Magnet- feldes platziert, wenn der Adapter 12 mit dem Kompressorge¬ häuse 17 verbunden ist. Das Steckergehäuse 13 nimmt die An— schlusspins 15 auf und ist ebenfalls mit dem Adapter 12 ver¬ bunden. Hier zu können der Magnetfeldsensor 14 und der Adap- ter zum Beispiel einstückig im Spritzgießverfahren herge¬ stellt werden. Über die Anschlusspins 15 werden die vom Sen¬ sorelement 19 erzeugten elektrischen Signale einer nachfol¬ genden Auswerteelektronik zur Verfügung gestellt . Das Dis— tanzstück 22 ist relativ schmal gehalten und verringert somit den Querschnitt des Lufteinlasses 24 des Kompressors 3 nur unwesentlich.
Eine verbesserte Halterung des Magnetfeldsensors 14 zeigt Fi¬ gur 7. Hier ist zur Halterung des Magnetfeldsensors 14 neben dem Distanzstück 22 mindestens ein Steg 23 ausgebildet. Die Stege 23 verringern den Querschnitt des Lufteinlasses 24 des Kompressor 3 nur unwesentlich, tragen aber zu einer erhöhten Stabilität der Konstruktion aus Adapter 12 und Magnetfeldsen¬ sor 14 bei. Auch die Stege 23 können im oben genannten Spritzgießverfahren leicht mit ausgebildet werden. Gerade bei starken Vibrationen muss der Magnetfeldsensor 14 exakt gegen¬ über dem Element 21 zur Variation des Magnetfeldes gehalten sein, was durch die Stege 23 sichergestellt ist.
Figur 8 zeigt einen Teilschnitt des aus Figur 7 bekannten
Adapters 12. Hier sind die Stege 23, die zur präzisen Halte¬ rung des Magnetfeldsensors 14 dienen, deutlich erkennbar. Zur Abdichtung des Adapters 12 an der Verbindungsstelle zum Kom¬ pressorgehäuse 17 ist eine Dichtung 16 vorgesehen, die in Fi- gur 8 gut erkennbar ist.
Figur 9 zeigt eine weitere mögliche Ausführungsform der Er¬ findung. Auch hier ist ein Adapter 12 mit dem Magnetfeldsen- sor 14 zu erkennen. Das Sensorelement 19 ist jetzt jedoch ne¬ ben dem Element 21 zur Variation des Magnetfeldes angeordnet. Die Variation des Magnetfeldes wird nun vom Befestigungsele¬ ment 11 erzeugt, das zum Beispiel als eine aus ferromagneti- schem Material gefertigte Mutter ausgebildet sein kann. Die¬ ses Befestigungselement 11 erfüllt nun eine Doppelfunktion, da es zum einen das Kompressorrad 9 mit der Turbowelle 5 ver¬ bindet und durch seine Anordnung am kompressorseitigen Ende der Turbowelle 5 zur Variation des Magnetfeldes genutzt wer- den kann. Das zu variierende Magnetfeld wird von dem Magnet 20 erzeugt, der im Magnetfeldsensor 14 integriert ist. Dar¬ über hinaus ist das Sensorelement 19 zu erkennen, das die Va¬ riation des Magnetfeldes erfasst und in elektrische Signale umsetzt.
Als großer Vorteil der Messung der Drehzahl der Turbowelle 5' am kompressorseitigen Ende 10 der Turbowelle 5 ist die hier herrschende Temperatur zu nennen. Abgasturbolader 1 sind thermisch hoch belastete Bauteile, in denen Temperaturen bis 1000 °C entstehen. Mit bekannten Sensorelementen 19, wie zum Beispiel Hall-Sensoren oder magnetoresistive Sensoren, kann bei diesen Temperaturen nicht gemessen werden. Am kompressor¬ seitigen Ende 10 der Turbowelle 5 ergeben sich wesentlich ge¬ ringere Temperaturbelastungen. Im Lufteinlass 24 eines Kom— pressors 3 treten in der Regel Temperaturen von etwa 140 0C im Dauerbetrieb und 160 bis 170 °C nach Spitzenlast auf. Durch den im kalten Ansaugluftstrom angeordneten Magnetfeld¬ sensor 14 ist dessen Temperaturbelastung im Vergleich zum Einbau an anderen Punkten des Abgasturboladers erheblich re- duziert.
Figur 10 zeigt den Kompressor 3 in Verbindung mit einem ge¬ krümmten Adapter 12. Auch hier ist der Magnetfeldsensor 14 vor dem kompressorseitigen Ende 10 der Turbowelle 5 angeord¬ net- Das Distanzstück 22 erstreckt sich nun in Richtung der gedachten Fortsetzung Turbowelle 5. Am Ende des Distanzstü¬ ckes 22 befindet sich das Steckergehäuse 13. Im Distanzstück 22 sind die elektrischen Leitungen 29 zu erkennen, die die vom Sensorelement 19 erzeugten elektrischen Signale zum Ste¬ ckergehäuse 13 und den darin befindlichen Anschlusspins 15 leiten. Der gekrümmte Adapter 12 kann vor allem dann vorteil¬ haft eingesetzt werden, wenn nur ein geringer Bauraum im Mo- torraum zur Verfügung steht, auf Grund dessen die Leitungen für die Ansaugluft dicht am Turbolader 1 verlegt sein müssen. Auch in Figur 10 sind Stege 23 zu erkennen, die eine beson¬ ders genaue und vibrationsarme Lagerung des Magnetfeldsensors 14 sicherstellen. Durch die Stege 23 und das Distanzstück 22 wird der Querschnitt des Lufteinlasses 24 des Turboladers 1 nur in geringem Maße verringert, wodurch keinerlei Leistungs— einbüßen des Abgasturboladers 1 zu erwarten sind.
Figur 11 zeigt ein weiteres Ausführungsbeispiel, bei dem der Magnetfeldsensor 14 durch ein Dreibein aus Stegen 23 gehalten wird. Deutlich zu erkennen ist, dass die drei Stege 23 und das Distanzstück 22 den Querschnitt des Lufteinlasses 24 nur in sehr geringem Maße beeinflussen. Durch die Ausbildung der Stege 23 wird jedoch eine genaue Positionierung des Magnet— feldsensors 14 vor dem kompressorseitigen Ende 10 der Turbo¬ welle 5 gewährleistet. Darüber hinaus verhindern die Stege 23 Bewegungen des Magnetfeldsensors 14 relativ zum kompressor¬ seitigen Ende 10 der Turbowelle 5.
Einen Teilschnitt der Darstellung aus Figur 11 zeigt Figur 12. Deutlich zu erkennen ist in Figur 12 die Anordnung des Magnetfeldsensors 14 vor dem Element 21 zur Variation des Magnetfeldes. In diesem Beispiel wird das Magnetfeld von ei- nem Magnet 20, der im Magnetfeldsensor 14 platziert ist, er¬ zeugt, wobei das magnetische Feld durch das Sensorelement 19 geleitet wird und bei der Drehung der Turbowelle 5 vom Ele¬ ment 21 zur Variation des Magnetfeldes verändert wird. Die Veränderung des magnetischen Feldes erfolgt proportional zur Drehzahl der Turbowelle 5 und wird vom Sensorelement 19 er- fasst und in elektrische Signale umgewandelt. Die elektri¬ schen Signale werden über elektrische Leitungen im Distanz¬ stück 22 zu den Anschlusspins 15 im Steckergehäuse 13 gelei- tet, wo sie einer nachfolgenden Fahrzeugelektronik zur Aus¬ wertung zur Verfügung stehen. Stege 23 halten den Magnetfeld¬ sensor 14 fest in der gewünschten Position.
Schematische Darstellungen des Messprinzips werden in den Fi- guren 13 bis 15 gezeigt.
In Figur 13 ist im kompressorseitigen Ende 10 der Turbowelle 5 ein Magnet 20 ausgebildet, der als Element 21 zur Variation des Magnetfeldes dient. Die Variation des Magnetfeldes ergibt sich, wenn sich die Turbowelle 5 dreht und das sich nun zeit¬ lich verändernde Magnetfeld 25 im Sensorelement 19 erfasst wird. Der Magnetfeldsensor 14 mit dem Sensorelement 19, den elektrischen Leitungen 29 im Distanzstück 22 und den An¬ schlusspins 15 ist hier als Einsteckfinger 28 ausgebildet, der lediglich durch die Wandung des Kompressorgehäuses 17 ge¬ steckt wird und dort fixiert wird. Die Ausbildung des Magnet¬ feldsensors 14 als Einsteckfinger 28 stellt eine für den An¬ wender sehr kostengünstige Ausführungsform des Magnetfeldsen- sors 14 dar, da an bestehenden Serienturboladen nur sehr ge- ringe Veränderungen erforderlich sind, um den Magnetfeldsen- sor 14 zu Drehzahlmessung einsetzen zu können.
Figur 14 zeigt einen ähnlichen Aufbau wie er in Figur 13 ge¬ zeigt wurde, wobei das Kompressorgehäuse 17 nun einen ge¬ krümmten Lufteinlass 24 aufweist. Auch hier ist der Magnet¬ feldsensor 14 als Einsteckfinger 28 ausgebildet, der entlang der gedachten Verlängerung der Turbowelle 5 angeordnet ist. Wie auch schon in einigen vorhergehenden Figuren ist in Figur 14 das Magnetfeld 25 mit Hilfe von Feldlinien dargestellt, das durch das Sensorelement 19 verläuft und dessen Feldstärke sich bei der Drehung der Turbowelle 5 verändert, womit im Sensorelement 19 elektrische Signale entstehen, die der Dreh¬ zahl der Turbowelle 5 proportional sind. Diese elektrischen Signale werden über die elektrischen Leitungen 29 zu den An¬ schlusspins 15 geführt.
Figur 15 zeigt einen Aufbau, bei dem der Magnetfeldsensor 14 auch als Einsteckfinger 28 ausgebildet ist, der jedoch so konzipiert ist, dass das Sensorelement 19 seitlich neben dem Element 21 zur Variation des Magnetfeldes und dem kompressor- seitigen Ende 10 der Turbowelle 5 gehalten ist. Auch hier verlaufen die Feldlinien des Magnetfeldes 25 durch das Sen¬ sorelement 19, wobei bei der Drehung der Turbowelle 5 die Magnetfeldstärke im Sensorelement 19 variiert wird und ein der Drehzahl der Turbowelle 5 proportionales Signal im Sen¬ sorelement 19 erzeugt wird.
Die Figuren 16 bis 19 zeigen verschiedene Ausführungsformen des Elementes 21 zur Variation des Magnetfeldes 25. In jeder dieser Figuren ist das Element 21 zur Variation des Magnet¬ feldes 25 im kompressorseitigen Ende 10 der Turbowelle 5 an- geordnet.
In Figur 16 ist das Element 21 zur Variation des Magnetfeldes 25 in Form zweier Permanentmagnete 20 ausgebildet. Die Perma— nentmagnete 20 sind so angeordnet, dass der Südpol S des obe¬ ren Magneten dem Nordpol N des unteren Magneten zugewandt ist, woraus sich ein Magnetfeld 25 ergibt, das dem eines Stabmagneten mit einem Nordpol N und einem Südpol S ent- spricht.
In Figur 17 ist das Element zur Variation des Magnetfeldes als Einlage 30 aus magnetisch leitendem Material ausgebildet. Diese Einlage 30 ist sichelförmig in das kompressorseitige Ende 10 der Turbowelle 5 integriert. Bei einer solchen Aus¬ gestaltung muss das Magnetfeld von einem entsprechend plat¬ zierten Magnet 20 erzeugt werden, der die Magnetfeldlinien durch das kompressorseitige Ende 10 der Turbowelle 5 leitet. Ein in diesem Magnetfeld angeordnetes Sensorelement 19 er- fasst dann die Variation des Magnetfeldes 25 bei der Drehung der Turbowelle 5.
In Figur 18 ist im kompressorseitigen Ende 10 der Turbowelle 5 ein Stabmagnet mit einem Nordpol N und einem Südpol S ange- ordnet. Dieser Stabmagnet 20 ist gleichzeitig das Element 21 zur Variation des Magnetfeldes 25. Die Variation des Magnet¬ feldes 25 im hier nicht dargestellten Sensorelement 19 er¬ folgt bei der Drehung der Turbowelle 5.
Figur 19 zeigt eine weitere Ausgestaltung des Elementes 21 zur Variation des Magnetfeldes 25. Hier ist das Element 21 zur Variation des Magnetfeldes 25 als Schlitz 31 im kompres¬ sorseitigen Ende 10 der Turbowelle 5 ausgebildet. Dazu sollte das kompressorseitige Ende 10 der Turbowelle 5 aus ferromag- netischem (z. B. weichmagnetischem) Material bestehen. Ähn¬ lich wie in Figur 17 wird das Magnetfeld 25 von einem ent¬ sprechend außerhalb des kompressorseitigen Endes 10 der Tur¬ bowelle 5 angeordneten Magnet 20 erzeugt. Die Variation des Magnetfeldes erfolgt dann bei der Drehung der Turbowelle 5 durch den Schlitz 31 im kompressorseitigen Ende 10 der Turbo¬ welle 5.
In Figur 20a ist das Prinzip der Signalerzeugung im Sensor¬ element 19 durch ein Element 21 zur Variation des Magnetfel¬ des prinzipiell dargestellt. In dieser Figur ist das Element 21 zur Variation des Magnetfeldes als im kompressorseitigen Ende 10 der Turbowelle 5 integrierter Permanentmagnet 20 aus- gebildet. Das von diesem Magnet 20 erzeugte Magnetfeld 25 ist durch Feldlinien angedeutet. Die Feldlinien des Magnetfeldes 25 treten durch das Sensorelement 19 hindurch, wobei die Feldstärke des Magnetfeldes 25 bei der Drehung der Turbowelle 5 im Sensorelement 19 variiert, was ein zur Drehzahl der Tur- bowelle 5 proportionales elektrisches Signal im Sensor 19 hervorruft. Über elektrische Leitungen 29 kann dieses elekt¬ rische Signal der nachfolgenden Fahrzeugelektronik zur Verfü¬ gung gestellt werden.
Eine um 90 Grad gedrehte Darstellung der Abbildung aus Figur 20a findet sich in Figur 20b. Die vom Magnet 20, der hier das Element 21 zur Variation des Magnetfeldes 25 darstellt, aus¬ gehenden Feldlinien, durchdringen das Sensorelement 19 mit einer hohen Feldstärke. Verdreht man nun das Kompressorrad 9 und die Turbowelle 5, so dreht sich das Element 21 zur Varia¬ tion des Magnetfeldes 25 mit, und das Sensorelement 19 wird von dem Magnetfeld 25 mit einer geringeren Feldstärke ver¬ sorgt. Wenn das Sensorelement 19 zum Beispiel als Hall-Sensor ausgebildet ist, ergibt sich aus dieser Feldstärkevariation ein entsprechendes elektrisches Signal. Ist das Sensorelement 19 als magnetoresistiver Sensor ausgebildet, so ergibt die Variation des Gradienten des Magnetfeldes 25 im Sensorelement 19 das entsprechende elektrische Signal. In beiden Fällen wird ein zur Drehzahl der Turbowelle 5 proportionales Signal erzeugt, das entsprechend ausgewertet werden kann.
Figur 21a zeigt eine Ausgestaltung, bei der das Element 21 zur Variation des Magnetfeldes 25 als Einlage 30 aus ferro— magnetischem (z. B. weichmagnetischem) Material im kompres— sorseitigen Ende 10 der Turbowelle 5 ausgebildet ist. Der frontal zur Turbowelle 5 angeordnete Magnet 20 erzeugt ein Magnetfeld 25. Im Magnet 20 sind der Nordpol N und der Südpol S gekennzeichnet. Das Magnetfeld 25 verläuft durch das Sen— sorelement 19. Wird nun die Turbowelle 5 gedreht, so dreht sich die sichelförmige Einlage 30 aus ferromagnetischem Mate¬ rial mit. Die Einlage 30 aus ferromagnetischem Material er¬ zeugt eine Variation des Magnetfeldes 25 im Sensorelement 19. Durch die Einlage 30 aus ferromagnetischem Material wird so¬ wohl die Feldstärke als auch der Gradient des Magnetfeldes 25 im Sensorelement 19 geändert. Damit kommen zur Dedektion der Drehzahl der Turbowelle sowohl Hall—Elemente als auch magne- toresistive Elemente als Sensorelement 19 in Frage. Auch hier ist die aus Figur 21a bekannte Abbildung in Figur 21b um 90
Grad verdreht dargestellt. Zu erkennen ist das Element 21 zur Variation des Magnetfeldes 25, welches als sichelförmige Ein¬ lage 30 aus ferromagnetischem Material im kompressorseitigen Ende 10 der Turbowelle 5 ausgebildet ist. Die Drehung der Turbowelle 5 erzeugt die Variation des magnetischen Feldes 25 auf Grund der Anordnung des Elementes 21 am kompressorseiti¬ gen Ende 10 der Turbowelle 5.
Figur 22a zeigt die Ausbildung des Elementes 21 zur Variation des Magnetfeldes 25 als Mutter 27 aus ferromagnetischem Mate¬ rial. Bei der Mutter 27 kann es sich auch um eine so genannte Hutmutter handeln. Die Mutter 27 erfüllt nun eine Doppelfunk¬ tion. Zum einen presst sie das Kompressorrad 9 gegen einen Sitz der Turbowelle 5 und verbindet somit das Kompressorrad 9 mit dem Laufzeug. Zum anderen variiert sie das vom Magnet 20 erzeugte Magnetfeld 25 im Sensorelement 19. Dies ist beson¬ ders gut in Figur 22b zu erkennen. Die Mutter 27 ist sowohl Befestigungselement 11 für das Kompressorrad 9 als auch Ele¬ ment 21 zur Variation des Magnetfeldes 25. Das Magnetfeld 25 wird vom Magnet 20 erzeugt und durchsetzt das Sensorelement 19. Durch die mehrkantige Ausbildung der Mutter 27 aus ferro- magnetischem Material wird sowohl die Feldstärke als auch der Gradient des Magnetfeldes 25 im Sensorelement 19 variiert.
Beide Änderungen können von entsprechenden Sensorelementen in elektrische Signale umgesetzt werden.
Figur 23 zeigt eine Ausführungsform, bei der der Magnetfeld- sensor 14 mit seinem Sensorelement 19 seitlich von der Turbo¬ welle 5 im Lufteinlass des Kompressorgehäuses 17 angeordnet ist. Das Element 21 zur Variation des Magnetfeldes 25 ist hier als im kompressorseitigen Ende 10 der Turbowelle 5 oder in der Mutter 27 angeordneter Magnet 20 ausgebildet. Erzeugt der Magnet 20 ein Magnetfeld 25 ausreichend hoher Feldstärke, so genügt die im Sensorelement 19 eingekoppelte Feldstärke um ein ausreichend hohes elektrisches Signal zu erzeugen, das proportional zur Drehzahl der Turbowelle 5 ist.
Figur 24a zeigt die aus Figur 23 bekannte Ausführung, wobei nun das Sensorelement 19 in das Kompressorgehäuse 17 integ¬ riert ist. Falls die vom Magnet 20 erzeugte Magnetfeldstärke nicht ausreicht, ohne weiteres im Sensorelement 19 bei der Drehung der Turbowelle 5 ausreichend hohe elektrische Signale zu erzeugen, sind am Kompressorgehäuse 17 Flussleitkörper 32 angeordnet, die den vom Magnet 20 erzeugten magnetischen Fluss bündeln und zum Sensorelement 19 leiten. Dies wird in Figur 24a zeichnerisch dadurch angedeutet, dass eine größere Anzahl von Magnetfeldlinien 25 zu den Flussleitkörpern 32 hin gekrümmt ist. Der so gesammelte magnetische Fluss reicht aus, um im Sensorelement 19 entsprechend hohe elektrische Signale zu generieren, die über elektrische Leitungen 29 einer nach- folgenden Auswerteelektronik zugeleitet werden. Um Störungen durch äußere magnetische Felder fern zu halten, ist innerhalb des Kompressorgehäuses 17 eine magnetische Abschirmung 34 an¬ geordnet. Diese magnetische Abschirmung umfasst das Sensor¬ element 19 und das Element 21 zur Variation des Magnetfeldes 25. Die magnetische Abschirmung 34 kann auch vorteilhaft in das Kompressorgehäuse 17 integriert sein.
Figur 24b zeigt die Anordnung aus Figur 24a um 90 Grad ge¬ dreht. Hier ist eine Rändelmutter 27 gezeigt, die als Element zur Variation des Magnetfeldes ausgebildet sein kann. Alter¬ nativ ist das Element 21 zur Variation des Magnetfeldes 25 im kompressorseitigen Ende 10 der Turbowelle 5 angeordnet. Das Sensorelement 19 bekommt einen gebündelten magnetischen Fluss durch die Flussleitkörper 32 zugeleitet. Hierdurch lässt sich das Sensorelement 19 im relativ wenig thermisch belasteten Teil des Kompressorgehäuses 17 vorteilhaft integrieren. Die von den Flussleitkörpern 32 zugeleitete Magnetfeldstärke reicht aus, um im Sensorelement 19 ausreichend große elektri¬ sche Signale (Signale die deutlich aus dem elektrischen Rau- sehen hervortreten) zu erzeugen. Auch hier ist eine magneti¬ sche Abschirmung vorgesehen, die, anders als in Fig. 24a, das Kompressorgehäuse 17 umfasst. Damit werden auch das Sensor¬ element 17, das Element 21 zu Variation des Magnetfeldes 25 und der Flussleitkörper 32 von der magnetischen Abschirmung 34 umfasst.
In Figur 25 ist das Sensorelement 19 auf der Außenwand 33 des Kompressorgehäuses 17 aufgesetzt. Dazu ist das Sensorelement 19 in eine Magnetfeldsensor 14 integriert, der zum Beispiel auf die Außenwand 33 aufgeklebt wird. Wenn der Magnet 20 ein Feld ausreichender Stärke erzeugt, wird bei der Drehung des Magneten 20 mit der Turbowelle 5 eine messbare Variation des Magnetfeldes 25 im Sensorelement 19 erfolgen. Durch diese An¬ ordnung sind keinerlei Eingriffe an dem Kompressorgehäuse 17 notwendig und der Querschnitt des Lufteinlasses 24 wird durch den Magnetfeldsensor 14 nicht verringert. Dies ist besonders vorteilhaft bei einer nachtäglichen Integration des Messprin- zips in bestehende Serienturbolader.
Figur 26 zeigt eine Anordnung die der aus Figur 25 ähnlich ist, in Figur 26 ist jedoch auf das Kompressorgehäuse 17 ein Ansaugschlauch 36 aufgebracht, durch den die zu komprimieren— de Verbrennungsluft dem Lufteinlass 24 zugeführt wird. Ein
Befestigungssystem 35, das beispielsweise als Schlauchschelle ausgebildet sein kann, befestigt den Ansaugschlauch 36 am Kompressorgehäuse 17 im Bereich des Lufteinlasses 24. Mit dem Befestigungssystem 35 ist der Magnetfeldsensor 14 verbunden. Das Befestigungssystem 35 übernimmt somit die Aufgabe der Be¬ festigung des Ansaugschlauchs 36 und es trägt den Magnetfeld- sensor 14.
In den Figuren 27a bis 27d sind verschiedene Ausgestaltungen des Flussleitkörpers 32 dargestellt.
Figur 27a zeigt den Lufteinlass 24 und das Element 21 zur Va¬ riation des Magnetfeldes 25. Das vom Element 21 zur Variation des Magnetfeldes 25 variierte Magnetfeld 25 wird von dem Flussleitkörper 32 zum Magnetfeldsensor 14 geleitet und dort in elektrische Signale umgesetzt, die der Stellung des Ele¬ mentes 21 zur Variation des Magnetfeldes 25 entsprechen.
Auch in den Figuren 27b, c, d finden sich das Element 21 zur Variation des Magnetfeldes 25, der Lufteinlass 24 sowie min¬ destens ein Flussleitkörper 32. Darüber hinaus schirmt die magnetische Abschirmung 34 äußere magnetische Störfelder ab, so dass diese das im Magnetfeldsensor 14 erzeugte Signal nicht stören.

Claims

Patentansprüche
1. Abgasturbolader (1) für eine Brennkraftmaschine, mit ei¬ nem Kompressor (3) und. einer Turbine (2), wobei in dem Kompressor (3) eine Kompressorrad (9) drehbar gelagert ist und in der Turbine (2) ein Turbinenrad (4) drehbar gelagert ist und das Kompressorrad (9) mittels einer drehbar gelagerten Turbowelle (5) mit dem Turbinenrad (4) mechanisch verbunden ist und wobei der Abgasturbola- der (1) eine Einrichtung (26) zur Erfassung der Drehzahl der Turbowelle (5) aufweist, d a d u r c h g e ¬ k e n n z e i c h n e t , dass die Einrichtung (26) zur Erfassung der Drehzahl an dem und/oder in dem kompres- sorseitigen Ende (10) der Turbowelle (5) ein Element (21) zur Variation eines Magnetfeldes aufweist, wobei die Variation des Magnetfeldes (25) in Abhängigkeit von der Drehung des Turbowelle (5) erfolgt und wobei in der Nähe des Elementes (21) zur Variation des Magnetfeldes (25) ein Sensorelement (19) angeordnet ist, das die Va- riation des Magnetfeldes erfasst und in elektrisch aus¬ wertbare Signale umwandelt.
2. Abgasturbolader (1) für eine Brennkraftmaschine nach An¬ spruch 1, d a d u r c h g e k e n n z e i c h n e t , dass das Sensorelement (19) als Hall-Sensorelement aus¬ gebildet ist.
3. Abgasturbolader (1) für eine Brennkraftmaschine nach An¬ spruch 1, d a d u r c h g e k e n n z e i c h n e t , dass das Sensorelement (19) als magnetoresitives Sensor¬ element ausgebildet ist.
4. Abgasturbolader (1) für eine Brennkraftmaschine nach An¬ spruch 1, d a d u r c h g e k e n n z e i c h n e t , dass das Sensorelement (19) als induktives Sensorelement ausgebildet ist.
5. Abgasturbolader (1) für eine Brennkraftmaschine nach zu¬ mindest einem der vorgenannten Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass das Sensorelement (19) in der axialen Verlängerung der Turbowelle (5) angeord- net ist.
6. Abgasturbolader (1) für eine Brennkraftmaschine nach zu¬ mindest einem der vorgenannten Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass das Sensorelement (19) neben dem kompressorseitigen Ende (10) der Turbowelle (5) angeordnet ist.
7. Abgasturbolader (1) für eine Brennkraftmaschine nach zu¬ mindest einem der vorgenannten Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass das Sensorelement (19) in einen Sensor (14) integriert ist, der über ein Dis— tanzstück (22) mit einem Adapter (12) verbunden ist, wo¬ bei der Adapter (12) auf den Lufteinlass (24) des Kom¬ pressorgehäuses (17) aufsetzbar ist.
8. Abgasturbolader (1) für eine Brennkraftmaschine nach zu¬ mindest einem der vorgenannten Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass das Sensorelement (19) in einen Sensor (14) integriert ist, der zusammen mit einem Distanzstück (22) einen Einsteckfinger (28) bil¬ det, welcher durch eine Ausnehmung im Kompressorgehäuse (17) in den Lufteinlass (24) einsteckbar ist.
9. Abgasturbolader (1) für eine Brennkraftmaschine nach zu¬ mindest einem der vorgenannten Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass das Sensorelement (19) in einen Sensor (14) integriert ist, der auf die Außen- wand (33) des Kompressorgehäuses (17) im Bereich des Lufteinlasses (24) aufsetzbar ist.
10. Abgasturbolader (1) für eine Brennkraftmaschine nach zu¬ mindest einem der vorgenannten Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass das Element (21) zur
Variation eines Magnetfeldes als Stabmagnet ausgebildet ist.
11. Abgasturbolader (1) für eine Brennkraftmaschine nach zu- mindest einem der vorgenannten Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass das Element (21) zur Variation eines Magnetfeldes in Form zweier magnetischer Dipole ausgebildet ist, wobei der Nordpol (N) des ersten Dipols dem Südpol (S) des zweiten Dipols zugewandt ist.
12. Abgasturbolader (1) für eine Brennkraftmaschine nach zu¬ mindest einem der vorgenannten Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass das Element (21) zur Variation eines Magnetfeldes als Mutter (27) aus ferro- magnetischem Material ausgebildet ist.
13. Abgasturbolader (1) für eine Brennkraftmaschine nach An¬ spruch 12, d a d u r c h g e k e n n z e i c h n e t , dass das die Mutter (27) permanent magnetisiert ist.
14. Abgasturbolader (1) für eine Brennkraftmaschine nach zu¬ mindest einem der vorgenannten Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass das Element (21) zur Variation eines Magnetfeldes als Schlitz in dem kompres- sorseitigen Ende (10) der Turbowelle (5) ausgebildet ist.
15. Abgasturbolader (1) für eine Brennkraftmaschine nach zu¬ mindest einem der vorgenannten Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass mindestens ein Fluss- leitkörper (32) dergestalt angeordnet ist, dass er einen magnetischen Fluss des Magnetfeldes (25) sammelt und zum Sensorelement (19) leitet.
16. Abgasturbolader (1) für eine Brennkraftmaschine nach zu¬ mindest einem der vorgenannten Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass das Element (21) zur Variation des Magnetfeldes (25) und das Sensorelement (19) von einer magnetischen Abschirmung (34) umgeben sind, die das Element (21) zur Variation des Magnetfel¬ des (25) und das Sensorelement (19) gegen äußere magne¬ tische Störfelder abschirmt.
17. Abgasturbolader (1) für eine Brennkraftmaschine nach zu¬ mindest einem der vorgenannten Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass das Element (21) zur Variation des Magnetfeldes (25) , das Sensorelement (19) und der Flussleitkörper (32) von der magnetischen Ab¬ schirmung (34) umgeben sind, die das Element (21) zur Variation des Magnetfeldes (25) , das Sensorelement (19) und den Flussleitkörper (32) gegen äußere magnetische Störfelder abschirmt.
18. Abgasturbolader (1) für eine Brennkraftmaschine nach zu¬ mindest einem der vorgenannten Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass ein Teil des Kompres- sorgehäuses (17) als magnetische Abschirmung (34) ausge¬ bildet ist.
19. Abgasturbolader (1) für eine Brennkraftmaschine nach zu- mindest einem der vorgenannten Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass ein Teil des Flussleit- körpers (32) als magnetische Abschirmung (34) ausgebil¬ det ist.
20. Abgasturbolader (1) für eine Brennkraftmaschine nach zu¬ mindest einem der vorgenannten Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass das Sensorelement (19) und/oder der Flussleitkörper (32) in ein Befestigungs¬ system (35) für einen Ansaugschlauch (36) integriert sind/ist.
21. Abgasturbolader (1) für eine Brennkraftmaschine nach zu¬ mindest einem der vorgenannten Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass der Flussleitkörper (32) und/oder die magnetische Abschirmung (34) aus Me¬ tall ist.
22. Abgasturbolader (1) für eine Brennkraftmaschine nach zu¬ mindest einem der vorgenannten Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass der Flussleitkörper
(32) und/oder die magnetische Abschirmung (34) aus einem Ferrit ist.
23. Abgasturbolader (1) für eine Brennkraftmaschine nach zu- mindest einem der vorgenannten Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass der Flussleitkörper (32) und/oder die magnetische Abschirmung (34) aus kunststoffgebundenen Ferrit ist.
24. Abgasturbolader (1) für eine Brennkraftmaschine nach zu¬ mindest einem der vorgenannten Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass der Flussleitkörper
(32) und/oder die magnetische Abschirmung (34) und/oder das Sensorelement (19) und/oder der Magnetfeldsensor
(14) und/oder das Steckergehäuse (13) und/oder das Be¬ festigungssystem (35) ganz oder teilweise mit Kunststoff umspritzt ist/sind.
PCT/EP2005/052796 2004-07-15 2005-06-16 Abgasturbolader WO2006005662A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007520797A JP2008506074A (ja) 2004-07-15 2005-06-16 排ガスターボチャージャ
US11/632,080 US20070186551A1 (en) 2004-07-15 2005-06-16 Exhaust-gas turbocharger
DE112005001127.5T DE112005001127B4 (de) 2004-07-15 2005-06-16 Abgasturbolader

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102004034512 2004-07-15
DE102004034512.0 2004-07-15
DE102005010921A DE102005010921A1 (de) 2004-07-15 2005-03-09 Abgasturbolader
DE102005010921.7 2005-03-09

Publications (1)

Publication Number Publication Date
WO2006005662A1 true WO2006005662A1 (de) 2006-01-19

Family

ID=35134375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/052796 WO2006005662A1 (de) 2004-07-15 2005-06-16 Abgasturbolader

Country Status (5)

Country Link
US (1) US20070186551A1 (de)
JP (1) JP2008506074A (de)
KR (1) KR100954622B1 (de)
DE (2) DE102005010921A1 (de)
WO (1) WO2006005662A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007057257A1 (de) * 2005-11-15 2007-05-24 Continental Automotive Gmbh Kompressorrad für einen abgasturbolader
WO2007085535A1 (de) * 2006-01-25 2007-08-02 Siemens Vdo Automotive Ag Kompressorgehäuse für einen abgasturbolader
US7911201B2 (en) 2006-05-05 2011-03-22 Continental Automotive Gmbh Active sensor element and method of determining the temperature of an active sensor element
DE102010039532A1 (de) 2010-08-19 2012-02-23 Continental Automotive Gmbh Drehzahlsensoranordnung mit eigenständiger Energieversorgung
DE102012024078A1 (de) 2012-12-07 2014-06-12 Daimler Ag Abgasturbolader für eine Verbrennungskraftmaschine

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005045457B4 (de) * 2005-09-22 2014-10-02 Continental Automotive Gmbh Verfahren zur Drehzahlüberwachung einer Turbowelle
DE102006009295A1 (de) * 2006-03-01 2007-09-06 Daimlerchrysler Ag Abgasturbolader für eine Brennkraftmaschine
DE102006040667B3 (de) * 2006-08-30 2008-01-10 Siemens Ag Waste-Gate-Aktuator für einen Abgasturbolader
DE102006045772A1 (de) * 2006-09-26 2008-03-27 Siemens Ag Magnetfeld erzeugendes Element
JP2008225095A (ja) * 2007-03-13 2008-09-25 Olympus Corp 光走査型観察装置
EP1995428B1 (de) * 2007-05-24 2011-02-09 Lindenmaier GmbH Turbolader
DE102007034917A1 (de) * 2007-07-24 2009-02-05 Continental Automotive Gmbh Induktiver Drehzahlsensor für einen Abgasturbolader
US20090193896A1 (en) * 2008-01-31 2009-08-06 Lawrence M Rose Turbocharger rotational speed sensor
US9850810B2 (en) * 2011-11-23 2017-12-26 Borgwarner Inc. Exhaust-gas turbocharger
US8763458B2 (en) * 2012-01-11 2014-07-01 Hamilton Sundstrand Corporation Speed sensor module
US9132919B2 (en) * 2012-01-11 2015-09-15 Hamilton Sundstrand Corporation Speed sensor module and diffuser assembly
JP5645207B2 (ja) 2012-01-31 2014-12-24 株式会社電子応用 渦電流センサ及びそれを用いたターボチャージャ回転検出装置
KR101980205B1 (ko) * 2012-02-17 2019-08-29 보르그워너 인코퍼레이티드 전기 보조 터보차저를 위한 위치 센서 배치
JP5765855B2 (ja) * 2012-08-02 2015-08-19 ヤンマー株式会社 回転速度検出装置
DE102012223593A1 (de) * 2012-12-18 2014-06-18 Bosch Mahle Turbo Systems Gmbh & Co. Kg Sensorvorrichtung zur Erfassung mindestens einer Rotationseigenschaft eines rotierenden Elements
DE102013210990A1 (de) * 2013-06-13 2014-12-18 Continental Automotive Gmbh Abgasturbolader mit einem Radial-Axial-Turbinenrad
DE102013221943A1 (de) * 2013-10-29 2015-04-30 Schaeffler Technologies Gmbh & Co. Kg Sensorsystem zur Drehzahlmessung mit einem Polrad mit linearisiertem Magnetfeld
CN103899411A (zh) * 2014-03-04 2014-07-02 大同北方天力增压技术有限公司 一种增压器外置转速测量装置
KR101700298B1 (ko) 2016-05-26 2017-01-26 송우산업(주) 파이프
JP6233455B1 (ja) * 2016-06-09 2017-11-22 愛知製鋼株式会社 回転機
JP6926502B2 (ja) 2017-02-10 2021-08-25 日立金属株式会社 ターボ用回転センサ及びターボチャージャ
WO2018159954A1 (ko) * 2017-03-02 2018-09-07 타이코에이엠피 주식회사 압축기 감지 장치 및 이를 포함하는 압축기
US10895583B2 (en) 2018-05-25 2021-01-19 Hitachi Metals, Ltd. Turbo rotation sensor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5858473A (ja) * 1981-10-01 1983-04-07 Aisin Seiki Co Ltd 回転検出装置
EP0310426A2 (de) * 1987-09-30 1989-04-05 Isuzu Motors Limited Turbolader mit elektrischer Drehmaschine
DE3801171C1 (en) * 1988-01-16 1989-05-18 Mtu Friedrichshafen Gmbh Device for detecting the speed of the shaft of an exhaust gas turbocharger
DE3834994A1 (de) * 1988-10-14 1990-04-19 Mtu Friedrichshafen Gmbh Einrichtung zur erfassung der drehzahl einer welle
JPH10206447A (ja) * 1997-01-24 1998-08-07 Ishikawajima Harima Heavy Ind Co Ltd 回転検知機構の磁気被検知体

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4185265A (en) * 1977-06-09 1980-01-22 Cincinnati Electronics Corporation Vehicular magnetic coded signalling apparatus
JPS6026459B2 (ja) * 1979-04-09 1985-06-24 トヨタ自動車株式会社 タ−ボチャ−ジャの回転速度検出装置
JPS5746028A (en) * 1980-09-05 1982-03-16 Hitachi Ltd Controller for supercharger of internal combustion engine
US4439728A (en) * 1981-12-16 1984-03-27 Rca Corporation Motion sensor utilizing eddy currents
DE3345791A1 (de) * 1983-12-17 1985-06-27 Vdo Adolf Schindling Ag, 6000 Frankfurt Beruehrungsloser elektronischer winkelgeber
JPH01114759A (ja) * 1987-10-28 1989-05-08 Nippon Soken Inc 変位速度検出器
US5767670A (en) * 1996-08-29 1998-06-16 Texas Instruments Incorporated Method and apparatus for providing improved temperature compensated output for variable differential transformer system
GB9701538D0 (en) * 1997-01-24 1997-03-12 Johnson Electric Sa Rotation detector
KR19990058153A (ko) * 1997-12-30 1999-07-15 홍종만 크랭크축 타겟휠 및 그를 이용한 크랭크축 회전각 검출장치
US6480782B2 (en) * 2001-01-31 2002-11-12 Cummins, Inc. System for managing charge flow and EGR fraction in an internal combustion engine
US7294400B2 (en) * 2003-03-17 2007-11-13 Hewlett-Packard Development Company, L.P. Flexible barrier film structure
US20050017709A1 (en) * 2003-07-25 2005-01-27 Honeywell International Inc. Magnetoresistive turbocharger compressor wheel speed sensor
JP4407288B2 (ja) * 2004-01-15 2010-02-03 株式会社デンソー 過給装置のポジション検出装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5858473A (ja) * 1981-10-01 1983-04-07 Aisin Seiki Co Ltd 回転検出装置
EP0310426A2 (de) * 1987-09-30 1989-04-05 Isuzu Motors Limited Turbolader mit elektrischer Drehmaschine
DE3801171C1 (en) * 1988-01-16 1989-05-18 Mtu Friedrichshafen Gmbh Device for detecting the speed of the shaft of an exhaust gas turbocharger
DE3834994A1 (de) * 1988-10-14 1990-04-19 Mtu Friedrichshafen Gmbh Einrichtung zur erfassung der drehzahl einer welle
JPH10206447A (ja) * 1997-01-24 1998-08-07 Ishikawajima Harima Heavy Ind Co Ltd 回転検知機構の磁気被検知体

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 007, no. 146 (P - 206) 25 June 1983 (1983-06-25) *
PATENT ABSTRACTS OF JAPAN vol. 1998, no. 13 30 November 1998 (1998-11-30) *
SCHROTT K H: "DIE NEUE GENERATION DER MAN-B&W-TURBOLADER", MTZ MOTORTECHNISCHE ZEITSCHRIFT, VIEWEG VERLAG, WIESBADEN, DE, vol. 56, no. 10, 1 October 1995 (1995-10-01), pages 596 - 601, XP000532350, ISSN: 0024-8525 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007057257A1 (de) * 2005-11-15 2007-05-24 Continental Automotive Gmbh Kompressorrad für einen abgasturbolader
WO2007085535A1 (de) * 2006-01-25 2007-08-02 Siemens Vdo Automotive Ag Kompressorgehäuse für einen abgasturbolader
KR100923812B1 (ko) 2006-01-25 2009-10-27 지멘스 파우데오 오토모티브 아게 배기가스 터보차저를 위한 압축기 케이싱
US8043047B2 (en) 2006-01-25 2011-10-25 Siemens Vdo Automotive Ag Compressor casing for an exhaust gas turbocharger
US7911201B2 (en) 2006-05-05 2011-03-22 Continental Automotive Gmbh Active sensor element and method of determining the temperature of an active sensor element
DE102010039532A1 (de) 2010-08-19 2012-02-23 Continental Automotive Gmbh Drehzahlsensoranordnung mit eigenständiger Energieversorgung
DE102012024078A1 (de) 2012-12-07 2014-06-12 Daimler Ag Abgasturbolader für eine Verbrennungskraftmaschine

Also Published As

Publication number Publication date
JP2008506074A (ja) 2008-02-28
KR100954622B1 (ko) 2010-04-27
DE112005001127B4 (de) 2015-05-21
DE102005010921A1 (de) 2006-02-09
KR20070030916A (ko) 2007-03-16
DE112005001127A5 (de) 2007-09-13
US20070186551A1 (en) 2007-08-16

Similar Documents

Publication Publication Date Title
DE112005001127B4 (de) Abgasturbolader
EP2059662B1 (de) Waste-gate-aktuator für einen abgasturbolader
DE102005029764B4 (de) Sensor zur Messung der Drehzahl einer Turbowelle
EP1805522A1 (de) Abgasturbolader
EP1977086B1 (de) Kompressorgehäuse für einen abgasturbolader
WO2006029965A1 (de) Abgasturbolader
EP2021585B1 (de) Aktives sensorelement und verfahren zur ermittlung der temperatur eines aktiven sensorelements
WO2007144274A1 (de) Verfahren und vorrichtung zum überwachen eines abgasturboladers
DE102004061840B4 (de) Drehzahl- und Drehpositionsermittlungsvorrichtung für einen Lader
DE102012200091A1 (de) Sensorvorrichtung zur berührungslosen Erfassung einer Rotationseigenschaft eines drehbaren Gegenstandes
WO2009003638A1 (de) Hilfsaggregat eines verbrennungsmotors
DE102007027235A1 (de) Magnetisierte Mutter zur Befestigung eines Kompressorrades eines Abgasturboladers an der Turbowelle und Verfahren zur Herstellung einer solchen
DE102009026971B4 (de) Verfahren und Vorrichtung zum Bereitstellen einer Drehzahl- und Temperaturangabe einer Aufladevorrichtung für einen Verbrennungsmotor
DE102005045457B4 (de) Verfahren zur Drehzahlüberwachung einer Turbowelle
DE102007034917A1 (de) Induktiver Drehzahlsensor für einen Abgasturbolader
WO2008037689A1 (de) Magnetfeld erzeugendes element
WO2007057257A1 (de) Kompressorrad für einen abgasturbolader
DE102010039532A1 (de) Drehzahlsensoranordnung mit eigenständiger Energieversorgung
DE102006044666A1 (de) Verfahren zur Erkennung einer Unwucht
DE102019104803A1 (de) Turbo-rotationssensor
DE102012024078A1 (de) Abgasturbolader für eine Verbrennungskraftmaschine
WO2009003782A2 (de) Magnetfeld erzeugendes element

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 1120050011275

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 11632080

Country of ref document: US

Ref document number: 2007186551

Country of ref document: US

Ref document number: 200580023220.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2007520797

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020077001653

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020077001653

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 11632080

Country of ref document: US

122 Ep: pct application non-entry in european phase
REF Corresponds to

Ref document number: 112005001127

Country of ref document: DE

Date of ref document: 20070913

Kind code of ref document: P

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607