KR20070030916A - 배기가스 터보차저 - Google Patents

배기가스 터보차저 Download PDF

Info

Publication number
KR20070030916A
KR20070030916A KR1020077001653A KR20077001653A KR20070030916A KR 20070030916 A KR20070030916 A KR 20070030916A KR 1020077001653 A KR1020077001653 A KR 1020077001653A KR 20077001653 A KR20077001653 A KR 20077001653A KR 20070030916 A KR20070030916 A KR 20070030916A
Authority
KR
South Korea
Prior art keywords
magnetic field
exhaust gas
internal combustion
combustion engine
turbocharger
Prior art date
Application number
KR1020077001653A
Other languages
English (en)
Other versions
KR100954622B1 (ko
Inventor
요하네스 안테
페르난도-몬게 빌라로보스
마르쿠스 길히
Original Assignee
지멘스 악티엔게젤샤프트
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 지멘스 악티엔게젤샤프트 filed Critical 지멘스 악티엔게젤샤프트
Publication of KR20070030916A publication Critical patent/KR20070030916A/ko
Application granted granted Critical
Publication of KR100954622B1 publication Critical patent/KR100954622B1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/02Arrangement of sensing elements
    • F01D17/06Arrangement of sensing elements responsive to speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D21/00Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
    • F01D21/02Shutting-down responsive to overspeed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/02Gas passages between engine outlet and pump drive, e.g. reservoirs
    • F02B37/025Multiple scrolls or multiple gas passages guiding the gas to the pump drive
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/48Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage
    • G01P3/481Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals
    • G01P3/487Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals delivered by rotating magnets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/48Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage
    • G01P3/481Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals
    • G01P3/488Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals delivered by variable reluctance detectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/01Purpose of the control system
    • F05D2270/02Purpose of the control system to control rotational speed (n)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/304Spool rotational speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Supercharger (AREA)

Abstract

본 발명은 내연기관용 배기가스 터보차저(1)에 대한 것으로서, 상기 터보차저는 터보차저 축(5)의 속력을 검출하기 위한 장치(26)를 포함한다. 속력을 검출하기 위한 장치(26)는 터보차저 축(5)의 압축기 측 단부(10) 상에 또는 내에 위치하는 자기장을 변화시키기 위한 부재(21)를 포함하며, 자기장(25)에서의 이러한 변화는 터보차저 축(5)의 회전에 따라 발생한다. 센서 부재(19)는 자기장(25)을 변화시키기 위한 부재(21) 부근에 구비되며, 상기 센서 부재는 자기장에서의 변화를 감지하여 이를 평가될 수 있는 전기 신호로 변환한다.
터보차저, 터빈, 압축기, 자기장, 센서

Description

배기가스 터보차저{EXHAUST-GAS TURBOCHARGER}
본 발명은 내연기관용 배기가스 터보차저(exhaust-gas turbocharger)에 대한 것으로서, 상기 터보차저는 압축기(compressor)와 터빈(turbine), 압축기에 회전 가능하게 장착되는 압축기 휠(compressor wheel), 및 터빈에 회전 가능하게 장착되는 터빈 휠(turbine wheel)을 포함하며, 압축기 휠은 회전 가능하게 장착된 터보차저 축(turbocharger shaft)에 의하여 터빈 휠에 기계적으로 결합되며, 배기가스 터보차저는 터보차저 축의 속력을 검출하기 위한 장치를 구비한다.
내연기관에 의해 생성되는 출력은 공기 질량(air mass)과 연소를 위해 기계에 이용 가능하게 될 수 있는 대응 연료량(fuel quantity)에 의존한다. 내연기관의 출력을 증가시키려고 한다면, 더 많은 연소 공기와 더 많은 연료가 제공되어야만 한다. 자연흡입 엔진(naturally aspirated engine)에서 출력의 이러한 증가는, 배기량의 증가 또는 회전속력의 증가에 의해 달성된다. 하지만, 배기량의 증가는 원칙적으로 더 넓은 치수를 갖는 더 무거운 내연기관을 야기하며, 그로 인해 비용도 증가한다. 회전속도의 증가는 특히 더 넓은 내연기관에서 중요한 문제점과 단점들을 일으키며 기술적인 이유로 인해 제한된다.
내연기관의 출력을 높이기 위해 일반적으로 사용되는 기술적 해결책은 과 급(supercharging)이다. 이것은 배기가스 터보차저에 의한, 또는 엔진에 의해 기계적으로 구동되는 압축기에 의한 연소 공기의 사전 압축(pre-compression)을 의미한다. 배기가스 터보차저는 공통축(common shaft)에 결합되고 동일한 속력으로 회전하는 터보 압축기와 터빈을 실질적으로 포함한다. 터빈은 통상적으로 버려지는 배기 가스의 에너지를 회전 에너지로 변환하며 압축기를 구동시킨다. 압축기는 신선한 공기를 흡입하며 사전 압축 공기를 엔진의 각 실린더에 공급한다. 증가한 연료량이 실린더 내의 증가한 공기량에 공급될 수 있으며, 그 결과 내연기관은 보다 많은 출력을 발생한다. 또한, 연소 공정이 바람직하게 영향을 받으므로, 내연기관은 개선된 전체 효율을 달성한다. 게다가, 터보차저를 사용하여 과급되는 내연기관의 토크 특성은 매우 바람직하게 형성될 수 있다. 자동차 제작자의 자연흡기 엔진은 내연기관에 대한 중대한 설계변경 없이 배기가스 터보차저를 사용하여 실질적으로 최적화될 수 있다. 일반적으로, 과급 내연기관은 더 낮은 비연료 소비율(specific fuel consumption)을 가지며 오염물질을 더 적게 배출한다. 게다가, 터보차저 엔진은 동일한 출력을 내는 자연 흡기 엔진에 비해 일반적으로 더 정숙하며, 그로 인해 배기가스 터보차저는 그 자체로 부가적인 소음기와 같은 역할을 한다. 예를 들어 승용차를 위한 내연기관과 같이 넓은 작동 속력 범위를 갖는 내연기관에 있어서, 낮은 엔진 속력에서 높은 충전 압력이 필요하다. 이를 위해, 웨이스트게이트 밸브(wastegate valve)로 지칭되는 충전 압력 제어 밸브가 이러한 터보차저에 도입된다. 대응 터빈 케이싱의 선택에 의하여, 높은 충전 압력이 낮은 엔진 속력에서도 급속하게 형성된다. 이어서, 충전 압력 제어 밸브(웨스트게이트 밸브)는 엔진 속력 이 증가함에 따라 충전 압력을 일정한 수치로 제한한다. 선택적으로, 가변 터빈 지오메트리(VTG: variable turbine geometry)를 갖춘 터보차저가 사용된다.
배기가스량이 증가할 때, 터보차저의 로터 조합체로 지칭되는 터빈 휠 및 터보차저 축의 조합의 최대 허용가능한 속력이 초과될 수 있다. 로터 조립체의 속력이 허용 불가한 정도를 넘어선다면, 상기 로터 조립체는 파괴될 것이고, 이는 터보차저의 전체 손실과 마찬가지이다. 특히, 상당히 감소한 관성모멘트로 인해 개선된 각가속도 거동을 하는 상당히 작은 직경의 터빈 휠과 압축기 휠을 구비한 현대식 소형 터보차저는 최대 허용 가능한 수치를 넘어서는 속력의 문제에 의해 영향을 받는다. 만일 속력 제한이 약 5% 가량 초과된다면, 터보차저의 설계에 따라 터보차저의 완전한 파괴가 발생한다.
생성되는 충전 압력으로부터 발생하는 신호에 의해 종래 기술에 따라 작동되는 충전 압력 제어 밸브는 속력을 제한하는 것에 성공적이라는 것이 입증되었다. 충전 압력이 소정의 한계값을 넘어선다면, 충전 압력 제어 밸브가 개방되어서 배기가스 질량 유동의 일부가 터빈을 통과하도록 한다. 후자의 경우에는 감소한 질량 유동으로 인하여 보다 작은 출력이 소모되고, 압축기 출력은 동일한 정도로 감소한다. 충전 압력과, 터빈 휠 및 압축기 휠의 속력이 감소된다. 하지만, 이러한 제어는 상대적으로 둔하게 반응하는데, 이는 로터 조립체의 초과속력의 경우에 생성되는 압력이 시간 지연을 가진 채 발생하기 때문이다. 따라서, 터보차저를 위한 속력 제어는 상응하는 충전 압력의 조기 감소에 의하여 매우 동적인 범위(하중 교번(load alternation))에서 충전 압력 감시에 간섭해야만 한다.
압축기 휠 또는 터빈 휠의 속력의 직접적인 측정은 매우 난해하다고 입증되는데, 이는 예를 들어 터빈 휠이 극도의 열하중(1000℃에 이르는)을 받으므로 종래 방법을 사용하여 터빈 휠에서의 속력 측정을 방해한다. 2001년 4월 아캄 메즈엘렉트로닉 게엠베하(acam messelectronic GmbH)의 공보에 따르면, 와전류 원리에 의해 압축기 블레이드 임펄스를 측정하고 이러한 방식으로 압축기 휠의 속력을 결정하는 것이 제안된다. 이러한 방법은 복잡하고 고가인데, 왜냐하면 적어도 하나의 와전류 센서가 압축기의 하우징에 통합되어야 하는데 터보차저의 부품의 높은 정밀도로 인하여 제조하기 매우 어려울 수 있기 때문이다. 압축기 케이싱으로의 와전류 센서의 정밀 집적 이외에, 터보차저의 높은 열부하로 인하여 터보차저의 설계에 대한 공들인 개조에 의해서만 극복될 수 있는 밀봉 문제가 발생한다.
따라서, 본 발명의 목적은 회전 부품(터빈 휠, 압축기 휠, 터보차저 축)의 속력이 현존 터보차저의 설계에 대한 실질적인 구조적 변경 없이 간단하고 저렴한 방식으로 탐지될 수 있는 내연기관용 배기가스 터보차저를 구체화하는 것이다.
상기 목적은 본 발명에 따라 달성되는데, 속력을 검출하기 위한 장치는 터보차저 축의 압축기 측 단부 상에 및/또는 압축기 측 단부 내의 자기장을 변화시키기 위한 부재를 구비하고, 자기장의 변화는 터보차저 축의 속력과 관련하여 영향을 받으며, 센서 부재는 자기장을 변화시키기 위한 부재의 부근에 배치되며, 상기 센서 부재는 자기장에서의 변화를 검출하고 이를 전기적으로 평가될 수 있는 신호로 변환한다.
부재를 터보차저 축의 압축기 측 단부 상에 및/또는 압축기 측 단부 내에 배치하는 것의 장점은, 터보차저의 이러한 영역이 뜨거운 배기가스 유동으로부터 상당히 먼 거리에 있으며 신선한 공기의 유동에 의해 냉각되므로 상대적으로 낮은 열부하를 받는다는 것이다. 게다가, 터보차저 축의 압축기 측 단부는 쉽사리 접근가능하므로, 예를 들어 홀 센서(Hall sensor) 부재, 자기저항 센서(magneto resistive sensor) 부재 또는 유도 센서(inductive sensor) 부재와 같은 상업적으로 입수 가능한 센서 부재들은 현존 터보차저의 설계에 대한 변경 없이 또는 약간의 변경만으로 터보차저에 배치될 수 있으며, 이는 터보차저에서의 비용 효율적인 속력 측정을 가능하게 한다. 센서 부재에 의해 발생되는 신호에 따르면, 충전 압력 제어 밸브는 매우 빠르고도 정밀하게 작동될 수 있거나 가변 터빈 지오메트리 과급기의 터빈 지오메트리는 로터 조립체의 속력을 초과하는 것을 방지하기 위하여 매우 빠르고도 정밀하게 변경될 수 있다. 따라서, 터보차저는 항상 그 속력 제한에 매우 근접하게 작동될 수 있으며, 그 결과 터보차저의 최대 효율을 달성한다. 압력 제어 터보차저에서 일반적으로 사용되는 최대 속력 제한에 대한 상대적으로 큰 안전 여유도(safety margin)는 필요 없다.
제1 태양에 있어서, 센서 부재는 홀 센서 부재로서 형성된다. 홀 센서는 자기장 내의 변화를 감지하는 데 매우 적합하므로 속력 탐지에 매우 효율적으로 사용될 수 있다. 홀 센서는 매우 저렴한 비용으로 시중에서 구입될 수 있으며 대략 160℃까지의 온도에서 사용될 수도 있다.
선택적으로, 센서 부재는 자기저항(MR) 센서 부재로서 형성된다. 자기저항(MR) 센서 부재는 자기장 내의 변화를 감지하는 데 적합하며 저렴한 비용으로 시중에서 구입될 수 있다.
다음의 선택적인 구성에 따르면, 센서 부재는 유도 센서 부재로서 형성된다. 유도 센서 부재는 자기장 내의 변화를 검출하는 데 가장 적합하다.
다음 구성에 따르면, 센서 부재는 터보차저 축의 축방향 연장부에 배치된다. 센서 부재의 이러한 배치에 따르면, 압축기의 공기 입구 내의 공기 유동은 센서 부재 자체에 의하여 매우 작은 정도로만 방해된다. 그 결과, 터보차저의 효율은 전반적으로 유지된다.
선택적으로, 센서 부재는 터보차저 축의 압축기 측 단부 옆에 배치된다. 이러한 구성에 따르면, 터보차저 축의 압축기 측 단부에 배치되는 막대자석(bar magnet)에 의해 생성되는 자기장 내의 변화는 특히 효과적으로 감지될 수 있는데, 왜냐하면 막대자석의 극(pole)이 차례로 센서 부재를 지나치기 때문이다.
본 발명의 일 구성에 따르면, 센서 부재는 디스턴스 피스(distance piece)를 통해 결합 장치(adapter)에 연결되는 센서에 통합되며, 결합 장치가 압축기 케이싱의 공기 입구에 장착되는 것이 가능하다. 결합 장치의 사용을 통하여, 터보차저의 속력 검출을 실현하기 위해 압축기 케이싱에서의 구조적 변화는 전혀 필요 없다. 이는, 특히 압축기 케이싱의 정교한 설계와 관련하여 확실히 바람직하다.
선택적으로, 센서 부재는 압축기 케이싱 내의 개구를 통해 공기 입구로 접속될 수 있는 플러그인 핑거(plug-in finger)를 디스턴스 피스와 함께 형성하는 센서에 통합될 수 있다. 이러한 플러그인 핑거는 공기 입구의 단면을 아주 미세한 만큼만 줄여주는 초소형 부품을 형성한다. 압축기 케이싱의 개구부로의 이러한 플러그인 핑거의 설치는 매우 간단한 것으로 입증되며, 특히 센서 부재를 터보차저에 장착할 때 굉장히 바람직하다.
다음의 선택적인 실시예에 따르면, 센서 부재는 공기 입구 영역에서 압축기 케이싱의 외벽에 장착될 수 있는 센서에 통합될 수 있다. 이러한 실시예에 따르면, 터보차저의 공기 입구 또는 압축기 케이싱을 어떠한 방식으로도 방해할 필요가 없다. 공기 입구의 단면은 충분히 고정되고 센서 부재 또는 센서에 의해 압축기 휠의 전면의 공기 유동에서 바람직하지 않은 효과가 유발될 수 없다. 예를 들어, 터보차저 축의 압축기 측 단부에 배치되는 강력한 자석은, 터보차저 축의 회전 중에 압축기 케이싱의 외벽에 배치되는 센서 부재의 자기장에서의 충분한 변화를 생성하며, 그로 인해 터보차저 축의 속력에 대응하는 전기 신호가 이러한 센서에서 생성될 수 있다.
다음 구성에 따르면, 자기장을 변화시키기 위한 부재는 막대자석으로서 형성된다. 터보차저 축과 회전하는 정반대 극성의 막대자석은 그 주변에서 자기장의 측정 가능한 변화를 생성하며, 이로 인하여 터보차저 축의 속력, 압축기 휠의 속력 및 터빈 휠의 속력은 미리 검출될 수 있다.
선택적으로, 자기장을 변화시키기 위한 부재는 2개의 자기 쌍극자(magnetic dipoles) 형태로 형성되며, 제1 쌍극자의 북극은 제2 쌍극자의 남극을 향한다.
2개의 자기 쌍극자는 막대자석과 동일한 기능을 수행하지만, 자기 쌍극자는 막대자석보다 가벼우며 매우 바람직한 요소이다.
다음 선택적인 실시예에 있어서, 자기장을 변화시키기 위한 부재는 강자성 재료로 된 너트(nut)로서 형성된다. 일반적으로, 로터 조립체(터보차저 축과 터빈 휠)는 너트에 의해 압축기 휠에 연결된다. 이러한 너트가 강자성 재료로 제조된다면, 너트의 지오메트리 형태로 인해 압축기 휠에서 회전되는 때에 자기장을 변화시키는 것이 가능하다. 이러한 실시예로 인하여, 자기장에서의 변화는 어떠한 경우에도 터보차저에 존재하는 부품에 의해 영향을 받는다.
너트가 영구적으로 자기화된다면, 센서 부재에서 너트의 회전이 변화하는 중에 이와 동시에 자기장을 생성한다. 부품의 이러한 여러 가지 기능들은 비용적인 측면에서 매우 바람직한 것으로 사료된다.
본 발명의 다음 구성에 있어서, 자기장을 변화시키기 위한 부재는 터보차저 축의 압축기 측 단부에서 슬롯으로서 형성된다. 강자성 재료의 슬롯에 따르면, 외부로부터 적용된 자기장은 쉽게 변화될 수 있다. 자속은 자기장에서 회전하는 슬롯을 따라 지향된다. 이러한 간단하고 비용 효율적인 측정은 센서 부재 내의 자기장에서의 변화를 용이하게 측정 가능하도록 한다.
본 발명의 태양에 있어서, 적어도 하나의 선속 집중체(flux-concentrating body)는 선속 집중체가 자기장의 선속을 흡수하며 선속을 센서 부재로 향하게 하는 방식으로 배치된다. 선속 집중체의 사용에 따르면, 센서 부재는 자기장을 변화시키기 위한 부재로부터 상대적으로 멀리 떨어져서 배치될 수도 있다. 선속 포집체(flux-collecting body)로 인하여, 충분히 강력한 선속이 센서부재를 통과하여 지향되며, 그로 인해 용이하게 이용될 수 있는 전기 신호가 센서에서 생성된다. 자기장을 변화시키기 위한 부재와 센서 부재 사이의 2 내지 10 cm의 거리는 선속 집중체를 사용하여 용이하게 교락될 수 있다. 따라서, 넓은 공기 입구를 구비한 넓은 터보차저 내에서도 센서 부재는 압축기 케이싱의 외부에 배치될 수 있으며, 이는 특히 바람직한데 왜냐하면 이러한 배치로 인하여 센서 부재가 수리를 요할 경우에 용이하게 교체될 수 있기 때문이다.
다음 태양에 있어서, 자기장을 변화시키기 위한 부재와 센서 부재는 자기차폐(magnetic screen)에 의해 둘러싸이며, 자기차폐는 자기장을 변화시키기 위한 부재와 센서 부재를 외부 교란 자기장(magnetic disturbance field)으로부터 막아준다. 터보차저 외부에 생성된 자기장은 터보차저 내의 부정확한 속력 측정으로 이어질 수 있다. 자기차폐는 이들 교란장이 자기장을 변화시키기 위한 부재와 센서 부재로부터 멀리 떨어지도록 하며, 이로 인해 완벽한 측정을 달성하는 것을 보조한다.
또한, 자기장을 변화시키기 위한 부재, 센서 부재 및 선속 집중체가 자기차폐에 의해 둘러싸인다면, 이는 자기장을 변화시키기 위한 부재와 센서 부재와 선속 집중체를 외부 교란 자기장으로부터 보호하므로 바람직하다. 교란 자기장은 자기차폐에 의해 차단되는 선속 집중체로 확산될 수도 있다.
하나의 구성에 있어서, 압축기 케이싱의 부품은 자기차폐로서 형성된다. 이러한 방식으로, 압축기 케이싱은 비용을 절약하는 다른 기능, 재료 및 무게를 지닌다. 선속 집중체의 부품이 자기차폐로서 형성된다면, 위와 유사하게 바람직하다. 양 경우 모두에 있어서, 시스템의 제조는 상당히 용이하게 된다.
다음 태양에 있어서, 센서 부재 및/또는 선속 집중체는 흡입 호스(intake hose)를 위한 결속 시스템에 통합된다. 결속 시스템은, 예를 들어 호스클립으로서 형성될 수 있다. 결속 시스템이 센서 부재 및/또는 선속 집중체를 수용한다면, 이들 부품들은 장착하기 매우 간단하다. 이러한 태양은 비용과 제조 공간을 또한 절약한다.
선속 집중체 및/또는 자기차폐 및/또는 센서 부재 및/또는 자기장 센서 및/또는 연결기 하우징 및/또는 결속 시스템은 전체적으로 또는 부분적으로 플라스틱에 봉지화된다면 또한 바람직하다. 이러한 결과물은 제조 면에서 바람직하고 봉지화된 부품은 외부 영향으로부터 효율적으로 보호된다.
본 발명의 실시예는 도면에 실시예에 의해 도시된다.
도 1은 종래의 배기가스 터보차저를 도시하는 도면,
도 2는 터빈 휠, 터보차저 축 및 압축기 휠을 도시하는 도면,
도 3은 공기 입구와 공기 출구를 구비한 압축기를 도시하는 도면,
도 4는 도 3에 도시된 압축기를 부분 단면도로서 도시하는 도면,
도 5는 결합 장치(adapter)를 도시하는 도면,
도 6은 도 5의 결합 장치를 더 자세하게 도시하는 도면,
도 7은 자기장 센서의 더욱 개선된 잔류를 도시하는 도면,
도 8은 도 7에 공지된 결합 장치의 단면도를 도시하는 도면,
도 9는 본 발명의 추가적으로 가능한 실시예를 도시하는 도면,
도 10은 곡선 결합 장치와 조합을 이루는 압축기를 도시하는 도면,
도 11은 또 다른 예시적인 실시예를 도시하는 도면,
도 12는 도 11에 도시된 부분 단면을 도시하는 도면,
도 13 내지 도 15는 측정 원리를 개략적으로 도시하는 도면,
도 16 내지 도 19는 자기장을 변화시키기 위한 부재의 다양한 실시예를 도시하는 도면,
도 20a은 신호 생성의 원리를 도시하는 도면,
도 20b은 90°만큼 회전된 도 20a에 도시된 것을 도시하는 도면,
도 21a은 신호 생성의 다른 원리를 도시하는 도면,
도 21b은 90°만큼 회전된 도 21a에 도시된 것을 도시하는 도면,
도 22a은 신호 생성의 세 번째 원리를 도시하는 도면,
도 22b은 90°만큼 회전된 도 22a에 도시된 것을 도시하는 도면,
도 23은 또 다른 실시예를 도시하는 도면,
도 24a은 센서 부재가 압축기 케이싱에 통합되는 실시예를 도시하는 도면,
도 24b은 90°만큼 회전된 도 24a에 도시된 것을 도시하는 도면,
도 25는 센서 부재가 압축기 케이싱의 외벽에 장착되는 실시예를 도시하는 도면,
도 26은 센서 부재가 결속 시스템에 연결되는 실시예를 도시하는 도면, 및
도 27a 내지 도 27d은 선속 집중체의 다양한 실시예를 도시하는 도면.
도 1은 터빈(2)과 압축기(3)를 구비한 종래의 배기가스 터보차저(1)를 도시한다. 압축기 휠(9)은 압축기(3)에 회전 가능하게 장착되고 터보차저 축(5)에 연결된다. 터보차저 축(5) 역시 회전 가능하게 장착되고 그 타 단부에서 터빈 휠(4)에 연결된다. 내연기관으로부터의 뜨거운 배기가스(미도시)는 터빈 입구(7)를 통해 터빈(2)으로 유입되며, 터빈 휠(4)은 회전되게 설정된다. 배기가스 유동은 터빈 출구(8)를 통해 터빈(2)을 떠난다. 터빈 휠(4)은 터보차저 축(5)을 통하여 압축기(9)에 연결된다. 따라서, 터빈(2)은 압축기(3)를 구동시킨다. 공기 입구(24)를 통해 압축기(3)로 유입된 공기는 압축되어서 공기 출구(6)를 통해 내연기관으로 제공된다.
도 2는 터빈 휠(4), 터보차저 축(5) 및 압축기 휠(9)을 도시한다. 일반적으로, 터빈 휠(4)은 터보차저가 전기점화기관에 사용되는 때에 초고온에도 적합한 고온 오스테나이트 니켈 화합물(high-temperature austenitic nickel compound)로 제조된다. 터빈 휠은 정밀주조법에 의해 제조되며, 예를 들어 마찰 용접에 의하여 일반적으로 고 조질강(quenched and tempered steel)으로 제조되는 터보차저 축(5)에 연결된다. 터빈 휠(4)과 터보차저 축(5)을 포함하는 부속 조립체(subassembly)는 로터 또는 로터 조립체로서 또한 언급된다. 압축기 휠(9)은 정밀주조법에 의해 예를 들어 알루미늄 합금으로 제조된다. 압축기 휠(9)은 일반적으로 결속 부재(11)에 의하여 터보차저 축(5)의 압축기 측 단부(10)에 결속된다. 이러한 결속 부재(11)는 예를 들어 캡너트(cap nut)(27)일 수 있으며, 상기 캡너트는 압축기 휠(9)을 터보차저 축 칼라에 대하여 밀봉 부시(sealing bush), 베어링 칼라(bearing collar) 및 디스턴스 부시(distance bush)와 함께 견고하게 제한한다. 따라서, 로터 조립체는 압축기 휠(9)과 함께 고정된 유닛을 형성한다. 압축기 휠(9)은 일반적으로 알루미늄 합금으로 제조되므로, 자기장의 변화를 기초로 하는 측정을 사용하여 압축기 휠의 속력을 측정하는 것은 의문이다.
도 3은 공기 입구(24)와 공기 출구(6)를 구비하는 압축기(3)를 도시한다. 공기 입구(24)에는 예를 들어 나사(18)에 의해 압축기 케이싱(17)에 결합되는 결합 장치(12)가 배치된다. 센서 부재(19)와 함께 자기장 센서(14)를 형성하는 연결기 하우징이 결합 장치(12)에 통합된다. 자기장 센서(14)에 의해 검출되는 신호는 연결기 하우징(13)에 배치되는 결합 핀(connecting pin)(15)을 통해 하류 전자기기에 제공된다.
도 4는 도 3에 도시되는 압축기(3)의 부분 단면을 도시한다. 압축기 케이싱(17)이 나사(18)에 의해 결합 장치(12)에 결합되는 것이 재도시될 수 있다. 잘려나간 압축기 케이싱(17)은 압축기 휠(9)과 터보차저 축(5)을 드러낸다. 터보차저 축(5)의 속력을 검출하기 위한 장치(26)는 터보차저 축(5)의 압축기 측 단부(10)에 도시될 수 있다. 이러한 장치는 도 5에서 더욱 자세하게 도시된다.
도 5는 나사(18)에 의해 압축기 케이싱(17)에 결합되는 결합 장치(12)를 다시 한번 도시한다. 결합 장치(12)를 관통하는 부분 단면은, 이러한 예시적인 실시예에서 센서 부재(19)와 자석(20)을 포함하는 자기장 센서(14)를 도시한다. 자석(20)은 전자석과 영구자석 모두로 형성될 수 있다. 자석(20)에 의해 형성되는 자기장은 센서 부재(19)를 통과하여서 자기장을 변화시키기 위한 부재(21)에 이른다. 자기장을 변화시키기 위한 부재(21)는 터보차저 축(5)의 압축기 측 단부(10)에 통합된다. 이러한 예시적인 실시예에 있어서, 자기장을 변화시키기 위한 부재(21)는 터보차저 축(5)의 압축기 측 단부(10)에서 슬롯으로서 구현된다. 터보차저 축(5)의 압축기 측 단부(10)가 자기적 전도성 재료(강자성/연자성 재료)로 제조되므로, 자석(20)에 의해 형성되는 자기장은 터보차저 축(5)이 회전하는 동안에 연속적으로 변화되며, 터보차저 축(5)의 회전에 의해 형성되는 자기장에서의 변화는 센서 부재(19)에 의해 검출되고 전기적으로 평가될 수 있는 신호로 변환된다. 이를 위해, 센서 부재(19)는 자기장을 변화시키기 위한 부재(21)의 부근에 배치된다. 이러한 결합에 있어서, "부근"이라는 표현은 용이하게 측정될 수 있는 전기 신호(센서 부재의 전자 노이즈를 분명히 초과)를 생성하기 위하여 자기장을 변화시키기 위한 부재(21)에 의해 형성되는 자기장 변화를 용이하게 검출할 수 있는 센서 부재(19)의 위치를 의미한다. 터보차저 축(5)의 속력의 함수로서 센서 부재(19)에서 생성되는 이러한 전자 신호는 전기 전도체(29)를 통해 연결기 하우징(13) 내의 결합 핀(15)에 제공된다. 따라서, 센서 부재(19)에 의해 생성되며 터보차저 축(5)의 속력에 비례하는 전자 신호는 하류의 자동차 전자기기에 의해 추가적으로 처리 가능하다.
도 5에 공지된 결합 장치(12)는 도 6에 더욱 자세하게 다시 한번 도시된다. 자석(20)과 센서 부재(19)가 내부에 배치되는 예시적인 실시예에 따른 자기장 센서(14)는 명확하게 가시될 수 있다. 게다가, 자기장 센서(14)는 전기 전도체(29)와, 결합 장치(12)가 압축기 케이싱(17)에 결합할 때 센서 부재(19)를 자기장을 변화시키기 위한 부재(21)의 전면에 또는 옆에 정확하게 배치시키는 디스턴스 피 스(22)를 포함한다. 연결기 하우징(13)은 결합 핀(15)을 수용하며 결합 장치(12)에 결합된다. 이를 위해, 자기장 센서(14)와 결합 장치는 예를 들어 사출성형공정에 의해 일체형으로 제조될 수 있다. 센서 부재(19)에 의해 형성되는 전기 신호는 결합 핀(15)을 통해 하류의 평가 전자기기에 이용 가능하게 된다. 디스턴스 피스(22)는 상대적으로 좁게 유지되어서, 그로 인해 압축기(3)의 공기 입구(24)의 단면이 단지 조금만 줄어들게 된다.
도 7은 자기장 센서(14)의 개선된 유지를 도시한다. 여기서, 자기장 센서(14)를 고정시키기 위하여, 적어도 하나의 웨브(web)(23)가 디스턴스 피스(22)에 더하여 형성된다. 웨브(23)는 압축기(3)의 공기 입구(24)의 단면을 조금만 줄여주는 반면에, 결합 장치(12)와 자기장 센서(14)를 포함하는 구조물의 안정성을 증가시키는 데 기여한다. 웨브(23)는 전술한 사출성형공정에 의해 용이하게 형성될 수도 있다. 특히, 강력한 진동이 가해지는 동안에, 자기장 센서(14)는 자기장을 변화시키기 위한 부재(21)에 대하여 정확하게 고정되어야 하는데, 이것은 웨브(23)에 의해 보장된다.
도 8은 도 7에 공지된 결합 장치(12)의 부분 단면을 도시한다. 자기장 센서(14)를 정확하게 고정하는 역할을 하는 웨브(23)가 이 도면에 분명하게 가시된다. 도 8에서 분명하게 가시될 수 있는 밀봉부(16)는 결합 장치(12)를 결합 지점에서 압축기 케이싱(17)에 확실하게 밀봉하기 위해 제공된다.
도 9는 본 발명의 또 다른 가능한 실시예를 도시한다. 자기장 센서(14)를 구비한 결합 장치(12)는 여기에서도 가시될 수 있다. 하지만, 이제는 센서 부재(19) 가 자기장을 변화시키기 위한 부재(21) 옆에 배치된다. 이제 자기장에서의 변화는, 예를 들어 강자성 재료로 제조되는 너트로서 형성될 수 있는 결속 부재(11)에 의해 생성된다. 이러한 결속 부재(11)는 이중 기능을 수행하는데, 왜냐하면 결속 부재가 압축기 휠(9)을 터보차저 축(5)에 먼저 연결하며, 결속 부재가 터보차저 축(5)의 압축기 측 단부에 배치됨으로 인하여 자기장을 변화시키는 것에도 사용될 수 있다. 변화되는 자기장은 자기장 센서(14)에 통합되는 자석(20)에 의해 형성된다. 자기장에서의 변화를 검출하며 이를 전기 신호로 변환하는 센서 부재(19)도 또한 가시될 수 있다.
터보차저 축(5)의 압축기 측 단부(10)에서 터보차저 축(5)의 속력을 측정하는 것의 엄청난 장점은 압축기 측 단부에서의 온도이다. 배기가스 터보차저(1)는 1000℃까지 온도가 상승하는 고열하중을 받는 부품이다. 이러한 온도에서는, 예를 들어 홀 센서 또는 자기저항 센서와 같은 공지된 센서 부재(19)를 사용하여 측정될 수 없다. 실질적인 낮은 열하중은 터보차저 축(5)의 압축기 측 단부(10)에서 발생한다. 일반적으로, 연속적인 가동 중에 대략 140℃의 온도이며, 압축기(3)의 공기 입구(24)에서 발생하는 최대 하중 이후에는 160 내지 170℃이다. 차가운 흡입 공기 유동에 배치되는 자기장 센서(14)로 인하여, 자기장 센서의 열하중은 배기가스 터보차저의 다른 지역에 설치되는 것과 비교하여 상당히 감소된다.
도 10은 곡선 결합 장치(12)와 조합을 이룬 압축기(3)를 도시한다. 여기에서도, 자기장 센서(14)는 터보차저 축(5)의 압축기 측 단부(10)의 정면에 배치된다. 디스턴스 피스(22)는 터보차저 축(5)의 가상 연장부의 방향으로 연장한다. 연결기 하우징(13)은 디스턴스 피스(22)의 단부에 배치된다. 센서 부재(19)에 의해 생성된 전기 신호를 연결기 하우징(13)으로 전도하는 전기 전도체(29)와 여기에 배치된 결합 핀(15)은 디스턴스 피스(22)에서 가시될 수 있다. 곡선 결합 장치(12)는 엔진실(engine compartment)에서 작은 공간만이 허용되는 때에 특히 바람직하게 사용될 수 있으며, 이로 인하여 흡입 공기를 위한 도관은 터보차저(1)에 근접하게 놓인다. 자기장 센서(14)의 정확하고 저진동 장착을 보장하는 웨브(23)는 도 10에서도 가시될 수 있다. 웨브(23)와 디스턴스 피스(22)는 터보차저(1)의 공기 입구(24)의 단면을 작은 정도로만 줄이며, 이로 인하여 터보차저(1)의 출력 손실은 거의 예상되지 않는다.
도 11은 자기장 센서(14)가 삼각대 웨브(23)에 의해 지지되는 또 다른 실시예를 도시한다. 3개의 웨브(23)와 디스턴스 피스(22)는 공기 입구(24)의 단면을 미세한 정도로만 영향을 준다는 것을 알 수 있다. 하지만, 웨브(23)의 설계로 인하여, 터보차저 축(5)의 압축기 측 단부(10) 정면에 자기장 센서(14)를 정확하게 배치하는 것이 보장된다. 게다가, 웨브(23)는 터보차저 축(5)의 압축기 측 단부(10)에 대한 자기장 센서(14)의 움직임을 방지한다.
도 12는 도 11에 도시된 것의 부분 단면을 도시한다. 자기장을 변화시키기 위한 부재(21)의 정면에 자기장 센서(14)를 배치한 것은 도 12에 명확하게 가시된다. 이러한 실시예에 있어서, 자기장은 자기장 센서(14)에 배치되는 자석(20)에 의해 형성되며, 자기장은 센서 부재(19)를 통과하여 지향되며 터보차저 축(5)의 회전 중에 자기장을 변화시키기 위한 부재(21)에 의해 변화된다. 자기장은 터보차저 축(5)의 속력에 비례하여 변화되고 센서 부재(19)에 의해 검출되며 전기 신호로 변환된다. 전기 신호는 디스턴스 피스(22) 내의 전기 전도체를 통해 연결기 하우징(13) 내의 결합 핀(15)으로 인도되며, 전기 신호는 평가를 위해 하류의 자동차 전자기기에 이용 가능하다. 웨브(23)는 자기장 센서(14)를 소망한 위치에 견고하게 지지한다.
측정 원리의 개략적인 도면이 도 13 내지 도 15에 도시된다.
도 13은 자기장을 변화시키기 위한 부재(21)로서 역할을 하는 자석(20)은 터보차저 축(5)의 압축기 측 단부(10)에 형성된다. 자기장의 변화는 터보차저 축(5)이 회전하는 때에 발생하며 시간에 따라 변화하는 자기장(25)은 센서 부재(19)에서 검출된다. 센서 부재(19)를 구비한 자기장 센서(14), 디스턴스 피스(22) 내의 전기 전도체(29) 및 결합 핀(15)은 플러그인 핑거(plug-in finger)(28)로서 형성되며, 상기 핑거는 압축기 케이싱(17)의 벽을 통해 삽입되어 거기에 고정된다. 플러그인 핑거(28)로서의 자기장 센서(14)의 설계는 사용자를 위한 자기장 센서(14)의 매우 비용 효율적인 실시예를 구성하는데, 왜냐하면 속력 측정을 위해 자기장 센서(14)를 삽입할 수 있도록 하기 위하여 현존하는 터보차저 제조에는 아주 약간의 변화만이 요구되기 때문이다.
도 14는 도 13의 구조와 유사한 구조를 도시하며, 여기서는 압축기 케이싱(17)이 곡선 공기 입구(24)를 구비한다. 또한, 여기서도 자기장 센서는 플러그인 핑거(28)로서 형성되며, 이는 터보차저 축(5)의 가상 연장부를 따라 배치된다. 앞선 일부 도면들에 도시된 바와 같이, 자기장(25)은 도 14에서 자기력선에 의해 도 시되며, 이러한 자기장(25)은 센서 부재(19)를 통과하며 터보차저 축(5)의 회전 중에 그 장의 세기가 변화하므로, 그로 인해 터보차저 축(5)의 속력에 비례하는 전기 신호가 센서 부재(19)에서 생성된다. 이러한 전기 신호는 전기 전도체(29)를 통해 결합 핀(15)으로 전도된다.
도 15는 플러그인 핑거(28)로서 형성되지만, 센서 부재(19)가 자기장을 변화시키기 위한 부재(21)와 터보차저 축(5)의 압축기 측 단부(10)의 측방향으로 옆에 고정되는 방식으로 수용되는 자기장 센서(14)의 구조를 도시한다. 또한, 여기서도 자기장(25)의 자기력선은 센서 부재(19)를 통과하며, 센서 부재(19)에서의 장의 세기는 터보차저 축(5)의 회전 중에 변화되며 터보차저 축(5)의 속력에 비례하는 신호는 센서 부재(19)에서 생성된다.
도 16 내지 도 19는 자기장(25)을 변화시키기 위한 부재(21)의 다양한 실시예를 도시한다. 이들 각각의 도면에 있어서, 자기장(25)을 변화시키기 위한 부재(21)는 터보차저 축(5)의 압축기 측 단부(10)에 배치된다.
도 16에 있어서, 자기장(25)을 변화시키기 위한 부재(21)는 2개의 영구자석(20)의 형태로 형성된다. 영구자석(20)들은 상단 자석의 남극(S)이 하단 자석의 북극(N)을 바라보는 방식으로 배치되며, 이로 인해 자기장(25)은 북극(N)과 남극(S)을 구비한 막대 자석의 자기장에 대응하는 결과가 발생한다.
도 17에 있어서, 자기장을 변화시키기 위한 부재는 자기적 전도체 재료로 된 인세트(inset)(30)로서 형성된다. 이러한 인세트(30)는 터보차저 축(5)의 압축기 측 단부(10)에 초승달 형태로 통합된다. 이러한 형태에 있어서, 자기장은 지기력선 을 터보차저 축(5)의 압축기 측 단부(10)를 통해 안내하는 대응 위치의 자석(20)에 의해 생성되어야만 한다. 이어서, 이러한 자기장에 배치된 센서 부재(19)는 터보차저 축(5)의 회전 중에 자기장(25)에서의 변화를 검출한다.
도 18에 있어서, 북극(N)과 남극(S)을 구비한 막대 자석은 터보차저 축(5)의 압축기 측 단부(10)에 배치된다. 이와 동시에, 이러한 막대 자석(20)은 자기장(25)을 변화시키기 위한 부재(21)이다. 센서 부재(19)(여기서는 미도시) 내의 자기장(25)에서의 변화는 터보차저 축(5)의 회전 중에 영향을 받는다.
도 19는 자기장(25)을 변화시키기 위한 부재(21)의 또 다른 구성을 도시한다. 여기서, 자기장(25)을 변화시키기 위한 부재(21)는 터보차저 축(5)의 압축기 측 단부(10)에서의 슬롯(31)으로서 형성된다. 이를 위해, 터보차저 축(5)의 압축기 측 단부(10)는 강자성(예를 들어 연자성) 재료로 제조되어야 한다. 도 17의 방식과 유사하게, 자기장(25)은 터보차저 축(5)의 압축기 측 단부(10)의 외부에 대응하게 배치되는 자석(20)에 의해 제조된다. 이어서, 자기장에서의 변화는 터보차저 축(5)의 압축기 측 단부(10)에 있는 슬롯(31)에 의하여 터보차저 축(5)의 회전 중에 영향을 받는다.
자기장을 변화시키기 위한 부재(21)에 의한 센서 부재(19)에서의 신호 발생의 원리는 도 20a에 도시된다. 이 도면에 있어서, 자기장을 변화시키기 위한 부재(21)는 터보차저 축(5)의 압축기 측 단부(10)에 통합되는 영구자석(20)으로서 형성된다. 이러한 자석(20)에 의해 형성되는 자기장(25)은 자기력선에 의해 표시된다. 자기장(25)의 자기력선은 센서 부재(19)를 통과하며, 자기장(25)의 장의 세기 는 터보차저 축(5)의 회전 중에 센서 부재(19)에서 변화하며, 이러한 요소는 센서 부재(19)에서 전기 신호를 생성하며, 이러한 전기 신호는 터보차저 축(5)의 속력에 비례한다. 이러한 전기 신호는 전기 전도체(29)에 의하여 하류의 자동차 전자기기에서 이용 가능할 수 있다.
도 20b는 도 20a에 도시된 것을 90도 회전하여 도시한다. 자기장(25)을 변화시키기 위한 부재(21)를 구성하는 자석(20)으로부터 발산되는 자기력선은, 높은 장의 세기를 갖고서 센서 부재(19)를 통과한다. 압축기 휠(9)과 터보차저 축(5)이 회전된다면, 자기장(25)을 변화시키기 위한 부재(21)는 압축기 휠 및 터보차저 축과 함께 회전하며, 센서 부재(19)는 자기장(25)에 의해 낮은 장의 세기가 제공된다. 센서 부재(19)가 예를 들어 홀 센서로서 형성된다면, 대응 전기 신호는 장의 세기에서의 변화로부터 획득된다. 센서 부재(19)가 자기저항 센서에 의해 형성된다면, 센서 부재(19) 내의 자기장(25)의 구배(gradient)의 변화는 대응 전기 신호를 생성한다. 양측 모든 경우에 있어서, 터보차저 축(5)의 속력에 비례하고 대응되게 평가될 수 있는 신호가 생성된다.
도 21a은 자기장(25)을 변화시키기 위한 부재(21)는 터보차저 축(5)의 압축기 측 단부(10)에서 강자성(예를 들어 연자성) 재료로 된 인세트(30)로서 형성된다. 터보차저 축(5)에 대해 전방으로 배치되는 자석(20)은 자기장(25)을 생성한다. 북극(N)과 남극(S)은 자석(20)에서 인식된다. 자기장(25)은 센서 부재(19)를 통과한다. 터보차저 축(5)이 회전된다면, 강자성 재료로 된 초승달 형태의 인세트(30)는 터보차저 축과 함께 회전한다. 강자성 재료로 된 인세트(30)는 센서 부재(19) 내의 자기장(25)의 변화를 생성한다. 센서 부재(19) 내의 자기장(25)의 구배와 장의 세기 모두는 강자성 재료로 된 인세트(30)에 의해 변화된다. 따라서, 홀 부재와 자기저항 부재 모두는 터보차저 축의 속력을 검출하기 위한 센서 부재(19)로서 적합하다. 또한, 도 21a로부터 공지된 도시된 것은 도 21b에 90도만큼 회전되어 도시된다. 자기장(25)을 변화시키기 위한 부재(21)는 가시될 수 있으며, 이러한 부재(21)는 터보차저 축(5)의 압축기 측 단부(10)에서 강자성 재료로 된 초승달 형태 인세트(30)로서 형성된다. 터보차저 축(5)의 회전은 터보차저 축(5)의 압축기 측 단부(10)에서의 부재(21)의 배치로 인하여 자기장(25)의 변화를 일으킨다.
도 22a은 강자성 재료로 된 너트(27)로서의 자기장(25)을 변화시키기 위한 부재(21)의 설계를 도시한다. 상기 너트(27)는 "캡 너트(cap nut)"일 수 있다. 너트(27)는 이중 기능을 수행한다. 먼저, 너트는 압축기 휠(9)을 터보차저 축(5)의 안착부에 대해 누르며, 그로 인해 압축기 휠(9)을 로터 조립체에 결합한다. 다음으로, 너트는 자석(20)에 의해 생성된 센서 부재(19) 내의 자기장(25)을 변화시킨다. 이것은 도 22b에 특히 효과적으로 도시된다. 너트(27)는 압축기 휠(9)의 결속 부재(11)이자 자기장(25)을 변화시키기 위한 부재(21)이다. 자기장(25)은 자석(20)에 의해 생성되며 센서 부재(19)를 통과한다. 강자성 재료로 된 너트(27)의 다각형 형상으로 인하여, 센서 부재(19) 내의 자기장(25)의 구배와 장의 세기가 변화된다. 양 변화 모두는 대응 센서 부재에 의하여 전기 신호로 변환될 수 있다.
도 23은 센서 부재(19)를 함께 구비하는 자기장 센서(14)가 압축기 케이싱(17)의 공기 입구에서 터보차저 축(5)의 측면에 배치되는 실시예를 도시한다. 여 기서 자기장(25)을 변화시키기 위한 부재(21)는 터보차저 축(5)의 압축기 측 단부(10) 또는 너트(27)에 배치되는 자석(20)으로서 형성된다. 자석(20)이 충분히 높은 장의 세기를 갖는 자기장(25)을 생성한다면, 센서 부재(19)에 여자(勵磁)되는 장의 세기는 충분히 높은 전기 신호를 생성하기에 충분하며, 전기 신호는 터보차저 축(5)의 속력에 비례한다.
도 24a은 도 23에 공지된 실시예를 도시하는데, 센서 부재(19)는 압축기 케이싱(17)에 통합된다. 자석(20)에 의해 생성되는 자기장 세기가 터보차저 축(5)의 회전 중에 센서 부재(19) 내에서 충분히 높은 전기 신호를 용이하게 생성하기에 충분하다면, 자석(20)에 의해 형성되는 자속을 흡수하고 이를 센서 부재(19)로 인도하는 선속 집중체(32)가 압축기 케이싱(17)에 배치된다. 이는 도 24a에서 선속 집중체(32)로 인도되는 더욱 많은 수의 자기력선(25)에 의해 개략적으로 도시된다. 따라서, 집결된 자속은 센서 부재(19) 내에서 충분히 높은 전기 신호를 생성하기에 충분하며, 상기 전기 신호는 전기 전도체(29)를 거쳐 하류의 평가 전자기기에 공급된다. 외부 자기장에 의한 교란을 피하기 위하여, 자기차폐(34)가 압축기 케이싱(17) 내부에 배치된다. 이러한 자기차폐는 센서 부재(19)와 자기장(25)을 변화시키기 위한 부재(21)를 둘러싼다. 자기차폐(34)는 압축기 케이싱(17)에 바람직하게 통합될 수 있다.
도 24b은 90도만큼 회전된 도 24a의 장치를 도시한다. 여기에 도시된 것은 마디가 진 너트(knurled nut)(27)이며, 상기 너트는 자기장을 변화시키기 위한 부재로서 형성될 수 있다. 선택적으로, 자기장(25)을 변화시키기 위한 부재(21)는 터 보차저 축(5)의 압축기 측 단부(10)에 배치된다. 집결된 자속은 선속 집중체(32)에 의해 센서 부재(19)로 공급된다. 그 결과로서, 센서 부재(19)는 상대적으로 낮은 열하중을 받는 압축기 케이싱(17)의 일부에 통합될 수 있다. 선속 집중체(32)에 의해 제공되는 자기장 세기는 센서 부재(19) 내에서 충분히 높은 전기 신호(전기 노이즈를 분명하게 넘어서는 신호)를 생성하기에 충분하다. 또한, 여기서 자기차폐는 도 24a에서와 달리 압축기 케이싱(17)을 또한 둘러싼다. 따라서, 센서 부재(19), 자기장(25)을 변화시키기 위한 부재(21) 및 선속 집중체(32)는 자기차폐(34)에 의해 둘러싸인다.
도 25에 있어서, 센서 부재(19)는 압축기 케이싱(17)의 외벽(33)에 장착된다. 이를 위해, 센서 부재(19)는 예를 들어 외벽(33)에 접착성 접합되는 자기장 센서(14)에 통합된다. 자석(20)이 충분한 강도의 장을 형성한다면, 자기장(25)에서의 측정 가능한 변화는 터보차저 축(5)과 함께 자석(20)의 회전 중에 센서 부재(19)에서 영향을 받는다. 이러한 장치로 인하여, 압축기 케이싱(17)을 어느 방식으로든 방해할 필요가 없으며 공기 입구(24)의 단면은 자기장 센서(14)에 의해 줄어들지 않는다. 이는 현존하는 터보차저 제품으로의 측정 원리의 이후 통합 중에 특히 바람직하다.
도 26은 도 25에 공지된 것과 유사한 장치를 도시하지만, 도 26에서는 흡입 호스(36)가 압축기 케이싱(17) 상에 놓이며, 압축될 연소 공기는 상기 흡입 호스(36)를 통해 공기 입구(24)로 공급된다. 예를 들어 호스클립으로서 형성될 수 있는 결속 시스템(35)은 흡입 호스(36)를 공기 입구(24) 영역에서 압축기 케이싱(17) 에 결속시킨다. 자기장 센서(14)는 결속 시스템(35)에 결합된다. 따라서, 결속 시스템(35)은 흡입 호스(36)를 결속하는 임무를 맡으며 자기장 센서(14)를 운반한다.
선속 집중체(32)의 다양한 구성들이 도 27a 내지 도 27d에 도시된다.
도 27a은 공기 입구(24)와, 자기장(25)을 변화시키기 위한 부재(21)를 도시한다. 자기장(25)을 변화시키기 위한 부재(21)에 의해 변화되는 자기장(25)은 선속 집중체(32)에 의해 자기장 센서(14)로 인도되며 자기장 센서에서 자기장(25)을 변화시키기 위한 부재(21)의 위치에 대응하는 전기 신호로 변환된다.
자기장(25)을 변화시키기 위한 부재(21), 공기 입구(24) 및 적어도 하나의 선속 집중체(32) 또한 도 27b, 도 27c, 도 27d에 도시된다. 게다가, 자기차폐(34)는 외부 교란 자기장을 차단하며, 그로 인해 외부 교란 자기장이 자기장 센서(14)에 의해 형성되는 신호를 교란하지 못한다.
본 발명은 현존 터보차저의 설계에 대한 실질적인 구조적 변경 없이 간단하고 저렴한 방식으로 탐지될 수 있는 내연기관용 배기가스 터보차저를 구체화하는 데 사용될 수 있다.

Claims (24)

  1. 내연기관용 배기가스 터보차저(1)로서, 상기 터보차저는 압축기(3)와 터빈(2)을 포함하며, 상기 압축기(3)에는 압축기 휠(9)이 회전 가능하게 장착되며, 상기 터빈(2)에는 터빈 휠(4)이 회전 가능하게 장착되며, 그리고 상기 압축기 휠(9)은 회전 가능하게 장착된 터보차저 축(5)에 의해 상기 터빈 휠(4)에 기계적으로 결합되며, 배기가스 터보차저(1)는 터보차저 축(5)의 속력을 검출하기 위한 장치(26)를 구비하는 내연기관용 배기가스 터보차저(1)에 있어서,
    속력을 검출하기 위한 장치(26)는 자기장을 변화시키기 위한 부재(21)를 터보차저 축(5)의 압축기 측 단부(10) 상에 및/또는 내에 구비하며, 자기장(25)에서의 변화는 터보차저 축(5)의 속력에 따라 영향을 받으며, 센서 부재(19)는 자기장(25)을 변화시키기 위한 부재(21) 부근에 배치되고, 상기 센서 부재(19)는 자기장에서의 변화를 검출하고 이를 전기적으로 평가될 수 있는 신호로 변환하는 것을 특징으로 하는 내연기관용 배기가스 터보차저.
  2. 제1항에 있어서,
    센서 부재(19)는 홀 센서 부재로서 형성되는 것을 특징으로 하는 내연기관용 배기가스 터보차저.
  3. 제1항에 있어서,
    센서 부재(19)는 자기저항 센서 부재로서 형성되는 것을 특징으로 하는 내연기관용 배기가스 터보차저.
  4. 제1항에 있어서,
    센서 부재(19)는 유도 센서 부재로서 형성되는 것을 특징으로 하는 내연기관용 배기가스 터보차저.
  5. 선행하는 항들 중 적어도 어느 한 항에 있어서,
    센서 부재(19)는 터보차저 축(5)의 축방향 연장부에 배치되는 것을 특징으로 하는 내연기관용 배기가스 터보차저.
  6. 선행하는 항들 중 적어도 어느 한 항에 있어서,
    센서 부재(19)는 터보차저 축(5)의 압축기 측 단부(10) 옆에 배치되는 것을 특징으로 하는 내연기관용 배기가스 터보차저.
  7. 선행하는 항들 중 적어도 어느 한 항에 있어서,
    센서 부재(19)는 디스턴스 피스(22)를 통해 결합 장치(12)에 결합되는 센서(14)에 통합되며, 결합 장치(12)는 압축기 케이싱(17)의 공기 입구(24) 상에 장착되는 것이 가능한 것을 특징으로 하는 내연기관용 배기가스 터보차저.
  8. 선행하는 항들 중 적어도 어느 한 항에 있어서,
    센서 부재(19)는 디스턴스 피스(22)와 함께 압축기 케이싱(17) 내의 개구를 통하여 공기 입구(24)로 삽입될 수 있는 플러그인 핑거(28)를 형성하는 센서(14)에 통합되는 것을 특징으로 하는 내연기관용 배기가스 터보차저.
  9. 선행하는 항들 중 적어도 어느 한 항에 있어서,
    센서 부재(19)는 공기 입구(24)의 영역에서 압축기 케이싱(17)의 외벽(33) 상에 장착될 수 있는 센서(14)에 통합되는 것을 특징으로 하는 내연기관용 배기가스 터보차저.
  10. 선행하는 항들 중 적어도 어느 한 항에 있어서,
    자기장을 변화시키기 위한 부재(21)는 막대 자석으로서 형성되는 것을 특징으로 하는 내연기관용 배기가스 터보차저.
  11. 선행하는 항들 중 적어도 어느 한 항에 있어서,
    자기장을 변화시키기 위한 부재(21)는 2개의 자기 쌍극자 형태로 형성되며, 제1 쌍극자의 북극(N)은 제2 쌍극자의 남극(S)을 지향하는 것을 특징으로 하는 내연기관용 배기가스 터보차저.
  12. 선행하는 항들 중 적어도 어느 한 항에 있어서,
    자기장을 변화시키기 위한 부재(21)는 강자성 재료로 된 너트(27)로서 형성되는 것을 특징으로 하는 내연기관용 배기가스 터보차저.
  13. 제12항에 있어서,
    너트(27)는 영구적으로 자기화되는 것을 특징으로 하는 내연기관용 배기가스 터보차저.
  14. 선행하는 항들 중 적어도 어느 한 항에 있어서,
    자기장을 변화시키기 위한 부재(21)는 터보차저 축(5)의 압축기 측 단부(10) 내의 슬롯으로서 형성되는 것을 특징으로 하는 내연기관용 배기가스 터보차저.
  15. 선행하는 항들 중 적어도 어느 한 항에 있어서,
    적어도 하나의 선속 집중체(32)는 상기 선속 집중체가 자기장(25)의 자속을 흡수하고 자속을 센서 부재(19)를 향하여 인도하는 방식으로 배치되는 것을 특징으로 하는 내연기관용 배기가스 터보차저.
  16. 선행하는 항들 중 적어도 어느 한 항에 있어서,
    자기장(25)을 변화시키기 위한 부재(21)와 센서 부재(19)는 자기차폐(34)에 의해 둘러싸이며, 상기 자기차폐는 자기장(25)을 변화시키기 위한 부재(21)와 센서 부재(19)를 외부 교란 자기장으로부터 차단하는 것을 특징으로 하는 내연기관용 배 기가스 터보차저.
  17. 선행하는 항들 중 적어도 어느 한 항에 있어서,
    자기장(25)을 변화시키기 위한 부재(21), 센서 부재(19) 및 선속 집중체(32)는 자기차폐(34)에 의해 둘러싸이며, 상기 자기차폐는 자기장(25)을 변화시키기 위한 부재(21), 센서 부재(19) 및 선속 집중체(32)를 외부 교란 자기장으로부터 차단하는 것을 특징으로 하는 내연기관용 배기가스 터보차저.
  18. 선행하는 항들 중 적어도 어느 한 항에 있어서,
    압축기 케이싱(17)의 일부는 자기차폐(34)로서 형성되는 것을 특징으로 하는 내연기관용 배기가스 터보차저.
  19. 선행하는 항들 중 적어도 어느 한 항에 있어서,
    선속 집중체(32)의 일부는 자기차폐(34)로서 형성되는 것을 특징으로 하는 내연기관용 배기가스 터보차저.
  20. 선행하는 항들 중 적어도 어느 한 항에 있어서,
    센서 부재(19) 및/또는 선속 집중체(32)는 흡입 호스(36)를 위한 결속 시스템(35)에 통합되는 것을 특징으로 하는 내연기관용 배기가스 터보차저.
  21. 선행하는 항들 중 적어도 어느 한 항에 있어서,
    선속 집중체(32) 및/또는 자기차폐(34)는 금속으로 제조되는 것을 특징으로 하는 내연기관용 배기가스 터보차저.
  22. 선행하는 항들 중 적어도 어느 한 항에 있어서,
    선속 집중체(32) 및/또는 자기차폐(34)는 페라이트(ferrite)로 제조되는 것을 특징으로 하는 내연기관용 배기가스 터보차저.
  23. 선행하는 항들 중 적어도 어느 한 항에 있어서,
    선속 집중체(32) 및/또는 자기차폐(34)는 플라스틱 접합 페라이트(plastic-bonded ferrite)로 제조되는 것을 특징으로 하는 내연기관용 배기가스 터보차저.
  24. 선행하는 항들 중 적어도 어느 한 항에 있어서,
    선속 집중체(32) 및/또는 자기차폐(34) 및/또는 센서 부재(19) 및/또는 자기장 센서(14) 및/또는 연결기 하우징(13) 및/또는 결속 시스템(35)은 전체적으로 또는 부분적으로 플라스틱 안으로 캡슐화되는 것을 특징으로 하는 내연기관용 배기가스 터보차저.
KR1020077001653A 2004-07-15 2005-06-16 배기가스 터보차저 KR100954622B1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102004034512 2004-07-15
DE102004034512.0 2004-07-15
DE102005010921A DE102005010921A1 (de) 2004-07-15 2005-03-09 Abgasturbolader
DE102005010921.7 2005-03-09

Publications (2)

Publication Number Publication Date
KR20070030916A true KR20070030916A (ko) 2007-03-16
KR100954622B1 KR100954622B1 (ko) 2010-04-27

Family

ID=35134375

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020077001653A KR100954622B1 (ko) 2004-07-15 2005-06-16 배기가스 터보차저

Country Status (5)

Country Link
US (1) US20070186551A1 (ko)
JP (1) JP2008506074A (ko)
KR (1) KR100954622B1 (ko)
DE (2) DE102005010921A1 (ko)
WO (1) WO2006005662A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140119188A (ko) * 2012-02-17 2014-10-08 보르그워너 인코퍼레이티드 전기 보조 터보차저를 위한 위치 센서 배치

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005045457B4 (de) * 2005-09-22 2014-10-02 Continental Automotive Gmbh Verfahren zur Drehzahlüberwachung einer Turbowelle
DE102005054839A1 (de) * 2005-11-15 2007-05-16 Siemens Ag Kompressorrad für einen Abgasturbolader
DE102006003599A1 (de) * 2006-01-25 2007-08-16 Siemens Ag Kompressorgehäuse für einen Abgasturbolader
DE102006009295A1 (de) * 2006-03-01 2007-09-06 Daimlerchrysler Ag Abgasturbolader für eine Brennkraftmaschine
DE102006021430A1 (de) 2006-05-05 2007-11-08 Siemens Ag Aktives Sensorelement und Verfahren zur Ermittlung der Temperatur eines aktiven Sensorelements
DE102006040667B3 (de) * 2006-08-30 2008-01-10 Siemens Ag Waste-Gate-Aktuator für einen Abgasturbolader
DE102006045772A1 (de) * 2006-09-26 2008-03-27 Siemens Ag Magnetfeld erzeugendes Element
JP2008225095A (ja) * 2007-03-13 2008-09-25 Olympus Corp 光走査型観察装置
ATE498061T1 (de) * 2007-05-24 2011-02-15 Lindenmaier Gmbh Turbolader
DE102007034917A1 (de) * 2007-07-24 2009-02-05 Continental Automotive Gmbh Induktiver Drehzahlsensor für einen Abgasturbolader
US20090193896A1 (en) * 2008-01-31 2009-08-06 Lawrence M Rose Turbocharger rotational speed sensor
DE102010039532A1 (de) 2010-08-19 2012-02-23 Continental Automotive Gmbh Drehzahlsensoranordnung mit eigenständiger Energieversorgung
CN103890345B (zh) * 2011-11-23 2017-07-11 博格华纳公司 排气涡轮增压器
US8763458B2 (en) * 2012-01-11 2014-07-01 Hamilton Sundstrand Corporation Speed sensor module
US9132919B2 (en) * 2012-01-11 2015-09-15 Hamilton Sundstrand Corporation Speed sensor module and diffuser assembly
JP5645207B2 (ja) 2012-01-31 2014-12-24 株式会社電子応用 渦電流センサ及びそれを用いたターボチャージャ回転検出装置
JP5765855B2 (ja) * 2012-08-02 2015-08-19 ヤンマー株式会社 回転速度検出装置
DE102012024078A1 (de) 2012-12-07 2014-06-12 Daimler Ag Abgasturbolader für eine Verbrennungskraftmaschine
DE102012223593A1 (de) * 2012-12-18 2014-06-18 Bosch Mahle Turbo Systems Gmbh & Co. Kg Sensorvorrichtung zur Erfassung mindestens einer Rotationseigenschaft eines rotierenden Elements
DE102013210990A1 (de) * 2013-06-13 2014-12-18 Continental Automotive Gmbh Abgasturbolader mit einem Radial-Axial-Turbinenrad
DE102013221943A1 (de) * 2013-10-29 2015-04-30 Schaeffler Technologies Gmbh & Co. Kg Sensorsystem zur Drehzahlmessung mit einem Polrad mit linearisiertem Magnetfeld
CN103899411A (zh) * 2014-03-04 2014-07-02 大同北方天力增压技术有限公司 一种增压器外置转速测量装置
KR101700298B1 (ko) 2016-05-26 2017-01-26 송우산업(주) 파이프
JP6233455B1 (ja) * 2016-06-09 2017-11-22 愛知製鋼株式会社 回転機
JP6926502B2 (ja) 2017-02-10 2021-08-25 日立金属株式会社 ターボ用回転センサ及びターボチャージャ
WO2018159954A1 (ko) * 2017-03-02 2018-09-07 타이코에이엠피 주식회사 압축기 감지 장치 및 이를 포함하는 압축기
US10895583B2 (en) 2018-05-25 2021-01-19 Hitachi Metals, Ltd. Turbo rotation sensor

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4185265A (en) * 1977-06-09 1980-01-22 Cincinnati Electronics Corporation Vehicular magnetic coded signalling apparatus
JPS6026459B2 (ja) * 1979-04-09 1985-06-24 トヨタ自動車株式会社 タ−ボチャ−ジャの回転速度検出装置
JPS5746028A (en) * 1980-09-05 1982-03-16 Hitachi Ltd Controller for supercharger of internal combustion engine
JPS5858473A (ja) * 1981-10-01 1983-04-07 Aisin Seiki Co Ltd 回転検出装置
US4439728A (en) * 1981-12-16 1984-03-27 Rca Corporation Motion sensor utilizing eddy currents
DE3345791A1 (de) * 1983-12-17 1985-06-27 Vdo Adolf Schindling Ag, 6000 Frankfurt Beruehrungsloser elektronischer winkelgeber
JPH0192526A (ja) * 1987-09-30 1989-04-11 Isuzu Motors Ltd 回転電機付ターボチャージャ
JPH01114759A (ja) * 1987-10-28 1989-05-08 Nippon Soken Inc 変位速度検出器
DE3801171C1 (en) * 1988-01-16 1989-05-18 Mtu Friedrichshafen Gmbh Device for detecting the speed of the shaft of an exhaust gas turbocharger
DE3834994A1 (de) * 1988-10-14 1990-04-19 Mtu Friedrichshafen Gmbh Einrichtung zur erfassung der drehzahl einer welle
US5767670A (en) * 1996-08-29 1998-06-16 Texas Instruments Incorporated Method and apparatus for providing improved temperature compensated output for variable differential transformer system
JPH10206447A (ja) * 1997-01-24 1998-08-07 Ishikawajima Harima Heavy Ind Co Ltd 回転検知機構の磁気被検知体
GB9701538D0 (en) * 1997-01-24 1997-03-12 Johnson Electric Sa Rotation detector
KR19990058153A (ko) * 1997-12-30 1999-07-15 홍종만 크랭크축 타겟휠 및 그를 이용한 크랭크축 회전각 검출장치
US6480782B2 (en) * 2001-01-31 2002-11-12 Cummins, Inc. System for managing charge flow and EGR fraction in an internal combustion engine
US7294400B2 (en) * 2003-03-17 2007-11-13 Hewlett-Packard Development Company, L.P. Flexible barrier film structure
US20050017709A1 (en) * 2003-07-25 2005-01-27 Honeywell International Inc. Magnetoresistive turbocharger compressor wheel speed sensor
JP4407288B2 (ja) * 2004-01-15 2010-02-03 株式会社デンソー 過給装置のポジション検出装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140119188A (ko) * 2012-02-17 2014-10-08 보르그워너 인코퍼레이티드 전기 보조 터보차저를 위한 위치 센서 배치

Also Published As

Publication number Publication date
WO2006005662A1 (de) 2006-01-19
DE102005010921A1 (de) 2006-02-09
DE112005001127A5 (de) 2007-09-13
US20070186551A1 (en) 2007-08-16
KR100954622B1 (ko) 2010-04-27
DE112005001127B4 (de) 2015-05-21
JP2008506074A (ja) 2008-02-28

Similar Documents

Publication Publication Date Title
KR100954622B1 (ko) 배기가스 터보차저
CN101506500B (zh) 用于废气涡轮增压机的排气泄压阀执行器
US20080115570A1 (en) Exhaust Gas Turbocharger
US7372253B2 (en) Magnetic field sensor for measuring the rotational speed of a turboshaft
KR100923812B1 (ko) 배기가스 터보차저를 위한 압축기 케이싱
JP2012132554A (ja) バルブ制御装置
US20080118377A1 (en) Exhaust Gas Turbo Charger
US20070101714A1 (en) Exhaust gas turbocharger for an internal combustion engine and method of operating an exhaust gas turbocharger
US7112958B2 (en) Rotational speed and position detector for supercharger
JP5645207B2 (ja) 渦電流センサ及びそれを用いたターボチャージャ回転検出装置
KR20090060444A (ko) 자기장 발생 부재
JP2012013179A (ja) バルブ制御装置
JP5152261B2 (ja) バルブ制御装置
KR20210077819A (ko) 차량용 터보차저의 센싱 장치
JP4654981B2 (ja) 磁束検出素子の固定構造
CN1985176A (zh) 废气涡轮增压机
KR20090069180A (ko) 자기장 발생 부재
JPS62194466A (ja) タ−ボチヤ−ジヤの回転検出装置
JP2017044140A (ja) ターボ用回転センサ及びターボチャージャ
EP2821620B1 (en) Turbocharger
KR20080003979A (ko) 차량의 터보 차져 보호장치
JP2017049107A (ja) ターボ用回転センサ

Legal Events

Date Code Title Description
A201 Request for examination
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
J201 Request for trial against refusal decision
AMND Amendment
E90F Notification of reason for final refusal
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130404

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20140403

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20160407

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20170406

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20180406

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee