WO2007144274A1 - Verfahren und vorrichtung zum überwachen eines abgasturboladers - Google Patents

Verfahren und vorrichtung zum überwachen eines abgasturboladers Download PDF

Info

Publication number
WO2007144274A1
WO2007144274A1 PCT/EP2007/055325 EP2007055325W WO2007144274A1 WO 2007144274 A1 WO2007144274 A1 WO 2007144274A1 EP 2007055325 W EP2007055325 W EP 2007055325W WO 2007144274 A1 WO2007144274 A1 WO 2007144274A1
Authority
WO
WIPO (PCT)
Prior art keywords
turbocharger
transducer
speed
sound transducer
rchgekennzeichnet
Prior art date
Application number
PCT/EP2007/055325
Other languages
English (en)
French (fr)
Inventor
Rudolf Bierl
Martin Lesser
Andreas Meyer
Frank Steuber
Original Assignee
Continental Automotive Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive Gmbh filed Critical Continental Automotive Gmbh
Priority to US12/308,316 priority Critical patent/US8291752B2/en
Priority to EP07729728A priority patent/EP2032820A1/de
Priority to JP2009514741A priority patent/JP2009540207A/ja
Publication of WO2007144274A1 publication Critical patent/WO2007144274A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D23/00Controlling engines characterised by their being supercharged
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B3/00Methods or apparatus specially adapted for transmitting mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • F02B39/16Other safety measures for, or other control of, pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/14Control of the alternation between or the operation of exhaust drive and other drive of a pump, e.g. dependent on speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • F02D41/28Interface circuits
    • F02D2041/281Interface circuits between sensors and control unit
    • F02D2041/285Interface circuits between sensors and control unit the sensor having a signal processing unit external to the engine control unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/025Engine noise, e.g. determined by using an acoustic sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines

Definitions

  • the present invention relates to a method and an apparatus for monitoring an exhaust gas turbocharger of an internal combustion engine.
  • the power output of the internal combustion engine depends on the ratio of fuel mass to air mass.
  • the measurement of a respective air mass is carried out with an air mass sensor which sits in the intake tract of the combustion ⁇ engine.
  • Many modern Verbrennungskraftma ⁇ machines are now equipped with a turbocharger, which causes pre-compression of the air mass.
  • a respective exhaust gas stream is deprived of energy for pre-compression of the air mass flow through a turbine running in the exhaust gas stream with mechanically-coupled fresh air compressor, so that, for example, a diesel engine no longer acts as a naturally aspirated engine but as a supercharged engine with supercharged air pressures of up to 1.5 or 2.5 bar with significant increase in performance and reduced emissions.
  • turbocharger By using a turbocharger on the one hand increases the torque of an internal combustion engine, on the other hand but also the thermal load of the internal combustion engine, which is why engine block, cylinder heads, cylinder head gaskets, bearings, cylinders, connecting rods, valves, pistons and other engine components and the subsequent drive train for this additional stress must be designed accordingly.
  • the higher power also requires a correspondingly larger cooling system for cooling the engine and the La ⁇ deluft.
  • exhaust gas turbines Even become red-hot after driving under high load.
  • Can ⁇ chen such a strong thermal and mechanical stress of a component, the rotational speeds of up to 200,000 revolutions per minute Errei, makes a separate monitoring.
  • turbochargers Because with the use of turbochargers in modern motor vehicles, a considerable amount of stimulation is still triggered, which complicates damage diagnosis. Modern fully ⁇ electronic diagnostic systems act here by evaluating the speed of a turbocharger to monitor its function supportive. To determine a turbocharger speed, however, an extra developed sensor is provided. This sensor must withstand extremely adverse conditions, in particular high temperatures and high pressures, reliably detecting the blades of the turbocharger wheel and calculating the speed signal with downstream electronics. This sensor must be mounted directly on the turbocharger.
  • a turbocharger in a start-up / acceleration process as a transient operating state, can generate an insufficient boost pressure for the fresh air, so that a short-term negative pressure arises in the intake system.
  • a turbocharger When accelerating from low speeds out first missing the right amount of exhaust gas to produce the desired boost pressure. Only with increasing speed, a sufficiently strong exhaust gas flow is provided to cause a charge to a required degree. This lack of power at low speeds is commonly referred to as a "turbo lag". Accordingly, the charging of the fresh air flow through the turbocharger begins with a sudden gas input delayed, since only a sufficient Abgasström must adjust.
  • an apparatus for surveil ⁇ distinguished monitoring an exhaust gas turbocharger is characterized in that it comprises a formed for receiving a speed-dependent turbocharger operating noise sound transducer which is connected to electronics for frequency analysis of the output of a turbocharger speed signal.
  • the invention is therefore based on the finding that at operating speeds of 200,000 to about 400,000 revolutions per minute turbocharger equipped with up to 17 turbine blades in its normal operating speed range a very high-frequency operating noise emitted.
  • This Railge ⁇ is therefore commonly referred to as turbocharger whistling noise reduction. From one or more dominant frequencies within a sound spectrum emitted by a turbocharger, a respective current turbocharger speed can be determined. This is done for example in an electronics for frequency analysis, which then outputs a turbocharger speed signal.
  • an ultrasonic transducer is used as a sound transducer. It has been found, the frequencies of an emitted by a turbocharger sound spectrum above the threshold of human hearing of about 16 kHz in Ultraschallbe ⁇ that are rich from 20 kHz, from which a respective current turbocharger speed is determined.
  • An electronics downstream of the sound transducer comprises a frequency analysis unit.
  • This frequency analysis unit identi fied ⁇ preferably based on a fast Fourier transfor mation ⁇ or FFT, followed by band-pass filtering a frequency band of a supercharger operating noise and determines therefrom a respective current turbocharger speed.
  • a turbocharger speed determination according to the invention is arranged in a particularly preferred embodiment of the present invention on the basis of a sound evaluation together with an air mass sensor in the intake of an internal combustion engine.
  • An air mass sensor can work as a mass flow sensor according to a thermal principle, wherein a release of heat output of a heated sensor wire compared to a thermally insulated sensor wire is evaluated via a resistance bridge circuit as a measure of a respective flow rate.
  • Figure 1 is a block diagram of a device for measuring the speed of a turbocharger using two standard ultrasonic transducers of an ultrasonic air mass sensor and
  • FIG. 2 shows a block diagram of a further embodiment for measuring the speed of a turbocharger and an ultrasonic air mass sensor when using an additional ultrasonic transducer with subsequent evaluation as a block diagram in a representation analogous to that of Figure 1.
  • FIG. 1 shows a simplified Blockdia ⁇ gram of a device 1 for measuring the speed of a symbolically reproduced exhaust turbocharger 2.
  • This device 1 is arranged in an air inlet duct 3 of an internal combustion engine not shown and working ⁇ tet using two standardized Sound transducers 4, 5 of an ultrasonic air mass sensor 6.
  • the ultrasonic air mass sensor 6 operates in the present embodiment according to one disclosed in EP 0535364 Al publica ⁇ lished methods for determining an air mass in HO- flow velocities.
  • sound waves 7 are emitted in the ultrasonic range of the first transducer 4 under control by an electronic unit 8. They pass through the through which a strong air flow, air intake passage 3 on a path ⁇ to increase the path length and thereby improving the measurement accuracy at an angle relative to the transverse sectional plane of the air inlet duct 3 ge ⁇ is prone.
  • the sound waves 7 impinge on the second acoustic transducer 5, the received as the ultrasonic detector
  • Sound waves 7 converts into an electrical output signal ai.
  • This electrical signal ai is returned to the electronics 8 for air mass measurement.
  • the receiving transducer 5 is designed very broadband in the ultrasonic range.
  • the sound transducer 5 next to the sound waves emitted by the transducer 4 7 on the much lower frequency and yet located in the ultrasonic range sound waves 9 detect and convert, these sound waves 9 are generated by the operation of the turbocharger 2 and in their frequency characteristic of a respectively current turbocharger speed are.
  • a respective measurement result of the second sound transducer 5 is evaluated in two ways below, as also indicated in the drawing: an output signal of the emp ⁇ scavenging transducer 5 is divided ai and a low frequency component of a 2 to a higher frequency component.
  • the ⁇ se shares ai, a 2 are supplied to separate units for electrical processing.
  • a much higher-frequency component which has been emitted at a predetermined frequency by the first converter 4, is forwarded to the evaluation electronics 8 for determining an air mass.
  • a comparatively low frequency and the turbo ⁇ loader 2 forth derived ultrasonic frequency portion is in the Signal component a 2 for frequency analysis to an electronics 10 forwarded.
  • a current turbocharger speed is determined by appropriate mathematical algorithms Filtermetho ⁇ and from the recorded frequency spectrum, a Fast-Fourier transformation is applied for determining a characteristic frequency of the turbocharger speed in the present case to a bandpass filtering.
  • the downstream of the transducer 5 electronics 10 thus includes a frequency analysis unit for identifying a frequency band of a turbocharger operating noise and then on ⁇ building determining a respective current turbocharger speed as the output signal A.
  • FIG. 2 shows a block diagram of another exemplary form for measuring the speed of a turbocharger and an ultra sound ⁇ air mass sensor.
  • This device operates using an additional ultrasonic transducer 11 with subsequent evaluation electronics and is shown as a block diagram in a representation analogous to that of Figure 1.
  • the formed for receiving a speed-dependent turbocharger operating noise transducer 11 is provided as a separate component in the Lufteinlasska ⁇ nal. 3 Again, this is an ultrasonic transducer based on a piezoelectric material.
  • this sound transducer 11 is tuned comparatively narrowband in its operating frequency to the frequencies to be expected, which are caused by the respective operating speeds of the turbocharger 2.
  • a possible frequency range can range from speeds below 100,000 to about 450,000 revolutions per ⁇ Mi nute and more are expected 5 up to 17 turbo blades as.
  • approximate frequencies of the fundamental frequencies from 8 kHz to more than 113 kHz and easily measurable harmonics, for example, at the third harmonic or three times the frequency of 24 kHz to 0.35 MHz are to be expected.
  • a nominal speed range and the number of turbo blades already Depending on the application, a more or less narrow-band range for the operating frequency of the sound transducer 5 can be selected in the mentioned lower ultrasonic range.
  • Figure 2 this results in accordance with a certain apparatus additional effort by the provision of an additional separate sound transducer 11 in the air inlet duct 3, however, an overall simpler evaluation processing the electrical measurement signals, as in particular no Fre ⁇ quenzaufspaltung an output signal into two portions ai , a 2 is to be provided.
  • the two ultrasonic transducers 3, 4 for the air mass measurement must have an operating frequency which is significantly above the operating frequency and thus, for example, also a center frequency of the ultrasonic transducer 11, which is provided for the turbocharger speed measurement.
  • turbocharger speed sensing can be installed at that position at the well-known mass air flow sensors are installed.
  • the ultrasonic sensors 4, 5, 11 generally have the advantage that they are comparatively insensitive to temperature, dirt and pressure, for example in quartz converter designs.
  • such sensors are much cheaper to produce or available as standard components, as would be the case with a now to be saved turbocharger speed sensor known design.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • Supercharger (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Verfahren und eine Vorrichtung zum Überwachen eines Abgasturboladers einer Verbrennungskraftmaschine. Um ein preiswertes sowie zuverlässig arbeitendes Verfahren sowie eine entsprechende Vorrichtung zur Überwachung eines Abgasturboladers zu schaffen, wird vorgeschlagen, dass ein zur Aufnahme eines drehzahlabhängigen Turbolader-Betriebsgeräusches ausgebildeter Schallwandler (5, 11) vorgesehen ist, der mit einer Elektronik (10) zur Frequenzanalyse zur Ausgabe eines Turbolader-Drehzahlsignals verbunden ist.

Description

Beschreibung
Verfahren und Vorrichtung zum Überwachen eines Abgasturboladers
Die vorliegende Erfindung betrifft ein Verfahren und eine Vorrichtung zum Überwachen eines Abgasturboladers einer Verbrennungskraftmaschine .
In bekannter Weise wird in Verbrennungskraftmaschinen ein
Luft-Treibstoffgemisch unter Verdichtung zur Verbrennung gebracht. Die Leistungsabgabe der Verbrennungskraftmaschine hängt vom Verhältnis von Treibstoffmasse zu Luftmasse ab. Die Messung einer jeweiligen Luftmasse wird mit einem Luftmassen- sensor durchgeführt, der im Ansaugtrakt der Verbrennungs¬ kraftmaschine sitzt. Zahlreiche moderne Verbrennungskraftma¬ schinen sind heute mit einem Abgas-Turbolader ausgestattet, welcher eine Vorverdichtung der Luftmasse bewirkt. Wurde be¬ reits zu Beginn der Entwicklung von Verbrennungskraftmaschi- nen der Versuch einer Vorkompression der einer Verbrennungskraftmaschine zuzuführenden Luft mit dem Ziel einer Erhöhung der Motorleistung durch Erhöhung des Luftmengen- und Kraftstoffdurchsatzes pro Arbeitstakt durchgeführt, so wird heute die Aufladung von Otto-Verbrennungskraftmaschinen nicht mehr primär unter dem Leistungsaspekt gesehen, sondern als Möglichkeit zur Einsparung von Kraftstoff und zur Minderung von Schadstoffen. Dabei wird in bekannter Weise einem jeweiligen Abgasstrom Energie zur Vorverdichtung des Luftmassenstromes durch eine im Abgasstrom laufende Turbine mit daran mecha- nisch gekoppeltem Frischluft-Verdichter entzogen, so dass beispielsweise ein Dieselmotor nun nicht mehr als Saugmotor, sondern als aufgeladener Motor mit Ladeluftdrücken von bis zu 1,5 bzw. 2,5 bar bei deutlicher Leistungssteigerung und reduziertem Schadstoffausstoß arbeitet.
Durch den Einsatz eines Turboladers erhöht sich einerseits das Drehmoment einer Verbrennungskraftmaschine, andererseits aber auch die thermische Belastung des Verbrennungsmotors, weswegen Motorblock, Zylinderköpfe, Zylinderkopfdichtungen, Lager, Zylinder, Pleuel, Ventile, Kolben und sonstige Motorkomponenten sowie der nachfolgende Antriebsstrang für diese zusätzliche Beanspruchung entsprechend ausgelegt sein müssen. Die höhere Leistung erfordert auch ein entsprechend größer dimensioniertes Kühlsystem zur Kühlung des Motors und der La¬ deluft. Dabei ist bei aufgeladenen Otto-Motoren dennoch häufig zu beobachten, dass Abgasturbinen nach Fahrten unter ho- her Last sogar rotglühend heiß werden. Eine derartig starke thermische und mechanische Beanspruchung eines Bauteils, das Drehzahlen von bis zu 200.000 Umdrehungen pro Minute errei¬ chen kann, macht eine separate Überwachung erforderlich. Denn mit Einsatz von Turboladern wird in modernen Kraftfahrzeugen immer noch ein erheblicher Regungsaufwand ausgelöst, durch den eine Schadensdiagnose verkompliziert wird. Moderne voll¬ elektronische Diagnosesysteme wirken hier durch Auswertung der Drehzahl eines Turboladers zu dessen Funktionsüberwachung unterstützend. Zur Ermittlung einer Turbolader-Drehzahl ist jedoch ein extra entwickelter Sensor vorzusehen. Dieser Sensor muss extrem widrigen Bedingungen, also insbesondere hohen Temperaturen und hohen Drücken, standhalten und dabei die Schaufeln des Turboladerrades zuverlässig detektieren und mit einer nachgeschalteten Elektronik das Drehzahlsignal berech- nen. Dazu muss dieser Sensor direkt am Turbolader angebracht werden .
Bei allen Vorteilen ist als ein Nachteil eines Turboladers bekannt, dass in einem Anfahr-/ Beschleunigungsvorgang als einem transienten Betriebszustand ein Turbolader einen nicht ausreichenden Ladedruck für die Frischluft erzeugen kann, so dass im Ansaugsystem ein kurzzeitiger Unterdruck entsteht. Bei einer Beschleunigung aus niedrigen Drehzahlen heraus fehlt zunächst die richtige Abgasmenge, um den gewünschten Ladedruck zu erzeugen. Erst bei steigender Drehzahl wird ein ausreichend starker Abgasstrom zur Verfügung gestellt, um eine Aufladung zu einem erforderlichen Grade zu bewirken. Diesen Leistungsmangel bei niedrigen Drehzahlen bezeichnet man gemeinhin als "Turboloch" . Demnach setzt die Aufladung des Frischluftstroms durch den Turbolader bei plötzlichem Gasgeben verzögert ein, da sich erst ein ausreichender Abgas- ström einstellen muss. Diese Eigenheit hat man in der Vergangenheit durch entsprechende Regelsysteme und durch Einsatz kleinerer Turbolader zu einem Teil kompensieren können. Im Rahmen eines neuen Konstruktionsansatzes unter Verwendung des in Planung befindlichen 42 V-Bordnetzes könnte es auch eine kombinierte Aufladung durch Abgasturbolader und elektrischen Antrieb geben. Hierdurch würde das Ansprechverhalten zusätzlich positiv verändert werden. Aber auch dieser Ansatz setzt für eine Regelung in Echtzeit eine relativ genaue Kenntnis einer aktuellen Turbolader-Drehzahl voraus. Damit können auch zukünftige Regelungsaufgaben nur unter Verwendung einer Überwachung des Abgasturboladers vorgenommen werden, die eine Turboladerdrehzahl als Ausgangssignal liefert.
Es ist daher Aufgabe der vorliegenden Erfindung, ein preis- wertes sowie zuverlässig arbeitendes Verfahren sowie eine entsprechende Vorrichtung zur Überwachung eines Abgasturbola¬ ders zu schaffen.
Diese Aufgabe wird durch die Merkmale der unabhängigen An- sprüche gelöst. Vorteilhafte Weiterbildungen sind Gegenstand der jeweiligen Unteransprüche.
Erfindungsgemäß zeichnet sich eine Vorrichtung zur Überwa¬ chung eines Abgasturboladers dadurch aus, dass sie einen zur Aufnahme eines drehzahlabhängigen Turbolader- Betriebsgeräusches ausgebildeten Schallwandler umfasst, der mit einer Elektronik zur Frequenzanalyse zur Ausgabe eines Turbolader-Drehzahlsignals verbunden ist. Der Erfindung liegt mithin die Erkenntnis zugrunde, dass bei Betriebsdrehzahlen von 200.000 bis zu ca. 400.000 Umdrehungen pro Minute jeder mit bis zu 17 Turbinenschaufeln ausgestattete Turbolader in seinem normalen Betriebs-Drehzahlbereich ein sehr hochfrequentes Betriebsgeräusch emittiert. Dieses Betriebsge¬ räusch wird daher umgangssprachlich auch als Turbolader- Pfeifen bezeichnet. Aus einer oder mehreren dominanten Frequenzen innerhalb eines durch einen Turbolader emittierten Schallspektrums ist eine jeweils aktuelle Turbolader-Drehzahl ermittelbar. Dies erfolgt beispielsweise in einer Elektronik zur Frequenzanalyse, die dann ein Turbolader-Drehzahlsignal ausgibt .
Ein Geräuschpegel eines im Normbetrieb befindlichen Turbola¬ ders verglichen zu sonstigen Umgebungsgeräuschen innerhalb eines Kraftfahrzeuges ist vergleichsweise hoch. Da sich der am Turbolader entstehende Schall über weite Strecken insbe¬ sondere im Ansaugtrakt ohne wesentliche Dämpfung fortpflanzt, muss der erfindungsgemäß vorzusehende Schallwandler selber vorteilhafterweise nicht direkt am Turbolader angebracht sein. Damit ist ein entsprechender Schallwandler auch nicht den bekannt hohen Temperaturen und Drücken im Bereich des Turboladers ausgesetzt. Damit sind erfindungsgemäß auch weni- ger widerstandsfähige und damit preiswertere Schallwandler mit geringerem Betriebstemperaturbereich etc. einsetzbar.
In einer besonders bevorzugten Ausführungsform der Erfindung wird als Schallwandler ein Ultraschallwandler verwendet . Es ist herausgefunden worden, dass sich die Frequenzen eines durch einen Turbolader emittierten Schallspektrums oberhalb der menschlichen Hörschwelle von ca. 16 kHz im Ultraschallbe¬ reich ab 20 kHz befinden, aus denen eine jeweils aktuelle Turbolader-Drehzahl ermittelbar ist.
Eine dem Schallwandler nachgeordnete Elektronik umfasst eine Frequenzanalyseeinheit. Diese Frequenzanalyseeinheit identi¬ fiziert vorzugsweise auf Basis einer Fast-Fourrier Transfor¬ mation bzw. FFT mit nachfolgender Bandpassfilterung ein Fre- quenzband eines Turbolader-Betriebsgeräusches und ermittelt daraus eine jeweils aktuelle Turbolader-Drehzahl. Eine erfindungsgemäße Turbolader-Drehzahlbestimmung wird in einer besonders bevorzugten Ausführungsform der vorliegenden Erfindung auf Basis einer Schallauswertung zusammen mit einem Luftmassensensor im Ansaugtrakt einer Verbrennungskraftma- schine angeordnet. Ein Luftmassensensor kann als Massenstrom- sensor nach einem thermischen Prinzip arbeiten, wobei eine Abgabe von Wärmeleistung eines erhitzten Sensormessdrahtes im Vergleich zu einem thermisch isolierten baugleichen Sensordraht über eine Widerstandbrückenschaltung als Maß für eine jeweilige Durchflussmenge ausgewertet wird. Ein alternativer und elektrische Energie einsparender Ansatz ist allgemein in dem Aufsatz "Durchflussmesstechnik - Eine Übersicht", in der Fachzeitschrift "Technisches Messen tm", 1979, Heft 4, Seiten 145 - 149 beschrieben worden. Dazu ist es bekannt, einen sen- denden und einen empfangenden Ultraschallmesskopf für eine Durchflussmessung zu verwenden. Die beiden Ultraschallmessköpfe dienen dabei einer als Sender und einer als Empfänger und benötigen eine Sende-/ Empfangseinrichtung. Hierauf aufbauend ist beispielsweise in der EP 0 535 364 Al ein Verfah- ren zur hochauflösenden Strömungsgeschwindigkeitsmessung mittels Ultraschall offenbart worden, bei dem ein Ultraschall¬ sender und ein Ultraschallempfänger Schallimpulse durch ein Messrohr unter einem Schrägstellungswinkel zur Bestimmung einer von einer aktuellen Strömungsgeschwindigkeit abhängigen Phasendifferenz hindurchleiten. Zur Luftmassenmessung werden also im Ansaugtrakt bereits zwei Ultraschallwandler verwendet, und diese Anordnung wird in einem Ausführungsbeispiel der Erfindung durch Zufügung eines dritten Ultraschallwandler ergänzt, wobei dieser dritte Ultraschallwandler hinsichtlich seiner Betriebsfrequenz speziell auf die zu erwartenden Frequenzen des sich in Betrieb befindlichen Turboladers abge¬ stimmt ist. Alternativ hierzu kann auch eine Vorrichtung mit nur zwei Ultraschallwandlern vorgesehen sein, wobei der empfangende Ultraschallwandler nun so breitbandig ausgeführt ist, dass eine Luftmassenmessung bei wesentlich höherer Frequenz als die Turboladerdrehzahl-Messung durchgeführt wird. Eine Bandpassfilterung trennt das Ausgangssignal des empfangenden Ultraschallwandlers, um die Signalanteile je¬ weils gezielt einer Luftmassenmessung und einer Drehzahlbestimmung in getrennten Nachfolgeschaltungen zuzuführen.
Weitere Merkmale und Vorteile der Erfindung werden nachfol¬ gend unter Beschreibung zweier Ausführungsbeispiele mit Be¬ zugnahme auf die Abbildungen der Zeichnung angegeben. In der Zeichnung zeigen:
Figur 1: ein Blockdiagramm einer Vorrichtung zur Drehzahlmessung eines Turboladers unter Verwendung von zwei Standard-Ultraschallwandlern eines Ultraschall- Luftmassensensors und
Figur 2: ein Blockdiagramm einer weiteren Ausführungsform zur Drehzahlmessung eines Turboladers sowie eines Ultraschall-Luftmassensensors bei Verwendung eines zusätzlichen Ultraschallwandlers mit nachfolgender Auswerteelektronik als Blockschaltdiagramm in einer Darstellung analog der von Figur 1.
Über die verschiedenen Ausführungsbeispiele und Abbildungen hinweg werden einheitlich gleiche Bezugsziffern und Bezeichnungen für gleiche Funktions- bzw. Baugruppen und Verfahrens- schritte verwendet.
Die Abbildung von Figur 1 zeigt ein vereinfachtes Blockdia¬ gramm einer Vorrichtung 1 zur Drehzahlmessung eines nur symbolisch wiedergegebenen Abgas-Turboladers 2. Diese Vorrich- tung 1 ist in einem Lufteinlasskanal 3 einer nicht weiter dargestellten Verbrennungskraftmaschine angeordnet und arbei¬ tet unter Verwendung von zwei standardisierten Schallwandlern 4,5 eines Ultraschall-Luftmassensensors 6.
Der Ultraschall-Luftmassensensor 6 arbeitet im vorliegenden Ausführungsbeispiel nach einem in der EP 0 535 364 Al veröf¬ fentlichten Verfahren zur Bestimmung einer Luftmasse bei ho- hen Strömungsgeschwindigkeiten. Hierzu werden Schallwellen 7 im Ultraschallbereich von dem ersten Wandler 4 unter Ansteuerung durch eine Elektronik 8 ausgesandt. Sie durchlaufen den von einem starken Luftstrom durchströmten Lufteinlasskanal 3 auf einer Bahn, die zur Vergrößerung der Wegstrecke und damit zur Verbesserung der Messgenauigkeit unter einem Winkel α gegenüber der Querschnittsebene des Lufteinlasskanals 3 ge¬ neigt ist. Auf der gegenüberliegenden Seite des Lufteinlass¬ kanals 3 treffen die Schallwellen 7 auf den zweiten Schall- wandler 5, der als Ultraschalldetektor die empfangenen
Schallwellen 7 in ein elektrisches Ausgangssignal ai wandelt. Dieses elektrische Signal ai wird an die Elektronik 8 zur Luftmassenmessung zurückgeführt. Für die Durchführung des Verfahrens im Detail, die Auswertung der Messergebnisse und die damit verbundenen Verfahren wird vollumfänglich auf die Lehre der EP 0 535 364 Al verwiesen.
Der empfangende Schallwandler 5 ist im Ultraschallbereich sehr breitbandig ausgelegt. Damit kann der Schallwandler 5 neben den von dem Schallwandler 4 ausgesandten Schallwellen 7 auf die wesentlich niederfrequenteren und dennoch im Ultraschallbereich befindlichen Schallwellen 9 detektieren und wandeln, wobei diese Schallwellen 9 durch den Betrieb des Turboladers 2 erzeugt werden und in ihrer Frequenz charakte- ristisch für eine jeweilig aktuelle Turbolader-Drehzahl sind. Dementsprechend wird ein jeweiliges Messergebnis des zweiten Schallwandlers 5 nachfolgend in zweifacher Weise ausgewertet, wie auch zeichnerisch angedeutet: Ein Ausgangssignal des emp¬ fangenden Schallwandlers 5 wird in einen höherfrequenten An- teil ai und einen niederfrequenten Anteil a2 aufgeteilt. Die¬ se Anteile ai, a2 werden separaten Einheiten zur elektrischen Weiterverarbeitung zugeführt. Zum einen wird also ein wesentlich höher frequenter Anteil, der in vorbestimmter Frequenz durch den ersten Wandler 4 ausgesandt worden ist, zu der Aus- wertelektronik 8 zur Ermittlung einer Luftmasse weitergeleitet. Ein vergleichsweise niederfrequenter und von dem Turbo¬ lader 2 her stammender Ultraschall-Frequenzanteil wird in dem Signal-Anteil a2 zur Frequenzanalyse an eine Elektronik 10 weitergeleitet. Aus dem aufgenommenen Frequenzspektrum wird eine aktuelle Turboladerdrehzahl durch geeignete Filtermetho¬ den und mathematische Algorithmen bestimmt, wobei im vorlie- genden Fall auf eine Bandpassfilterung eine Fast-Fourrier- Transformation zur Ermittlung einer charakteristischen Frequenz der Turboladerdrehzahl angewendet wird. Die dem Schallwandler 5 nachgeordnete Elektronik 10 umfasst mithin eine Frequenzanalyseeinheit zum Identifizieren eines Frequenzban- des eines Turbolader-Betriebsgeräusches und zum darauf auf¬ bauenden Ermitteln einer jeweils aktuellen Turbolader- Drehzahl als Ausgangssignal A.
Figur 2 zeigt ein Blockdiagramm einer weiteren Ausführungs- form zur Drehzahlmessung eines Turboladers sowie eines Ultra¬ schall-Luftmassensensors. Diese Vorrichtung arbeitet unter Verwendung eines zusätzlichen Ultraschallwandlers 11 mit nachfolgender Auswertelektronik und ist als Blockschaltdiagramm in einer Darstellung analog der von Figur 1 abgebildet . In der Ausführungsform von Figur 2 ist der zur Aufnahme eines drehzahlabhängigen Turbolader-Betriebsgeräusches ausgebildete Schallwandler 11 als separates Bauteil in dem Lufteinlasska¬ nal 3 vorgesehen. Auch hierbei handelt es sich um einen Ultraschallwandler auf Basis eines piezo-elektrischen Materials. Dieser Schallwandler 11 ist gegenüber dem Schallwandler 5 des Ausführungsbeispiels gemäß Figur 1 jedoch vergleichsweise schmalbandig in seiner Betriebsfrequenz auf die zu erwartenden Frequenzen abgestimmt, die durch die jeweiligen Betriebsdrehzahlen des Turboladers 2 hervorgerufen werden. Zur Ab- Schätzung eines möglichen Frequenzbereiches kann von Drehzahlen unterhalb von 100.000 bis ca. 450.000 Umdrehungen pro Mi¬ nute und von mehr als 5 bis zu 17 Turbo-Schaufeln ausgegangen werden. Damit sind überschlägig Frequenzen der Grundschwingungen ab 8 kHz bis mehr als 113 kHz und gut messbare Harmo- nische z.B. bei der dritten Oberschwingung bzw. dreifachen Frequenz von 24 kHz bis 0,35 MHz zu erwarten. Da ein Nenn- Drehzahlbereich und die Zahl der Turbo-Schaufeln bereits Auslegungsgrößen eines jeden Turboladers sind, kann in dem genannten unteren Ultraschallbereich je nach Applikation ein mehr oder weniger schmalbandiger Bereich für die Betriebsfrequenz des Schallwandlers 5 gewählt werden.
Gegenüber der ersten Ausführungsform ergibt sich daraus gemäß Figur 2 bei einem gewissen apparativen Mehraufwand durch das Vorsehen eines weiteren separaten Schallwandlers 11 in dem Lufteinlasskanal 3 jedoch eine insgesamt einfachere Auswer- tung der elektrischen Messsignale, da insbesondere keine Fre¬ quenzaufspaltung eines Ausgangssignals in zwei Anteile ai, a2 vorzusehen ist. Weiter müssen die beiden Ultraschallwandler 3, 4 für die Luftmassenmessung eine Betriebsfrequenz aufweisen, die deutlich über der Betriebsfrequenz und damit bei- spielsweise auch einer Mittenfrequenz des Ultraschallwandlers 11 liegt, der für die Turboladerdrehzahl-Messung vorgesehen ist.
Da der Geräuschpegel des Turboladers 2 verglichen zum jewei- ligen Umgebungsgeräusch sehr hoch und insbesondere im Ultraschallbereich relativ dominant ist und sich der entstehende Schall zudem über weite Strecken im Ausaugtrakt 3 ohne we¬ sentliche Dämpfung fortpflanzt, muss der Ultraschall- Luftmassen-sensor 6 mit seinen Schallwandlern 4, 5 sowie der in der zweiten Ausführungsform vorgesehene separate Schall¬ wandler 11 nicht direkt am Turbolader 3 angebracht werden. Damit kann auch eine Turbolader-Drehzahlsensierung an jene Position eingebaut werden, an der nach gängiger Bauweise bekannte Luftmassensensoren eingebaut werden. Dabei weisen die Ultraschall-Sensoren 4, 5, 11 generell den Vorteil auf, dass sie z.B. in Bauformen von Quarz-Wandeln gegen Temperatur, Schmutz und Druck vergleichsweise unempfindlich sind. Zudem sind derartige Sensoren wesentlich kostengünstiger herzustellen oder als Standard-Komponenten erhältlich, als dies bei einem nun einzusparenden Turboladerdrehzahl-Sensor bekannter Bauart der Fall wäre.

Claims

Patentansprüche
1. Vorrichtung zum Überwachen eines Abgasturboladers einer Verbrennungskraftmaschine, da du r c h g e k e n n z e i c h n e t , dass ein zur Aufnahme eines drehzahlabhängigen Turbolader- Betriebsgeräusches ausgebildeter Schallwandler (5, 11) vorgesehen ist, der mit einer Elektronik (10) zur Frequenzanalyse zur Ausgabe eines Turbolader- Drehzahlsignals verbunden ist.
2. Vorrichtung nach Anspruch 1, da du r c h g e k e n n z e i c h n e t , dass der Schallwandler (5, 11) zur Ermittlung einer Turbolader- Drehzahl als Ultraschallwandler ausgebildet ist
3. Vorrichtung nach einem der vorhergehenden Ansprüche, da du r c h g e k e n n z e i c h n e t , dass eine dem Schallwandler (5, 11) nachgeordnete Elektronik (10) ei- ne Frequenzanalyseeinheit zum Identifizieren eines Fre¬ quenzbandes eines Turbolader-Betriebsgeräusches und Er¬ mitteln einer jeweils aktuellen Turbolader-Drehzahl um- fasst .
4. Vorrichtung nach einem der vorhergehenden Ansprüche, da du r c h g e k e n n z e i c h n e t , dass der Schallwandler (11) speziell auf das Frequenzband eines zu erwartenden Turbolader-Betriebsgeräusches abgestimmt ist.
5. Vorrichtung nach einem der vorhergehenden Ansprüche, da du r c h g e k e n n z e i c h n e t , dass der Schallwandler (4, 5, 11) der Vorrichtung (1) in einem Lufteinlasskanal (3) der Verbrennungskraftmaschine an- geordnet ist.
6. Verfahren zum Überwachen eines Abgas-Turboladers (2) einer Verbrennungskraftmaschine, da du r c h g e k e n n z e i c h n e t , dass ein drehzahlabhängiges Betriebsgeräusch des Turboladers (2) durch einen Schallwandler (5, 11) aufgenommen und in einer Elektronik (10) ausgewertet wird.
7. Verfahren nach dem vorhergehenden Anspruch, da du r c h g e k e n n z e i c h n e t , dass der Schallwandler (5, 11) parallel auch als Bestandteil ei¬ nes Luftmassensensors verwendet wird.
8. Verfahren nach einem der vorhergehenden Ansprüche 6 o- der 7, da du r c h g e k e n n z e i c h n e t , dass ein Aus¬ gangssignal eines empfangenden Schallwandlers (5) in einen höherfrequenten Anteil (ai) und einen niederfrequenten Anteil (a2) aufgeteilt wird und diese Anteile separaten Einheiten zur elektrischen Weiterverarbeitung zugeführt werden.
PCT/EP2007/055325 2006-06-13 2007-05-31 Verfahren und vorrichtung zum überwachen eines abgasturboladers WO2007144274A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/308,316 US8291752B2 (en) 2006-06-13 2007-05-31 Method and device for monitoring an exhaust-gas turbocharger
EP07729728A EP2032820A1 (de) 2006-06-13 2007-05-31 Verfahren und vorrichtung zum überwachen eines abgasturboladers
JP2009514741A JP2009540207A (ja) 2006-06-13 2007-05-31 排気ガスターボチャージャの監視用装置及び監視方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006027422.9 2006-06-13
DE102006027422.9A DE102006027422B4 (de) 2006-06-13 2006-06-13 Verfahren und Vorrichtung zum Überwachen eines Abgasturboladers

Publications (1)

Publication Number Publication Date
WO2007144274A1 true WO2007144274A1 (de) 2007-12-21

Family

ID=38440241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/055325 WO2007144274A1 (de) 2006-06-13 2007-05-31 Verfahren und vorrichtung zum überwachen eines abgasturboladers

Country Status (7)

Country Link
US (1) US8291752B2 (de)
EP (1) EP2032820A1 (de)
JP (1) JP2009540207A (de)
KR (1) KR20090027210A (de)
CN (1) CN101473122A (de)
DE (1) DE102006027422B4 (de)
WO (1) WO2007144274A1 (de)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009168688A (ja) * 2008-01-17 2009-07-30 Mitsubishi Heavy Ind Ltd 流体計測装置
US20090193896A1 (en) * 2008-01-31 2009-08-06 Lawrence M Rose Turbocharger rotational speed sensor
US8161744B2 (en) * 2008-03-04 2012-04-24 Deere & Company Internal combustion engine with turbocharger surge detection and control
DE102011007031A1 (de) * 2011-04-08 2012-10-11 Robert Bosch Gmbh Verfahren zur Diagnose eines Aufladesystems von Verbrennungsmotoren
US9448133B2 (en) 2011-05-06 2016-09-20 General Electric Company Apparatus, system, and method for testing a turbocharger
US8661876B2 (en) * 2011-05-06 2014-03-04 General Electric Company Apparatus, system, and method for testing a turbocharger
DE102012211425A1 (de) * 2012-07-02 2014-01-23 Robert Bosch Gmbh Verfahren zur Bestimmung einer Drehzahl eines Verdichters
CN103575541B (zh) * 2013-10-12 2016-02-24 广西玉柴机器股份有限公司 电控发动机试验输出装置
CN104596929B (zh) * 2013-10-31 2017-06-23 国际商业机器公司 确定空气质量的方法及设备
DE102014102321A1 (de) 2014-02-23 2015-08-27 Kompressorenbau Bannewitz Gmbh Verfahren für eine Notfallprozedur im Fehlerfall an einer zweistufigen Abgasturboaufladung einer Verbrennungskraftmaschine und Zweistufige Abgasturboladeranordnung zur Durchführung des Verfahrens
FR3034871B1 (fr) * 2015-04-10 2017-04-28 Peugeot Citroen Automobiles Sa Procede de caracterisation d’un champ de vitesses d’un ecoulement d’air suite a la decharge d’un systeme de suralimentation de moteur a combustion interne
DK3317658T3 (da) * 2015-07-03 2020-11-30 Kamstrup As Turbiditetssensor baseret på ultralydsmålinger
US10151731B2 (en) * 2015-11-13 2018-12-11 The Boeing Comapny Ultrasonic system for nondestructive testing
ITUB20159294A1 (it) * 2015-12-23 2017-06-23 Magneti Marelli Spa Metodo per determinare la velocita' istantanea di rotazione di un turbocompressore in un motore a combustione interna sovralimentato
US11053875B2 (en) 2016-02-10 2021-07-06 Garrett Transportation I Inc. System and method for estimating turbo speed of an engine
JP6669637B2 (ja) * 2016-11-25 2020-03-18 ヤンマー株式会社 内燃機関の診断装置および診断方法、並びに、内燃機関の制御装置および制御方法
EP3367072B1 (de) * 2017-02-24 2019-01-02 SICK Engineering GmbH Strömungsmessung mit ultraschall

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3605958A1 (de) * 1986-02-25 1987-09-03 Fraunhofer Ges Forschung Vorrichtung zum erfassen und beheben von abloeseschwingungen an verdichterschaufeln
EP0952454A1 (de) * 1998-04-23 1999-10-27 DaimlerChrysler AG Vorrichtung zur Drehzahlerfassung von Turboladern
GB2359380A (en) * 2000-02-16 2001-08-22 Bosch Gmbh Robert Device for limiting the rotational speed of an exhaust gas turbo-charger
JP2003097281A (ja) * 2001-09-21 2003-04-03 Toyota Motor Corp ターボチャージャーの回転数計測方法及びターボチャージャー
DE10237416A1 (de) * 2002-08-16 2004-02-26 Daimlerchrysler Ag Betriebsverfahren für einen Verdichter
DE102004029857A1 (de) * 2004-06-19 2006-01-05 Volkswagen Ag Verfahren und Anordnung zum Betreiben eines Turboladers

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3861211A (en) 1974-03-25 1975-01-21 Us Navy Ultra-low flow velocity current meter
DE2828937A1 (de) 1978-06-30 1980-01-10 Siemens Ag Vorrichtung zum messen von stroemungsgeschwindigkeiten mit hilfe von ultraschallschwingungen
DE4104179A1 (de) * 1991-02-12 1992-08-13 Iav Motor Gmbh Ingenieurgesell Sensor zur messung hochfrequenter koerperschallwellen in verbrennungsmotoren, insbesondere otto-motoren
EP0535364A1 (de) * 1991-09-30 1993-04-07 Siemens Aktiengesellschaft Verfahren zu hochauflösenden eindeutigen Strömungsgeschwindigkeitsmessung mittels Ultrasschall
SE500813C2 (sv) * 1993-01-22 1994-09-12 Ase Autotest Ab Förfarande för mätning av varvtalet på turboaggregat för motorer
JP3642354B2 (ja) 1995-05-30 2005-04-27 富士電機ホールディングス株式会社 水車の異常診断装置
DE19708302A1 (de) * 1996-08-12 1998-09-03 Rolf Kistner Drehzahlmessung durch Ultraschallerfassung
DE10012926C2 (de) * 2000-03-16 2002-01-31 Daimler Chrysler Ag Sensoreinrichtung zur Strömungsmessung, Vorrichtung zur Durchströmung mit einem Medium und Verfahren zur Bestimmung von Strömungsparametern
DE102004010263A1 (de) * 2004-03-03 2005-09-22 Daimlerchrysler Ag Verfahren und Vorrichtung zur Drehzahlerfassung von Turboladern
JP2006184036A (ja) 2004-12-27 2006-07-13 Nissan Motor Co Ltd 超音波式流体計測方法および装置
GB0700148D0 (en) * 2007-01-05 2007-02-14 Cummins Turbo Tech Ltd A method and apparatus for detecting the rotational speed of a rotary member

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3605958A1 (de) * 1986-02-25 1987-09-03 Fraunhofer Ges Forschung Vorrichtung zum erfassen und beheben von abloeseschwingungen an verdichterschaufeln
EP0952454A1 (de) * 1998-04-23 1999-10-27 DaimlerChrysler AG Vorrichtung zur Drehzahlerfassung von Turboladern
GB2359380A (en) * 2000-02-16 2001-08-22 Bosch Gmbh Robert Device for limiting the rotational speed of an exhaust gas turbo-charger
JP2003097281A (ja) * 2001-09-21 2003-04-03 Toyota Motor Corp ターボチャージャーの回転数計測方法及びターボチャージャー
DE10237416A1 (de) * 2002-08-16 2004-02-26 Daimlerchrysler Ag Betriebsverfahren für einen Verdichter
DE102004029857A1 (de) * 2004-06-19 2006-01-05 Volkswagen Ag Verfahren und Anordnung zum Betreiben eines Turboladers

Also Published As

Publication number Publication date
US20100000309A1 (en) 2010-01-07
EP2032820A1 (de) 2009-03-11
JP2009540207A (ja) 2009-11-19
CN101473122A (zh) 2009-07-01
DE102006027422B4 (de) 2014-02-06
DE102006027422A1 (de) 2007-12-27
US8291752B2 (en) 2012-10-23
KR20090027210A (ko) 2009-03-16

Similar Documents

Publication Publication Date Title
DE102006027422B4 (de) Verfahren und Vorrichtung zum Überwachen eines Abgasturboladers
CN101163870B (zh) 用于具有马达驱动型增压器的内燃发动机的控制设备
KR101574668B1 (ko) 동압 판독값에 기초하여 엔진 파라미터를 추정하는 방법 및 시스템
CN102330595B (zh) 用于确定内燃机中的增压器的旋转速度的方法
EP2122143B1 (de) Indizieranordnung und verfahren zur bestimmung eines motorkennwertes
WO2006005662A1 (de) Abgasturbolader
WO2009033597A1 (de) Verfahren und vorrichtung zur emissionsmessung an motoren
WO2008025754A1 (de) Waste-gate-aktuator für einen abgasturbolader
DE102008011342A1 (de) Verfahren zur Diagnose von Turboladern für Verbrennungskraftmaschinen
CN101206159A (zh) 监测汽车的功能部件的方法
US9121862B2 (en) Method and device for measuring the rotational speed of a turbocompressor, and motor vehicle
DE102015213825A1 (de) Verfahren und Vorrichtung zur Dynamiküberwachung eines Luftfüllungssystems einer Brennkraftmaschine
DE102011007031A1 (de) Verfahren zur Diagnose eines Aufladesystems von Verbrennungsmotoren
WO2019120904A1 (de) Verfahren und vorrichtung zum bestimmen des verschmutzungsgrades eines luftfilters einer verbrennungskraftmaschine
Chiong et al. Steady-state, transient and WLTC drive-cycle experimental performance comparison between single-scroll and twin-scroll turbocharger turbine
Taglialatela-Scafati et al. Use of vibration signal for diagnosis and control of a four-cylinder diesel engine
KR20080106972A (ko) 배기가스 터보차저의 컴프레서를 제어하기 위한 방법 및 장치
DE10056431A1 (de) Verfahren und Vorrichtung zur Diagnose des Strömungswiderstands im Ansaugtrakt von Brennkraftmaschinen
DE10111775B4 (de) Verfahren und Vorrichtung zur Bestimmung der Gasaustrittstemperatur der Turbine eines Abgasturboladers eines Kraftfahrzeugs
EP1887328A1 (de) Koaxial angeordneter Ultraschall-Durchflussmesser
Zhang et al. Using the Moebius transformation to predict the effect of source impedance on insertion loss
WO2008125442A1 (de) Verfahren zur luftmassenmessung und luftmassensensor
EP2126539B1 (de) Verfahren und vorrichtung zum testen eines turbomotors
DE10358462B4 (de) Vorrichtung und Verfahren zur Ermittlung des Verschmutzungsgrades einer Luftfiltereinheit für einen Kraftfahrzeug-Verbrennungsmotor
DE102012213961A1 (de) Vorrichtung zur Bestimmung einer Drehzahl eines Verdichters einer Brennkraftmaschine

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780022352.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07729728

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007729728

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009514741

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087030591

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 12308316

Country of ref document: US