WO2006003863A1 - 露光装置 - Google Patents

露光装置 Download PDF

Info

Publication number
WO2006003863A1
WO2006003863A1 PCT/JP2005/011739 JP2005011739W WO2006003863A1 WO 2006003863 A1 WO2006003863 A1 WO 2006003863A1 JP 2005011739 W JP2005011739 W JP 2005011739W WO 2006003863 A1 WO2006003863 A1 WO 2006003863A1
Authority
WO
WIPO (PCT)
Prior art keywords
exposure
mask
exposed
optical system
image
Prior art date
Application number
PCT/JP2005/011739
Other languages
English (en)
French (fr)
Inventor
Miyoshi Ito
Original Assignee
Integrated Solutions Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Integrated Solutions Co., Ltd. filed Critical Integrated Solutions Co., Ltd.
Priority to CN2005800221906A priority Critical patent/CN1981244B/zh
Priority to KR1020067027970A priority patent/KR101149089B1/ko
Publication of WO2006003863A1 publication Critical patent/WO2006003863A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7088Alignment mark detection, e.g. TTR, TTL, off-axis detection, array detector, video detection
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor

Definitions

  • the present invention relates to an exposure apparatus that exposes an image of an opening of a mask that is radiated with exposure light from an exposure optical system and is interposed on a path of the exposure optical system.
  • a mask is used by controlling the exposure position setting and exposure light irradiation timing with reference to a reference position preset in a reference pattern formed on the exposure object while moving the exposure object at a constant speed.
  • the present invention relates to an exposure apparatus that efficiently exposes a wide exposure area.
  • This type of conventional exposure apparatus holds the substrate with the photosensitive material surface facing up, and can control movement in the X, Y, negative axis and ⁇ directions, and at least in one direction in the X and negative directions.
  • a stage that can be moved in steps by a predetermined distance a mask stage that holds the mask on the upper side of the substrate, an upward force of the mask, a light source unit for irradiating exposure light to the substrate side, and the position of the substrate and mask on the stage It is equipped with an automatic alignment mechanism that automatically aligns and a gap control mechanism that controls the gap between the substrate and the mask. When the alignment is completed by controlling the alignment between the substrate and the mask by the alignment mechanism and the gap control mechanism, the gap adjustment is completed.
  • Patent Document 1 Japanese Patent Laid-Open No. 9-127702
  • the conventional exposure apparatus described above uses a small area mask so that a predetermined pattern can be exposed on the entire surface of a large substrate, and has an advantage of reducing the cost of the mask used.
  • the smaller the mask area the greater the number of alignment and gap adjustments, and the longer the adjustment time, the longer the exposure time.
  • an object of the present invention is to provide an exposure apparatus that addresses such problems and efficiently exposes a wide exposure area using a small mask.
  • an exposure apparatus is an exposure optical system that irradiates an exposure object with exposure light from a light source, and the exposure optical system that is disposed to face the exposure optical system.
  • An exposure apparatus that exposes an image of an opening of a mask interposed on an optical path of the exposure optical system on the exposure object.
  • An imaging unit that images a reference pattern previously formed on the object to be exposed, with the near side of the exposure position by the exposure optical system in the moving direction of the transport unit as an imaging position, and the image captured by the imaging unit A reference position preset in the reference pattern is detected, exposure light irradiation timing of the exposure optical system is controlled based on the reference position, and an image of the opening of the mask is formed at a predetermined position of the object to be exposed. With control means to expose That.
  • the object to be exposed is conveyed at a constant speed by the conveying means, the reference pattern previously formed on the object to be exposed is imaged by the imaging means, and the reference pattern is preset by the control means.
  • the detected reference position is detected, the exposure light irradiation timing of the light source power of the exposure optical system is controlled based on the reference position, and the exposure optical system opens the mask interposed on the optical path.
  • the image of the mouth is exposed at a predetermined position of the object to be exposed.
  • the exposure area is efficiently exposed using the mask.
  • the exposure optical system includes an imaging lens that forms an image of the opening of the mask on the object to be exposed. As a result, an image of the opening of the mask is formed on the exposure object by the imaging lens and exposed.
  • the exposure apparatus irradiates the object to be exposed with light from a light source through a mask having a predetermined opening, and the mask is placed on the object to be transported.
  • An exposure apparatus that exposes an image of an opening comprising: a conveying unit that conveys the object to be exposed at a constant speed; and an optical path that is disposed above the conveying unit and extends from the light source to the object to be exposed.
  • An exposure having an imaging lens that forms an image of an opening of the mask interposed on the object to be exposed and a beam splitter arranged to be inclined on an optical path between the imaging lens and the mask.
  • An imaging system configured to receive an optical system and reflected light on the imaging lens side reflecting surface of the beam splitter, and to capture a reference pattern formed in advance on the object to be exposed via the imaging lens image And the reference imaged by the imaging means
  • a reference position preset in the turn is detected, exposure light irradiation timing of the exposure optical system is controlled based on the reference position, and the opening of the mask is placed at a predetermined position of the object to be exposed.
  • a control means for exposing the image
  • the object to be exposed is conveyed at a constant speed by the conveying means, and a reference pattern previously formed on the object to be exposed is imaged by the imaging means via the imaging lens provided in the exposure optical system.
  • the control unit detects a reference position preset in the reference pattern, controls the irradiation timing of the exposure light of the light source provided in the exposure optical system based on the reference position, and the imaging lens controls the light.
  • An image of the opening of the mask interposed on the road is imaged at a predetermined position on the object to be exposed.
  • the light source is a flash lamp that intermittently emits exposure light. As a result, the exposure light is intermittently emitted by the flash lamp.
  • any one of the transport means and the exposure optical system has a deviation between the planned exposure position of the mask opening defined in the reference pattern and the actual exposure position in the reference position.
  • an alignment means for correcting the deviation As a result, the deviation between the planned exposure position of the mask opening defined in the reference pattern by the alignment means and the actual exposure position is calculated based on the reference position, and the deviation is corrected.
  • the mask is formed on an opaque film formed on a transparent glass substrate in a direction orthogonal to the moving direction of the exposure object corresponding to the width of the exposure area exposed by the exposure optical system.
  • One elongated opening is formed in the direction.
  • the exposure is performed using a mask in which one elongated opening is formed in a direction orthogonal to the moving direction of the object to be exposed.
  • the mask has one elongated opening in a direction orthogonal to the moving direction of the object to be exposed corresponding to the width of the exposure area exposed by the exposure optical system on the opaque member. And the length of the opening is adjustable. Thereby, the length of one elongated opening formed in the direction orthogonal to the moving direction of the object to be exposed is adjusted as necessary.
  • the reference pattern previously formed on the object to be exposed is imaged by the imaging means while moving the object to be exposed at a constant speed, and the reference pattern is preset by the control means.
  • the reference position is detected, the exposure light irradiation timing is controlled based on the reference position, and the exposure optical system exposes the image of the mask opening interposed on the optical path to a predetermined position on the object to be exposed.
  • the position on the near side of the exposure position by the exposure optical system in the transport direction of the object to be exposed can be imaged by the imaging means, and the position of the reference pattern captured by the imaging means while moving the object to be exposed is set to the reference position.
  • the exposure accuracy can be improved by setting the exposure position on the object to be exposed based on this.
  • the image of the opening of the mask is formed on the object to be exposed by using the imaging lens, and the object to be exposed is exposed.
  • the mask can be placed away from it and the risk of soiling or scratching the mask is reduced.
  • the imaging lens of the exposure optical system and the imaging lens of the imaging means are shared, and the imaging lens and the mask are arranged on the optical path of the exposure optical system.
  • the reference pattern of the object to be exposed is imaged by being reflected by a beam splitter placed at an angle in between. As a result, the imaging position matches the exposure position, and the exposure accuracy can be further improved.
  • the use of the flash lamp as the light source makes it easy to control the exposure light irradiation timing.
  • the deviation between the planned exposure position of the mask opening defined in the reference pattern and the actual exposure position is calculated based on the reference position, and the deviation is calculated.
  • the movement of the object to be exposed corresponds to the width of the exposure area exposed by the exposure optical system on the opaque film formed on the transparent glass substrate.
  • the size of the mask can be reduced by using a mask in which one elongated opening is formed in a direction orthogonal to the direction. Therefore, the cost of the mask can be reduced, the exposure optical system can be miniaturized, and the cost of the apparatus can be reduced.
  • the opaque member is elongated in a direction perpendicular to the moving direction of the object to be exposed corresponding to the width of the exposure area exposed by the exposure optical system.
  • FIG. 1 is a conceptual diagram showing a first embodiment of an exposure apparatus according to the present invention.
  • FIG. 2 is an explanatory diagram showing the relationship between the imaging means, the opening of the mask, and the exposed area of the black matrix.
  • FIG. 3 is a block diagram showing the first half of the processing system in the internal configuration of the image processing unit.
  • FIG. 4 is a block diagram showing the latter half of the processing system in the internal configuration of the image processing unit.
  • FIG. 5 is a flowchart for explaining the operation of the exposure apparatus according to the present invention.
  • FIG. 6 is an explanatory diagram showing a method for binarizing the output of the ring buffer memory.
  • FIG. 7 is an explanatory diagram showing an image of a first reference position preset in pixels of a black matrix and a look-up table thereof.
  • FIG. 8 is an explanatory diagram showing an image of a second reference position preset in black matrix pixels and a look-up table thereof.
  • FIG. 9 is a diagram illustrating a method of adjusting the inclination of the color filter substrate.
  • FIG. 10 is a diagram illustrating a Y-axis alignment adjustment method for the color filter substrate.
  • FIG. 11 is a diagram for explaining another method of adjusting the alignment of the color filter substrate in the Y-axis direction.
  • FIG. 12 is a diagram showing another configuration example of the mask, where (a) is a plan view and (b) is a cross-sectional view. 13] FIG. 13 is a side view showing the main part of the second embodiment of the exposure apparatus according to the present invention.
  • FIG. 1 is a conceptual view showing a first embodiment of an exposure apparatus according to the present invention.
  • This exposure apparatus 1 irradiates exposure light with an exposure optical system and is interposed on the path of the exposure optical system.
  • the exposure optical system 2, the image pickup means 3, the transport means 4, and the control means 5 are provided.
  • a color filter substrate of a liquid crystal display element will be described as an example of the object to be exposed.
  • the exposure optical system 2 irradiates the color filter substrate 6 coated with a photosensitive agent with exposure light to expose a predetermined color filter pattern.
  • the light source 7 is, for example, a lamp that emits ultraviolet light, and is a flash lamp that emits light intermittently under the control of the control means 5 described later.
  • the mask stage 8 is used to place and hold the mask 10 and is interposed on an optical path between the light source 7 and an imaging lens 9 described later.
  • the imaging lens 9 forms an image of the opening 10a of the mask 10 on the color filter substrate 6 and is disposed so as to face the color filter substrate 6.
  • the mask 10 is formed on an opaque film formed on a transparent glass substrate in the moving direction (arrow A) corresponding to the width of the exposure area exposed by the exposure optical system 2.
  • the openings 10a are arranged in a row in the horizontal direction of the black matrix 11 as shown in FIG.
  • the light source 7 may be a normal ultraviolet lamp instead of a flash lamp.
  • the intermittent irradiation of the exposure light may be performed, for example, by providing a shirt in front of the exposure light irradiation direction and controlling the opening and closing of the shutter.
  • an imaging means 3 is provided with an imaging position in front of the exposure position by the exposure optical system 2 in the moving direction of the color filter substrate 6 (arrow A direction).
  • the image pickup means 3 picks up the pixels 12 of the black matrix 11 as a reference pattern formed in advance on the color filter substrate 6 and is, for example, a line CCD in which light receiving elements are arranged in a line.
  • the imaging position of the imaging means 3 and the exposure position by the exposure optical system 2 are separated by a predetermined distance D.
  • the imaging means 3 captures the pixel 12 and captures it.
  • the pixel 12 reaches the above exposure position after a predetermined time.
  • the said distance D is so preferable that it is small.
  • the movement error of the color filter substrate 6 can be reduced, and the exposure position can be more accurately positioned relative to the pixel 12.
  • the imaging center of the imaging means 3 and the center of the opening 10a of the mask 10 coincide with each other in the transport direction (arrow A direction) of the color filter substrate 6, and the opening of the mask 10 is the same.
  • the center of the portion 10a is arranged so as to coincide with the optical axis center of the imaging lens 9.
  • an illumination means (not shown) is provided in the vicinity of the imaging means 3 so that the imaging area of the imaging means 3 can be illuminated.
  • a conveying means 4 is provided below the exposure optical system 2.
  • This transport means 4 is a stage in which the color filter substrate 6 is placed on the stage so as to be movable in the XY axis direction.
  • a transport motor (not shown) is controlled by the control means 5 to move the stage 4a. It is supposed to be.
  • the X-axis direction coincides with the conveyance direction of the color filter substrate 6 (arrow A direction), and the Y-axis direction is a direction orthogonal thereto.
  • the transport means 4 is provided with a position detection sensor and a speed sensor (not shown in the figure), for example, an unillustrated sensor, and its output is fed back to the control means 5 for position control and speed control. It is possible.
  • the conveying means 4 is provided with alignment means 29, which calculates the deviation between the exposure planned position in the black matrix 11 and the exposure position of the opening 10a of the mask 10 based on the reference position, and the stage 4a
  • the above deviation can be corrected by moving the rotation angle and position in the Y-axis direction.
  • the angle of stage 4a can be detected by an angle sensor.
  • a control means 5 is provided in connection with the light source 7, the imaging means 3, and the transport means 4.
  • the control means 5 controls the entire apparatus to operate properly, and includes an image processing section 13 for detecting a reference position preset for the pixel 12 imaged by the imaging means 3, and a black matrix.
  • FIGS. 3 and 4 are block diagrams showing an example of the configuration of the image processing unit 13.
  • the image processing unit 13 includes, for example, three ring buffer memories 19A, 19B, and 19C connected in parallel, and each of the ring buffer memories 19A, 19B, and 19C connected in parallel.
  • LUT for left end the left end determination circuit 22 that outputs the left end determination result when both data match, the output data of the above nine line buffer memories 20A, 20B, and 20C, 1 Compared with the look-up table of image data (hereinafter referred to as “LUT for right end”) corresponding to the second reference position that defines the right end of the exposed area obtained from part 14, both data are matched. And a right end determination circuit 23 for outputting a right end determination result.
  • the image processing unit 13 inputs the left end determination result and counts the number of coincidence of image data corresponding to the first reference position, and the counting circuit 24A. Comparing the output of the circuit 24A with the leftmost pixel number obtained from the storage unit 14 shown in FIG. 1 and comparing both values, the comparison circuit 25A outputs a leftmost designation signal to the storage unit 14, and the right end A counting circuit 24B that inputs the determination result and counts the number of coincidence of image data corresponding to the second reference position, the output of the counting circuit 24B, and the rightmost pixel number obtained from the storage unit 14 shown in FIG.
  • a comparison circuit 25B that outputs a right end designation signal to the storage unit 14 when both values match, and a left end pixel counting circuit 26 that counts the left end pixel number n based on the output of the counting circuit 24A,
  • the output of the leftmost pixel counting circuit 26 and shown in FIG. The exposure end pixel column designating signal when ⁇ 14 force both numerical and comparing the exposure ending pixel column number N obtained are matched and a comparator circuit 27 to be output to the storage unit 14.
  • the counting circuits 24A and 24B are reset by the reading start signal when the reading operation by the imaging means 3 is started. Further, the left end pixel counting circuit 26 is reset by the exposure end signal when the exposure for the designated area is completed.
  • the image pickup means 3 When the exposure apparatus 1 is turned on, the image pickup means 3, the illumination means and the control means 5 shown in FIG. 1 are activated to enter a standby state.
  • the transport means 4 is controlled by the transport means controller 17 of the control means 5 and the color. Convey filter substrate 6 in the direction of arrow A at a constant speed.
  • an exposure operation is executed according to the following procedure.
  • step S 1 an image of the pixel 12 of the black matrix 11 is acquired by the imaging unit 3.
  • the acquired image data is captured and processed in the three ring buffer memories 19A, 19B, and 19C of the image processing unit 13 shown in FIG.
  • the latest three data are output from each ring buffer memory 19A, 19B, 19C.
  • the previous data is output from the ring buffer memory 19A
  • the previous data is output from the ring buffer memory 19B
  • the latest data is also output from the ring buffer memory 19C.
  • 3 ⁇ 3 CCD pixel images are arranged on the same clock (time axis) by three line buffer memories 2 OA, 20B, and 20C.
  • the result is obtained, for example, as an image as shown in FIG. If this image is numerically input, it corresponds to a 3 X 3 value as shown in Fig. 6 (b). Since these digitized images are arranged on the same clock, they are compared with the threshold value by the comparison circuit and binarized. For example, if the threshold is set to “45”, the image in FIG. 6 (a) is binarized as shown in FIG. 6 (c).
  • step S2 the reference positions at the left and right ends of the exposure area are detected. Specifically, the detection of the reference position is performed in the left end determination circuit 22 by comparing the binarized data with the data of the left end LUT that also obtained the storage unit 14 force shown in FIG.
  • the first reference position for designating the left end of the exposed area is set at the upper left corner of the pixel 12 of the black matrix 11 as shown in (a) of FIG.
  • the left end LUT is as shown in FIG. 7B, and the data of the left end LUT at this time is “000 011011”. Therefore, the binarized data is the leftmost LUT data “00001101”.
  • the image data acquired by the imaging means 3 is determined to be the first reference position, and the determination result at the left end is output from the left end determination circuit 22.
  • the upper left corner of each pixel 12 corresponds to the first reference position.
  • the number of coincidence is incremented in the counting circuit 24A shown in FIG. Then, the count number is compared with the left end pixel number obtained also in the storage unit 14 shown in FIG. 1 in the comparison circuit 25A, and when the two values match, the left end designation signal is output to the storage unit 14.
  • the left end designation signal is output to the storage unit 14.
  • the first pixel 12 is determined as the leftmost pixel number
  • the upper left corner of this pixel 12 is the first reference position.
  • the element address, for example EL, in the line CCD of the imaging means 3 corresponding to the first reference position is stored in the storage unit 14.
  • the binary key data is compared with the right end LUT data obtained from the storage unit 14 shown in FIG.
  • the second reference position for designating the right edge of the exposed area is set at the upper right corner of the pixel 12 of the black matrix 11 as shown in FIG.
  • the LUT is as shown in Fig. 8 (b), and the right-end LUT data at this time is "000110110". Therefore, the binarized data is compared with the data “000110110” of the right end LUT, and when the two data match, the image data acquired by the imaging means 3 is the reference position of the right end of the exposed area.
  • the right end determination circuit 23 outputs the right end determination result. As described above, when five pixels 12 are arranged, for example, as shown in FIG. 10, the upper right corner of each pixel 12 corresponds to the second reference position.
  • the number of coincidences is incremented in the counting circuit 24B shown in FIG. Then, the count number is compared with the right end pixel number obtained from the storage unit 14 shown in FIG. 1 in the comparison circuit 25B, and when both numerical values match, a right end designation signal is output to the storage unit 14. In this case, as shown in FIG. 10, for example, if the fifth pixel 12 is determined as the rightmost pixel number, the upper right corner of the pixel 12 is the second reference position.
  • the element address, for example, EL, in the line CCD of the imaging means 3 corresponding to the second reference position is stored in the storage unit 14. And as described above When the left and right reference positions of the exposure area are detected, the process proceeds to step S3.
  • step S 3 the inclination angle ⁇ of the color filter substrate 6 with respect to the transport direction is determined based on the detection times t 1 and t 2 of the first reference position and the second reference position.
  • the amount of deviation between the first reference position and the second reference position in the transport direction is (t t) V.
  • the interval between the reference position 2 and the element address EL of the image pickup means 3 corresponding to the first reference position and the element address EL of the image pickup means 3 corresponding to the second reference position are as shown in FIG.
  • the inclination angle ⁇ of the color filter substrate 6 is
  • the alignment means 29 of the transport means 4 is driven by the transport means controller 17 to rotate the stage 4a by the angle ⁇ .
  • the alignment means 29 of the transport means 4 is driven by the transport means controller 17 to rotate the stage 4a by the angle ⁇ .
  • step S4 an intermediate position between the first reference position and the second reference position is calculated by the calculation unit 15. Specifically, the element address EL of the imaging means 3 corresponding to the first reference position read from the storage unit 14 and the height of the imaging means 3 corresponding to the second reference position.
  • the intermediate position is (EL + EL
  • step S5 it is determined whether or not the intermediate position obtained in step S4 matches the imaging center (element address EL) of the imaging means 3. Where "NO" judgment
  • step S6 the alignment means 29 is controlled by the transport means controller 17, and K ⁇ EL-(EL + EL
  • step S7 Move stage 4a in the direction indicated by arrow B in the Y-axis direction by Z2 ⁇ .
  • the center position of the exposed region matches the imaging center of the imaging means 3 (or the central position of the opening 10a of the mask 10). Then, the process proceeds to step S7.
  • “YES” determination is made in step S5
  • the process also proceeds to step S7.
  • step S 7 it is determined whether or not the exposure area of the black matrix 11 is set to the exposure position of the exposure optical system 2. This determination is based on the detection time t of the first reference position stored in the storage unit 14, the width W of the pixel 12 in the transport direction shown in FIG.
  • the center position of the pixel row is imaged by the imaging means 3 and the color filter substrate 6 is transported by the distance D.
  • the time t is calculated by the calculation unit 15 and the time t is managed. If it is determined that the time t has elapsed, that is, the exposure area of the black matrix 11 has been set to the exposure position ("YES" determination), the process proceeds to step S8.
  • step S8 the lamp controller 16 is activated to cause the light source 7 to emit light for a preset predetermined time.
  • the edge in the conveyance direction of the exposure pattern may be blurred. Therefore, the conveyance speed, the exposure time, and the power of the light source 7 are set in advance so that the blur amount becomes an allowable value.
  • step S9 the leftmost pixel number n is counted by the leftmost pixel counting circuit 26 shown in FIG. Then, the process proceeds to step S10, in which the leftmost pixel number n is set in advance and compared with the exposure end pixel column number N stored in the storage unit 14 by the comparator 27, and whether or not the two values match is determined. Determined.
  • step S10 If "NO" determination is made in step S10, the process returns to step S1 and proceeds to the operation for detecting the next reference position. In this case, the counting circuits 24A and 24B shown in FIG.
  • step S 10 all exposure to a predetermined area of the color filter substrate 6 is completed, and the left end pixel counting circuit 26 is reset by an exposure end signal shown in FIG. Then, the transfer means 4 returns the stage 4a to the start position at high speed.
  • the stage 4a is moved by a predetermined distance in the Y direction.
  • the above steps S1 to S10 are executed again to expose the area adjacent to the already exposed area.
  • the exposure optical system 2 and the imaging means 3 may be arranged in a plurality of rows in the Y-axis direction so that the entire width of the color filter substrate 6 can be exposed once.
  • a plurality of imaging means 3 may be installed side by side in the Y-axis direction.
  • steps S1 to S10 have been described as a series of operations.
  • the detection of the reference position is performed in parallel with the execution of the above steps, and the detection data is stored in the storage unit 14 as needed.
  • the adjustment of the tilt angle ⁇ of the color filter substrate 6 in step S3 and the Y-axis adjustment of the color filter substrate 6 in step S6 also require the storage unit 14 force. Force Performed within the time to move to the next exposure position.
  • the reference position set for the pixel 12 of the black matrix 11 imaged by the imaging means 3 while carrying the color filter substrate 6 at a constant speed is controlled as a reference, and a single elongated opening 10a is formed in a direction perpendicular to the moving direction of the color filter substrate 6 corresponding to the width of the exposure area exposed by the exposure optical system 2.
  • the alignment of the angle ⁇ of the stage 4a and the Y-axis are adjusted within the time when the color filter substrate 6 moves to the next exposure position based on the reference position. As a result, the alignment time can be shortened and exposure can be performed with high accuracy at any location in the exposure region.
  • the alignment means 29 is provided in the transport means 4 .
  • the present invention is not limited to this, and the alignment means is provided in a mechanism that holds the exposure optical system 2 and the imaging means 3. It may be provided.
  • the alignment in the Y-axis direction may be performed by moving the mask stage 8 or the imaging lens 9 holding the mask 10 as shown in FIG.
  • the imaging lens 9 is moved in the same direction (arrow E direction) as the adjustment direction of the exposure pattern, as shown in FIG. 11 (b).
  • FIG. 12 is a diagram illustrating another configuration example of the mask 10.
  • This mask 10 is formed in an elongated shape in a direction perpendicular to the moving direction of the color filter substrate 6 corresponding to the width of the exposure area exposed by the exposure optical system 2 on an opaque member, for example, a metal member 28 treated with black alumite.
  • the two end members 28a in the direction perpendicular to the transport direction (Y-axis direction) in the longitudinal direction of the opening 10a ' are respectively movable in the Y-axis direction to form the opening 10a'.
  • the length of 10a ' is adjustable. Therefore, the alignment in the Y-axis direction is performed by moving the both end members 28a by a predetermined amount.
  • the alignment in the Y-axis direction can be adjusted by moving the both end members 28a in the same direction by the same amount, and the width of the exposure pattern can be arbitrarily set by appropriately setting each movement amount and moving direction of the both end members 28a. can do.
  • This adjustment can be performed by automatic control by the control means 5.
  • the present invention can be applied to a proximity exposure apparatus that directly exposes the mask 10 close to the color filter substrate 6.
  • FIG. 13 is a side view showing an essential part of a second embodiment of the exposure apparatus according to the present invention.
  • an exposure optical system 2 is configured by disposing a beam splitter 30 between a mask stage 8 and an imaging lens 9, and the imaging lens side reflecting surface 3 of the beam splitter 30 is configured.
  • the imaging means 3 is arranged so as to be able to receive the reflected light at Oa, and the imaging lens 9 forms an image of the black matrix 11 formed on the color filter substrate 6 on the light receiving element surface of the imaging means 3.
  • reference numeral 31 denotes an illumination light source
  • reference numeral 32 denotes a half mirror.
  • the imaging position of the imaging means 3 can be illuminated through the imaging lens 9.
  • the exposure light source 7 can be used also for illumination instead of the illumination light source 31 of the imaging means 3.
  • the color filter substrate 6 is conveyed by the imaging unit 3 via the imaging lens 9 while the color filter substrate 6 is conveyed at a constant speed by the conveying unit 4 in the direction of arrow A.
  • the pixel 12 of the upper black matrix 11 is imaged, the reference position preset in the pixel 12 imaged by the imaging means 3 is detected by the control means 5, and based on the reference position, the same as in the first embodiment Then, the alignment between the mask 10 and the color filter substrate 6 is adjusted and the light source 7 of the exposure optical system 2 is caused to emit light, and the image of the opening 10a of the mask 10 is formed at a predetermined position on the color filter substrate 6 by the imaging lens 9. Is imaged and the image is exposed.
  • the exposure position of the exposure optical system 2 is obtained.
  • the image pickup position of the image pickup means 3 match, and the exposure position on the color filter substrate 6 is picked up and detected by the image pickup means 3, so that exposure can be performed immediately, and the exposure accuracy is further improved compared to the first embodiment. can do.
  • the force exposure position described above and the actual exposure position can be obtained simply by setting the color filter substrate 6 on the stage 4a.
  • Alignment means is not necessary if the amount of deviation can be within the allowable range.
  • the present invention is not limited to this, and a predetermined shape of the pattern is arranged in a matrix.
  • the present invention can also be applied to a substrate to be used.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Color Television Image Signal Generators (AREA)

Abstract

 光源7から露光光をカラーフィルタ基板6に対して照射する露光光学系2と、該露光光学系2に対向して配置されカラーフィルタ基板6を載置して一定速度で搬送する搬送手段4とを備え、露光光学系2の光路上に介装するマスク10の開口部10aの像をカラーフィルタ基板6上に露光する露光装置1であって、搬送手段4の移動方向にて露光光学系2による露光位置の手前側を撮像位置とし、カラーフィルタ基板6に予め形成されたブラックマトリクス11を撮像する撮像手段3と、撮像手段3で撮像されたブラックマトリクス11に予め設定された基準位置を検出し、該基準位置を基準にして露光光学系2の露光光の照射タイミングを制御し、カラーフィルタ基板6の所定位置にマスク10の開口部10aの像を露光させる制御手段5とを備えたものである。これにより、小さなマスクを用いて効率的に広い露光領域に露光する露光装置を提供する。                                                                                 

Description

明 細 書
露光装置
技術分野
[0001] 本発明は、露光光学系により露光光を照射して該露光光学系の経路上に介装する マスクの開口部の像を被露光体上に露光する露光装置に関し、詳しくは、被露光体 を一定速度で移動しながら該被露光体に形成された基準パターンに予め設定された 基準位置を基準にして露光位置の設定及び露光光の照射タイミングを制御すること によって、マスクを用いて効率的に広い露光領域に露光する露光装置に係るもので ある。
背景技術
[0002] 従来のこの種の露光装置は、基板を感光材面を上にして保持し、 X、 Y、 Ζ軸方向 及び Θ方向に移動制御でき、且つ、少なくとも X、 Υ方向の 1方向に所定の距離だけ ステップ移動できるステージと、基板上側にマスクを保持するマスクステージと、マス クの上方力 基板側へ露光光を照射するための光源部と、ステージ上の基板とマス クとの位置合せを自動で行う自動ァライメント機構と、基板とマスクとのギャップを制御 するギャップ制御機構とを備え、基板とマスクとをァライメント機構とギャップ制御機構 により制御して位置合わせし、ギャップ調整が完了すると所定時間だけ光源部力 露 光光を照射して第 1回目の露光を行い、次にステージを所定ピッチだけ例えば X方 向に移動して再度位置合わせをし、ギャップ調整を完了した後、第 2回目の露光を行 V、、これを繰り返して大型基板の全面に所定のパターンを露光できるようになって!/ヽ る (例えば、特許文献 1参照)。
特許文献 1:特開平 9 - 127702号公報
発明の開示
発明が解決しょうとする課題
[0003] しかし、このような従来の露光装置にお!、ては、所定の領域に対する露光が終了す ると一旦露光動作を終了してマスクを基板に対して相対的にステップ移動し、再度基 板とマスクの位置合わせ、及びギャップ調整をして露光をするものであったので、この 複数回行う位置合わせ及びギャップ調整に時間が力かり露光に長時間を要していた
[0004] また、上記従来の露光装置は、小面積のマスクを使用して大型基板の全面に所定 のパターンを露光できるようにしたもので、使用するマスクのコストを安価にできる利 点がある力 マスクの面積が小さくなればなるほど上記位置合わせ及びギャップ調整 の回数が多くなり、その分調整時間が多くなつて露光時間がより長くなる問題があつ た。
[0005] さらに、上記位置合わせ及びギャップ調整の時間を短縮するために、ある程度大き なマスクを使用した場合には、露光光に大きなエネルギーを必要とし、光源のパワー の限界力 露光光の照射時間を長くしなければならず、結果的に露光時間を短縮す ることができなかった。
[0006] そこで、本発明は、このような問題点に対処し、小さなマスクを用いて効率的に広い 露光領域に露光する露光装置を提供することを目的とする。
課題を解決するための手段
[0007] 上記目的を達成するために、第 1の発明による露光装置は、光源から露光光を被 露光体に対して照射する露光光学系と、該露光光学系に対向して配置され前記被 露光体を載置して一定速度で搬送する搬送手段とを備え、前記露光光学系の光路 上に介装するマスクの開口部の像を前記被露光体上に露光する露光装置であって 、前記搬送手段の移動方向にて前記露光光学系による露光位置の手前側を撮像位 置とし、前記被露光体に予め形成された基準パターンを撮像する撮像手段と、前記 撮像手段で撮像された前記基準パターンに予め設定された基準位置を検出し、該 基準位置を基準にして前記露光光学系の露光光の照射タイミングを制御し、前記被 露光体の所定位置に前記マスクの開口部の像を露光させる制御手段とを備えたもの である。
[0008] このような構成により、搬送手段で被露光体を一定速度で搬送し、撮像手段で被露 光体上に予め形成された基準パターンを撮像し、制御手段で該基準パターンに予め 設定された基準位置を検出し、該基準位置を基準にして露光光学系の光源力ゝらの 露光光の照射タイミングを制御し、露光光学系でその光路上に介装するマスクの開 口部の像を被露光体の所定位置に露光する。これにより、マスクを用いて効率的に 広 、露光領域に露光をする。
[0009] そして、前記露光光学系は、前記マスクの開口部の像を前記被露光体上に結像す る結像レンズを備えたものである。これにより、結像レンズでマスクの開口部の像を被 露光体上に結像して露光する。
[0010] また、第 2の発明による露光装置は、所定の開口部を有するマスクを介して光源か ら露光光を被露光体に対して照射し、搬送される被露光体上に前記マスクの開口部 の像を露光する露光装置であって、前記被露光体を一定速度で搬送する搬送手段 と、該搬送手段の上方に配設されて、前記光源から前記被露光体に至る光路上に 介装された前記マスクの開口部を前記被露光体上に結像する結像レンズ及び該結 像レンズと前記マスクとの間の光路上に傾けて配置されたビームスプリツターを有す る露光光学系と、前記ビームスプリツターの前記結像レンズ側反射面における反射 光を受光可能に配設され、前記被露光体に予め形成された基準パターンを前記結 像レンズ像を介して撮像する撮像手段と、前記撮像手段で撮像された前記基準バタ ーンに予め設定された基準位置を検出し、該基準位置を基準にして前記露光光学 系の露光光の照射タイミングを制御し、前記被露光体の所定位置に前記マスクの開 口部の像を露光させる制御手段とを備えたものである。
[0011] このような構成により、搬送手段で被露光体を一定速度で搬送し、撮像手段で被露 光体上に予め形成された基準パターンを露光光学系に備える結像レンズを介して撮 像し、制御手段で該基準パターンに予め設定された基準位置を検出し、該基準位置 を基準にして露光光学系に備える光源の露光光の照射タイミングを制御し、上記結 像レンズでその光路上に介装するマスクの開口部の像を被露光体の所定位置に結 像して露光する。これにより、露光光学系による露光位置と撮像手段による撮像位置 を一致させ、露光精度を向上する。
[0012] そして、前記光源は、露光光を間歇的に発射するフラッシュランプである。これによ り、フラッシュランプで露光光を間歇的に発射する。
[0013] さらに、前記搬送手段又は露光光学系のいずれか一方に、前記基準パターンに定 めた前記マスク開口部の露光予定位置と実際の露光位置とのずれを前記基準位置 に基づいて演算し、該ずれを補正するァライメント手段を備えたものである。これによ り、ァライメント手段で基準パターンに定めたマスク開口部の露光予定位置と実際の 露光位置とのずれを基準位置に基づ 、て演算し、該ずれを補正する。
[0014] また、前記マスクは、透明なガラス基板上に形成された不透明な膜に、前記露光光 学系により露光される露光領域の幅に対応して被露光体の移動方向に直交する方 向に細長状の一つの開口部を形成したものである。これにより、被露光体の移動方 向に直交する方向に細長状の一つの開口部を形成したマスクを用いて露光する。
[0015] さらに、前記マスクは、不透明な部材に、前記露光光学系により露光される露光領 域の幅に対応して被露光体の移動方向に直交する方向に細長状の一つの開口部 を形成し、該開口部の長さを調節可能に構成したものである。これにより、被露光体 の移動方向に直交する方向に一つ形成した細長状の開口部の長さを必要に応じて 調節する。
発明の効果
[0016] 請求項 1に係る発明によれば、被露光体を一定速度で移動しながら被露光体に予 め形成した基準パターンを撮像手段で撮像し、制御手段で該基準パターンに予め 設定された基準位置を検出し、該基準位置を基準にして露光光の照射タイミングを 制御し、露光光学系でその光路上に介装するマスクの開口部の像を被露光体の所 定位置に露光するようにしたことにより、マスクを使用して広い露光領域に対して効率 的に露光することができる。また、被露光体の搬送方向にて露光光学系による露光 位置の手前側の位置を撮像手段で撮像可能にし、被露光体を移動しながら撮像手 段で撮像された上記基準パターンの基準位置に基づいて被露光体上の露光位置を 設定するようにしたことにより、露光精度を向上することができる。
[0017] また、請求項 2に係る発明によれば、結像レンズを用いてマスクの開口部の像を被 露光体上に結像して露光するようにしたことにより、被露光体に対してマスクを離して 配置することができ、マスクを汚したり傷つけたりする虞が少なくなる。
[0018] さらに、請求項 3に係る発明によれば、露光光学系の結像レンズと撮像手段の結像 レンズとを共用し、露光光学系の光路上にて上記結像レンズとマスクとの間に傾けて 配置したビームスプリツターにより反射して被露光体の基準パターンを撮像するように したことにより、撮像位置と露光位置とがー致し、露光精度をより向上することができ る。
[0019] さらにまた、請求項 4に係る発明によれば、光源にフラッシュランプを使用したことに より、露光光の照射タイミングの制御が容易になる。
[0020] そして、請求項 5に係る発明によれば、基準パターンに定めたマスク開口部の露光 予定位置と実際の露光位置とのずれを基準位置に基づ!ヽて演算し、該ずれを補正 するァライメント手段を備えたことにより、被露光体を次の露光位置に移動するまでの 間にァライメント調整を行うことができる。したがって、ァライメント時間を短縮できると 共に露光領域のいずれの場所に対しても高精度に露光を行うことができる。
[0021] また、請求項 6に係る発明によれば、透明なガラス基板上に形成された不透明な膜 に、前記露光光学系により露光される露光領域の幅に対応して被露光体の移動方 向に直交する方向に細長状の一つの開口部を形成したマスクを使用するようにした ことにより、マスクのサイズを小さくすることができる。したがって、マスクのコストを安価 にできると共に露光光学系を小型化でき、装置のコストを低減することができる。
[0022] さらに、請求項 7に係る発明によれば、不透明な部材に、前記露光光学系により露 光される露光領域の幅に対応して被露光体の移動方向に直交する方向に細長状の 一つの開口部を形成し、該開口部の長さを調節可能に構成したことにより、長さの異 なる露光パターンに対しても開口部の長さを調節して対応することができる。
図面の簡単な説明
[0023] [図 1]本発明による露光装置の第 1の実施形態を示す概念図である。
[図 2]撮像手段及びマスクの開口部並びにブラックマトリクスの被露光領域との関係を 示す説明図である。
[図 3]画像処理部の内部構成において処理系統の前半部を示すブロック図である。
[図 4]画像処理部の内部構成において処理系統の後半部を示すブロック図である。
[図 5]本発明による露光装置の動作を説明するフローチャートである。
[図 6]リングバッファーメモリの出力を 2値ィ匕する方法を示す説明図である。
[図 7]ブラックマトリクスのピクセルに予め設定された第 1の基準位置の画像とそのルツ クアップテーブルを示す説明図である。 [図 8]ブラックマトリクスのピクセルに予め設定された第 2の基準位置の画像とそのルツ クアップテーブルを示す説明図である。
圆 9]カラーフィルタ基板の傾きを調整する方法を説明する図である。
圆 10]カラーフィルタ基板の Y軸方向のァライメント調整方法を説明する図である。 圆 11]カラーフィルタ基板の Y軸方向のァライメント調整の他の方法を説明する図で ある。
[図 12]マスクの他の構成例を示す図であり、(a)は平面図、(b)は横断面図である。 圆 13]本発明による露光装置の第 2の実施形態の要部を示す側面図である。
符号の説明
1 · ' ··露光装置
2· ··露光光学系
3· 撮像手段
4· ··搬送手段
5· ··制御手段
6· • -カラーフィルタ基板 (被露光体)
Ί. ' "光源
9· ··結像レンズ
10· · ·マスク
10a…開口部
11 · · ·ブラックマトリクス (基準パターン)
12· · ·ピクセノレ
29· · ·ァライメント手段
30· · ·ビームスプリツター
30a- ··結像レンズ側反射面
発明を実施するための最良の形態
以下、本発明の実施形態を添付図面に基づいて詳細に説明する。
図 1は本発明による露光装置の第 1の実施形態を示す概念図である。この露光装 置 1は、露光光学系により露光光を照射して該露光光学系の経路上に介装するマス クの開口部の像を被露光体上に露光するもので、露光光学系 2と、撮像手段 3と、搬 送手段 4と、制御手段 5とを備えてなる。なお、以下、被露光体として液晶表示素子の カラーフィルタ基板を例にして説明する。
[0026] 上記露光光学系 2は、感光剤が塗布されたカラーフィルタ基板 6に露光光を照射し て所定のカラーフィルタのパターンを露光するものであり、光源 7と、マスクステージ 8 と、結像レンズ 9とを備えている。
[0027] 上記光源 7は、例えば紫外線を発光するランプであり、後述する制御手段 5により制 御されて間歇的に発光するフラッシュランプである。また、マスクステージ 8は、マスク 10を載置して保持するものであり、光源 7と後述の結像レンズ 9との間の光路上に介 装されている。そして、上記結像レンズ 9は、マスク 10の開口部 10aをカラーフィルタ 基板 6上に結像するものであり、カラーフィルタ基板 6と対向するように配設されてい る。なお、上記マスク 10は、透明なガラス基板上に形成された不透明な膜に、上記露 光光学系 2により露光される露光領域の幅に対応してカラーフィルタ基板 6の移動方 向(矢印 A方向)に直交する方向に細長状の一つの開口部 10aを形成したものであり 、第 1の実施形態においては、上記開口部 10aは、図 2に示すようにブラックマトリクス 11の横方向に一列状態に並んだ例えば五つのピクセル 12に対応してスリット状に形 成されている。なお、光源 7は、フラッシュランプでなくて通常の紫外線ランプであつ てもよい。この場合、露光光の間歇照射は、例えば露光光の照射方向前方にシャツ ターを設けてこのシャッターを開閉制御して行ってもよい。
[0028] また、上記カラーフィルタ基板 6の移動方向(矢印 A方向)にて上記露光光学系 2に よる露光位置の手前側を撮像位置とし、撮像手段 3が設けられている。この撮像手段 3は、カラーフィルタ基板 6に予め形成された基準パターンとしてのブラックマトリクス 1 1のピクセル 12を撮像するものであり、受光素子が一列状に配列された例えばライン CCDである。ここで、図 2に示すように、上記撮像手段 3の撮像位置と上記露光光学 系 2による露光位置とは、所定の距離 Dだけ離れており、撮像手段 3で上記ピクセル 12を撮像してカゝら所定時間経過後にピクセル 12が上記露光位置に到達するよう〖こ なっている。なお、上記距離 Dは、小さい程よい。これにより、カラーフィルタ基板 6の 移動誤差を少なくすることができ、露光位置を上記ピクセル 12に対してより正確に位 置決めすることができる。また、同図に示すように、撮像手段 3の撮像中心と上記マス ク 10の開口部 10aの中心とは、カラーフィルタ基板 6の搬送方向(矢印 A方向)で一 致し、上記マスク 10の開口部 10aの中心は上記結像レンズ 9の光軸中心と一致する ように配設されている。さらに、上記撮像手段 3の近傍部には、図示省略の照明手段 が設けられており、撮像手段 3の撮像領域を照明できるようになっている。
[0029] さらに、上記露光光学系 2の下方には、搬送手段 4が設けられている。この搬送手 段 4は、ステージ上にカラーフィルタ基板 6を載置して XY軸方向に移動可能にしたも のであり、図示省略の搬送用モータが制御手段 5により制御されてステージ 4aを移 動するようになっている。なお、上記 X軸方向は、カラーフィルタ基板 6の搬送方向( 矢印 A方向)に一致し、 Y軸方向は、それと直交する方向である。また、上記搬送手 段 4には、図示省略の例えばェンコ一ダゃリユアセンサー等の位置検出センサーや 速度センサーが設けられており、その出力を制御手段 5にフィードバックして位置制 御及び速度制御を可能にしている。さらに、搬送手段 4には、ァライメント手段 29が 設けられており、ブラックマトリクス 11における露光予定位置と上記マスク 10の開口 部 10aの露光位置とのずれを上記基準位置に基づいて演算し、ステージ 4aの回転 角度や Y軸方向の位置を移動して上記ずれを補正できるようになつている。なお、ス テージ 4aの角度は角度センサーにより検出することができる。
[0030] そして、上記光源 7、撮像手段 3、及び搬送手段 4に接続して制御手段 5が設けら れている。この制御手段 5は、装置全体が適切に動作するように制御するものであり、 撮像手段 3で撮像された上記ピクセル 12に予め設定された基準位置を検出する画 像処理部 13と、ブラックマトリクス 11の設計データや上記基準位置に相当するルック アップテーブル等のデータを記憶する記憶部 14と、上記撮像位置と露光位置との間 の距離 Dとカラーフィルタ基板 6の移動速度 Vとを用いてピクセル 12が撮像位置から 露光位置まで移動する時間 tを演算したり、上記基準位置に基づいて求めた露光予 定位置(以下、「被露光領域」と記載する)とマスク 10の開口部 10aとの位置ずれ等を 演算する演算部 15と、上記基準位置を基準にして上記光源 7の露光光の照射タイミ ングを制御するランプコントローラ 16と、搬送手段 4のステージを X軸方向に所定速 度で駆動すると共に搬送手段 4に備えるァライメント手段を駆動する搬送手段コント口 ーラ 17と、装置全体を統合して制御する制御部 18とを備えて 、る。
[0031] 図 3及び図 4は、画像処理部 13の一構成例を示すブロック図である。図 3に示すよ うに、画像処理部 13は、例えば三つ並列に接続したリングバッファーメモリ 19A, 19 B, 19Cと、該リングバッファーメモリ 19A, 19B, 19C毎にそれぞれ並列に接続した 例えば三つのラインバッファーメモリ 20A, 20B, 20Cと、該ラインバッファーメモリ 20 A, 20B, 20Cに接続され決まった閾値と比較してグレーレベルのデータを 2値ィ匕し て出力する比較回路 21と、上記九つのラインバッファーメモリ 20A, 20B, 20Cの出 力データと図 1に示す記憶部 14から得た被露光領域の左端を定める第 1の基準位 置に相当する画像データのルックアップテーブル (以下、「左端用 LUT」と記載する) とを比較して、両データが一致したときに左端判定結果を出力する左端判定回路 22 と、上記九つのラインバッファーメモリ 20A, 20B, 20Cの出力データと、図 1に示す 記憶部 14から得た被露光領域の右端を定める第 2の基準位置に相当する画像デー タのルックアップテーブル (以下、「右端用 LUT」と記載する)とを比較して、両データ がー致したときに右端判定結果を出力する右端判定回路 23とを備えている。
[0032] また、図 4に示すように、画像処理部 13は、上記左端判定結果を入力して第 1の基 準位置に相当する画像データの一致回数をカウントする計数回路 24Aと、該計数回 路 24Aの出力と図 1に示す記憶部 14から得た左端ピクセル番号とを比較して両数値 がー致したときに左端指定信号を上記記憶部 14に出力する比較回路 25Aと、上記 右端判定結果を入力して第 2の基準位置に相当する画像データの一致回数をカウ ントする計数回路 24Bと、該計数回路 24Bの出力と図 1に示す記憶部 14から得た右 端ピクセル番号とを比較して両数値が一致したときに右端指定信号を上記記憶部 14 に出力する比較回路 25Bと、上記計数回路 24Aの出力に基づいて左端ピクセル数 nをカウントする左端ピクセル計数回路 26と、該左端ピクセル計数回路 26の出力と図 1に示す記憶部 14力 得た露光終了ピクセル列番号 Nとを比較して両数値が一致し たときに露光終了ピクセル列指定信号を上記記憶部 14に出力する比較回路 27とを 備えている。なお、上記計数回路 24A, 24Bは、撮像手段 3による読取動作が開始さ れるとその読取開始信号によりリセットされる。また、左端ピクセル計数回路 26は、予 め指定した領域に対する露光が終了すると露光終了信号によりリセットされる。 [0033] 次に、このように構成された露光装置の動作を、図 5のフローチャートを参照して説 明する。
先ず、露光装置 1に電源が投入されると、図 1に示す撮像手段 3、照明手段及び制 御手段 5が起動してスタンバイ状態となる。次に、搬送手段 4のステージ 4a上にカラ 一フィルタ基板 6が載置されて、図示省略のスィッチが操作されると、搬送手段 4は、 制御手段 5の搬送手段コントローラ 17により制御されてカラーフィルタ基板 6を矢印 A 方向に一定速度で搬送する。そして、上記カラーフィルタ基板 6が撮像手段 3の撮像 位置に達すると、以下の手順に従って露光動作が実行される。
[0034] 先ず、ステップ S1においては、撮像手段 3でブラックマトリクス 11のピクセル 12の画 像が取得される。この取得した画像データは、図 3に示す画像処理部 13の三つのリ ングバッファーメモリ 19A, 19B, 19Cに取り込まれて処理される。そして、最新の三 つのデータが各リングバッファーメモリ 19A, 19B, 19Cから出力される。この場合、 例えばリングバッファーメモリ 19Aから二つ前のデータが出力され、リングバッファーメ モリ 19Bから一つ前のデータが出力され、リングバッファーメモリ 19C力も最新のデー タが出力される。さらに、これらの各データはそれぞれ三つのラインバッファーメモリ 2 OA, 20B, 20Cにより、例えば 3 X 3の CCD画素の画像を同一のクロック(時間軸)に 配置する。その結果は、例えば図 6の(a)に示すような画像として得られる。この画像 を数値ィ匕すると、図 6の(b)のように 3 X 3の数値に対応することになる。これらの数値 化された画像は、同一クロック上に並んでいるので、比較回路で閾値と比較されて 2 値ィ匕される。例えば、閾値を" 45"とすれば、図 6の(a)の画像は、図 6の(c)のように 2 値ィ匕されること〖こなる。
[0035] ステップ S2においては、被露光領域の左右端の基準位置が検出される。具体的に は、基準位置の検出は、左端判定回路 22において、上記 2値化データを図 1に示す 記憶部 14力も得た左端用 LUTのデータと比較して行う。
[0036] 例えば、被露光領域の左端を指定する第 1の基準位置が、図 7の (a)に示すように ブラックマトリクス 11のピクセル 12の左上端隅部に設定されている場合には、上記左 端用 LUTは、図 7の(b)に示すものになり、このときの左端用 LUTのデータは、 "000 011011 "となる。従って、上記 2値化データは、上記左端用 LUTのデータ" 00001101 1 "と比較され、両データが一致したときに、撮像手段 3で取得した画像データが第 1 の基準位置であると判定され、左端判定回路 22から左端の判定結果を出力する。な お、図 10に示すようにピクセル 12が五つ並んでいるときには、各ピクセル 12の左上 端隅部が第 1の基準位置に該当することになる。
[0037] 上記判定結果に基づいて、図 4に示す計数回路 24Aにおいて上記一致回数が力 ゥントされる。そして、そのカウント数は、図 1に示す記憶部 14力も得た左端ピクセル 番号と比較回路 25Aにお 、て比較され、両数値が一致したとき左端指定信号を上記 記憶部 14に出力する。この場合、図 10に示すように、例えば、左端ピクセル番号とし て 1番目のピクセル 12を定めると、このピクセル 12の左上端隅部が第 1の基準位置
1 1
と設定される。したがって、該第 1の基準位置に対応する撮像手段 3のライン CCDに おけるエレメント番地、例えば ELが記憶部 14に記憶される。
1
[0038] 一方、上記 2値ィ匕データは、右端判定回路 23において、図 1に示す記憶部 14から 得た右端用 LUTのデータと比較される。例えば、被露光領域の右端を指定する第 2 の基準位置が、図 8の(a)に示すようにブラックマトリクス 11のピクセル 12の右上端隅 部に設定されている場合には、上記右端用 LUTは、図 8の (b)に示すものになり、こ のときの右端用 LUTのデータは、 "000110110"となる。従って、上記 2値化データは 、上記右端用 LUTのデータ" 000110110"と比較され、両データが一致したときに、撮 像手段 3で取得した画像データが被露光領域の右端の基準位置であると判定され、 右端判定回路 23から右端判定結果を出力する。なお、前述と同様に、図 10に示す ように例えばピクセル 12が五つ並んでいるときには、各ピクセル 12の右上端隅部が 第 2の基準位置に該当することになる。
[0039] 上記判定結果に基づいて、図 4に示す計数回路 24Bにおいて上記一致回数が力 ゥントされる。そして、そのカウント数は、図 1に示す記憶部 14から得た右端ピクセル 番号と比較回路 25Bにお 、て比較され、両数値が一致したとき右端指定信号を上記 記憶部 14に出力する。この場合、図 10に示すように、例えば、右端ピクセル番号とし て 5番目のピクセル 12を定めると、このピクセル 12の右上端隅部が第 2の基準位置
5 5
と設定される。したがって、該第 2の基準位置に対応する撮像手段 3のライン CCDに おけるエレメント番地、例えば ELが記憶部 14に記憶される。そして、上述のようにし て被露光領域の左端及び右端の基準位置が検出されると、ステップ S3に進む。
[0040] ステップ S3においては、図 9に示すように、上記第 1の基準位置及び第 2の基準位 置の検出時刻 t , tに基づいて搬送方向に対するカラーフィルタ基板 6の傾き角 Θが
1 2
演算部 15で演算される。例えば、搬送速度を Vとすると、搬送方向における第 1の基 準位置と第 2の基準位置とのずれ量は、 (t t ) Vとなる。また、第 1の基準位置と第
1 2
2の基準位置との間隔は、図 10に示すように第 1の基準位置に対応する撮像手段 3 のエレメント番地 ELと第 2の基準位置に対応する撮像手段 3のエレメント番地 ELに
1 5 基づいて K(EL— EL )より求めることができる。なお、 Kは撮像倍率である。したがつ
5 1
て、カラーフィルタ基板 6の傾き角 Θは、
Θ =arctan (t -t )V/{K(EL—EL ) }
1 2 5 1
を演算することにより求めることができる。
[0041] 上記カラーフィルタ基板 6の傾き角 Θが演算されると、搬送手段コントローラ 17によ り制御されて搬送手段 4のァライメント手段 29が駆動されステージ 4aが角度 Θだけ回 転される。これにより、図 10に示すように、ブラックマトリクス 11の被露光領域の各辺と マスク 10の開口部 10aの各辺とが平行となる。
[0042] 次に、ステップ S4においては、第 1の基準位置と第 2の基準位置との中間位置が演 算部 15で演算される。具体的には、記憶部 14から読み出した第 1の基準位置に対 応する撮像手段 3のエレメント番地 ELと第 2の基準位置に対応する撮像手段 3のェ
1
レメント番地 ELに基づいて、上記中間位置は、(EL +EL
5 1 5 )Z2により求めることが できる。
[0043] 次に、ステップ S5においては、ステップ S4で求めた中間位置と撮像手段 3の撮像 中心(エレメント番地 EL )とがー致しているか否かが判定される。ここで、 "NO"判定
C
となるとステップ S6に進む。
[0044] ステップ S6においては、搬送手段コントローラ 17によりァライメント手段 29を制御し て、図 10に示しように K{EL - (EL +EL
C 1 5)Z2}分だけY軸方向にて矢印Bで示す 方向にステージ 4aを移動する。これにより、図 2に示すように、被露光領域の中心位 置と撮像手段 3の撮像中心 (又はマスク 10の開口部 10aの中心位置)とが一致する。 そして、ステップ S7に進む。 [0045] 一方、ステップ S5において、 "YES"判定となるとなつた場合にもステップ S7に進む
[0046] ステップ S7においては、ブラックマトリクス 11の被露光領域が露光光学系 2の露光 位置に設定されたか否かが判定される。この判定は、記憶部 14に記憶された第 1の 基準位置の検出時刻 t、図 2に示す搬送方向におけるピクセル 12の幅 W及び搬送
1
速度 V並びに撮像位置と露光位置との距離 Dの各データに基づ ヽて、撮像手段 3〖こ よってピクセル列の中心位置が撮像されてカゝらカラーフィルタ基板 6が距離 Dだけ搬 送される時間 tを演算部 15で演算し、該時間 tを管理することによって行われる。ここ で、時間 tが経過した、即ちブラックマトリクス 11の被露光領域が露光位置に設定され たと判定("YES"判定)されると、ステップ S8に進む。
[0047] ステップ S8においては、ランプコントローラ 16が起動して、光源 7を予め設定された 所定時間だけ発光させる。この場合、カラーフィルタ基板 6が一定の速度で移動して いるため、露光パターンの搬送方向のエッジがボケる場合がある。したがって、その ボケ量が許容値となるように搬送速度及び露光時間並びに光源 7のパワーを予め設 定しておく。
[0048] ステップ S9においては、左端ピクセル数 nが図 4に示す左端ピクセル計数回路 26 でカウントされる。そして、ステップ S 10に進んで、上記左端ピクセル数 nが予め設定 されて記憶部 14に記憶された露光終了ピクセル列番号 Nと比較器 27で比較され、 両数値が一致したカゝ否かが判定される。
[0049] ステップ S10において、 "NO"判定となると、ステップ S1に戻って、次の基準位置の 検出動作に移る。この場合、撮像手段 3の読取開始信号により、図 4に示す計数回路 24A, 24Bはリセットされる。
[0050] 一方、ステップ S10において、 "YES"判定となるとカラーフィルタ基板 6の所定領域 に対する全ての露光が終了し、図 4に示す露光終了信号により左端ピクセル計数回 路 26がリセットされる。そして、搬送手段 4は、ステージ 4aをスタート位置まで高速で 戻す。
[0051] なお、上記露光光学系 2による露光可能領域がカラーフィルタ基板 6の幅よりも狭い ときには、上記ステップ S 10が終了するとステージ 4aを Y方向に所定距離だけステツ プ移動して、上記ステップ S1〜S10を再度実行し、既露光領域に隣接する領域に露 光を行う。また、上記露光光学系 2及び撮像手段 3を Y軸方向に複数一列状態に配 設してカラーフィルタ基板 6の全幅に対して 1回で露光できるようにしてもょ 、。さらに 、被露光領域に対して撮像手段 3による撮像領域が狭いときには、撮像手段 3を Y軸 方向に複数台並べて設置してもよ 、。
[0052] また、説明の便宜からステップ S1〜S10を一連の動作として説明したが、基準位置 の検出は、上記各ステップの実行と並行して行われ、検出データは随時記憶部 14に 記憶される。したがって、上記ステップ S3におけるカラーフィルタ基板 6の傾き角 Θの 調整やステップ S6におけるカラーフィルタ基板 6の Y軸調整は、記憶部 14力も必要 データを読み出してカラーフィルタ基板 6がーつ前の露光位置力 次の露光位置ま で移動する時間内に実行される。
[0053] このように、本発明の露光装置 1によれば、カラーフィルタ基板 6を一定の速度で搬 送しながら撮像手段 3で撮像されたブラックマトリクス 11のピクセル 12に設定された 基準位置を基準にして光源 7の発光タイミングを制御し、露光光学系 2により露光さ れる露光領域の幅に対応してカラーフィルタ基板 6の移動方向に直交する方向に細 長状の一つの開口部 10aを形成したマスク 10を用いて、該開口部 10aの像をカラー フィルタ基板 6の所定位置に露光するようにしたことにより、小さなマスク 10を用いて 効率的に広い露光領域に対して露光を行うことができる。
[0054] また、上記基準位置に基づいてカラーフィルタ基板 6がーつ前の露光位置力 次の 露光位置まで移動する時間内にステージ 4aの角度 Θや Y軸のァライメント調整を行 うようにしたことにより、ァライメント時間を短縮できると共に露光領域のいずれの場所 に対しても高精度に露光を行うことができる。
[0055] なお、上記第 1の実施形態において、ァライメント手段 29を搬送手段 4に設けた場 合について説明したがこれに限らず、露光光学系 2及び撮像手段 3を保持する機構 にァライメント手段を設けてもよい。この場合、 Y軸方向のァライメントは、図 11に示す ように、マスク 10を保持するマスクステージ 8又は結像レンズ 9を移動して行ってもよ い。例えば、マスクステージ 8を移動して調整をする場合、図 11の(a)に示すように、 マスクステージ 8を矢印 C方向にずらすとカラーフィルタ基板 6上の結像は矢印 D方 向に移動する。したがって、露光パターンの調整方向と反対方向にマスクステージ 8 をずらして調整をすることになる。また、例えば、結像レンズ 9を移動して調整をする 場合、図 11の (b)に示すように、露光パターンの調整方向と同方向(矢印 E方向)に 結像レンズ 9を移動して行う。
[0056] 図 12は、マスク 10の他の構成例を示す図である。このマスク 10は、不透明な部材、 例えば黒アルマイト処理した金属部材 28に、露光光学系 2により露光される露光領 域の幅に対応してカラーフィルタ基板 6の移動方向に直交する方向に細長状の一つ の開口部 10a' を形成し、該開口部 10a' の長手方向で搬送方向に直交する方向( Y軸方向)の両端部材 28aがそれぞれ Y軸方向に移動可能とされて該開口部 10a' の長さが調節可能とされている。したがって、 Y軸方向のァライメントは、この両端部 材 28aをそれぞれ所定量だけ移動して行う。これによれば、両端部材 28aを同じ方向 に同じ量だけ移動すれば Y軸方向のァライメント調整ができる、両端部材 28aの各移 動量及び移動方向を適宜設定すれば露光パターンの幅を任意に設定することがで きる。この調節は、制御手段 5で自動制御して行うことができる。
[0057] なお、上記第 1の実施形態においては、結像レンズ 9を用いてマスク 10の開口部 1 Oa又は 10 の像をカラーフィルタ基板 6上に結像する場合について説明した力 こ れに限らず、マスク 10をカラーフィルタ基板 6に近接させて直接露光するプロキシミテ ィ露光装置にも適用することができる。
[0058] 図 13は、本発明による露光装置の第 2の実施形態の要部を示す側面図である。こ の第 2の実施形態は、マスクステージ 8と結像レンズ 9との間にビームスプリツター 30 を配置して露光光学系 2を構成し、該ビームスプリツター 30の結像レンズ側反射面 3 Oaにおける反射光を受光可能に撮像手段 3を配設し、上記結像レンズ 9をカラーフィ ルタ基板 6に形成されたブラックマトリクス 11の像を撮像手段 3の受光素子面に結像 する結像レンズと共用するようになっている。ここで、図 13において、符号 31は照明 光源を示し、符号 32はハーフミラーを示しており、撮像手段 3の撮像位置を結像レン ズ 9を介して照明できるようになつている。なお、光源 7の光の波長を選択することによ つて、撮像手段 3の照明光源 31の替わりに露光用の光源 7を照明用と兼用して使用 することちでさる。 [0059] このように構成した第 2の実施形態は、搬送手段 4でカラーフィルタ基板 6を一定の 速度で矢印 A方向に搬送しながら撮像手段 3で結像レンズ 9を介してカラーフィルタ 基板 6上のブラックマトリクス 11のピクセル 12を撮像し、撮像手段 3で撮像されたピク セル 12に予め設定された基準位置を制御手段 5で検出し、該基準位置に基づいて 第 1の実施形態と同様にしてマスク 10とカラーフィルタ基板 6とのァライメントを調整す ると共に露光光学系 2の光源 7を発光させ、カラーフィルタ基板 6の所定位置に上記 結像レンズ 9でマスク 10の開口部 10aの像を結像してその像を露光する。
[0060] このように第 2の実施形態によれば、露光光学系 2の結像レンズ 9と撮像手段 3の結 像レンズとを共用するよう〖こしたことにより、露光光学系 2の露光位置と撮像手段 3の 撮像位置とがー致し、カラーフィルタ基板 6上の露光予定位置を撮像手段 3で撮像し て検出すると直ぐに露光することができ、露光精度を第 1の実施形態よりもさらに向上 することができる。
[0061] なお、上記第 1及び第 2の実施形態においては、ァライメント手段を備えた場合に っ 、て説明した力 カラーフィルタ基板 6をステージ 4aにセッティングしただけで露光 予定位置と実際の露光位置のずれ量を許容範囲に収めることができる場合には、ァ ライメント手段は不要である。
[0062] また、上記第 1及び第 2の実施形態においては、被露光体としてカラーフィルタ基 板 6を用いた場合について説明したが、これに限らず、所定形状のノターンをマトリク ス状に配置する基板に対しても適用することができる。

Claims

請求の範囲
[1] 光源から露光光を被露光体に対して照射する露光光学系と、該露光光学系に対 向して配置され前記被露光体を載置して一定速度で搬送する搬送手段とを備え、前 記露光光学系の光路上に介装するマスクの開口部の像を前記被露光体上に露光す る露光装置であって、
前記搬送手段の移動方向にて前記露光光学系による露光位置の手前側を撮像位 置とし、前記被露光体に予め形成された基準パターンを撮像する撮像手段と、 前記撮像手段で撮像された前記基準パターンに予め設定された基準位置を検出 し、該基準位置を基準にして前記露光光学系の露光光の照射タイミングを制御し、 前記被露光体の所定位置に前記マスクの開口部の像を露光させる制御手段と、 を備えたことを特徴とする露光装置。
[2] 前記露光光学系は、前記マスクの開口部の像を前記被露光体上に結像する結像 レンズを備えたことを特徴とする請求項 1記載の露光装置。
[3] 所定の開口部を有するマスクを介して光源から露光光を被露光体に対して照射し、 搬送される被露光体上に前記マスクの開口部の像を露光する露光装置であって、 前記被露光体を一定速度で搬送する搬送手段と、
該搬送手段の上方に配設されて、前記光源から前記被露光体に至る光路上に介 装された前記マスクの開口部を前記被露光体上に結像する結像レンズ及び該結像 レンズと前記マスクとの間の光路上に傾けて配置されたビームスプリツターを有する 露光光学系と、
前記ビームスプリツターの前記結像レンズ側反射面における反射光を受光可能に 配設され、前記被露光体に予め形成された基準パターンを前記結像レンズを介して 撮像する撮像手段と、
前記撮像手段で撮像された前記基準パターンに予め設定された基準位置を検出 し、該基準位置を基準にして前記露光光学系の露光光の照射タイミングを制御し、 前記被露光体の所定位置に前記マスクの開口部の像を露光させる制御手段と、 を備えたことを特徴とする露光装置。
[4] 前記光源は、露光光を間歇的に発射するフラッシュランプであることを特徴とする請 求項 1又は 3記載の露光装置。
[5] 前記搬送手段又は露光光学系のいずれか一方に、前記基準パターンに定めた前 記マスク開口部の露光予定位置と実際の露光位置とのずれを前記基準位置に基づ いて演算し、該ずれを補正するァライメント手段を備えたことを特徴とする請求項 1又 は 3記載の露光装置。
[6] 前記マスクは、透明なガラス基板上に形成された不透明な膜に、前記露光光学系 により露光される露光領域の幅に対応して被露光体の移動方向に直交する方向に 細長状の一つの開口部を形成したものであることを特徴とする請求項 1又は 3記載の 露光装置。
[7] 前記マスクは、不透明な部材に、前記露光光学系により露光される露光領域の幅 に対応して被露光体の移動方向に直交する方向に細長状の一つの開口部を形成し 、該開口部の長さを調節可能に構成したことを特徴とする請求項 1又は 3記載の露光 装置。
PCT/JP2005/011739 2004-06-30 2005-06-27 露光装置 WO2006003863A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2005800221906A CN1981244B (zh) 2004-06-30 2005-06-27 曝光装置
KR1020067027970A KR101149089B1 (ko) 2004-06-30 2005-06-27 노광 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004194023A JP2006017895A (ja) 2004-06-30 2004-06-30 露光装置
JP2004-194023 2004-06-30

Publications (1)

Publication Number Publication Date
WO2006003863A1 true WO2006003863A1 (ja) 2006-01-12

Family

ID=35782672

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/011739 WO2006003863A1 (ja) 2004-06-30 2005-06-27 露光装置

Country Status (5)

Country Link
JP (1) JP2006017895A (ja)
KR (1) KR101149089B1 (ja)
CN (1) CN1981244B (ja)
TW (1) TWI397776B (ja)
WO (1) WO2006003863A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8697319B2 (en) 2009-02-05 2014-04-15 Toppan Printing Co., Ltd. Exposure method, color filter manufacturing method, and exposure device

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4735258B2 (ja) 2003-04-09 2011-07-27 株式会社ニコン 露光方法及び装置、並びにデバイス製造方法
TW201834020A (zh) 2003-10-28 2018-09-16 日商尼康股份有限公司 照明光學裝置、曝光裝置、曝光方法以及元件製造方法
TW201809801A (zh) 2003-11-20 2018-03-16 日商尼康股份有限公司 光學照明裝置、曝光裝置、曝光方法、以及元件製造方法
TW201809727A (zh) 2004-02-06 2018-03-16 日商尼康股份有限公司 偏光變換元件
KR101504765B1 (ko) 2005-05-12 2015-03-30 가부시키가이샤 니콘 투영 광학계, 노광 장치 및 노광 방법
KR101634893B1 (ko) * 2006-08-31 2016-06-29 가부시키가이샤 니콘 이동체 구동 방법 및 이동체 구동 시스템, 패턴 형성 방법 및 장치, 노광 방법 및 장치, 그리고 디바이스 제조 방법
JP2008076709A (ja) * 2006-09-21 2008-04-03 V Technology Co Ltd 露光装置
US8431328B2 (en) 2007-02-22 2013-04-30 Nikon Corporation Exposure method, method for manufacturing flat panel display substrate, and exposure apparatus
JP4971835B2 (ja) * 2007-03-02 2012-07-11 株式会社ブイ・テクノロジー 露光方法及び露光装置
JP5267029B2 (ja) 2007-10-12 2013-08-21 株式会社ニコン 照明光学装置、露光装置及びデバイスの製造方法
US8379187B2 (en) 2007-10-24 2013-02-19 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9116346B2 (en) 2007-11-06 2015-08-25 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
JP2009251290A (ja) * 2008-04-07 2009-10-29 V Technology Co Ltd 露光装置
JP5185158B2 (ja) * 2009-02-26 2013-04-17 Hoya株式会社 多階調フォトマスクの評価方法
US8804075B2 (en) 2009-02-26 2014-08-12 Toppan Printing Co., Ltd. Color filter and color filter manufacturing method
JP5261847B2 (ja) 2009-06-16 2013-08-14 株式会社ブイ・テクノロジー アライメント方法、アライメント装置及び露光装置
TWI428688B (zh) * 2009-07-29 2014-03-01 Hoya Corp Method for manufacturing multi - modal mask and pattern transfer method
US8988653B2 (en) 2009-08-20 2015-03-24 Asml Netherlands B.V. Lithographic apparatus, distortion determining method, and patterning device
WO2011058634A1 (ja) 2009-11-12 2011-05-19 株式会社ブイ・テクノロジー 露光装置及びそれに使用するフォトマスク
TWI490657B (zh) * 2009-11-26 2015-07-01 V Technology Co Ltd 曝光裝置及其所使用的光罩
JP5630864B2 (ja) * 2010-12-06 2014-11-26 凸版印刷株式会社 露光装置
KR101711726B1 (ko) * 2015-03-06 2017-03-03 아주하이텍(주) Ldi 노광장치의 스테이지 보정장치 및 이를 이용한 보정방법
JP6940873B2 (ja) * 2017-12-08 2021-09-29 株式会社ブイ・テクノロジー 露光装置および露光方法
CN115278000A (zh) * 2022-06-24 2022-11-01 维沃移动通信有限公司 图像传感器、图像生成方法、摄像头模组及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56105634A (en) * 1980-01-25 1981-08-22 Fujitsu Ltd X rays transcription device
JPS60257521A (ja) * 1984-06-04 1985-12-19 Nippon Telegr & Teleph Corp <Ntt> パタン形成用露光装置
JPS6289328A (ja) * 1985-10-16 1987-04-23 Canon Inc 露光装置
JPH0677112A (ja) * 1992-08-28 1994-03-18 Nec Kyushu Ltd 露光装置における遮光領域制御機構
JPH09127702A (ja) * 1995-10-30 1997-05-16 Dainippon Printing Co Ltd 大サイズ基板用露光装置および露光方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4780615A (en) * 1985-02-01 1988-10-25 Canon Kabushiki Kaisha Alignment system for use in pattern transfer apparatus
AU2746799A (en) * 1998-03-09 1999-09-27 Nikon Corporation Scanning exposure method, scanning exposure apparatus and its manufacturing method, and device and its manufacturing method
KR20010075605A (ko) * 1998-11-06 2001-08-09 오노 시게오 노광방법 및 노광장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56105634A (en) * 1980-01-25 1981-08-22 Fujitsu Ltd X rays transcription device
JPS60257521A (ja) * 1984-06-04 1985-12-19 Nippon Telegr & Teleph Corp <Ntt> パタン形成用露光装置
JPS6289328A (ja) * 1985-10-16 1987-04-23 Canon Inc 露光装置
JPH0677112A (ja) * 1992-08-28 1994-03-18 Nec Kyushu Ltd 露光装置における遮光領域制御機構
JPH09127702A (ja) * 1995-10-30 1997-05-16 Dainippon Printing Co Ltd 大サイズ基板用露光装置および露光方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8697319B2 (en) 2009-02-05 2014-04-15 Toppan Printing Co., Ltd. Exposure method, color filter manufacturing method, and exposure device

Also Published As

Publication number Publication date
CN1981244A (zh) 2007-06-13
JP2006017895A (ja) 2006-01-19
KR101149089B1 (ko) 2012-05-25
CN1981244B (zh) 2010-11-10
TW200600981A (en) 2006-01-01
KR20070024685A (ko) 2007-03-02
TWI397776B (zh) 2013-06-01

Similar Documents

Publication Publication Date Title
WO2006003863A1 (ja) 露光装置
EP0788032B1 (en) Process for exposing a peripheral area of a wafer and a device for executing the process
TWI467345B (zh) 曝光裝置及光罩
US7812920B2 (en) Production method of substrate for liquid crystal display using image-capturing and reference position detection at corner of pixel present in TFT substrate
TWI391796B (zh) 曝光裝置及被曝光體
JP2008076709A (ja) 露光装置
TW200537257A (en) Exposing apparatus
JP5098041B2 (ja) 露光方法
KR101650116B1 (ko) 노광 장치 및 그것에 사용하는 포토마스크
KR20180037590A (ko) 보조 노광 장치 및 노광량 분포 취득 방법
JP5235062B2 (ja) 露光装置
WO2005106591A1 (ja) 露光パターン形成方法
JP4951036B2 (ja) 露光装置
JP4773160B2 (ja) 露光装置
JP2004012598A (ja) 投影露光装置
TW200535453A (en) Exposing apparatus
JP4773158B2 (ja) 露光装置
JP2006330622A (ja) 露光装置
JP4235584B2 (ja) 露光装置及びパターン形成方法
JP2006178056A (ja) 露光装置
JP2009251290A (ja) 露光装置
KR101242185B1 (ko) 노광 장치
TWI490657B (zh) 曝光裝置及其所使用的光罩
JP2005316168A (ja) 露光装置及びパターン形成方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020067027970

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580022190.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 1020067027970

Country of ref document: KR

122 Ep: pct application non-entry in european phase