WO2006001297A1 - 白色発光素子およびその製造方法 - Google Patents

白色発光素子およびその製造方法 Download PDF

Info

Publication number
WO2006001297A1
WO2006001297A1 PCT/JP2005/011429 JP2005011429W WO2006001297A1 WO 2006001297 A1 WO2006001297 A1 WO 2006001297A1 JP 2005011429 W JP2005011429 W JP 2005011429W WO 2006001297 A1 WO2006001297 A1 WO 2006001297A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light emitting
phosphor
layer
emitting device
Prior art date
Application number
PCT/JP2005/011429
Other languages
English (en)
French (fr)
Inventor
Tomoji Yamaguchi
Original Assignee
Rohm Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co., Ltd. filed Critical Rohm Co., Ltd.
Priority to JP2006528553A priority Critical patent/JPWO2006001297A1/ja
Priority to KR1020067027123A priority patent/KR20070034005A/ko
Priority to EP05753466A priority patent/EP1783838A1/en
Priority to US11/629,999 priority patent/US20080042150A1/en
Publication of WO2006001297A1 publication Critical patent/WO2006001297A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05573Single external layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/921Connecting a surface with connectors of different types
    • H01L2224/9212Sequential connecting processes
    • H01L2224/92122Sequential connecting processes the first connecting process involving a bump connector
    • H01L2224/92125Sequential connecting processes the first connecting process involving a bump connector the second connecting process involving a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of group III and group V of the periodic system
    • H01L33/32Materials of the light emitting region containing only elements of group III and group V of the periodic system containing nitrogen

Definitions

  • the present invention relates to a white light emitting element that emits white light and a method for manufacturing the same, and in particular, has a light emitting layer in which a GaN-based compound semiconductor thin film layer is laminated, and emits white light from a light emitting layer through a phosphor layer.
  • the present invention relates to a white light emitting element (white LED element) configured to emit light to the outside and a manufacturing method thereof.
  • Gallium nitride (GaN-based) compound semiconductors such as GaN, GaAlN, InGaN, and InAlGaN that combine group III elements such as Ga (gallium), A1 (aluminum), and In (indium) have recently been visible. It is widely used as a semiconductor material for light-emitting devices, etc., and is particularly expanding in the field of blue LEDs.
  • the details of its basic structure are, for example, from a GaN-based compound semiconductor layer on a sapphire substrate, an n-type layer, such as SQW or MQW, etc. These are formed by laminating an active layer and a p-type layer (for example, see FIG. 12 of Patent Document 1).
  • a white light emitting element incorporating a protective diode for example, a white light emitting element 100 having a hybrid structure as shown in FIG. 4 is known.
  • the light from the light emitting element (blue LED element) 40 that emits blue light and the light through the phosphor layer 43 that emits complementary color light by that light are emitted to the outside as white light.
  • an insulating sapphire substrate is generally used as the translucent crystal substrate 39 for growing the semiconductor film so that the electrode from the blue LED element 40 can be taken out (can be conducted).
  • a submount member (Zener diode) 44 made of a Si substrate by a flip chip method.
  • the method shown in FIG. 5 is used (see, for example, Patent Documents 1 and 2).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2001-15817
  • Patent Document 2 JP 2002-158377 A
  • the sapphire substrate of the blue LED device 40 mounted on the submount device 44 of the Zener diode on the flip chip. Blue light is extracted from the 39 side, and blue light is converted into yellow-green light that is the complementary color by the YAG phosphor 43 coated with resin around the blue LED element 40. Thus, it is extracted as white light. In this case, the light extraction efficiency from the blue LED element 40 was the best structure with this structure. There are four reasons for this.
  • the light is extracted from the electrode formation surface side through the transparent electrode. Compared with these light emitting devices, the light extraction efficiency is 30% or more higher.
  • the electrode comes to the lower surface opposite to the upper surface of the sapphire substrate 39, which is the main light extraction surface, it works as a light reflecting mirror by using a material with good reflectivity. Can be reflected upward by this reflector (reflecting electrode), thereby improving the light extraction efficiency by more than 50%.
  • the refractive index of the GaN-based light emitting layer is 2.1
  • the sapphire substrate is 1.7
  • the phosphor layer binder resin is 1.5
  • the refractive index decreases step by step. The effect of reducing losses is also added.
  • the upper surface of the sapphire substrate 39 as a main light extraction surface into a shape that improves the light extraction efficiency, such as roughening the surface of the sapphire glass or grooving.
  • the light extraction efficiency is improved by 20% or more.
  • the tuner diode 44 which is a submount of the blue LED element 40 that is weak against static electricity, acts as a static electricity protection element, and prevents forward and reverse lkV surges.
  • the blue LED element 40 can be protected.
  • the hybrid white light emitting device 100 mounted with the flip chip in FIG. 4 has many merits as compared to the blue LED device in which light is extracted from the transparent electrode side.
  • it is a low-current (normal size, that is, a blue LED with a bottom area of 0.3 mm 2) , such as a backlight source used in mobile phone displays used at room temperature. It was a light emitting device with an excellent structure for applications used in the region If ⁇ 20 mA).
  • the side-view type chip LED used for mobile phones mounting
  • the brightness is Reduced to about 50% of the initial brightness. This is due to the discoloration caused by the heat of the epoxy resin used as the binder of the phosphor layer, not due to the deterioration of the blue LED element, due to the decrease in transmittance.
  • Even when a silicone resin that is resistant to thermal discoloration is used for the binder if the current is applied at the same ambient temperature, the brightness will deteriorate to about 50% after 2000 hours.
  • the blue LED element When a large current region is used for illumination, the blue LED element itself becomes more severe than the ambient temperature due to heat generation. Therefore, it is necessary to improve the resin for the binder of the phosphor layer, or a binder other than the resin. Will be needed. In the case of UV LED elements, it is more likely to be discolored, which is an important issue and requires a binder that does not discolor to UV light.
  • each blue LED element 40 using sapphire as a substrate 39 is prepared, and Si serving as a submount element 44 is prepared.
  • a bump electrode 41 for connecting the p-side electrode and the n-side electrode of each blue LED element 40 is formed on the woofer 42 (step (a)), and the p-side electrode and the n-side electrode of the blue LED element 40 are connected to each other.
  • step (c) Align to the position of the bump electrode 41 and join by flip chip mounting via the bump (step (b)), and grind the upper surface (sapphire substrate 39 side) with the grinding tool 50 to make it flat (uniform) (
  • step (c) a phosphor material (phosphor paste) is applied to the top and side surfaces of the substrate to form a plurality of hybrid white light emitting devices having the phosphor layer 43 (step (d)).
  • step (e) the upper surfaces of the plurality of hybrid white light emitting elements
  • the boundary of the white light emitting element is cut (diced) using a cutting tool (dicer) 52 to obtain individual hybrid white light emitting elements (step (f)), and then the final inspection is performed.
  • a cutting tool (dicer) 52 to obtain individual hybrid white light emitting elements (step (f))
  • the sharpness of the grinding tool 50 is deteriorated, so that stress at the time of grinding is applied to the joint portion of the bump electrode, and a crack may occur in the joint portion.
  • the yield will be reduced, but if it is not detected, it will lead to market failure and a method that includes extremely serious defect factors in reliability. is there
  • the phosphor layer 43 is required to be applied to the top and side surfaces of the blue LED element 40.
  • the phosphor paste is applied to the pad position, and in this case, it is difficult to retry by removing the phosphor layer 43, resulting in a large yield reduction in which one Si wafer becomes a lot-out.
  • the present invention solves the problems of the hybrid white light-emitting element, including the problems of this manufacturing method, and is not limited to the white light-emitting element that uses a blue LED, but may use an ultraviolet LED.
  • the white light-emitting device is a light-emitting device having a light-emitting layer made of a GaN-based compound semiconductor layer, having an n-side electrode and a p-side electrode on one surface side, An n-type GaN compound semiconductor layer, and a GaN compound semiconductor layer including a light emitting layer on the p-side electrode, and a translucent crystal substrate on the GaN compound semiconductor layer.
  • the white light-emitting element is characterized in that an oxide layer containing a phosphor is formed thereon.
  • the white light emitting device of the present invention differs from the conventional hybrid structure 100 in the following two points.
  • the phosphor applied to the blue LED element is formed using an inorganic oxide that does not discolor strongly against heat or ultraviolet light rather than using an organic resin that changes color with heat as a binder. It is a point that has been.
  • the hybrid structure 100 is indispensable because the submount element is used as a tray for the phosphor paste.
  • a white light emitting element is formed without a submount element.
  • this structure will be described in detail in the manufacturing method for forming the oxide layer containing the phosphor, but since the submount element is not required for whitening, the structure is simple and the manufacturing method It is possible to solve the above-described problems also in the above.
  • it is a white light-emitting element in which a blue LED element or ultraviolet LED element and a phosphor layer are integrated without using a submount element, so that the size is smaller than that of the conventional hybrid structure 100. If this is used, it is possible to design a white light emitting device without being bound to the shape of the package. If a protective diode is required, it can be built in by connecting it in parallel with the white light emitting element in reverse polarity.
  • the oxide layer containing the phosphor is mainly composed of glass mainly composed of SiO and BO, and mainly composed of SiO, BO and ZnO. Glass, or ingredient
  • the thermal expansion coefficient is set approximately equal to the thermal expansion coefficient of the translucent crystal substrate.
  • the difference in coefficient of thermal expansion between the two must be within 5%.
  • the required properties of glass are that it has good light transmittance and the glass firing temperature (the softening point in the case of powdered glass and the heat treatment temperature in the case of the sol-gel method) adversely affects the light emitting layer of the blue LED.
  • the temperature is 700 ° C or less, preferably 600 ° C or less.
  • the thermal expansion coefficient of sapphire is 7.4 X 10 _6 / ° C.
  • the powder glass component below 700 ° C is powder glass mainly composed of SiO and BO, and lowers the firing temperature.
  • powdered glass with 2 2 3 2 2 3. Further, if the translucent crystal substrate of the SiC substrate, the thermal expansion coefficient, 3. 7 X 10 _6 / ° C, thermal expansion the use of powder glass mainly containing SiO and B_ ⁇
  • the firing temperature of the powdered glass is 700 ° C or higher, so it is necessary to consider the influence of the light emitting layer of the blue LED, such as shortening the firing time.
  • the glass mainly composed of SiO and BO it can be formed by the sol-gel method.
  • sol-gel method and heat treatment it can be formed by heat treatment at 600 ° C or less.
  • the oxide layer containing the phosphor is composed of a porous layer in which phosphor particles are cross-linked with glass, and PbO is used as a powder glass component.
  • PbO is used as a powder glass component.
  • the mixing ratio of the powdered glass and the phosphor is made rich in the phosphor (the phosphor concentration is increased)
  • the oxide layer containing the phosphor is made as thin as possible.
  • the phosphor particles have a porous structure crosslinked with a small amount of glass binder, and the influence of the light transmittance of the crosslinked glass can be minimized.
  • the light emitting layer is formed so as to emit blue light
  • the phosphor is a phosphor that converts blue light into complementary light of blue light, or blue light.
  • the phosphor layer contains a phosphor that converts blue light into complementary light of blue light, it can be added to blue light.
  • a white light emitting element is formed by mixing. Even if the oxide layer contains a phosphor that converts blue light to green light and a phosphor that converts blue light to red light, the three primary colors of light (blue light of blue LED element, phosphor)
  • a white light emitting element is obtained by adding and mixing green light and red light converted by the above.
  • the white light emitting element of claim 5 is formed so that the light emitting layer emits ultraviolet light, and the phosphor is made of a phosphor that converts ultraviolet light into blue light, green light, and red light.
  • the oxide layer contains a phosphor that converts ultraviolet light into blue light, a phosphor that converts ultraviolet light into green light, and a phosphor that converts ultraviolet light into red light. Addition of the three primary colors A white light emitting element can be obtained by mixing.
  • the white light emitting element according to claim 6 is characterized in that the white light emitting element according to claims 1 to 5 is a single light emitting element, the single light emitting elements are arranged in a matrix, and this is a block unit.
  • VF forward voltage
  • the elements are connected in series, the same current flows through each single light emitting element, so that the current can be uniformly supplied to each part. Further, since it is not necessary to divide each single light emitting element, the number of man-hours can be reduced.
  • the manufacturing method of claim 7 of the present invention is a manufacturing method of a single light emitting element or a block light emitting element of a white light emitting element having a light emitting layer made of a GaN-based compound semiconductor layer, wherein the light transmitting crystal substrate
  • a white light emitting device comprising: a chipping process for
  • the above-described epitaxial layer blue light or ultraviolet light
  • a light-transmitting crystal substrate such as sapphire
  • MOCVD method metal organic chemical vapor deposition method
  • the oxide layer containing the phosphor on the translucent crystal substrate of this wafer for example, an acid composed of a phosphor and a glass binder mainly composed of SiO, BO and PbO for bonding the phosphor.
  • a compound layer is formed (oxide forming step). Although this thickness depends on the concentration of the phosphor, it should be about several tens of ⁇ . Then, the formed oxide layer is ground (polished) flatly with a surface grinder (polishing machine) so that the upper surface of the oxide layer is parallel to the lower surface of the opposite epi layer.
  • a ⁇ -side electrode and a ⁇ -side electrode are formed on the surface on the side of the epitaxial layer opposite to the oxide layer (electrode formation step).
  • the ⁇ -side electrode is formed on the exposed surface of the epitaxial layer (on the surface of the vertical layer side with the light emitting layer sandwiched), and the ⁇ type layer and the light emitting layer are further formed by pattern etching (selective etching).
  • the ⁇ -type layer is exposed to form the ⁇ -side electrode on the surface. Since the ⁇ -side electrode also serves as a light reflecting mirror (reflecting electrode), it is important to use an electrode material that has high reflectivity and good omics.
  • the oxide layer containing the phosphor is ground to an appropriate thickness so that the appropriate emission color (chromaticity) is obtained (chromaticity adjustment process) ).
  • it is divided by dicing or the like along the boundary of the single light emitting element or the block light emitting element to obtain a chipped LED element (chip forming step).
  • the outer shape of the chip can be processed into a shape with good light extraction efficiency.
  • the cross section can be a substantially trapezoidal shape.
  • the manufacturing method of claim 8 is the manufacturing method of the light emitting element capable of emitting white light emission according to claim 7, wherein the translucent crystal substrate is formed before the oxide forming step.
  • a groove processing step for performing groove processing is further added, and U-shaped or V-shaped grooves are formed by half blasting or sandblasting along the boundary of the single light emitting element, and the next oxidation is performed. If a phosphor-containing oxide layer is also formed in the groove in the product forming process, the white light emitting device formed into a chip in the next chipping process will produce an acid containing phosphor on the side surface of the chip. Since the compound layer can be formed, the white light becomes more uniform in the light emitting direction.
  • the manufacturing method of claim 9 is the manufacturing method of the light emitting element capable of emitting white light emission according to claim 7, wherein the emission is performed by grinding the thickness of the oxide layer containing the phosphor.
  • a chromaticity adjustment step of adjusting the chromaticity of the phosphor it is possible to adjust the variation in the phosphor concentration and the variation in the emission wavelength emitted from the light emitting layer, thereby obtaining a desired white light emitting element.
  • the groove cover is intended to shape the outer shape of the chip into a shape with good light extraction efficiency.
  • it has a substantially trapezoidal cross section.
  • the white light emitting device having the structure of the present invention described above can be easily manufactured by the manufacturing method of the present invention, and the three problems described in the conventional manufacturing method of the hybrid white light emitting device are light emission on the submount device. Since a white light emitting element can be formed without flip-chip mounting the element, this can be solved easily.
  • the bump portion and the bonding pad region are eliminated, and a phosphor is applied to form a phosphor-containing glass layer on the entire surface of the translucent crystal substrate of the wafer.
  • the pattern recognition accuracy is not necessary at all, and the problem is eliminated. Therefore, the improvement of the reliability regarding the crack of the bump portion and the decrease of the yield regarding the lot-out of the wafer unit and the like are improved.
  • the third problem is that the white light emitting element can be formed on the submount element without flip-chip mounting, which simplifies the process, can be manufactured with a high yield, and can reduce the cost.
  • the phosphor applied around the blue LED device or the ultraviolet LED device uses an inorganic oxide that does not discolor strongly against heat or ultraviolet light as a binder. It is used as a white light emitting element without using a submount element.
  • this structure is a white light emitting element or a block white light emitting element in which a blue LED element or an ultraviolet light LED element and a phosphor layer are integrated without using a submount element. It can be made package-free so that a white light-emitting device can be configured without depending on the shape, and can be easily configured for an application that requires a large light intensity such as an illumination light source.
  • the light extraction efficiency is improved by roughening the upper surface of the translucent crystal substrate, which is the main light extraction surface, into a frosted glass shape or by performing groove processing so that the chip has a substantially trapezoidal cross section.
  • an oxide layer containing a phosphor can also be formed on the side surface of a blue or ultraviolet LED element, so that white light is more uniform in the light emitting direction.
  • FIG. 1 Details of the white light emitting device of the first embodiment according to the present invention, wherein (a) is a plan view, (b) is a longitudinal sectional view taken along line AA in (c). (C) is a bottom view.
  • FIG. 2 Details of the white light emitting device of the second embodiment according to the present invention, wherein (a) is a plan view, (b) is a longitudinal sectional view taken along line B-B in (c), (c ) Is a bottom view.
  • FIG. 3 is a cross-sectional view for each process showing the method for manufacturing the light-emitting element according to the first embodiment of the present invention.
  • FIG. 4 is a front cross-sectional view showing a structure of a white light emitting element (a hybrid white light emitting element) using a conventional general light emitting element.
  • FIG. 5 is a cross-sectional view showing a conventional white light emitting element (hybrid white light emitting element) manufacturing method according to an embodiment.
  • the manufacturing method includes steps (a) to (g) as shown in FIG. 3, and is a manufacturing method for manufacturing a plurality of white light emitting elements 1 at a time.
  • the white light emitting element 1 in this case is a large white LED element used as a single light emitting element for an illumination light source.
  • the unit light-emitting element is a light-emitting element that emits light from a light-emitting layer of a pair of p-side electrode and n-side electrode, as well as a plurality of p-side electrodes and one common n-side electrode as shown in FIG. And a light emitting element that emits light from a plurality of light emitting layers (light emitting portions).
  • a plurality of light emitting layers are provided, but the adjacent light emitting layers are formed close to the transparent substrate, and the n-type epi layer is formed in common.
  • the white LED element 1 is composed of a blue LED element 4 and an oxide layer 8 including a phosphor integrated therewith.
  • Blue LED element 4 is translucent
  • a GaN-based compound semiconductor thin film is laminated (epitaxial layer 6) in the order of a buffer layer, an n-type layer, a blue light emitting layer, and a p-type layer from the substrate side.
  • the p-side electrode 11 on the surface of the p-type layer of the epitaxial layer 6 and the n-side electrode 1 on the bottom surface of the recess 9 where the p-type layer and the light emitting layer are partially selectively etched to expose the n-type layer 1 0 is formed, and a groove 7 is dug on the light extraction surface side of the sapphire substrate 3.
  • This groove 7 is divided into four sections so that blue light extraction efficiency is good.
  • the shape is processed so as to have a substantially trapezoidal shape.
  • the oxide layer 8 includes YAG phosphor and SiO, BO and PbO for bonding the YAG phosphor on the light extraction surface of the sapphire substrate 3 and in the groove 7.
  • This white LED element emits blue light from the blue LED element as white light to the outside through the oxide layer 8, and the opposite side of the oxide layer 8 is the main light extraction surface with the electrode forming surface as the mounting surface.
  • This is an element of the type (so-called face-down type).
  • the p-side electrode 11 uses Rh or Ag having high reflectivity in order to efficiently reflect blue light downward from the light emitting layer upward.
  • the n-side electrode 10 has a shape in which a striped electrode surrounding the p-side electrode 11 divided into four parts is connected to the central round electrode.
  • step (a) a GaN-based compound semiconductor thin film is applied on the sapphire substrate 3 from the substrate side to the GaN buffer layer 61, n-type GaN layer 62, n-type AlGaN layer 63, MQW layer 64, p-type AlGaN layer 65, p
  • MOCVD metal organic chemical vapor deposition
  • step (b) on the upper surface of the sapphire substrate 3 of the LED wafer, the boundary corresponding to the large blue LED element 4 and the center thereof are arranged so that the light extraction efficiency is improved.
  • a groove 7 is formed along
  • the boundary groove has a width of about 200 to 400 xm and a depth of about 150 to 250 ⁇ m
  • the central groove has a width of about 200 to 300 ⁇ m and a depth of about 50 to 150 ⁇ m. Is U-shaped or V-shaped.
  • This processing can be performed by a sand blasting method in which the dry film 20 is used as a mask and abrasive powder is ejected from the nozzle 22 for grinding, or a dicing method in which cutting is performed using the dicing blade 23.
  • a sand blasting method in which the dry film 20 is used as a mask and abrasive powder is ejected from the nozzle 22 for grinding
  • a dicing method in which cutting is performed using the dicing blade 23.
  • the upper surface of the sapphire substrate 3 (including the inside of the groove 7) is composed mainly of YAG phosphor, SiO, BO, and PbO for bonding the YAG phosphor. Powdered glass, and small
  • the powdered glass has a thermal expansion coefficient almost equal to that of the sapphire substrate. 7.4 X 10 _6 Z ° C, sintering temperature is about 500-600 ° C, and visible light transmittance is 90% or more. Has characteristics. When the light transmittance of the sintered glass is good, the YAG phosphor and the powdered glass are made rich by increasing the powdered glass ratio, and the oxide layer 8 is thickened.
  • the phosphor can be obtained by setting the proportion of phosphor to 60% or more, preferably 70% or more. Although this thickness depends on the concentration of the phosphor, it should be about several tens of ⁇ . Then, the formed oxide layer 8 is ground (polished) flatly with a surface grinder (polishing machine) so that the upper surface of the oxide layer 8 is parallel to the lower surface of the opposite epoxy layer on the opposite side.
  • step (d) a SiO film is formed on the surface of the epitaxial layer 6, and the n-side electrode 10 is formed.
  • the p-type AlGaN layer 65, the MQW layer 64, and the n-type AlGaN layer 63 are sequentially removed by plasma etching (RIE) using a chlorine-based gas to expose the n-type GaN layer 62 (etching process).
  • RIE plasma etching
  • this etching process affects the oxide layer 8
  • this etching process may be performed before the oxide formation process.
  • step (e) the SiO film is removed, and a p-type cap on the surface of the epitaxial layer 6 is formed.
  • P-side electrode 11 in which Rh, Ag, Ni and Au having high reflectivity are laminated on the upper surface of layer 66, and n-side electrode 10 in which Ti and Au are laminated on the upper surface of n-type GaN layer 62 in which recess 9 is exposed.
  • Form electrode forming process
  • step (f) a current is passed through the electrodes in the wafer state to emit light, and an appropriate emission color is obtained.
  • step (g) the oxide layer 8 serving as the main light extraction surface is aligned along the boundary of the large white LED element 1 (single light emitting element) so that the light extraction efficiency is improved. Then, it is divided into dice so as to form a V shape, and is formed into chips (chip forming process).
  • the cross-sectional shape of the chip is a substantially trapezoidal shape, which improves the light extraction efficiency.
  • the oxide layer 8 including the phosphor and the blue LED are integrated, and the oxide layer 8 using glass as the phosphor binder. Therefore, it becomes a single large-sized white LED element used for a high-brightness and high-reliability illumination light source that does not discolor even with heat of a large current.
  • the white light emitting device of the second embodiment is the block light emitting device 2 shown in FIG. 2, and the manufacturing method thereof is the same as the manufacturing method of the first embodiment.
  • a block light-emitting element means a light-emitting element in which adjacent light-emitting layers are not shared by n-type epitaxial layers but are separated from each other by grooves.
  • unit light-emitting elements having one light-emitting layer are formed on a light-transmitting substrate electrically independent from each other.
  • unit light emitting elements having a plurality of light emitting layers and having a common n- type epi layer can be further arranged in a matrix to form a block light emitting element. .
  • four unit light emitting elements having four light emitting layers shown in FIG. 1 may be arranged in a matrix to form a block light emitting element. In this case, there are four unit light emitting elements and 16 light emitting layers.
  • the block light emitting device 2 in this case has a side of 0 as a single light emitting device.
  • the structure of a single light emitting device is the same as that shown in Fig. 1 except that the device size and electrode pattern are different.
  • the manufacturing method includes substantially the same steps as in the first embodiment, and is not shown. The only difference is that the electrode pattern of the blue LED element and the unit of chip formation are different.
  • this block light-emitting element 2 can be a white light-emitting element without flip-chip mounting, it has the same merit as that described in the first embodiment, and this block light-emitting element 2 has the following advantages: It has an optimal structure as a high-current white light-emitting element such as an illumination light source. If the white light-emitting element is enlarged, the area is simply increased as shown in Fig. 1. There are a method of increasing the area of the electrode and a method of blocking small white light emitting elements as shown in FIG. 2 and connecting them in series. As a method of flowing a current uniformly to each part of the white light emitting element, If there is no VF (forward voltage) variation in the light emitting element, no difference will occur.
  • VF forward voltage
  • the variation is large, so it was blocked as shown in Fig. 2. In this way, current can flow more uniformly in each part of the light emitting element, and the light emission efficiency can be improved. Also, considering the illumination light source, etc., it is preferable to set the drive voltage to 100V, but it is easier to configure the illumination light source by connecting in series. Moreover, since it is not necessary to divide each single light emitting element, the number of man-hours can be reduced. In addition, since it is already a white light emitting element, it is limited to whitening at the time of package sealing, and it becomes package-free regardless of the type of package.
  • the translucent crystal substrate 3 of the white light emitting device shown in FIG. 1 is an SiC substrate, and the binder of the oxide layer 8 containing the phosphor is an SiC substrate.
  • This is a white light-emitting element made of glass composed mainly of SiO and BO, which is almost equal to the thermal expansion coefficient of
  • the manufacturing method is almost the same as the manufacturing method of the first embodiment, but the oxide layer 8 containing the phosphor is partially hydrolyzed with alkoxide (Si (OC H) in advance,
  • Phosphor powder is dispersed in a solution prepared by adding B (OCH (CH)) to this solution to
  • the glass skeleton After most of the glass skeleton is formed by decomposition and polycondensation reaction, it is formed by heat treatment at 500 to 600 ° C. for 10 to 30 minutes.
  • the white light emitting element of the fourth embodiment is the block light emitting element 2 shown in FIG. 2, and the same as the third embodiment, the translucent crystal substrate 3 is an SiC substrate, and the binder is SiO and BO.
  • 2 2 3 is a white light emitting element made of glass.
  • an example of a blue LED element formed so that light emitted from the light emitting layer is blue is used.
  • an ultraviolet LED element that emits ultraviolet light is used.
  • a phosphor that converts ultraviolet light into blue light, green light, and red light may be used as the phosphor of the phosphor-containing oxide layer 8.
  • the present invention can be used as a light source in a wide range of fields, such as backlights for liquid crystal display devices, various light emitting elements such as white and blue, and lighting devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Led Devices (AREA)
  • Led Device Packages (AREA)

Abstract

 大電流領域でも輝度劣化せず発光効率の高い白色発光素子と、その発光素子を高い歩留りで製造することができる製造方法を提供する。  白色LED素子1は、青色LED素子4とこれに一体化された蛍光体を含んだ酸化物層8で構成される。青色LED素子4は、透光性結晶基板3面上に、GaN系化合物半導体薄膜を積層したエピタキシャル層6のp型層の面上にp側電極11と、p型層及び発光層を部分的に選択エッチングしn型層を露出した凹部9の底面上にn側電極10が形成される。酸化物層8は、YAG蛍光体とそれを結合させるためのSiO2とB2O3とPbOを主成分とするガラスバインダーを焼結し形成されている。この白色LED素子は、青色LED素子からの青色光が酸化物層8を通して外部に白色光として発光する。

Description

明 細 書
白色発光素子およびその製造方法
技術分野
[0001] 本発明は、白色光を発光する白色発光素子及びその製造方法に係り、特に GaN 系化合物半導体薄膜層を積層した発光層を有し、発光層から蛍光体層を介して白 色光を外部に発光するように構成された白色発光素子(白色 LED素子)及びその製 造方法に関する。
背景技術
[0002] Ga (ガリウム)、 A1 (アルミニウム)、 In (インジウム)等の III族元素を化合させた GaN 、 GaAlN、 InGaN、 InAlGaN等の窒化ガリウム系(GaN系)化合物半導体は、近年 、可視光発光デバイス等のための半導体材料として多用され、特に青色 LEDの分野 での展開が進んでいる。この種の従来の LEDを利用した発光装置の一例として、そ の基本構造の詳細は、たとえばサファイア基板上に GaN系化合物半導体層によりバ ッファ層と、 n型層と、たとえば SQWや MQWなどからなる活性層と、 p型層とを積層 することにより形成されている(たとえば特許文献 1の図 12参照)。
[0003] この場合、保護用ダイオードを内蔵する白色の発光素子としては、例えば図 4に示 されるようなハイブリッド構造の白色発光素子 100が知られている。この構造では、青 色光を発光する発光素子(青色 LED素子) 40からの光とその光で補色光を発光する 蛍光体層 43を介した光との混合で白色光として外部に発光する。また、この場合、半 導体膜を成長させるための透光性結晶基板 39としては、一般的に絶縁性のサフアイ ァ基板が利用され、その青色 LED素子 40からの電極を取り出せるように(導通可能 に)、 Si基板から成るサブマウント部材 (ツエナーダイオード) 44上に、フリップチップ 方式により実装する。このための製造方法については、例えば図 5に示されるような 方法が用いられてレ、る(例えば特許文献 1および 2参照)。
特許文献 1 :特開 2001— 15817号公報
特許文献 2 :特開 2002— 158377号公報
発明の開示 発明が解決しょうとする課題
[0004] ところで、例えば図 4に示す青色 LED素子 40を用いた従来のハイブリッド白色発光 素子 100の場合、ツエナーダイオードのサブマウント素子 44上に、フリップチップ実 装された青色 LED素子 40のサファイア基板 39側から青色光を取り出し、青色 LED 素子 40の周囲に樹脂をバインダーとして塗布された YAG蛍光体 43で、青色光がそ の補色となる黄緑色の光に変換され、それらの光の加算混合で、白色光として外部 に取り出される。この場合、青色 LED素子 40からの光の取り出し効率は、この構造が 最も高ぐ良好な構造であった。その理由は、次の 4つがあげられる。
[0005] 1つは、主光取り出し面となるサファイア基板 39の上面には、光の取り出しを妨げる 電極などの障害物がないため、電極形成面側から透明電極を介して光を取り出すタ イブの発光素子に比べて、光の取り出し効率は 30%以上高くなる。
[0006] 2つは、電極が、主光取り出し面となるサファイア基板 39上面の反対側である下面 に来るので、電極に反射率の良い材料を用いることにより、光の反射鏡として働き、 下方に向かう光をこの反射鏡 (反射電極)で上方に反射させることができ、これにより 光の取り出し効率は、 50%以上向上する。
[0007] 3つは、屈折率が、 GaN系発光層の 2. 1 ,サファイア基板の 1. 7,蛍光体層バイン ダー樹脂の 1. 5と段階的に小さくなり、その界面での光の損失が抑えられるという効 果も付加される。
[0008] 4つは、サファイア基板 39の主光取り出し面となる上面を、すりガラス状に荒らすこ とや溝加工など光の取り出し効率が良くなるような形状に加工することが可能となり、 これにより光の取り出し効率は、 20%以上向上する。
[0009] 上記効果に加えて、更に大きなメリットとして、静電気に弱い青色 LED素子 40をサ ブマウントであるッヱナ一ダイオード 44が、静電気の保護素子として働き、順方向及 び逆方向の lkVサージに対して青色 LED素子 40の保護を可能にしてきた。
[0010] このように、図 4のフリップチップ実装されたハイブリッド白色発光素子 100は、透明 電極側から光を取り出す構造の青色 LED素子に比べて、構造は複雑になる力 多く のメリットを有するために、室温で使用する携帯電話のディスプレイ部に用いられるバ ックライト光源などで低電流(通常サイズ、つまり 0. 3mm2の底面積を持つ青色 LED 素子に対して If≤ 20mA)領域で使用される用途に対しては、優れた構造の発光素 子であった。
[0011] しかし、用途が照明用のように、大電流でかつ高輝度になるとこの構造に大きな問 題が生じてくる。それは、大電流により青色 LED素子に発生する熱が極めて大きくな り、蛍光体を塗布するためのバインダーが樹脂であるため、良好な放熱設計をしたと しても、バインダー樹脂の変色は避けられず、発光効率を極めて悪くするのである。 例えば、青色 LED素子 40のチップサイズが 0. 3mm X O. 3mm X O. 1mm (厚さ)で 、バインダーにエポキシ樹脂を使用した場合、携帯電話に使用されるサイドビュータ イブのチップ LED (実装面と平行な方向に発光する面実装チップ型 LED)に、周囲 温度 Taが 85°Cの中で、 If = 20mAの電流を流した場合、通電時間が 1000時間で 明るさ(全光束)は、初期の明るさの 50%程度に低下する。その原因は、青色 LED 素子の劣化ではなぐ蛍光体層のバインダーに用いていたエポキシ樹脂の熱による 変色であり、透過率の減少が原因である。また、熱変色に強いシリコーン樹脂をバイ ンダ一に用いた場合でも、同じ周囲温度で通電すると、通電時間が 2000時間で 50 %程度に輝度劣化する。
[0012] 照明用の大電流領域となると、青色 LED素子自体の発熱により、上記した周囲温 度より厳しくなるので、蛍光体層のバインダーには樹脂の改善が必要であり、または 樹脂以外のバインダーが必要になってくる。また、紫外 LED素子の場合には、さらに 変色しやすいため、重要な問題となり、紫外光に変色しないバインダーが必要となる
[0013] また、図 5に示す製造方法では (詳細は、特に特許文献 1参照)、まず、サファイアを 基板 39とする青色 LED素子 40の各単体を用意して、サブマウント素子 44となる Siゥ ヱハー 42上に、各青色 LED素子 40の p側電極と n側電極と接続するためのバンプ 電極 41を形成し(工程(a) )、青色 LED素子 40の p側電極と n側電極をバンプ電極 4 1の位置に位置合わせをし、バンプを介してフリップチップ実装で接合し (工程 (b) )、 上面 (サファイア基板 39側)を研削具 50により研削して平坦 (均一)にし(工程 (c) )、 その上面及び側面に蛍光体材料 (蛍光体ペースト)を塗布して、蛍光体層 43を有す る複数のハイブリッド白色光発素子とする(工程 (d) )。 [0014] 次に、上記の複数のハイブリッド白色発光素子の上面つまり蛍光体層 43を研削具 51で研削して、 目的の色度が得られる厚みに均一にし(工程(e) )、各ハイブリッド白 色発光素子の境界を切断具 (ダイサー) 52を使用して切断 (ダイシング)して、個別の ハイブリッド白色発光素子を得た後(工程 (f) )、最後の検查を行う。上記の従来の製 造方法では、工法上、歩留を悪くする次の 3つの課題が存在する。
[0015] 1つは、青色 LED素子 40をサブマウント素子 44となる Siウェハー 42上にフリツプチ ップ実装する工程 (b)の後に、青色 LED素子 40のサファイア基板 39を研削するェ 程(c)を実施した場合、研削具 50の切れ味の劣化によって、バンプ電極の接合部に 研削時の応力がかかり、接合部にクラックが発生する可能性もある。この場合、後の 検査工程で静特性異常で除去されれば歩留低下でおさまるが、検出されなかった場 合は、市場不良につながり、信頼性的に極めて重大な欠陥要因を含んだ工法である
[0016] 2つは、蛍光体ペーストを塗布して蛍光体層 43を形成する工程 (d)において、蛍光 体層 43は青色 LED素子 40の天面と側面に塗布することが必要である力 青色 LED 素子 40がフリップチップ実装されたサブマウント素子 44のすぐ横には、ワイヤーボン デイングパッド領域が存在するため、塗布時に高精度のパターン認識が必要で、これ に誤差があると、ワイヤーボンディングパッドの位置に蛍光体ペーストが塗布され、そ の場合、蛍光体層 43を除去してのリトライが困難であり、 Siウェハー 1枚がロットアウト になってしまうという大きな歩留低下が生じる。
[0017] 3つは、青色 LED素子 40の各単体が用意された後の後工程だけでも、上記のよう に複雑で手間の掛かる工程が必要であり、また、この煩雑さが歩留まり向上の妨げの 一因ともなつている。
[0018] そこで、本発明は、この製造方法の問題点も含めて、ハイブリッド白色発光素子の 問題点を解決し、青色 LEDを使用する白色発光素子に限らず、紫外 LEDを使用す る場合も含めて、大電流領域でも輝度劣化せず発光効率の高い白色発光素子と、そ の発光素子を高レ、歩留りで製造することができる製造方法を提供することを目的とす る。
課題を解決するための手段 [0019] 本発明の請求項 1の白色発光素子は、 GaN系化合物半導体層からなる発光層を 有する発光素子において、一方の面側に n側電極及び p側電極を有し、 n側電極上 に n型 GaN系化合物半導体層が、また p側電極上に発光層を含む GaN系化合物半 導体層が積層され、前記 GaN系化合物半導体層の上に透光性結晶基板を有し、そ の上に蛍光体を含有した酸化物層が形成されていることを特徴とする白色発光素子 である。
[0020] 本発明の白色発光素子では、従来のハイブリッド構造 100とは次の 2つの点で異な つている。つまり、 1つは、青色 LED素子に塗布される蛍光体は、熱で変色する有機 物の樹脂をバインダーとして用いるのではなぐ熱や紫外光に強く変色をしない無機 物の酸化物を用いて形成されている点である。また、 2つめは、その製造方法にも依 存するが、白色発光素子にする場合に、ノ、イブリツド構造 100では、サブマウント素 子が蛍光体ペーストの受け皿として用いられるために、不可欠であつたが、本発明の 構造では、サブマウント素子なしで白色発光素子にしている点である。
[0021] この構造にすることにより、通電により青色 LED素子から発される熱により、また、紫 外 LED素子の紫外光により、蛍光体のバインダーが変色することはなぐ大電流領 域の通電に対しても、ノインダ一の変色が原因の輝度劣化はほとんど起こらず、信頼 性の大幅に改善された白色発光素子の実現が可能である。
[0022] 更に、この構造は、蛍光体を含有した酸化物層を形成する製造方法のところで詳 細に記述するが、白色化にサブマウント素子を必要としないため、構造が簡単で製 造方法上においても前記した課題を解決することが可能である。また、サブマウント 素子を用いないで青色 LED素子または紫外 LED素子と蛍光体層が一体化された 白色発光素子となっているので、サイズ的にも従来のハイブリッド構造 100のものより も小型化が可能であり、これを用いれば、パッケージの形状にはより束縛されずに、 白色発光装置の設計が可能である。なお、保護ダイオードが必要な場合には、白色 発光素子と逆極性で並列に接続することにより内蔵することができる。
[0023] また、請求項 2の白色発光素子は、前記蛍光体を含有した酸化物層は、前記蛍光 体を SiOと B〇を主成分とするガラス、 Si〇と B〇と Zn〇を主成分とするガラス、ま
2 2 3 2 2 3
たは SiOと B Oと PbOを主成分とするガラスで結合させたことを特徴とし、この成分 のガラスを用いることにより、透光性結晶基板上に蛍光体を含有した酸化物層の形 成が可能になる。すなわち、ガラスをバインダーとした酸化物層を形成する場合、そ の熱膨張係数を透光性結晶基板の熱膨張係数にほぼ等しく設定しないとクラックが 発生し剥がれてしまう。具体的には、両者の熱膨張率の差を 5%以内にする必要が ある。さらにガラスに要求される特性は、光の透過率がよいことと、ガラスの焼成温度( 粉末ガラスの場合はその軟化点、ゾルゲル法の場合は熱処理温度)を青色 LEDの 発光層に悪影響を与えない温度 700°C以下、好ましくは 600°C以下にすることであ る。
[0024] 例えば、透光性結晶基板が、サファイア基板の場合、サファイアの熱膨張係数は 7 . 4 X 10_6/°Cで、これにほぼ等しくでき、かつ光透過性が良ぐ焼成温度が 700°C 以下の粉ガラス成分は、 SiOと B Oを主成分とする粉ガラスで、焼成温度を下げる
2 2 3
には SiOと B Oと ZnOを主成分とする粉ガラス、または SiOと B〇と PbOを主成分
2 2 3 2 2 3 とする粉ガラスを用いると良い。また、透光性結晶基板が SiC基板の場合は、熱膨張 係数は、 3. 7 X 10_6/°Cで、 SiOと B〇を主成分とする粉ガラスを用いると熱膨張
2 2 3
率もほぼ等しぐかつ光透過性も良好なガラスとなるが、粉ガラスの焼成温度が 700 °C以上となるため、焼成時間を短くするなど青色 LEDの発光層の影響を考慮する必 要がある。または、 SiOと B〇を主成分とするガラスの場合は、ゾルゲル法で形成が
2 2 3
可能で、ゾルゲル法で形成し熱処理を行う方法であれば、 600°C以下の熱処理で形 成が可能である。
[0025] また、請求項 3の白色発光素子は、前記蛍光体を含有した酸化物層は、蛍光体粒 子がガラスで架橋された多孔質層からなることを特徴とし、粉ガラス成分に PbO成分 が入ってくると焼成後のガラスの光透過性が悪くなる場合があり、この場合は、粉体の ガラスと蛍光体の混合割合を蛍光体リッチに (蛍光体の濃度を大きく)し、蛍光体を含 有する酸化物層を極力薄くする。その結果、蛍光体粒子が少量のガラスバインダー で架橋された多孔質構造になり、架橋ガラスの光透過率の影響を極力小さくすること ができる。
[0026] また、請求項 4の白色発光素子は、前記発光層が青色光を発光するように形成され 、前記蛍光体は、青色光を青色光の補色光に変換する蛍光体、または青色光を他 の波長の光(緑色光や赤色光)に変換する蛍光体からなることを特徴とし、前記酸化 物層に青色光を青色光の補色光に変換する蛍光体を含有すれば、青色光と加算混 合されて白色発光素子となる。また、前記酸化物層に青色光を緑色光に変換する蛍 光体と青色光を赤色光に変換する蛍光体とを含有させても光の 3原色(青色 LED素 子の青色光、蛍光体により変換された緑色光と赤色光)の加算混合により、白色発光 素子となる。
[0027] 請求項 5の白色発光素子は、前記発光層が紫外光を発光するように形成され、前 記蛍光体は紫外光を青色光、緑色光及び赤色光に変換する蛍光体からなることを特 徴とし、前記酸化物層に紫外光を青色光に変換する蛍光体と紫外光を緑色光に変 換する蛍光体と紫外光を赤色光に変換する蛍光体とを含有させて光の 3原色の加算 混合により白色発光素子とすることもできる。
[0028] また、請求項 6の白色発光素子は、請求項 1から 5に記載の白色発光素子を単体 発光素子として、該単体発光素子を行列状に配列し、それをブロック単位としたことを 特徴とし、これにより、ブロック発光素子とすることによって、照明用などの大きな光度 が必要な用途に対して、その構成が取りやすくなる。例えば、単に発光素子の面積を 大きくする場合では、発光素子の各部に VF (順方向電圧)のバラツキがあるために、 各部で電流が均一に流れにくくなるが、ブロックィ匕し、各単体発光素子を直列に接続 すると、各単体発光素子には、同じ電流が流れるため各部により均一に電流を流せ るような構成となる。また、各単体発光素子に分割する必要がないので工数的にも削 減できる。
[0029] また、本発明の請求項 7の製造方法は、 GaN系化合物半導体層からなる発光層を 有する白色発光素子の単体発光素子またはブロック発光素子の製造方法であって、 透光性結晶基板上に、ェピタキシャル気相成長法で青色光または紫外光を発する 発光層を含む GaN系化合物半導体層からなるェピタキシャル層を積層し、発光ダイ オード構造としたウェハーを用意する準備工程と、前記ウェハーの前記透光性結晶 基板側に蛍光体を含有する酸化物層を形成する酸化物形成工程と、前記ェピタキ シャル層側に p側電極と n側電極を形成する電極形成工程と、前記ェピタキシャル層 の少なくとも一方が電気的に連続して発光ダイオードを形成する単体発光素子また は前記ェピタキシャル層が電気的に分離して形成される複数個の発光ダイオードを ブロックとするブロック発光素子の境界に沿って分割するチップィ匕工程と、力 成るこ とを特徴とする白色発光素子の製造方法である。
[0030] この製造方法では、まず、サファイアなどの透光性結晶基板上に有機金属気相成 長法(MOCVD法)などのェピタキシャル気相成長法で、前記ェピタキシャル層(青 色光または紫外光を発する発光層を含む GaN系化合物半導体層の積層構造)を形 成したェピタキシャル成長済み LEDウェハーを用意する(準備工程)。このゥヱハー の前記透光性結晶基板上に前記蛍光体を含有した酸化物層、例えば蛍光体とそれ を結合させるための Si〇と B〇と PbOを主成分とするガラスバインダーとからなる酸
2 2 3
化物層を形成する(酸化物形成工程)。この厚みは、蛍光体の濃度にも依存するが 数十 μ η程度になるようにする。そして、形成した酸化物層の上面が、反対側の前記 ェピ層の下面と平行になるように平面研削機 (研磨機)で平らに研削(研磨)する。
[0031] 次に、前記酸化物層と反対側の前記ェピタキシャル層側の面上に、 ρ側電極と η側 電極を形成する(電極形成工程)。この場合、前記ェピタキシャル層の露出した面上( 発光層を挟んだ Ρ型層側の面上)に ρ側電極を形成し、更にパターンエッチング (選 択エッチング)で ρ型層と発光層を除去し、 η型層を露出させその面上に η側電極を形 成する。 ρ側電極は、光の反射鏡も兼ね備える(反射電極)ので、反射率が高くォーミ ックの取れる電極材料を使用することが重要である。次に、ウェハーの状態で電極に 電流を流し発光させ、適正な発光色(色度)になるように、蛍光体を含有した酸化物 層の厚みを適正な厚みに研削する(色度調整工程)。次に、前記単体発光素子また は前記ブロック発光素子の境界に沿ってダイシングなどで分割し、チップ化された L ED素子とする(チップ化工程)。この場合、チップの外形形状を、光の取り出し効率 が良いような形状に形状加工することもできる。例えば断面略台形形状にすることも できる。
[0032] また、請求項 8の製造方法は、請求項 7に記載の白色系発光可能な発光素子の製 造方法であって、前記酸化物形成工程の前に、前記透光性結晶基板に溝加工を施 す溝加工工程が更に加わることを特徴とし、前記単体発光素子の境界に沿って、ハ ーフダイシングゃサンドブラスト法により、 U字または V字状の溝を形成し、次の酸化 物形成工程でその溝の中にも蛍光体の含有した酸化物層を形成すれば、次のチッ プ化工程でチップ化された白色発光素子は、チップの側面にも蛍光体を含有した酸 化物層が形成できるので、発光方向に対してより均一な白色光となる。
[0033] また、請求項 9の製造方法は、請求項 7に記載の白色系発光可能な発光素子の製 造方法であって、前記蛍光体を含有した酸化物層の厚みを研削して発光の色度を 調整する色度調整工程をさらに含むことで、蛍光体の濃度バラツキや発光層から発 光される発光波長のバラツキを調整でき、所望の白色発光素子を得ることができる。
[0034] また、この溝カ卩ェは、チップの外形形状を、光の取り出し効率が良いような形状に、 形状加工することを目的としたものであり、例えば、断面略台形形状にすることにより 、屈折率の大きい物質力も小さい物質に、光が出る場合に起こる全反射を小さくして 、光の取り出し効率を高くすることができる。
[0035] 本発明の製造方法により、前述した本発明の構造の白色発光素子が容易に製造 できるとともに、従来のハイブリッド白色発光素子の製造方法で記述した 3つの課題 は、サブマウント素子上に発光素子をフリップチップ実装することなく白色発光素子を 形成できるので、簡単に解決できる。
[0036] つまり、前述の課題の 1と 2は、バンプ部およびボンディングパッド領域はなくなり、 またウェハーの透光性結晶基板全面に蛍光体含有のガラス層を形成するために、蛍 光体を塗布する時のパターン認識精度も全く必要はなくなり課題はなくなる。従って 、バンプ部のクラックなどに関する信頼性の向上、およびウェハー単位のロットアウト などに関する歩留まりの低下はなぐ歩留まりの向上になる。また、第 3の課題も、サ ブマウント素子上に発光素子をフリップチップ実装することなく白色発光素子を形成 できるため工程が簡素化して、高い歩留りで製造でき、コストも肖 I」減できる。
発明の効果
[0037] 上述のように、本発明の白色発光素子によれば、青色 LED素子または紫外 LED 素子の周囲に塗布される蛍光体は、熱または紫外光に強く変色しない無機物の酸化 物をバインダーとして用いて、サブマウント素子を用いることなく白色発光素子化して いる。
[0038] この構造により、通電により青色 LED素子または紫外光 LED素子から発される熱ま たは紫外光により、蛍光体のバインダーが変色することはなぐ大電流領域の通電に 対しても、バインダーの変色が原因の輝度劣化がほとんど起こらず、信頼性が大幅に 改善された白色発光素子が可能である。
[0039] また、この構造は、サブマウント素子を用いないで青色 LED素子または紫外光 LE D素子と蛍光体層が一体化された白色発光素子またはブロック白色発光素子となつ ているので、パッケージの形状には依存しないで、白色発光装置が構成できるパッケ ージフリーとすることができるとともに、照明光源など大きな光度が必要な用途に対し てその構成が取りやすくなる。
[0040] また、主光取り出し面である透光性結晶基板の上面をすりガラス状に荒らしたり、溝 加工を施し、チップの形状を断面略台形形状にすることによって、光の取り出し効率 を良好にし、発光効率を向上することができるとともに、青色または紫外光の LED素 子の側面にも蛍光体を含有した酸化物層が形成できるので、発光方向に対してより 均一な白色光となる。
[0041] また、白色化にサブマウント素子を必要としないため、構造が簡単で製造方法上に おいても前記した課題を解決することができるとともに、工程が簡素化して、高い歩留 りで製造でき、コストも肖 IJ減できる。
図面の簡単な説明
[0042] [図 1]本発明に係る第 1実施形態の白色発光素子の詳細であって、 (a)は平面図、 (b )は(c)の A—A線矢視による縦断面図、(c)は底面図である。
[図 2]本発明に係る第 2実施形態の白色発光素子の詳細であって、 (a)は平面図、 (b )は(c)の B— B線矢視による縦断面図、(c)は底面図である。
[図 3]本発明に係る第 1実施形態の発光素子の製造方法を示す工程別断面図である
[図 4]従来の一般的な発光素子を利用した白色発光素子 (ハイプリッド白色発光素子 )の構造を示す正面断面図である。
[図 5]従来の白色発光素子 (ハイブリッド白色発光素子)の製造方法の一例を示すェ 程別断面図である。
符号の説明 1 白色発光素子(単体発光素子)
2 ブロック発光素子
3 透光性結晶基板
4 青色(紫外光) LED素子
6 ェピタキシ 'ル層
7 溝
8 蛍光体含有酸化物層
9 凹部
10 n側電極
11 P側電極
20 ドライフィル.ム
21, 26 ダイシ /グテープ
22 ノズル
23, 25 ダイシ /グブレード
24 研削治具
発明を実施するための最良の形態
[0044] 以下、本発明の白色発光素子とその製造方法の実施の形態について、第 1から第
4実施形態の順に、図面を参照して詳細に説明する。
[0045] まず、第 1実施形態の白色発光素子を図 1に示す。また、その製造方法は、図 3に 示すように工程 (a)〜(g)から成り、白色発光素子 1を、複数個一括製造する製造方 法である。
[0046] この場合の白色発光素子 1は、図 1に示すように、単体発光素子として照明用光源 に用いる大型の白色 LED素子である。ここで単位発光素子とは、一対の p側電極と n 側電極一つの発光層を発光させる発光素子の他、図 1に示すように、複数の p側電 極と一の共通 n側電極とで複数の発光層(発光部)を発光させる発光素子を含むもの である。図 1では発光層を複数有しているが、隣接する発光層が透明基板に近レ、 n型 のェピ層が共通するよう形成されている。 白色 LED素子 1は、青色 LED素子 4とこれ に一体化された蛍光体を含んだ酸化物層 8で構成される。青色 LED素子 4は、透光 性結晶基板 3、例えばサファイア基板の面上に、 GaN系化合物半導体薄膜を基板 側からバッファ層、 n型層、青色光を発光する発光層及び p型層の順に積層(ェピタ キシャル層 6)し、前記ェピタキシャル層 6の p型層の面上に p側電極 11と、 p型層及 び発光層を部分的に選択エッチングし n型層を露出した凹部 9の底面上に n側電極 1 0が形成され、サファイア基板 3の光取出し面側に溝 7が掘られ、この溝 7は、青色光 の取り出し効率が良いように 4つに区分された p側電極 11の各 1区分の断面形状が、 略台形形状になるように加工されている。酸化物層 8は、前記サファイア基板 3の光 取出面上と溝 7の中に、 YAG蛍光体とそれを結合させるための Si〇と B Oと PbOを
2 2 3 主成分とするガラスバインダーを焼結し形成されている。この白色 LED素子は、青色 LED素子からの青色光が酸化物層 8を通して外部に白色光として発光する形式、且 つ電極形成面側を実装面として反対側の酸化物層 8を主光取出面とする形式 (いわ ゆるフェイスダウン形式)の素子である。そして、 p側電極 11は、発光層から下に向か う青色光を上方に効率よく反射させるために、反射率の高い Rhや Agが使用されて いる。 n側電極 10は、 4つに区分された p側電極 11を取り囲むストライプ状電極が中 央の丸電極につながる形状をしている。
[0047] 以下、この白色発光素子の製造方法を図 3の工程 (a)〜(g)の順で説明する。まず 、工程(a)では、サファイア基板 3上に GaN系化合物半導体薄膜を基板側から GaN バッファ層 61、 n型 GaN層 62、 n型 AlGaN層 63、 MQW層 64、 p型 AlGaN層 65、 p 型キャップ層 66の順に有機金属気相成長法 (MOCVD法)などで積層し、ェピタキ シャル層 6を形成した 1枚のェピ済み LEDウェハーを用意する(準備工程)。
[0048] 次に、工程(b)では、前記 LEDウェハーの前記サファイア基板 3の上面に、光の取 り出し効率が良くなるように、前記大型の青色 LED素子 4に相当する境界とその中央 に沿って溝 7を形成する。その形状は、例えば、境界の溝は幅約 200〜400 x mで 深さ約 150〜250 μ m、中央の溝は幅約 200〜300 μ mで深さ約 50〜: 150 μ mの 溝断面が U字状、または V字状である。この加工は、ドライフィルム 20をマスクにし、 研磨粉をノズル 22から噴出し研削するサンドブラスト法やダイシングブレード 23を用 いて切削するダイシング法により行うことができる。この加工により、前記大型の青色 L ED素子 4の溝で 4つに区分された各 1区分の断面形状は、略台形形状になっており 、光の取り出し効率が向上する。なお、 21はダイシングテープである。
[0049] 次に、工程 (c)では、前記サファイア基板 3の(溝 7の中を含めた)上面に、 YAG蛍 光体とそれを結合させるための SiOと B Oと Pb〇を主成分とする粉ガラス、及び少
2 2 3
量の樹脂(この樹脂は焼結の際に 300°C程度で完全に蒸発してしまう)を混ぜたぺー ストを塗布させ、電気炉の中に入れ、空気中の雰囲気で約 500〜600°Cで焼結させ る(酸化物形成工程)。該粉ガラスは、熱膨張係数がサファイア基板と殆ど等しい 7. 4 X 10_6Z°Cで、焼結温度が約 500〜600°Cで、かつ可視光の光透過率が 90%以 上の特性を持っている。 YAG蛍光体と粉ガラスの配合比は、焼結後のガラスの光透 過率が良い場合は、粉ガラスの比率を多くしてガラスリッチにし、酸化物層 8の厚みを 厚くするが、光透過率が悪い場合は、蛍光体の比率を多くして蛍光体リッチにし、蛍 光体粉がガラスにより架橋されただけのポーラスな多孔質構造にし、酸化物層 8を極 力薄くすると良い。なお、多孔質構造にするには、蛍光体の割合を 60%以上、好まし くは 70%以上にすることにより得られる。この厚みは、蛍光体の濃度にも依存するが 数十 μ η程度になるようにする。そして、形成した酸化物層 8の上面が、反対側の前 記ェピ層の下面と平行になるように平面研削機 (研磨機)で平らに研削(研磨)する。
[0050] 次に、工程(d)では、ェピタキシャル層 6の表面に SiO膜を形成し、 n側電極 10を
2
形成する凹部 9の部分のみの Si〇膜をエッチングで除去し、さらに p型キャップ層 66
2
、 p型 AlGaN層 65、 MQW層 64、 n型 AlGaN層 63を順次塩素系ガスを用いたプラ ズマエッチング (RIE)で除去し、 n型 GaN層 62を露出させる(エッチング工程)。ただ し、このエッチング工程で酸化物層 8に影響がある場合は、酸化物形成工程の前に、 このエッチング工程を行っても良レ、。
[0051] 次に、工程(e)では、前記 SiO膜を除去し、ェピタキシャル層 6表面の p型キャップ
2
層 66の上面に反射率の高い Rhや Agと Ni及び Auを積層した p側電極 11と、凹部 9 の露出された n型 GaN層 62の上面に Tiと Auを積層した n側電極 10を形成する(電 極形成工程)。
[0052] 次に、工程 (f )では、ウェハーの状態で電極に電流を流し発光させ、適正な発光色
(色度)になるように、蛍光体を含有した酸化物層 8の厚みを適正な厚みに研削治具 24で研削する(色度調整工程)。 [0053] 次に、工程 (g)では、主光取出し面となる前記酸化物層 8を、光の取り出し効率が 良くなるように、大型の白色 LED素子 1 (単体発光素子)の境界に沿って、 V字の形 状になるように分割ダイシングし、チップ化する(チップ化工程)。チップの断面形状 は、略台形形状になっており、光の取り出し効率が向上する。
[0054] 上述のように、本実施形態(第 1実施形態)によれば、蛍光体を含む酸化物層 8と青 色 LEDが一体化し、蛍光体のバインダーにガラスを用いた酸化物層 8としているので 、大電流の熱にも変色しない高輝度高信頼性の照明用光源に用いる単体大型の白 色 LED素子となる。
[0055] 次に、第 2実施形態の白色発光素子は、図 2に示すブロック発光素子 2であり、その 製造方法は、第 1実施形態の製造方法と同じである。ブロック発光素子とは隣接する 発光層同志が n型ェピタキシャル層で共通せず、相互に溝で分離している発光素子 を意味する。図 2では一つの発光層をもつ単位発光素子が相互に電気的に独立して 透光性基板上に形成されている。また、図 1に示すように、複数の発光層を有しなが ら n型ェピ層が共通する単位発光素子を、さらに行列状に配歹 IJしてブロック発光素子 を形成することができる。例えば図 1に示す 4つの発光層を有する単位発光素子を 4 つ行列状に配列しブロック発光素子とすることも可能である。この場合は、単位発光 素子は 4個であり、発光層は 16個となる。
[0056] この場合のブロック発光素子 2は、図 2に示すように、単体発光素子として 1辺が 0.
3mm程度の白色 LED素子で、それを 2行 2列に配置したブロック発光素子である。 単体発光素子の構造は、素子サイズと電極パターンが異なるだけで、その他の素子 構造は図 1と同じである。
また、製造方法においても、前記の第 1実施形態とほぼ同じ工程からなるために、図 示していなレ、。異なる点は、青色 LED素子の電極パターンとチップ化の単位が異な るだけである。
[0057] このブロック発光素子 2は、フリップチップ実装することなく白色発光素子とすること ができるので、第 1実施形態で記述したものと同様なメリットがあるとともに、このブロッ ク発光素子 2は、照明用光源などの大電流用白色発光素子として、最適な構造をし ている。それは、白色発光素子を大型にする場合、図 1のように単に面積を大きくして 、電極の面積を大きくする方法と、図 2のように小型の白色発光素子をブロック化して 、それを直列に接続する方法とがあるが、白色発光素子の各部に電流を均一に流す 方法としては、発光素子内に VF (順方向電圧)のバラツキがない場合には、差は生 じないが、 GaN系半導体発光素子の場合は、そのバラツキが大きいので、図 2のよう にブロック化した方が、より電流を発光素子の各部に均一に流すことができ、発光効 率を向上できる。また、照明用光源などを考えると駆動電圧を 100Vにすることが好ま しいが、直列接続の方が照明用光源を構成しやすい。また、各単体発光素子に分割 する必要がないので工数的にも削減できる。また、すでに白色発光素子となっている ので、パッケージ封止時に白色化する場合に制限されていた、パッケージの種類に は依存しなレ、パッケージフリーとなる。
[0058] 次に、第 3実施形態の白色発光素子は、図 1に示す白色発光素子の透光性結晶 基板 3が SiC基板で、蛍光体を含有した酸化物層 8のバインダーが、 SiC基板の熱膨 張係数にほぼ等しい Si〇と B Oを主成分とするガラスからなる白色発光素子である
2 2 3
。その製造方法は、第 1実施形態の製造方法とほぼ同じであが、蛍光体を含有した 酸化物層 8は、アルコキシド(Si (OC H ) をあらかじめ部分的に加水分解しておき、
2 5 4
これに B (OCH (CH ) ) を加えて調製した)溶液に、蛍光体粉末を分散させて加水
3 2 3
分解'縮重合反応によってガラス骨格の大部分を形成後、 500〜600°Cで 10〜30 分間の熱処理を行うことによって形成する。
[0059] 次に、第 4実施形態の白色発光素子は、図 2に示すブロック発光素子 2で、第 3実 施形態と同じ、透光性結晶基板 3が SiC基板で、バインダーが SiOと B Oを主成分
2 2 3 とするガラスからなる白色発光素子である。
[0060] 上記各実施形態では、発光層で発光する光が青色になるように形成された青色 LE D素子の例であつたが、紫外光を発光する紫外 LED素子を用いても同様であり、そ の場合、蛍光体含有酸化物層 8の蛍光体に紫外光を青色光、緑色光、赤色光に変 換するものを用いればよい。
産業上の利用可能性
[0061] 本発明は、液晶表示装置などのバックライト、白色や青色系などの各種発光素子、 照明装置など、幅広い分野で光源として用いることができる。

Claims

請求の範囲
[1] GaN系化合物半導体層からなる発光層を有する発光素子にぉレ、て、
一方の面側に n側電極及び p側電極を有し、 n側電極上に n型 GaN系化合物半導体 層が、また p側電極上に発光層を含む GaN系化合物半導体層が積層され、前記 Ga N系化合物半導体層の上に透光性結晶基板を有し、その上に蛍光体を含有した酸 化物層が形成されていることを特徴とする発光素子。
[2] 前記蛍光体を含有した酸化物層は、前記蛍光体を SiOと B Oを主成分とするガ
2 2 3
ラス、 SiOと B〇と Zn〇を主成分とするガラス、または Si〇と B Oと Pb〇を主成分と
2 2 3 2 2 3 するガラスで結合させたことを特徴とする請求項 1記載の発光素子。
[3] 前記蛍光体を含有した酸化物層は、蛍光体粒子がガラスで架橋された多孔質層か らなることを特徴とする請求項 1または 2に記載の発光素子。
[4] 前記蛍光体は、青色光を青色光の補色光に変換する蛍光体、または青色光を緑 色光及び赤色光に変換する蛍光体からなることを特徴とする請求項 1から 3のいずれ 力 4項に記載の白色系発光可能な発光素子。
[5] 前記蛍光体は、紫外光を青色光、緑色光及び赤色光に変換する蛍光体からなるこ とを特徴とする請求項 1から 3のいずれ力 1項に記載の白色系発光可能な発光素子。
[6] 請求項 1から 5のいずれ力 4項に記載の発光素子を単体発光素子として、該単体発 光素子を行列状に配列し、それをブロック単位としたことを特徴とするブロック発光素 子。
[7] GaN系化合物半導体層からなる発光層を有する発光素子製造方法であって、 透光性結晶基板上に、ェピタキシャル気相成長法で発光層を含む GaN系化合物 半導体層含むェピタキシャル層を積層し、発光ダイオード構造が形成されたウェハ 一を用意する準備工程と、
前記ウェハーの前記透光性結晶基板側に蛍光体を含有した酸化物層を形成する 酸化物形成工程と、
前記ェピタキシャル層側に p側電極と n側電極を形成する電極形成工程と、 前記ェピタキシャル層の少なくとも一方が電気的に連続して発光ダイオードを形成 する単体発光素子または前記ェピタキシャル層が電気的に分離して形成される複数 個の発光ダイオードをブロックとするブロック発光素子の境界に沿って分割するチッ ブイ匕工程と、力 成ることを特徴とする発光素子の製造方法。
[8] 請求項 7に記載の発光素子の製造方法であって、
前記酸化物形成工程の前に前記透光性結晶基板に溝力卩ェを施す溝カ卩ェ工程が 更に加わることを特徴とする発光素子の製造方法。
[9] 請求項 7に記載の発光素子の製造方法であって、
前記蛍光体を含有した酸化物層の厚みを研削して発光の色度を調整する色度調 整工程を、さらに含むことを特徴とする発光素子の製造方法。
PCT/JP2005/011429 2004-06-23 2005-06-22 白色発光素子およびその製造方法 WO2006001297A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006528553A JPWO2006001297A1 (ja) 2004-06-23 2005-06-22 白色発光素子およびその製造方法
KR1020067027123A KR20070034005A (ko) 2004-06-23 2005-06-22 백색 발광 소자 및 그 제조 방법
EP05753466A EP1783838A1 (en) 2004-06-23 2005-06-22 White light-emitting device and method for producing same
US11/629,999 US20080042150A1 (en) 2004-06-23 2005-06-22 White Light Emitting Device and Method for Manufacturing the Same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-185617 2004-06-23
JP2004185617 2004-06-23

Publications (1)

Publication Number Publication Date
WO2006001297A1 true WO2006001297A1 (ja) 2006-01-05

Family

ID=35781761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/011429 WO2006001297A1 (ja) 2004-06-23 2005-06-22 白色発光素子およびその製造方法

Country Status (6)

Country Link
US (1) US20080042150A1 (ja)
EP (1) EP1783838A1 (ja)
JP (1) JPWO2006001297A1 (ja)
KR (1) KR20070034005A (ja)
CN (1) CN100459192C (ja)
WO (1) WO2006001297A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007188962A (ja) * 2006-01-11 2007-07-26 Sharp Corp 蛍光体膜付発光素子及びその製造方法
JP2007311743A (ja) * 2006-04-19 2007-11-29 Nippon Electric Glass Co Ltd 発光色変換部材の製造方法及び発光色変換部材
JP2008021868A (ja) * 2006-07-13 2008-01-31 Nippon Electric Glass Co Ltd 蛍光体複合部材
JP2008060428A (ja) * 2006-08-31 2008-03-13 Nichia Chem Ind Ltd 発光装置およびその製造方法
US7368179B2 (en) 2003-04-21 2008-05-06 Sarnoff Corporation Methods and devices using high efficiency alkaline earth metal thiogallate-based phosphors
JP2008205468A (ja) * 2007-02-20 2008-09-04 Cree Inc 低屈折率キャリア基板上のiii族窒化物ダイオード
US7713442B2 (en) 2006-10-03 2010-05-11 Lightscape Materials, Inc. Metal silicate halide phosphors and LED lighting devices using the same
JP2010130986A (ja) * 2008-12-08 2010-06-17 Mkv Dream Co Ltd 植物栽培方法
JP2013232678A (ja) * 2008-04-24 2013-11-14 Citizen Holdings Co Ltd Led光源の製造方法
US8906262B2 (en) 2005-12-02 2014-12-09 Lightscape Materials, Inc. Metal silicate halide phosphors and LED lighting devices using the same
WO2018235231A1 (ja) * 2017-06-22 2018-12-27 サンケン電気株式会社 発光装置

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4945167B2 (ja) * 2006-05-12 2012-06-06 スタンレー電気株式会社 半導体発光素子の製造方法及び該製造方法により製造された半導体発光素子の実装方法
JP4996941B2 (ja) * 2007-02-21 2012-08-08 富士フイルム株式会社 液晶表示装置
JP5355030B2 (ja) 2008-04-24 2013-11-27 シチズンホールディングス株式会社 Led光源及びled光源の色度調整方法
JP5680278B2 (ja) * 2009-02-13 2015-03-04 シャープ株式会社 発光装置
CN101533882B (zh) * 2009-04-20 2011-07-20 南京工业大学 一种白光led用荧光粉预制薄膜及其制备方法
KR20140009987A (ko) * 2010-10-28 2014-01-23 코닝 인코포레이티드 Led 광 제품용 유리 프릿 물질을 포함하는 형광체
US10158057B2 (en) 2010-10-28 2018-12-18 Corning Incorporated LED lighting devices
CN102709425A (zh) * 2012-05-30 2012-10-03 华南理工大学 一种具有金字塔阵列结构的led芯片及其制造方法
CN103531690A (zh) * 2012-07-03 2014-01-22 上海微电子装备有限公司 Led芯片及其制备方法
KR101972412B1 (ko) 2012-11-26 2019-04-25 도레이 카부시키가이샤 신틸레이터 패널 및 그 제조 방법
CN104393148B (zh) * 2014-10-29 2017-04-26 华灿光电股份有限公司 一种白光发光二极管的制作方法及白光发光二极管
KR102601579B1 (ko) 2015-12-16 2023-11-13 삼성전자주식회사 발광소자 실장용 회로 기판 및 이를 이용한 반도체 발광소자 패키지
CN110364605A (zh) * 2019-07-26 2019-10-22 佛山市国星半导体技术有限公司 一种防漏蓝倒装led芯片及其制作方法、led器件

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001177158A (ja) * 1999-12-16 2001-06-29 Matsushita Electronics Industry Corp 半導体発光装置及びその製造方法
WO2003034508A1 (en) * 2001-10-12 2003-04-24 Nichia Corporation Light emitting device and method for manufacture thereof
JP2003151921A (ja) * 2001-11-09 2003-05-23 Sanyo Electric Co Ltd 化合物半導体とその製造方法
JP2004079972A (ja) * 2002-08-22 2004-03-11 Fuji Photo Film Co Ltd 面発光型発光素子
JP2004088011A (ja) * 2002-08-29 2004-03-18 Okaya Electric Ind Co Ltd 発光ダイオード
JP2004161871A (ja) * 2002-11-12 2004-06-10 Nichia Chem Ind Ltd 燒結蛍光体層
JP2004221536A (ja) * 2002-12-24 2004-08-05 Nanotemu:Kk 発光素子の製造方法および発光素子

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5952681A (en) * 1997-11-24 1999-09-14 Chen; Hsing Light emitting diode emitting red, green and blue light
CN1086250C (zh) * 1997-11-27 2002-06-12 陈兴 多颜色发光二极管

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001177158A (ja) * 1999-12-16 2001-06-29 Matsushita Electronics Industry Corp 半導体発光装置及びその製造方法
WO2003034508A1 (en) * 2001-10-12 2003-04-24 Nichia Corporation Light emitting device and method for manufacture thereof
JP2003151921A (ja) * 2001-11-09 2003-05-23 Sanyo Electric Co Ltd 化合物半導体とその製造方法
JP2004079972A (ja) * 2002-08-22 2004-03-11 Fuji Photo Film Co Ltd 面発光型発光素子
JP2004088011A (ja) * 2002-08-29 2004-03-18 Okaya Electric Ind Co Ltd 発光ダイオード
JP2004161871A (ja) * 2002-11-12 2004-06-10 Nichia Chem Ind Ltd 燒結蛍光体層
JP2004221536A (ja) * 2002-12-24 2004-08-05 Nanotemu:Kk 発光素子の製造方法および発光素子

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7368179B2 (en) 2003-04-21 2008-05-06 Sarnoff Corporation Methods and devices using high efficiency alkaline earth metal thiogallate-based phosphors
US8906262B2 (en) 2005-12-02 2014-12-09 Lightscape Materials, Inc. Metal silicate halide phosphors and LED lighting devices using the same
JP2007188962A (ja) * 2006-01-11 2007-07-26 Sharp Corp 蛍光体膜付発光素子及びその製造方法
JP2007311743A (ja) * 2006-04-19 2007-11-29 Nippon Electric Glass Co Ltd 発光色変換部材の製造方法及び発光色変換部材
JP2008021868A (ja) * 2006-07-13 2008-01-31 Nippon Electric Glass Co Ltd 蛍光体複合部材
JP2008060428A (ja) * 2006-08-31 2008-03-13 Nichia Chem Ind Ltd 発光装置およびその製造方法
US7713442B2 (en) 2006-10-03 2010-05-11 Lightscape Materials, Inc. Metal silicate halide phosphors and LED lighting devices using the same
JP2008205468A (ja) * 2007-02-20 2008-09-04 Cree Inc 低屈折率キャリア基板上のiii族窒化物ダイオード
JP2013232678A (ja) * 2008-04-24 2013-11-14 Citizen Holdings Co Ltd Led光源の製造方法
JP2010130986A (ja) * 2008-12-08 2010-06-17 Mkv Dream Co Ltd 植物栽培方法
WO2018235231A1 (ja) * 2017-06-22 2018-12-27 サンケン電気株式会社 発光装置
JPWO2018235231A1 (ja) * 2017-06-22 2019-06-27 サンケン電気株式会社 発光装置

Also Published As

Publication number Publication date
CN100459192C (zh) 2009-02-04
KR20070034005A (ko) 2007-03-27
US20080042150A1 (en) 2008-02-21
CN1981389A (zh) 2007-06-13
EP1783838A1 (en) 2007-05-09
JPWO2006001297A1 (ja) 2008-07-31

Similar Documents

Publication Publication Date Title
WO2006001297A1 (ja) 白色発光素子およびその製造方法
US10790417B2 (en) Wavelength converted semiconductor light emitting device
JP5918221B2 (ja) Ledチップの製造方法
US7420217B2 (en) Thin film LED
JP3546650B2 (ja) 発光ダイオードの形成方法
JP6419077B2 (ja) 波長変換発光デバイス
JP4492378B2 (ja) 発光装置およびその製造方法
JP2020145472A (ja) 小型光源を有する波長変換発光デバイス
JP4415572B2 (ja) 半導体発光素子およびその製造方法
EP2388838A1 (en) Light emitting diode chip having wavelength converting layer and method of fabricating the same, and package having the light emitting diode chip and method of fabricating the same
JP3407608B2 (ja) 発光ダイオード及びその形成方法
US9935244B2 (en) Light emitting device including a filter and a protective layer
JP2011243977A (ja) 波長変換層を有する発光ダイオードチップとその製造方法、及びそれを含むパッケージ及びその製造方法
JPH1131845A (ja) 発光ダイオードの形成方法
WO2005088738A1 (en) Group iii nitride semiconductor light-emitting device, forming method thereof, lamp and light source using same
JP3775268B2 (ja) 発光装置の形成方法
JP3858829B2 (ja) 発光ダイオードの形成方法
JP2005072527A (ja) 発光素子およびその製造方法
JP2004080058A (ja) 発光ダイオード
JP5338688B2 (ja) 発光装置の製造方法
US20240154076A1 (en) Lumiphoric material structures for light-emitting diode packages and related methods
JP6978708B2 (ja) 半導体発光装置
US20220254962A1 (en) Optical arrangements in cover structures for light emitting diode packages and related methods
JP3503551B2 (ja) 発光ダイオード
JP2022010198A (ja) 半導体発光装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2006528553

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11629999

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580020537.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2005753466

Country of ref document: EP

Ref document number: 1020067027123

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 1020067027123

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005753466

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11629999

Country of ref document: US