WO2006001159A1 - 信号符号化装置及び方法、並びに信号復号装置及び方法 - Google Patents

信号符号化装置及び方法、並びに信号復号装置及び方法 Download PDF

Info

Publication number
WO2006001159A1
WO2006001159A1 PCT/JP2005/009939 JP2005009939W WO2006001159A1 WO 2006001159 A1 WO2006001159 A1 WO 2006001159A1 JP 2005009939 W JP2005009939 W JP 2005009939W WO 2006001159 A1 WO2006001159 A1 WO 2006001159A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
spectrum signal
quantization accuracy
normalized
spectrum
Prior art date
Application number
PCT/JP2005/009939
Other languages
English (en)
French (fr)
Inventor
Shiro Suzuki
Original Assignee
Sony Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corporation filed Critical Sony Corporation
Priority to EP16177436.9A priority Critical patent/EP3096316B1/en
Priority to EP19198400.4A priority patent/EP3608908A1/en
Priority to CN2005800290709A priority patent/CN101010727B/zh
Priority to US11/571,328 priority patent/US8015001B2/en
Priority to EP05745896.0A priority patent/EP1768104B1/en
Priority to KR1020067027378A priority patent/KR101143792B1/ko
Publication of WO2006001159A1 publication Critical patent/WO2006001159A1/ja

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/02Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/02Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
    • G10L19/032Quantisation or dequantisation of spectral components
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/04Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
    • G10L19/06Determination or coding of the spectral characteristics, e.g. of the short-term prediction coefficients

Definitions

  • the present invention relates to a signal encoding apparatus and method, and a signal decoding apparatus and method.
  • the present invention encodes an input digital audio signal with a so-called transform code and outputs a code string obtained by decoding the code string.
  • the present invention relates to a signal decoding apparatus and method for restoring an original audio signal.
  • an input audio signal is blocked every predetermined unit time (frame), and discrete Fourier transformation (DFl j, discrete cosine transformation (Discrete transformation) is performed for each block. Some of them convert time-domain audio signals into frequency-domain spectral signals by performing Lysine Transformation (DCT), Modified DCT (MDCT), etc.
  • DCT Lysine Transformation
  • MDCT Modified DCT
  • the spectrum signal is divided into frequency bands of a certain fixed width, normalized for each frequency band, and then quantized and coded. The width of each frequency band may be determined in consideration of human auditory characteristics.
  • bit allocation is performed based on the size of each frequency component for each frequency band.
  • the quantization noise spectrum is flattened and the noise energy is minimized, but since the masking effect and the isosensitivity curve are not considered auditorily, the actual noise feeling is not minimum.
  • the concept of the critical band is used, and quantization is performed with a wider band division width in the higher frequency range, so that the information efficiency for securing the quantization accuracy is higher in the high frequency range than in the low frequency range.
  • additional methods such as a method of separating and extracting only specific frequency components from one frequency band and a method of separating and extracting large frequency components in the time domain in advance are included. A function is required.
  • the present invention has been proposed in view of such a conventional situation, and a signal encoding apparatus that encodes an audio signal so as to minimize a noise feeling during reproduction without being divided into critical bands, and It is an object of the present invention to provide a method, a signal decoding apparatus that decodes the code string and restores the original audio signal, and a method thereof.
  • a signal encoding apparatus includes a spectrum conversion unit that converts an input time-domain audio signal into a frequency-domain spectrum signal every predetermined unit time, Select one of multiple normalization coefficients with a predetermined step width for the spectrum signal, and normalize the spectrum signal using the selected normalization coefficient to generate a normalized spectrum signal.
  • Normalization means for adding the weighting coefficient for each spectrum signal to the normalization coefficient index used for the normalization V, and the quantization accuracy of each normalized spectrum signal is determined based on the calorie calculation result
  • Quantization means for determining the quantization spectrum, quantization means for quantizing each normalized spectrum signal according to the quantization accuracy to generate a quantum spectrum signal, and the quantized spectrum signal.
  • a sign key generating means for generating a sequence of symbols.
  • the quantization accuracy determining means is based on the characteristics of the audio signal or the spectrum signal! / Turn to determine the weighting factor.
  • the signal encoding method includes a spectrum conversion step of converting an input time domain audio signal into a frequency domain spectrum signal every predetermined unit time, and a predetermined step for each spectrum signal.
  • a signal decoding apparatus decodes a code string generated by the signal encoding apparatus and method described above to restore an audio signal, and includes the quantized spectrum signal, Decoding means for decoding at least the normalization coefficient index and the weight information, and adding the weight coefficient determined from the weight information for each spectrum signal to the normalization coefficient index, and based on the addition result !
  • Quantization accuracy restoration means that restores the quantization accuracy of each normalized vector signal and normalization by dequantizing the quantized spectrum signal according to the quantization accuracy of each normalized spectrum signal
  • An inverse quantization means for restoring the normalized vector signal an inverse normalization means for restoring the spectrum signal by denormalizing each of the normalized vector signals using the normalization coefficient, It converts the spectrum signal, characterized in that an inverse spectral conversion means for restoring the audio signal for each said predetermined unit of time.
  • the signal decoding method similarly decodes the above-described signal encoding device and the code string generated by the method to restore the audio signal, and includes the above-described quantized spectrum signal, The normalization coefficient index and the weight information are reduced.
  • the weighting factor determined from the weighting information is added for each spectrum signal to the decoding step for decoding at least and the index of the normalization factor, and based on the addition result!
  • a quantization accuracy restoration step for restoring the quantization accuracy of each normal spectrum signal, and the quantized spectrum signal is inversely quantized according to the quantization accuracy of each normalized vector signal to obtain a normal spectrum.
  • a dequantizing step for restoring the signal a denormalizing step for restoring the spectrum signal by denormalizing each normal spectrum signal using the normalization coefficient, and converting the vector signal to the predetermined value.
  • an inverse spectral conversion step of restoring an audio signal per unit time a dequantizing step for restoring the signal, a denormalizing step for restoring the spectrum signal by denormalizing each normal spectrum signal using the normalization coefficient, and converting the vector signal to the predetermined value.
  • the signal decoding method decodes an input code string and restores a time domain audio signal, and includes a quantized spectrum signal, an index of a normalization coefficient, and weight information. At least the decoding step for decoding and the weighting coefficient determined by the weight information power for each spectrum signal are added to the index of the normalized coefficient, and the quantization accuracy of each normalized spectrum signal is determined based on the addition result.
  • Quantization accuracy to be restored A restoration step, an inverse quantization step to restore the normalized spectrum signal by dequantizing the quantization spectrum signal according to the quantization accuracy of each of the normalized spectrum signals, A denormalization step of denormalizing each normalized spectrum signal using a normalization coefficient to restore the spectrum signal, and converting the spectrum signal to each predetermined unit time. And having an inverse spectral conversion step of restoring the over Do signal.
  • FIG. 1 is a diagram showing a schematic configuration of a signal encoding apparatus according to the present embodiment.
  • FIG. 2 is a flow chart for explaining the procedure of the code key processing in the same signal code key device.
  • FIG. 3A and FIG. 3B are diagrams for explaining a time-frequency conversion process in a time-frequency conversion unit of the signal coding apparatus.
  • FIG. 4 is a diagram for explaining normal key processing in a frequency normal key unit of the signal code key device.
  • FIG. 5 is a diagram for explaining a range conversion process in a range conversion unit of the same signal encoding device.
  • FIG. 6 is a diagram for explaining an example of a quantization process in a quantization unit of the signal encoding device.
  • FIG. 7 is a diagram showing a spectrum envelope and a noise floor when weighting of the normalization coefficient index is not performed.
  • FIG. 8 is a flowchart for explaining an example of a method for determining the weighting coefficient table Wn [].
  • FIG. 9 is a flowchart for explaining another example of the method for determining the weighting coefficient table Wn [].
  • FIG. 10 is a diagram showing an example of spectrum envelope and noise floor in the case where weighting of the normalization coefficient index is performed.
  • FIG. 11 is a flowchart illustrating a conventional quantization accuracy determination process.
  • FIG. 12 is a flow chart for explaining quantization accuracy determination processing in the present embodiment.
  • FIG. 13 is a diagram showing a code string when quantization accuracy is determined according to FIG. 11 and a code string when quantization accuracy is determined according to FIG.
  • FIG. 14 is a diagram for explaining a method of ensuring backward compatibility when the weighting factor standard is changed.
  • FIG. 15 is a diagram showing a schematic configuration of a signal decoding apparatus according to the present embodiment.
  • FIG. 16 is a flowchart for explaining the procedure of decoding processing in the signal decoding apparatus.
  • FIG. 17 is a flowchart illustrating processing in a code string decoding unit and a quantization accuracy restoring unit of the signal decoding device.
  • the present invention is a signal code apparatus for encoding an input digital audio signal with a so-called conversion code key and outputting the obtained code string.
  • the present invention is applied to a signal decoding apparatus and method for decoding the code string and restoring the original audio signal.
  • FIG. 1 shows a schematic configuration of a signal encoding apparatus according to the present embodiment. Further, the flowchart of FIG. 2 shows the procedure of the sign key processing in the signal sign key device 1 shown in FIG. The flowchart of FIG. 2 will be described below with reference to FIG.
  • step S 1 of FIG. 2 the time-frequency converter 10 inputs an audio signal (PCM (pulse code modulation) data, etc.) every predetermined unit time (frame), and in step S 2, transforms the audio signal.
  • the signal is converted into a spectrum signal by a discrete cosine transformation (MDCT).
  • MDCT discrete cosine transformation
  • the N audio signals shown in FIG. 3A are converted into two NZ MDCT spectra (absolute value display) shown in FIG. 3B.
  • the time-frequency conversion unit 10 supplies the spectrum signal to the frequency normalization unit 11 and also supplies the number information of the spares to the code signal / code string generation unit 15.
  • the frequency normal part 11 normalizes each of the NZ2 vectors with normalization coefficients sf (0),..., Sf (N / 2— 1) as shown in FIG. Generate a normalized spectrum signal.
  • the normalization coefficient sf has a step width of 6 dB, that is, twice.
  • the normalized spectrum value range should be aggregated in the range of ⁇ 0.5 to 1.0 by using a normalization coefficient that is one level larger than the value of each spectrum. Can do.
  • the frequency normalization unit 11 converts the normalization coefficient sf for each normalized spectrum into a normalization coefficient index idsf as shown in Table 1 below, for example, and supplies the normalized spectrum signal to the range conversion unit 12.
  • the normalized coefficient index id S for each normalized spectrum is supplied to the S quantization accuracy determination unit 13 and the encoding / code string generation unit 15.
  • step S4 the range converter 12 converts the normalized spectrum values aggregated in the range of ⁇ 0.5 to 1.0 to the position of ⁇ 0.5 as shown on the left vertical axis in FIG. Is converted to a range of 0.0 to 1.0 as shown on the right vertical axis. Since the signal encoding apparatus 1 according to the present embodiment performs force quantization by performing such range conversion, it is possible to improve quantization accuracy.
  • the range conversion unit 12 supplies the range conversion spectrum signal after the range conversion to the quantization accuracy determination unit 13.
  • step S5 the quantization accuracy determination unit 13 is supplied from the frequency normalization unit 11.
  • the quantization accuracy of each range conversion spectrum is determined based on the supplied normalization coefficient index idsf, and the range conversion spectrum signal and a quantization accuracy index idwl described later are supplied to the quantization unit 14.
  • the quantization accuracy determination unit 13 supplies the weight information used to determine the quantization accuracy to the encoding / code string generation unit 15.
  • the quantization accuracy determination unit 13 uses the weight information to perform quantization accuracy determination processing. !, Details will be described later.
  • step S6 the quantization unit 14 quantizes each range-converted spectrum in a 2 "a quantum step when the quantization accuracy index idwl supplied from the quantization accuracy determination unit 13 is a. Then, a quantized spectrum is generated and the quantized spectrum signal is supplied to the encoding / code sequence generating unit 15.
  • Table 2 An example of the relationship between the quantization accuracy index idwl and the quantization step nste ps is shown in Table 2 below. In Table 2, the quantization step when the quantization accuracy index idwl is a is set to 2 "a-1.
  • step S7 the encoding / code sequence generation unit 15 performs the time-frequency conversion unit 1
  • the number of spectrum information supplied from 0, the normality coefficient index idsf supplied from the frequency normalization unit 11, the weight information supplied from the quantization accuracy determination unit 13, and the quantization spectrum signal are encoded respectively.
  • step S8 a code string is generated, and in step S9, this code string is output.
  • step S 10 it is determined whether or not it is the last frame of the audio signal. If it is the last frame (Yes), the sign key processing is terminated, and if not (No), Return to step SI and input the audio signal of the next frame.
  • the quantization accuracy determination unit 13 determines the quantization accuracy for each range conversion spectrum using the weight information as described above. First, in the following, the quantization accuracy is determined without using the weight information. It will be described as being determined.
  • the quantization accuracy determination unit 13 calculates the quantization accuracy index idwl of each range conversion spectrum from the normalization coefficient index idsf for each normalized spectrum supplied from the frequency normalization unit 11 and the predetermined variable A in the table below. Uniquely determined as shown in 3.
  • the quantization accuracy index idwl also decreases by 1 and the gain decreases by up to 6dB.
  • This is equivalent to the normalization coefficient index idsi3 ⁇ 43 ⁇ 4—1 when the normalization coefficient index idsi3 ⁇ 4X and the absolute SNR (Signal to Noise Ratio) when the quantization accuracy is B is SNRabs.
  • the absolute maximum quantization error when the normalization coefficient is 4, 2, 1 and the quantization accuracy index idwl is 3, 4, 5, 6 is shown in Table 4 below.
  • variable A described above indicates the maximum number of quantization bits (maximum quantization information) assigned to the maximum normalization coefficient index idsf, and this value is included in the code string as additional information.
  • the variable A first, the maximum number of quantization bits that can be taken in the standard is set, and when the total number of used bits exceeds the total number of usable bits as a result of encoding, Sequentially lowered.
  • Table 5 shows an example of a table showing the relationship between the normalized coefficient index idsf and the quantization accuracy index idwl for each range conversion spectrum when the value of variable A is 17 bits.
  • the numbers enclosed in circles in Table 5 represent the quantization accuracy index idwl determined for each range conversion spectrum.
  • the quantization bit becomes negative. And a lower limit.
  • 5 bits are given to the normalization coefficient index idsf, even if the number of quantization bits in Table 5 becomes ⁇ bits, by describing only the sign bit with 1 bit, the average SNR is 3 dB. It is possible to record spectral information with high accuracy, but recording such code bits is not essential.
  • FIG. 7 shows the spectrum envelope (a) and noise floor (b) when the quantization accuracy index of each range conversion spectrum is uniquely determined from the normalization coefficient index idsi as described above.
  • the noise floor in this case is substantially flat. In other words, even in the low range, which is important for human audibility! Even if it is important for audibility, even if it is in the high range, quantization is performed with uniform quantization accuracy, so the sense of noise is not minimized. .
  • the quantization accuracy determination unit 13 in the present embodiment actually weights the normalization coefficient index idsf for each range conversion spectrum, and uses the weighted normality coefficient index idsfl described above.
  • the quantization accuracy index idwl is determined in the same manner as above.
  • the low-frequency quantization accuracy is improved, but the total number of used bits is increased because the maximum number of bits used (maximum quantization information) is increased and the total number of used bits increases.
  • the number of usable bits may be exceeded. Therefore, in reality, the bit adjustment is performed so that the total number of used bits is within the total number of usable bits.
  • Table 8 the table shown in Table 8 below is obtained.
  • the maximum number of quantization bits is changed from 21 to 19 in Table 7.
  • the total number of bits used can be adjusted by reducing the
  • Table 9 compares the quantization accuracy index determined in Table 5 and the quantization accuracy index idwll determined in Table 8.
  • a plurality of weighting factor tables Wn [] in which the weighting factors Wn [i] are tabulated are provided in advance, or a plurality of modeling formulas and parameters are provided and the sequential weighting factor table Wn [] is obtained.
  • the sound source characteristics frequency Energy, transient characteristics, gain, masking characteristics, etc.
  • the weight coefficient table Wn [] determined to be optimal is used. The flowchart of this determination process is shown in Figs.
  • step S30 when generating a sequential weighting coefficient table Wn [] with a plurality of modeling formulas and parameters, first, in step S30, a spectrum signal or a time domain audio signal is analyzed, and feature quantities (frequency energy, transient characteristics) are analyzed. , Gain, masking characteristics, etc.).
  • step S31 the modeling formula f n (i) is selected based on the feature quantity, and in step S32, parameters a, b, c,... Of the modeling formula fn (i) are selected.
  • the modeling formula fn (i) is a polynomial composed of the order of the range conversion spectrum and the parameters a, b, c,..., And is expressed as, for example, the following formula (2).
  • lh (i) fa (a, i) + ib (b, i) + fc (c, i) ....
  • the “certain standard” when selecting the weighting coefficient table Wn [] is not absolute but can be arbitrarily set in each signal encoding device.
  • the index of the selected weighting coefficient table Wn [] or the index of the modeling formula fn (i) and the parameters a, b, c is not absolute but can be arbitrarily set in each signal encoding device.
  • the signal decoding apparatus recalculates the quantization accuracy according to the index of the weight coefficient table Wn [] or the index of the modeling formula fn (i) and the parameters a, b, c,.
  • compatibility with the code string generated by the signal code generator is maintained.
  • FIG. 10 shows an example of the spectrum envelope (a) and noise floor (b) when the quantization accuracy index of each range conversion spectrum is uniquely determined from the number index idsfl.
  • the noise floor when the weighting factor Wn [i] is not added at all is a straight line ACE
  • the noise floor when the weighting factor Wn [i] is added is a straight line BCD.
  • the weighting factor Wn [i] transforms the noise floor from a straight line ACE to a straight line BCD.
  • FIG. 11 and FIG. 12 show conventional quantization accuracy determination processing and quantization accuracy determination processing according to the present embodiment.
  • step S40 the quantization accuracy is determined according to the normalization coefficient index idsf, and in step S41, it is necessary when encoding the number information, normalization information, quantization information, and spectrum information of the spectrum. Calculate the total number of bits used. Subsequently, in step S42, it is determined whether or not the total number of used bits is less than or equal to the total number of usable bits. If the total number of used bits is less than or equal to the total available number of bits (Yes), processing is performed. If not (No), the process returns to step S40 to determine the quantization accuracy again.
  • step S50 the weight coefficient table Wn [] is determined as described above.
  • step S51 the normalization coefficient index idsf weight coefficient Wn [i] is added to generate a new normalization coefficient index idsfl.
  • step S52 the quantization accuracy index idwll is uniquely determined in accordance with the normalization coefficient index idsfl.
  • step S53 the number information, normalization information, weight information, and spectrum information of the spectrum are encoded. Calculate the total number of bits used when hesitating.
  • step S54 it is determined whether or not the total number of used bits is less than or equal to the total number of usable bits.
  • the process returns to step S50 and the weighting coefficient table Wn [] is determined again.
  • the code sequence when the quantization accuracy is determined according to FIG. 11 and the code sequence when the quantization accuracy is determined according to FIG. 12 are shown in FIGS. 13 (a) and 13 (b), respectively.
  • the weight information (maximum quantization information) is smaller than the number of bits conventionally required for the sign of the quantization information. Therefore, surplus bits can be used for the sign of spectrum information.
  • the maximum number of quantization bits in the above example is the number of quantization bits given for the maximum normalization coefficient index idsf, which is the closest value that does not exceed the total number of usable bits. Is set. This is set so that the total number of used bits has a margin with respect to the total number of usable bits. For example, taking Table 8 as an example, the maximum number of quantization bits is 19 bits. Keep this at a small value such as 10 bits. In this case, a code string in which a large number of surplus bits are generated is generated, but the data is only rejected in the signal decoding apparatus at that time.
  • the next-generation signal encoding device and signal decoding device have the advantage that backward compatibility can be ensured because the surplus bits may be allocated and encoded and decoded according to a newly determined standard. Specifically, for example, the number of bits used in a code string that can be decoded by any signal decoding device as shown in FIG. 14 (a) is reduced, and the surplus bits are shown in FIG. 14 (b).
  • the new weight information and the new spectrum information encoded using the weight information can be distributed.
  • FIG. 15 shows a schematic configuration of the signal decoding apparatus according to the present embodiment. Further, the flowchart of FIG. 16 shows the procedure of the decoding process in the signal decoding device 2 shown in FIG. Hereinafter, the flowchart of FIG. 16 will be described with reference to FIG.
  • the code string decoding unit 20 receives a code string encoded every predetermined unit time (frame), and decodes the code string in step S61. At this time, the code string decoding unit 20 supplies the decoded spectrum number information, normalization information, and weight information (including the maximum quantization information) to the quantization accuracy restoring unit 21 to restore the quantization accuracy. The unit 21 restores the quantization accuracy index idwll based on these pieces of information. Further, the code string decoding unit 20 supplies the decoded number information and the quantized spectrum signal to the inverse quantization unit 22 and supplies the decoded number information and the normalized information to the inverse normalization unit 24.
  • step S61 The processing of the code string decoding unit 20 and the quantization accuracy restoring unit 21 in step S61 will be described in more detail using the flowchart of FIG.
  • the number information is decoded in step S70
  • the normal key information is decoded in step S71
  • the weight information is decoded in step S72.
  • step S73 the normalized coefficient index idsf obtained by decoding the normalized information is added to generate a normalized coefficient index idsfl.
  • step S74 this normalized coefficient index idsfl force Quantization accuracy index idwll is uniquely restored.
  • step S62 the inverse quantization unit 22 inversely quantizes the quantized spectrum signal based on the quantization accuracy index idwll supplied from the quantization accuracy restoration unit 21 to generate a range conversion spectrum. Generate a signal.
  • the inverse quantization unit 22 supplies the range conversion vector signal to the inverse range conversion unit 23.
  • Step S63 [Koh !, reverse range conversion 23 23, or 0.0 to 1.0.
  • Range of 0 Range conversion spectrum value that has been range converted ⁇ 0.5 to 1] Converts the range back to 0 and generates a normalized spectrum signal.
  • the inverse range conversion unit 23 supplies this normalized spectral signal to the inverse normalization unit 24.
  • step S64 the denormalization unit 24 denormalizes the normalized spectrum signal using the normalization coefficient index ids obtained by decoding the normalization information, and converts the obtained spectrum signal to a one-time frequency. Supply to part 25.
  • step S65 the frequency-time conversion unit 25 converts the spectrum signal even supplied from the denormalization unit 24 into a time domain audio signal (PCM data, etc.) by inverse MDCT, and in step S66, this audio signal is converted. Output a signal.
  • step S67 it is determined whether or not it is the last code string of the audio signal. If it is the last code string (Yes), the decoding process is terminated, and if not (No), the step is terminated. Returning to S60, the code sequence of the next frame is input.
  • the signal coding apparatus 1 prepares a weighting factor Wn [i] using auditory characteristics when assigning bits depending on the value of each spectrum, and this weighting factor Wn [i]
  • the weight information related to this is encoded with the normalized coefficient index idsf ⁇ quantized spectrum signal and included in the code string, and the signal decoding apparatus 2 uses the weight coefficient Wn [i] obtained by decoding this code string.
  • the sense of noise during reproduction can be minimized by restoring the quantization accuracy for each quantized spectrum and inversely quantizing the quantum spectrum signal in accordance with the quantization accuracy.
  • the signal encoding apparatus prepares a weighting factor using auditory characteristics when assigning bits depending on the value of each frequency component, and normalizes the weighting information regarding this weighting factor. Coding with the index of the coefficient and the quantized spectrum signal and including it in the code string, the signal decoding device restores the quantization accuracy for each frequency component using the weighting coefficient obtained by decoding this code string, and this quantization By dequantizing the quantization spectrum according to the accuracy, the noise feeling during playback can be minimized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Computational Linguistics (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

 信号符号化装置(1)において、周波数正規化部(11)は、スペクトル信号の各スペクトルをそれぞれ正規化係数を用いて正規化し、スペクトル毎の正規化係数インデックスを量子化精度決定部(13)に供給する。量子化精度決定部(13)は、正規化され所定のレンジ変換が施されたレンジ変換スペクトル信号のスペクトル毎の正規化係数インデックスに対して聴覚特性を利用した重み係数を加算し、この加算結果に応じて量子化精度を決定する。そして、量子化部(14)は、量子化精度決定部(13)から供給された量子化精度インデックスに応じた量子化精度で量子化を行い、符号化・符号列生成部(15)は、量子化精度決定部(13)から供給された重み係数を正規化係数インデックスや量子化スペクトル信号とともに符号化する。

Description

信号符号化装置及び方法、並びに信号復号装置及び方法 技術分野
[0001] 本発明は、入力されたディジタルオーディオ信号をいわゆる変換符号ィ匕によって符 号化し、得られた符号列を出力する信号符号ィ匕装置及びその方法、並びにその符 号列を復号して元のオーディオ信号を復元する信号復号装置及びその方法に関す る。
本出願は、日本国において 2004年 6月 28日に出願された日本特許出願番号 200 4—190249を基礎として優先権を主張するものであり、この出願は参照することによ り、本出願に援用される。
背景技術
[0002] 従来より、音声や音楽等のオーディオ信号の符号ィ匕手法が種々知られているが、 その 1つとして、例えば時間領域のオーディオ信号を周波数領域のスペクトル信号に 変換 (スペクトル変換)する、いわゆる変換符号ィ匕手法を挙げることができる。
ここで、上述したスペクトル変換としては、例えば入力されたオーディオ信号を所定 単位時間(フレーム)毎にブロックィ匕し、当該ブロック毎に離散フーリエ変換 (Discrete Fourier Transformation; DFl j、離散コサイン変換 (Discrete Lysine Transformation ; DCT)、或いは変形離散コサイン変換 (Modified DCT ; MDCT)などを行うことで時 間領域のオーディオ信号を周波数領域のスペクトル信号に変換するものがある。 また、このスペクトル変換によって生成されたスペクトル信号を符号ィ匕する際には、 スペクトル信号をある一定幅の周波数帯域に分割し、周波数帯域毎に正規ィ匕した後 に量子化して符号ィ匕する方法がある。周波数帯域分割を行う際の各周波数帯域の 幅は、人間の聴覚特性を考慮して決定されることがある。具体的には、スペクトル信 号を臨界帯域 (クリティカルバンド)と呼ばれる高域ほど広くなるような帯域分割幅で 複数 (例えば 24や 32)の周波数帯域に分割することがある。また、各周波数帯域毎 に適応的なビット割り当て (ビットアロケーション)を行って符号ィ匕することもある。ビット 割り当て手法としては、例えば文献「IEEE Transactions of Acoustics, Speech, and Si gnal Processing, Vol.ASSP- 25, No.4, August 1977」(以下、文献 1という。 )に記載さ れて 、る手法が挙げられる。
この文献 1では、周波数帯域毎の各周波数成分の大きさを元にビット割り当てを行 つている。この手法では、量子化雑音スペクトルが平坦になり、雑音エネルギが最小 になるが、聴覚的にはマスキング効果や等感度曲線が考慮されていないため、実際 の雑音感は最小ではない。
また、この文献 1では臨界帯域という概念を利用し、高域ほど広い帯域分割幅でま とめて量子化を行っているため、低域に比べて高域では量子化精度確保に対する情 報効率が悪化するという問題がある。し力も、この問題を解消するためには、 1つの周 波数帯域の中から特定の周波数成分だけを分離'抽出する方法や、大きな周波数 成分を予め時間領域で分離'抽出する方法といった付加的な機能が必要となってし まつ。
発明の開示
発明が解決しょうとする課題
本発明は、このような従来の実情に鑑みて提案されたものであり、臨界帯域に分割 することなぐ再生時の雑音感が最小となるようにオーディオ信号を符号ィ匕する信号 符号化装置及びその方法、並びにその符号列を復号して元のオーディオ信号を復 元する信号復号装置及びその方法を提供することを目的とする。
上述した目的を達成するために、本発明に係る信号符号ィ匕装置は、入力された時 間領域のオーディオ信号を所定単位時間毎に周波数領域のスペクトル信号に変換 するスペクトル変換手段と、上記各スペクトル信号に対して、所定のステップ幅を有す る複数の正規化係数の何れかを選択し、選択した正規化係数を用いて当該スぺタト ル信号を正規化して正規化スペクトル信号を生成する正規化手段と、該正規化に用 V、た正規化係数のインデックスに対してスペクトル信号毎に重み係数を加算し、該カロ 算結果に基づいて各正規化スペクトル信号の量子化精度を決定する量子化精度決 定手段と、上記量子化精度に応じて上記各正規化スペクトル信号を量子化して量子 ィ匕スペクトル信号を生成する量子化手段と、上記量子化スペクトル信号、上記正規化 係数のインデックス及び上記重み係数に関する重み情報を少なくとも符号化して符 号列を生成する符号ィ匕手段とを備えることを特徴とする。
ここで、上記量子化精度決定手段は、上記オーディオ信号又は上記スペクトル信 号の特徴に基づ!/ヽて上記重み係数を決定する。
また、本発明に係る信号符号化方法は、入力された時間領域のオーディオ信号を 所定単位時間毎に周波数領域のスペクトル信号に変換するスペクトル変換工程と、 上記各スペクトル信号に対して、所定のステップ幅を有する複数の正規化係数の何 れかを選択し、選択した正規化係数を用いて当該スペクトル信号を正規化して正規 化スペクトル信号を生成する正規化工程と、該正規化に用いた正規化係数のインデ ックスに対してスペクトル信号毎に重み係数を加算し、該加算結果に基づ ヽて各正 規化スペクトル信号の量子化精度を決定する量子化精度決定工程と、上記量子化 精度に応じて上記各正規化スペクトル信号を量子化して量子化スペクトル信号を生 成する量子化工程と、上記量子化スペクトル信号、上記正規化係数のインデックス及 び上記重み係数に関する重み情報を少なくとも符号化して符号列を生成する符号化 工程とを有することを特徴とする。
また、本発明に係る信号復号装置は、上述した信号符号化装置及びその方法によ つて生成された符号列を復号してオーディオ信号を復元するものであって、上記量 子化スペクトル信号、上記正規化係数のインデックス及び上記重み情報を少なくとも 復号する復号手段と、上記正規化係数のインデックスに対してスペクトル信号毎に上 記重み情報から決定された重み係数を加算し、該加算結果に基づ!、て各正規化ス ベクトル信号の量子化精度を復元する量子化精度復元手段と、上記各正規化スぺク トル信号の量子化精度に応じて上記量子化スペクトル信号を逆量子化して正規化ス ベクトル信号を復元する逆量子化手段と、上記正規化係数を用いて上記各正規化ス ベクトル信号を逆正規化してスペクトル信号を復元する逆正規化手段と、上記スぺク トル信号を変換して上記所定単位時間毎のオーディオ信号を復元する逆スペクトル 変換手段とを備えることを特徴とする。
また、本発明に係る信号復号方法は、同様に上述した信号符号化装置及びその方 法によって生成された符号列を復号してオーディオ信号を復元するものであって、上 記量子化スペクトル信号、上記正規化係数のインデックス及び上記重み情報を少な くとも復号する復号工程と、上記正規化係数のインデックスに対してスペクトル信号毎 に上記重み情報から決定された重み係数を加算し、該加算結果に基づ!ヽて各正規 ィ匕スペクトル信号の量子化精度を復元する量子化精度復元工程と、上記各正規化ス ベクトル信号の量子化精度に応じて上記量子化スペクトル信号を逆量子化して正規 ィ匕スペクトル信号を復元する逆量子化工程と、上記正規化係数を用いて上記各正規 ィ匕スペクトル信号を逆正規化してスペクトル信号を復元する逆正規化工程と、上記ス ベクトル信号を変換して上記所定単位時間毎のオーディオ信号を復元する逆スぺク トル変換工程とを有することを特徴とする。
また、本発明に係る信号復号方法は、入力された符号列を復号して時間領域のォ 一ディォ信号を復元するものであって、量子化スペクトル信号、正規化係数のインデ ックス及び重み情報を少なくとも復号する復号工程と、上記正規化係数のインデック スに対してスペクトル信号毎に上記重み情報力 決定された重み係数を加算し、該 加算結果に基づいて各正規化スペクトル信号の量子化精度を復元する量子化精度 復元工程と、上記各正規化スペクトル信号の量子化精度に応じて上記量子化スぺク トル信号を逆量子化して正規化スペクトル信号を復元する逆量子化工程と、上記正 規化係数を用いて上記各正規化スペクトル信号を逆正規化してスペクトル信号を復 元する逆正規化工程と、上記スペクトル信号を変換して上記所定単位時間毎のォー ディォ信号を復元する逆スペクトル変換工程とを有することを特徴とする。
本発明のさらに他の目的、本発明によって得られる具体的な利点は、以下に説明 される実施例の説明から一層明らかにされるであろう。
図面の簡単な説明
[図 1]図 1は、本実施の形態における信号符号化装置の概略構成を示す図である。
[図 2]図 2は、同信号符号ィ匕装置における符号ィ匕処理の手順を説明するフローチヤ ートである。
[図 3]図 3A及び図 3Bは、同信号符号ィ匕装置の時間—周波数変換部における時間 周波数変換処理を説明する図である。
[図 4]図 4は、同信号符号ィ匕装置の周波数正規ィ匕部における正規ィ匕処理を説明する 図である。 [図 5]図 5は、同信号符号ィ匕装置のレンジ変換部におけるレンジ変換処理を説明する 図である。
[図 6]図 6は、同信号符号化装置の量子化部における量子化処理の一例を説明する 図である。
[図 7]図 7は、正規化係数インデックスの重み付けを行わな ヽ場合におけるスペクトル の包線及びノイズフロアを示す図である。
[図 8]図 8は、重み係数テーブル Wn[]を決定する方法の一例を説明するフローチヤ ートである。
[図 9]図 9は、重み係数テーブル Wn[]を決定する方法の他の例を説明するフローチ ヤートである。
[図 10]図 10は、正規化係数インデックスの重み付けを行う場合におけるスペクトルの 包線及びノイズフロアの一例を示す図である。
[図 11]図 11は、従来の量子化精度の決定処理を説明するフローチャートである。
[図 12]図 12は、本実施の形態における量子化精度の決定処理を説明するフローチ ヤートである。
[図 13]図 13は、図 11に従って量子化精度を決定した場合における符号列と図 12に 従って量子化精度を決定した場合における符号列とを示す図である。
[図 14]図 14は、重み係数の規格が変更された場合における後方互換性を確保する 方法を説明する図である。
[図 15]図 15は、本実施の形態における信号復号装置の概略構成を示す図である。
[図 16]図 16は、同信号復号装置における復号処理の手順を説明するフローチャート である。
[図 17]図 17は、同信号復号装置の符号列復号部及び量子化精度復元部における 処理を説明するフローチャートである。
発明を実施するための最良の形態
以下、本発明を適用した具体的な実施の形態について、図面を参照しながら詳細 に説明する。この実施の形態は、本発明を、入力されたディジタルオーディオ信号を いわゆる変換符号ィ匕によって符号ィ匕し、得られた符号列を出力する信号符号ィ匕装置 及びその方法、並びにその符号列を復号して元のオーディオ信号を復元する信号 復号装置及びその方法に適用したものである。
先ず、本実施の形態における信号符号ィ匕装置の概略構成を図 1に示す。また、図 1に示す信号符号ィ匕装置 1における符号ィ匕処理の手順を図 2のフローチャートに示 す。以下、図 1を参照しながら、図 2のフローチャートについて説明する。
図 2のステップ S 1において、時間 周波数変換部 10は、オーディオ信号 (PCM (P ulse Code Modulation)データ等)を所定単位時間(フレーム)毎に入力し、ステップ S 2において、このオーディオ信号を変形離散コサイン変換(Modified Discrete Cosine Transformation; MDCT)によりスペクトル信号に変換する。この結果、図 3Aに示す N本のオーディオ信号は、図 3Bに示す NZ2本の MDCTスペクトル(絶対値表示) に変換される。時間 周波数変換部 10は、スペクトル信号を周波数正規化部 11〖こ 供給するとともに、スぺ外ルの本数情報を符号ィ匕 ·符号列生成部 15に供給する。 次にステップ S3において、周波数正規ィ匕部 11は、図 4に示すように NZ2本の各ス ベクトルをそれぞれ正規化係数 sf (0) , · · · , sf (N/2— 1)で正規ィ匕し、正規化スぺ タトル信号を生成する。ここで、正規化係数 sfは 6dBずつ、すなわち 2倍ずつのステツ プ幅を持っているものとする。正規ィ匕に際しては各スペクトルの値よりも 1段階だけ大 きな値の正規化係数を用いることにより、正規化スペクトルの値の範囲を ±0. 5〜士 1. 0の範囲に集約することができる。周波数正規ィ匕部 11は、正規化スペクトル毎の 正規化係数 sfを例えば以下の表 1に示すように正規化係数インデックス idsfに変換し 、正規化スペクトル信号をレンジ変換部 12に供給するとともに、正規化スペクトル毎 の正規化係数インデックス idS 量子化精度決定部 13及び符号化 ·符号列生成部 1 5に供給する。
[表 1]
Figure imgf000009_0001
続いてステップ S4において、レンジ変換部 12は、図 5の左縦軸に示すように ±0. 5 〜士 1. 0の範囲に集約された正規化スペクトルの値を、 ±0. 5の位置を 0. 0と見な すことで、右縦軸に示すように 0. 0〜士 1. 0の範囲にレンジ変換する。本実施の形 態の信号符号化装置 1では、このようなレンジ変換を行って力 量子化を行うため、 量子化精度を向上させることが可能である。レンジ変換部 12は、レンジ変換後のレン ジ変換スペクトル信号を量子化精度決定部 13に供給する。
続いてステップ S5において、量子化精度決定部 13は、周波数正規化部 11から供 給された正規化係数インデックス idsfに基づいて各レンジ変換スペクトルの量子化精 度を決定し、レンジ変換スペクトル信号と後述する量子化精度インデックス idwlとを量 子化部 14に供給する。また、量子化精度決定部 13は、量子化精度を決定する際に 用 、た重み情報を符号化 ·符号列生成部 15に供給するが、重み情報を用 、た量子 化精度決定処理につ!、ての詳細は後述する。
続いてステップ S6において、量子化部 14は、量子化精度決定部 13から供給され た量子化精度インデックス idwlが aである場合に 2"aの量子ィ匕ステップで各レンジ変 換スペクトルを量子化して量子化スペクトルを生成し、量子化スペクトル信号を符号 化 ·符号列生成部 15に供給する。量子化精度インデックス idwlと量子化ステップ nste psとの関係の一例を以下の表 2に示す。なお、この表 2では、量子化精度インデックス idwlが aである場合の量子化ステップを 2" a— 1としている。
[表 2]
Figure imgf000011_0001
この結果、例えば量子化精度インデックス idwlが 3である場合には、レンジ変換スぺ タトルの値を nspecとし、量子化スペクトルの値を q (— 3≤q≤ 3)としたとき、下記の式( 1)に従って、図 6に示すように量子化される。なお、図 6における黒丸はレンジ変換ス ベクトルの値を示し、白丸は量子化スペクトルの値を示す。
q = (int)(floor(nspec * 3.5) + 0.5) · · · (1)
続いてステップ S7において、符号化 ·符号列生成部 15は、時間—周波数変換部 1 0から供給されたスペクトルの本数情報、周波数正規化部 11から供給された正規ィ匕 係数インデックス idsf、量子化精度決定部 13から供給された重み情報、量子化スぺク トル信号をそれぞれ符号化し、ステップ S8において符号列を生成し、ステップ S9〖こ おいて、この符号列を出力する。
最後にステップ S 10において、オーディオ信号の最後のフレームであるか否かが判 別され、最後のフレームである場合 (Yes)には符号ィ匕処理を終了し、そうでない場合 (No)にはステップ SIに戻って次のフレームのオーディオ信号を入力する。
ここで、上述した量子化精度決定部 13における処理の詳細について説明する。な お、量子化精度決定部 13は、上述したように重み情報を用いてレンジ変換スぺタト ル毎の量子化精度を決定するが、以下では先ず、重み情報を用いずに量子化精度 を決定するものとして説明する。
量子化精度決定部 13は、周波数正規ィ匕部 11から供給された正規化スペクトル毎 の正規化係数インデックス idsf及び所定の変数 Aから、各レンジ変換スペクトルの量 子化精度インデックス idwlを以下の表 3に示すように一意に決定する。
[表 3]
< z
I
r-
«
r
a>
o
<
¾ i
この表 3から分力るように、正規化係数インデックス idsi¾ lつ小さくなると量子化精 度インデックス idwlも 1つ小さくなり、ゲインが最大 6dB下がる。これは、正規化係数ィ ンデッタス idsi¾ Xであり量子化精度が Bである場合の絶対 SNR (Signal to Noise Rati o)を SNRabsとしたとき、正規化係数インデックス idsi¾¾— 1である場合に同等の SN Rabsを得るには略々 B— 1の量子化精度が必要となり、また正規化係数インデックス i dsi¾¾— 2である場合には同様に略々 B— 2の量子化精度が必要となることに着目し たものである。具体的に、正規化係数が 4, 2, 1であり、量子化精度インデックス idwl が 3, 4, 5, 6である場合における絶対最大量子化誤差を以下の表 4に示す。
[表 4]
Figure imgf000014_0001
この表 4から分力るように、正規化係数が 4、量子化精度インデックス idwlが 5である ときの絶対最大量子化誤差( = 0.129)は、正規化係数が 2、量子化精度インデックス i dwl力 であるときの絶対最大量子化誤差( = 0.133)と略々同じ値となっている。なお 、量子化精度インデックス idwlが aであるときの量子化ステップ nstepsを 2"aにすれば B 、 B—l、 B— 2は相互に完全に一致する力 ここでは上述した表 1と同様に量子化ス テツプ nstepsを 2 " a— 1として!/、るため、若干の誤差が生じて 、る。
上述した変数 Aとは、最大の正規化係数インデックス idsfに対して割り当てられる最 大量子化ビット数 (最大量子化情報)を示しており、この値は付加情報として符号列 に含められる。なお、後述するが、この変数 Aとしては先ず規格上とり得る最大の量 子化ビット数を設定し、符号化の結果、総使用ビット数が総使用可能ビット数を上回 る場合には、順次繰り下げられる。
この変数 Aの値が 17ビットである場合において、レンジ変換スペクトル毎の正規化 係数インデックス idsfと量子化精度インデックス idwlとの関係を示すテーブルの一例を 以下の表 5に示す。この表 5において丸で囲まれている数字は、レンジ変換スぺタト ル毎に決定された量子化精度インデックス idwlを表すものとする。
[表 5]
Figure imgf000016_0001
正規化係数のインデックス
表 5に示すように、正規ィ匕係数インデックス idsf ^最大の 31である場合には最大量 子化ビット数である 17ビットで量子化が行われ、例えば正規化係数インデックス idsl^ 最大の正規化係数インデックス idsはり 2だけ小さい 29である場合には 15ビットで量 子化が行われる。
ここで、該当する正規化係数インデックス idsfiO最大の正規化係数インデックス idsは りも 17以上小さい場合には量子化ビットがマイナスになってしまうが、その場合は 0ビ ットと下限を設けることとする。なお、正規化係数インデックス idsfには 5ビットが与えら れるため、この表 5で量子化ビット数力 ^ビットとなった場合でも、符号ビットのみ 1ビッ トで記述することにより平均 SNRとして 3dBの精度でスペクトル情報を記録することも 可能であるが、このような符号ビットの記録は必須ではな 、。
以上のようにして、正規化係数インデックス idsi¾ら各レンジ変換スペクトルの量子 化精度インデックスを一意に決定した場合におけるスペクトルの包線 (a)及びノイズフ ロア(b)を図 7に示す。図 7に示すように、この場合のノイズフロアは略々平坦になる。 すなわち、人間の聴感上重要な低域につ!ヽても聴感上重要でな ヽ高域にっ ヽても 一様な量子化精度で量子化を行っているため、雑音感は最小とならない。
そこで、本実施の形態における量子化精度決定部 13は、実際にはレンジ変換スぺ タトル毎に正規化係数インデックス idsfに重み付けを行 、、この重み付けされた正規 ィ匕係数インデックス idsflを用いて上述と同様に量子化精度インデックス idwlを決定す る。
具体的には、先ず以下の表 6に示すように、各レンジ変換スペクトルの正規化係数 インデックス idsfに対して重み係数 Wn[i] (i=0〜NZ2—l)を加算して、新たな正規 ィ匕係数インデックス idsflを生成する。
[表 6]
Figure imgf000018_0001
この表 6の例では、低域の正規化係数インデックス idsfには 4乃至 1の値を加算し、 高域の正規化係数インデックス idsfには何も加算していない。この結果、正規化係数 インデックス idsfの最大値が 35となるため、表 5のテーブルを正規化係数インデックス i dsfの最大加算数である 4だけ大きい方向へ単純に拡張したとすると、例えば以下の 表 7のようになる。この表 7において、破線の丸で囲まれている数字は重み付けを行 わない場合にレンジ変換スペクトル毎に決定された量子化精度インデックス idwlを表 し、実線の丸で囲まれている数字は重み付けを行う場合にレンジ変換スペクトル毎に 決定された量子化精度インデックス idwllを表すものとする。
[表 7]
Figure imgf000019_0001
この表 7の例では、低域の量子化精度が向上するが、最大量子化ビット数 (最大量 子化情報)が増力 tlして総使用ビット数が増加するため、総使用ビット数が総使用可能 ビット数を超えてしまう可能性がある。そこで、現実的には総使用ビット数が総使用可 能ビット数に収まるようにビット調整を行う結果、例えば以下の表 8に示すようなテー ブルとなる。この例では、最大量子化ビット数 (最大量子化情報)を表 7の 21から 19 に減少させることで、総使用ビット数を調整して ヽる。
[表 8]
Figure imgf000020_0001
表 5で決定される量子化精度インデックスと表 8で決定される量子化精度インデック ス idwllとを比較すると以下の表 9のようになる。
[表 9] 1
ο
o
z
1
o
- -
1
m «
+
+
+
この表 9から分かるように、インデックスが 0から 3であるレンジ変換スペクトルの量子 化精度が向上している一方で、インデックスが 6以上のレンジ変換スペクトルの量子 化精度が減少している。このように、正規化係数インデックス idsf〖こ対して重み係数 W n[i]を加算することで、低域にビット^^中させて人間の聴覚に重要な帯域の音質を 向上させることができる。
本実施の形態では、この重み係数 Wn[i]をテーブル化した重み係数テーブル Wn []を予め複数持っておくか、又はモデリング数式及びパラメータを複数持っておき逐 次重み係数テーブル Wn[]を生成するかし、一定の基準を基に音源の特徴 (周波数 エネルギ、過渡特性、ゲイン、マスキング特性など)を判定して、最適と判断される重 み係数テーブル Wn[]を利用する。この判定処理のフローチャートを図 8及び図 9に 示す。
重み係数テーブル Wn[]を予め複数持っておく場合、先ず図 8のステップ S20にお いて、スペクトル信号又は時間領域のオーディオ信号を解析し、特徴量 (周波数エネ ルギ、過渡特性、ゲイン、マスキング特性など)を抽出する。次にステップ S21におい て、この特徴量を元に重み係数テーブル Wn[]を選択し、ステップ S22において、選 択した重み係数テーブル Wn[]のインデックスと重み係数 Wn[i] (i=0〜NZ2— 1) とを出力する。
一方、モデリング数式及びパラメータを複数持っておき逐次重み係数テーブル Wn []を生成する場合、先ずステップ S30において、スペクトル信号又は時間領域のォ 一ディォ信号を解析し、特徴量 (周波数エネルギ、過渡特性、ゲイン、マスキング特 性など)を抽出する。次にステップ S31において、この特徴量を元にモデリング数式 f n (i)を選択し、ステップ S32において、このモデリング数式 fn (i)のパラメータ a, b, c , · · ·を選択する。ここで、モデリング数式 fn (i)とは、レンジ変換スペクトルの順序とパ ラメータ a, b, c, · · ·とからなる多項式であり、例えば下記の式(2)のように表される。 lh(i)=fa(a,i)+ib(b,i)+fc(c,i).... · · · (2)
続いてステップ S33において、このモデリング数式 fn(i)を計算して重み係数テー ブル Wn[]を生成し、モデリング数式 fn (i)のインデックス及びパラメータ a, b, c, . · · と重み係数 Wn[i] (i=0〜NZ2— 1)とを出力する。
なお、この重み係数テーブル Wn[]を選択する際の「一定の基準」は絶対的なもの ではなぐ各信号符号化装置において任意に設定可能なものである。信号符号化装 置では、選択された重み係数テーブル Wn[]のインデックス、又はモデリング数式 fn( i)のインデックス及びパラメータ a, b, c, · · ·を符号列中に含める。信号復号装置で は、この重み係数テーブル Wn[]のインデックス、又はモデリング数式 fn (i)のインデ ックス及びパラメータ a, b, c, …に応じて量子化精度を再計算するため、基準の異 なる信号符号ィ匕装置によって生成された符号列との互換性は保たれる。
以上のようにして、正規化係数インデックス idsfに重み付けを行った新たな正規化係 数インデックス idsflから各レンジ変換スペクトルの量子化精度インデックスを一意に 決定した場合におけるスペクトルの包線 (a)及びノイズフロア (b)の一例を図 10に示 す。重み係数 Wn[i]を全く加算しない場合のノイズフロアは直線 ACEであり、重み係 数 Wn[i]を加算した場合のノイズフロアは直線 BCDになる。つまり、ノイズフロアを直 線 ACEから直線 BCDに変形させるものが重み係数 Wn[i]である。この図 10の例で は、三角形 CDEのビットを三角形 ABCに分配した結果、三角形 ABCの SNRが向上 し、ノイズフロアが右上がりの直線になっている。なお、この例では簡単のため三角形 を用いて説明している力 重み係数テーブル Wn[]、又はモデリング数式及びパラメ ータの持ち方によって、ノイズフロアを任意の形に変形させることが可能である。 ここで、従来の量子化精度の決定処理と本実施の形態における量子化精度の決定 処理とを図 11及び図 12に示す。
従来では、先ずステップ S40において、正規化係数インデックス idsfに従って量子 化精度を決定し、ステップ S41において、スペクトルの本数情報、正規化情報、量子 化情報及びスペクトル情報を符号ィ匕する際に必要となる総使用ビット数を計算する。 続 ヽてステップ S42にお 、て、総使用ビット数が総使用可能ビット数以下である力否 かを判別し、総使用ビット数が総使用可能ビット数以下である場合 (Yes)には処理を 終了し、そうでない場合 (No)にはステップ S40に戻って量子化精度を再度決定する 一方、本実施の形態では、先ずステップ S50において、上述のように重み係数テー ブル Wn[]を決定し、ステップ S51において、正規化係数インデックス idsf〖こ重み係数 Wn[i]を加算して新たな正規化係数インデックス idsflを生成する。続 、てステップ S5 2にお 、て、正規化係数インデックス idsflに従って量子化精度インデックス idwllを一 意に決定し、ステップ S53において、スペクトルの本数情報、正規化情報、重み情報 及びスペクトル情報を符号ィ匕する際に必要となる総使用ビット数を計算する。続 、て ステップ S54にお 、て、総使用ビット数が総使用可能ビット数以下であるか否かを判 別し、総使用ビット数が総使用可能ビット数以下である場合 (Yes)には処理を終了し 、そうでない場合 (No)にはステップ S50に戻って重み係数テーブル Wn[]を再度決 定する。 図 11に従って量子化精度を決定した場合における符号列と図 12に従って量子化 精度を決定した場合における符号列とをそれぞれ図 13の(a)、(b)に示す。図 13に 示すように、重み係数テーブル Wn[]を使用することにより、従来、量子化情報の符 号ィ匕に必要であったビット数よりも少な 、ビット数で重み情報 (最大量子化情報を含 む)を符号ィ匕することができるため、余剰ビットをスペクトル情報の符号ィ匕に使用する ことができる。
なお、上述した重み係数テーブル Wn[]は、信号復号装置の規格を決定した段階 からは変更が利かなくなってしまう。このため、次のような仕組みを予め組み込んでお くこととする。
先ず、上述の例における最大量子化ビット数は最大の正規化係数インデックス idsf に対して与えられる量子化ビット数であり、これは総使用ビット数が総使用可能ビット 数を超えない最も近い値が設定される。これを、総使用ビット数が総使用可能ビット 数に対して余裕を持つように設定する。例えば表 8を例にとると、最大量子化ビット数 は 19ビットである力 これを 10ビットといったように小さな値に留めておく。この場合、 余剰ビットが多量に発生する符号列が生成されるが、その時点での信号復号装置に おいてはそのデータは棄却されるだけである。次世代の信号符号化装置、信号復号 装置では、この余剰ビットを新たに決められた規格に従って配分して符号化'復号す ればよいので、後方互換性は確保できるという利点がある。具体的には、例えば図 1 4の(a)に示すようなどの信号復号装置においても復号可能な符号列に使用するビッ ト数を削減し、余剰ビットを図 14の (b)に示すように新たな重み情報とその重み情報 を用いて符号ィ匕した新たなスペクトル情報に分配することができる。
次に、本実施の形態における信号復号装置の概略構成を図 15に示す。また、図 1 5に示す信号復号装置 2における復号処理の手順を図 16のフローチャートに示す。 以下、図 15を参照しながら、図 16のフローチャートについて説明する。
図 16のステップ S60において、符号列復号部 20は、所定単位時間(フレーム)毎 に符号化された符号列を入力し、ステップ S61において、この符号列を復号する。こ のとき、符号列復号部 20は、復号したスペクトルの本数情報、正規化情報及び重み 情報 (最大量子化情報を含む)を量子化精度復元部 21に供給し、量子化精度復元 部 21は、これらの情報に基づいて量子化精度インデックス idwllを復元する。また、符 号列復号部 20は、復号した本数情報及び量子化スペクトル信号を逆量子化部 22に 供給し、復号した本数情報及び正規化情報を逆正規化部 24に供給する。
このステップ S61における符号列復号部 20及び量子化精度復元部 21の処理につ いて、図 17のフローチャートを用いてさらに詳細に説明する。先ずステップ S70にお いて本数情報を復号し、ステップ S71において正規ィ匕情報を復号し、ステップ S72に おいて重み情報を復号する。次にステップ S 73において、正規化情報を復号して得 られた正規化係数インデックス idsf〖こ重み係数 Wnを加算して正規化係数インデック ス idsflを生成し、ステップ S74において、この正規化係数インデックス idsfl力 量子 化精度インデックス idwllを一意に復元する。
図 16に戻ってステップ S62において、逆量子化部 22は、量子化精度復元部 21か ら供給された量子化精度インデックス idwllに基づ ヽて量子化スペクトル信号を逆量 子化し、レンジ変換スペクトル信号を生成する。逆量子化部 22は、このレンジ変換ス ベクトル信号を逆レンジ変換部 23に供給する。
続 ヽてステップ S63【こお!ヽて、逆レンジ変換咅 23ίま、 0. 0〜士 1. 0の範囲【こレン ジ変換されていたレンジ変換スペクトルの値を ±0. 5〜士 1. 0の範囲に逆レンジ変 換して正規化スペクトル信号を生成する。逆レンジ変換部 23は、この正規化スぺタト ル信号を逆正規化部 24に供給する。
続いてステップ S64において、逆正規ィ匕部 24は、正規化情報を復号して得られた 正規化係数インデックス ids 用いて正規化スペクトル信号を逆正規化し、得られた スペクトル信号を周波数一時間変換部 25に供給する。
続いてステップ S65において、周波数—時間変換部 25は、逆正規化部 24から供 給さえたスペクトル信号を逆 MDCTにより時間領域のオーディオ信号 (PCMデータ 等)に変換し、ステップ S66において、このオーディオ信号を出力する。
最後にステップ S67において、オーディオ信号の最後の符号列であるか否かが判 別され、最後の符号列である場合 (Yes)には復号処理を終了し、そうでない場合 (No )にはステップ S60に戻って次のフレームの符号列を入力する。
以上説明したように、本実施の形態における信号符号化装置 1及び信号復号装置 2によれば、信号符号化装置 1において、各スペクトルの値に依存してビットを割り当 てる際に聴覚特性を利用した重み係数 Wn[i]を用意し、この重み係数 Wn[i]に関す る重み情報を正規化係数インデックス idsf^量子化スペクトル信号とともに符号ィ匕して 符号列に含め、信号復号装置 2では、この符号列を復号して得られる重み係数 Wn[i ]を用いて量子化スペクトル毎の量子化精度を復元し、この量子化精度に応じて量子 ィ匕スペクトル信号を逆量子化することで、再生時の雑音感を最小化することができる また、本実施の形態では、臨界帯域という概念を持たず、全てのスぺ外ルをそれ ぞれ正規化係数で正規化し、その正規化係数を全て符号化して符号列に含める。こ のように、臨界帯域毎ではなくスペクトル毎に正規化係数の記録が必要となるため、 情報効率という点では不利である力 絶対精度的には非常に有利である。但し、スぺ タトル毎に正規化係数を求めることで、隣接するスペクトル同士の正規化係数に存在 する高い相関を利用した効率的な可逆圧縮操作が可能であるため、臨界帯域を用 V、る場合と比較して一方的に情報効率が不利と!/、うことにはならな!、。
なお、本発明は、図面を参照して説明した上述の実施例に限定されるものではなく
、添付の請求の範囲及びその主旨を逸脱することなぐ様々な変更、置換又はその 同等のものを行うことができることは当業者にとって明らかである。 産業上の利用可能性
上述した本発明によれば、信号符号化装置において、各周波数成分の値に依存し てビットを割り当てる際に聴覚特性を利用した重み係数を用意し、この重み係数に関 する重み情報を正規化係数のインデックスや量子化スペクトル信号とともに符号化し て符号列に含め、信号復号装置では、この符号列を復号して得られる重み係数を用 いて周波数成分毎の量子化精度を復元し、この量子化精度に応じて量子化スぺタト ルを逆量子化することで、再生時の雑音感を最小化することができる。

Claims

請求の範囲
[1] 1.入力された時間領域のオーディオ信号を所定単位時間毎に周波数領域のスぺク トル信号に変換するスペクトル変換手段と、
上記各スペクトル信号に対して、所定のステップ幅を有する複数の正規化係数の 何れかを選択し、選択した正規化係数を用いて当該スペクトル信号を正規化して正 規化スペクトル信号を生成する正規化手段と、
該正規化に用 、た正規化係数のインデックスに対してスペクトル信号毎に重み係 数を加算し、該加算結果に基づ!/ヽて各正規化スペクトル信号の量子化精度を決定 する量子化精度決定手段と、
上記量子化精度に応じて上記各正規化スペクトル信号を量子化して量子化スぺク トル信号を生成する量子化手段と、
上記量子化スペクトル信号、上記正規化係数のインデックス及び上記重み係数に 関する重み情報を少なくとも符号化して符号列を生成する符号化手段と
を備えることを特徴とする信号符号化装置。
[2] 2.上記量子化精度決定手段は、上記オーディオ信号又は上記スペクトル信号の特 徴に基づいて上記重み係数を決定することを特徴とする請求の範囲第 1項記載の信 号符号化装置。
[3] 3.上記量子化精度決定手段は、上記重み係数がテーブル化された重み係数テー ブルを複数有しており、上記オーディオ信号又は上記スペクトル信号の特徴に基づ いて該複数の重み係数テーブルの何れかを選択して上記重み係数を決定し、 上記符号化手段は、選択された重み係数テーブルのインデックスを符号化する ことを特徴とする請求の範囲第 2項記載の信号符号ィヒ装置。
[4] 4.上記量子化精度決定手段は、上記スペクトル信号毎の重み係数を決定するため のモデリング数式を複数有しており、上記オーディオ信号又は上記スペクトル信号の 特徴に基づ ヽて該複数のモデリング数式の何れかを選択するとともに選択されたモ デリング数式のパラメータを決定して上記重み係数を決定し、
上記符号化手段は、選択されたモデリング数式のインデックス及び該モデリング数 式のパラメータを符号化する ことを特徴とする請求の範囲第 2項記載の信号符号ィヒ装置。
[5] 5.上記量子化精度決定手段は、上記加算結果が最大となるスペクトル信号に対す る量子化精度が規格上最大の量子化精度となるように上記各正規化スペクトル信号 の量子化精度を決定し、上記符号化手段による符号化の結果、総使用ビット数が総 使用可能ビット数を上回る場合には、総使用ビット数が総使用可能ビット数以下とな るように上記各正規化スペクトル信号の量子化精度を繰り下げることを特徴とする請 求の範囲第 1項記載の信号符号化装置。
[6] 6.上記正規化係数のインデックスが 1ずつ増減すると上記量子化精度が 1ビットず つ増減することを特徴とする請求の範囲第 1項記載の信号符号ィヒ装置。
[7] 7.上記正規化係数は 2倍ずつのステップ幅を有しており、
上記正規化手段は、各スペクトル信号の値よりも大きく且つ各スペクトル信号の値 に最も近い正規化係数を用いて、各スペクトル信号の値を ±0. 5乃至 ± 1. 0の範囲 に正規化する
ことを特徴とする請求の範囲第 1項記載の信号符号ィヒ装置。
[8] 8. ±0. 5乃至 ± 1. 0の範囲に正規化された各正規化スペクトル信号を 0乃至 ± 1.
0の範囲にレンジ変換するレンジ変換手段をさらに備えることを特徴とする請求の範 囲第 7項記載の信号符号化装置。
[9] 9.上記量子化精度決定手段は、上記符号化手段による符号化の結果、総使用ビッ ト数が総使用可能ビット数を下回り余剰ビットが発生するように各正規化スペクトル信 号の量子化精度を決定するとともに、上記正規化係数のインデックスに対して新たな 信号復号装置でのみ復号可能な新たな重み係数をスペクトル信号毎に加算し、該 加算結果に基づいて各正規化スペクトル信号の新たな量子化精度を決定し、 上記符号化手段は、上記余剰ビットを利用して、上記新たな量子化精度に応じて 量子化された量子化スペクトル信号及び上記新たな重み係数をさらに符号ィヒする ことを特徴とする請求の範囲第 1項記載の信号符号ィヒ装置。
[10] 10.入力された時間領域のオーディオ信号を所定単位時間毎に周波数領域のスぺ タトル信号に変換するスペクトル変換工程と、
上記各スペクトル信号に対して、所定のステップ幅を有する複数の正規化係数の 何れかを選択し、選択した正規化係数を用いて当該スペクトル信号を正規化して正 規化スペクトル信号を生成する正規化工程と、
該正規化に用 、た正規化係数のインデックスに対してスペクトル信号毎に重み係 数を加算し、該加算結果に基づ!ヽて各正規化スペクトル信号の量子化精度を決定 する量子化精度決定工程と、
上記量子化精度に応じて上記各正規化スペクトル信号を量子化して量子化スぺク トル信号を生成する量子化工程と、
上記量子化スペクトル信号、上記正規化係数のインデックス及び上記重み係数に 関する重み情報を少なくとも符号化して符号列を生成する符号ィ匕工程と
を有することを特徴とする信号符号化方法。
[11] 11.上記量子化精度決定工程では、上記オーディオ信号又は上記スペクトル信号 の特徴に基づいて上記重み係数を決定することを特徴とする請求の範囲第 10項記 載の信号符号化方法。
[12] 12.入力された時間領域のオーディオ信号を所定単位時間毎に周波数領域のスぺ タトル信号に変換し、所定のステップ幅を有する複数の正規化係数の何れかを用い て、上記各スペクトル信号を正規ィ匕して正規化スペクトル信号を生成し、該正規化〖こ 用いた正規化係数のインデックスに対してスペクトル信号毎に重み係数を加算し、該 加算結果に基づ!、て各正規化スペクトル信号の量子化精度を決定し、上記量子化 精度に応じて上記各正規化スペクトル信号を量子化して量子化スペクトル信号を生 成し、上記量子化スペクトル信号、上記正規化係数のインデックス及び上記重み係 数に関する重み情報を少なくとも符号化して生成した符号列を復号して上記オーデ ィォ信号を復元する信号復号装置であって、
上記量子化スペクトル信号、上記正規化係数のインデックス及び上記重み情報を 少なくとも復号する復号手段と、
上記正規化係数のインデックスに対してスペクトル信号毎に上記重み情報力 決 定された重み係数を加算し、該加算結果に基づ!ヽて各正規化スペクトル信号の量子 化精度を復元する量子化精度復元手段と、
上記各正規化スペクトル信号の量子化精度に応じて上記量子化スペクトル信号を 逆量子化して正規化スペクトル信号を復元する逆量子化手段と、
上記正規化係数を用いて上記各正規化スペクトル信号を逆正規ィ匕してスぺ外ル 信号を復元する逆正規化手段と、
上記スペクトル信号を変換して上記所定単位時間毎のオーディオ信号を復元する 逆スペクトル変換手段と
を備えることを特徴とする信号復号装置。
[13] 13.上記正規化係数のインデックスが 1ずつ増減すると上記量子化精度が 1ビットず つ増減することを特徴とする請求の範囲第 12項記載の信号復号装置。
[14] 14.上記正規化係数は 2倍ずつのステップ幅を有し、上記正規化では、各スペクトル 信号の値よりも大きく且つ各スぺ外ル信号の値に最も近い正規化係数を用いて、各 スペクトル信号の値を ±0. 5乃至 ± 1. 0の範囲に正規化し、この ±0. 5乃至 ± 1. 0 の範囲に正規ィ匕された各正規化スペクトル信号を 0乃至士 1. 0の範囲にレンジ変換 しており、
上記 0乃至 ± 1. 0の範囲にレンジ変換された各正規化スペクトル信号の値を ±0. 5乃至 ± 1. 0の範囲に復元する逆レンジ変換手段をさらに備える
ことを特徴とする請求の範囲第 12項記載の信号復号装置。
[15] 15.入力された時間領域のオーディオ信号を所定単位時間毎に周波数領域のスぺ タトル信号に変換し、所定のステップ幅を有する複数の正規化係数の何れかを用い て、上記各スペクトル信号を正規ィ匕して正規化スペクトル信号を生成し、該正規化〖こ 用いた正規化係数のインデックスに対してスペクトル信号毎に重み係数を加算し、該 加算結果に基づ!、て各正規化スペクトル信号の量子化精度を決定し、上記量子化 精度に応じて上記各正規化スペクトル信号を量子化して量子化スペクトル信号を生 成し、上記量子化スペクトル信号、上記正規化係数のインデックス及び上記重み係 数に関する重み情報を少なくとも符号化して生成した符号列を復号して上記オーデ ィォ信号を復元する信号復号方法であって、
上記量子化スペクトル信号、上記正規化係数のインデックス及び上記重み情報を 少なくとも復号する復号工程と、
上記正規化係数のインデックスに対してスペクトル信号毎に上記重み情報力 決 定された重み係数を加算し、該加算結果に基づ!ヽて各正規化スペクトル信号の量子 化精度を復元する量子化精度復元工程と、
上記各正規化スペクトル信号の量子化精度に応じて上記量子化スペクトル信号を 逆量子化して正規化スペクトル信号を復元する逆量子化工程と、
上記正規化係数を用いて上記各正規化スペクトル信号を逆正規ィ匕してスぺ外ル 信号を復元する逆正規化工程と、
上記スペクトル信号を変換して上記所定単位時間毎のオーディオ信号を復元する 逆スペクトル変換工程と
を有することを特徴とする信号復号方法。
[16] 16.入力された符号列を復号して時間領域のオーディオ信号を復元する信号復号 方法であって、
量子化スペクトル信号、正規化係数のインデックス及び重み情報を少なくとも復号 する復号工程と、
上記正規化係数のインデックスに対してスペクトル信号毎に上記重み情報力 決 定された重み係数を加算し、該加算結果に基づ!ヽて各正規化スペクトル信号の量子 化精度を復元する量子化精度復元工程と、
上記各正規化スペクトル信号の量子化精度に応じて上記量子化スペクトル信号を 逆量子化して正規化スペクトル信号を復元する逆量子化工程と、
上記正規化係数を用いて上記各正規化スペクトル信号を逆正規ィ匕してスぺ外ル 信号を復元する逆正規化工程と、
上記スペクトル信号を変換して上記所定単位時間毎のオーディオ信号を復元する 逆スペクトル変換工程と
を有することを特徴とする信号復号方法。
PCT/JP2005/009939 2004-06-28 2005-05-31 信号符号化装置及び方法、並びに信号復号装置及び方法 WO2006001159A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP16177436.9A EP3096316B1 (en) 2004-06-28 2005-05-31 Signal decoding apparatus and method thereof
EP19198400.4A EP3608908A1 (en) 2004-06-28 2005-05-31 Signal encoding apparatus and method thereof, and signal decoding apparatus and method thereof
CN2005800290709A CN101010727B (zh) 2004-06-28 2005-05-31 信号编码器件和方法与信号解码器件和方法
US11/571,328 US8015001B2 (en) 2004-06-28 2005-05-31 Signal encoding apparatus and method thereof, and signal decoding apparatus and method thereof
EP05745896.0A EP1768104B1 (en) 2004-06-28 2005-05-31 Signal encoding device and method, and signal decoding device and method
KR1020067027378A KR101143792B1 (ko) 2004-06-28 2005-05-31 신호 부호화 장치 및 방법, 및 신호 복호 장치 및 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004190249A JP4734859B2 (ja) 2004-06-28 2004-06-28 信号符号化装置及び方法、並びに信号復号装置及び方法
JP2004-190249 2004-06-28

Publications (1)

Publication Number Publication Date
WO2006001159A1 true WO2006001159A1 (ja) 2006-01-05

Family

ID=35778495

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/009939 WO2006001159A1 (ja) 2004-06-28 2005-05-31 信号符号化装置及び方法、並びに信号復号装置及び方法

Country Status (6)

Country Link
US (1) US8015001B2 (ja)
EP (3) EP3096316B1 (ja)
JP (1) JP4734859B2 (ja)
KR (1) KR101143792B1 (ja)
CN (1) CN101010727B (ja)
WO (1) WO2006001159A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4396683B2 (ja) * 2006-10-02 2010-01-13 カシオ計算機株式会社 音声符号化装置、音声符号化方法、及び、プログラム
KR101390433B1 (ko) * 2009-03-31 2014-04-29 후아웨이 테크놀러지 컴퍼니 리미티드 신호 잡음 제거 방법, 신호 잡음 제거 장치, 및 오디오 디코딩 시스템
US8224978B2 (en) * 2009-05-07 2012-07-17 Microsoft Corporation Mechanism to verify physical proximity
EP2525355B1 (en) * 2010-01-14 2017-11-01 Panasonic Intellectual Property Corporation of America Audio encoding apparatus and audio encoding method
CN102263576B (zh) * 2010-05-27 2014-06-25 盛乐信息技术(上海)有限公司 无线信息传输方法及实现设备
JP2012103395A (ja) 2010-11-09 2012-05-31 Sony Corp 符号化装置、符号化方法、およびプログラム
EP2696343B1 (en) * 2011-04-05 2016-12-21 Nippon Telegraph And Telephone Corporation Encoding an acoustic signal
JP2014102308A (ja) * 2012-11-19 2014-06-05 Konica Minolta Inc 音響出力装置
US8855303B1 (en) * 2012-12-05 2014-10-07 The Boeing Company Cryptography using a symmetric frequency-based encryption algorithm
EP3079151A1 (en) * 2015-04-09 2016-10-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Audio encoder and method for encoding an audio signal

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06291671A (ja) * 1991-12-03 1994-10-18 Matsushita Electric Ind Co Ltd ディジタルオーディオ信号の符号化方法
WO1995002930A1 (en) * 1993-07-16 1995-01-26 Dolby Laboratories Licensing Coproration Computationally efficient adaptive bit allocation for coding method and apparatus
JPH0744192A (ja) * 1993-07-26 1995-02-14 Sony Corp 情報符号化又は情報復号化方法、並びに記録媒体
JPH08129400A (ja) * 1994-10-31 1996-05-21 Fujitsu Ltd 音声符号化方式
JPH10240297A (ja) * 1996-12-27 1998-09-11 Mitsubishi Electric Corp 音響信号符号化装置
JP2001306095A (ja) * 2000-04-18 2001-11-02 Mitsubishi Electric Corp オーディオ符号化装置及びオーディオ符号化方法
JP2002158589A (ja) * 2000-09-11 2002-05-31 Matsushita Electric Ind Co Ltd 符号化装置および復号化装置
JP2002221997A (ja) * 2001-01-24 2002-08-09 Victor Co Of Japan Ltd オーディオ信号符号化方法
JP2003323198A (ja) 2002-05-07 2003-11-14 Sony Corp 符号化方法及び装置、復号方法及び装置、並びにプログラム及び記録媒体

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69217590T2 (de) * 1991-07-31 1997-06-12 Matsushita Electric Ind Co Ltd Verfahren und Einrichtung zur Kodierung eines digitalen Audiosignals
JP3318825B2 (ja) * 1996-08-20 2002-08-26 ソニー株式会社 デジタル信号符号化処理方法、デジタル信号符号化処理装置、デジタル信号記録方法、デジタル信号記録装置、記録媒体、デジタル信号伝送方法及びデジタル信号伝送装置
DE69940918D1 (de) * 1998-02-26 2009-07-09 Sony Corp Verfahren und vorrichtung zur kodierung/dekodierung sowie programmaufzeichnungsträger und datenaufzeichnungsträger
WO2002023530A2 (en) * 2000-09-11 2002-03-21 Matsushita Electric Industrial Co., Ltd. Quantization of spectral sequences for audio signal coding
JP4506039B2 (ja) * 2001-06-15 2010-07-21 ソニー株式会社 符号化装置及び方法、復号装置及び方法、並びに符号化プログラム及び復号プログラム
JP4005906B2 (ja) 2002-12-09 2007-11-14 大成建設株式会社 掘削撹拌装置及び地盤改良方法
JP4168976B2 (ja) * 2004-05-28 2008-10-22 ソニー株式会社 オーディオ信号符号化装置及び方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06291671A (ja) * 1991-12-03 1994-10-18 Matsushita Electric Ind Co Ltd ディジタルオーディオ信号の符号化方法
WO1995002930A1 (en) * 1993-07-16 1995-01-26 Dolby Laboratories Licensing Coproration Computationally efficient adaptive bit allocation for coding method and apparatus
JPH0744192A (ja) * 1993-07-26 1995-02-14 Sony Corp 情報符号化又は情報復号化方法、並びに記録媒体
JPH08129400A (ja) * 1994-10-31 1996-05-21 Fujitsu Ltd 音声符号化方式
JPH10240297A (ja) * 1996-12-27 1998-09-11 Mitsubishi Electric Corp 音響信号符号化装置
JP2001306095A (ja) * 2000-04-18 2001-11-02 Mitsubishi Electric Corp オーディオ符号化装置及びオーディオ符号化方法
JP2002158589A (ja) * 2000-09-11 2002-05-31 Matsushita Electric Ind Co Ltd 符号化装置および復号化装置
JP2002221997A (ja) * 2001-01-24 2002-08-09 Victor Co Of Japan Ltd オーディオ信号符号化方法
JP2003323198A (ja) 2002-05-07 2003-11-14 Sony Corp 符号化方法及び装置、復号方法及び装置、並びにプログラム及び記録媒体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1768104A4

Also Published As

Publication number Publication date
EP3096316A1 (en) 2016-11-23
KR101143792B1 (ko) 2012-05-15
KR20070029755A (ko) 2007-03-14
EP3608908A1 (en) 2020-02-12
EP1768104A1 (en) 2007-03-28
JP2006011170A (ja) 2006-01-12
JP4734859B2 (ja) 2011-07-27
EP1768104B1 (en) 2016-09-21
CN101010727B (zh) 2011-07-06
EP3096316B1 (en) 2019-09-25
EP1768104A4 (en) 2008-04-02
US8015001B2 (en) 2011-09-06
US20080015855A1 (en) 2008-01-17
CN101010727A (zh) 2007-08-01

Similar Documents

Publication Publication Date Title
US10546594B2 (en) Signal processing apparatus and signal processing method, encoder and encoding method, decoder and decoding method, and program
WO2006001159A1 (ja) 信号符号化装置及び方法、並びに信号復号装置及び方法
US9659573B2 (en) Signal processing apparatus and signal processing method, encoder and encoding method, decoder and decoding method, and program
JP3579047B2 (ja) オーディオ復号装置と復号方法およびプログラム
JP4168976B2 (ja) オーディオ信号符号化装置及び方法
EP1914725B1 (en) Fast lattice vector quantization
JP5267362B2 (ja) オーディオ符号化装置、オーディオ符号化方法及びオーディオ符号化用コンピュータプログラムならびに映像伝送装置
JP2019191594A (ja) 音声音響符号化装置、音声音響復号装置、音声音響符号化方法及び音声音響復号方法
JP4548348B2 (ja) 音声符号化装置及び音声符号化方法
WO2005111568A1 (ja) 符号化装置、復号化装置、およびこれらの方法
JP3636094B2 (ja) 信号符号化装置及び方法、並びに信号復号装置及び方法
JP4736812B2 (ja) 信号符号化装置及び方法、信号復号装置及び方法、並びにプログラム及び記録媒体
JP2011059714A (ja) 信号符号化装置及び方法、信号復号装置及び方法、並びにプログラム及び記録媒体
JP2002023799A (ja) 音声符号化装置及びそれに用いる心理聴覚分析方法
JP2004029761A (ja) 音声信号を送信およびパックするためのデジタル符号化方法およびアーキテクチャ
JP3519859B2 (ja) 符号器及び復号器
JP3344944B2 (ja) オーディオ信号符号化装置,オーディオ信号復号化装置,オーディオ信号符号化方法,及びオーディオ信号復号化方法
KR20160120713A (ko) 복호 장치, 부호화 장치, 복호 방법, 부호화 방법, 단말 장치, 및 기지국 장치
JP2006018023A (ja) オーディオ信号符号化装置、および符号化プログラム
JP4635709B2 (ja) 音声符号化装置及び方法、並びに音声復号装置及び方法
JP4191503B2 (ja) 音声楽音信号符号化方法、復号化方法、符号化装置、復号化装置、符号化プログラム、および復号化プログラム
JP4024185B2 (ja) デジタルデータ符号化装置
JP4409733B2 (ja) 符号化装置、符号化方法、及びその記録媒体
JP2005004119A (ja) 音響信号符号化装置及び音響信号復号化装置
JP5018557B2 (ja) 符号化装置、復号化装置、符号化方法、復号化方法及びプログラム

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 7750/DELNP/2006

Country of ref document: IN

REEP Request for entry into the european phase

Ref document number: 2005745896

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2005745896

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11571328

Country of ref document: US

Ref document number: 1020067027378

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 200580029070.9

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020067027378

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005745896

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11571328

Country of ref document: US