WO2005121391A1 - ニュートラライザ - Google Patents

ニュートラライザ Download PDF

Info

Publication number
WO2005121391A1
WO2005121391A1 PCT/JP2005/000850 JP2005000850W WO2005121391A1 WO 2005121391 A1 WO2005121391 A1 WO 2005121391A1 JP 2005000850 W JP2005000850 W JP 2005000850W WO 2005121391 A1 WO2005121391 A1 WO 2005121391A1
Authority
WO
WIPO (PCT)
Prior art keywords
neutralizer
filament
electrodes
pair
base
Prior art date
Application number
PCT/JP2005/000850
Other languages
English (en)
French (fr)
Inventor
Hiroyuki Komuro
Masayuki Takimoto
Yutaka Fuse
Tatsumi Abe
Kazuhito Aonahata
Original Assignee
Showa Shinku Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Shinku Co., Ltd. filed Critical Showa Shinku Co., Ltd.
Priority to CN2005800130305A priority Critical patent/CN1946870B/zh
Publication of WO2005121391A1 publication Critical patent/WO2005121391A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/026Means for avoiding or neutralising unwanted electrical charges on tube components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/305Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching
    • H01J37/3053Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching for evaporating or etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/31Processing objects on a macro-scale
    • H01J2237/3132Evaporating

Definitions

  • the present invention relates to a neutralizer which is a mechanism for emitting thermoelectrons from a filament to which a voltage has been applied.
  • IAD Ion Assist Deposition
  • FIG. 6 is a schematic view of a vacuum evaporation apparatus for an optical thin film using the IAD method.
  • IAD method an outline of thin film formation in the apparatus shown in the figure will be described.
  • An evacuation system including a main pump 32, a main valve 34, a roughing pump 33, a roughing valve 35, an auxiliary valve 36, and the like is attached to the vacuum chamber 30 for vacuum evacuation.
  • a substrate 41 Inside the vacuum chamber main body 30, there are a substrate 41, a substrate dome 42 on which the substrate 41 is mounted, a substrate heating heater 43 for heating the substrate 41, a vapor deposition material 39, a crucible 38 for depositing the vapor deposition material 39, and a vapor deposition material 39.
  • An electron gun 40 that heats to the evaporation temperature, a shutter 37 that closes when vapor deposition is completed, shields the vapor deposition material 39, an ion source 31 that irradiates ions for assistance, and a neutralizer 46 that emits electrons to the substrate dome 42 are arranged.
  • a substrate dome rotating mechanism 44 a not shown, various power supplies, and the like are arranged outside the vacuum chamber.
  • the IAD assists the deposition molecules with positively charged cations, so that cations accumulate in the substrate or the substrate dome on which the substrate is mounted, and the entire substrate dome becomes positively charged. This phenomenon is called charge-up.
  • FIG. 7 illustrates the state of the substrate dome 42 before charge-up
  • FIG. 8 illustrates the state of the substrate dome 42 during charge-up.
  • the deposition molecule 50 is assisted by the cations 51 and jumps toward the substrate dome 42 to form a dense thin film. It becomes.
  • the potential difference between the substrate dome 42 and the cations 51 decreases, and the effect of the assist is weakened. Also, an arc discharge 52 occurs between the substrate dome 42 and the other components 53.
  • the neutralizer 46 is a mechanism that discharges electrons having a negative charge toward the substrate dome 42 and performs electrical neutralization on the substrate dome 42 in order to prevent charge up of the substrate dome 42.
  • Patent Document 1 it is disclosed in Patent Document 1 and the like relating to a film forming apparatus for an optical element.
  • the neutralizer mechanism is a mechanism that emits electrons, it also plays a role as a trigger for causing accelerated electrons to collide with a gas introduced into the vacuum chamber to promote ionization and generate plasma.
  • FIG. 9 shows a schematic cross-sectional view of a conventional neutralizer 46.
  • the neutralizer shown in the figure includes a filament 60 that emits thermoelectrons, an electrode 61 that applies an accelerating voltage to the filament 60 and causes a filament current to flow, a filament presser 62 that fixes the filament 60 to the electrode 61, and an electrode 61 and the filament. Covers the screws 63 for fastening to the presser 62, the base 64 for mounting the electrodes 61, the interelectrode insulator 65 for insulating between the electrodes 61, the base insulator 66 for insulating between the electrodes 61 and the base 64, the electrodes 61 and the filament 60.
  • the cap 67 has an anode cap 68 that covers the cap 67 and extracts thermoelectrons emitted from the filament 60.
  • the configuration is such that a wire from an external power supply for the vacuum chamber is connected to the electrode 61, a kneading speed voltage is applied to the filament 60 fixed to the electrode 61, a current flows through the filament, and thermoelectrons are emitted from the filament 60. Release.
  • the anode cap 68 and the base 64 are grounded, and the electrons emitted from the filament 60 are drawn out to the anode cap 68, which is at the earth potential, and irradiated toward the substrate dome 42.
  • a positive potential may of course be applied to the anode cap 68.
  • the cap 67 and the electrode 61, and the anode cap 68 and the base 64 are each finely threaded so as to be screwed. Other components are fixed with screws.
  • the evaporation material 39 is put into the crucible 38. Then, the inside of the vacuum chamber is evacuated to a pressure of about several Pa using the roughing pump 33 and the roughing valve 35, and then the main pump 32, the main valve 34 and the auxiliary valve 36 are used, and the vacuum is evacuated to a high vacuum. Do. After the inside of the vacuum chamber is in a vacuum state, the substrate 41 is heated by the substrate heater 43 while rotating the substrate dome 42 by the substrate dome rotating mechanism 44. When the degree of vacuum and the substrate temperature reach the target values, the electron gun 40 irradiates an electron beam onto the vapor deposition material 39 to raise the temperature of the vapor deposition material 39 to the evaporation temperature.
  • Irradiation is performed using an ion source (ion gun) 31.
  • the ionization means is not limited to an ion source.
  • a high-frequency voltage hereinafter referred to as RF
  • RF high-frequency voltage
  • the shutter 37 is opened, the vapor deposition material 39 scatters in the vacuum chamber, and is deposited on the substrate 42 with the assistance of ions to form a dense thin film.
  • the neutralizer 46 simultaneously emits electrons toward the substrate.
  • Patent Document 1 JP 2004-131783 A
  • the neutralizer is a mechanism that emits thermoelectrons from a filament that has generated heat by resistance heating, the filament and the electrode rise to a high temperature when energized.
  • the electrode expands significantly when energized due to the difference in the coefficient of thermal expansion between the force electrode and the insulator, which are fixed on the insulator with screws for the purpose of insulation. Problems such as the insulator being distorted and being damaged occurred.
  • the linear expansion coefficient of stainless steel SUS304 is about 17.3E-6
  • the linear expansion coefficient of alumina insulator is about 7.0. Since it is E-6, current flows through the filament, and the temperature inside the unit is several hundred. When the temperature rises to C, the stainless steel expands significantly more than the insulator due to the difference in linear expansion coefficient.
  • the inter-electrode insulator is sandwiched between the electrodes and securely fixed with screws, so that distortion or breakage occurs during thermal expansion.
  • the base insulator is also fixed to the inside of the base by screws, distortion and breakage occur as in the case of thermal expansion.
  • the conventional neutralizer mechanism has a structure in which the anode cap and the cap are removed, the filament mounting screw is loosened, and the filament is exchanged because the anode cap and the cap are screwed with fine screws. If residual heat remains in the main body after using the neutralizer, there is a problem that the fine screws may bite. If the filament mounting screws are not evenly tightened, the filament heating may cause damage to the filament presser, galling and loosening of the filament mounting bolts, etc. There was also the problem of differences.
  • a first aspect of the present invention is a neutralizer having a filament, a pair of electrodes for passing a current through the filament, and a base for supporting the pair of electrodes in an insulated state.
  • a neutralizer having a holding means for holding the relative position so as to be movable in at least one direction.
  • one direction is a direction perpendicular to the distance direction between the pair of electrodes.
  • the holding means comprises a fixing means and a positioning means, and the fixing means fixes at least one position for each electrode based on a pair of electrodes and performs positioning.
  • the means is configured such that a pair of electrodes is positioned relative to the base at at least one location for each electrode, and the relative positions of the pair of electrodes and the base can be changed in at least one direction.
  • the fixing means includes a first through-fixing tool made of a bolt or a screw
  • the positioning means includes a pair of first holes provided in the pair of electrodes, a pair of second holes provided in the base, and At least a second through-fixture penetrating the first hole, the first or second hole has a shape different from the outer peripheral side surface shape of the second through-fixture, The area of the second hole is set to be larger than the cross-sectional area cut by the base surface of the second through-fixing device.
  • the first or second hole has a substantially elliptical shape having a long radius in a direction perpendicular to a distance direction between the pair of electrodes, or an elliptical shape extending in the direction.
  • the base was made so that at least the portion fixed to the electrode was made of an insulator.
  • a second aspect of the present invention is the neutralizer according to the first aspect, further comprising a filament retainer for fixing the filament to the electrode, and a cross section of each electrode in the direction of the distance between the pair of electrodes.
  • a filament retainer for fixing the filament to the electrode, and a cross section of each electrode in the direction of the distance between the pair of electrodes.
  • the filament retainer has a shape that fits into the recess, and the filament retainer is fixed to the electrode with a third insertion fixture.
  • the part is supported.
  • the shape of the chip was made substantially trapezoidal.
  • the third insertion fixture was a bolt.
  • a third aspect of the present invention is the neutralizer according to the first or second aspect, wherein a plurality of filaments are fixed to the electrode.
  • a fourth aspect of the present invention is the neutralizer according to any one of the first to third aspects, further comprising an anode plate for extracting electrons emitted from the filament, and a side plate for covering the filament and the side surface of the electrode.
  • the anode plate is fixed to the upper surface of the side plate by a fourth through-hole fixture. Further, a bolt was used as the fourth through-hole fixture.
  • a fifth aspect of the present invention is the neutralizer according to any of the first to fourth aspects, wherein all of the fixing fixtures used are penetrated in the same direction.
  • a sixth aspect of the present invention relates to a Neutral having a base having a different coefficient of thermal expansion from a filament, a pair of electrodes for applying a voltage to apply a current to the filament, and an electrode for supporting the pair of electrodes in an insulated state.
  • a method of fixing a pair of electrodes to a base in a riser, wherein the pair of electrodes and the base are fixed in such a manner that relative positions can be changed in at least one direction. is there. Further, the-direction is a direction perpendicular to the inter-electrode distance direction of the pair of electrodes.
  • a seventh aspect of the present invention is a method of assembling or disassembling the neutralizer according to any of the first to fifth aspects by inserting all of the through-fixtures used in only one direction. The invention's effect
  • the neutralizer of the present invention proposes a design that prevents distortion or breakage caused by thermal expansion while reducing the number of parts, thereby contributing to prolonging the life and reducing costs. It is also effective in improving maintainability and preventing individual differences in assembly and adjustment by workers.
  • FIG. 1 is an external view of a neutralizer mechanism of the present invention.
  • FIG. 2 is a schematic view of the inside of the neutralizer mechanism of the present invention.
  • FIG. 5 is a schematic view of another embodiment of the present invention.
  • FIG. 9 is a schematic cross-sectional view of a conventional neutralizer
  • Substrate heating heater Substrate dome rotation mechanism Deposition molecules
  • FIG. 1 shows an external view of an embodiment of the present invention
  • FIG. 2 shows an internal schematic diagram.
  • the neutralizer according to the present invention is mounted on the same vacuum device as the device shown in FIG. 6, and the operation thereof is the same as that of the conventional device, and therefore the description is omitted.
  • the device is not limited to this.
  • the neutralizer shown in FIGS. 1 and 2 includes a filament 1, an electrode 2 for applying an accelerating voltage to flow a current to the filament 1, and a crimping terminal 10 for connecting a wire from an external power supply to the electrode 2 to the electrode 2. , Filament holder 3 for fixing filament 1 to electrode 2, screw 4 for fastening electrode 2 and filament holder 3, base insulator 7 for mounting electrode 2, neutralizer case 12 for covering electrode 2 and filament 1, filament And an anode plate 11 for extracting thermoelectrons emitted from 1.
  • the anode plate 11 is fixed to the anode support 6 by mounting screws 13.
  • the neutralizer case 12 is arranged on the neutralizer base 5 and is sandwiched between the anode plate 11 and has a structure that does not fall off.
  • the anode plate 11, the neutralizer case 12, and the anode support 6 are all bolted separately, but all may be integrally formed in a box shape. .
  • the embodiment employs a structure in which a plate-shaped anode is screwed without using a cap-shaped anode 68 screwed with a fine screw, so that a structure such as galling due to heating is minimized. .
  • the conventional structure which is double-covered by the cap 67 and the anode cap 68, has been changed to a single cover, it also contributes to simplification of the configuration and improvement of maintainability.
  • the electrode 2 is fixed on a base insulator 7 fixed with screws on a neutralizer base 5 by a positioning pin 8 and a countersunk screw 9 while being insulated from the neutralizer base 5.
  • the base insulator 7 is made of an insulator, but a base having at least a contact surface with the electrode 2 made of an insulating material may be used.
  • FIG. 3 shows a detailed view of the positioning pin 8.
  • the hole 80 for the positioning pin 8 provided in the electrode 2 has a substantially elliptical shape having a long radius in a direction perpendicular to the inter-electrode distance direction, and the short radius of the substantially ellipse is slightly larger than the diameter of the pin 8.
  • this approximately elliptical shape Is a concept including an ellipse obtained by extending a circle in one direction.
  • the direction of arrow C shown in FIG. 3 and the direction of arrow B shown in FIG. 2 are maintained, and the distance between the electrodes is reliably maintained. Therefore, since the structure does not require the interelectrode insulator 65 as in the conventional type shown in FIG. 9, there is no possibility of the interelectrode insulator being damaged.
  • the shape of the hole 80 for the positioning pin 8 allows the electrode 2 to thermally expand only in the direction A shown in FIG. Since the electrode is fixed with screws at both ends as in the past, one side is fixed by the positioning pin 8, so even if the filament 1 is heated by energization, the electrode 2 can expand thermally, and it is impossible for the base insulator 7. It is possible to significantly reduce the possibility that the base insulator 7 is damaged without applying a large force.
  • the shape of the force hole 80 in which the hole 80 is substantially elliptical or oblong has a degree of freedom of movement of the positioning pin 8 in a direction (longitudinal direction) perpendicular to the distance between the electrodes 2.
  • any other shape may be used as long as the movable range is limited in the distance direction between the electrodes.
  • the force S assuming that the cross section of the positioning pin 8 is circular, and if the position can be determined, the fragment does not need to be circular. I'm sorry.
  • the shape of the hole 80 may correspond to the cross-sectional shape of the positioning pin 8 in accordance with this.
  • a hole having the above-described shape may be provided in the base insulator 7 instead of the electrode 2, or may be provided in both the electrode 2 and the base insulator 7.
  • the positioning pin 8 may penetrate the base insulator 7, or the terminal of the positioning pin 8 may be located in the base insulator 7.
  • the positioning pin 8 penetrates through the base insulator 7, it is necessary to insulate the positioning pin 8 to insulate the neutralizer base 5 from the positioning pin 8.
  • the positioning pins 8 are fixed to the neutralizer base 5, so that it is necessary to insulate the positioning pins 8 as described above.
  • the electrode 2 and the base insulator 7 may be fixed at all positions by the positioning pins 8, but in this case, since the position of the electrode 2 can be freely moved with respect to the base insulator 7, in the embodiment, A method is adopted in which one end is accurately positioned with a countersunk bolt 9.
  • the number of insulators that may be damaged is reduced to only one, and the electrodes and the insulators are connected to each other.
  • the filament 1 is fixed to the electrode 2 by the filament presser 3 and the screw 4 for attaching the filament, and a power is applied to the filament 1 via the crimping terminal 10 and the electrode 2 by a power source outside the vacuum chamber, and a current flows.
  • the filament retainer 3 is formed of a block having a substantially trapezoidal cross section, and is fixed to the electrode 2 by being screwed in the direction of arrow D shown in FIG. Due to the substantially trapezoidal block, a force acts on the filament 1 in the direction of arrow E shown in FIG. 4, and the filament 1 can be securely fixed. Further, by making the cross section of the filament presser 3 a substantially trapezoidal block, it is possible to simultaneously and reliably fix a plurality of filaments.
  • the cross-sectional shape of the filament retainer 3 is a trapezoid with an upward opening. If the pressure is applied to the side surface of the filament retainer 3 by pressing downward, for example, an upwardly opened polygon, such as a polygon, etc. It is also possible to configure with other cross-sectional shapes.
  • the embodiment by adopting a structure in which a plurality of filaments are mounted in one unit, it is possible to add a filament without adding a unit as in the conventional case, and the number of parts is greatly reduced. Became possible.
  • the number of filaments installed in one unit can be selected as appropriate, and of course one filament can be installed in one unit. In this case, the size may be reduced by the same mechanism as in the embodiment. Since the filament can be used regardless of the shape, a desired shape may be appropriately selected.
  • the shape of the filament presser 3 is a substantially trapezoidal block, and a structure that can securely fix the filament 1 by screwing from the upper surface is employed. Reduced.
  • the structure in which the filament presser 3 is screwed from the upper surface, and the structure in which the plate-shaped anode 11 is screwed from the upper surface can unify the screwing direction of the attachment parts. It became.
  • the embodiment employs a structure in which all the parts that are detached during filament replacement and maintenance are screwed from the top, so that workability and maintainability are maintained. It is possible to remarkably improve the instability.
  • FIG. 5 shows another embodiment of the present invention.
  • a long hole is formed in the electrode 2 and the positioning pin 8 is mounted on the insulator 7 in order to obtain a movable range during thermal expansion of the electrode, but the neutralizer shown in FIG.
  • the insulator 20 is divided, one of the divided insulators is screwed on the neutralizer base 5, the other insulator is subjected to a long hole processing, and fixed by the positioning pin 21. If the electrodes are fixed on the divided insulators 20 with bolts 22, a movable range during thermal expansion can be provided as in the embodiment shown in FIG.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Physical Vapour Deposition (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

 電極が熱膨張しても歪みや破損のないニュートラライザを低コストかつ高メンテナンス性な構成にて提供する。  フィラメント、フィラメントに電流を流す一対の電極、及び、一対の電極を絶縁状態で支持するベースを有するニュートラライザであって、一対の電極とベースとを相対位置が少なくとも一方向に変動可能な状態で保持する保持手段を有する構成とした。

Description

明 細 書
ニュートラライサ
技術分野
[0001] 本発明は、電圧を印加したフィラメントから熱電子を放出する機構であるニュートラ ライザに関するものである。
背景技術
[0002] 真空蒸着法等において、真空槽内部へ導入したガスを電離させ、発生した陽ィォ ンによって蒸着分子を基板へ押し付けることにより密着力が強く緻密な薄膜を形成す る手法を一般的に Ion Assist Deposition (以下 IADと称す。)と呼ぶ。
[0003] 図 6は IAD法を用いた光学薄膜用真空蒸着装置の概略図であり、以下同図に示す 装置における薄膜形成の概要を説明する。
真空槽 30本体には真空排気のためにメインポンプ 32、メインバルブ 34、粗引ポン プ 33、粗引バルブ 35や補助バルブ 36などで構成される排気系が取付けられる。真 空槽本体 30内部には基板 41、基板 41を搭載する基板ドーム 42、基板 41を加熱す るための基板加熱用ヒーター 43、蒸着材料 39、蒸着材料 39を入れる坩堝 38、蒸着 材料 39を蒸発温度まで加熱する電子銃 40、蒸着完了時に閉じ蒸着材料 39を遮蔽 するシャッター 37、アシストのためのイオンを照射するイオン源 31、基板ドーム 42に 対して電子を放出するニュートラライザ 46などが配置され、真空槽外部には、基板ド ーム回転機構 44、図示しなレ、各種電源等が配置される。
[0004] IADは通常、プラスの電荷を持つ陽イオンによって蒸着分子をアシストするため、基 板もしくは基板を搭載する基板ドームに陽イオンが溜まり、基板ドーム全体がプラス の電荷を帯びてしまう。この現象をチャージアップと呼ぶ。
チャージアップが発生すると基板ドームとアース電位である他の構成部品との間で 絶縁破壊を起こしアーク放電が発生してしまう。また、基板ドーム全体がプラスの電荷 を持ってしまう事により陽イオンが基板ドームへ向かっていかずアシストの効果が弱ま るといった不具合も発生する。
[0005] 図 7にチャージアップ前、図 8にチャージアップ時の基板ドーム 42の様子を説明す る模式図を示す。
図 7に示すように基板ドーム 42がチャージアップしていない状態であれば、蒸着分 子 50が陽イオン 51によってアシストされ基板ドーム 42に向かって飛び込んでいき、 緻密な薄膜を形成することが可能となる。しかし、図 8に示すように基板ドーム 42がチ ヤージアップしている状態であると、基板ドーム 42と陽イオン 51間の電位差が減少し 、アシストの効果が弱まってしまう。また、基板ドーム 42と他の構成部品 53間でアーク 放電 52が発生してしまう。
[0006] ニュートラライザ 46は、基板ドーム 42のチャージアップを防止するために、マイナス の電荷を持つ電子を基板ドーム 42に向かって放出し、基板ドーム 42上において電 気的中和を行なう機構であり、例えば光学素子の成膜装置に関する特許文献 1等に 開示される。
[0007] ニュートラライザ機構は電子を放出させる機構であるため、加速された電子を真空 槽内部に導入したガスに衝突させて電離を促しプラズマを発生させる引き金としての 役割も担っている。
[0008] 図 9に、従来のニュートラライザ 46の概略断面図を示す。
同図に示すニュートラライザは、熱電子を放出するフィラメント 60、フィラメント 60に 加速電圧を印加してフィラメント電流を流す電極 61、電極 61に対してフィラメント 60 を固定するフィラメント押え 62、電極 61とフィラメント押え 62とを締結するビス 63、電 極 61を取付けるベース 64、電極 61間を絶縁する電極間碍子 65、電極 61とベース 6 4間を絶縁するベース碍子 66、電極 61及びフィラメント 60をカバーするキャップ 67、 キャップ 67をカバーしフィラメント 60から放出する熱電子を引出すアノードキャップ 6 8を有する。
[0009] その構成は、真空槽外部電源からの配線を電極 61に接続し、電極 61に固定され るフィラメント 60へカ卩速電圧を印加してフィラメントに電流を流し、フィラメント 60より熱 電子を放出するものである。アノードキャップ 68及びベース 64は接地され、フィラメン ト 60より放出された電子は、アース電位であるアノードキャップ 68に引出され基板ド ーム 42に向かって照射される。アノードキャップ 68にはもちろん正の電位を与えても よい。 [0010] キャップ 67と電極 61、アノードキャップ 68とベース 64には、お互い細目のネジが切 られており、ねじ込む構造となっている。その他構成部品についてはビス留めによつ て固定されている。
[0011] 図 6に示す装置により蒸着を行なう場合は、まず基板ドーム 42に蒸着を行なう基板
41を設置する。そして蒸着材料 39を坩堝 38に入れる。そして粗引ポンプ 33及び粗 引きバルブ 35を用い真空槽内を数 Pa程度の圧力まで真空引きした後メインポンプ 3 2やメインバルブ 34及び補助バルブ 36などを用レ、、高真空まで真空排気を行なう。 真空槽内が真空状態となつてから、基板ドーム回転機構 44により基板ドーム 42を回 転させながら基板用ヒーター 43用いて基板 41を加熱する。真空度及び基板温度が 目標値に到達したら電子銃 40から電子ビームを蒸着材料 39へ照射し、蒸着材料 39 を蒸発温度まで昇温させる。また、イオン源 (イオン銃) 31を用いてイオンを照射する 。イオン化手段はイオン源に限られるものではなぐ例えば、基板ドームに高周波電 圧(以下、 RFと称す。)を印カロ、もしくはアンテナを導入してこれに RFを印加すること により真空槽内部にプラズマを発生させてイオンィ匕する等適宜選択すればよい。シャ ッター 37を開くと蒸着材料 39は真空槽内を飛散し、イオンにアシストされて基板 42 上に堆積することで緻密な薄膜を形成する。このとき同時にニュートラライザ 46から は基板に向けて電子を放出する。膜厚が目標値に到達したらシャッター 37を閉じ、 電子銃 40やニュートラライザ 46、基板加熱用ヒーター 43、及びイオン源 31などを停 止させ、冷却後真空槽内に大気を導入した後薄膜が形成された基板を取り出す。 特許文献 1 :特開 2004 - 131783号公報
発明の開示
発明が解決しょうとする課題
[0012] ニュートラライザは、抵抗加熱により発熱したフィラメントから熱電子を放出する機構 であるため、フィラメント及び電極は通電時に高温度まで上昇してしまう。
従来型ニュートラライザ機構は、絶縁を目的として電極が碍子上にビス留めにて固 定されている力 電極と碍子との熱膨張率の違いから通電時に電極が碍子に比して 大きく膨張し、碍子が歪んでしまうという問題や、破損してしまうという問題が発生して いた。 例えば、電極材料にステンレス鋼 SUS304を、碍子材料にアルミナ製絶縁碍子を用 いた場合、ステンレス鋼 SUS304の線膨張係数は約 17.3E-6であり、アルミナ製絶縁碍 子の線膨張係数は約 7.0E-6であるため、フィラメントに電流を流し、ユニット内の温度 が数百。 Cに上昇すると線膨張係数の差によりステンレス鋼が碍子よりも格段に熱膨 張する。このとき、電極間碍子は電極に挟まれビスで確実に固定されているため、熱 膨張時に歪みや破損が生じてしまう。また、ベース碍子もベース内部へビスによって 固定されているため、熱膨張時同様に歪みや破損が生じてしまう。
[0013] また、従来型ニュートラライザ機構は、アノードキャップ及びキャップを外し、フィラメ ント取付けビスを緩めてフィラメントの交換を行なう力 アノードキャップ及びキャップ は細目のネジによってネジ込む構造となっているため、ニュートラライザ使用後本体 に余熱が残っている場合、この細目ネジにかじり等が発生してしまうという問題があつ た。カロえて、フィラメント取付けビスを均等に締め付けないと、フィラメント通電時加熱 の影響でフィラメント押えの破損、フィラメント取付けボルトのかじり、緩み等が発生す る可能性もあり、フィラメント交換時の作業性に個人差が生じてしまうという問題もあつ た。
[0014] 更に、従来型のニュートラライザ機構でフィラメントを 2つ使用する必要の有る場合、 図 9に示すニュートラライザ機構全体を 2式搭載する必要があり、その結果部品点数 力 ¾倍に増えてしまレ、、真空槽内部における占有面積の拡大及びコストアップという 問題も発生していた。
課題を解決するための手段
[0015] 本発明は、電極が熱膨張しても歪みや破損のないニュートラライザを、低コストかつ 高メンテナンス性な構成にて提供することを目的とするものである。
[0016] 本発明の第 1の側面は、フィラメント、フィラメントに電流を流す一対の電極、及び、 一対の電極を絶縁状態で支持するベースを有するニュートラライザであって、一対の 電極とベースとを相対位置が少なくとも一方向に変動可能な状態で保持する保持手 段を有するニュートラライザである。ここで、一方向を一対の電極の電極間距離方向 と垂直をなす方向とした。さらに、保持手段が固定手段及び位置決め手段からなり、 固定手段は一対の電極をベースに各電極につき少なくとも 1箇所固定し、位置決め 手段は一対の電極を各電極につき少なくとも 1箇所でベースに対して位置決めし、一 対の電極とベースとの相対位置が少なくとも一方向に変動可能となるように構成した ものである。また、固定手段はボルト又はビス等からなる第 1の揷通固定具からなり、 位置決め手段は一対の電極に設けられた一対の第 1の孔、ベースに設けられた一対 の第 2の孔及び少なくとも第 1の孔を貫通する第 2の揷通固定具からなり、第 1又は第 2の孔の形状と第 2の揷通固定具の外周側面形状とが異なる形状を有し、第 1又は 第 2の孔の面積が第 2の揷通固定具のベース面で切られる断面積よりも大きくなるよ うにした。またさらに、第 1又は第 2の孔が、一対の電極の電極間距離方向と垂直をな す方向に長半径を有する略楕円形状又は該方向に伸長した長円形状であるようにし た。そして、ベースは少なくとも電極との固定個所が碍子からなるようにした。
[0017] 本発明第 2の側面は、上記第 1の側面のニュートラライザにおいて、さらに、フィラメ ントを電極に固定するためのフィラメント押えを有し、各電極の一対の電極間距離方 向の断面が上方に開口する形状の欠けを有し、フィラメント押えが該欠けに嵌合する 形状を有し、フィラメント押えが電極に第 3の挿通固定具で固定され、該嵌合部でフィ ラメントの端部が支持されるようにしたものである。さらに、欠けの形状が略台形となる ようにした。また、第 3の挿通固定具をボルトとした。
[0018] 本発明第 3の側面は、上記第 1又は第 2の側面のニュートラライザにおいて、電極に 複数のフィラメントが固定されるようにしたものである。
[0019] 本発明第 4の側面は、上記第 1から第 3いずれかの側面のニュートラライザにおいて 、フィラメントから放出する電子を引出すアノードプレート、並びに、フィラメント及び電 極の側面を覆う側板を有し、アノードプレートが側板の上面に第 4の揷通固定具で固 定される構成としたものである。さらに、第 4の揷通固定具をボルトとした。
[0020] 本発明第 5の側面は、上記第 1から第 4いずれかの側面のニュートラライザにおいて 、使用される揷通固定具は全て同一方向に揷通される構成としたものである。
[0021] 本発明第 6の側面は、フィラメント、電圧を印加してフィラメントに電流を流す一対の 電極、及び、一対の電極を絶縁状態で支持する電極と熱膨張率の異なるベースを有 するニュートラライザにおいて一対の電極をベースに固定する方法であって、一対の 電極とベースとを相対位置を少なくとも一方向に変動可能な状態で固定する方法で ある。さらに、該ー方向を、該一対の電極の電極間距離方向と垂直をなす方向とした
[0022] 本発明第 7の側面は、使用される揷通固定具の全てを一方向のみに挿通して上記 第 1から第 5の側面いずれかのニュートラライザを組立又は分解する方法である。 発明の効果
[0023] 本発明ニュートラライザにより、部品点数を削減しながらも、熱膨張により生じる歪み あるいは破損を防止する設計を提案するため、長寿命化、コストの削減に貢献する。 また、メンテナンス性の向上、作業者による組立'調整の個人差防止にも効果を奏す る。
図面の簡単な説明
[0024] [図 1]本発明のニュートラライザ機構の外観図
[図 2]本発明のニュートラライザ機構内部の概略図
[図 3]位置決めピン詳細図
[図 4]フィラメント取付け概略図
[図 5]本発明他の実施例の概略図
[図 6]光学薄膜用真空蒸着装置の概略図
[図 7]基板ドームチャージアップの説明図 1
[図 8]基板ドームチャージアップの説明図 2
[図 9]従来型ニュートラライザの概略断面図
符号の説明
[0025] 1 フィラメント
2 電極
3 フィラメント押え
4 ビス
5 ニュートラライザベース
6 アノードサポート
7 ベース碍子
8 位置決めピン 皿ビス
圧着端子
アノードプレート ニュートラライザケース ビス
ベース碍子 位置決めピン ビス
真空槽本体 イオン源
メインポンプ 粗引きポンプ メインバルブ 粗引きバルブ 補助バルブ シャッター
坩堝
蒸着材料
電子銃
基板
基板ドーム
基板加熱用ヒーター 基板ドーム回転機構 蒸着分子
陽イオン
アーク放電
他の構成部品 孔 発明を実施するための最良の形態
[0026] 図 1に本発明実施例の外観図を、図 2に内部概略図を示す。以下、本発明に係る ニュートラライザは、図 6に示される装置と同様の真空装置に搭載されるものとし、そ の動作は従来と同様であるため説明を省略するが、本発明を実施可能な装置はこれ に限られるものではない。
[0027] 図 1及び図 2に示すニュートラライザは、フィラメント 1、加速電圧を印加してフィラメ ント 1に電流を流す電極 2、電極 2に真空槽外部電源からの配線を接続する圧着端 子 10、電極 2に対してフィラメント 1を固定するフィラメント押え 3、電極 2とフィラメント 押え 3とを締結するビス 4、電極 2を取付けるベース碍子 7、電極 2及びフィラメント 1を カバーするニュートラライザケース 12、フィラメント 1から放出する熱電子を引出すァノ ードプレート 11、を有する。
[0028] アノードプレート 11は取付けビス 13によってアノードサポート 6に固定されている。
ニュートラライザケース 12はニュートラライザベース 5上に配され、アノードプレート 11 との間に挟まれ、脱落しない構造となっている。実施例では加工性及びコストを考慮 し、アノードプレート 11とニュートラライザケース 12とアノードサポート 6とを全て別体 でボルト留めする構造としたが、全てを一体にし箱形状とする事も可能である。
[0029] 実施例は、細目ネジによってネジ込むキャップ形状のアノード 68を使用せず、プレ ート状のアノードをビス留めする構造を採用したため、加熱によるかじり等を極力抑え た構造となっている。また、キャップ 67とアノードキャップ 68により二重にカバーして レ、た従来の構造を一重のカバーに変更したため、構成の簡略化及びメンテナンス性 の向上にも貢献する。
[0030] 電極 2は、ニュートラライザベース 5上にビスで固定されたベース碍子 7の上に、位 置決めピン 8及び皿ビス 9によって、ニュートラライザベース 5とは絶縁された状態で 固定される。実施例ではベース碍子 7を絶縁碍子により構成するが、少なくとも電極 2 との接触面のみが絶縁材により構成されるベースを用いればよい。
[0031] 図 3に位置決めピン 8の詳細図を示す。電極 2に設けられた位置決めピン 8用の孔 80は、電極間距離方向と垂直をなす方向に長半径を持つ略楕円形状とし、略楕円 の短半径はピン 8の径よりもほんのわずか大きいものとする。なお、この略楕円形状と は、一方向に円を伸長させた長円形も含む概念である。これにより、図 3に示す矢印 C方向、図 2に示す矢印 B方向が保たれ、電極間距離を確実に保つ構造となってい る。よって、図 9に示す従来型の様な電極間碍子 65を必要としない構造となるため、 電極間碍子破損の可能性を皆無とした。
[0032] 位置決めピン 8用の孔 80の形状により、電極 2は図 2に示す A方向にのみ熱膨張可 能となる。従来の様に電極を両端ビスで固定するのでなぐ片側を位置決めピン 8に よって固定しているため、通電によりフィラメント 1が加熱されても電極 2の熱膨張が可 能となり、ベース碍子 7に無理な力がかからずベース碍子 7が破損する可能性を著し く低減することが可能となる。
[0033] 同図では、孔 80を略楕円又は長円形とした力 孔 80の形状は電極 2の電極間距 離方向と垂直をなす方向(長手方向)に位置決めピン 8の可動の自由度があり、電極 間距離方向に可動範囲が制限される形状であれば他の形状であってもよい。さらに 、本実施例では位置決めピン 8の断面が円形のものを想定した力 S、位置を決めること ができれば断片が円形でなくてもよぐ例えば多角形等、他の断面形状のものであつ てもよレ、。また、これに従って孔 80の形状も位置決めピン 8の断面形状に対応したも のとしてもよレ、。
[0034] また、上記のような形状の孔を電極 2ではなくベース碍子 7に設けても、電極 2とべ ース碍子 7の双方に設けてもよい。孔をベース碍子 7のみに設けた場合、位置決めピ ン 8はベース碍子 7を貫通してもよいし、ベース碍子 7中に位置決めピン 8の終端が位 置するようにしてもよレ、。位置決めピン 8がベース碍子 7を貫通する場合は、位置決め ピン 8に絶縁処理を施し、ニュートラライザベース 5と位置決めピン 8とを絶縁する必要 力 Sある。また、電極 2とベース碍子 7双方に孔を設けた場合、位置決めピン 8はニュー トラライザベース 5に固定されることになるので、上記と同様に位置決めピン 8を絶縁 する必要がある。また、電極 2とベース碍子 7とを全ての箇所で位置決めピン 8により 固定してもよいが、この場合電極 2の位置がベース碍子 7に対して自由に可動してし まうため、実施例では一端を皿ボルト 9により正確に位置出しする方法を採用してい る。
[0035] 実施例で、破損する可能性のある碍子の数を減らし 1つのみとし、電極と碍子とをビ スで固定するのではなぐ片側をピンにより位置決めする構造を採用したことにより、 電極が熱膨張しても碍子に無理な力力 Sかからず歪みや破損を防ぐことが可能となつ た。
[0036] 図 4を参照にフィラメントの取付けを説明する。
フィラメント 1は、フィラメント押え 3及びフィラメント取付け用ビス 4によって電極 2に固 定され、フィラメント 1には真空槽外部の電源力も圧着端子 10及び電極 2を介して電 圧が印加され電流が流れる。フィラメント押え 3は断面が略台形状のブロックにより構 成され、ビス 4により図 4に示す矢印 D方向に締め付ける事によって電極 2に固定され る。略台形状のブロックにより、フィラメント 1には図 4に示す矢印 E方向に力が働き、 確実にフィラメント 1を固定する事が可能となる。また、フィラメント押え 3の断面を略台 形状ブロックとする事により複数のフィラメントを同時にかつ確実に固定することが可 能となる。
なお、実施例においてはフィラメント押え 3の断面形状を上方に開口した台形とした 力 下方への押圧によってフィラメント押え 3の側面に圧力力 Sかかる構成であれば、 例えば上方に開口した多角形等、他の断面形状で構成することも可能である。
[0037] 実施例で、一つのユニット内に複数のフィラメントを取付ける構造を採用したことに より、従来のようにユニットを追加することなくフィラメントを追加することが可能となり、 部品点数の大幅な削減が可能となった。一つのユニット内へのフィラメントの装着数 は適宜選択すればよぐもちろん一つのユニットに一つのフィラメントを装着してもよ レ、。この場合は、実施例と同機構で寸法を小さくすればよい。また、フィラメントは形 状を問わず使用可能であるため所望の形状を適宜選択すればよい。
[0038] 実施例でフィラメント押え 3の形状を略台形状のブロックとし、上面からのビス留めに よりフィラメント 1を確実に固定できる構造を採用したことにより、フィラメント取付け位 置及び高さの個人差軽減を図った。
[0039] また、フィラメント押え 3を上面からビス留めする構造としたこと、プレート状のァノー ド 11を上面からビス留めする構造としたことにより、取付け部品のビス留め方向を統 一することが可能となった。実施例では、フィラメント交換時及びメンテナンス時に着 脱する部品を全て上面からビス留めする構造を採用したため、作業性及びメンテナ ンス性を著しく向上させることが可能となった。
[0040] 本発明の他の実施例を図 5に示す。
図 2に示す実施例では、電極の熱膨張時可動範囲を得るため、電極 2に長穴を設 け、碍子 7に位置決めピン 8を取付ける構造としているが、図 5に示すニュートラライザ は、ベース碍子 20を分割し、分割した一方の碍子をニュートラライザベース 5上にビ ス留めし、他方の碍子に長穴加工を施して位置決めピン 21によって固定したことを 特徴とする。電極は分割された碍子 20上にボルト 22で固定すれば、図 2に示す実施 例と同様に熱膨張時の可動範囲を設けることが可能となる。
[0041] なお、上記では IAD法に用いられるニュートラライザについて説明した力 本発明は 、フィラメントから熱電子を放出する機構であれば上記実施例に限らず実施可能であ る。

Claims

請求の範囲
[1] フィラメント、該フィラメントに電流を流す一対の電極、及び、該一対の電極を絶縁 状態で支持するベースを有するニュートラライザであって、
該一対の電極と該ベースとを相対位置が少なくとも一方向に変動可能な状態で保 持する保持手段を有することを特徴とするニュートラライザ。
[2] 請求項 1記載のニュートラライザであって、
前記一方向は該一対の電極の電極間距離方向と垂直をなす方向であることを特徴 とするニュートラライザ。
[3] 請求項 1又は請求項 2記載のニュートラライザであって、
前記保持手段が固定手段及び位置決め手段からなり、
該固定手段は該一対の電極を該ベースに各該電極につき少なくとも 1箇所固定し 該位置決め手段は該一対の電極を各該電極につき少なくとも 1箇所で該ベースに 対して位置決めし、該一対の電極と該ベースとの相対位置が少なくとも一方向に変 動可能となるように構成されたことを特徴とするニュートラライザ。
[4] 請求項 3記載のニュートラライザであって、
前記固定手段は第 1の揷通固定具からなり、
前記位置決め手段は該一対の電極に設けられた一対の第 1の孔、該ベースに設け られた一対の第 2の孔及び少なくとも該第 1の孔を貫通する第 2の揷通固定具からな り、
該第 1又は第 2の孔の形状と該第 2の揷通固定具の外周側面形状とが異なる形状 を有し、該第 1又は第 2の孔の面積が該第 2の揷通固定具の該ベース面で切られる 断面積よりも大きレ、ことを特徴とするニュートラライザ。
[5] 請求項 4記載のニュートラライザであって、
該第 1又は第 2の孔が、該一対の電極の電極間距離方向と垂直をなす方向に長半 径を有する略楕円形状又は該方向に伸長した長円形状であることを特徴とするニュ 一トラライサ。
[6] 請求項 4又は請求項 5記載のニュートラライザであって、 該第 1の揷通固定具はボルト又はビスであることを特徴とするニュートラライザ。
[7] 請求項 1から請求項 6いずれか一項に記載のニュートラライザであって、
該ベースは少なくとも該電極との固定個所が碍子からなることを特徴とする二ユート ラライザ。
[8] 請求項 1から請求項 7いずれか一項に記載のニュートラライザであって、
さらに、該フィラメントを該電極に固定するためのフィラメント押えを有し、
各該電極の該一対の電極間距離方向の断面が上方に開口する形状の欠けを有し 該フィラメント押えが該欠けに嵌合する形状を有し、
該フィラメント押えが該電極に第 3の揷通固定具で固定され、
該嵌合部で該フィラメントの端部が支持されることを特徴とするニュートラライザ。
[9] 請求項 8記載のニュートラライザであって、該欠けの形状が略台形であることを特徴 とするニュートラライザ。
[10] 請求項 9記載のニュートラライザであって、
該第 3の揷通固定具がボルトであることを特徴とするニュートラライザ。
[11] 請求項 1から請求項 10記載いずれか一項に記載のニュートラライザであって、 該電極に複数のフィラメントが固定されたことを特徴とするニュートラライザ。
[12] 請求項 1から請求項 11いずれか一項に記載のニュートラライザであって、
該フィラメントから放出する電子を引出すアノードプレート、並びに、該フィラメント及 び該電極の側面を覆う側板を有し、
該アノードプレートが該側板の上面に第 4の挿通固定具で固定されたことを特徴と するニュートラライザ。
[13] 請求項 12記載のニュートラライザであって、
該第 4の揷通固定具がボルトであることを特徴とするニュートラライザ。
[14] 請求項 4から請求項 13いずれか一項に記載のニュートラライザであって、
前記揷通固定具は全て同一方向に揷通されることを特徴とするニュートラライザ。
[15] フィラメント、電圧を印加して該フィラメントに電流を流す一対の電極、及び、該一対 の電極を絶縁状態で支持する該電極と熱膨張率の異なるベースを有するニュートラ ライザにおいて、該一対の電極を該ベースに固定する方法であって、 該一対の電極と該ベースとを相対位置を少なくとも一方向に変動可能な状態で固 定することを特徴とする方法。
[16] 請求項 15記載の方法であって、
前記一方向は該一対の電極の電極間距離方向と垂直をなす方向であることを特徴 とする方法。
[17] 前記揷通固定具の全てを一方向のみに揷通することを特徴とする請求項 4から請 求項 14レ、ずれ力、一項に記載のニュートラライザの組立又は分解方法。
PCT/JP2005/000850 2004-06-10 2005-01-24 ニュートラライザ WO2005121391A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2005800130305A CN1946870B (zh) 2004-06-10 2005-01-24 中和器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004172320A JP4002958B2 (ja) 2004-06-10 2004-06-10 ニュートラライザ
JP2004-172320 2004-06-10

Publications (1)

Publication Number Publication Date
WO2005121391A1 true WO2005121391A1 (ja) 2005-12-22

Family

ID=35503080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/000850 WO2005121391A1 (ja) 2004-06-10 2005-01-24 ニュートラライザ

Country Status (3)

Country Link
JP (1) JP4002958B2 (ja)
CN (1) CN1946870B (ja)
WO (1) WO2005121391A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5267849B2 (ja) * 2008-04-30 2013-08-21 株式会社リコー 定着装置及び画像形成装置
JP5376270B2 (ja) * 2013-05-08 2013-12-25 株式会社リコー 定着装置及び画像形成装置
JP6229592B2 (ja) * 2014-05-21 2017-11-15 トヨタ自動車株式会社 プラズマcvd装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09120792A (ja) * 1995-10-26 1997-05-06 Hitachi Ltd イオンビーム照射装置およびイオンビームを用いた処理装置
JP2003288857A (ja) * 2002-03-27 2003-10-10 Sumitomo Eaton Noba Kk イオンビームの電荷中和装置とその方法
JP2004131783A (ja) * 2002-10-09 2004-04-30 Furukawa Electric Co Ltd:The 成膜装置、成膜方法および光学素子の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09120792A (ja) * 1995-10-26 1997-05-06 Hitachi Ltd イオンビーム照射装置およびイオンビームを用いた処理装置
JP2003288857A (ja) * 2002-03-27 2003-10-10 Sumitomo Eaton Noba Kk イオンビームの電荷中和装置とその方法
JP2004131783A (ja) * 2002-10-09 2004-04-30 Furukawa Electric Co Ltd:The 成膜装置、成膜方法および光学素子の製造方法

Also Published As

Publication number Publication date
CN1946870B (zh) 2010-09-01
JP2005350721A (ja) 2005-12-22
CN1946870A (zh) 2007-04-11
JP4002958B2 (ja) 2007-11-07

Similar Documents

Publication Publication Date Title
KR100346863B1 (ko) 이온소오스의간접가열캐소우드용엔드캡
US8378576B2 (en) Ion beam generator
JP4817656B2 (ja) 間接的に加熱されるカソードイオン源
US20060017011A1 (en) Ion source with particular grid assembly
US20070243057A1 (en) Bolt and semiconductor manufacturing apparatus
US8796649B2 (en) Ion implanter
JPH1074461A (ja) イオン注入機、イオン源及びイオンのプラズマ形成方法
US8294115B2 (en) Linear electron source, evaporator using linear electron source, and applications of electron sources
KR101087445B1 (ko) 플라즈마 처리 장치
US8183542B2 (en) Temperature controlled ion source
WO2005121391A1 (ja) ニュートラライザ
US7947965B2 (en) Ion source for generating negatively charged ions
US20090057144A1 (en) Arc Evaporation Source and Vacuum Deposition System
US10217600B1 (en) Indirectly heated cathode ion source assembly
KR100884162B1 (ko) 뉴트럴라이저
JP2002050616A (ja) プラズマ処理方法及び装置
KR102365700B1 (ko) 이온원과 이온 주입 장치 및 이온원의 운전 방법
KR101132720B1 (ko) 텅스텐 코팅 라이너 및 이를 이용한 이온주입장치의 아크 챔버
JP2022014978A (ja) スパッタリング装置及び金属化合物膜の成膜方法
CN219575557U (zh) 一种用于离子注入机的离子源的起弧腔室结构
JP3077697B1 (ja) イオン源
KR20150102564A (ko) 증착 방지용 절연부가 구비된 스퍼터링 장치
JP2000208091A (ja) イオン注入装置
US20240021422A1 (en) Device for reducing misalignment between sputtering target and shield
JP2012502419A (ja) ガス放電式電子源

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580013030.5

Country of ref document: CN

Ref document number: 1020067022135

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 1020067022135

Country of ref document: KR

122 Ep: pct application non-entry in european phase