WO2005118012A1 - 人工組織体およびその製造方法 - Google Patents

人工組織体およびその製造方法 Download PDF

Info

Publication number
WO2005118012A1
WO2005118012A1 PCT/JP2005/010307 JP2005010307W WO2005118012A1 WO 2005118012 A1 WO2005118012 A1 WO 2005118012A1 JP 2005010307 W JP2005010307 W JP 2005010307W WO 2005118012 A1 WO2005118012 A1 WO 2005118012A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
cell adhesion
cell
tissue
photocatalyst
Prior art date
Application number
PCT/JP2005/010307
Other languages
English (en)
French (fr)
Inventor
Ikuo Morita
Hideyuki Miyake
Hideshi Hattori
Hironori Kobayashi
Yusuke Uno
Original Assignee
Dai Nippon Printing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co., Ltd. filed Critical Dai Nippon Printing Co., Ltd.
Priority to US11/628,054 priority Critical patent/US8500822B2/en
Publication of WO2005118012A1 publication Critical patent/WO2005118012A1/ja
Priority to US13/924,181 priority patent/US9034648B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/069Vascular Endothelial cells
    • C12N5/0691Vascular smooth muscle cells; 3D culture thereof, e.g. models of blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3886Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells comprising two or more cell types
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0697Artificial constructs associating cells of different lineages, e.g. tissue equivalents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/36Materials or treatment for tissue regeneration for embolization or occlusion, e.g. vaso-occlusive compositions or devices

Definitions

  • the present invention relates to an in vitro-formed tissue including a vascular layer, a basement membrane layer, and a tissue-forming cell layer, a laminated tissue including the tissue, and a method for producing the same.
  • a technique for directly transplanting artificial substitutes or cells obtained by culturing and organizing cells include artificial skin, artificial blood vessel and cultured cell tissue. Artificial skin using synthetic polymers is not preferable for transplantation because rejection may occur.
  • the cultured cell tissue is obtained by culturing the cells of the subject and is organized, so there is no fear of rejection, and it is preferable for transplantation. Such a cultured cell tissue is created by collecting cells from a person and culturing the cells.
  • a cell culture support having a pattern formed of a temperature-responsive polymer is formed on a culture base, and the cells are cultured on the cell culture support.
  • the cell is damaged by bringing it into close contact with the polymer membrane and changing the temperature. It discloses a method for producing a cell sheet by exfoliating cells together with a polymer film without damaging the cells.
  • an object of the present invention is to provide an artificial tissue body that has means for transporting nutrients, oxygen, waste products, and the like, and can survive in a living body.
  • the present inventors have conducted intensive studies to solve the above problems, and as a result, it was possible to manufacture an artificial tissue having vascular tissue by laminating at least one layer each of a vascular layer, a basement membrane layer, and a tissue forming cell layer. And completed the present invention o
  • the present invention includes the following inventions.
  • a tissue formed in vitro including a vascular layer, a basement membrane layer, and a tissue forming cell layer.
  • the basement membrane layer is present on the tissue forming cell layer, the vascular layer is present on the basement membrane layer, and the tissue forming cell layer is present on the basement membrane layer or the blood vessel layer. Laminated tissue of the body.
  • a method for producing a tissue body including a tissue-forming cell layer, a basement membrane layer, and a vascular layer,
  • Angiogenesis cells are adhered to the cell adhesion good region on the surface of the cell array substrate having a cell adhesion change pattern in which the cell adhesion good region and the cell adhesion inhibition region are patterned, and the adhered blood vessel Transferring and culturing the formed cells on the basement membrane layer in a patterned state, and
  • Angiogenesis cells are adhered to the cell adhesion good region on the surface of the cell array substrate having a cell adhesion change pattern in which the cell adhesion good region and the cell adhesion inhibition region are patterned, and the adhered blood vessel Transferring and culturing the formed cells on the basement membrane layer in a patterned state, and
  • a method of manufacturing a laminated structure by laminating a first structure and a second structure is a method of manufacturing a laminated structure by laminating a first structure and a second structure.
  • cell adhesion change layer is a photocatalyst-containing cell adhesion change layer containing a photocatalyst and a cell adhesion change material.
  • the cell adhesion change layer has a photocatalyst treatment layer containing a photocatalyst, and a cell adhesion change material layer containing a cell adhesion change material formed on the photocatalyst treatment layer. 5) The method according to any one of (8) to (8).
  • a cell adhesion change pattern is formed by arranging a cell adhesion change layer containing a cell adhesion change material and a photocatalyst containing layer containing a photocatalyst, and then irradiating energy. The method according to (9).
  • the cell adhesion change pattern is a pattern in which the line-shaped good cell adhesion area and the space of the cell adhesion inhibition area are alternately arranged, and the line width of the good cell adhesion area is 20 to The method according to any one of (5) to (11), wherein the line width is 200 ⁇ m and the space width between the lines is 100 to 10 ⁇ .
  • a tissue comprising a vascular layer, a basement membrane layer, and a tissue forming cell layer, wherein the basement membrane layer is formed on substantially the entire surface of the vascular layer forming region of the tissue forming cell layer.
  • a laminated tissue body including a vascular layer, a basement membrane layer, and a tissue forming cell layer, wherein the basement membrane layer is formed on substantially the entire surface of the vascular layer forming region of the tissue forming cell layer, 3
  • the laminated structure comprising at least one seed layer.
  • the basement membrane layer is present on the tissue forming cell layer, the vascular layer is present on the basement membrane layer, and the tissue forming cell layer is present on the basement membrane layer or the blood vessel layer.
  • FIG. 1 is a process chart showing an example of the method for producing a cell array substrate of the present invention.
  • FIG. 2 is a process chart showing another example of the method for producing a cell array substrate of the present invention.
  • FIG. 3 is a process chart showing another example of the method for producing a cell array substrate of the present invention.
  • FIG. 4 is a schematic sectional view showing an example of the photocatalyst-containing layer-side substrate according to the present invention.
  • 5, c 6 is a schematic sectional view showing another example of the photocatalyst-containing layer side substrate in the present invention is a schematic sectional view showing another example of the photocatalyst-containing layer side substrate in the present invention.
  • FIG. 7 shows one embodiment of a step of adhering angiogenic cells in a pattern on a cell array substrate and transferring the adhered angiogenic cells to a basement membrane layer.
  • FIG. 8 is a schematic diagram showing an example of the method of the present invention.
  • FIG. 9 is a photograph showing cells arranged on a cell array substrate.
  • FIG. 10 shows an embodiment of a method for producing a tissue body including a vascular layer, a basement membrane layer, and a tissue-forming cell layer in vitro.
  • FIG. 11 shows an embodiment of a method for producing in vitro a laminated tissue in which a vascular layer, a basement membrane layer, and a tissue-forming cell layer are laminated.
  • the present invention relates to a tissue formed in vitro, including a vascular layer, a basement membrane layer, and a tissue forming cell layer.
  • the vascular layer means a layer containing angiogenic cells.
  • Angiogenic cells include vascular endothelial cells, smooth muscle cells, wall cells, etc., but vascular endothelial cells are preferred because they allow blood components in blood vessels to flow without coagulation, and maintain their function and structure. For this reason, it is desirable to be constituted together with smooth muscle cells and wall cells.
  • it is preferable that angiogenic cells are arranged in a pattern.
  • the pattern is not particularly limited as long as it is a two-dimensional pattern.
  • a pattern such as a line shape, a mesh shape, a circle shape, a square shape, or a shape in which the inside of a figure such as a circle and a rectangle is entirely occupied by cells is used. Can be formed.
  • a line or mesh pattern is preferred.
  • the vascular layer preferably contains vascular tissue.
  • the basement membrane layer is a layer containing a basement membrane constituent protein as a main component, and the basement membrane layer associates a cell growth factor or a blood vessel layer that stimulates cell activity with a tissue-forming cell layer to form an aggregate.
  • the extracellular matrix that forms the body is in a layered state and contains collagen, fibronectin and laminin.
  • the basement membrane layer may be produced by biological extracts or cells, or may be formed by adding an artificial one.
  • the tissue forming cell layer means a layer containing tissue forming cells.
  • Tissue-forming cells are cells having a function required for an in vitro-constituting tissue body.
  • organ cells specifically, metabolic organs such as liver parenchymal cells and kidney] 3 cells And those derived from structural organs such as epithelial cells of the skin.
  • the basement membrane layer is present on the tissue-forming cell layer, and the vascular layer is present on the basement membrane layer.
  • the present invention also relates to a laminated tissue body formed in vitro by laminating a vascular layer, a basement membrane layer, and a tissue-forming cell layer, wherein the laminated tissue body includes at least one layer of each of three types of layers. .
  • the laminated tissue preferably, the basement membrane layer is present on the tissue forming cell layer, the vascular layer is present on the basement membrane layer, and the tissue forming cell layer is present on the basement membrane layer or the blood vessel layer.
  • the laminated tissue body has a A three-layer structure in which a basement membrane layer exists on the alveolar layer and a blood vessel layer exists on the basement membrane layer, and a two-layer structure in which the basement membrane layer exists on the tissue-forming cell layer It has a structure.
  • At least one trilayer structure having a vascular layer may be present in the laminated tissue, and preferably 1 to 5.
  • the basement membrane layer is formed on almost the entire surface of the region where the blood vessel layer is formed. Substantially all means usually 90% or more, preferably 95% or more.
  • the invention also relates to a method for producing in vitro a tissue comprising a vascular layer, a basement membrane layer and a tissue forming cell layer.
  • the tissue can be produced by a method including the following steps (a) to (d).
  • Angiogenesis cells are adhered to the cell adhesion good region on the surface of the cell array substrate having a cell adhesion change pattern in which the cell adhesion good region and the cell adhesion inhibition region are patterned, and the adhered blood vessel Transferring and culturing the formed cells on the basement membrane layer in a patterned state, and
  • FIG. 10 One embodiment of the above manufacturing method is shown in FIG.
  • 101 represents a tissue forming cell
  • 102 represents a culture base
  • 103 represents a tissue forming cell layer
  • 104 represents a basement membrane layer
  • 105 represents a basement membrane layer.
  • Reference numeral 106 denotes a cell array substrate
  • 106 denotes an angiogenic cell
  • 107 denotes a formed tissue
  • 108 denotes a vascular layer.
  • the culture base is not particularly limited as long as a tissue-forming cell layer can be formed thereon, but preferably, a culture base that can be peeled off without damaging the cell layer is used.
  • a culture base include a culture base having a surface capable of holding cells with low adhesive strength, for example, a polystyrene base material subjected to a weak plasma treatment for cell adhesion, Introduce a small amount of a material with cell adhesion inhibitory properties, such as xicetyl phosphorylcholine perfluoroalkylsilane, onto the substrate surface And the like.
  • a method for introducing such a small amount a method in which a material is sufficiently introduced into a substrate by an adsorption treatment or the like and then decomposed by a UV treatment, an ozone treatment, or a plasma treatment, or a solution in which a material is diluted dilutely is diluted.
  • Examples of such methods include layer coating.
  • the rate of introduction differs depending on the type of cells to be adhered and the type of material to be introduced into the substrate, and requires adjustment.
  • phase transition temperature such as poly-N-isopropylacrylamide, ie, cell-adhesive, and hydrophilic at temperatures below the phase transition temperature, such as poly (N-isopropylacrylamide).
  • poly (N-isopropylacrylamide) A material obtained by polymerizing a material that loses cell adhesiveness on a polymer-glass substrate.
  • Formation of the tissue forming cell layer can be performed by a cell culture method generally used in the art. For example, it can be carried out by inoculating cells at a density of 10 4 to 10 8 cm 2 on a culture base and culturing at 37 ° C. for 30 minutes to 48 hours.
  • the medium those commonly used in the art can be used.
  • the basement membrane layer can be formed by culturing tissue-forming cells or by adding a matrix.
  • the matrix to be added is not particularly limited as long as it contains collagen, laminin and fibronectin.
  • a bio-derived material such as collagen or laminin is added to an artificial polymer material such as GFR matrigel or mebiol gel. And the like.
  • the basement membrane layer can be formed by incubating at 37 ° C for several hours after the addition.
  • the vascular layer can be formed by contacting the surface of the cell array substrate on which the angiogenic cells are arranged in a pattern with the basement membrane layer, culturing and organizing, and then peeling the cell array substrate. it can.
  • Culture conditions that are commonly used in the art can be employed. For example, culture is performed at 37 ° C. for usually 2 to 48 hours, preferably 4 to 24 hours.
  • tissue adhesion change with patterning of good cell adhesion area and cell adhesion inhibition area The substrate for cell array having a pattern and the adhesion of angiogenic cells to the region having good cell adhesion on the surface thereof will be described later.
  • the tissue body consisting of the tissue forming cell layer, the basement membrane layer and the blood vessel layer is detached from the culture base and collected.
  • the present invention also relates to a method for producing an in vitro laminated tissue body comprising a vascular layer, a basement membrane layer, and a tissue-forming cell layer, wherein the laminated tissue body includes at least one layer of each of three types of layers.
  • the laminated tissue body can be produced by producing a first tissue body including a vascular layer, a basement membrane layer, and a tissue forming cell layer, and laminating the first tissue body.
  • the first tissue body is manufactured, and the following (to (f):
  • a second tissue body including the basement membrane layer and the tissue-forming cell layer by a method including a step of removing and collecting the tissue-forming cell layer and the basement membrane layer from the culture base; It can be manufactured by laminating the body and the second tissue body.
  • reference numeral 107 denotes a tissue
  • reference numeral 108 denotes a vascular layer
  • reference numeral 109 denotes a laminated tissue obtained by laminating the first tissue
  • reference numeral 110 denotes a first tissue. It represents a laminated tissue body obtained by laminating a body and a second tissue body.
  • the culture base, the formation of the tissue-forming cell layer, and the formation of the basement membrane layer in the production of the second tissue are the same as in the case of the first tissue described above.
  • the order of lamination of the first tissue body and the second tissue body is not particularly limited, but the first tissue body having 1 to 6 layers, preferably 2 to 3 layers, having no vascular layer, Preferably, an organization is present.
  • the culture solution is sent to the vascular layer in the laminated tissue. This promotes the organization of angiogenic cells arranged in a pattern in the vascular layer.
  • the cell array substrate according to the present invention is characterized in that the substrate has a cell adhesion change pattern in which a cell adhesion good region and a cell adhesion inhibition region are patterned on the substrate.
  • Cell adhesion means the strength of cell adhesion, that is, the ease of cell adhesion.
  • the region with good cell adhesion means a region with good cell adhesion,
  • the harm area means an area where cell adhesion is poor. Therefore, when cells are seeded on a cell array substrate having a cell adhesion change pattern, cells adhere to the region with good cell adhesion, but do not adhere to the cell adhesion inhibition region.
  • the cells are arranged in a pattern on the surface of the arrangement base material.
  • cell adhesion may vary depending on the cells to be adhered, good cell adhesion means good cell adhesion to certain types of cells. Therefore, a plurality of regions having good cell adhesion to a plurality of types of cells may be present on the substrate for cell arrangement, that is, there may be two or more levels of regions having good cell adhesion having different cell adhesion. .
  • the cell adhesion change pattern consists of forming a cell adhesion change layer containing a cell adhesion change material on the substrate, which changes the cell adhesion with energy irradiation, and irradiating energy to a specific area. In this case, the cell adhesion is changed to form regions having different cell adhesion in a pattern.
  • Materials that change cell adhesion include both materials that gain or increase cell adhesion and decrease or disappear cell adhesion following irradiation with energy.
  • the substrate used for the cell array substrate of the present invention is not particularly limited as long as the substrate is formed of a material capable of forming a cell adhesion changing pattern on its surface.
  • Specific examples include inorganic materials such as metal, glass, and silicon, and organic materials represented by plastics.
  • the shape is not limited, and examples thereof include a flat plate, a flat membrane, a film, and a porous membrane.
  • the cell adhesion changing material and the cell adhesion changing layer will be described in an embodiment using a photocatalyst.
  • the cell adhesion change pattern includes a cell adhesion inhibition layer containing a cell adhesion inhibition material having low cell adhesion and a cell adhesion layer containing a cell adhesion material having cell adhesion formed thereon. This includes the case where the cell adhesion layer is decomposed and disappears due to the irradiation of energy, thereby exposing the cell adhesion inhibition layer to form regions having different cell adhesion.
  • a cell adhesion layer is formed from a cell adhesion layer and a cell adhesion inhibition layer formed thereon. This includes the case where a region is formed.
  • Cell adhesive materials include various types of collagen, fibronectin, laminin, vitronectin, cadherin, etc., extracellular matrix, RGD peptide, plasma treatment, corona treatment, ion beam irradiation, electron beam to provide cell adhesion Examples include polyolefin resins into which carboxy and carboxyl groups have been introduced by irradiation or other techniques.
  • cell adhesion inhibiting materials include fluorine-based materials such as polytetrafluoroethylene (PTFE), polyimides, and phospholipids. And the like.
  • a method such as an ink jet method when a cell adhesive material is adhered and formed in a pattern on the cell adhesion inhibiting layer, and when a cell adhesion inhibiting material is adhered and formed in a pattern on the cell adhesive layer. It is also included.
  • a layer containing an affinity changing material whose affinity for the cell adhesive material changes upon irradiation with energy is formed on the substrate, and the layer is irradiated with energy so as to be compatible with the cell adhesive material.
  • a solution containing a cell adhesive material is introduced therein, and then the region is washed with a cell adhesive material-existing region (cell adhesive good region). It is also possible to form a cell adhesion change pattern having a region where no cell adhesion material is present (cell adhesion inhibition region).
  • the pattern can be formed by a cell adhesive material that cannot be directly patterned on the substrate. For example, as shown in FIG. 8, a pattern comprising a region (20) having a layer containing a water-repellent material and a region not having the layer is formed on a hydrophilic substrate (1) such as glass.
  • hydrophilic cell adhesive material (21) that is not easily adsorbed by the water-repellent material is introduced, and then washed.
  • a region where a hydrophilic cell adhesive material is present a region with good cell adhesion
  • a region where a water repellent material is present a region where cell adhesion is inhibited
  • An extracellular matrix such as collagen can be used as the hydrophilic cell adhesive material in this case.
  • the cell adhesive strength in the above-mentioned region having good cell adhesiveness has an appropriate strength. This is because, by setting an appropriate adhesive strength, a cell pattern can be formed by adhering cells only to a specific region, but this can be easily transferred to the basement membrane layer. Therefore, it is preferable that the cell adhesive force in the cell adhesive good region in the cell array substrate is stronger than the cell adhesive force in the cell adhesive inhibition region, but weaker than the cell adhesive force in the basement membrane layer. .
  • Such cell adhesion can be evaluated by the water contact angle of the surface.
  • the water contact angle in the cell adhesion good region of the cell adhesion change pattern in the present invention is:
  • the contact angle means the angle between the liquid surface and the solid surface where the free surface of the stationary liquid contacts the solid wall (takes the angle inside the liquid).
  • the above-mentioned water contact angle is defined as the angle between the gas-liquid interface at the end of the water droplet and the solid surface, usually with a magnifying glass, etc. Observed means the value measured by the static contact angle measurement method.
  • Means for forming a cell adhesion change pattern in which the above-mentioned good cell adhesion region and cell adhesion inhibition region are arranged in a pattern are not particularly limited.
  • a gravure printing method, a screen printing method , Offset printing, flexo printing, contact printing, etc. various printing methods, various lithography methods, inkjet methods, and other three-dimensional shaping methods such as engraving fine grooves. And the like.
  • a lithography method using a photocatalyst that is, using a photocatalyst and a cell adhesion changing material in which the cell adhesion changes due to the action of the photocatalyst accompanying energy irradiation, and applying energy along a required pattern Irradiation of the cell is preferable to form a cell adhesion change pattern.
  • a high-definition pattern can be formed by a simple process without using a treatment solution that adversely affects cells.
  • the pattern to be formed is not particularly limited as long as it is a two-dimensional pattern, and is designed in accordance with the pattern of angiogenic cells to be formed in the blood vessel layer in the tissue. Therefore, it is preferable to form a pattern in which cells adhere to each other in a linear or mesh pattern.
  • the line width of the pattern is usually 20 to 200 m, preferably 50 to 100 m.
  • capillary blood vessels are formed by arranging and culturing vascular endothelial cells in a line, cell adhesion in which the space between the line-shaped good cell adhesion region and the cell adhesion inhibition region is alternately arranged
  • a sex change pattern and adhere vascular endothelial cells in a line.
  • the line width of the region with good cell adhesion is usually 20 to 200 ⁇ m s, preferably 50 to 80 ⁇ m, and the line width of the cell adhesion inhibition region between the lines is
  • the space width is usually from 100 to 100,111, preferably from 400 to 800 / im.
  • the vascular endothelial cells adhered and transferred in a line are organized to efficiently form a line-shaped capillary. If you want to form a cell pattern in which multiple lines are lined up without intersecting, set the space width between the lines to which the cells are attached to a certain value or more as described above. In addition, it is possible to prevent the pseudofoot from extending from the cell between the lines, thereby causing distortion of the line.
  • the first embodiment of the cell array substrate according to the present invention comprises a cell adhesion change material having a cell adhesion change material formed on a substrate, wherein the cell adhesion is changed by the action of a photocatalyst accompanying energy irradiation.
  • the cell adhesion changing layer is a photocatalyst-containing cell adhesion changing layer having a photocatalyst and the above-mentioned cell adhesion changing material
  • the cell adhesion of the cell adhesion changing material is changed by the action of the photocatalyst in the adhesion changing layer, and the part irradiated with energy is not irradiated
  • the cell array substrate of this embodiment will be described separately for each of the members used.
  • the present embodiment is characterized in that a photocatalyst-containing cell adhesion change layer is formed on a substrate.
  • the photocatalyst-containing cell adhesion changing layer has at least a photocatalyst and a cell adhesion changing material.
  • the material for changing the cell adhesiveness used in the present embodiment is not particularly limited as long as the material changes the adhesiveness of cells by the action of a photocatalyst accompanying the irradiation of energy.
  • the change in cell adhesiveness includes both a material that acquires or increases cell adhesiveness by the action of a photocatalyst accompanying energy irradiation and a material that decreases or disappears cell adhesiveness.
  • Such a cell-adhesion-change material includes a physicochemical cell-adhesion-change material that adheres to cells by physicochemical properties and a biological substance that adheres to cells by biological properties in a manner that controls adhesion to cells.
  • a biological cell adhesion changing material There are mainly two embodiments with the biological cell adhesion changing material.
  • Physicochemical factors for adhering cells to the surface include factors relating to surface free energy, factors due to hydrophobic interaction, and the like.
  • a physicochemical cell adhesive material having physicochemical cell adhesion due to such factors has a high binding energy such that the main skeleton is not decomposed by the action of a photocatalyst, and is decomposed by the action of a photocatalyst.
  • Those having such organic substituents are preferable.
  • an organopolysiloxane having a large strength by hydrolyzing or polycondensing a dye or alkoxysilane by a sol-gel reaction or the like (2) An organopolysiloxane obtained by crosslinking a reactive silicone can be used.
  • Y represents an alkyl group, a fluoroalkyl group, a butyl group, an amino group, a phenyl group or an epoxy group
  • X represents an alkoxyl group, an acetyl group or a halogen.
  • is an integer from 0 to 3 It is preferable that the compound is an organopolysiloxane which is one or more hydrolytic condensates or co-hydrolytic condensates of the silicon compound represented by the formula (1).
  • the carbon number of the group represented by ⁇ is preferably in the range of 1 to 20, and the alkoxy group represented by X is a methoxy group, an ethoxy group, a propoxy group, or a butoxy group. Is preferred.
  • a polysiloxane containing a fluoroalkyl group can be particularly preferably used.
  • fluoroalkylsilane hydrolyzed condensates examples thereof include co-hydrolysis condensates, and those generally known as fluorine-based silane coupling agents can be used.
  • cell-adhesion can be achieved due to the presence of a fluorine-containing part on the surface of the photocatalyst-containing cell-adhesion-change layer, which has not been irradiated with energy.
  • the surface does not have the property, the portion irradiated with energy is removed from fluorine and the like, and the surface having the OH group or the like is present on the surface, so that the surface has cell adhesion. Therefore, in the energy-irradiated portion and the energy-unirradiated portion, regions having different cell adhesiveness can be formed in a pattern.
  • Examples of the reactive silicone of the above (2) include compounds having a skeleton represented by the following general formula.
  • n is an integer of 2 or more
  • R 1 R 2 is a substituted or unsubstituted alkyl, alkenyl, or aryl group having 1 to 10 carbon atoms, and examples of the substituent include halogen, cyano, and the like.
  • I 1 and R 2 include methyl, ethyl, propyl, vinyl, phenyl, phenyl halide, cyanomethyl, cyanoethyl, cyanopropyl and the like.
  • Bier, Fil, Halogenated Hue It is preferable that the molar ratio of nitro is 40% or less of the whole.
  • 1 and R 2 are methyl groups since the surface energy is minimized, and it is preferable that the methyl groups have a molar ratio of 60% or more.
  • the chain terminal or the side chain has at least one or more reactive group such as a hydroxyl group in the molecular chain.
  • a stable organosilicon compound that does not undergo a cross-linking reaction such as dimethylpolysiloxane may be separately mixed with the above-mentioned organopolysiloxane.
  • examples of the decomposable substance-type physicochemical cell adhesive material include surfactants having a function of decomposing by the action of a photocatalyst and changing the polarity of the surface of the photocatalyst-containing polarity changing layer by being decomposed. .
  • hydrocarbons such as NIKKOL B L, BC, BO, and BB series manufactured by Nikko Chemicals Co., Ltd .; ZONYL FSN and FSO manufactured by DuPont; Surflon S-14 manufactured by Asahi Glass Co., Ltd.
  • the physicochemical cell adhesive material is used as the decomposed substance type, it is usually preferable to separately use a binder component.
  • the binder component used at this time is not particularly limited as long as it has a high binding energy such that the main skeleton is not decomposed by the action of the photocatalyst.
  • Specific examples include polysiloxanes having no organic substituents or having some organic substituents, and these can be obtained by hydrolysis and polycondensation of tetramethoxysilane, tetraethoxysilane, and the like. it can.
  • such a binder-type physicochemical cell-adhesive material and a decomposed substance-type physicochemical cell-adhesive material may be used in combination.
  • Biological factors that cause cells to adhere to the surface include materials that can adhere to many cell types and materials that adhere only to specific cell types.
  • the former is, for example, collagen type I
  • the latter is, for example, poly (N-p-vinylbenzyl- [O-j3-D-galactobyranosyl- (1 ⁇ 4) -D-dalconamido] which selectively adheres to hepatocytes. C)) (hereinafter referred to as PVLA).
  • PVLA poly (N-p-vinylbenzyl- [O-j3-D-galactobyranosyl- (1 ⁇ 4) -D-dalconamido] which selectively adheres to hepatocytes. C)) (hereinafter referred to as PVLA).
  • PVLA poly (N-p-vinylbenzyl- [O-j3-D-galactobyranosyl- (1 ⁇ 4) -D-dalconamido] which selective
  • the photocatalyst used in the present embodiment for example diacid titanium known as an optical semiconductor, a zinc oxide (Z nO), tin oxide (S n 0 2), titanate scan strontium (S r T i O ⁇ , tungsten oxide (W_ ⁇ 3), bismuth oxide (B i 2 0 3), and there may be mentioned iron oxide (F e 2 ⁇ 3), one or by selecting from these These can be used in combination.
  • titanium dioxide has a high band gap energy. It is preferably used because it is chemically stable, has no toxicity, and is easily available. Titanium dioxide includes anatase type and rutile type, and any of them can be used in this embodiment. Anatase type titanium dioxide is preferable. The anatase type titanium dioxide has an excitation wavelength of less than 380 nm.
  • anatase-type titanium dioxide examples include, for example, an anatase-type titania sol of peptized hydrochloride type (STS-02 (average particle size: 7 nm) manufactured by Ishihara Sangyo Co., Ltd.) and ST- manufactured by Ishihara Sangyo Co., Ltd. K 01), nitrate-peptized anatase titania sol (TA-15 (average particle diameter: 12 nm) manufactured by Nissan Chemical Co., Ltd.) and the like.
  • STS-02 average particle size: 7 nm
  • Ishihara Sangyo Co., Ltd. K 01 nitrate-peptized anatase titania sol
  • TA-15 average particle diameter: 12 nm
  • the particle size of the photocatalyst is, the more effective the photocatalytic reaction takes place. It is preferable that the average particle size is 50 nm or less, and it is particularly preferable to use a photocatalyst of 20 nm or less.
  • the content of the photocatalyst in the photocatalyst-containing cell adhesion change layer used in the present embodiment can be set in the range of 5 to 60% by weight, preferably 20 to 40% by weight.
  • the substrate used for the cell array substrate of the present invention is not particularly limited as long as it is formed of a material capable of forming a photocatalyst-containing cell adhesion change layer on the surface. Any form is possible as long as surface treatment by exposure treatment is possible. Specific examples include inorganic materials such as metal, glass, and silicon, and organic materials represented by plastics. The shape is not limited, and examples thereof include a flat plate, a flat membrane, a film, a porous membrane, and the like.
  • the above-mentioned photocatalyst-containing cell adhesion change layer is formed on the above-mentioned base material, and the cell adhesion change is a pattern in which the adhesion to cells is changed by irradiating energy in a pattern. A pattern is formed.
  • Such a cell adhesion change pattern is usually formed from a cell adhesion good region with good cell adhesion and a cell adhesion inhibition region with poor cell adhesion. Then, by adhering the cells to the area having good cell adhesion, the cells can be adhered in a high-definition pattern. Such a region with good cell adhesion and a region with cell adhesion inhibition are determined according to the type of the cell adhesion changing material to be used.
  • the cell adhesion changing material changes the surface free energy to If the material is a physicochemical cell adhesion changing material that changes the cell adhesion, the cell adhesion is good if the surface free energy is within a predetermined range, and if it is outside the range, the adhesion to cells tends to decrease. is there.
  • the change in the adhesiveness of cells due to such surface free energy for example, the experimental result shown in the lower part of Yoshimoto Raft, supervised by CMC Publishing Biomaterials (supervised), p. 109, is known.
  • the cell adhesion change pattern is a pattern including the above-described cell adhesion good region and the cell adhesion inhibition region as described above.
  • the cell adhesion change pattern has a surface cell adhesion of at least. This also includes the case where the cell adhesion change pattern has regions different from each other by three or more levels.
  • the three or more levels include a state in which the adhesiveness of the cells is continuously changed, and the level to be determined is appropriately selected and determined according to the situation. You.
  • the regions can be formed by changing the irradiation amount of energy to the photocatalyst-containing cell adhesiveness changing layer.
  • a method of using a halftone photomask having different transmittance, a method of performing a plurality of overlapping exposures using a plurality of photomasks having different patterns of light-shielding portions, and the like can be given.
  • a cell adhesion change pattern utilizing a difference in photocatalytic activity between a portion irradiated with energy and a portion not irradiated with energy can be used. That is, for example, when a biologic cell adhesion changing material introduced into a photocatalyst-containing cell adhesion changing layer is used as a decomposition substance, when the photocatalyst-containing cell adhesion changing layer surface is irradiated with energy in a pattern, The bioadhesion-change material exuded on the surface of the irradiated part is degraded, and the non-irradiated part of the bioadhesion-change material remains.
  • the unirradiated portion becomes a region having good cell adhesion.
  • the area irradiated with energy is the area where not only the biological cell adhesion changing material with good adhesion to cells does not exist, but also the photocatalyst which has been activated by energy irradiation and has sterility. It becomes. Therefore, when the energy-irradiated portion serves as a cell adhesion-inhibited region, there is an advantage that a problem such as a thickened pattern does not occur particularly when the cell array substrate of the present embodiment is cultured for a predetermined period using the substrate. It has.
  • a second embodiment of the cell array substrate according to the present invention comprises a substrate and a cell adhesion changing material formed on the substrate, wherein the cell adhesion is changed by the action of a photocatalyst accompanying energy irradiation.
  • a cell-adhesion-change layer wherein the cell-adhesion-change layer has a cell-adhesion-change pattern in which cell adhesion has changed, and the cell-adhesion-change layer has a cell adhesion substrate.
  • the layer has a photocatalyst treatment layer having a photocatalyst, and a cell adhesion change material layer formed on the photocatalyst treatment layer and containing the cell adhesion change material.
  • the cell adhesion change layer has a photocatalyst treatment layer formed on a substrate and a cell adhesion change material layer formed on the photocatalyst treatment layer. Therefore, when the energy is irradiated, the cell adhesion of the cell adhesion changing material in the cell adhesion changing material layer changes due to the action of the photocatalyst in the photocatalyst treatment layer, and the part where the energy is irradiated and the part where the energy is not irradiated Thus, it is possible to form a cell adhesion change pattern having different adhesion to cells.
  • the cell array substrate of this embodiment will be described separately for each of the members used.
  • a cell adhesion changing material layer is formed on a photocatalyst treatment layer formed on the substrate.
  • the cell adhesion changing material layer a layer formed by using the cell adhesion changing material described in the first embodiment can be used.
  • the cell adhesion changing material layer using the physicochemical cell adhesion changing material and the cell adhesion changing material layer using the biological cell adhesion changing material will be separately described.
  • the cell adhesion changing material layer formed by the physicochemical cell adhesion changing material can be a layer using the same material as the material described in the first embodiment. When such a material is used, it is the same as described above except for the presence or absence of a photocatalyst. In this embodiment, in principle, there is no need to contain a photocatalyst in the cell adhesion changing material layer, but a small amount may be contained due to sensitivity and the like.
  • the cell adhesion changing material layer is formed on the photocatalyst treatment layer as a decomposition removal layer which is decomposed and removed by the action of the photocatalyst, and the cell adhesion change material layer is formed by the action of the photocatalyst accompanying energy irradiation.
  • a degraded region that is, a region where the photocatalyst treatment layer is exposed, and a region where the cell adhesion changing material layer remains, thereby forming a cell adhesion changing pattern of a type that forms a cell adhesion changing pattern. Can be used.
  • a pattern of the presence or absence of the cell adhesiveness changing material layer is formed by forming a layer of the adhesiveness changing material and then irradiating the pattern with energy, thereby forming a cell adhesiveness changing pattern.
  • Examples of the physicochemical cell adhesion changing material layer as such a decomposition removal layer, which can be used when the cell adhesion is controlled by surface free energy, include, for example, regenerated cellulose, nylon 1 1 and the like.
  • a cell adhesion changing pattern can be formed by a method similar to the above using a physicochemical cell adhesion changing material having a positive charge.
  • a material that can be used when controlling cell adhesion by electrostatic interaction is polyamine graft poly (2). —Hydroxymethylmethacrylate) (HA-x).
  • a functional thin film That is, it is possible to form a film without defects by using a self-assembled monomolecular film, a Langmuir rocket film, an alternate adsorption film, and the like. Is more preferable.
  • the photocatalyst treatment layer which will be described later, is exposed in the region decomposed and removed, and thus the cell culture is performed. Is a region that is greatly inhibited. Therefore, the cell array substrate obtained by such a method has an advantage that a high-definition pattern can be maintained even when cells are retained for a long period of time.
  • the same layer as that described in the first embodiment can be used as the cell adhesion changing material layer formed by the biological cell adhesion changing material. Can be mentioned.
  • the photocatalyst-treated layer used in the present invention is not particularly limited as long as the photocatalyst in the photocatalyst-treated layer changes the cell adhesion property of the cell adhesion-modifying material layer formed thereon. Instead, it may be composed of a photocatalyst and a binder, or may be a film formed of a single photocatalyst.
  • the surface properties may be particularly lyophilic or lyophobic, but are lyophilic for convenience of forming a cell adhesion changing material layer on this photocatalyst treatment layer. Is preferred.
  • a photocatalyst represented by titanium oxide as described later in the photocatalyst treatment layer is not necessarily clear, but the carrier generated by light irradiation may be a direct reaction with a nearby compound, or It is thought that the active oxygen species generated in the presence of oxygen and water change the chemical structure of organic matter. In the present invention, it is considered that this carrier acts on the compound in the cell adhesion changing material layer formed on the photocatalyst treatment layer. Such a photocatalyst is the same as that described in detail in the first embodiment.
  • the photocatalyst treatment layer in the present embodiment may be formed by using only the photocatalyst as described above, or may be formed by mixing with a pinda.
  • a photocatalyst treatment layer consisting of only a photocatalyst
  • the cell adhesion of the cell adhesion change material layer Efficiency against changes in characteristics is improved, and this is advantageous in terms of cost such as shortening of processing time.
  • a photocatalyst treatment layer comprising a photocatalyst and a binder has an advantage that the formation of the photocatalyst treatment layer is easy.
  • Examples of a method for forming the photocatalyst treatment layer composed of only the photocatalyst include a method using a vacuum film forming method such as a sputtering method, a CVD method, and a vacuum evaporation method.
  • a vacuum film forming method such as a sputtering method, a CVD method, and a vacuum evaporation method.
  • Another example of a method for forming a photocatalyst treatment layer composed of only a photocatalyst is, for example, a method in which, when the photocatalyst is titanium dioxide, amorphous titania is formed on a substrate, and then the phase is changed to crystalline titania by firing. And the like.
  • Examples of the amorphous titaure used herein include, for example, hydrolysis, dehydration condensation of inorganic salts of titanium such as titanium tetrachloride and titanium sulfate, tetraethoxytitanium, tetraisopropoxytitanium, tetra-n-propoxytitanium, tetrabutoxytitanium,
  • An organic titanium compound such as tetramethoxytitanium can be obtained by hydrolysis and dehydration condensation in the presence of an acid. Then, it can be denatured to anatase type titania by baking at 400 ° C. to 500 ° C., and can be converted to rutile type titania by baking at 600 ° C. (: up to 700 ° C.). .
  • the binder When a binder is used, it is preferable that the binder has a high binding energy such that the main skeleton of the binder is not decomposed by the action of the photocatalyst.
  • a binder examples include the above-mentioned organopolysiloxane and the like. That's a thing.
  • the photocatalyst treatment layer disperses the coating solution by dispersing the photocatalyst and the organopolysiloxane, which is the binder, together with other additives as necessary. It can be formed by preparing and applying this coating solution onto a transparent substrate.
  • the solvent to be used alcohol-based organic solvents such as ethanol and isopropanol are preferable.
  • Application is well-known such as spin coat, spray coat, dip coat, lonole coat, bead coat, etc. Can be performed by a coating method.
  • the photocatalyst-treated layer can be formed by irradiating ultraviolet rays to perform a curing treatment.
  • an amorphous silica precursor can be used as a binder.
  • This amorphous silica precursor is represented by the general formula S i X, wherein X is a silicon compound such as a halogen, a methoxy group, an ethoxy group, or an acetyl group, a silanol hydrolyzate thereof, or Polysiloxanes having an average molecular weight of 3000 or less are preferred.
  • the precursor of the amorphous silica and the particles of the photocatalyst are uniformly dispersed in a non-aqueous solvent, and hydrolyzed with water in the air to form a silanol on a transparent substrate.
  • the photocatalyst-treated layer can be formed by dehydration-condensation polymerization at room temperature. If the dehydration-condensation polymerization of silanol is performed at 10 ° C. or more, the degree of polymerization of silanol increases, and the strength of the film surface can be improved.
  • These binders can be used alone or in combination of two or more.
  • the content of the photocatalyst in the photocatalyst treatment layer can be set in the range of 5 to 60% by weight, preferably 20 to 40% by weight.
  • the thickness of the photocatalyst treatment layer is preferably in the range of 0.05 to 10 ⁇ m.
  • the photocatalyst treatment layer may contain a surfactant in addition to the photocatalyst and the binder.
  • a surfactant such as NIKKOL BL, BC, BO, and BB series manufactured by Nikko Chemicals Co., Ltd .; ZONYL FSN and FSO manufactured by DuPont; Surflon S—141, 145 manufactured by Asahi Glass Co., Ltd. , Dainippon Ink and Chemicals, Inc. Megafac F-141, 144, Neos Co., Ltd., F-200, F251, Daikin Industries Co., Ltd., Unitidain DS-401, 402, Threeem Co., Ltd.
  • fluorine-based or silicone-based nonionic surfactants such as Florard FC-170 and 176, and cationic surfactants, anionic surfactants, and amphoteric surfactants can also be used. it can.
  • the photocatalyst treatment layer includes polyvinyl alcohol, unsaturated polyester, acrylic resin, polyethylene, diaryl phthalate, ethylene propylene monomer, epoxy resin, phenol resin, polyurethane, Melamine resin, polycarbonate, polyvinyl chloride, polyamide, polyimide, styrene butadiene rubber, chloroprene rubber, polypropylene, polybutylene, polystyrene, polyvinyl acetate, polyester, polybutadiene, polybenzimidazole, polyacryl nitrile, epichlorohydrin, Oligomers and polymers such as polysulfide and polyisoprene can be contained.
  • the substrate used in the present embodiment is not particularly limited as long as the photocatalyst treatment layer can be formed, and the same substrate as described in the first embodiment can be used.
  • the photocatalyst in the photocatalyst treatment layer causes the cell adhesion change material layer surface to adhere to cells.
  • a cell adhesion change pattern which is a pattern in which the property has changed, is formed.
  • the cell array substrate includes a substrate and a cell adhesion changing material formed on the substrate and having a cell adhesion changing material in which the cell adhesion changes due to the action of a photocatalyst accompanying energy irradiation.
  • the cell adhesion change layer is a cell adhesion change material layer
  • the adhesion change pattern is such that the photocatalyst-containing layer containing a photocatalyst and the cell adhesion change material layer are different. It is formed by irradiating energy from a predetermined direction after arranging them so as to face each other. When the energy is irradiated, the photocatalyst in the photocatalyst-containing layer acts on the cell adhesion changing material layer.
  • Cell adhesion change of the material The cell adhesion of the material is changed, and a cell adhesion change pattern in which the adhesion to the cell differs between the portion irradiated with energy and the portion not irradiated.
  • the cell array substrate of this embodiment will be described separately for each of the members used.
  • a cell adhesion changing material layer is formed on the substrate.
  • This cell adhesion changing material layer is the same as the layer formed by using the material described in the second embodiment.
  • a cell adhesion changing material layer may be formed on a substrate as a decomposition removal layer which is decomposed and removed by the action of a photocatalyst.
  • the cell adhesion changing material layer is irradiated with energy using the photocatalyst-containing layer-side substrate, and the region where the cell adhesion changing material layer is decomposed by the action of the photocatalyst accompanying energy irradiation, that is, the substrate An area in which the cell adhesion is changed and an area in which the cell adhesion changing material layer remains are formed, thereby using a cell adhesion changing pattern.
  • the substrate used in the present embodiment is not particularly limited as long as the above-mentioned cell adhesion changing material layer can be formed, and the same substrate as described in the first embodiment is used. It is possible.
  • the photocatalyst-containing layer used in the present embodiment is a layer containing a photocatalyst, and is usually formed on a substrate such as glass and used.
  • a photocatalyst-containing layer is arranged so as to face the above-mentioned cell adhesion change material layer, and by irradiating energy, the cell is activated by the action of the photocatalyst contained in the photocatalyst-containing layer. It is possible to change the cell adhesiveness of the adhesiveness changing material layer.
  • this photocatalyst-containing layer can be arranged at a predetermined position during energy irradiation to form a cell adhesion change pattern.
  • a photocatalyst containing layer is the same as the layer described for the photocatalyst treatment layer in the second embodiment.
  • the above-mentioned photocatalyst-containing layer is irradiated with energy in a pattern by using the photocatalyst-containing layer, whereby the action of the photocatalyst in the photocatalyst-containing layer causes A cell adhesion change pattern, which is a pattern in which the adhesion to cells on the layer surface has changed, is formed.
  • the method for producing a cell array substrate of the present invention includes, for example, the three embodiments described above.
  • the substrate and the substrate are formed on the substrate, And forming a substrate for a pattern forming body having a layer in which cell adhesion changes due to the action of the photocatalyst accompanying the energy irradiation, and irradiating the substrate for the pattern forming body with energy to cause the photocatalyst to act. It is characterized by forming a cell adhesion change pattern in which cell adhesion is changed.
  • a layer in which the cell adhesion changes due to the action of the photocatalyst accompanying the above-mentioned energy irradiation is formed.
  • a cell array substrate having a cell adhesion change pattern in which the cell adhesion changes in a high-definition pattern Therefore, a cell array substrate can be manufactured by a simple process without using a treatment solution that adversely affects cells with a high-definition pattern.
  • the change material can be used without any problem.
  • a first embodiment of the method for producing a cell array substrate according to the present invention comprises: a substrate; Pattern formation to form a substrate for a pattern-forming body having a photocatalyst and a cell-adhesion-change layer containing a cell-adhesion-change material containing a cell-adhesion-change material whose cell adhesion changes by the action of a photocatalyst and a photocatalyst accompanying energy irradiation
  • a step of forming a change pattern is performed by the action of a photocatalyst and a photocatalyst accompanying energy irradiation
  • the method for producing a cell array substrate includes a pattern comprising a substrate 1 and a photocatalyst-containing cell adhesion change layer 2 formed on the substrate 1.
  • Forming substrate 3 for forming body Step of forming substrate for pattern forming body (FIG. 1 (a))
  • energy 5 is applied to the above photocatalyst-containing cell adhesion changing layer 2 using a photomask 4, for example.
  • Irradiation Fig. 1 (b)
  • the photocatalyst-containing cell adhesiveness changing layer having the photocatalyst and the above-mentioned cell adhesiveness changing material is formed, by irradiating energy in the cell adhesion changing pattern forming step.
  • the action of the photocatalyst in the photocatalyst-containing cell adhesion changing layer changes the cell adhesion of the cell adhesion changing material, resulting in cells having different adhesiveness between the irradiated and non-irradiated portions. It is possible to form an adhesiveness change pattern.
  • each step of the present embodiment will be described.
  • the substrate forming step for a pattern forming body in the present embodiment includes the following steps: a substrate, a cell adhesive formed on the substrate, and having an adhesive property of cells which is changed by the action of a photocatalyst and a photocatalyst accompanying energy irradiation. This is a step of forming a substrate for a pattern forming body having a photocatalyst-containing cell adhesiveness change layer containing a change material.
  • a coating solution containing a photocatalyst and a cell adhesion changing material is applied onto a substrate by a known coating method such as spin coating, spray coating, dip coating, roll coating, or bead coating. It can be performed by forming a photocatalyst-containing cell adhesion change layer. It also contains UV curable components as a binder. When it has, the photocatalyst containing layer can be formed by performing a curing treatment by irradiating ultraviolet rays.
  • the photocatalyst-containing cell adhesion change layer is irradiated with energy, and the photocatalyst-containing cell adhesion change layer has a cell adhesion change pattern in which the cell adhesion is changed. This is a step of forming a contact.
  • the cell adhesion of the photocatalyst-containing cell adhesion changing layer in only the area irradiated with energy can be changed, and high-definition cells can be obtained. It is possible to form a cell adhesion change pattern, which is a pattern of a region having good adhesion and a region having poor adhesion.
  • the term “energy irradiation (exposure)” as used in the present embodiment is a concept including irradiation of any energy that can change the cell adhesion on the surface of the photocatalyst-containing cell adhesion changing layer, and includes visible light. It is not limited to the irradiation of.
  • the wavelength of light used for such energy irradiation is set in a range of 400 nm or less, preferably in a range of 380 nm or less.
  • a preferable photocatalyst used for the photocatalyst-containing cell adhesion change layer is titanium dioxide, and light having the above-described wavelength is preferable as the energy for activating the photocatalysis by the titanium dioxide. It is.
  • Light sources that can be used for such energy irradiation include mercury lamps, metal halide lamps, xenon lamps, excimer lamps, and various other light sources.
  • the amount of energy irradiation at the time of the energy irradiation is the irradiation necessary for changing the adhesiveness of the cells on the surface of the photocatalyst-containing cell adhesion change layer by the action of the photocatalyst in the photocatalyst-containing cell adhesion change layer. Amount.
  • Adhesiveness can be adjusted. By doing so, a surface having appropriate adhesiveness can be obtained.
  • Cell adhesion can be evaluated by the water contact angle of the surface as described above, so by adjusting the energy irradiation time to obtain a surface with an appropriate water contact angle, appropriate adhesion can be obtained.
  • fluoralkylsilane when fluoralkylsilane is used as the material for changing cell adhesion and ultraviolet light of 365 nm is irradiated at an intensity of 25.0 mWZ seconds, in the case where quartz is used as the base material of the photomask, the average is usually 1 ⁇ m. Irradiation for 20 to 600 seconds, preferably 240 to 480 seconds can provide a surface having suitable adhesiveness. The energy irradiation time, irradiation intensity, and the like can be appropriately adjusted depending on the material of the substrate to be used, the cell adhesiveness changing material, and the like.
  • the energy irradiation direction is pattern energy irradiation or laser drawing irradiation through a photomask from either direction of the base material side or the photocatalyst-containing cell adhesion change layer side. May be performed.
  • the substrate is opaque, it is necessary to irradiate energy from the photocatalyst-containing cell adhesion change layer side.
  • a second embodiment of the cell array substrate according to the present invention includes a substrate, a photocatalyst treatment layer containing a photocatalyst formed on the substrate, and a photocatalyst treatment layer formed on the photocatalyst treatment layer.
  • a base material for a pattern forming body having a cell adhesion changing material layer containing a cell adhesion changing material layer containing a cell adhesion changing material in which cell adhesion changes due to the action of a photocatalyst accompanying irradiation; Irradiating the cell adhesion changing material layer with energy, and forming a cell adhesion changing pattern forming a cell adhesion changing pattern in which the cell adhesion of the cell adhesion changing material layer is changed. It has.
  • the method for producing a cell array substrate includes, first, a substrate 1, a photocatalyst treatment layer 7 formed on the substrate 1, and a photocatalyst treatment layer 7 on the substrate.
  • the substrate 3 for a pattern forming body having the cell adhesion changing material layer 8 formed on the substrate is formed (step of forming a substrate for a pattern forming body (FIG. 2 (a))).
  • the material layer 8 is irradiated with energy 5 using, for example, a photomask 4 (FIG. 2 (b)) to form a cell adhesion change pattern 6 in which the cell adhesion of the cell adhesion change material layer 8 has changed. (Fig. 2 (c)) This is to perform the step of forming a cell adhesion change pattern.
  • the photocatalyst contained in the photocatalyst treatment layer is irradiated by irradiating energy in the cell adhesion change pattern forming step. Changes the cell adhesion in the material layer, and forms a cell adhesion change pattern in which the adhesiveness to cells differs between the part irradiated with energy and the part not irradiated. It is.
  • each step of the present embodiment will be described.
  • the substrate forming step for a pattern forming body in the present embodiment includes: a photocatalyst treatment layer containing a photocatalyst formed on the base material; and a photocatalyst formed on the photocatalyst treatment layer and associated with energy irradiation.
  • This is a step of forming a substrate for a pattern forming body having a cell adhesion changing material layer containing a cell adhesion changing material whose cell adhesion changes by an action.
  • the photocatalyst treatment layer formed in this step may be composed only of a photocatalyst, or may be formed by mixing with a binder.
  • Examples of a method for forming a photocatalyst treatment layer composed of only a photocatalyst include a vacuum film forming method such as a sputtering method, a CVD method, and a vacuum deposition method.
  • a vacuum film forming method such as a sputtering method, a CVD method, and a vacuum deposition method.
  • the photocatalyst is titanium dioxide
  • amorphous titania is formed on a substrate.
  • a phase change to crystalline titania by firing By forming the photocatalyst treatment layer by the vacuum film forming method, it is possible to form a uniform film and a photocatalyst treatment layer containing only the photocatalyst, thereby improving the cell adhesion on the cell adhesion change material layer.
  • the photocatalyst treatment layer is a mixture of a photocatalyst and a binder
  • the photocatalyst and the binder are dispersed in a solvent together with other additives as necessary to prepare a coating solution. It can be formed by applying a coating solution on a transparent substrate.
  • a solvent to be used an alcoholic organic solvent such as ethanol and isopropanol is preferable.
  • Coating can be performed by a known coating method such as spin coating, spray coating, dip coating, roll coating, or bead coating.
  • an ultraviolet-curable component is contained as a binder
  • the photocatalyst-treated layer can be formed by performing a curing treatment by irradiating ultraviolet rays.
  • a coating solution containing the above-mentioned cell adhesion changing material is applied by a known application method such as spin coating, spray coating, dip coating, lonole coating, or bead coating, A cell adhesion changing material layer can be formed.
  • a coating solution containing the above-mentioned cell adhesion changing material is applied by a known application method such as spin coating, spray coating, dip coating, lonole coating, or bead coating, A cell adhesion changing material layer can be formed.
  • an ultraviolet curable component is contained as a binder
  • the photocatalyst treatment layer can be formed by performing a curing treatment by irradiating ultraviolet rays.
  • the substrate ⁇ photocatalyst treatment layer and the cell adhesion changing material layer used in this step are the same as those described in the second embodiment of “1. is there.
  • the step of forming a cell adhesion change pattern in this embodiment will be described.
  • the cell adhesion change material layer is irradiated with energy, and the cell adhesion change pattern in which the cell adhesion of the cell adhesion change material layer is changed. This is the step of forming
  • the energy irradiation method, irradiation energy, and energy irradiation amount in this step are the same as those in the first embodiment described above.
  • the third embodiment of the method for producing a cell array substrate comprises a substrate and a cell adhesive change formed on the substrate, wherein the cell adhesion is changed by the action of a photocatalyst accompanying irradiation with energy.
  • a substrate for forming a pattern forming body which forms a substrate for a pattern forming body having a cell adhesion changing material layer containing a material; a substrate for a pattern forming body; a photocatalyst containing layer and a substrate containing a photocatalyst
  • the method for producing a cell array substrate includes a pattern including a substrate 1 and a cell adhesion changing material layer 8 formed on the substrate 1.
  • Forming substrate 3 pattern forming substrate forming step (FIG. 3 (a))
  • the substrate 11 and the photocatalyst containing layer 12 formed on the substrate 11 are combined.
  • a photocatalyst-containing layer-side substrate 13 is prepared having the photocatalyst-containing layer 12 of the photocatalyst-containing layer-side substrate 13 and the cell adhesion changing material layer 8 facing each other. Irradiation with energy 5 (Fig. 3 (b)) to form a cell adhesion change pattern 6 in which the cell adhesion of the cell adhesion change material layer 8 has changed (Fig. 3 (c))
  • a change pattern forming step is performed.
  • the layer is contained in the photocatalyst containing layer by irradiating energy using the photocatalyst containing layer side substrate.
  • the action of the photocatalyst changes the cell adhesiveness in the cell adhesiveness change material layer, and forms a cell adhesiveness change pattern in which the adhesiveness to the cell differs between the part irradiated with energy and the part not irradiated. You can do it.
  • each step of the present embodiment will be described.
  • the substrate forming step for a pattern forming body according to the present invention includes a substrate and a cell adhesion changing material formed on the substrate and changing the cell adhesion by the action of a photocatalyst accompanying energy irradiation.
  • This is a step of forming a substrate for a pattern forming body having a cell adhesion changing material layer.
  • a coating solution containing a cell adhesiveness changing material is applied onto a substrate by a known coating method such as spin coating, spray coating, dip coating, lip coating, bead coating, or the like. This can be performed by forming an adhesiveness changing material layer.
  • the photocatalyst-containing layer can be formed by performing a curing treatment by irradiating ultraviolet rays.
  • the base material and the cell adhesion changing material used in this step the same materials as those described in the section of the first embodiment of “1. .
  • the adhesiveness change pattern forming step in this embodiment includes: the above-mentioned substrate for a pattern forming body; a photocatalyst containing layer containing a photocatalyst; and a photocatalyst containing layer side substrate having a substrate.
  • This is a step of forming a cell adhesion changing pattern in which the cell adhesion of the cell adhesion changing material layer is changed by irradiating energy from a predetermined direction after arranging the cell adhesion layer so as to face the containing layer.
  • the photocatalyst-containing layer and the cell adhesion changing material layer on the photocatalyst-containing layer-side substrate are arranged so as to face each other, and energy is irradiated in a target pattern, so that only the energy-irradiated region is exposed. It is possible to change the cell adhesion of the cell adhesion changing material layer and to form a cell adhesion changing pattern, which is a pattern of a high-definition area with good cell adhesion and a poor area. .
  • the photocatalyst-containing layer side substrate and the energy irradiation used in this step will be described.
  • the photocatalyst-containing layer-side substrate used in the present embodiment has at least a photocatalyst-containing layer and a base, and usually has a thin-film-shaped photocatalyst-containing layer formed on a substrate by a predetermined method. It has been done. Further, as the substrate on the photocatalyst-containing layer side, a substrate on which a light-shielding portion on the photocatalyst-containing layer side formed in a pattern or a primer layer can be used.
  • the cell adhesiveness changing material when irradiating energy, the cell adhesiveness changing material
  • the layer and the photocatalyst-containing layer on the photocatalyst-containing layer-side substrate are opposed at a predetermined gap, and the action of the photocatalyst-containing layer on the photocatalyst-containing layer-side substrate changes the cell adhesion of the cell adhesion-change material layer.
  • the photocatalyst-containing layer-side substrate is removed to form a cell adhesion change pattern.
  • each configuration of the photocatalyst-containing layer-side substrate will be described.
  • the photocatalyst containing layer used in the present embodiment contains at least a photocatalyst and may or may not have a binder, and is the same as the photocatalyst treatment layer of the second embodiment described above. .
  • the photocatalyst-containing layer used in the present embodiment may be formed on the entire surface of the substrate 11 as shown in FIG. 3, for example, but may be formed on the substrate 1 as shown in FIG.
  • the photocatalyst containing layer 12 may be formed on 1 in a pattern.
  • a cell adhesion change pattern can be formed on the layer.
  • the method of patterning the photocatalyst-containing layer is not particularly limited, but can be performed by, for example, one photolithography method.
  • the irradiation direction may be any direction as long as the energy is applied to the portion where the photocatalyst-containing layer and the cell adhesion changing material layer oppose each other.
  • the energy to be applied is particularly parallel light. There is an advantage that it is not limited to parallel ones.
  • the photocatalyst-containing layer-side substrate 13 has at least a substrate 11 and a photocatalyst-containing layer 12 formed on the substrate 11.
  • the material constituting the substrate to be used is appropriately selected depending on the direction of energy irradiation described later, whether the obtained cell array substrate requires transparency, and the like.
  • the substrate used in the present embodiment may be a substrate having flexibility, for example, a resin film, or a substrate having no flexibility, for example, a glass substrate.
  • an optical waveguide such as an optical fiber can be used as another form of the base. These are appropriately selected depending on the energy irradiation method.
  • an anchor layer may be formed on the substrate in order to improve the adhesion between the substrate surface and the photocatalyst-containing layer. Examples of such an anchor layer include silane-based and titanium-based coupling agents.
  • the photocatalyst-containing layer-side substrate used in the present embodiment may be one having a photocatalyst-containing layer-side light-shielding portion formed in a pattern.
  • the photocatalyst-containing layer-side substrate having such a photocatalyst-containing layer-side light-shielding portion can be in the following two modes depending on the position where the photocatalyst-containing layer-side light-shielding portion is formed.
  • a photocatalyst-containing layer-side light-shielding portion 14 is formed on a substrate 11, and a photocatalyst-containing layer 12 is formed on the photocatalyst-containing layer-side light-shielding portion 14.
  • a photocatalyst-containing layer-side substrate is used.
  • the other is an embodiment in which a photocatalyst-containing layer 12 is formed on a substrate 11 and a photocatalyst-containing layer-side light-shielding portion 14 is formed on the photocatalyst-containing layer-side substrate as shown in FIG. 6, for example. It is.
  • the photocatalyst-containing layer-side light-shielding portion is disposed closer to the portion where the photocatalyst-containing layer and the cell adhesion changing material layer are disposed, as compared to the case where a photomask is used. Since it is possible to reduce the influence of energy scattering inside the substrate or the like, it is possible to perform energy pattern irradiation extremely accurately.
  • the photocatalyst-containing layer-side light-shielding portion is formed on the photocatalyst-containing layer
  • the photocatalyst-containing layer and the cell adhesion changing material layer are arranged at predetermined positions.
  • the thickness of the light-shielding portion on the photocatalyst-containing layer side equal to the width of the gap
  • the light-shielding portion on the photocatalyst-containing layer side can also be used as a spacer for making the gap constant. It has the advantage that. When the height of the spacer is insufficient, a spacer may be separately provided in the light shielding portion.
  • the photocatalyst-containing layer and the cell adhesion changing material layer are arranged facing each other with a predetermined gap, the light-shielding portion on the photocatalyst-containing layer side and the cell adhesion changing material layer are brought into close contact with each other.
  • the predetermined gap By arranging it in a state in which it is positioned, it is possible to make the predetermined gap accurate, and in this state, by irradiating energy from the substrate on the photocatalyst containing layer side, the cell adhesion on the cell adhesion change material layer This makes it possible to accurately form the gender change pattern.
  • the method of forming such a photocatalyst-containing layer-side light-shielding portion is not particularly limited, and may be appropriately selected according to the characteristics of the formation surface of the photocatalyst-containing layer-side light-shielding portion, the shielding property against required energy, and the like. Used.
  • it may be formed by forming a metal thin film of chromium or the like having a thickness of about 1000 to 2000 A by a sputtering method, a vacuum evaporation method, or the like, and patterning the thin film.
  • a sputtering method a normal patterning method such as sputtering can be used.
  • a method in which a layer in which light-shielding particles such as carbon fine particles, metal oxides, inorganic pigments, and organic pigments are contained in a resin binder may be formed in a pattern.
  • the resin binder used one or a mixture of two or more resins such as polyimide resin, acrylic resin, epoxy resin, polyacryloamide, polyvinylinoleanol resin, gelatin, casein, and cenorellose, and photosensitive resin
  • a reactive resin, furthermore, an OZW emulsion type resin composition, for example, an emulsion of reactive silicone can be used.
  • the thickness of such a resin light-shielding portion can be set in the range of 0.5 to 10 ⁇ .
  • a commonly used method such as a photolithography method or a printing method can be used as a method for patterning the resin light-shielding portion.
  • the two positions of the photocatalyst-containing layer-side light-shielding portion are described between the substrate and the photocatalyst-containing layer and the surface of the photocatalyst-containing layer.
  • Photocatalyst-containing layer side light-shielded on non-coated surface It is also possible to adopt a mode of forming a part. In this embodiment, for example, a case where a photomask is brought into close contact with the surface to the extent that it can be detached or the like can be considered, and it can be suitably used when the cell adhesion change pattern is changed with a small opening.
  • a primer layer used for the photocatalyst-containing layer-side substrate of the present embodiment will be described.
  • a primer layer may be formed between the layer-side light-shielding portion and the photocatalyst-containing layer.
  • this primer layer changes the cell adhesion due to the action of the photocatalyst.
  • Impurities from the photocatalyst-containing layer-side light-shielding portion and the openings existing between the photocatalyst-containing layer-side light-shielding portions which are factors that inhibit the change in the cell adhesion of the material layer, especially when patterning the photocatalyst-containing layer-side light-shielding portion It is considered to have a function to prevent diffusion of impurities such as residue, metal, and metal ions. Therefore, by forming the primer layer, the process of the cell adhesion change proceeds with high sensitivity, and as a result, a high-resolution pattern can be obtained.
  • the primer layer prevents impurities present not only in the photocatalyst-containing layer-side light-shielding portion but also in the opening formed between the photocatalyst-containing layer-side light-shielding portions from affecting the action of the photocatalyst. Therefore, it is preferable that the primer layer be formed over the entire light-shielding portion on the photocatalyst-containing layer side including the opening.
  • the primer layer in this embodiment is not particularly limited as long as it has a structure in which the primer layer is formed so that the photocatalyst-containing layer-side light-shielding portion of the photocatalyst-containing layer-side substrate does not come into contact with the photocatalyst-containing layer.
  • the material constituting the primer layer is not particularly limited, but an inorganic material that is not easily decomposed by the action of a photocatalyst is preferable.
  • Specific examples include amorphous silicon.
  • amorphous silica precursor of Mujo type silica is represented by the general formula S i X 4, X is a halogen, main butoxy group, E butoxy group or Asechiru group, etc.
  • silicon compounds and their hydrolysates Is preferable, or a polysiloxane having an average molecular weight of 300 or less.
  • the thickness of the primer layer is preferably in the range of 0.01 m to 1 ⁇ m, and particularly preferably in the range of 0.1 ⁇ m to 0.1 ⁇ m. .
  • the cell adhesion-changing material layer and the photocatalyst-containing layer on the photocatalyst-containing layer-side substrate are arranged so as to face each other, and energy is irradiated from a predetermined direction to thereby achieve cell adhesion. It is possible to form a pattern in which the cell adhesiveness of the sex change material layer has changed.
  • the above arrangement means a state in which the action of the photocatalyst substantially extends to the surface of the cell adhesion changing material layer.
  • the photocatalyst containing layer and the cell adhesion changing material layer are arranged at intervals. This gap is preferably 200 ⁇ or less.
  • the gap is particularly good at 0.2 Aim in consideration of the fact that the pattern accuracy is extremely good, the sensitivity of the photocatalyst is high, and the efficiency of the cell adhesion change of the cell adhesion change material layer is good.
  • ⁇ l 0 ⁇ preferably 1! It is preferable to be within the range of 5 ⁇ .
  • Such a range of the gap is particularly effective for a small-area cell-adhesion-change material layer in which the gap can be controlled with high accuracy.
  • the contact layer does not contact and the fine gap as described above is formed in the photocatalyst-containing layer. It is extremely difficult to form between the side substrate and the cell adhesion changing material layer. Therefore, when the cell adhesion changing material layer has a relatively large area, the gap may be in the range of 10 to 100 ⁇ , particularly in the range of 10 to 20 ⁇ . preferable.
  • the positioning between the photocatalyst-containing layer side substrate and the cell adhesion changing material layer in the energy irradiation device is performed.
  • Set the gap in the device to 10 ⁇ ! It is preferable to set within the range of 200 ⁇ m to 200 ⁇ m, particularly within the range of 10 zm to 20 ⁇ .
  • the photocatalyst-containing layer and the surface of the cell adhesiveness changing material are desorbed and chewed.
  • the distance between the photocatalyst-containing layer and the cell adhesion changing material layer is smaller than the above range, it becomes difficult to desorb the active oxygen species, and as a result, the cell adhesion change rate may be slowed down.
  • the distance is more than the above range, it becomes difficult for the generated reactive oxygen species to reach the cell adhesion change material layer, and in this case, the speed of the cell adhesion change may be slowed down. This is not preferred because of the fact.
  • such an arrangement state need only be maintained at least during energy irradiation.
  • the type of energy to be irradiated the irradiation method, the irradiation amount, and the like are the same as those described in the first embodiment.
  • the angiogenic cells are located on the substrate with different areas of cell adhesion. Is adhered to the cell adhesion good region of the cell array substrate having the patterned cell adhesion change pattern. Since the cell array substrate of the present invention has a cell adhesion change pattern composed of a cell adhesion good region and a cell adhesion inhibition region as described above, cells are uniformly formed on the surface of the cell array substrate. After incubating for a certain period of time, a cell-adhesive substrate with a cell pattern formed is obtained, in which cells adhere to the area with good cell adhesion but do not adhere to the area where cell adhesion is inhibited. . At this time, by washing the substrate after the incubation with liquid, the cells adhering weakly to the substrate are removed, and a more clear cell pattern can be obtained.
  • Cultured samples containing angiogenic cells can be pre-dispersed in advance by dispersing the living tissue into small pieces and dispersing it in a liquid, or by separating the living tissue from cells other than the target cells and other substances that inhibit the test. It is preferable to perform such operations.
  • one of the methods for culturing cells by adhering them to the surface of a support includes a method already known as a so-called monolayer culture method. Specifically, for example, by storing a culture sample and a culture solution in a culture vessel and maintaining them under a certain environmental condition, only specific living cells are adhered to the surface of a support such as a culture vessel. Multiply.
  • Apparatus and processing conditions to be used are in accordance with the usual monolayer culture method and the like.
  • the material on the surface of the support on which cells adhere and grow select a material with good adhesion and growth of cells, or on the surface of the support, a chemical substance with good adhesion and growth of cells, so-called cells
  • the application of an adhesion factor is also performed.
  • the cells pre-cultured as described above are seeded on a cell array substrate in a culture solution.
  • a culture solution There is no particular limitation on the method of seeding the cells and the amount of seeding. Examples thereof are described in, for example, “Analysis of tissue culture by the Japanese Society of Tissue Culture (1991)”, pages 266-270, published by Asakura Shoten. Method is available.
  • the cells are seeded in a sufficient amount so that the cells adhere in a monolayer. This is because when cells aggregate, the organization of the cells is inhibited, and even if they are transferred to the basement membrane layer and cultured, their functions are reduced.
  • seeding is performed at about 2 ⁇ 10 5 per 40 Omm 2 . It is preferred that the cells are adhered to the region having good cell adhesion by incubating the cell array substrate in which the cells are seeded in a culture solution.
  • a culture medium a medium commonly used in the art can be used.For example, depending on the type of cells used, MEM medium, BME medium, DME medium, MEM medium, IMEM medium, ES medium , DM-160 medium, Fisher medium, F12 medium, WE medium and RPMI medium, etc., published by Asakura Shoten. Add serum components (such as fetal serum) to these media! ] And commercially available serum-free media and the like.
  • the incubation time is usually 30 minutes to 48 hours, preferably 4 to 24 hours.
  • the cells adhere to the area with good cell adhesion of the cell array substrate when washed out, but the cells do not adhere to the cell adhesion inhibition area, and furthermore, the cells adhere to the basement membrane layer. Cells can be easily transcribed.
  • Incubation temperature varies depending on the type of cells to be attached, but is usually 37 ° C. By using, for example C0 2 cell culture apparatus, it is preferable to carry out the incubate under C0 2 atmosphere. After the incubation, the non-adhered cells are washed away by washing the cell array substrate, and the cells can be arranged in a pattern.
  • FIG. 7 shows an embodiment of a step of adhering angiogenic cells in a pattern on a cell array substrate and transferring the adhered angiogenic cells to a basement membrane layer.
  • Angiogenic cells are seeded on a cell array substrate (15) in which the good cell adhesion area (17) and the cell adhesion inhibition area (18) are formed in a pattern, and the cells adhere in a pattern.
  • the cell array substrate to which the angiogenic cells are adhered is brought into close contact with the basement membrane layer provided on almost the entire area of the tissue forming cell layer where the vascular network is to be formed, and the cells are transferred and cultured. I do.
  • the cell is stimulated with a cell stimulating factor (22) if necessary.
  • the basement membrane layer does not need to be formed on the entire surface of the tissue forming cell layer as shown in the figure, but may be formed in a region where the vascular network is transferred.
  • Fluoroalkylsilane TSL8233 (GE Toshiba Silicone) 1.5 g, Tetramethoxysilane TSL81114 (GE Toshiba Silicone) 5.0 g, 5.OX
  • this solution 2.Og was applied to a 100 cm ⁇ 10 cm soda glass substrate by a spin coater at 100 rpm and 5 seconds, and the substrate was heated at a temperature of 150 ° C. Dried for 10 minutes.
  • composition for a photocatalyst-containing layer is spin-coated on a pattern surface of a line-and-space negative photomask (quartz) in which line portions having a width of 60 and space portions having a width of 400 ⁇ are alternately arranged.
  • a line-and-space negative photomask quartz
  • line portions having a width of 60 and space portions having a width of 400 ⁇ were alternately arranged.
  • the photocatalyst-containing layer surface of the photomask and the cell adhesion changing material layer surface of the substrate were arranged at a gap of 10 ⁇ , and 25.0 mW from a photomask side using a mercury lamp (wavelength 365 nm). / illuminance of cm 2 performs predetermined time UV exposure, alternately scan pace of cell adhesion inhibition zone width 6 0 mu linear cell adhesion m good area contact Yopi width 4 0 0 mu m
  • the substrate for cell array having the cell adhesion change pattern arranged in was obtained.
  • Example 2 Culture of vascular endothelial cells and adhesion on substrate for cell array
  • vascular endothelial cells derived from magpie arteries (Onodera M, Morita I, Mano
  • Murota S Differential effects of nitric oxide on the activity of prostaglandin endoperoxide h synthase-1 and- 2 in vascular endothelial cells, Prostag Leukotress 62: 161-167, 2000) Using.
  • TM examine the number of cells in the ZM (Coulter Counter), it was 1 0 6 Zm 1.
  • the cell array substrate (having an exposure time of 360 seconds) prepared in Example 1 was sterilized with an autoclave.
  • Dissolve carbocyanine fluorescent dye (DiI, Invitrogen) at a concentration of 10 g / ml in MEM medium containing 5% fetal serum.
  • the substrate for cell array in which the cells were arrayed was immersed in this medium and cultured at 37 ° C for 1 hour. Thereafter, the cell array substrate was returned to the MEM medium containing 5% fetal bovine serum.
  • Mouse liver parenchymal cells were collected and cultured on a commercially available 96-well NIPAAm (poly (N-isopropyl) acrylamide) petri dish. After staining with the above concentration of carbocyanine fluorescent dye (DiO, Invitrogen), the cells were returned to MEM medium containing 5% fetal calf serum.
  • NIPAAm poly (N-isopropyl) acrylamide
  • GFR Matrigel (Bettaton Dickinson) was diluted 10-fold with MEM medium containing 5% fetal calf serum. The gel-containing medium was added to a plate in which mouse liver parenchymal cells were cultured, in a quantity of 251 per well, and then cultured at 37 ° C for 1 hour. As a result, a basement membrane layer consisting of a gel thin film layer was formed on the cells.
  • vascular endothelial cells arranged in Example 2 was immersed in the culture dish of the hepatic parenchymal cells prepared in i), and the basement membrane layer on the hepatic parenchymal cells was brought into contact with the vascular endothelial cells. .
  • the cells were cultured at 37 ° C for 24 hours, and the cell array substrate was peeled off.
  • the petri dish was shaken at about 20 ° C for 30 minutes, lightly pipetted, and the formed tissue was peeled off with tweezers.
  • the immunodeficient mouse was anesthetized, the back was incised, and the tissue prepared up to iii) was transplanted into the mouse liver.
  • the transplanted part was sutured, and the transplanted part was re-incised one day and three days later, and the transplanted tissue was observed with a confocal laser microscope (Di1 ⁇ excitation wavelength 530 nm Z observation wavelength 590 nm, Di0 ⁇ excitation) Wavelength 480 n observation wavelength 510 nm).
  • Observation at an excitation wavelength of 480 nm confirmed the growth of the transplanted hepatocytes.
  • observation of the transplanted vascular endothelial cells at an excitation wavelength of 530 nm confirmed that capillaries were formed as if the vascular endothelial cells had been previously putt für.
  • Vascular endothelial cells were arranged on a cell array substrate in the same procedure as in Examples 1 and 2. Further, the parts i) to iii) of Example 3 were performed to prepare a tissue body composed of hepatic parenchymal cells, basement membrane, and blood vessels.
  • tissue bodies were stacked to form a stacked tissue body, which was immediately transplanted to the liver of an immunocompromised mouse.
  • the transplanted part was sutured, and one day later and three days later, the transplanted part was re-incised to observe the transplanted tissue.
  • Observation at an excitation wavelength of 480 nm confirmed the growth of the transplanted hepatocytes.
  • observation of the transplanted vascular endothelial cells at an excitation wavelength of 530 nm confirmed that capillaries were formed as if the vascular endothelial cells had been putt für in advance.
  • hemoglobin was confirmed to be almost the same in the transplanted part as in the non-transplanted part of the mouse liver.
  • a tissue body composed of hepatocytes and a basement membrane layer was formed by the steps i) and iii) of Example 3, and then three, five, and seven prepared tissue bodies were stacked to form a stacked tissue body.
  • the transplanted portion was sutured, and after 1 day and 3 days, the transplanted portion was re-incised and the transplanted tissue was observed.
  • Vascular endothelial cells were arrayed on a cell array substrate in the same procedure as in Examples 1 and 2. Furthermore, the first tissue body composed of hepatic parenchymal cells, basement membrane, and blood vessels was prepared by performing parts i) to iii) of Example 3. Next, the liver parenchymal cells and the basement membrane layer were subjected to the steps i) and iii) of Example 3. A second tissue body was formed.
  • This laminated tissue was immediately transplanted into the liver of an immunodeficient mouse. The transplanted portion was sutured, and after 1 day and 3 days, the transplanted portion was re-incised to observe the transplanted tissue.
  • an artificial tissue that has means for transporting nutrients, oxygen, waste products, and the like, and can survive in a living body.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dermatology (AREA)
  • Medicinal Chemistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Botany (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Vascular Medicine (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Materials For Medical Uses (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Description

人工組織体およぴその製造方法 技術分野
本発明は、 血管層、 基底膜層および組織形成細胞層を含む in vitroで形成され た組織体、 該組織体を含む積層組織体およびそれらの製造方法に闋する。 背景技術 明
近年、 人工代替物や細胞を培養して組織化させたものをそのまま移植しようと いう技術が注目されている。 その代表的な例書として、 人工皮膚、 人工血管おょぴ 培養細胞組織等が挙げられる。 合成高分子を用いた人工皮膚等は拒絶反応等が生 じる可能性があり、 移植用として好ましくない。 一方、 培養細胞組織は本人の細 胞を培養して組織化したものであるため拒絶反応の心配がなく、 移植用として好 ましい。 このような培養細胞組織は、 本人から細胞を採取し、 これを培養するこ とにより作成される。
多くの動物細胞は、 何かに接着して生育する接着依存性を有しており、 生体外 の浮遊状態では長時間生存することができないため、 上記のような細胞組織を作 成するための細胞培養においては、 例えば表面処理により細胞接着性を高めた改 質ポリスチレン等の高分子材料や、 またはコラーゲンなどの細胞接着性タンパク 質やポリ Lリジンなどの細胞接着性高分子をガラスや高分子材料に均一に塗布し た培養皿が担体として用いられてきた。 このような担体に平面状に接着し増殖し た細胞は、 タンパク質や糖質からなる細胞外マトリックスを培養環境下で形成し 生育する。 このような培養細胞を回収する為には、 通常、 トリプシンなどのタン パク質分解酵素や化学薬品で処理する必要があり、 処理工程が煩雑になり、 コン タミネーシヨンの可能性が高くなること、 細胞が変性若しくは損傷し、 細胞本来 の機能が損なわれる可能性がある等の問題があつた。
そこで、 特開 2 0 0 3 _ 3 8 1 7 0号では、 培養ベース上に温度応答性ポリマ 一によるパターンを形成した細胞培養支持体を作成し、 該細胞培養支持体上で細 胞を培養し、 これを高分子膜に密着させて温度を変化させることにより細胞を損 傷させることなく高分子膜とともに細胞を剥離して細胞シートを製造する方法を 開示している。
しかし、 ここで開示される方法によって得られる細胞シートを生体移植等行う 場合は、 以下の問題がある。 細胞シートを複数枚積層し、 数百ミクロン程度の厚 みの人工組織とすると、 この人工組織は栄養物、 酸素または老廃物を輸送する手 段を持たないため、 人工組織体内の細胞が壊死してしまう。
組織内の細胞が壊死しない程度の厚みで人工組織体を形成して生体移植を行い、 生体内で血管形成させることも考えられるが、 このような手段によって一度に移 植可能な細胞数は少なく、 大規模に損傷した臓器機能を回復するためには生体移 植を繰り返し行う必要があり、 現実的ではない。
—方、 特定の細胞培養法により人工臓器を構築する方法も知られている (特開 2 0 0 3— 2 4 3 5 1号) 。 これは、 管状の細胞培養基材に血管内皮細胞等を接 着することにより人工血管を形成させるものである。 しかし、 この方法で多数の 人工血管を作成する為には、 微細加工された細胞培養基材を多数用意する必要が あり、 組織の形成に時間を要することからその工業生産性は低い。 発明の開示
本発明は、 上記のような従来技術における問題点を解決することを意図してな されたものである。 すなわち、 本発明の課題は、 栄養物、 酸素または老廃物等を 輸送する手段を有し、 生体内で生存可能な人工組織体を提供することである。 本発明者らは、 上記課題を解決すべく鋭意検討を行った結果、 血管層、 基底膜 層および組織形成細胞層をそれぞれ少なくとも 1層積層させることにより、 血管 組織を有する人工組織体を製造できることを見いだし、 本発明を完成させるに至 つた o
すなわち、 本発明は、 以下の発明を包含する。
( 1 ) 血管層、 基底膜層および組織形成細胞層を含む、 in vitroで形成された組 織体。
( 2 ) 基底膜層は組織形成細胞層の上に存在し、 血管層は基底膜層の上に存在す る、 (1 ) 記載の組織体。
( 3 ) 血管層、 基底膜層および組織形成細胞層が積層されてなる in vitroで形成 された積層組織体であって、 3種の層をそれぞれ少なくとも 1層含む該積層組織 体。
( 4 ) 基底膜層は組織形成細胞層の上に存在し、 血管層は基底膜層の上に存在し、 組織形成細胞層は基底膜層または血管層の上に存在する、 (3 ) 記載の積層組織 体。
( 5 ) 組織形成細胞層、 基底膜層おょぴ血管層を含む組織体を製造する方法であ つて、
(a)培養ベース上に組織形成細胞層を形成する工程、
(b)得られた組織形成細胞層上に基底膜層を形成する工程、
(c)細胞接着性良好領域と細胞接着性阻害領域がパターン化された細胞接着性変 化パターンを有する細胞配列用基材表面の細胞接着性良好領域に血管形成細胞を 接着させ、 接着した血管形成細胞を基底膜層上にパターン化された状態で転写し 培養する工程、 ならびに
(d)組織形成細胞層、 基底膜層およ'び血管層を含む組織体を培養ベースから剥離 して回収する工程を含む、 前記製造方法。
( 6 ) ( 5 ) 記載の方法によって製造された組織体を積層することにより、 積層 組織体を製造する方法。
( 7 ) 以下の(a)〜(d) :
(a)培養べ一ス上に組織形成細胞層を形成する工程、
(b)得られた組織形成細胞層上に基底膜層を形成する工程、
(c)細胞接着性良好領域と細胞接着性阻害領域がパターン化された細胞接着性変 化パターンを有する細胞配列用基材表面の細胞接着性良好領域に血管形成細胞を 接着させ、 接着した血管形成細胞を基底膜層上にパターン化された状態で転写し 培養する工程、 ならびに
(d)組織形成細胞層、 基底膜層および血管層を含む第 1組織体を培養ベースから 剥離して回収する工程
を含む方法によって第 1組織体を製造し、
以下の(e)〜(: f) :
(e)培養ベース上に組織形成細胞層を形成する工程、
(f)得られた組織形成細胞層上に基底膜層を形成する工程、 ならびに (g)組織形成細胞層およぴ基底膜層を培養ベースから剥離して回収する工程 を含む方法によって第 2組織体を製造し、
第 1組織体および第 2組織体を積層することによって、 積層組織体を製造する方 法。
(8) 積層組織体内の血管層に培養液を送液する工程をさらに含む (6) または (7) 記載の方法。
(9) 細胞接着性変化層が、 光触媒および細胞接着性変化材料を含有する光触媒 含有細胞接着性変化層である、 (5) 〜 (8) のいずれかに記載の方法。
(1 0) 細胞接着性変化層が、 光触媒を含有する光触媒処理層と、 該光触媒処理 層上に形成された細胞接着性変化材料を含有する細胞接着性変化材料層とを有す る、 (5) 〜 (8) のいずれかに記載の方法。
(1 1) 細胞接着性変化パターンが、 細胞接着性変化材料を含有する細胞接着性 変化層と光触媒を含有する光触媒含有層とを対向するように配置した後、 ェネル ギー照射することにより形成される、 (9) 記載の方法。
(1 2) 細胞接着性変化パターンが、 ライン状の細胞接着性良好領域と細胞接着 性阻害領域のスペースとが交互に配置されたパターンであり、 細胞接着性良好領 域のライン幅が 20〜 200 μ mであり、 ライン間のスペース幅が 1 00〜 1 0 Ο Ο μπιである (5) 〜 (1 1) のいずれかに記載の方法。
( 1 3) 培養ベースが、 細胞を弱い接着力で保持可能な表面を有する (5) 〜 (1 2) のいずれかに記載の方法。
(1 4) (1) 〜 (4) のいずれかに記載の組織体を移植することにより組織を 再生する方法。
(1 5) 血管層、 基底膜層および組織形成細胞層を含み、 前記組織形成細胞層の 前記血管層形成領域のほぼ全面に前記基底膜層が形成されている組織体。
(1 6) 血管層、 基底膜層および組織形成細胞層を含み、 前記組織形成細胞層の 前記血管層形成領域のほぼ全面に前記基底膜層が形成されている積層組織体であ つて、 3種の層をそれぞれ少なくとも 1層含む該積層組織体。
(1 7) 基底膜層は組織形成細胞層の上に存在し、 血管層は基底膜層の上に存在 し、 組織形成細胞層は基底膜層または血管層の上に存在する、 (1 6) 記載の積 層組織体。 本発明により、 栄養物、 酸素または老廃物等を輸送する手段を有し、 生体内で 生存可能な人工組織体を提供することができる。
本明細書は、 本願の優先権の基礎である特願 2 0 0 4 - 1 6 3 5 1 2号の明細 書及び/又は図面に記載された内容を包含する。 図面の簡単な説明
図 1は、 本発明の細胞配列用基材の製造方法の一例を示す工程図である。
図 2は、 本発明の細胞配列用基材の製造方法の他の例を示す工程図である。 図 3は、 本発明の細胞配列用基材の製造方法の他の例を示す工程図である。 図 4は、 本発明における光触媒含有層側基板の一例を示す概略断面図である。 図 5は、 本発明における光触媒含有層側基板の他の例を示す概略断面図である c 図 6は、 本発明における光触媒含有層側基板の他の例を示す概略断面図である。 図 7は、 細胞配列用基材上に血管形成細胞をパターン状に接着させ、 接着した 血管形成細胞を基底膜層に転写する工程の一態様を示す。
図 8は、 本発明の方法の一例を示す概略図である。
図 9は、 細胞配列用基材に配列された細胞を表す写真である。
図 1 0は、 血管層、 基底膜層および組織形成細胞層を含む組織体を in vitroで 製造する方法の一態様を表す。
図 1 1は、 血管層、 基底膜層おょぴ組織形成細胞層が積層されてなる積層組織 体を in vitroで製造する方法の一態様を表す。
符号の説明
1…基材、 2…光触媒含有細胞接着性変化層、 3…パターン形成体用基材、 4…フォ トマスク、 5…エネルギー、 6…細胞接着性変化パターン、 15…細胞配列用基材、 16…基底膜層、 17…細胞接着性良好領域、 18…細胞接着性阻害領域、 19…細胞、 20…撥水性材料、 21…細胞接着材料、 22…細胞刺激因子、 101…組織形成細胞、 102…培養ベース、 103…組織形成細胞層、 104…基底膜層、 105…細胞配列用基材、 106…血管形成細胞、 107…組織体、 108…血管層、 109…第 1組織体が積層されて なる積層組織体、 110…第 1組織体と第 2組織体が積層されてなる積層組織体 以下、 本発明を詳細に説明する。
本発明は、 血管層、 基底膜層おょぴ組織形成細胞層を含む、 in vitroで形成さ れた組織体に関する。 血管層とは、 血管形成細胞を含む層を意味する。 血管形成 細胞としては、 血管内皮細胞、 平滑筋細胞、 壁細胞等が挙げられるが、 血管中の 血液成分を凝結させずに流通させる為に血管内皮細胞が好ましく、 その機能や構 造を維持する為に平滑筋細胞や壁細胞と共に構成されることが望ましい。 血管層 においては、 血管形成細胞がパターン状に配列されていることが好ましい。 パタ ーンは、 二次元のパターンであれば特に制限されず、 例えば、 ライン状、 網目状、 円形、 四角形のパターン、 円形おょぴ四角形等の図形の内部がすべて細胞で占め られたパターンなどを形成することができる。 ライン状または網目状のパターン が好ましい。 血管形成細胞をライン状または網目状に配列して培養することによ り、 組織化が促進され血管の形成が促される。 従って、 本発明において血管層は 好ましくは血管組織を含む。
本発明において基底膜層とは、 基底膜構成タンパク質を主成分とする層であり、 基底膜層とは、 細胞の活動を刺激する細胞成長因子や血管層と組織形成細胞層と を結びつけ、 集合体を形成する細胞外マトリックスが層状態となつたもので、 コ ラーゲン、 フイブロネクチンおょぴラミニンを含む。 基底膜層は生体抽出物や細 胞によって産生されたものでもよく、 また、 人工のものを添加して形成したもの でもよい。
組織形成細胞層とは、 組織形成細胞を含む層を意味する。 組織形成細胞とは in vitroで構成する組織体に必要とされる機能を有する細胞のことであり、 例えば、 臓器細胞、 具体的には、 肝実質細胞, 脖臓 ]3細胞などの代謝系臓器に由来するも の、 あるいは皮膚の上皮細胞のように構造系臓器に由来するものなどが挙げられ る。 上記組織体において、 好ましくは、 基底膜層は組織形成細胞層の上に存在し、 血管層は基底膜層の上に存在する。
本発明はまた、 血管層、 基底膜層および組織形成細胞層が積層されてなる in vitroで形成された積層組織体であって、 3種の層をそれぞれ少なくとも 1層含 む該積層組織体に関する。 この積層組織体において、 好ましくは、 基底膜層は組 織形成細胞層の上に存在し、 血管層は基底膜層の上に存在し、 組織形成細胞層は 基底膜層または血管層の上に存在する。 すなわち、 該積層組織体は、 組織形成細 胞層の上に基底膜層が存在し、 該基底膜層の上に血管層が存在する三層構造、 お よび組織形成細胞層の上に基底膜層が存在する二層構造が積層された構造を有す る。
血管層を有する三層構造は、 積層組織体中に少なくとも 1個存在すればよく、 好ましくは 1〜5個である。 組織形成細胞層の上に基底膜層が存在する二層構造 は、 通常 0〜5個、 二層構造と三層構造は、 合わせて、 通常 5〜1 0個存在する。 前記組織形成細胞層上において、 血管層が形成された領域のほぼ全面に前記基 底膜層が形成されている。 ほぼ全面とは、 通常 9 0 %以上、 好ましくは 9 5 %以 上を意味する。
本発明はまた、 血管層、 基底膜層および組織形成細胞層を含む組織体を in vitroで製造する方法に関する。 該組織体は以下の(a)〜(d)の工程を含む方法に よって製造することができる。
(a)培養ベース上に組織形成細胞層を形成する工程、
(b)得られた組織形成細胞層上に基底膜層を形成する工程、
(c)細胞接着性良好領域と細胞接着性阻害領域がパターン化された細胞接着性変 化パターンを有する細胞配列用基材表面の細胞接着性良好領域に血管形成細胞を 接着させ、 接着した血管形成細胞を基底膜層上にパターン化された状態で転写し 培養する工程、 ならびに
(d)組織形成細胞層、 基底膜層および血管層を含む第 1組織体を培養ベースから 剥離して回収する工程。
上記製造方法の一態様を図 1 0に示す。 図 1 0において、 1 0 1は組織形成細 胞を表し、 1 0 2は培養ベースを表し、 1 0 3は組織形成細胞層を表し、 1 0 4 は基底膜層を表し、 1 0 5は細胞配列用基材を表し、 1 0 6は血管形成細胞を表 し、 1 0 7は形成された組織体を表し、 1 0 8は血管層を表す。
培養ベースは、 その上に組織形成細胞層を形成しうるものであれば特に制限さ れないが、 好ましくは、 該細胞層に損傷を与えずこれを剥離可能な培養ベースを 使用する。 そのような培養ベースとしては、 細胞を弱い接着力で保持可能な表面 を有する培養ベース、 例えば、 ポリスチレン基材に対し細胞接着用のプラズマ処 理を弱く施したものや、 2-メタタリロイルォキシェチルホスホリルコリンゃフル ォロアルキルシランのように細胞接着阻害性を有する材料を基材表面に少量導入 したものなどが挙げられる。 このような少量導入の方法としては、 材料を吸着処 理などで基材に充分に導入した後、 UV処理、 オゾン処理、 プラズマ処理で分解す る方法、 または材料を希薄に溶解した溶液を薄層コーティングする等の方法が挙 げられる。 導入の割合については接着させる細胞の種類、 基材に導入する材料の 種類により異なり調整を要する。
また、 温度応答性ポリマー材料、 例えば、 ポリ一 N—イソプロピルァクリルァ ミ ドのように相転移温度以上の環境では疎水性、 すなわち細胞接着性を有し、 相 転移温度以下の温度では親水性となり細胞接着性が失われる材料を、 高分子ゃガ ラスの基材上に重合したものを挙げることができる。 本発明においては、 ポリ一 N—イソプロピルアクリルアミ ドを使用するのが好ましい。
組織形成細胞層の形成は、 当技術分野で通常用いられる細胞培養方法によって 実施することができる。 例えば、 培養ベース上に細胞を 1 0 4〜1 0 8個ノ c m 2 の密度で播き、 3 7 °Cにて 3 0分〜 4 8時間培養することにより実施できる。 培 地としては、 当技術分野で通常用いられるものを使用でき、 例えば、 M E M培地、 B M E培地、 D M E培地、 ct M E M培地、 I ME M培地、 E S培地、 DM— 1 6 0培地、 F i s h e r培地、 F 1 2培地、 W E培地および R P M I :i 地等、 これ らの培地に血清成分 (ゥシ胎児血清等) 等を添加したもの、 並びに市販の無血清 培地等を用いることができる。
基底膜層は、 組織形成細胞を培養することにより形成させることもできるし、 マトリックスを添加することにより形成させてもよい。 添加するマトリックスと しては、 コラーゲン、 ラミニンおよぴフイブロネクチンを含むものであれば特に 制限されないが、 例えば、 G F Rマトリゲル, 例えばメビオールゲルなどの人工 高分子材料にコラーゲンやラミニン等の生体由来材料を添加したもの等が挙げら れる。 マトリ ックスを添加する場合は、 添加後、 約 3 7 °Cで数時間インキュベー トすることにより基底膜層を形成することができる。
血管層は、 細胞配列用基材の血管形成細胞がパターン状に配列された面を基底 膜層と接触させて培養、 組織化後、 細胞配列用基材を剥離することにより形成す ることができる。 培養条件は当技術分野において通常用いられるものを採用でき、 例えば、 3 7 °Cで通常 2〜 4 8時間、 好ましくは 4〜 2 4時間培養する。
細胞接着性良好領域と細胞接着性阻害領域がパターン化された細胞接着性変化 パターンを有する細胞配列用基材、 その表面の細胞接着性良好領域への血管形成 細胞の接着については後述する。 最後に、 組織形成細胞層、 基底膜層おょぴ血管 層からなる組織体を培養ベースから剥離して回収する。
本発明はまた、 血管層、 基底膜層および組織形成細胞層が積層されてなる積層 組織体であって、 3種の層をそれぞれ少なく とも 1層含む該積層組織体を in vitroで製造する方法に関する。 積層組織体は、 血管層、 基底膜層おょぴ組織形 成細胞層を含む第 1組織体を製造し、 これを積層させることによつて製造できる。 あるいは、 上記第 1組織体を製造し、 以下の( 〜(f) :
(e)培養ベース上に組織形成細胞層を形成する工程、
(f)得られた組織形成細胞層上に基底膜層を形成する工程、 ならびに
(g)組織形成細胞層およぴ基底膜層を培養ベースから剥離して回収する工程 を含む方法によつて基底膜層および組織形成細胞層を含む第 2組織体を製造し、 第 1組織体およぴ第 2組織体を積層することによつて製造できる。
上記製造方法の一態様を図 1 1に示す。 図 1 1において、 1 0 7は組織体を表 し、 1 0 8は血管層を表し、 1 0 9は第 1組織体が積層されてなる積層組織体を 表し、 1 1 0は第 1組織体と第 2組織体が積層されてなる積層組織体を表す。 第 2組織体の製造における培養ベース、 組織形成細胞層の形成および基底膜層 の形成については、 上記の第 1組織体の場合と同様である。
ここで、 第 1組織体と第 2組織体の積層の順序は特に制限されないが、 血管層 を有しない第 2組織体 1〜 6層、 好ましくは 2〜 3層に対し、 1層の第 1組織体 が存在するのが好ましい。
組織体を積層させた後、 好ましくは、 積層組織体内の血管層に培養液を送液す る。 これによつて、 血管層にパターン状に配列された血管形成細胞の組織化が促 進される。
I. 細胞配列用基材
本発明における細胞配列用基材は、 基材上に細胞接着性良好領域と細胞接着性 阻害領域がパターン化された細胞接着性変化パターンを有することを特徴とする ものである。
細胞接着性とは、 細胞を接着する強度、 すなわち細胞の接着しやすさを意味す る。 細胞接着性良好領域とは、 細胞接着性が良好な領域を意味し、 細胞接着性阻 害領域とは、 細胞の接着性が悪い領域を意味する。 従って、 細胞接着性変化パタ ーンを有する細胞配列用基材上に細胞を播くと、 細胞接着性良好領域には細胞が 接着するが、 細胞接着性阻害領域には細胞が接着しないため、 細胞配列用基材表 面には細胞がパターン状に配列されることになる。
細胞接着性は、 接着しょうとする細胞によって異なる場合もあるため、 細胞接 着性が良好とは、 ある種の細胞に対する細胞接着性が良好であることを意味する。 従って、 細胞配列用基材上には、 複数種の細胞に対する複数の細胞接着性良好領 域が存在する場合、 すなわち細胞接着性が異なる細胞接着性良好領域が 2水準以 上存在する場合もある。
細胞接着性変化パターンとしては、 エネルギーの照射に伴い細胞の接着性が変 化する細胞接着性変化材料を含む細胞接着性変化層を基材上に形成し、 特定の領 域にエネルギー照射することによって細胞接着性を変化させて、 細胞接着性の異 なる領域をパタ一ン状に形成させたものが挙げられる。 細胞の接着性が変化する 材料には、 ェネルギ一の照射に伴い細胞接着性を獲得または増加する材料および 細胞接着性が減少または消失する材料の双方が含まれる。
本発明の細胞配列用基材に用いられる基材としては、 その表面に細胞接着性変 化パターンを形成することが可能な材料で形成されたものであれば特に限定され るものではない。 具体的には、 金属、 ガラス、 およびシリコン等の無機材料、 プ ラスチックで代表される有機材料を挙げることができる。 その形状も限定されず、 例えば、 平板、 平膜、 フィルム、 多孔質膜等の形状が挙げられる。
細胞接着性変化材料、 細胞接着性変化層については、 光触媒を用いる実施態様 において説明する。
また、 細胞接着性変化パターンには、 細胞接着性の少ない細胞接着阻害材料を 含む細胞接着阻害層とその上に形成された細胞接着性を有する細胞接着材料を含 む細胞接着層から形成され、 エネルギーの照射に伴い細胞接着層が分解されて消 失することにより細胞接着阻害層が露出して、 細胞接着性の異なる領域が形成さ れる場合も含まれる。 同様に、 細胞接着層とその上に形成される細胞接着阻害層 から形成され、 エネルギー照射に伴い細胞接着阻害層が分解されて消失すること により細胞接着層が露出して、 細胞接着性の異なる領域が形成される場合も含ま れる。 細胞接着材料としては、 各種タイプのコラーゲン、 フイブロネクチン、 ラミニ ン、 ビトロネクチン、 カドヘリンなどの細胞外基質、 R G Dペプチド、 他に細胞 接着性付与の為にプラズマ処理、 コロナ処理、 イオンビーム照射処理、 電子線照 射処理等の手法によりカルボ二ル基ゃカルボキシル基を導入したポリオレフィン 樹脂が挙げられ、 細胞接着阻害材料としては、 ポリテトラフルォロエチレン (P T F E ) 等のフッ素系材料、 ポリイミ ド、 リン脂質等が挙げられる。 また、 イン クジェット法などの方法を用いることにより、 細胞接着阻害層の上に細胞接着材 料をパターン状に付着形成する場合、 および細胞接着層の上に細胞接着阻害材料 をパターン状に付着形成する場合も含まれる。 あるいは付加的に、 基材上にエネ ルギ一の照射に伴い細胞接着材料に対する親和性が変化する親和性変化材料を含 有する層を形成し、 エネルギーを照射することによって細胞接着材料に対する親 和性を有する領域と有しなレ、領域からなるパターンを形成し、 ここに細胞接着材 料を含む溶液を導入した後洗浄することにより、 細胞接着材料が存在する領域 (細胞接着性良好領域) と細胞接着材料が存在しない領域 (細胞接着性阻害領 域) を有する細胞接着性変化パターンを形成することもできる。 このような態様 においては、 基材上で直接パタ一ン形成できない細胞接着材料によってパターン を形成することができる。 例えば、 図 8に示すように、 ガラス等の親水性を有す る基材 (1 ) に、 撥水性材料を含む層を有する領域 (2 0 ) と有しない領域から なるパターンを形成する。 ここに撥水性材料に吸着しにくい親水性の細胞接着材 料 (2 1 ) を導入し、 その後洗浄する。 これにより親水性の細胞接着材料が存在 する領域 (細胞接着性良好領域) と撥水性材料が存在する領域 (細胞接着性阻害 領域) がパターン状に形成される。 この場合の親水性の細胞接着材料としては、 コラーゲン等の細胞外基質を用いることができる。
本発明においては、 細胞配列用基材上にパターン状に配列された細胞を基底膜 層に転写することから、 上記の細胞接着性良好領域の細胞接着力は適度な強度で あることが好ましい。 適度な接着強度とすることによって、 細胞を特定の領域の みに接着して細胞パターンを形成できるが、 これを基底膜層に容易に転写するこ とが可能になるからである。 従って、 細胞配列用基材における細胞接着性良好領 域の細胞接着力は、 細胞接着性阻害領域の細胞接着力よりも強いが、 基底膜層の 細胞接着力よりも弱いものであることが好ましい。 このような細胞接着力は、 表面の水接触角によって評価することができる。 本 発明における細胞接着性変化パターンの細胞接着性良好領域における水接触角は、
1 0〜4 0 ° であることが好ましい。 水接触角をこのような範囲とすることによ り、 細胞を細胞配列用基材に接着させ、 更に基底膜層に転写する場合、 細胞を細 胞配列用基材に単層状に接着できるとともに、 細胞配列用基材への接着が弱いこ とから基底膜層にも容易に転写することができる。 接触角とは、 静止液体の自由 表面が個体壁に接する場所で液面と固体面とのなす角 (液の内部にある角をと る) を意味する。
上記の水接触角とは、 通常大気圧下で材料表面にシリンジ等の器具を用いて微 小な水滴を滴下し、 水滴端部の気液界面と固体面との成す角度を拡大鏡などで観 察する、 静止接触角測定法で測定した値を意味する。
上記のような細胞接着性良好領域と細胞接着性阻害領域がパターン状に配置さ れた細胞接着性変化パターンを形成する手段としては、 特に制限されないが、 例 えば、 グラビァ印刷法、 スクリーン印刷法、 オフセット印刷法、 フレキソ印刷法 およびコンタク トプリンティング法などの各種印刷法による方法、 各種リソダラ フィ一法を用いる方法、 並びにインクジェット法による方法、 他に微細な溝を彫 刻等する立体整形の手法などが挙げられる。 本発明においては、 光触媒を用いた リソグラフィ一法、 すなわち、 エネルギー照射に伴う光触媒の作用により細胞の 接着性が変化する細胞接着性変化材料および光触媒を用い、 必要とされるパター ンに沿ってエネルギーを照射することによって細胞接着性変化パターンを形成す る方法が好ましい。 このような態様においては、 高精細なパターンを細胞に対し て悪影響を及ぼすような処理液を用いることなく、 簡便な工程により形成するこ とができる。 また、 細胞接着性変化材料の変性の必要性がないことから、 材料選 択の幅を広げることが可能であり、 後述するような特異的な接着性を発現するよ うな生物学的細胞接着性変化材料をも問題なく用いることができる。
形成させるパターンは、 二次元のパターンであれば特に制限されず、 組織体に おける血管層内に形成させる血管形成細胞のパターンに合わせて設計する。 従つ て、 ライン状または網目状のパターンで細胞が接着するようなパターンを形成す ることが好ましい。 ライン状または網目状のパターンを形成する場合、 パターン における線幅は、 通常 2 0〜2 0 0 ^ m 好ましくは 5 0〜1 0 0 mである。 特に、 血管内皮細胞をライン状に配置して培養することにより毛細血管を形成す る場合は、 ライン状の細胞接着性良好領域と細胞接着性阻害領域のスペースが交 互に配置された細胞接着性変化パターンを形成し、 血管内皮細胞をライン状に接 着させることが好ましい。 このような態様においては、 細胞が 1〜1 0個、 好ま しくは 1〜5個収まる程度のライン幅で細胞が接着されるようなパターンを形成 するのが好ましい。 具体的には、 細胞接着性良好領域のライン幅は、 通常 2 0〜 2 0 0 μ ms 好ましくは 5 0〜8 0 μ mであり、 ラインとラインの間にあたる細 胞接着性阻害領域のスペース幅は通常 1 0 0〜1 0 0 0 111、 好ましくは 4 0 0 〜8 0 0 /i mである。 ライン幅を上記の数値範囲とすることにより、 血管内皮細 胞が効率的に管組織化することができる。
このような細胞接着性変化パタ一ンを形成することにより、 ライン状に接着さ れ転写された血管内皮細胞は、 組織化してライン状の毛細血管を効率的に形成す る。 複数のラインが交わることなく並ぶような細胞パターンを形成したい場合は、 細胞が接着したラインとラインの間のスペース幅を上記のように一定の値以上と することにより、 細胞が組織化する際にラインとライン間で細胞から擬足が伸び てラインにゆがみが生じるのを防ぐことができる。
上記の光触媒を用レ、たリソグラフィ一法によって作成される細胞配列用基材と して、 例えば以下の 3つの実施態様が挙げられる。 これらについて、 それぞれ説 明する。
A. 第 1実施態様
本発明の細胞配列用基材の第 1実施態様は、 基材上に形成され、 エネルギーの 照射に伴う光触媒の作用により細胞の接着性が変化する細胞接着性変化材料を有 する細胞接着性変化層を基板上に有し、 上記細胞接着性変化層には、 細胞の接着 性が変化した細胞接着性変化パターンが形成されている細胞配列用基材であって、 上記細胞接着性変化層が、 光触媒と上記細胞接着性変化材料とを有する光触媒含 有細胞接着性変化層である点に特徴を有するものである。
本実施態様においては、 このように細胞接着性変化層が、 光触媒と上記細胞接 着性変化材料とを有する光触媒含有細胞接着性変化層であるので、 エネルギーが 照射された際に、 光触媒含有細胞接着性変化層内の光触媒の作用により細胞接着 性変化材料の細胞接着性が変化し、 エネルギーが照射された部分と照射されない 部分とで細胞との接着性が異なる細胞接着性変化パタ一ンを形成することができ る。
このような本実施態様の細胞配列用基材を、 用いられる部材に分けてそれぞれ 説明する。
1 . 光触媒含有細胞接着性変化層
本実施態様は、 基材上に光触媒含有細胞接着性変化層が形成されている点に特 徴を有する。 この光触媒含有細胞接着性変化層は、 少なくとも光触媒と細胞接着 性変化材料とを有するものである。
( 1 ) 細胞接着性変化材料
本実施態様に用いられる細胞接着性変化材料は、 エネルギーの照射に伴う光触 媒の作用により細胞の接着性が変化する材料であれば特に限定されるものではな レ、。 細胞の接着性が変化するとは、 エネルギーの照射に伴う光触媒の作用により 細胞接着性を獲得または増加する材料および細胞接着性が減少又消失する材料の 双方が含まれる。
このような細胞接着性変化材料には、 細胞との接着性を制御する態様により、 物理化学的特性により細胞と接着する物理化学的細胞接着性変化材料と生物学的 特性により細胞と接着する生物学的細胞接着性変化材料との主に二つの態様があ る。
a . 物理化学的細胞接着性変化材料
細胞をその表面に接着させるための物理化学的な因子としては、 表面自由エネ ルギ一に関する因子と、 疎水性相互作用等による因子等が挙げられる。
このような因子により物理化学的細胞接着性を有する物理化学的細胞接着材料 としては、 主骨格が光触媒の作用により分解されないような高い結合エネルギー を有するものであって、 光触媒の作用により分解されるような有機置換基を有す るものが好ましく、 例えば、 ( 1 ) ゾルゲル反応等によりクロ口またはアルコキ シシラン等を加水分解、 重縮合して大きな強度を発揮するオルガノポリシロキサ ン、 (2 ) 反応性シリコーンを架橋したオルガノポリシロキサン等を挙げること ができる。
上記の (1 ) の場合、 一般式:
Y n S i X (4_n) (ここで、 Yはアルキル基、 フルォロアルキル基、 ビュル基、 アミノ基、 フエ二 ル基またはエポキシ基を示し、 Xはアルコキシル基、 ァセチル基またはハロゲン を示す。 ηは 0〜 3までの整数である。 ) で示されるケィ素化合物の 1種または 2種以上の加水分解縮合物若しくは共加水分解縮合物であるオルガノポリシロキ サンであることが好ましい。 なお、 ここで Υで示される基の炭素数は 1〜20の 範囲内であることが好ましく、 また、 Xで示されるアルコキシ基は、 メ トキシ基、 エトキシ基、 プロポキシ基、 ブトキシ基であることが好ましい。
また、 有機基として、 特にフルォロアルキル基を含有するポリシロキサンを好 ましく用いることができ、 具体的には、 下記のフルォロアルキルシランの 1種ま たは 2種以上の加水分解縮合物、 共加水分解縮合物が挙げられ、 一般にフッ素系 シランカツプリング剤として知られたものを使用することができる。
C F 3 (C F2) nCH2CH2S i (OCHg) 3
CF3 (C F2) 5CH2CH2 S i (OCH0) 3
CF3 (C F 2) 7CH2 CH S i (OCHg) 3
C F 3 (CF2) 9CH2CH2S i (OCH3) 3
(C F 3) 2C F (C F ) 4CH2CH2 S i (OCHg) り
(C F 3) 2CF (C F0) 6CH2CH2S i (OCHg) り
(CF3) 2CF (CF2) 8CH2CH2 S i (OCHg) 。
Figure imgf000017_0001
C F C F 3 ( C g H C 2 H ^ S i (O C H g) 3
C F C F 5 (C6H4) C2H4S 1 (OCH3) 3
C F C F 7 (C6H4) C2H4S i (OCHg) 3
C F C F 1 O ri ( O C H g )
C F C F
Figure imgf000017_0002
S i し H3 ( O C H
C F C F CrioCrio S i し H3 ( O C H a ) 2
C F CF 0CH2し i G ri ( O C H g )
(CF3) 2CF (C F 2) 4CH2CH2S i CH3 (OCHg)
(C F 3) 2C F (CF2) 6CH2CH2S i CH3 (OCH3)
(CF3) 2CF (CF2) 8CH2CH2S i CH3 (OCHg)
CFo (C6H4) C2H4S i CH3 (OCH3) 2 ; C F 3 (CF2) 3 (C6H4) C2H4S i CH3 (O CHg) 2
C F CF2) 5 (C6H4) C2H4 S i CH3 (OCH3) 2
C F CF2) 7 (C6H4) C2H4 S i CH3 (OCHg) 2
C F CF2) 3CH2CH2 S i (OCH2CH3) 3
C F CF2) 5CH2CH2 S i (OCH2CH3) 3
C F CF2) 7CH2CH2S i (OCH2CH3) 3
C F C F 2) 9CH2CH2 S i (O CH2 CH3) 3
C F o CF2) 7S〇2N (C2H5) C2H4CH2S i (OCH3) 3
上記のようなフルォロアルキル基を含有するポリシロキサンを物理化学的細胞 接着材料として用いることにより、 光触媒含有細胞接着性変化層のエネルギー未 照射部においては、 表面にフッ素を有する部分が存在するため細胞接着性を有し ない面となるが、 エネルギー照射された部分においては、 フッ素等が除去されて、 表面に OH基等を有する部分が存在するため細胞接着性を有する面となる。 従つ て、 エネルギー照射部とエネルギー未照射部とにおいて、 細胞の接着性の異なる 領域をパタ一ン状に形成することができる。
また、 上記の (2) の反応性シリコーンとしては、 下記一般式で表される骨格 をもつ化合物を挙げることができる。
Figure imgf000018_0001
ただし、 nは 2以上の整数であり、 R1 R2はそれぞれ炭素数 1〜 1 0の置 換若しくは非置換のアルキル、 アルケニル、 ァリール基であり、 置換基としては、 ハロゲン、 シァノ、 等が挙げられる。 I 1、 R2の具体例としては、 メチル、 ェ チル、 プロピル、 ビニル、 フエニル、 ハロゲン化フエニル、 シァノメチル、 シァ ノエチル、 シァノプロピル等が挙げられる。 ビエル、 フヱ-ル、 ハロゲン化フエ ニルは、 モル比で全体の 40 %以下であることが好ましい。 また、 1、 R2が メチル基のものが表面エネルギーが最も小さくなるので好ましく、 モル比でメチ ル基が 60%以上であることが好ましい。 また、 鎖末端若しくは側鎖には、 分子 鎖中に少なくとも 1個以上の水酸基等の反応性基を有する。
また、 上記のオルガノポリシロキサンとともに、 ジメチルポリシロキサンのよ うな架橋反応をしない安定なオルガノシリコン化合物を別途混合してもよい。 一方、 分解物質タイプの物理化学的細胞接着材料としては光触媒の作用により 分解し、 かつ分解されることにより光触媒含有極性変化層表面の極性を変化させ る機能を有する界面活性剤を挙げることができる。 具体的には、 日光ケミカルズ (株) 製 N I KKOL B L、 BC、 BO、 B Bの各シリーズ等の炭化水素系、 デュポン社製 ZONYL F SN、 F SO、 旭硝子 (株) 製サーフロン S— 14
1、 145、 大日本ィンキ化学工業 (株) 製メガファック F— 141、 144、 ネオス (株) 製フタージヱント F— 200、 F 25 1、 ダイキン工業 (株) 製ュ ニダイン DS— 40 1、 402、 スリーェム (株) 製フロラ一ド FC— 1 70、 1 76等のフッ素系あるいはシリコーン系の非イオン界面活性剤を挙げることが でき、 また、 カチオン系界面活性剤、 ァニオン系界面活性剤、 両性界面活性剤を 用いることもできる。
なお、 このように物理化学的細胞接着材料を分解物質タイプとして用いた場合 には、 通常別途バインダ成分を用いることが好ましい。 この際用いられるバイン ダ成分としては、 主骨格が上記光触媒の作用により分解されないような高い結合 エネルギーを有するものであれば特に限定されるものではない。 具体的には、 有 機置換基を有しない、 若しくは多少有機置換基を有するポリシロキサンを挙げる ことができ、 これらはテトラメ トキシシラン、 テトラエトキシシラン等を加水分 解、 重縮合することにより得ることができる。
なお、 本実施態様においては、 このようなバインダタイプの物理化学的細胞接 着材料と分解物質タイプの物理化学的細胞接着材料とを併用するようにしてもよ い。
また、 静電的相互作用の制御により、 細胞との接着性を変化させる物理化学的 細胞接着性変化材料もある。 このような材料の場合、 エネルギー照射に伴う光触 媒の作用により、 材料が含有する、 正電荷を有する官能基が分解された結果、 表 面に存在する正電荷量が変化し、 これにより細胞との接着性を変化させ、 細胞接 着性変化パタ一ンを形成するものである。 例えば、 このような材料としてポリ L リシン等が挙げられる。
b. 生物学的細胞接着性変化材料
細胞をその表面に接着させる為の生物学的な因子としては、 多くの細胞種に対 して被接着性を有することができる材料、 特定の細胞種にのみ被接着性を有する 材料がある。 前者は例えばコラーゲン I型であり、 後者は例えば肝実質細胞を選 択的に接着するポリ (N- p-ビニルベンジル- [O- j3- D-ガラク トビラノシル- (1→4) -D -ダルコンアミ ド] ) (以下、 PVLA)等がある。 PVLAの場合、 肝実質細胞が特異認識をするガラクトース基を構造中に有する事により、 材料一 細胞間の選択的かつ特異的な接着が行われるものと推測される。
このような材料と光触媒を混合し、 光触媒含有細胞接着性変化層として用いる 場合は以下の使用形態が考えられる。 コラーゲン I型を酵素処理により可溶化し た可溶化コラーゲン I と予め焼成処理、 粉砕処理をした τ i o2粒子等の光触媒 を混合し、 光触媒含有細胞接着性変化層用材料とする。 次に、 基材上に光触媒含 有細胞接着性変化層用材料を塗布して光触媒含有細胞接着性変化層を形成する。 この光触媒含有細胞接着性変化層に、 少量のエネルギーを照射した場合には、 コ ラーゲンの側鎖にある細胞接着性ぺプチド構造の一部が破壊され、 細胞接着性を 減少させることができる。 また、 エネルギー照射量を増やす事により細胞接着性 ペプチド構造を徐々に失わせることができ、 細胞接着性を更に減少させることが できる。
またさらに、 過大なエネルギー照射を行う事によりコラーゲンの主鎖構造を破 壊することができ、 その細胞接着性を完全に失わせることができる。
(2) 光触媒
本実施態様に用いられる光触媒としては、 光半導体として知られる例えば二酸 化チタン (T i 02) 、 酸化亜鉛 (Z nO) 、 酸化スズ (S n 02) 、 チタン酸 ス トロンチウム (S r T i O^ 、 酸化タングステン (W〇3) 、 酸化ビスマス (B i 203) 、 および酸化鉄 (F e 23) を挙げることができ、 これらから選 択して 1種または 2種以上を混合して用いることができる。
本実施態様においては、 特に二酸化チタンが、 パンドギャップエネルギーが高 く、 化学的に安定で毒性もなく、 入手も容易であることから好適に使用される。 二酸化チタンには、 アナターゼ型とルチル型があり本態様ではいずれも使用する ことができるが、 アナターゼ型の二酸化チタンが好ましい。 アナターゼ型ニ酸化 チタンは励起波長が 3 8 0 n m以下にある。
このようなアナターゼ型ニ酸化チタンとしては、 例えば、 塩酸解膠型のアナタ 一ゼ型チタニアゾル (石原産業 (株) 製 S T S— 0 2 (平均粒径 7 n m) 、 石原 産業 (株) 製 S T— K 0 1 ) 、 硝酸解膠型のアナターゼ型チタニアゾル (日産化 学 (株) 製 T A— 1 5 (平均粒径 1 2 n m) ) 等を挙げることができる。
光触媒の粒径は小さいほど光触媒反応が効果的に起こるので好ましく、 平均粒 径が 5 0 n m以下であることが好ましく、 2 0 n m以下の光触媒を使用するのが 特に好ましい。
本実施態様に用 、られる光触媒含有細胞接着性変化層中の光触媒の含有量は、 5〜6 0重量%、 好ましくは 2 0〜4 0重量%の範囲で設定することができる。
2 . 基材
本発明の細胞配列用基材に用いられる基材としては、 表面に光触媒含有細胞接 着性変化層を形成することが可能な材料で形成されたものであれば特に限定され るものではなく、 露光処理による表面処理が可能であればその形態は問わない。 具体的には、 金属、 ガラス、 およびシリコン等の無機材料、 プラスチックで代表 される有機材料を挙げることができる。 その形状も限定されず、 例えば、 平板、 平膜、 フィルム、 多孔質膜等の形状が挙げられる。
3 . 細胞接着性変化パターン
本実施態様においては、 上記基材上に上述した光触媒含有細胞接着性変化層を 形成し、 さらにエネルギーをパターン状に照射することにより、 細胞との接着性 が変化したパターンである細胞接着性変化パターンが形成されている。
このような細胞接着性変化パターンは、 通常は細胞接着性の良好な細胞接着性 良好領域と細胞接着性の悪い細胞接着性阻害領域とから形成される。 そして、 こ の細胞接着性良好領域に細胞が接着されることにより、 高精細なパターン状に細 胞を接着させることができる。 このような細胞接着性良好領域と細胞接着性阻害 領域とは、 用いる細胞接着性変化材料の種類に応じて決定されるものである。 例えば、 細胞接着性変化材料が表面自由エネルギーを変化させて細胞の接着性 を変化させる物理化学的細胞接着性変化材料である場合、 細胞の接着性は所定の 範囲内の表面自由エネルギーであると良好であり、 その範囲を外れると細胞との 接着性が低下する傾向にある。 このような表面自由エネルギーによる細胞の接着 性の変化としては例えば、 C M C出版バイオマテリアルの最先端 筏 義人(監 修) p. 109下部に示されるような実験結果が知られている。
また、 上記材料の表面自由エネルギーだけでなく、 どのような細胞種をどのよ うな材料種に接触させるか等によっても、 細胞の接着性を決定することができる。 ここで、 この細胞接着性変化パターンは、 上述したような細胞接着性良好領域 と細胞接着性阻害領域を含むパターンであるが、 用途によっては細胞接着性変化 パターンが、 表面の細胞接着性が少なくとも 3水準以上異なる領域を有する細胞 接着性変化パターンである場合も含まれる。
例えば、 生物学的細胞接着性変化材料を用いた光触媒含有細胞接着性変化層を 用いている場合であって、 細胞の接着性の良好な状態が未確定である場合等にお いては、 連続的に光触媒含有細胞接着性変化層の表面状態を変化させることによ り、 接着性に最適な状態を見出すことができる等の利点を有する場合があるから である。
このように、 本発明においては、 3水準以上とは連続的に細胞の接着性が変化 した状態を含むものであり、 どの程度の水準とするかは、 状況に応じて適宜選択 されて決定される。
このような多水準の接着性の異なる領域を形成する場合は、 光触媒含有細胞接 着性変化層に対するエネルギーの照射量を変化させることにより行うことができ る。 具体的には、 透過率の異なるハーフトーンのフォトマスクを用いる、 遮光部 のパターンが異なる複数のフォトマスクを用い、 複数回の重ね露光を行う等の方 法を挙げることができる。
さらに、 本実施態様においては、 エネルギーの照射された部分と未照射の部分 との光触媒活性の差を利用した、 細胞接着性変化パターンを用いることができる。 すなわち、 例えば分解物質として光触媒含有細胞接着性変化層内に導入された生 物学的細胞接着性変化材料を用いた場合、 光触媒含有細胞接着性変化層表面にェ ネルギーをパターン状に照射すると、 照射部分の表面に滲出した生物学的細胞接 着性変化材料は分解され、 未照射の部分の生物学的細胞接着性変化材料は残存す る。 したがって、 この生物学的細胞接着性変化材料が特定の細胞と接着性が良好 な材料、 若しくは多くの細胞と接着性が良好な細胞である場合、 未照射部分が細 胞接着性良好領域となるが、 エネルギーが照射された部分は、 細胞との接着性が 良好な生物学的細胞接着性変化材料が存在しないばかりでなく、 エネルギー照 射により活性化された滅菌性を有する光触媒が露出した領域となる。 したがって、 エネルギー照射部分が細胞接着性阻害領域となる場合は、 特に本実施態様の細胞 配列用基材を用いて所定の期間培養した場合、 パターンが太くなる等の不具合が 生じることが無いという利点を有するものである。
B . 第 2実施態様
本発明の細胞配列用基材の第 2実施態様は、 基材と、 上記基材上に形成され、 エネルギーの照射に伴う光触媒の作用により細胞の接着性が変化する細胞接着性 変化材料を有する細胞接着性変化層とを有し、 上記細胞接着性変化層には、 細胞 の接着性が変化した細胞接着性変化パターンが形成されている細胞配列用基材で あって、 上記細胞接着性変化層が、 光触媒を有する光触媒処理層と、 上記光触媒 処理層上に形成され、 上記細胞接着性変化材料を含有する細胞接着性変化材料層 とを有することを特徴とするものである。
本実施態様においては、 このように細胞接着性変化層が、 基材上に形成された 光触媒処理層と、 この光触媒処理層上に形成された細胞接着性変化材料層とを有 するものであるので、 エネルギーが照射された際に、 光触媒処理層内の光触媒の 作用により細胞接着性変化材料層内の細胞接着性変化材料の細胞接着性が変化し、 エネルギーが照射された部分と照射されない部分とで細胞との接着性が異なる細 胞接着性変化パターンを形成することができる。
このような本実施態様の細胞配列用基材を、 用いられる部材に分けてそれぞれ 説明する。
1 . 細胞接着性変化材料層
本実施態様の細胞配列用基材は、 基材上に形成された光触媒処理層上に細胞接 着性変化材料層が形成される。 この細胞接着性変化材料層は、 上記第 1実施態様 で説明した細胞接着性変化材料を用いることにより形成される層を用いることが できる。 以下、 物理化学的細胞接着性変化材料を用いた細胞接着性変化材料層と 生物学的細胞接着性変化材料を用いた細胞接着性変化材料層とに分けて説明する。 ( 1 ) 物理化学的細胞接着性変化材料を用いた場合
本実施態様において、 物理化学的細胞接着性変化材料により形成される細胞接 着性変化材料層は、 上記第 1実施態様で説明した材料と同様の材料を用いた層と することができる。 このような材料を用いた場合は、 光触媒の有無を除き上述し たものと同様である。 なお、 本実施態様においては、 原則的には細胞接着性変化 材料層内に光触媒を含有する必要性は無いが、 感度等の関係で少量含有されたも のであってもよい。
また、 本実施態様においては、 光触媒処理層上に光触媒の作用により分解除去 される分解除去層として細胞接着性変化材料層を形成し、 エネルギー照射に伴う 光触媒の作用により細胞接着性変化材料層が分解された領域、 すなわち光触媒処 理層が露出した領域と、 細胞接着性変化材料層が残存する領域とを形成し、 これ により細胞接着性変化パターンとするようなタイプの細胞接着性変化材料層を用 いることができる。
具体的には、 表面自由エネルギーにより細胞の接着性を制御する場合は、 表面 自由エネルギーが細胞接着性に適当である物理化学的細胞接着性変化材料を用い、 この材料を全面に塗布して細胞接着性変化材料層を形成し、 その後エネルギーを パターン照射して細胞接着性変化材料層の有無のパターンを形成し、 これにより 細胞接着性変化パターンとするものである。
このような分解除去層としての物理化学的細胞接着性変化材料層であって、 表 面自由エネルギーにより細胞の接着性を制御する場合に用いることができる材料 としては、 例えば、 再生セルロース、 ナイロン 1 1等が挙げられる。
また、 静電的相互作用により細胞の接着性を制御する場合は、 正電荷を有する 物理化学的細胞接着性変化材料を用い、 上記と同様の方法により細胞接着性変化 パターンとすることができる。
このような分解除去層としての物理化学的細胞接着性変化材料層であって、 静 電的相互作用により細胞の接着性を制御する場合に用いることができる材料とし ては、 ポリアミングラフトポリ (2—ヒ ドロキシメチルメタタリレート) (H A - x ) 等を挙げることができる。
これらの樹脂は、 溶媒に溶解させ、 例としてスピンコート法等の一般的な成膜 方法により形成することが可能である。 また、 本発明においては、 機能性薄膜、 すなわち、 自己組織化単分子膜、 ラングミュアーブロケット膜、 および交互吸着 膜等を用いることにより、 欠陥のな 、膜を形成することが可能であることから、 このような成膜方法を用いることがより好ましいといえる。
このような分解除去層としての細胞接着性変化材料層を用いて細胞接着性変化 パターンを形成した場合は、 分解除去された領域は後述する光触媒処理層が露出 していることから、 細胞の培養が大きく阻害される領域となる。 したがって、 こ のような方法により得られる細胞配列用基材は、 長期間細胞を保持しても高精細 なパターンを維持することができるといった利点を有するものである。
( 2 ) 生物学的細胞接着性変化材料を用いた場合
本実施態様において、 生物学的細胞接着性変化材料により形成される細胞接着 性変化材料層は、 第 1実施態様で説明したものと同様のものを使用することがで き、 例えばコラーゲン I型等を挙げることができる。
2 . 光触媒処理層
次に、 本発明に用いられる光触媒処理層について説明する。 本発明に用いられ る光触媒処理層は、 光触媒処理層中の光触媒がその上に形成された細胞接着性変 化材料層の細胞接着特性を変化させるような構成であれば、 特に限定されるもの ではなく、 光触媒とバインダとから構成されているものであってもよいし、 光触 媒単体で製膜されたものであってもよい。 また、 その表面の特性は特に親液性で あっても撥液性であってもよいが、 この光触媒処理層上に、 細胞接着性変化材料 層等を形成する都合上、 親液性であることが好ましい。
この光触媒処理層における、 後述するような酸化チタンに代表される光触媒の 作用機構は、 必ずしも明確なものではないが、 光の照射によって生成したキヤリ ァが、 近傍の化合物との直接反応、 あるいは、 酸素、 水の存在下で生じた活性酸 素種によって、 有機物の化学構造に変化を及ぼすものと考えられている。 本発明 においては、 このキャリアが光触媒処理層上に形成された細胞接着性変化材料層 中の化合物に作用を及ぼすものであると思われる。 このような光触媒としては、 第 1実施態様で詳述したものと同様である。
本実施態様における光触媒処理層は、 上述したように光触媒単独で形成された ものであってもよく、 またパインダと混合して形成されたものであってもよい。 光触媒のみからなる光触媒処理層の場合は、 細胞接着性変化材料層の細胞接着 特性の変化に対する効率が向上し、 処理時間の短縮化等のコスト面で有利である。 一方、 光触媒とバインダとからなる光触媒処理層の場合は、 光触媒処理層の形成 が容易であるという利点を有する。
光触媒のみからなる光触媒処理層の形成方法としては、 例えば、 スパッタリン グ法、 C V D法、 真空蒸着法等の真空製膜法を用いる方法を挙げることができる。 真空製膜法により光触媒処理層を形成することにより、 均一な膜でかつ光触媒の みを含有する光触媒処理層とすることが可能であり、 これにより細胞接着性変化 材料層の特性を均一に変化させることが可能であり、 かつ光触媒のみからなるこ と力ゝら、 パインダを用いる場合と比較して効率的に細胞接着性変化層の細胞接着 性を変化させることが可能となる。
また、 光触媒のみからなる光触媒処理層の形成方法の他の例としては、 例えば 光触媒が二酸化チタンの場合は、 基材上に無定形チタニアを形成し、 次いで焼成 により結晶性チタニアに相変化させる方法等が挙げられる。 ここで用いられる無 定形チタユアとしては、 例えば四塩化チタン、 硫酸チタン等のチタンの無機塩の 加水分解、 脱水縮合、 テトラエトキシチタン、 テトライソプロポキシチタン、 テ トラー n—プロポキシチタン、 テトラブトキシチタン、 テトラメ トキシチタン等 の有機チタン化合物を酸存在下において加水分解、 脱水縮合によって得ることが できる。 次いで、 4 0 0 °C〜 5 0 0 °Cにおける焼成によってアナターゼ型チタ二 ァに変性し、 6 0 0 ° (:〜 7 0 0 °Cの焼成によってルチル型チタニアに変性するこ とができる。
また、 パインダを用いる場合は、 バインダの主骨格が上記の光触媒の作用によ り分解されないような高い結合エネルギーを有するものが好ましく、 例えばこの ようなバインダとしては、 上述したオルガノポリシロキサン等を挙げることがで さる。
このようにオルガノポリシロキサンをパインダとして用いた場合は、 上記光触 媒処理層は、 光触媒とパインダであるオルガノポリシロキサンとを必要に応じて 他の添加剤とともに溶剤中に分散して塗布液を調製し、 この塗布液を透明基材上 に塗布することにより形成することができる。 使用する溶剤としては、 エタノー ル、 イソプロパノール等のアルコール系の有機溶剤が好ましい。 塗布はスピンコ ート、 スプレーコート、 ディップコート、 ローノレコート、 ビードコート等の公知 の塗布方法により行うことができる。 バインダとして紫外線硬化型の成分を含有 している場合、 紫外線を照射して硬化処理を行うことにより光触媒処理層を形成 することかできる。
また、 バインダとして無定形シリカ前駆体を用いることができる。 この無定形 シリカ前駆体は、 一般式 S i X で表され、 Xはハロゲン、 メ トキシ基、 ェトキ シ基、 またはァセチル基等であるケィ素化合物、 それらの加水分解物であるシラ ノール、 または平均分子量 3000以下のポリシロキサンが好ましい。
具体的には、 テトラエトキシシラン、 テトライソプロポキシシラン、 テトラ一 n—プロボキシシラン、 テトラブトキシシラン、 テトラメ トキシシラン等が挙げ られる。 また、 この場合には、 無定形シリカの前駆体と光触媒の粒子とを非水性 溶媒中に均一に分散させ、 透明基材上に空気中の水分により加水分解させてシラ ノールを形成させた後、 常温で脱水縮重合することにより光触媒処理層を形成で きる。 シラノールの脱水縮重合を 1 0 o°c以上で行えば、 シラノールの重合度が 増し、 膜表面の強度を向上できる。 また、 これらの結着剤は、 単独あるいは 2種 以上を混合して用いることができる。
バインダを用いた場合の光触媒処理層中の光触媒の含有量は、 5〜6 0重量%、 好ましくは 20〜40重量%の範囲で設定することができる。 また、 光触媒処理 層の厚みは、 0. 05〜 1 0 μ mの範囲内が好ましい。
また、 光触媒処理層には上記の光触媒、 パインダの他に、 界面活性剤を含有さ せることができる。 具体的には、 日光ケミカルズ (株) 製 N I KKOL BL、 BC、 BO、 B Bの各シリーズ等の炭化水素系、 デュポン社製 ZONYL F S N、 F SO、 旭硝子 (株) 製サーフロン S— 14 1、 145、 大日本インキ化学 工業 (株) 製メガファック F— 14 1、 144、 ネオス (株) 製フタージヱント F_200、 F 25 1、 ダイキン工業 (株) 製ュニダイン DS— 40 1、 402、 スリーェム (株) 製フロラード FC— 1 70、 1 76等のフッ素系あるいはシリ コーン系の非イオン界面活性剤を挙げることかでき、 また、 カチオン系界面活性 剤、 ァニオン系界面活性剤、 両性界面活性剤を用いることもできる。
さらに、 光触媒処理層には上記の界面活性剤の他にも、 ポリビニルアルコール、 不飽和ポリエステル、 アクリル樹脂、 ポリエチレン、 ジァリルフタレート、 ェチ レンプロピレンジェンモノマー、 エポキシ樹脂、 フエノール樹脂、 ポリウレタン、 メラミン樹脂、 ポリカーボネート、 ポリ塩化ビュル、 ポリアミ ド、 ポリイミ ド、 スチレンブタジエンゴム、 クロロプレンゴム、 ポリプロピレン、 ポリブチレン、 ポリスチレン、 ポリ酢酸ビニル、 ポリエステル、 ポリブタジエン、 ポリべンズィ ミダゾール、 ポリアクリル二トリル、 ェピクロルヒ ドリ ン、 ポリサルフアイ ド、 ポリイソプレン等のオリゴマー、 ポリマー等を含有させることができる。
3 . 基材
本実施態様に用いられる基材は、 上記光触媒処理層を形成可能であれば、 特に 限定されるものではなく、 第 1実施態様で説明したものと同様のものを用いるこ とが可能である。
4 . 細胞接着性変化パターン
本実施態様においては、 上述した細胞接着性変化材料層に、 パターン状にエネ ルギーを照射することにより、 光触媒処理層中の光触媒の作用によって、 細胞接 着性変化材料層表面の細胞との接着性が変化したパターンである細胞接着性変化 パターンが形成されている。
C . 第 3実施態様
本実施態様の細胞配列用基材は、 基材と、 上記基材上に形成され、 エネルギー の照射に伴う光触媒の作用により細胞の接着性が変化する細胞接着性変化材料を 有する細胞接着性変化層とを有し、 上記細胞接着性変化層には、 細胞の接着性が 変化した細胞接着性変化パターンが形成されている細胞配列用基材であって、 上 記細胞接着性変化層が、 上記細胞接着性変化材料を含有する細胞接着性変化材料 層であり、 上記接着性変化パターンが、 光触媒を含有する光触媒含有層と上記細 胞接着性変化材料層とが対向するように配置した後、 所定の方向からエネルギー を照射することにより形成されたものであることを特徴とするものである。
本実施態様においては、 このように細胞接着性変化層が、 細胞接着性変化材料 層であり、 上記接着性変化パターンが、 光触媒を含有する光触媒含有層と上記細 胞接着性変化材料層とが対向するように配置した後、 所定の方向からエネルギー を照射することにより形成されたものであるので、 エネルギーが照射された際に、 光触媒含有層内の光触媒の作用により細胞接着性変化材料層内の細胞接着性変化 材料の細胞接着性が変化し、 エネルギーが照射された部分と照射されない部分と で細胞との接着性が異なる細胞接着性変化パターンを形成することができる。 このような本実施態様の細胞配列用基材を、 用いられる部材に分けてそれぞれ 説明する。
1 . 細胞接着性変化材料層
本実施態様の細胞配列用基材は、 基材上に細胞接着性変化材料層が形成される。 この細胞接着性変化材料層は、 上記第 2実施態様で説明した材料を用いることに より形成される層と同様である。 なお、 本実施態様においては、 原則的には細胞 接着性変化材料層内に光触媒を含有する必要性は無いが、 感度等の関係で少量含 有されたものであってもよい。
また、 本実施態様においては、 上述した第 2実施態様と同様に、 基材上に光触 媒の作用により分解除去される分解除去層として細胞接着性変化材料層を形成し てもよい。 この場合、 細胞接着性変化材料層は、 光触媒含有層側基板を用いてェ ネルギー照射することにより、 エネルギー照射に伴う光触媒の作用により細胞接 着性変化材料層が分解された領域、 すなわち基材が露出した領域と、 細胞接着性 変化材料層が残存する領域とを形成し、 これにより細胞接着性変化パターンとす るようなタイプのものが用いられる。
2 . 基材
本実施態様に用いられる基材は、 上述した細胞接着性変化材料層が形成可能な ものであれば、 特に限定されるものではなく、 第 1実施態様で説明したものと同 様のものを用いることが可能である。
3 . 光触媒含有層
次に、 本実施態様に用いられる光触媒含有層について説明する。 本実施態様に 用いられる光触媒含有層は、 光触媒を含有する層であり、 通常はガラス等の基体 上に形成されて用いられる。 本実施態様においては、 このような光触媒含有層を、 上述した細胞接着性変化材料層と対向させて配置し、 エネルギー照射を行うこと により、 光触媒含有層中に含有される光触媒の作用により、 細胞接着性変化材料 層の細胞接着性を変化させることができるのである。 本実施態様においては、 こ の光触媒含有層を、 エネルギー照射の際に所定の位置に配置し、 細胞接着性変化 パターンを形成することが可能であることから、 上記細胞接着性変化材料層中に 光触媒を含有させる必要がなく、 細胞接着性変化材料層が、 経時的に光触媒の作 用を受けることのないものとすることができる、 という利点を有する。 このような光触媒含有層としては、 上記第 2実施態様で光触媒処理層について 説明した層と同様である。
4 . 細胞接着性変化パターン
本実施態様においては、 上述した細胞接着性変化材料層に、 上記光触媒含有層 を用いて、 パターン状にエネルギーを照射することにより、 光触媒含有層中の光 触媒の作用によって、 細胞接着性変化材料層表面の細胞との接着性が変化したパ ターンである細胞接着性変化パターンが形成されている。
II. 細胞配列用基材の製造方法
次に、 本発明の細胞配列用基材の製造方法について説明する。 本発明の細胞配 列用基材の製造方法には、 例えば、 上記のような 3つの実施態様があるが、 いず れの実施態様においても、 基材と、 その基材上に形成され、 かつエネルギー照射 に伴う光触媒の作用により細胞の接着性が変化する層とを有するパターン形成体 用基材を形成し、 このパターン形成体用基材にエネルギーを照射することにより、 光触媒を作用させて、 細胞の接着性が変化した細胞接着性変化パターンを形成す ることを特徴とするものである。
本発明の細胞配列用基材の製造方法によれば、 上記エネルギー照射に伴う光触 媒の作用により細胞の接着性が変化する層を形成することから、 この層に必要と されるパターン上にエネルギーを照射することにより、 容易に高精細なパターン 状に細胞の接着性が変化した細胞接着性変化パターンが形成された細胞配列用基 材を製造することが可能となる。 したがって、 高精細なパターンを細胞に対して 悪影響を及ぼすような処理液を用いることなく、 簡便な工程により細胞配列用基 材を製造することができる。 また、 細胞接着性変化材料の変性の必要性がないこ とから、 材料選択の幅を広げることが可能であり、 後述するような特異的な接着 性を発現するような生物学的細胞接着性変化材料をも問題なく用いることができ るのである。
以下、 本発明の細胞配列用基材の製造方法を上記の 1〜 3の実施態様ごとに説 明する。
A . 第 1実施態様
まず、 本発明の細胞配列用基材の第 1実施態様について説明する。 本発明の細 胞配列用基材の製造方法の第 1実施態様は、 基材と、 上記基材上に形成され、 か つ光触媒およびエネルギーの照射に伴う光触媒の作用により細胞の接着性が変化 する細胞接着性変化材料を含有する光触媒含有細胞接着性変化層とを有するパタ ーン形成体用基材を形成するパターン形成体用基材形成工程と、 上記光触媒含有 細胞接着性変化層にエネルギーを照射し、 上記光触媒含有細胞接着性変化層の、 細胞の接着性が変化した細胞接着性変化パターンを形成する細胞接着性変化パタ ーン形成工程とを有するものである。
本実施態様の細胞配列用基材の製造方法は、 例えば図 1に示すように、 まず、 基材 1と、 その基材 1上に形成された光触媒含有細胞接着性変化層 2とを有する パターン形成体用基材 3を形成する (パターン形成体用基材形成工程 (図 1 ( a ) ) 。 次に、 上記光触媒含有細胞接着性変化層 2に、 例えばフォトマスク 4 を用いてエネルギー 5を照射し (図 1 ( b ) ) 、 光触媒含有細胞接着性変化層 2 の細胞の接着性が変化した細胞接着性変化パターン 6を形成する (図 1 ( c ) ) 細胞接着性変化パタ一ン形成工程を行うものである。
本実施態様においては、 光触媒と上記細胞接着性変化材料とを有する光触媒含 有細胞接着性変化層を形成することから、 細胞接着性変化パタ一ン形成工程にお いて、 エネルギーを照射することにより、 光触媒含有細胞接着性変化層内の光触 媒の作用により細胞接着性変化材料の細胞接着性が変化し、 エネルギーが照射さ れた部分と照射されない部分とで細胞との接着性が異なる細胞接着性変化パタ一 ンを形成することができるのである。 以下、 本実施態様の各工程について説明す る。
1 . パターン形成体用基材形成工程
まず、 本実施態様におけるパターン形成体用基材形成工程について説明する。 本実施態様におけるパターン形成体用基材形成工程は、 基材と、 上記基材上に形 成され、 かつ光触媒およびエネルギーの照射に伴う光触媒の作用により細胞の接 着性が変化する細胞接着性変化材料を含有する光触媒含有細胞接着性変化層とを 有するパターン形成体用基材を形成する工程である。
本工程は、 基材上に、 光触媒および細胞接着性変化材料を含有する塗工液を、 例えば、 スピンコート、 スプレーコート、 ディップコート、 ロールコート、 ビー ドコート等の公知の塗布方法により塗布し、 光触媒含有細胞接着性変化層を形成 することにより行うことができる。 またパインダとして紫外線硬化型の成分を含 有している場合、 紫外線を照射して硬化処理を行うことにより光触媒含有層を形 成することができる。
2 . 細胞接着性変化パターン形成工程
次に、 本実施態様における細胞接着性変化パターン形成工程について説明する。 本実施態様における細胞接着性変化パターン形成工程は、 上記光触媒含有細胞接 着性変化層にエネルギーを照射し、 上記光触媒含有細胞接着性変化層の、 細胞の 接着性が変化した細胞接着性変化パタ一ンを形成する工程である。
本工程により、 目的とするパターン状にエネルギーを照射することにより、 ェ ネルギ一照射された領域のみの光触媒含有細胞接着性変化層の細胞の接着性を変 化させることができ、 高精細な細胞接着性の良好な領域と悪い領域とのパターン である、 細胞接着性変化パターンを形成することができるのである。
ここで、 本実施態様でいうエネルギー照射 (露光) とは、 光触媒含有細胞接着 性変化層表面の細胞接着性を変化させることが可能ないかなるェネルギ一線の照 射をも含む概念であり、 可視光の照射に限定されるものではない。
通常このようなエネルギー照射に用いる光の波長は、 4 0 0 n m以下の範囲、 好ましくは 3 8 0 n m以下の範囲から設定される。 これは、 上述したように光触 媒含有細胞接着性変化層に用いられる好ましい光触媒が二酸化チタンであり、 こ の二酸化チタンにより光触媒作用を活性化させるエネルギーとして、 上述した波 長の光が好ましいからである。
このようなエネルギー照射に用いることができる光源としては、 水銀ランプ、 メタルハライ ドランプ、 キセノンランプ、 エキシマランプ、 その他種々の光源を 挙げることができる。
上述したような光源を用い、 フォトマスクを介したパターン照射により行う方 法の他、 エキシマ、 Y A G等のレーザを用いてパターン状に描画照射する方法を 用いることも可能である。
また、 エネルギー照射に際してのエネルギーの照射量は、 光触媒含有細胞接着 性変化層中の光触媒の作用により、 光触媒含有細胞接着性変化層表面の細胞の接 着性の変化が行われるのに必要な照射量とする。
光触媒含有細胞接着性変化層表面の細胞の接着性の変化は、 エネルギーの照射 量に依存して変化するため、 例えばエネルギー照射時間を調節することによって 接着性を調整することができる。 そうすることによって、 適度な接着性を有する 表面とすることができる。 細胞接着性については、 既に述べたとおり表面の水接 触角で評価することができるので、 適した水接触角を有する表面が得られるよう エネルギー照射時間を調節することにより、 適度な接着性を有する表面とするこ とができる。 例えば、 細胞接着性変化材料としてフルォロアルキルシランを用い、 3 6 5 n mの紫外線を強度 2 5 . 0 mWZ秒で照射する場合、 フォトマスクの基 材に石英を用いた例では、 通常 1 2 0〜6 0 0秒、 好ましくは 2 4 0〜4 8 0秒 照射することにより好適な接着性を有する表面とすることができる。 エネルギー 照射時間および照射強度等については、 使用する基材の材料や細胞接着性変化材 料等によって適宜調節することができる。
この際、 光触媒含有細胞接着性変化層を加熱しながらエネルギー照射すること により、 感度を上昇させることが可能となり、 効率的な細胞の接着性の変化を行 うことができる点で好ましい。 具体的には 3 0 °C〜8 0 °Cの範囲内で加熱するこ とが好ましい。
本実施態様におけるエネルギー照射方向は、 上述した基材が透明である場合は、 基材側および光触媒含有細胞接着性変化層側のいずれの方向からフォトマスクを 介したパターンエネルギー照射若しくはレーザの描画照射を行ってもよい。 一方、 基材が不透明な場合は、 光触媒含有細胞接着性変化層側からエネルギー照射を行 う必要がある。
B . 第 2実施態様
次に、 本発明の細胞配列用基材の製造方法の第 2実施態様について説明する。 本発明の細胞配列用基材の第 2実施態様は、 基材と、 上記基材上に形成された光 触媒を含有する光触媒処理層と、 上記光触媒処理層上に形成され、 かつエネルギ 一の照射に伴う光触媒の作用により細胞の接着性が変化する細胞接着性変化材料 を含有する細胞接着性変化材料層とを有するパターン形成体用基材を形成するパ ターン形成体用基材形成工程と、 上記細胞接着性変化材料層にエネルギーを照射 し、 上記細胞接着性変化材料層の、 細胞の接着性が変化した細胞接着性変化パタ 一ンを形成する細胞接着性変化パタ一ン形成工程とを有するものである。
本実施態様の細胞配列用基材の製造方法は、 例えば図 2に示すように、 まず、 基材 1と、 その基材 1上に形成された光触媒処理層 7と、 その光触媒処理層 7上 に形成された細胞接着性変化材料層 8とを有するパターン形成体用基材 3を形成 する (パターン形成体用基材形成工程 (図 2 ( a ) ) 。 次に、 上記細胞接着性変 化材料層 8に、 例えばフォ トマスク 4を用いてエネルギー 5を照射し (図 2 ( b ) ) 、 細胞接着性変化材料層 8の細胞の接着性が変化した細胞接着性変化パ ターン 6を形成する (図 2 ( c ) ) 細胞接着性変化パターン形成工程を行うもの である。
本実施態様においては、 光触媒処理層と、 上記細胞接着性変化材料層を形成す ることから、 細胞接着性変化パターン形成工程において、 エネルギーを照射する ことにより、 光触媒処理層中に含有される光触媒の作用により、 細胞接着性変化 材料層内の細胞接着性が変化し、 エネルギーが照射された部分と照射されない部 分とで細胞との接着性が異なる細胞接着性変化パターンを形成することができる のである。 以下、 本実施態様の各工程について説明する。
1 . パターン形成体用基材形成工程
まず、 本実施態様におけるパターン形成体用基材形成工程について説明する。 本実施態様におけるパターン形成体用基材形成工程は、 上記基材上に形成された 光触媒を含有する光触媒処理層と、 上記光触媒処理層上に形成され、 かつエネル ギ一の照射に伴う光触媒の作用により細胞の接着性が変化する細胞接着性変化材 料を含有する細胞接着性変化材料層とを有するパターン形成体用基材を形成する 工程である。
本工程で形成される光触媒処理層は、 光触媒のみからなるものであってもよく、 またバインダと混合して形成されるものであってもよい。
光触媒のみからなる光触媒処理層の形成方法としては、 例えば、 スパッタリン グ法、 C V D法、 真空蒸着法等の真空製膜法や、 例えば光触媒が二酸化チタンの 場合は、 基材上に無定形チタニアを形成し、 次いで焼成により結晶性チタニアに 相変化させる方法等が挙げられる。 真空製膜法により光触媒処理層を形成するこ とにより、 均一な膜でかつ光触媒のみを含有する光触媒処理層とすることが可能 であり、 これにより細胞接着性変化材料層上の細胞接着性を均一に変化させるこ とが可能であり、 かつ光触媒のみからなることから、 バインダを用いる場合と比 較して効率的に細胞接着性変化材料層上の細胞接着性を変化させることが可能と なる。 また、 光触媒処理層が、 光触媒とバインダとを混合させたものである場合には、 光触媒とバインダとを、 必要に応じて他の添加剤とともに溶剤中に分散して塗布 液を調製し、 この塗布液を透明基材上に塗布することにより形成することができ る。 使用する溶剤としては、 エタノール、 イソプロパノール等のアルコール系の 有機溶剤が好ましい。 塗布はスピンコート、 スプレーコート、 ディップコート、 ロールコート、 ビードコート等の公知の塗布方法により行うことができる。 パイ ンダとして紫外線硬化型の成分を含有している場合、 紫外線を照射して硬化処理 を行うことにより光触媒処理層を形成することができる。
続いて、 上記光触媒処理層上に、 上述した細胞接着性変化材料を含有する塗工 液を、 例えば、 スピンコート、 スプレーコート、 ディップコート、 ローノレコート、 ビードコート等の公知の塗布方法により塗布し、 細胞接着性変化材料層を形成す ることができる。 またバインダとして紫外線硬化型の成分を含有している場合、 紫外線を照射して硬化処理を行うことにより光触媒処理層を形成することができ る。
ここで、 本工程に用いられる基材ゃ光触媒処理層、 および細胞接着性変化材料 層については、 上述した 「1 . 細胞配列用基材」 の第 2実施態様の項で説明した ものと同様である。
2 . 細胞接着性変化パターン形成工程
次に、 本実施態様における細胞接着性変化パターン形成工程について説明する。 本実施態様における細胞接着性変化パターン形成工程は、 上記細胞接着性変化材 料層にエネルギーを照射し、 上記細胞接着性変化材料層の、 細胞の接着性が変化 した細胞接着性変化パタ一ンを形成する工程である。
本工程により、 目的とするパターン状にエネルギーを照射することにより、 ェ ネルギー照射された領域のみの細胞接着性変化材料層の細胞の接着性を変化させ ることができ、 高精細な細胞接着性の良好な镇域と悪い領域とのパターンである、 細胞接着性変化パターンを形成することができるのである。
本工程におけるエネルギー照射方法や、 照射するエネルギー、 エネルギー照射 量については、 上述した第 1実施態様と同様である。
C . 第 3実施態様
次に、 本発明の細胞配列用基材の第 3実施態様について説明する。 本発明の細 胞配列用基材の製造方法の第 3実施態様は、 基材と、 上記基材上に形成され、 ェ ネルギ一の照射に伴う光触媒の作用により細胞の接着性が変化する細胞接着性変 化材料を含有する細胞接着性変化材料層とを有するパターン形成体用基材を形成 するパターン形成体用基材形成工程と、 上記パターン形成体用基材と、 光触媒を 含有する光触媒含有層および基体を有する光触媒含有層側基板とを、 上記細胞接 着性変化材料層と上記光触媒含有層とが対向するように配置した後、 所定の方向 からエネルギー照射し、 上記細胞接着性変化材料層の、 細胞の接着性が変化した 細胞接着性変化パタ一ンを形成する細胞接着性変化パタ一ン形成工程とを有する ものである。
本実施態様の細胞配列用基材の製造方法は、 例えば図 3に示すように、 まず、 基材 1と、 その基材 1上に形成された細胞接着性変化材料層 8とを有するパター ン形成体用基材 3を形成する (パターン形成体用基材形成工程 (図 3 ( a ) ) 。 次に、 基体 1 1と、 その基体 1 1上に形成された光触媒含有層 1 2とを有する光 触媒含有層側基板 1 3を用意する。 この光触媒含有層側基板 1 3における光触媒 含有層 1 2と上記細胞接着性変化材料層 8とが対向するように配置し、 例えばフ オトマスク 4を用いてエネルギー 5を照射し (図 3 ( b ) ) 、 細胞接着性変化材 料層 8の細胞の接着性が変化した細胞接着性変化パターン 6を形成する (図 3 ( c ) ) 細胞接着性変化パターン形成工程を行うものである。
本実施態様においては、 上記細胞接着性変化材料層を形成することから、 細胞 接着性変化パターン形成工程において、 光触媒含有層側基板を用いてエネルギー を照射することにより、 光触媒含有層中に含有される光触媒の作用により、 細胞 接着性変化材料層内の細胞接着性が変化し、 エネルギーが照射された部分と照射 されない部分とで細胞との接着性が異なる細胞接着性変化パターンを形成するこ とができるのである。 以下、 本実施態様の各工程について説明する。
1 . パターン形成体用基材形成工程
まず、 本発明におけるパターン形成体用基材形成工程について説明する。 本発 明におけるパターン形成体用基材形成工程は、 基材と、 上記基材上に形成され、 エネルギーの照射に伴う光触媒の作用により細胞の接着性が変化する細胞接着性 変化材料を含有する細胞接着性変化材料層とを有するパターン形成体用基材を形 成する工程である。 本工程は、 基材上に、 細胞接着性変化材料を含有する塗工液を、 例えば、 スピ ンコート、 スプレーコート、 ディップコート、 口一ノレコート、 ビードコート等の 公知の塗布方法により塗布し、 細胞接着性変化材料層を形成することにより行う ことができる。 またバインダとして紫外線硬化型の成分を含有している場合、 紫 外線を照射して硬化処理を行うことにより光触媒含有層を形成することができる。 ここで、 本工程に用いられる基材および細胞接着性変化材料については、 上述 した 「1 . 細胞配列用基材」 の第 1実施態様の項で説明したものと同様のものを 用いることができる。
2 . 細胞接着性変化パターン形成工程
次に、 本実施態様における細胞接着性変化パターン形成工程について説明する。 本実施態様における接着性変化パターン形成工程は、 上記パターン形成体用基材 と、 光触媒を含有する光触媒含有層および基体を有する光触媒含有層側基板とを、 上記細胞接着性変化材料層と上記光触媒含有層とが対向するように配置した後、 所定の方向からエネルギー照射し、 上記細胞接着性変化材料層の、 細胞の接着性 が変化した細胞接着性変化パターンを形成する工程である。
本工程において、 光触媒含有層側基板における光触媒含有層およぴ細胞接着性 変化材料層を対向するように配置し、 目的とするパターン状にエネルギーを照射 することにより、 エネルギー照射された領域のみの細胞接着性変化材料層の細胞 の接着性を変化させることができ、 高精細な細胞接着性の良好な領域と悪い領域 とのパターンである、 細胞接着性変化パターンを形成することができるのである。 以下、 本工程に用いられる光触媒含有層側基板、 およびエネルギー照射につい てそれぞれ説明する。
( 1 ) 光触媒含有層側基板
まず、 本実施態様に用いられる光触媒含有層側基板について説明する。
' 本実施態様に用いられる光触媒含有層側基板は、 少なくとも光触媒含有層と基 体とを有するものであり、 通常は基体上に所定の方法で形成された薄膜状の光触 媒含有層が形成されてなるものである。 また、 この光触媒含有層側基板には、 パ タ一ン状に形成された光触媒含有層側遮光部やプライマー層が形成されたものも 用いることができる。
本実施態様においては、 エネルギーを照射する際に、 上記細胞接着性変化材料 層と、 上記光触媒含有層側基板における光触媒含有層とを所定の間隙をおいて対 向させ、 光触媒含有層側基板の光触媒含有層の作用により、 細胞接着性変化材料 層の細胞接着性を変化させ、 エネルギー照射後、 光触媒含有層側基板を取り外す ことにより細胞接着性変化パターンが形成されるのである。 以下、 この光触媒含 有層側基板の各構成について説明する。
a . 光触媒含有層
本実施態様に用いられる光触媒含有層は、 少なくとも光触媒を含有するもので あり、 バインダを有していても、 有していなくてもよく、 上述した第 2実施態様 の光触媒処理層と同様である。
ここで、 本実施態様において用いられる光触媒含有層は、 例えば図 3に示すよ うに、 基体 1 1上に全面に形成されたものであってもよいが、 例えば図 4に示す ように、 基体 1 1上に光触媒含有層 1 2がパターン状に形成されたものであって あ い。
このように光触媒含有層をパターン状に形成することにより、 エネルギーを照 射する際に、 フォトマスク等を用いてパターン照射をする必要がなく、 全面に照 射することにより、 細胞接着性変化材料層上に細胞接着性変化パターンを形成す ることができる。
この光触媒含有層のパターニング方法は、 特に限定されるものではないが、 例 えばフォトリソグラフィ一法等により行うことが可能である。
また、 光触媒含有層と細胞接着性変化材料層とを例えば密着させてエネルギー 照射を行う場合には、 実際に光触媒含有層の形成された部分のみの特性が変化す るものであるので、 エネルギーの照射方向は上記光触媒含有層と細胞接着性変化 材料層とが対向する部分にエネルギーが照射されるものであれば、 いかなる方向 から照射されてもよく、 さらには、 照射されるエネルギーも特に平行光等の平行 なものに限定されないという利点を有するものとなる。
b . 基体
本実施態様においては、 図 3に示すように、 光触媒含有層側基板 1 3は、 少な くとも基体 1 1とこの基体 1 1上に形成された光触媒含有層 1 2とを有するもの である。 この際、 用いられる基体を構成する材料は、 後述するエネルギーの照射 方向や、 得られる細胞配列用基材が透明性を必要とするか等により適宜選択され る。
また本実施態様に用いられる基体は、 可撓性を有するもの、 例えば樹脂製フィ ルム等であってもよいし、 可撓性を有しないもの、 例えばガラス基材等であって もよい。 さらには、 別の形態の基体として、 光ファイバ等の光導波路を用いるこ ともできる。 これらは、 エネルギー照射方法により適宜選択されるものである。 なお、 基体表面と光触媒含有層との密着性を向上させるために、 基体上にアン カー層を形成するようにしてもよレ、。 このようなアンカー層としては、 例えば、 シラン系、 チタン系のカツプリング剤等を挙げることができる。
c 光触媒含有層側遮光部
本実施態様に用いられる光触媒含有層側基板には、 パターン状に形成された光 触媒含有層側遮光部が形成されたものを用いてもよい。 このように光触媒含有層 側遮光部を有する光触媒含有層側基板を用いることにより、 エネルギー照射に際 して、 フォトマスクを用いたり、 レーザ光による描画照射を行う必要がない。 し たがって、 光触媒含有層側基板とフォトマスクとの位置合わせが不要であること から、 簡便な工程とすることが可能であり、 また描画照射に必要な高価な装置も 不必要であることから、 コスト的に有利となるという利点を有する。
このような光触媒含有層側遮光部を有する光触媒含有層側基板は、 光触媒含有 層側遮光部の形成位置により、 下記の二つの態様とすることができる。
一つが、 例えば図 5に示すように、 基体 1 1上に光触媒含有層側遮光部 1 4を. 形成し、 この光触媒含有層側遮光部 1 4上に光触媒含有層 1 2を形成して、 光触 媒含有層側基板とする態様である。 もう一つは、 例えば図 6に示すように、 基体 1 1上に光触媒含有層 1 2を形成し、 その上に光触媒含有層側遮光部 1 4を形成 して光触媒含有層側基板とする態様である。
いずれの態様においても、 フォトマスクを用いる場合と比較すると、 光触媒含 有層側遮光部が、 上記光触媒含有層と細胞接着性変化材料層との配置部分の近傍 に配置されることになるので、 基体内等におけるエネルギーの散乱の影響を少な くすることができることから、 エネルギーのパターン照射を極めて正確に行うこ とが可能となる。
さらに、 上記光触媒含有層上に光触媒含有層側遮光部を形成する態様において は、 光触媒含有層と細胞接着性変化材料層とを所定の位置に配置する際に、 この 光触媒含有層側遮光部の膜厚をこの間隙の幅と一致させておくことにより、 上記 光触媒含有層側遮光部を上記間隙を一定のものとするためのスぺーサとしても用 いることができるという利点を有する。 また、 スぺーサとしての高さが不足する 場合、 遮光部に別途スぺーサを設けてもよい。
すなわち、 所定の間隙をおいて上記光触媒含有層と細胞接着性変化材料層とを 対向させた状態で配置する際に、 上記光触媒含有層側遮光部と細胞接着性変化材 料層とを密着させた状態で配置することにより、 上記所定の間隙を正確とするこ とが可能となり、 そしてこの状態で光触媒含有層側基板からエネルギーを照射す ることにより、 細胞接着性変化材料層上に細胞接着性変化パターンを精度良く形 成することが可能となるのである。
このような光触媒含有層側遮光部の形成方法は、 特に限定されるものではなく、 光触媒含有層側遮光部の形成面の特性や、 必要とするエネルギーに対する遮蔽性 等に応じて適宜選択されて用いられる。
例えば、 スパッタリング法、 真空蒸着法等により厚み 1 0 0 0〜2 0 0 0 A程 度のクロム等の金属薄膜を形成し、 この薄膜をパターニングすることにより形成 されてもよい。 このパターニングの方法としては、 スパッタ等の通常のパター二 ング方法を用いることができる。
また、 榭脂バインダ中にカーボン微粒子、 金属酸化物、 無機顔料、 有機顔料等 の遮光性粒子を含有させた層をパターン状に形成する方法であってもよい。 用い られる樹脂バインダとしては、 ポリイミ ド樹脂、 アクリル樹脂、 エポキシ樹脂、 ポリアクリノレアミ ド、 ポリビニノレアノレコーノレ、 ゼラチン、 カゼイン、 セノレロース 等の樹脂を 1種または 2種以上混合したものや、 感光性樹脂、 さらには OZWェ マルジヨン型の樹脂組成物、 例えば、 反応性シリコーンをェマルジヨン化したも の等を用いることができる。 このような樹脂製遮光部の厚みとしては、 0 . 5〜 1 0 μ πιの範囲内で設定することができる。 このよう樹脂製遮光部のパターニン グの方法は、 フォトリソ法、 印刷法等一般的に用いられている方法を用いること ができる。
なお、 上記説明においては、 光触媒含有層側遮光部の形成位置として、 基体と 光触媒含有層との間、 および光触媒含有層表面の二つの場合について説明したが、 その他、 基体の光触媒含有層が形成されていない側の表面に光触媒含有層側遮光 部を形成する態様も採ることが可能である。 この態様においては、 例えばフォト マスクをこの表面に着脱可能な程度に密着させる場合等が考えられ、 細胞接着性 変化パターンを小口ットで変更するような場合に好適に用いることができる。
d . プライマー層
次に、 本実施態様の光触媒含有層側基板に用いられるプライマー層について説 明する。 本実施態様において、 上述したように基体上に光触媒含有層側遮光部を パターン状に形成して、 その上に光触媒含有層を形成して光触媒含有層側基板と する場合においては、 上記光触媒含有層側遮光部と光触媒含有層との間にプライ マー層を形成してもよい。
このプライマー層の作用 ·機能は必ずしも明確なものではないが、 光触媒含有 層側遮光部と光触媒含有層との間にプライマー層を形成することにより、 プライ マー層は光触媒の作用による細胞接着性変化材料層の細胞接着性変化を阻害する 要因となる光触媒含有層側遮光部および光触媒含有層側遮光部間に存在する開口 部からの不純物、 特に、 光触媒含有層側遮光部をパターニングする際に生じる残 渣ゃ、 金属、 金属イオン等の不純物の拡散を防止する機能を示すものと考えられ る。 したがって、 プライマー層を形成することにより、 高感度で細胞接着性変化 の処理が進行し、 その結果、 高解像度のパターンを得ることが可能となるのであ る。
なお、 本実施態様においてプライマー層は、 光触媒含有層側遮光部のみならず 光触媒含有層側遮光部間に形成された開口部に存在する不純物が光触媒の作用に 影響することを防止するものであるので、 プライマー層は開口部を含めた光触媒 含有層側遮光部全面にわたって形成されていることが好ましい。
本実施態様におけるプライマー層は、 光触媒含有層側基板の光触媒含有層側遮 光部と光触媒含有層とが接触しないようにプライマー層が形成された構造であれ ば特に限定されるものではない。
このプライマー層を構成する材料としては、 特に限定されるものではないが、 光触媒の作用により分解されにくい無機材料が好ましい。 具体的には無定形シリ 力を挙げることができる。 このような無定形シリカを用いる場合には、 この無定 形シリカの前駆体は、 一般式 S i X 4で示され、 Xはハロゲン、 メ トキシ基、 ェ トキシ基、 またはァセチル基等であるケィ素化合物であり、 それらの加水分解物 であるシラノール、 または平均分子量 3 0 0 0以下のポリシロキサンが好ましい。 また、 プライマー層の膜厚は、 0 . 0 0 1 mから 1 μ mの範囲内であること が好ましく、 特に 0 . Ο Ο Ι μ πιから 0 . 1 μ mの範囲内であることが好ましい。
( 2 ) エネルギー照射
次に、 本工程におけるエネルギー照射について説明する。 本実施態様において は、 上記細胞接着性変化材料層と、 上記光触媒含有層側基板における光触媒含有 層とを、 対向するように配置し、 所定の方向からエネルギーを照射することによ り、 細胞接着性変化材料層の細胞接着性が変化したパターンを形成することがで さる。
上記の配置とは、 実質的に光触媒の作用が細胞接着性変化材料層表面に及ぶよ うな状態で配置された状態をいうこととし、 実際に物理的に接触している状態の 他、 所定の間隔を隔てて上記光触媒含有層と細胞接着性変化材料層とが配置され た状態とする。 この間隙は、 2 0 0 μ πι以下であることが好ましい。
本実施態様において上記間隙は、 パターン精度が極めて良好であり、 光触媒の 感度も高く、 したがって細胞接着性変化材料層の細胞接着性変化の効率が良好で ある点を考慮すると特に 0 . 2 Ai m〜l 0 μ πιの範囲内、 好ましくは 1 !〜 5 μ πιの範囲内とすることが好ましい。 このような間隙の範囲は、 特に間隙を高い 精度で制御することが可能である小面積の細胞接着性変化材料層に対して特に有 効である。
一方、 例えば 3 0 O mm X 3 0 0 mm以上といった大面積の細胞接着性変化材 料層に対して処理を行う場合は、 接触することなく、 かつ上述したような微細な 間隙を光触媒含有層側基板と細胞接着性変化材料層との間に形成することは極め て困難である。 したがって、 細胞接着性変化材料層が比較的大面積である場合は、 上記間隙は、 1 0〜 1 0 0 μ πιの範囲内、 特に 1 0〜2 0 μ ιηの範囲内とするこ とが好ましい。 間隙をこのような範囲内とすることにより、 パターンがぼやける 等のパターン精度の低下の問題や、 光触媒の感度が悪化して細胞接着性変化の効 率が悪化する等の問題が生じることなく、 さらに細胞接着性変化材料層上の細胞 接着性変化にムラが発生しないといった効果を有するからである。
このように比較的大面積の細胞接着性変化材料層をエネルギー照射する際には、 エネルギー照射装置内の光触媒含有層側基板と細胞接着性変化材料層との位置決 め装置における間隙の設定を、 1 0 μ π!〜 2 0 0 μ mの範囲内、 特に 1 0 z m〜 2 0 μ πιの範囲内に設定することが好ましい。 設定値をこのような範囲内とする ことにより、 パターン精度の大幅な低下や光触媒の感度の大幅な悪化を招くこと なく、 かつ光触媒含有層側基板と細胞接着性変化材料層とが接触することなく配 置することが可能となるからである。
このように光触媒含有層と細胞接着性変化材料層表面とを所定の間隔で離して 配置することにより、 酸素と水おょぴ光触媒作用により生じた活性酸素種が脱着 しゃすくなる。 すなわち、 上記範囲より光触媒含有層と細胞接着性変化材料層と の間隔を狭くした場合は、 上記活性酸素種の脱着がしにくくなり、 結果的に細胞 接着性変化速度を遅くしてしまう可能性があることから好ましくない。 また、 上 記範囲より間隔を離して配置した場合は、 生じた活性酸素種が細胞接着性変化材 料層に届き難くなり、 この場合も細胞接着性変化の速度を遅くしてしまう可能性 があることから好ましくない。
このような極めて狭い間隙を均一に形成して光触媒含有層と細胞接着性変化材 料層とを配置する方法としては、 例えばスぺーサを用いる方法を挙げることがで きる。 そして、 このようにスぺーサを用いることにより、 均一な間隙を形成する ことができると共に、 このスぺーサが接触する部分は、 光触媒の作用が細胞接着 性変化材料層表面に及ばないことから、 このスぺーサを上述した細胞接着性変化 パターンと同様のパターンを有するものとすることにより、 細胞接着性変化材料 層上に所定の細胞接着性変化パターンを形成することが可能となる。
本実施態様においては、 このような配置状態は、 少なくともエネルギー照射の 間だけ維持されればよい。
ここで、 照射されるエネルギーの種類や、 照射方法、 照射量等については、 上 述した第 1実施態様で説明したものと同様である。
なお、 本発明は、 上記実施形態に限定されるものではない。 上記実施形態は例 示であり、 本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構 成を有し、 同様な作用効果を奏するものは、 いかなるものであっても本発明の技 術的範囲に包含される。
III. 細胞配列用基材への血管形成細胞の接着
細胞配列用基材において、 血管形成細胞は、 基材上に細胞接着性の異なる領域 がパターン化された細胞接着性変化パターンを有する上記の細胞配列用基材の細 胞接着性良好領域に接着されている。 本発明の細胞配列用基材は、 上記のとおり 細胞接着性良好領域と細胞接着性阻害領域からなる細胞接着性変化パターンを有 するものであるから、 細胞配列用基材の表面に細胞を均一に播き、 一定時間イン キュペートすると、 細胞接着性良好領域には細胞が接着しているが、 細胞接着性 阻害領域には細胞が接着していない細胞パターンが形成された細胞接着基材が得 られる。 この際、 インキュベート後の基材を液洗浄する事により、 基材に弱く付 着している細胞を除去し、 より綺麗な細胞パターンが得られる。
血管形成細胞を含む培養試料は、 予め、 生体組織を細かくして液体中に分散さ せる分散処理や、 生体組織中の目的の細胞以外の細胞、 その他試験を阻害する物 質を除去する分離処理などを行っておくことが好ましい。
細胞配列用基材への細胞の播種に先だって、 目的とする細胞を含む培養試料を、 予め、 各種の培養方法で予備培養して、 目的とする細胞を増やすことが好ましい。 予備培養には、 単層培養やコートディッシュ培養、 ゲル上培養などの通常の培養 方法が採用できる。 予備培養において、 細胞を支持体表面に接着させて培養する 方法の一つに、 いわゆる単層培養法として既に知られている手段がある。 具体的 には、 例えば、 培養容器に培養試料と培養液を収容して一定の環境条件に維持し ておくことにより、 特定の生細胞のみが、 培養容器などの支持体表面に接着した 状態で増殖する。 使用する装置や処理条件などは、 通常の単層培養法などに準じ て行う。 細胞が接着して増殖する支持体表面の材料として、 細胞の接着や増殖が 良好に行われる材料を選択したり、 支持体表面に、 細胞の接着や増殖が良好に行 われる化学物質、 いわゆる細胞接着因子を塗布しておくことも行われる。
培養後に、 培養容器中の培養液を除去することで、 培養試料中の支持体表面に 接着しない不要成分が除去され、 支持体表面に接着した生細胞のみを回収できる。 支持体表面に接着した生細胞の回収には、 E G T A—トリプシン処理などの手段 が適用できる。
上記のように予備培養した細胞を、 培養液中の細胞配列用基材上に播種する。 細胞の播種方法や播種量については特に制限はなく、 例えば朝倉書店発行 「日本 組織培養学会編組織培養の技術 (1 9 9 9年) 」 2 6 6〜 2 7 0頁等に記載され ている方法が使用できる。 細胞を細胞配列用基材上で増殖させる必要がない程度 に十分な量で、 細胞が単層で接着するように播種することが好ましい。 細胞が凝 集すると細胞の組織化が阻害され、 基底膜層に転写して培養しても機能が低下す るからである。 具体的には、 40 Omm2あたり 2 X 1 05個程度で播種する。 細胞を播種した細胞配列用基材を培養液中でィンキュベートすることにより、 細胞を細胞接着性良好領域に接着させることが好ましい。 培養液としては、 当技 術分野で a常用いられる培地を使用することができ、 例えば、 用いる細胞の種類 に応じて、 MEM培地、 BME培地、 DME培地、 MEM培地、 I MEM培地、 E S培地、 DM— 1 6 0培地、 F i s h e r培地、 F 1 2培地、 WE培地および RPMI培地等、 朝倉書店発行 「日本組織培養学会編 組織培養の技術第三版」 5 8 1頁に記載の基礎培地、 これらの培地に血清成分 (ゥシ胎児血清等) 等を添 力!]したもの、 並びに市販の無血清培地等を用いることができる。
インキュベートを行う時間は、 通常 30分〜 48時間、 好ましくは 4〜 24時 間である。 適度な時間でインキュベートを行うことによって、 洗い流したときに 細胞配列用基材の細胞接着性良好領域に細胞が接着するが、 細胞接着性阻害領域 には細胞が接着せず、 さらに基底膜層に容易に細胞を転写することが可能になる。 インキュベートを行う温度は、 接着させる細胞の種類によって異なるが、 通常 3 7°Cである。 C02細胞培養装置などを利用して、 C02雰囲気下でインキュ ベートを行うのが好ましい。 インキュベートした後、 細胞配列用基材を洗浄する ことにより、 接着していない細胞が洗い流され、 細胞をパターン状に配列するこ とができる。
図 7に、 細胞配列用基材上に血管形成細胞をパターン状に接着させ、 接着した 血管形成細胞を基底膜層に転写する工程の一態様を示す。 細胞接着性良好領域 (1 7) と細胞接着性阻害領域 (1 8) がパターン状に形成された細胞配列用基 材 (1 5) に血管形成細胞を播種して細胞をパターン状に接着させる。 続いてこ の血管形成細胞が接着した細胞配列用基材を、 組織形成細胞層上において血管ネ ットワークを形成しようとする領域のほぼ全面に設けられた基底膜層に密着させ て細胞を転写し培養する。 そして必要により細胞刺激因子 (22) で細胞を刺激 する。 なお、 基底膜層は、 図示のように、 組織形成細胞層の全面に形成されてい る必要はなく、 血管ネットワークが転写される領域に形成されていればよい。 発明を実施するための最良の形態
以下、 実施例により本発明を詳細に説明するが、 本発明の範囲はこれらに限定 されるものではない。
(実施例 1 ) 細胞配列用基材の作成
フルォロアルキルシラン T S L 8 2 3 3 (GE東芝シリ コーン) 1. 5 g、 テ トラメ トキシシラン T S L 8 1 1 4 (GE東芝シリコーン) 5. 0 g、 5. O X
1 0— 3NH C 1 2. 4 gを 1 2時間混合し、 これをイソプロピルアルコール で 1 0倍希釈した。
次に、 この溶液 2. O gを 1 0 0 0 r p m、 5秒でスピンコーターにより 1 0 c mX 1 0 c mのソーダガラス基材に塗布し、 その基材を 1 5 0 °Cの温度で 1 0 分間乾燥させた。
次に、 イソプロピルアルコールで 3倍希釈した酸化チタンゾル液 (石原産業 S TK一 0 3) 3. 0 gを光触媒含有層用組成物とした。
前記光触媒含有層用組成物を、 幅 6 0 のライン部および幅 4 0 0 μ πιのス ペース部が交互に配置されたライン &スペースのネガ型フォ トマスク (石英) の パターン面上にスピンコーターにより 7 0 0 r p m、 3秒で塗布し、 1 5 0°Cで 1 0分間の乾燥処理を行うことにより、 透明な光触媒含有層を有するフォ トマス クを形成した。
前記フォトマスクの光触媒含有層面と前記基材の細胞接着性変化材料層面とを 1 0 μ πιの間隙で配置し、 フォトマスク側から水銀ランプ (波長 3 6 5 nm) に より 2 5. 0 mW/ c m2の照度で所定の時間紫外線露光を行い、 幅 6 0 μ mの ライン状の細胞接着性良好領域おょぴ幅 4 0 0 μ mの細胞接着性阻害領域のスぺ ースが交互に配置された細胞接着性変化パターンを有する細胞配列用基材を得た。
(実施例 2) 血管内皮細胞の培養および細胞配列用基材上への接着
培養細胞として、 ゥシ類動脈由来血管内皮細胞 (Onodera M, Morita I, Mano
Y, Murota S : Differential effects of nitric oxide on the activity of prostaglandin endoperoxide h synthase - 1 and- 2 in vascular endothelial cells, Prostag Leukotress 62: 161-167, 2000) で継代数 5代から 20代のも のを用いた。
1 0 c mディッシュでコンフレント状態になったゥシ類動脈由来血管内皮細胞 を 0. 05%トリプシン一 EDT Aで処理して剥がした。 コールターカウンター
™ ZM (Coulter Counter) で細胞数を調べ、 1 06個 Zm 1 とした。 実施例 1で 作成した細胞配列用基材 (露光時間 3 60秒のもの) をオートクレープにて滅菌 した。 培養液 ( 5 %ゥシ胎児血清含有 MEM培地) を含む培養ディッシュ (Heraeus Quadriprem™ 76 X 26 mm, 1 9 76 mm2) にこの細胞配列用基 材を入れ、 上記内皮細胞を 1ゥエル当たり 106個 Z5m 1で播き、 24時間〇 o2細胞培養装置でィンキュベートした。
5 %ゥシ胎児血清含有 MEM培地に対しカルボシァニン蛍光色素 (D i I, Invitrogen社) を 10 g /m 1の濃度で溶解する。 細胞が配列された上記細胞 配列用基材をこの培地に浸漬し、 3 7°Cで 1時間培養した。 その後、 細胞配列用 基材を、 5 %ゥシ胎児血清含有 MEM培地に戻した。
(実施例 3 )
i) マウス肝実質細胞を採取し、 市販の 9 6穴 N I P AAm (ポリ一 N—イソプ 口ピルアクリルアミ ド) シャーレ上で培養した。 上述の濃度のカルボシァニン蛍 光色素 (D i O, Invitrogen社) で染色後、 5 %ゥシ胎児血清含有 M EM培地に 戻した。
G F Rマトリゲル (ベタ トン .ディツキンソン社) を 5 %ゥシ胎児血清含有 M EM培地で 1 0倍希釈した。 このゲル含有培地をマウス肝実質細胞を培養したシ ヤーレに、 1穴当たり 25 1添加した後、 3 7°Cで 1時間培養した。 これによ り細胞上にゲル薄膜層からなる基底膜層を形成した。
ii) i)で作成した肝実質細胞培養シャーレに実施例 2で作成した血管内皮細胞 が配列された基材を浸漬し、 肝実質細胞上の基底膜層と血管内皮細胞とを接触さ せた。 37 °Cで 24時間培養を行い、 細胞配列用基材を剥離した。
iii) シャーレを約 20°Cで 30分間振とうし、 軽くピペッティングした後、 形 成された組織体をピンセットで剥離した。
iv) 免疫不全マウスを麻酔し、 背部を切開し、 iii)までで作成した組織体をマ ウスの肝臓に移植した。 移植部を縫合し、 1日後および 3日後に移植部を再切開 し、 移植組織を共焦点レーザー顕微鏡で観察した (D i 1→励起波長 530 nm Z観察波長 5 90 n m、 D i 0→励起波長 480 n 観察波長 5 1 0 n m) 。 励起波長 4 8 0 n mにおける観察で移植した肝実質細胞の成育が確認された。 また、 励起波長 5 3 0 n mにて移植した血管内皮細胞を観察したところ、 予め血 管内皮細胞をパターユングした通りに、 毛細血管が形成されていることが確認さ れた。
(実施例 4 )
実施例 1及び 2と同様の手順にて血管内皮細胞を細胞配列基材上に配列した。 更に実施例 3の i)〜i ii)部を行い、 肝実質細胞, 基底膜,血管からなる組織体を 作成した。
次に作成した組織体を 3、 5、 7枚重ね、 積層組織体を作成し、 直ちに免疫不 全マウスの肝臓に移植した。 移植部を縫合し、 1日後おょぴ 3日後に移植部を再 切開して移植組織を観察した。
結果
励起波長 4 8 0 n mにおける観察により移植した肝実質細胞の成育が確認され た。 また、 励起波長 5 3 0 n mにて移植した血管内皮細胞を観察したところ、 予 め血管内皮細胞をパターユングした通りに、 毛細血管が形成されていることが確 認された。 摘出組織のヘモグロビン量を分析した結果、 移植部もマウス肝臓の非 移植部とほぼ同等のへモグロビンが確認された。
(比較例 4 )
実施例 3の i)及ぴ i i i)の工程により肝実質細胞と基底膜層からなる組織体を形 成し、 次に作成した組織体を 3、 5、 7枚重ね、 積層組織体を作成し、 直ちに免 疫不全マウスの肝臓に移植した。 移植部を縫合し、 1日後および 3日後に移植部 を再切開し、 移植組織を観察した。
結果
積層枚数が 5枚または 7枚になると、 励起波長 4 8 O n mにおける観察で移植 した肝実質細胞の壊死が観察された。 また、 摘出組織のヘモグロビン量を分析し た結果、 移植部にはへモグロビンはほとんど観察されなかった。
(実施例 5 )
実施例 1及ぴ 2と同様の手順にて血管内皮細胞を細胞配列基材上に配列した。 更に実施例 3の i)〜: iii)部を行い、 肝実質細胞, 基底膜,血管からなる第 1組織体 を作成した。 次に実施例 3の i)及ぴ iii)の工程により肝実質細胞と基底膜層から なる第 2組織体を形成した。
作成した第 1組織体と第 2組織体を交互に 3枚ずつ、 計 6枚の組織体を重ね積 層し、 積層組織体を形成した。 この積層組織体を直ちに免疫不全マウスの肝臓に 移植した。 移植部を縫合し、 1日後および 3日後に移植部を再切開して移植組織 を観察した。
励起波長 4 8 0 n mにおける観察で移植した肝実質細胞の成育が確認された。 また、 励起波長 5 3 0 n mにて移植した血管内皮細胞を観察したところ、 予め血 管内皮細胞をパター-ングした通りに、 毛細血管が形成されていることが確認さ れた。 摘出組織のヘモグロビン量を分析した結果、 実施例 4の半分強のへモグロ ビン量が確認された。
本明細書中で引用した全ての刊行物、 特許及び特許出願をそのまま参考として 本明細書中にとり入れるものとする。 産業上の利用の可能性
本発明により、 栄養物、 酸素または老廃物等を輸送する手段を有し、 生体内で 生存可能な人工組織体を提供することができる。

Claims

請 求 の 範 囲
1 . 血管層、 基底膜層および組織形成細胞層を含む、 in vitroで形成された組織 体。
2 . 基底膜層は組織形成細胞層の上に存在し、 血管層は基底膜層の上に存在する、 請求の範囲第 1項記載の組織体。
3 . 血管層、 基底膜層および組織形成細胞層が積層されてなる in vitroで形成さ れた積層組織体であって、 3種の層をそれぞれ少なくとも 1層含む該積層組織体。
4 . 基底膜層は組織形成細胞層の上に存在し、 血管層は基底膜層の上に存在し、 組織形成細胞層は基底膜層または血管層の上に存在する、 請求の範囲第 3項記載 の積層組織体。
5 . 組織形成細胞層、 基底膜層および血管層を含む組織体を製造する方法であつ て、
(a)培養ベース上に組織形成細胞層を形成する工程、
(b)得られた組織形成細胞層上に基底膜層を形成する工程、
(c)細胞接着性良好領域と細胞接着性阻害領域がパターン化された細胞接着性変 化パターンを有する細胞配列用基材表面の細胞接着性良好領域に血管形成細胞を 接着させ、 接着した血管形成細胞を基底膜層上にパターン化された状態で転写し 培養する工程、 ならびに
(d)組織形成細胞層、 基底膜層およぴ血管層を含む組織体を培養ベースから剥離 して回収する工程を含む、 前記製造方法。
6 . 請求の範囲第 5項記載の方法によつて製造された組織体を積層することによ り、 積層組織体を製造する方法。
7 . 以下の(a)〜(d) :
(a)培養ベース上に組織形成細胞層を形成する工程、
(b)得られた組織形成細胞層上に基底膜層を形成する工程、
(c)細胞接着性良好領域と細胞接着性阻害領域がパタ一ン化された細胞接着性変 化パターンを有する細胞配列用基材表面の細胞接着性良好領域に血管形成細胞を 接着させ、 接着した血管形成細胞を基底膜層上にパターン化された状態で転写し 培養する工程、 ならびに (d)組織形成細胞層、 基底膜層および血管層を含む第 1組織体を培養ベースから 剥離して回収する工程
を含む方法によって第 1組織体を製造し、
以下の( 〜(f) :
(e)培養ベース上に組織形成細胞層を形成する工程、
(f)得られた組織形成細胞層上に基底膜層を形成する工程、 ならぴに
(g)組織形成細胞層およぴ基底膜層を培養ベースから剥離して回収する工程 を含む方法によって第 2組織体を製造し、
第 1組織体おょぴ第 2組織体を積層することによって、 積層組織体を製造する方 法。
8 . 積層組織体内の血管層に培養液を送液する工程をさらに含む請求の範囲第 6 項または第 7項記載の方法。
9 . 細胞接着性変化層が、 光触媒および細胞接着性変化材料を含有する光触媒含 有細胞接着性変化層である、 請求の範囲第 5項〜第 8項のいずれか 1項記載の方 法。
1 0 . 細胞接着性変化層が、 光触媒を含有する光触媒処理層と、 該光触媒処理層 上に形成された細胞接着性変化材料を含有する細胞接着性変化材料層とを有する、 請求の範囲第 5項〜第 8項のいずれか 1項記載の方法。
1 1 . 細胞接着性変化パターンが、 細胞接着性変化材料を含有する細胞接着性変 化層と光触媒を含有する光触媒含有層とを対向するように配置した後、 エネルギ 一照射することにより形成される、 請求の範囲第 9項記載の方法。
1 2 . 細胞接着性変化パターンが、 ライン状の細胞接着性良好領域と細胞接着性 阻害領域のスペースとが交互に配置されたパターンであり、 細胞接着性良好領域 のライン幅が 2 0〜 2 0 0 μ mであり、 ライン間のスペース幅が 1 0 0〜 1 0 0 0 μ πιである請求の範囲第 5項〜第 1 1項のいずれか 1項記載の方法。
1 3 . 培養ベースが、 細胞を弱い接着力で保持可能な表面を有する請求の範囲第 5項〜第 1 2項のいずれか 1項記載の方法。
1 4 . 請求の範囲第 1項〜第 4項のいずれか 1項記載の組織体を移植することに より組織を再生する方法。
1 5 . 血管層、 基底膜層おょぴ組織形成細胞層を含み、 前記組織形成細胞層の前 記血管層形成領域のほぼ全面に前記基底膜層が形成されている組織体。
1 6 . 血管層、 基底膜層および組織形成細胞層を含み、 前記組織形成細胞層の前 記血管層形成領域のほぼ全面に前記基底膜層が形成されている積層組織体であつ て、 3種の層をそれぞれ少なくとも 1層含む該積層組織体。
1 7 . 基底膜層は組織形成細胞層の上に存在し、 血管層は基底膜層の上に存在し、 組織形成細胞層は基底膜層または血管層の上に存在する、 請求の範囲第 1 6項記 載の積層組織体。
PCT/JP2005/010307 2004-06-01 2005-05-31 人工組織体およびその製造方法 WO2005118012A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/628,054 US8500822B2 (en) 2004-06-01 2005-05-31 Artificial tissue construct and method for producing the same
US13/924,181 US9034648B2 (en) 2004-06-01 2013-06-21 Artificial tissue construct and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-163512 2004-06-01
JP2004163512A JP4303643B2 (ja) 2004-06-01 2004-06-01 人工組織体およびその製造方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11/628,054 A-371-Of-International US8500822B2 (en) 2004-06-01 2005-05-31 Artificial tissue construct and method for producing the same
US13/924,181 Division US9034648B2 (en) 2004-06-01 2013-06-21 Artificial tissue construct and method for producing the same

Publications (1)

Publication Number Publication Date
WO2005118012A1 true WO2005118012A1 (ja) 2005-12-15

Family

ID=35462740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/010307 WO2005118012A1 (ja) 2004-06-01 2005-05-31 人工組織体およびその製造方法

Country Status (3)

Country Link
US (2) US8500822B2 (ja)
JP (1) JP4303643B2 (ja)
WO (1) WO2005118012A1 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4919296B2 (ja) * 2005-12-26 2012-04-18 国立大学法人大阪大学 生体形状を含んだ三次元組織の培養方法
JP5070565B2 (ja) 2006-05-29 2012-11-14 大日本印刷株式会社 細胞培養用基板
US8592139B2 (en) 2006-11-10 2013-11-26 Dai Nippon Printing Co., Ltd. Test method using cells and test kit therefor
JP5261920B2 (ja) * 2006-11-10 2013-08-14 大日本印刷株式会社 細胞を用いた試験法および試験用キット
JP4822012B2 (ja) * 2007-05-22 2011-11-24 大日本印刷株式会社 紐状の心筋細胞集合体を形成するための細胞培養支持体
JP5496488B2 (ja) * 2008-10-22 2014-05-21 学校法人東京女子医科大学 細胞パターン回収ツール
JP5329185B2 (ja) * 2008-11-17 2013-10-30 学校法人東京女子医科大学 配向制御された細胞パターンの回収ツール
US9962468B2 (en) * 2009-04-16 2018-05-08 The University Of Memphis Research Foundation Cell growth apparatus and use of aerogels for directed cell growth
JP5526426B2 (ja) * 2009-09-01 2014-06-18 荏原実業株式会社 基板の細胞非接着領域を除去することによる細胞培養方法
JP5723543B2 (ja) * 2010-04-21 2015-05-27 大日本印刷株式会社 マイクロパターン化血管内皮細胞転写基板
JP6202621B2 (ja) * 2011-11-20 2017-09-27 学校法人東京女子医科大学 細胞培養用基材及びその製造方法
JP5917357B2 (ja) 2012-10-05 2016-05-11 日本写真印刷株式会社 細胞培養部材と細胞培養方法
JP5780530B2 (ja) * 2013-07-11 2015-09-16 荏原実業株式会社 基板の細胞接着領域を除去することによる細胞培養方法
USD789538S1 (en) * 2014-08-15 2017-06-13 Richard J. McMurtrey Artificial composite neural tissue construct device
JP7316745B2 (ja) 2016-05-20 2023-07-28 株式会社リコー 三次元組織体
JP6953863B2 (ja) * 2017-07-26 2021-10-27 大日本印刷株式会社 細胞シートの剥離性の調整方法、細胞シートの製造方法、及び細胞培養容器の製造方法
JP7343119B2 (ja) 2019-04-26 2023-09-12 株式会社片岡製作所 細胞培養基材、細胞培養容器、細胞の培養方法、細胞の製造方法、細胞培養基材の製造方法、および細胞培養容器の製造方法
KR102359688B1 (ko) 2020-06-24 2022-02-08 한양대학교 에리카산학협력단 실습용 혈관 및 그의 제조 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH089960A (ja) * 1994-06-27 1996-01-16 Nec Corp 細胞培養用基板とその作製方法および細胞配列形成方法
JP2002542883A (ja) * 1999-04-30 2002-12-17 マサチューセッツ ジェネラル ホスピタル 微細加工した2次元鋳型を用いる血管新生組織の加工
JP2003222626A (ja) * 2001-11-20 2003-08-08 Dainippon Printing Co Ltd パターン形成体の製造方法
WO2004101774A1 (ja) * 2003-05-14 2004-11-25 Japan Tissue Engineering Co. Ltd 細胞培養方法及び培養組織
WO2005038011A1 (ja) * 2003-10-17 2005-04-28 Dai Nippon Printing Co., Ltd. 人工細胞組織の作成方法、及びそのための基材

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2330104A1 (en) 1998-04-09 1999-10-21 Charlotte-Mecklenberg Hospital Authority Creation of three-dimensional tissues
US7759113B2 (en) * 1999-04-30 2010-07-20 The General Hospital Corporation Fabrication of tissue lamina using microfabricated two-dimensional molds
ES2357764T3 (es) 2000-07-21 2011-04-29 Cellseed Inc. Lámina celular de tipo muscular cardiaco, constructo tridimensional, tejido de tipo muscular cardiaco y proceso para producir los mismos.
JP2003024351A (ja) 2001-07-19 2003-01-28 Senko Medical Instr Mfg Co Ltd ハイブリッド人工血管
JP4475847B2 (ja) 2001-07-26 2010-06-09 株式会社セルシード 前眼部関連細胞シート、3次元構造体、及びそれらの製造法
US20030109920A1 (en) * 2001-12-06 2003-06-12 The Regents Of The University Of California Engineered animal tissue
JP2005000608A (ja) 2003-06-11 2005-01-06 Mitsuo Okano 高生着性培養細胞シート、製造方法及びその利用方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH089960A (ja) * 1994-06-27 1996-01-16 Nec Corp 細胞培養用基板とその作製方法および細胞配列形成方法
JP2002542883A (ja) * 1999-04-30 2002-12-17 マサチューセッツ ジェネラル ホスピタル 微細加工した2次元鋳型を用いる血管新生組織の加工
JP2003222626A (ja) * 2001-11-20 2003-08-08 Dainippon Printing Co Ltd パターン形成体の製造方法
WO2004101774A1 (ja) * 2003-05-14 2004-11-25 Japan Tissue Engineering Co. Ltd 細胞培養方法及び培養組織
WO2005038011A1 (ja) * 2003-10-17 2005-04-28 Dai Nippon Printing Co., Ltd. 人工細胞組織の作成方法、及びそのための基材

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HARIMOTO M. ET AL: "Novel approach for achieving double-layered cell sheets co-culture: overlaying endothelial cell sheets onto monolayer hepatocytes utilizing temperature-responsive culture dishes", J. BIOMED. MATER. RES., vol. 62, no. 3, 2002, pages 464 - 470, XP002995879 *
HARIMOTO M. ET AL: "Ondo Otosei Baiyozara o Mochiita Kekkan Naihi Saibo to Kansaibo no Jusoka Kyobaiyo", INTELLIGENT ZAIRYO SYMPOSIUM KOEN YOSHISHU, vol. 11TH, 2002, pages 78 - 79, XP002995880 *

Also Published As

Publication number Publication date
JP4303643B2 (ja) 2009-07-29
US8500822B2 (en) 2013-08-06
US20130323842A1 (en) 2013-12-05
JP2005342112A (ja) 2005-12-15
US20070259328A1 (en) 2007-11-08
US9034648B2 (en) 2015-05-19

Similar Documents

Publication Publication Date Title
WO2005118012A1 (ja) 人工組織体およびその製造方法
JP5134511B2 (ja) 人工細胞組織の作成方法、及びそのための基材
JP4699361B2 (ja) 細胞培養用パターニング基板およびその製造方法
US9359594B2 (en) Artificial blood vessel and method of manufacturing thereof
JP4401153B2 (ja) パターニング用基板および細胞培養基板
JP4554913B2 (ja) パターニング用基板および細胞培養基板
JP4862261B2 (ja) パターニング用基板および細胞培養基板
JP4742599B2 (ja) パターニング用基板および細胞培養基板
JP4742598B2 (ja) パターニング用基板および細胞培養基板
JP4992950B2 (ja) 人工組織
KR100905137B1 (ko) 인공 혈관 및 그의 제조 방법
JP4826092B2 (ja) パターニング用基板および細胞培養基板

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11628054

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 11628054

Country of ref document: US