WO2005117201A1 - 積層型バルントランス - Google Patents

積層型バルントランス Download PDF

Info

Publication number
WO2005117201A1
WO2005117201A1 PCT/JP2005/006346 JP2005006346W WO2005117201A1 WO 2005117201 A1 WO2005117201 A1 WO 2005117201A1 JP 2005006346 W JP2005006346 W JP 2005006346W WO 2005117201 A1 WO2005117201 A1 WO 2005117201A1
Authority
WO
WIPO (PCT)
Prior art keywords
line
balun transformer
dielectric layer
lines
multilayer
Prior art date
Application number
PCT/JP2005/006346
Other languages
English (en)
French (fr)
Inventor
Hirokazu Yazaki
Noboru Kato
Original Assignee
Murata Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co., Ltd. filed Critical Murata Manufacturing Co., Ltd.
Publication of WO2005117201A1 publication Critical patent/WO2005117201A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F19/00Fixed transformers or mutual inductances of the signal type
    • H01F19/04Transformers or mutual inductances suitable for handling frequencies considerably beyond the audio range
    • H01F19/06Broad-band transformers, e.g. suitable for handling frequencies well down into the audio range
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/08Coupling devices of the waveguide type for linking dissimilar lines or devices
    • H01P5/10Coupling devices of the waveguide type for linking dissimilar lines or devices for coupling balanced lines or devices with unbalanced lines or devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/42Networks for transforming balanced signals into unbalanced signals and vice versa, e.g. baluns
    • H03H7/422Networks for transforming balanced signals into unbalanced signals and vice versa, e.g. baluns comprising distributed impedance elements together with lumped impedance elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F17/0013Printed inductances with stacked layers
    • H01F2017/0026Multilayer LC-filter
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F21/00Variable inductances or transformers of the signal type
    • H01F21/12Variable inductances or transformers of the signal type discontinuously variable, e.g. tapped
    • H01F2021/125Printed variable inductor with taps, e.g. for VCO

Definitions

  • the present invention relates to a multilayer balun transformer, and more particularly, to a multilayer balun transformer used for balanced-unbalanced signal variation and phase variation of an integrated circuit for a wireless communication device.
  • a normal transformer is, for example, a device for mutually converting a balanced signal of a balanced transmission line (balanced transmission line) and an unbalanced signal of an unbalanced transmission line (unbalanced transmission line). Is an abbreviation for balance-unbalance.
  • a balanced transmission line has two pairs of signal lines, and a signal (balanced signal) is transmitted as a potential difference between the two signal lines.
  • the external noise has the same phase (common mode) and equally affects the two signal lines. Therefore, there is an advantage that the external noise is canceled out and is less susceptible to the external noise.
  • the input / output terminals for signals of analog ICs are often of a balanced type that inputs or outputs signals as a potential difference between two terminals.
  • An unbalanced transmission line is one in which a signal (unbalanced signal) propagates as the potential of one transmission line with respect to ground potential (zero potential).
  • a coaxial line or microstrip on a substrate The line corresponds to this.
  • balun transformer having a structure in which a winding is bifilar wound around a magnetic core such as ferrite has been used.
  • the balun transformer with this structure has a large conversion loss in the high frequency band above the UHF band, for example, and has a limit in miniaturization.
  • a balun transformer 60 having a coaxial structure as shown in FIG. 6 has been used.
  • the balun transformer 60 has a center electrode 65, and one end of the center electrode 65 is connected to an input / output terminal 62a. The other end of the center electrode 65 is open.
  • two internal electrodes 66a and 66b are electromagnetically coupled to the center electrode 65. It is provided as follows. Opposite inner ends of the internal electrodes 66a, 66b are connected to the other input / output terminals 62b, 62c via leads 67a, 67b, respectively.
  • a ground electrode 68 is provided around the internal electrodes 66a and 66b with a dielectric therebetween. Both ends of the ground electrode 68 are connected to outer ends of the internal electrodes 66a and 66b.
  • the balun transformer 60 in FIG. 6 has an equivalent circuit as shown in FIG.
  • the transformer 60 Since the transformer 60 has a coaxial structure, it is difficult to reduce the size thereof. For example, the transformer 60 is not suitable for a device requiring a small balun transformer such as a mobile radio. there were.
  • Patent Document 1 proposes a chip-type balun transformer as shown in FIG.
  • the balun transformer 70 has a dielectric layer 72 provided with an extraction electrode 72a on the surface, a dielectric layer 73 provided with a 1Z2 wavelength strip line 73ab on the surface, and a dielectric layer 73 provided with 1Z4 wavelength strip lines 74a and 74b on the surface. It is composed of a body layer 74 and dielectric layers 71, 75 and the like having ground electrodes 71a, 75a provided on the surface, respectively.
  • the 1Z2 wavelength strip line 73ab has a spiral first portion 73a and a second portion 73b.
  • the quarter-wave strip lines 74a and 74b are electromagnetically coupled to the first portion 73a and the second portion 73b of the strip line 73ab, respectively.
  • the balun transformer 70 is formed into a chip, it is smaller than the balun transformer 60 having a coaxial structure.
  • the spiral first and second portions 73a and 73b constitute a set of coupled lines of 1Z4 wavelength, and these 1Z4 wavelength coupled lines 73a, Since 73b has a configuration in which each of a pair of quarter-wave striplines 74a and 74b is electromagnetically coupled, a total of two sets of 1Z4 wavelength coupling lines are required.
  • the length of these coupled lines 73a, 73b, 74a, 74b cannot be shorter than the 1Z4 wavelength.
  • the first portion 73a and the second portion 73b of the 1/2 wavelength strip line 73ab are formed side by side on the same surface of the dielectric layer 73, and the 1Z4 wavelength strip lines 74a, 74b Since they are formed side by side on the same surface of the body layer 74, the required area of the dielectric layers 73 and 74 also increases. For this reason, it was described in Patent Document 1. Chip type transformers also had limitations in miniaturization.
  • Patent Document 2 proposes a multilayer balun transformer as shown in FIG.
  • the laminated balun transformer 80 includes a dielectric sheet 82 provided with an extraction electrode 82a on the surface, and a dielectric sheet 83 provided with quarter-wave strip lines 83a, 84a, 86a, and 87a on the surface, respectively.
  • 86, 87 and dielectric sheets 81, 85, 88 provided on the surface with ground electrodes 81a, 85a, 88a, respectively.
  • the strip lines 83a and 84a are provided to face each other with the dielectric sheet 83 interposed therebetween, and are electromagnetically coupled.
  • the strip lines 86a and 87a are provided to face each other with the dielectric sheet 86 interposed therebetween, and are electromagnetically coupled.
  • the end of strip line 83a and the end of strip line 87a are electrically connected via external electrodes! Puru.
  • the 1Z4 wavelength strip lines 83a and 87a are formed on different dielectric sheets 83 and 87, respectively, and the 1Z4 wavelength strip lines 84a and 86a are also formed on different dielectric sheets 84 and 86. Since they are respectively formed, the 1Z4 wavelength strip lines 83a, 84a, 86a, 87a are arranged in the laminating direction of the dielectric sheets 81 to 88. For this reason, the dielectric sheets 81 to 88 have a problem that the force stacking thickness for reducing the area thereof is increased.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 9-260145
  • a multilayer balun transformer includes a multilayer body including a dielectric layer on which first, second, and third lines are respectively formed; The dielectric layer on which the first line is formed and the dielectric layer on which the third line is formed are laminated on one side and the other side in the thickness direction of the dielectric layer on which the second line is formed, respectively.
  • a multilayer Baluntran which electromagnetically couples the first and third lines to the line,
  • the length of each of the first, second, and third lines is shorter than the 1Z4 wavelength of the input signal wave.
  • One end of the second line is an unbalanced signal terminal, the other end is grounded, and the first line is grounded at one end of the second line having the same polarity as the one end of the second line. And the other end is a first balanced signal terminal,
  • One end of the third line having the same polarity as the one end of the second line is a second balanced signal terminal, and the other end is grounded;
  • the multilayer balun transformer according to the present invention, only three lines of the first, second, and third lines are required, and the line length is shorter than 1Z4 wavelength.
  • the size is reduced, not only the force but also the electromagnetic coupling between the lines becomes relatively small, and when the same dielectric material as that of the conventional multilayer balun transformer is used, the thickness of the dielectric layer can be reduced.
  • a laminated balun transformer with a small size can be obtained.
  • the line lengths of the first, second, and third lines are shorter than the 1Z4 wavelength, good attenuation can be obtained up to several times the input signal frequency, and stable attenuation characteristics can be obtained. Obtainable . As a result, it is possible to make the attenuation characteristics into specifications.
  • the multilayer body be made of ceramic. Ceramic has good properties as a material for this type of laminate with high Q and dielectric constant. Further, it is preferable that the first, second and third line forces have an S spiral shape. By adjusting the number of spiral turns of each line, the inductance of the line can be adjusted and the input / output matching can be easily adjusted. Further, the first, second and third lines may have different widths and lengths. By adjusting the width and length of the spiral of each line, the inductance of the line can be changed and the input / output matching can be easily adjusted.
  • a capacitor may be connected between the unbalanced signal terminal and the ground.
  • the line length of the second line can be shortened accordingly.
  • the size of the stacked balun transformer can be further reduced.
  • a capacitor may be connected between each of the balanced signal terminals and a ground.
  • the resonance frequency of the first and third lines connected to the balanced signal terminal is reduced by such connection of the capacitor, so that the line lengths of these lines can be shortened accordingly.
  • the size of the stacked balun transformer can be further reduced.
  • a shield electrode may be provided on the lower dielectric layer of the third line.
  • the presence of this shield electrode reduces the inductance of the third line, and sets the distance T2 between the third line and the second line smaller than the distance T1 between the first line and the second line. it can.
  • the thicknesses of the dielectric layers of the second line and the third line can be made closer to each other by reducing the thickness of the dielectric layer, and the thickness of the dielectric layer can be reduced to increase the thickness of the ceramic laminate Can be reduced. Thereby, a smaller laminated balun transformer can be obtained.
  • FIG. 1 is a perspective view showing an appearance of a first embodiment of a multilayer balun transformer according to the present invention.
  • FIG. 2 is an exploded perspective view of the multilayer balun transformer shown in FIG. 1.
  • FIG. 3 is an equivalent circuit diagram of the multilayer balun transformer shown in FIG. 1.
  • FIG. 4 is an exploded perspective view of a multilayer balun transformer according to a second embodiment of the present invention.
  • FIG. 5 is an exploded perspective view of a third embodiment of the multilayer balun transformer according to the present invention.
  • FIG. 6 is an explanatory view of a conventional balun transformer having a coaxial structure.
  • FIG. 7 is an equivalent circuit diagram of the balun transformer shown in FIG. 6.
  • FIG. 8 is an exploded perspective view of a conventional laminated balun transformer.
  • FIG. 9 is an exploded perspective view of another conventional stacked balun transformer.
  • FIG. 1 shows the appearance of a multilayer balun transformer according to a first embodiment of the present invention
  • FIG. 2 shows a specific configuration thereof.
  • the laminated balun transformer 10 is formed of a chip-shaped ceramic laminated body 10a in which ceramic dielectric layers 11 to 20 are laminated.
  • Each of the dielectric layers 11 to 20 is formed by laminating a ceramic green sheet formed by molding a dielectric ceramic material by a doctor blade method, a pulling method, or the like, and then sintering to form a laminated body 10a.
  • the ceramic green sheet is formed by sintering. For this reason, in FIG. 1, a partition line does not actually occur between adjacent layers in the stacking direction of the dielectric layers 11 to 20.
  • An unbalanced signal terminal P, a ground terminal G, and a balanced signal terminal are provided on one laminated surface of the laminated body 10a formed from the dielectric layer 11 to the dielectric layer 20 by laminating the dielectric layers 11 to 20.
  • a balanced signal terminal P On the surface, a balanced signal terminal P, a ground terminal G, and a dummy terminal P are formed.
  • it may be formed by printing before sintering the ceramic green sheet, or may be formed after firing of the laminated body 10a.
  • the dielectric layers 13, 15, 16 include a first line 13a, a second line 15a, and a third line, each having a spiral line pattern in the same winding direction on one main surface thereof. 16a has been formed.
  • these lines 13a, 15a, and 16a have a constant width equal to each other and have a line length sufficiently shorter than the 1Z4 wavelength of the input signal wave, for example, a line length of 1Z12 wavelength. It is formed as follows.
  • the second line 15a is electromagnetically coupled to the first line 13a with the dielectric layers 13 and 14 stacked on the second line 15a therebetween, and the second dielectric layer 15a is formed by itself. Is electromagnetically coupled to the third line 16a.
  • the line length of the lines 13a, 15a, and 16a is shorter than the 1Z4 wavelength of the input signal wave.
  • the line length is 1Z4 wavelength, any two lines are strongly coupled. And This is because the other one does not combine.
  • the stronger coupling becomes weaker, while the weaker coupling becomes stronger, and it becomes possible to balance by appropriate length spacing.
  • the second line 15a is electrically connected to the unbalanced signal terminal P through a via hole Vh formed in the dielectric layer 14 and an extraction electrode 14a at one end located outside the spiral.
  • the other end located inside the spiral is electrically connected to the ground terminal G through the via hole Vh formed in the dielectric layer 14 and the extraction electrode 14b.
  • the first line 13a has one end on the side having the same polarity as the one end of the second line 15a (outside of the spiral) and a via hole Vh formed in the dielectric layer 12 and an extraction electrode 12a.
  • the other end of the side (inside of the spiral) is a via hole Vh formed in the dielectric layer 12
  • That one end has the same polarity is generally used in the same meaning as that indicated by adding a black circle to one end of a symbol representing a coil in a transformer or the like. Therefore, for example, if the winding direction of the first line 13a is opposite to that of the second line 15a, the inside of the spiral is called one end and the outside is called the other end in the first line 13a. Become.
  • the third line 16a is formed in the via hole Vh formed in the dielectric layer 16 and the dielectric layer 17 at one end on the side having the same polarity as the one end of the second line 15a (outside of the spiral).
  • the other end of the side having a different polarity (inside of the spiral) from one end of 15a is grounded through a via hole Vh formed in the dielectric layer 16 and an extraction electrode 17b formed in the dielectric layer 17.
  • a ground electrode 18a is formed on one main surface of the dielectric layer 18, and the ground electrode 18a is electrically connected to the ground terminal G by an extraction electrode 18b. Also, the dielectric layer
  • a capacitor electrode 19a is formed, and the capacitor electrode 19a is electrically connected to the unbalanced signal terminal P by an extraction electrode 19b.
  • ground electrode 20a is also formed on one main surface of the dielectric layer 20, and the ground electrode 20a is electrically connected to the ground terminal G1 by an extraction electrode 20b.
  • Capacity The ground electrode 19a faces the ground electrode 18a with the dielectric layer 18 interposed therebetween, and faces the ground electrode 20a with the dielectric layer 19 interposed therebetween. This allows unbalanced signal terminal P and
  • the multilayer balun transformer 10 described above has the equivalent circuit shown in FIG.
  • one end and the other end of the second line 15a are connected to the unbalanced signal terminal P and the ground terminal G, respectively.
  • the first track 13a is
  • One end having the same polarity as one end of the line 15a is connected to the ground terminal G, and the second line 1
  • 16a has one end having the same polarity as one end of the second line 15a connected to the balanced signal terminal P.
  • black circles attached to respective ends of the first line 13a, the second line 15a, and the third line 16a indicate that these ends have the same polarity. Is shown.
  • the ground terminals G 1 and G 2 are usually the same.
  • the ground terminal G is set to the signal frequency.
  • the signals are converted into balanced signals by the first line 13a and the third line 16a electromagnetically coupled to the line 15a, and the balanced signal terminals P, P
  • the balanced signal When a balanced signal is input between 23 and 23, the balanced signal is converted to an unbalanced signal by a second line 15a electromagnetically coupled to the first line 13a and the third line 16a, and the unbalanced signal terminal P and
  • the laminated balun transformer 10 requires only the first, second, and third lines 13a, 15a, and 16a, and has a 1Z12 wavelength that is sufficiently shorter than the 1Z4 wavelength.
  • the size of the laminate 10a can be significantly reduced, The size of the screw 10 is greatly reduced.
  • the line length of each line 13a, 15a, 16a is shorter than the 1Z4 wavelength of the input signal wave, the electromagnetic coupling between the lines becomes relatively small, and the magnetic field generated there is less likely to leak to the outside. . For this reason, there is no need to provide a shield electrode above the first line 13a.
  • the thickness of the dielectric layers 13, 14, and 15 can be reduced. From such a point, the size of the multilayer balun transformer 10 can be further reduced.
  • the frequency of the signal having the length of 1Z4 wavelength is three times the frequency of the input signal.
  • a 1Z4 wavelength line is provided.
  • the first attenuation pole appears at twice the frequency, so that good attenuation characteristics without spurious can be obtained up to six times the frequency of the input signal frequency. Accordingly, with respect to the second and third harmonics of the input signal frequency, stable attenuation characteristics can be obtained without the frequency characteristics becoming trapped. As a result, it is possible to make the attenuation characteristics into specifications.
  • a resonance circuit is formed by the second line 15a and the capacitor C, and the resonance circuit is formed.
  • the road length can be further reduced.
  • the size of the multilayer balun transformer 10 can be further reduced.
  • the distance T2 between the line 16a and the second line 15a can be set smaller than the distance T1 between the first line 13a and the second line 15a.
  • the third line 16a and the second line 15a are closer to each other, and the thickness of the ceramic laminate 10 can be reduced. (Second embodiment, see FIG. 4)
  • FIG. 4 shows a multilayer balun transformer according to a second embodiment of the present invention.
  • the multilayer balance transformer 30 is provided between the dielectric layer 17 and the dielectric layer 18 of the multilayer body 10a in the multilayer transformer 10 of the first embodiment described with reference to FIGS.
  • a laminated body 10b is formed by the dielectric layers 11 to 21 via the dielectric layer 21 having two capacitor electrodes 2 la and 2 lb formed on the main surface, and the two capacitor electrodes 21a and 21b are connected to the balanced signal terminal P. , P
  • the capacitor electrodes 21a and 21b face the ground electrode 18a formed on the dielectric layer 18 with the dielectric layer 21 interposed therebetween, between which capacitances C and C shown by dotted lines in FIG. 3 are formed, respectively. .
  • FIG. 4 the parts corresponding to FIG.
  • the multilayer balun transformer 30 has the same effect as the multilayer balun transformer 10 of the first embodiment. Connect between balanced signal terminal P and ground terminal G
  • the input / output on the balanced signal side of the multilayer balun transformer 30 can be easily matched
  • a resonance circuit is formed by the first line 13a, the third line 16a, and the capacitors C and C.
  • the line lengths of the two lines including the first line 13a and the third line 16a can be further reduced.
  • the size of the multilayer balun transformer 30 can be further reduced.
  • FIG. 5 shows a multilayer balun transformer according to a third embodiment of the present invention.
  • the multilayer Balun lance 40 is different from the multilayer transformer 10 of the first embodiment in that the width of each of the first line 13a and the third line 16a is larger than the width of the second line 15a.
  • the lengths of the first line 13a and the third line 16a are both shorter than the length of the second line 15a, and the lengths of the extraction electrodes 12a, 12b, 17a, 17b and the via holes Vh to Vh are reduced. 1st track 13a and
  • the inductance of the lines 13a and 16a is adjusted to a required value in consideration of the influence on the third line 16a and the third line 16a.
  • first to third lines 13a, 15a, 16a need to have the same length and the same width. It may be changed appropriately according to the specifications of the hang. Therefore, the first line 13a and the third line 16a are connected to the extraction electrodes 12a, 12b, 17a, 17b and the via holes Vh to Vh.
  • the width may be narrower or the line length may be longer than that of the second line 15a.
  • FIG. 5 parts corresponding to FIGS. 1 and 2 are denoted by corresponding reference numerals.
  • the multilayer balun transformer according to the present invention is not limited to the above embodiment, but may have various configurations within the scope of the invention.
  • first, second, and third lines 13a, 15a, and 16a have the forces described as having a spiral shape.
  • These lines 13a, 15a, and 16a have, for example, a meander shape. You may have.
  • the laminate is made of ceramic, it may be made of resin. However, ceramics have high Q and permittivity, and are preferred as the material for this type of laminate. Industrial applicability
  • the present invention is useful for a multilayer Baluntransance used in an integrated circuit for wireless communication equipment, and is particularly excellent in that harmonics can be stably attenuated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Power Engineering (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

 セラミック誘電体層(11~20)が積層されてなる積層体(10a)からなる積層型バルントランス。積層体(10a)には、不平衡信号端子(P1)、グランド端子(G1)、平衡信号端子(P2)、平衡信号端子(P3)、グランド端子(G2)、ダミー端子(P4)が形成されている。誘電体層(13,15,16)には、入力信号波の1/4波長よりも充分短い線路長を有する第1の線路(13a)、第2の線路(15a)及び第3の線路(16a)が形成されている。第2の線路(15a)は、誘電体層(13,14)を間にして第1の線路(13a)と電磁的に結合し、誘電体層(15)を間にして第3の線路(16a)と電磁的に結合している。

Description

明 細 書
積層型バルントランス 技術分野
[0001] 本発明は、積層型バルントランスに関し、より詳しくは、無線通信機器用集積回路 の平衡ー不平衡信号変^ ^や位相変^^などに用いられる積層型バルントランスに 関する。
背景技術
[0002] ノ レントランスとは、たとえば、平衡伝送線路 (バランス伝送線路)の平衡信号及び 不平衡伝送線路(アンバランス伝送線路)の不平衡信号を相互に変換するためのも のであり、バルンとはバランス—アンバランスの略称である。平衡伝送線路は対をな す二つの信号線路を備え、信号 (平衡信号)が二つの信号線路間の電位差として伝 搬するものをいう。平衡伝送線路では、外来ノイズは同じ位相(コモンモード)を有し ていて二つの信号線路に等しく影響するので、外来ノイズは相殺され、外来ノイズの 影響を受けにくいという利点がある。
[0003] また、アナログ ICの信号用の入出力端子も、信号を二つの端子間で電位差として 入力あるいは出力するバランス型であることが多い。これに対して、不平衡伝送線路 は、信号 (不平衡信号)がグランド電位 (ゼロ電位)に対する 1本の伝送線路の電位と して伝搬するものをいい、たとえば同軸線路や基板上のマイクロストリップラインがこ れに相当する。
[0004] 従来、高周波回路における伝送線路の平衡ー不平衡変換器として、フェライト等の 磁性体コアに卷線をバイフアイラ巻きした構造のバルントランスが用いられていた。し 力しながら、この構造のバルントランスは、たとえば UHF帯以上の高周波帯域では変 換損失が大きぐまた、小型化にも限界があった。
[0005] このような周波数帯域に対しては、図 6に示すような同軸構造のバルントランス 60が 用いられていた。このバルントランス 60は中心電極 65を有し、該中心電極 65の一端 には、入出力端子 62aが接続されている。中心電極 65の他端は開放されている。中 心電極 65の周囲には、二つの内部電極 66a, 66bが中心電極 65と電磁結合するよ うに設けられている。内部電極 66a, 66bの対向する内側の端部は、引出線 67a, 67 bを介して、他の入出力端子 62b, 62cにそれぞれ接続されている。さらに、内部電極 66a, 66bの周囲には、誘電体を挟んで、グランド電極 68が設けられている。グランド 電極 68の両端は、内部電極 66a, 66bの外側の端部に接続されている。図 6のバル ントランス 60は図 7に示すような等価回路を有して 、る。
[0006] 前記ノ レントランス 60は、同軸構造を有しているため小型化が困難であり、たとえ ば移動無線機等のように小型のバルントランスが要求される機器には不適当なもの であった。
[0007] 同軸構造を有するバルントランスが有して 、る前記のような問題点を解消するため 、たとえば特許文献 1には、図 8に示すようなチップ型バルントランスが提案されてい る。このバルントランス 70は、引出電極 72aを表面に設けた誘電体層 72と、 1Z2波 長ストリップライン 73abを表面に設けた誘電体層 73と、 1Z4波長ストリップライン 74a , 74bを表面に設けた誘電体層 74と、グランド電極 71a, 75aをそれぞれ表面に設け た誘電体層 71, 75等で構成されている。
[0008] 1Z2波長ストリップライン 73abは、スパイラル状の第 1の部分 73a及び第 2の部分 7 3bを有している。 1/4波長ストリップライン 74a, 74bは、ストリップライン 73abの第 1 の部分 73a及び第 2の部分 73bとそれぞれ電磁結合している。
[0009] 前記バルントランス 70はチップ化されているので、同軸構造のバルントランス 60と 比較して小型化されている。し力しながら、 1Z2波長ストリップライン 73abは、スパイ ラル状の第 1の部分 73a及び第 2の部分 73bが 1Z4波長の 1組の結合線路を構成し ており、これら 1Z4波長の結合線路 73a, 73bに、いま 1組の 1/4波長ストリップライ ン 74a, 74bのそれぞれが電磁結合する構成を有しているので、 1Z4波長の結合線 路を合計 2組必要とする。
[0010] また、これらの結合線路 73a, 73b, 74a, 74bは、原理的に、その線路長を 1Z4波 長よりも短くすることはできない。さらには、 1/2波長ストリップライン 73abの第 1の部 分 73a及び第 2の部分 73bは、誘電体層 73の同じ表面に並んで形成されており、 1 Z4波長ストリップライン 74a, 74bも誘電体層 74の同じ表面に並んで形成されている ので、誘電体層 73, 74の所要面積も大きくなる。このため、特許文献 1に記載された チップ型ノ レントランスも小型化には限界があった。
[0011] また、特許文献 2には、図 9に示すような積層型バルントランスが提案されている。こ の積層型バルントランス 80は、引出電極 82aを表面に設けた誘電体シート 82と、 1/ 4波長ストリップライン 83a, 84a, 86a, 87aをそれぞれ表面に設けた誘電体シート 8 3, 84, 86, 87と、グランド電極 81a, 85a, 88aをそれぞれ表面に設けた誘電体シー 卜 81, 85, 88で構成されている。
[0012] ストリップライン 83a, 84aは誘電体シート 83を挟んで対向して設けられ、電磁結合 している。また、ストリップライン 86a, 87aは誘電体シート 86を挟んで対向して設けら れ、電磁結合している。ストリップライン 83aの端部とストリップライン 87aの端部とは、 外部電極を介して電気的に接続されて!ヽる。
[0013] 前記積層型ノ レントランス 80では、 1Z4波長ストリップライン 83a, 87aを異なる誘 電体シート 83, 87にそれぞれ形成し、 1Z4波長ストリップライン 84a, 86aも異なる誘 電体シート 84, 86にそれぞれ形成しているので、 1Z4波長ストリップライン 83a, 84 a, 86a, 87aは誘電体シート 81〜88の積層方向に配置される。このため、誘電体シ ート 81〜88はその面積を小さくすることができる力 積層厚みが大きくなるという問題 点がめった。
[0014] また、積層型バルントランス 80では、 1/4波長のストリップライン 83a, 84a, 86a, 8 7aを使用しているので、奇数次の高調波は殆ど減衰されることなく通過し、偶数次の 高調波についても、減衰特性が急峻なトラップ状で製品ごとやロットごとにトラップの 中心周波数がばらつくためスペック化が困難であった。このため、別途、トラップフィ ルタなどを設けることにより、高調波を除去しなければならないという問題点もあった。 特許文献 1 :特開平 7—176918号公報
特許文献 2:特開平 9 - 260145号公報
発明の開示
発明が解決しょうとする課題
[0015] そこで、本発明の目的は、高調波を安定して減衰させることができる電気的特性に 優れた小型の積層型バルントランスを提供することにある。
課題を解決するための手段 [0016] 前記目的を達成するため、本発明に係る積層型バルントランスは、 第 1、第 2及び第 3の線路がそれぞれ形成された誘電体層を含む積層体力ゝらなり、 第 2の線路が形成された誘電体層の厚み方向の一方側及び他方側に第 1の線路が 形成された誘電体層及び第 3の線路が形成された誘電体層がそれぞれ積層されて おり、第 2の線路に第 1及び第 3の線路が電磁的に結合している積層型バルントラン スであって、
前記第 1、第 2及び第 3の線路はいずれもその長さが入力信号波の 1Z4波長よりも 短ぐ
前記第 2の線路はその一端が不平衡信号端子とされており、他端が接地されており 前記第 1の線路は第 2の線路の前記一端と同じ極性を有する側の一端が接地され ているとともに、他端が第 1の平衡信号端子とされており、
前記第 3の線路は第 2の線路の前記一端と同じ極性を有する側の一端が第 2の平 衡信号端子とされるとともに、他端が接地されていること、
を特徴とする。
[0017] 本発明に係る積層型バルントランスによれば、第 1、第 2及び第 3の線路の三つの 線路しか必要としないうえに、その線路長も 1Z4波長よりも短いので、積層体のサイ ズカ 、さくなるば力りでなく線路間の電磁結合が相対的に小さくなり、従来の積層型 バルントランスと同じ誘電体材料を使用したときには、誘電体層の厚みを薄くすること ができ、サイズの小さい積層型バルントランスを得ることができる。さらに、第 1、第 2及 び第 3の線路の線路長が 1Z4波長よりも短くなつているので、入力信号周波数の数 倍の周波数まで良好な減衰を得ることができ、安定した減衰特性を得ることができる 。これにより、減衰特性のスペック化も可能となる。
[0018] 本発明に係る積層型バルントランスにおいては、前記積層体がセラミック力 なるこ とが好ましい。セラミックは Q及び誘電率が高ぐこの種の積層体の材質として良好な 特性を有している。また、前記第 1、第 2及び第 3の線路力 Sスパイラル形状を有してい ることが好ましい。それぞれの線路のスパイラルの卷数を調整することにより、線路の インダクタンスを調整し、容易に入出力の整合を調整することができる。 [0019] また、前記第 1、第 2及び第 3の線路は互いに異なる幅及び長さを有していてもよい 。それぞれの線路のスパイラルの幅及び長さを調整することにより、線路のインダクタ ンスを変化させ、容易に入出力の整合を調整することができる。
[0020] また、前記不平衡信号端子とグランドとの間にキャパシタが接続されて 、てもよ!/、。
キャパシタの接続により不平衡信号端子に接続される第 2の線路の共振周波数が下 がるので、それだけ第 2の線路の線路長を短くすることができる。これにより、積層型 バルントランスをより小型化することができる。
[0021] さらに、前記平衡信号端子のそれぞれとグランドとの間にキャパシタが接続されて いてもよい。このようなキャパシタの接続により平衡信号端子に接続される第 1及び第 3の線路の共振周波数が下がるので、それだけこれら線路の線路長を短くすることが できる。これにより、積層型バルントランスをより小型化することができる。
[0022] また、前記第 3の線路の下側の誘電体層にシールド電極を設けてもょ 、。このシー ルド電極の存在にて第 3の線路のインダクタンスが小さくなり、第 3の線路と第 2の線 路との間隔 T2を第 1の線路と第 2の線路との間隔 T1よりも小さく設定できる。すなわ ち、第 2の線路と第 3の線路の誘電体層の厚みを薄くすることにより両者をより接近さ せることができ、誘電体層の厚みを薄くして、セラミック積層体の積層厚を小さくするこ とができる。これにより、より小型の積層型バルントランスを得ることができる。
図面の簡単な説明
[0023] [図 1]本発明に係る積層型バルントランスの第 1実施例の外観を示す斜視図である。
[図 2]図 1に示した積層型バルントランスの分解斜視図である。
[図 3]図 1に示した積層型バルントランスの等価回路図である。
[図 4]本発明に係る積層型バルントランスの第 2実施例の分解斜視図である。
[図 5]本発明に係る積層型バルントランスの第 3実施例の分解斜視図である。
[図 6]従来の同軸構造のバルントランスの説明図である。
[図 7]図 6に示したバルントランスの等価回路図である。
[図 8]従来の積層型バルントランスの分解斜視図である。
[図 9]従来のいま一つの積層型バルントランスの分解斜視図である。
発明を実施するための最良の形態 [0024] 以下、本発明に係る積層型バルントランスの実施例を添付図面を参照して説明す る。
[0025] (第 1実施例、図 1〜図 3参照)
本発明の第 1実施例である積層型バルントランスの外観を図 1に、その具体的な構 成を図 2に示す。
[0026] この積層型バルントランス 10は、セラミックの誘電体層 11〜20が積層されてなるチ ップ状のセラミック積層体 10aからなる。誘電体層 11〜20は、いずれも、誘電体セラ ミック材料をドクターブレード法や引き上げ法などの手法で成形したセラミックグリーン シートが積層 Z圧着された後、焼成され、積層体 10aが形成される際に、セラミックグ リーンシートが焼結されて形成される。このため、図 1において、誘電体層 11〜20の 積層方向で互いに隣り合う層間には、実際には、区分線が生じることはない。
[0027] 誘電体層 11〜20の積層により誘電体層 11から誘電体層 20にかけて形成される積 層体 10aの一つの積層面には、不平衡信号端子 P、グランド端子 G、平衡信号端子
1 1
Pが形成されている。また、積層体 10aの一つの積層面と対向するいま一つの積層
2
面には、平衡信号端子 P、グランド端子 G、ダミー端子 Pが形成されている。これら
3 2 4
グランド端子 G , G、不平衡信号端子 P、平衡信号端子 P , P及びダミー端子 Pは
1 2 1 2 3 4
、セラミックグリーンシートの焼結前に予め印刷により形成されていてもよぐまた、積 層体 10aの焼成の後に形成してもよい。
[0028] 誘電体層 13, 15, 16には、それぞれの一の主面にいずれも同じ卷方向のスパイラ ル状線路パターンを有する第 1の線路 13a、第 2の線路 15a及び第 3の線路 16aが形 成されている。これらの線路 13a, 15a, 16aは、本第 1実施例では互いに等しい一定 の幅を有しており、かつ入力信号波の 1Z4波長よりも十分短い線路長、たとえば 1Z 12波長の線路長となるように形成されている。そして、第 2の線路 15aは、その上側 に積層されている誘電体層 13, 14を間にして第 1の線路 13aと電磁的に結合すると ともに、自身の形成されて 、る誘電体層 15を間にして第 3の線路 16aと電磁的に結 合している。
[0029] 線路 13a, 15a, 16aの線路長を入力信号波の 1Z4波長より短くしているのは、 3 本の線路を結合させる場合に、線路長が 1Z4波長だといずれか二つが強く結合し、 残りの一つが結合しなくなるためである。線路長を短くすることによって強く結合して いた方の結合が弱まり、逆に弱力つた方の結合が強くなり、適当な長さ間隔などによ つてバランスが取れるようになる。
[0030] 第 2の線路 15aは、そのスパイラルの外側に位置する一端が誘電体層 14に形成さ れたビアホール Vh及び引出電極 14aを通して不平衡信号端子 Pに電気的に接続
1 1
され、そのスパイラルの内側に位置する他端が前記誘電体層 14に形成されたビアホ ール Vh及び引出電極 14bを通してグランド端子 Gに電気的に接続されている。ま
2 1
た、第 1の線路 13aは、第 2の線路 15aの一端と同じ極性を有する側 (スパイラルの外 側)の一端が誘電体層 12に形成されたビアホール Vh及び引出電極 12aを通してグ
3
ランド端子 Gに電気的に接続され、第 2の線路 15aの一端とは異なる極性を有する
2
側 (スパイラルの内側)の他端が誘電体層 12に形成されたビアホール Vh及び引出
4 電極 12bを通して平衡信号端子 Pに電気的に接続されている。ここで、二つの線路
3
の一端が同じ極性を有しているとは、一般にトランスなどでコイルを表す記号の一端 側に黒丸印を付して示しているものと同じ意味で用いるものとする。従って、例えば、 第 1の線路 13aの卷方向が第 2の線路 15aとは逆方向になっていれば、第 1の線路 1 3aにおいてはスパイラルの内側を一端、外側を他端と称することになる。
[0031] 第 3の線路 16aは、第 2の線路 15aの一端と同じ極性を有する側 (スノィラルの外側 )の一端が誘電体層 16に形成されたビアホール Vh及び誘電体層 17に形成された
5
引出電極 17aを通していま一つの平衡信号端子 Pに電気的に接続され、第 2の線路
2
15aの一端と異なる極性を有する側 (スパイラルの内側)の他端が誘電体層 16に形 成されたビアホール Vh及び誘電体層 17に形成された引出電極 17bを通してグラン
6
ド端子 Gに電気的に接続されている。
2
[0032] 誘電体層 18の一の主面にはグランド電極 18aが形成されており、該グランド電極 1 8aは引出電極 18bによりグランド端子 Gに電気的に接続されている。また、誘電体層
1
19の一の主面にはキャパシタ電極 19aが形成されており、該キャパシタ電極 19aは 引出電極 19bにより不平衡信号端子 Pに電気的に接続されている。
1
[0033] さらに、誘電体層 20の一の主面にもグランド電極 20aが形成されており、該グランド 電極 20aは引出電極 20bによりグランド端子 G1に電気的に接続されている。キャパシ タ電極 19aは、誘電体層 18を間にしてグランド電極 18aに対向するとともに、誘電体 層 19を間にしてグランド電極 20aに対向している。これにより、不平衡信号端子 Pと
1 グランド端子 Gとの間には、図 3で説明する静電容量 Cが形成される。
1 1
[0034] 以上に説明した積層型バルントランス 10は、図 3に示した等価回路を有している。
即ち、積層型バルントランス 10では、第 2の線路 15aは、その一端及び他端が不平 衡信号端子 P及びグランド端子 Gにそれぞれ接続される。第 1の線路 13aは、第 2の
1 1
線路 15aの一端と同じ極性を有する一端がグランド端子 Gに接続され、第 2の線路 1
2
5aの一端と異なる極性を有する他端が不平衡信号端子 Pに接続される。第 3の線路
3
16aは、第 2の線路 15aの一端と同じ極性を有する一端が平衡信号端子 Pに接続さ
2 れ、第 2の線路 15aの一端と異なる極性を有する他端がグランド端子 Gに接続される
2
。そして、不平衡信号端子 Pとグランド端子 Gとの間に前記静電容量 (キャパシタ) C
1 1 1 が接続される。
[0035] なお、図 3において、第 1の線路 13a、第 2の線路 15a及び第 3の線路 16aの各一 端にそれぞれ付された黒丸印は、これら一端が同じ極性を有するものであることを示 している。
[0036] 以上の構成力もなる積層型バルントランス 10では、グランド端子 G , Gは通常は同
1 2
じ電位で接地される力 仮に第 1の線路 13a、第 2の線路 15a及び第 3の線路 16aに ノィァス電圧を印カロして使用するようなときには、グランド端子 Gは信号周波数にお
2
いてインピーダンスの充分小さいキャパシタを介して接地される。そして、不平衡信号 端子 Pとグランド端子 Gとの間に不平衡信号が入力すると、該不平衡信号は第 2の
1 1
線路 15aと電磁的に結合している第 1の線路 13a及び第 3の線路 16aにより平衡信号 に変換されて平衡信号端子 P , P
2 3間カゝら出力する。逆に、平衡信号端子 P , P
2 3間に 平衡信号が入力すると、該平衡信号は第 1の線路 13a及び第 3の線路 16aと電磁的 に結合している第 2の線路 15aにより不平衡信号に変換されて不平衡信号端子 Pと
1 グランド端子 Gとの間から出力する。
1
[0037] 積層型バルントランス 10では、第 1、第 2及び第 3の線路 13a, 15a, 16aの三つの 線路しか必要としないうえに、その線路長も 1Z4波長よりも充分短い 1Z12波長とし ているので、積層体 10aのサイズを大幅に小さくすることができ、積層型バルントラン ス 10のサイズが大幅に小型化される。また、各線路 13a, 15a, 16aの線路長が入力 信号波の 1Z4波長よりも短くなると、線路間の電磁結合が相対的に小さくなり、そこ で発生する磁界が外部に漏洩することも少なくなる。このため、第 1の線路 13aの上 側にはシールド用の電極を設ける必要がない。し力も、従来の積層型ノ レントランス と同じ誘電体材料を使用したときには、誘電体層 13, 14, 15の厚みを薄くすることが できる。このような点からも、積層型バルントランス 10のより一層の小型化を図る ことができる。
[0038] さらに、各線路 13a, 15a, 16aの線路長が入力信号波の lZl2波長となっている ので、その長さで 1Z4波長となる信号の周波数は入力信号の周波数の 3倍になる。 すなわち、入力信号の 3倍の周波数の信号にとって 1Z4波長線路を備えることにな る。そして、そのような装置においてはさらにその 2倍の周波数のところに最初の減衰 極が現われるので、結果的に入力信号周波数の 6倍の周波数までスプリアスのない 良好な減衰特性を得ることができる。従って、入力信号周波数の 2倍波、 3倍波につ いては、周波数特性がトラップ状にはなることがなぐ安定した減衰特性を得ることが できる。これにより、減衰特性のスペック化も可能となる。
[0039] さらに、不平衡信号端子 Pとグランド端子 Gとの間に接続されるキャパシタ Cにより
1 1 1
、積層型ノ レントランス 10の不平衡信号側の入出力の整合を容易にとることができる ばかりでなぐ第 2の線路 15aとキャパシタ Cとで共振回路が形成され、その共振周
1
波数がキャパシタ Cの静電容量の増加とともに低下するので、第 2の線路 15aの線
1
路長をさらに短くすることができる。これにより、積層型バルントランス 10のさらなる小 型化を図ることができる。
[0040] また、本第 1実施例において、図 2に示すように、第 1の線路 13aと第 2の線路 15aと の間隔 T1と第 3の線路 16aと第 2の線路 15aとの間隔 T2とが、 Tl >T2の関係にある 。すなわち、第 3の線路 16aの下側の誘電体層 18にはグランド電極 18aが形成され ているため、このグランド電極 18aの存在にて第 3の線路 16aのインダクタンスが小さ くなり、第 3の線路 16aと第 2の線路 15aとの間隔 T2を第 1の線路 13aと第 2の線路 15 aとの間隔 T1よりも小さく設定できる。これにて、第 3の線路 16aと第 2の線路 15aとが より接近し、セラミック積層体 10の積層厚を小さくすることができる。 [0041] (第 2実施例、図 4参照)
本発明の第 2実施例である積層型バルントランスを図 4に示す。この積層型バルント ランス 30は、図 1及び図 2を参照して説明した第 1実施例である積層型ノ レントランス 10において、積層体 10aの誘電体層 17と誘電体層 18との間に、主面に二つのキヤ パシタ電極 2 la, 2 lbを形成した誘電体層 21を介して誘電体層 11〜 21により積層 体 10bを形成し、二つのキャパシタ電極 21a, 21bを平衡信号端子 P , Pにそれぞれ
2 3 接続したものである。キャパシタ電極 21a, 21bは、誘電体層 21を間にして誘電体層 18に形成されたグランド電極 18aに対向し、その間に図 3に点線で示した静電容量 C , Cがそれぞれ形成される。なお、図 4において、図 2に対応する部分には対応す
2 3
る符号を付して示し、重複した説明は省略する。
[0042] この積層型バルントランス 30にあっては、前記第 1実施例である積層型バルントラン ス 10と同様の効果を奏する。さらに、平衡信号端子 Pとグランド端子 Gとの間に接続
2 1
されるキャパシタ C、平衡信号端子 Pとグランド端子 Gとの間に接続されるキャパシ
2 3 1
タ Cにより、積層型バルントランス 30の平衡信号側の入出力の整合を容易にとること
3
ができる。また、第 1の線路 13a、第 3の線路 16a、キャパシタ C , Cとで共振回路が
2 3
形成され、その共振周波数がキャパシタ C , Cの静電容量の増加とともに低下する
2 3
ので、第 1の線路 13a、第 3の線路 16aからなる二つの線路の線路長をさらに短くす ることができる。これにより、積層型バルントランス 30のより一層の小型化を図ることが できる。
[0043] (第 3実施例、図 5参照)
本発明の第 3実施例である積層型バルントランスを図 5に示す。この積層型バルント ランス 40は、前記第 1実施例である積層型ノ レントランス 10において、第 1の線路 13 a及び第 3の線路 16aの幅をいずれも第 2の線路 15aの幅よりも太くするとともに、第 1 の線路 13a及び第 3の線路 16aの長さをいずれも第 2の線路 15aの長さよりも短くし、 引出電極 12a, 12b, 17a, 17bやビアホール Vh〜Vhの長さが第 1の線路 13a及
3 6
び第 3の線路 16aに及ぼす影響を考慮して、線路 13a, 16aのインダクタンスを必要 な値に調整するようにしたものである。
[0044] このように、第 1〜第 3の線路 13a, 15a, 16aは全てが同じ長さ、同じ幅である必要 はなぐ仕様などに応じて適宜変更しても構わないものである。従って、第 1の線路 1 3a及び第 3の線路 16aは、引出電極 12a, 12b, 17a, 17bやビアホール Vh〜Vh
3 6 の長さ等に応じて、前記とは逆に第 2の線路 15aに比較して幅が狭く形成されたり線 路長が長く形成されることもある。
[0045] なお、図 5において、図 1及び図 2に対応する部分には対応する符号を付して示し
、重複した説明は省略する。
[0046] (他の実施例)
本発明に係る積層型バルントランスは前記実施例に限定されるものではなぐその 要旨の範囲内で種々の構成とすることができる。
[0047] 特に、前記各実施例では、第 1、第 2及び第 3の線路 13a, 15a, 16aはスパイラル 形状を有するものについて説明した力 これらの線路 13a, 15a, 16aはたとえばミア ンダ形状を有するものであってもよ 、。
[0048] また、前記積層体はセラミックにて構成したが、榭脂にて構成してもよ 、。但し,セラ ミックは Q及び誘電率が高く、この種の積層体の材質として好まし ヽものである。 産業上の利用可能性
[0049] 以上のように、本発明は、無線通信機器用集積回路に用いられる積層型バルントラ ンスに有用であり、特に、高調波を安定して減衰させることができる点で優れている。

Claims

請求の範囲
[1] 第 1、第 2及び第 3の線路がそれぞれ形成された誘電体層を含む積層体力ゝらなり、 第 2の線路が形成された誘電体層の厚み方向の一方側及び他方側に第 1の線路が 形成された誘電体層及び第 3の線路が形成された誘電体層がそれぞれ積層されて おり、第 2の線路に第 1及び第 3の線路が電磁的に結合している積層型バルントラン スであって、
前記第 1、第 2及び第 3の線路はいずれもその長さが入力信号波の 1Z4波長よりも 短ぐ
前記第 2の線路はその一端が不平衡信号端子とされており、他端が接地されており 前記第 1の線路は第 2の線路の前記一端と同じ極性を有する側の一端が接地され ているとともに、他端が第 1の平衡信号端子とされており、
前記第 3の線路は第 2の線路の前記一端と同じ極性を有する側の一端が第 2の平 衡信号端子とされるとともに、他端が接地されていること、
を特徴とする積層型バルントランス。
[2] 前記積層体がセラミックからなることを特徴とする請求の範囲第 1項に記載の積層 型バルントランス。
[3] 前記第 1、第 2及び第 3の線路力 Sスパイラル形状を有していることを特徴とする請求 の範囲第 1項又は第 2項に記載の積層型バルントランス。
[4] 前記第 1、第 2及び第 3の線路が互いに異なる幅及び長さを有していることを特徴と する請求の範囲第 1項、第 2項又は第 3項に記載の積層型バルントランス。
[5] 前記不平衡信号端子とグランドとの間にキャパシタが接続されていることを特徴とす る請求の範囲第 1項、第 2項、第 3項又は第 4項に記載の積層型バルントランス。
[6] 前記平衡信号端子のそれぞれとグランドとの間にキャパシタが接続されていること を特徴とする請求の範囲第 5項に記載の積層型バルントランス。
[7] 前記第 3の線路の下側の誘電体層にシールド電極を設けたことを特徴とする請求 の範囲第 1項、第 2項、第 3項、第 4項、第 5項又は第 6項に記載の積層型バルントラ ンス。 [8] 前記第 1の線路と前記第 2の線路との間隔 Tlと前記第 3の線路と前記第 2の線路と の間隔 T2とが、 Tl >T2の関係にあることを特徴とする請求の範囲第 7項に記載の 積層型バルントランス。
PCT/JP2005/006346 2004-05-27 2005-03-31 積層型バルントランス WO2005117201A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-158037 2004-05-27
JP2004158037 2004-05-27
JP2005-068774 2005-03-11
JP2005068774A JP2006014276A (ja) 2004-05-27 2005-03-11 積層型バルントランス

Publications (1)

Publication Number Publication Date
WO2005117201A1 true WO2005117201A1 (ja) 2005-12-08

Family

ID=35451193

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/006346 WO2005117201A1 (ja) 2004-05-27 2005-03-31 積層型バルントランス

Country Status (2)

Country Link
JP (1) JP2006014276A (ja)
WO (1) WO2005117201A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115516707A (zh) * 2020-05-13 2022-12-23 株式会社村田制作所 换衡器

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100777394B1 (ko) * 2006-05-17 2007-11-19 삼성전자주식회사 진폭 불균형을 개선하기 위한 온­칩 트랜스포머 밸룬
KR100968969B1 (ko) 2007-09-27 2010-07-14 삼성전기주식회사 트랜스포머
CN108574471B (zh) * 2017-03-14 2021-11-23 珠海全志科技股份有限公司 用于射频功率放大电路的全集成谐波滤波器
JP2020038957A (ja) * 2018-09-03 2020-03-12 株式会社村田製作所 伝送線路トランス及び増幅回路

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0738368A (ja) * 1993-07-20 1995-02-07 Tdk Corp 180°移相器
JPH09260145A (ja) * 1996-03-22 1997-10-03 Murata Mfg Co Ltd 積層型バルントランス
JPH11219824A (ja) * 1998-02-03 1999-08-10 Ngk Spark Plug Co Ltd 表面実装型バラントランス

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0738368A (ja) * 1993-07-20 1995-02-07 Tdk Corp 180°移相器
JPH09260145A (ja) * 1996-03-22 1997-10-03 Murata Mfg Co Ltd 積層型バルントランス
JPH11219824A (ja) * 1998-02-03 1999-08-10 Ngk Spark Plug Co Ltd 表面実装型バラントランス

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115516707A (zh) * 2020-05-13 2022-12-23 株式会社村田制作所 换衡器

Also Published As

Publication number Publication date
JP2006014276A (ja) 2006-01-12

Similar Documents

Publication Publication Date Title
TWI467847B (zh) 積層平衡濾波器
US6954116B2 (en) Balanced-unbalanced converting circuit and laminated balanced-unbalanced converter
EP1536558B1 (en) Balun
JP4525864B2 (ja) 積層バランスフィルタ
KR100474949B1 (ko) 적층형 밸런 트랜스포머
US7369028B2 (en) Coil component
TWI500263B (zh) 平衡濾波器
JP5051063B2 (ja) 薄膜バラン
JP2003087008A (ja) 積層型誘電体フィルタ
JP2001144513A (ja) 結合線路を用いた高周波部品
WO2012033137A1 (ja) 積層型バンドパスフィルタ
WO2006022115A1 (ja) ノイズフィルタ、およびノイズフィルタアレイ
JP5051062B2 (ja) 薄膜バラン
JP2002271111A (ja) 積層バラン素子
JP5142089B2 (ja) 薄膜バラン
WO2005117201A1 (ja) 積層型バルントランス
JPH11219824A (ja) 表面実装型バラントランス
TWI280678B (en) Lowpass filter formed in multi-layer ceramic
WO1999048199A1 (fr) Filtre de multiplexage/derivation
JP2002217036A (ja) 高周波複合回路及び高周波複合部品
JP3766262B2 (ja) バラントランス
JPH11219825A (ja) 表面実装型バラントランス
JP2011015082A (ja) 薄膜バラン
JP3916061B2 (ja) バンドパスフィルタ
JP5246427B2 (ja) 薄膜バラン

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase