WO2005117032A1 - 粉末法Nb3Sn超伝導線材の製造方法 - Google Patents

粉末法Nb3Sn超伝導線材の製造方法 Download PDF

Info

Publication number
WO2005117032A1
WO2005117032A1 PCT/JP2005/008970 JP2005008970W WO2005117032A1 WO 2005117032 A1 WO2005117032 A1 WO 2005117032A1 JP 2005008970 W JP2005008970 W JP 2005008970W WO 2005117032 A1 WO2005117032 A1 WO 2005117032A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
superconducting wire
sheath
raw material
producing
Prior art date
Application number
PCT/JP2005/008970
Other languages
English (en)
French (fr)
Inventor
Takayoshi Miyazaki
Hiroyuki Kato
Kyoji Zaitsu
Kyoji Tachikawa
Original Assignee
Kabushiki Kaisha Kobe Seiko Sho
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Kobe Seiko Sho filed Critical Kabushiki Kaisha Kobe Seiko Sho
Priority to US11/596,470 priority Critical patent/US7459030B2/en
Priority to EP05744120A priority patent/EP1750287A1/en
Publication of WO2005117032A1 publication Critical patent/WO2005117032A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/12Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • B22F7/04Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/047Making non-ferrous alloys by powder metallurgy comprising intermetallic compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0184Manufacture or treatment of devices comprising intermetallic compounds of type A-15, e.g. Nb3Sn
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49014Superconductor

Definitions

  • the present invention relates to a method for producing a Nb Sn superconducting wire by a powder method
  • Nb Sn wire As a superconducting wire used for a superconducting magnet for generating a high magnetic field, Nb Sn wire is used.
  • Non-Patent Document 1 For example, see Non-Patent Document 1).
  • Sn concentration that can be dissolved in bronze (15.8 mass% or less).
  • Ta and Sn are subjected to a melt diffusion reaction at a high temperature, and the reaction product is pulverized to obtain a Ta—Sn alloy powder.
  • a method is also known in which Nb or an Nb-based alloy sheath is filled as a core portion, the diameter is reduced, and then heat treatment is performed (for example, see Patent Document 1). With this method, there is no limit on the amount of Sn, and due to the interdiffusion of Ta and Nb, a high-quality Nb Sn layer thicker than the bronze and ECN methods is formed.
  • FIG. 1 is a cross-sectional view schematically showing a state in which an Nb Sn superconducting wire is manufactured by a powder method.
  • reference numeral 1 denotes a sheath (tubular body) made of Nb or an Nb-based alloy
  • 2 denotes a powder core portion filled with the raw material powder.
  • a raw material powder containing Sn is filled in the powder core portion 2 of the case 1, and is extruded and subjected to a diameter reducing process such as a wire drawing process, thereby forming a wire rod.
  • the obtained wire is wound around a magnet or the like and subjected to heat treatment to form an NbSn superconducting layer at the interface between the sheath and the raw material powder.
  • the raw material powder used at this time a powder obtained by mixing Ta powder or Nb powder and Sn powder, an intermetallic compound powder obtained by reacting both powders by heat treatment, and the like are used.
  • an intermetallic compound powder it is used after the reaction by grinding with an automatic mortar, ball mill, jet mill, or the like.
  • Ta powder used in the ECN method or the melt diffusion method is obtained by adding hydrogen to make it brittle and then mechanically pulverizing (hereinafter referred to as "H-added Ta powder”) or electron beam. (Hereinafter referred to as “EB powder”) and the like obtained while dissolving the same are known. Further, Sn powder obtained by an atomization method using water is generally employed.
  • the heat treatment temperature for forming the superconducting layer can be reduced to about 750 ° C by adding Cu to the power source powder, which is set to a high temperature of 930 ° C or more. Wear.
  • the ECN method and the melt diffusion method after adding a small amount of Cu powder to the raw material powder, heat treatment for the formation of intermetallic compounds is performed, or a thin layer of Cu is placed inside the sheath. I have.
  • the force shown schematically is a single core. Is generally used in the form of a multicore material in which a plurality of single cores of the present invention are arranged in a Cu matrix.
  • the powder method proposed so far has the following problems with the raw material powder.
  • the sintered body becomes very hard after heat treatment for generating intermetallic compounds (hereinafter sometimes referred to as “MD heat treatment”).
  • MD heat treatment intermetallic compounds
  • the work time for which the crushing process is not easy is very long.
  • the Sn concentration exceeds 50 atomic%, it becomes very difficult to grind the Ta—Sn powder.
  • the particle size of the compound powder becomes so large that the sheath may be broken at the time of drawing with a small diameter, and this breakage has a problem that the superconductivity is greatly affected. In the worst case, the sheath may be broken, making the production of the superconducting wire itself difficult.
  • the powder contains a large amount of oxygen gas or hydrogen gas, the processability and reactivity are deteriorated, and hydrogen is released during MD heat treatment, which is dangerous. You will have to wait until the gas is complete.
  • the surface of Sn powder is very easily oxidized.
  • the presence of such oxides on the surface will significantly reduce the reactivity during MD heat treatment.
  • the structure of the powder obtained after each heat treatment varies, and the wire characteristics vary.
  • Cu powder is generally mixed into the raw material powder used in the production of superconducting wire rods.
  • the addition time of the Cu powder is before the MD heat treatment, a relatively large Cu— A Snii dyad will be generated. Since such a compound is very hard and brittle, the uniform processing of the wire is deteriorated.
  • a raw material powder is filled in a sheath by a uniaxial press.
  • Force With such a filling method, the force and pressure are at most about lOMPa, and the filling rate of the powder is only about 50%. If wire processing is performed in such a state, it is difficult to perform uniform force drawing in the longitudinal direction, and a part of the sheath material may be damaged.
  • Non-patent literature 1 K. Tachkawa Filamentary Al superconductors, Plenum Press (1980) pl
  • Non-patent document 2 W ⁇ . Neijmeijer et al., J ⁇ ess-commonMetal, Vol, 160 (1990) pl61
  • Patent document 1 JP-A-11- No. 250749
  • the present invention has been made under such a circumstance, and an object of the present invention is to provide a powder capable of performing uniform processing without causing any inconvenience during production as much as possible and exhibiting excellent superconducting properties.
  • the method of the present invention which has achieved the above object, is that at least one kind of metal powder selected from Ta powder and Nb powder and Sn powder are obtained in a case of Nb or Nb-based alloy.
  • An intermetallic compound powder or a mixed powder of the metal powder and the Sn powder is filled as a raw material powder, the sheath is reduced in diameter to form a wire, and the wire is heat-treated, whereby an interface between the sheath and the filled powder is obtained.
  • At least one kind of metal powder selected from the Ta powder and the Nb powder is a powder in which fine primary particles are aggregated in a coral shape to form secondary particles.
  • Nb Sn superconducting wire that can be used in powder method can be produced.
  • FIG. 1 is a cross-sectional view schematically showing an Nb Sn wire obtained by a powder method.
  • FIG. 2 is a scanning electron microscope photograph showing the particle shape of H-added Ta powder.
  • FIG. 3 is a scanning electron microscope photograph showing the particle shape of EB-dissolved Ta powder.
  • FIG. 4 is a scanning electron microscope photograph showing the particle shape of the reduced sodium powder.
  • FIG. 5 is an electron micrograph instead of a drawing, showing an enlarged particle shape of the sodium reduced powder.
  • Ta powder or fine powder of intermetallic compound obtained by agglomeration of Nb powder or a mixed powder of the above powder is used as one of the raw material powders. It was also found that the surface area of Ta powder or Nb powder was increased and the production rate of intermetallic compounds was improved.
  • the term “coral-like” means a state in which fine powders are aggregated to form a porous mass.
  • the following effects are also exhibited. That is, as the intermetallic compound powder becomes smaller, the resulting melt-diffusion powder becomes finer and the pulverization becomes extremely easy. Further, by using the melt-diffusion powder thus obtained, the sheath material is not damaged even when the diameter of the wire is reduced.
  • K NbF may be reduced with Na, Mg, Ca or the like.
  • the raw material powder used in the present invention is a Ta powder or a powder that can also obtain Nb powder power in which fine primary particles are aggregated in a coral shape.
  • the hydrogen concentration is preferably 100 ppm or less.
  • the powder After reducing 272 with Na, the powder is formed by reducing the H concentration by heat treatment.
  • the Na reduction method is optimal.
  • the Na reduction method produces fine primary particles (average particle size: 0.1 to 20 m) and produces Ta powder or Nb powder in which the primary particles aggregate in a coral form to form secondary particles. can do. Further, according to this method, the hydrogen concentration and the oxygen concentration can be reduced to the above-described levels.
  • Commercially available powders include Na reduced powder manufactured by Rikibot Co., Ltd. and Starck Co., Ltd.
  • the power at which the Sn powder is mixed with the raw material powder used in the present invention preferably has an oxygen concentration of 2000 ppm or less.
  • Gas atomizing method can be applied.
  • the procedure for preparing the raw material powder is not particularly limited, but the Ta—Sn compound powder is prepared by mixing, heat-treating and pulverizing the above-described Ta powder or Nb powder and Sn powder. After the powder or the Nb—Sn compound powder is prepared, it is preferable to add a Cu powder to obtain a raw material powder.
  • the Cu powder and the Sn powder do not react during the MD heat treatment, and the heat treatment temperature is lowered during the NbSn formation heat treatment.
  • the filling rate of the raw material powder into the sheath can be increased to 70% or more, and uniform processing is facilitated.
  • the mixing ratio of unreacted Sn is 5% by mass or more after forming the metal compound powder.
  • Unreacted Sn may be an unreacted Sn component in the metal compound powder, may be adjusted by adding Sn powder separately from the metal compound powder, or both may be used. Such unreacted Sn improves the slipperiness between particles during extrusion and wire drawing, and can improve workability.
  • a Ta powder was prepared in which the primary particles obtained by the Na reduction method aggregated in a coral form to form secondary particles.
  • the average particle size of the primary particles is 10 / zm or less
  • the particle size of the secondary particles is 30 to 200 / ⁇
  • the inert gas melting method (measurement device: LECO RH-404 (hydrogen ), TC-4364R (oxygen), measurement conditions: applied voltage 5000 W, analysis time 85 seconds)
  • the hydrogen concentration in the powder was 56 ppm
  • the oxygen concentration was 600 ppm.
  • the average particle size of the primary particles was determined using an electron micrograph (5,000 times).
  • FIG. 4 shows the particle structure of this Ta powder when observed at a high magnification.
  • FIG. 5 shows the particle structure of the Ta powder shown in FIG. 4 when observed at a high magnification.
  • Sn powder (80% having a particle size of 20 ⁇ m or less) atomized with nitrogen gas was prepared.
  • the oxygen concentration in the Sn powder at this time was measured by the same method as above, and was 3D at 600 ppm.
  • the resulting molded article had an outer diameter: 50 mm, inner diameter: is inserted into the 30 mm Nb- 7. 5 mass 0/0 Ta alloy sheet in over scan, more sheath outer diameter: 65 mm, inner diameter: 55 mm Inserted into an extruded billet made of oxygen-free copper.
  • the extruded billet was extruded by a hydrostatic extruder, and then extruded by a die drawing to a wire diameter of lmm.
  • This wire is heat-treated at 700 ° C for 10 hours in a vacuum to generate NbSn.
  • Example 1 an intermetallic compound powder was prepared in the same manner as in Example 1, except that the EB dissolved powder shown in Fig. 2 having an average particle size of 325 mesh or less (45 ⁇ m or less) was used as the Ta powder. .
  • the amount of powder that passed through a 150 m mesh was about 60%. there were.
  • Example 1 a powder obtained by a Na reduction method as a Ta powder and having a hydrogen concentration of 1500 ppm and an oxygen concentration of 4000 ppm was prepared. Melt diffusion treatment was started using this Ta powder, but at a temperature of about 500 ° C, the furnace pressure increased due to the release of hydrogen. Heating was stopped for the safety of the heat treatment furnace. Thereafter, when the temperature decreased, the degassing stopped. After the pressure was recovered, the heat treatment was restarted, but the degassing temperature again increased around 500 ° C. Thereafter, the same process was repeated for 10 hours. In the end, it took three times as long as the setting of 5 hours, 15 hours for the treatment temperature to rise to 950 ° C.
  • Sn powder a powder obtained by a water atomization method (having a particle size of 75 ⁇ m and passing through a mesh) was prepared. The oxygen concentration of this powder was 4000 ppm. After the Sn powder was mixed with the Ta powder in the same manner as in Experimental Example 1, the same heat treatment (melt diffusion treatment) was performed. The obtained compound powder is ground, the results analyzed by X-ray diffraction, the residual amount of Sn in the flour weekend 11 ⁇ 9 mass 0/0 very variation magnitude force ivy.
  • the obtained intermetallic compound powder was processed into a wire in the same manner as in Experimental Example 1 and then subjected to a heat treatment to obtain a superconducting wire, and the critical current was measured.
  • the critical current density was 450 ⁇ 150 AZmm 2 , and the average value was lower than that of Experimental Example 1 and the dispersion was very large.
  • the present invention is not limited to this method. That is, a mixed powder of at least one metal powder selected from Ta powder and Nb powder and Sn powder can be used as a raw material powder, and this can be filled in the sheath. Even if such a raw material powder is used, there is no problem in the reactivity of Nb and Sn in the sheath when NbSn is generated by heat treatment.
  • the average particle size of the primary particles of the Ta powder or Nb powder used in the present invention is preferably 20 m or less. Obtained ones are mentioned. Also, it is preferable to use Ta powder or Nb powder having a hydrogen concentration of 100 ppm or less and an oxygen concentration of 3000 pm or less! [0049] On the other hand, it is preferable to use a Sn powder having an oxygen concentration of 2000ppm or less. Examples of such Sn powder include those generated by inert gas atomization.
  • the raw material powder may further contain Cu as a constituent element.
  • at least one metal powder selected from Ta powder and Nb powder and Sn powder are mixed, heat-treated and pulverized to obtain a Ta—SnS compound powder or an Nb—Sn compound.

Abstract

NbまたはNb基合金からなるシース内に、Ta粉末及びNb粉末から選ばれる少なくとも1つの金属粉末とSn粉末から得られる金属間化合物粉末若しくは前記金属粉末とSn粉末を含む混合粉末を原料粉末として充填し、前記シースを縮径加工して線材を形成し、前記線材を熱処理することによって、前記シースと前記充填粉末の界面に超伝導層を形成する粉末法Nb3Sn超伝導線材の製造方法であって、前記Ta粉末及びNb粉末から選ばれる少なくとも1種の金属粉末は、一次粒粒子が珊瑚状に凝集して二次粒子を形成した粉末が用いられる。

Description

明 細 書
粉末法 Nb Sn超伝導線材の製造方法
3
技術分野
[0001] 本発明は、 Nb Sn超伝導線材を粉末法によって製造する方法に関するものであり、
3
殊に高磁場発生用超伝導マグネットの素材として有用な粉末法 Nb Sn超伝導線材
3
を製造する方法に関するものである。
背景技術
[0002] 超伝導線材が実用化されている分野のうち、高分解能核磁気共鳴 (NMR)分析装 置に用いられる超伝導マグネットについては発生磁場が高いほど分解能が高まるこ とから、超伝導マグネットは近年ますます高磁場ィ匕の傾向にある。
[0003] 高磁場発生用超伝導マグネットに使用される超伝導線材としては、 Nb Sn線材が
3 実用化されており、この Nb Sn超伝導線材の製造には主にブロンズ法が採用されて
3
いる。このブロンズ法は、 Cu— Sn基合金(ブロンズ)マトリックス中に複数の Nb基芯 材を埋設し、伸線加工することによって上記 Nb基芯材をフィラメントととする。そして、 このフィラメントを複数束ねて線材群となし、安定化の為の銅 (安定化銅)に埋設して 伸線加工する。その後、伸線加工された上記線材群を 600〜800°Cで熱処理 (拡散 熱処理)することにより、 Nb基フィラメントとマトリックスの界面に Nb Snィ匕合物相を生
3
成する(例えば、非特許文献 1参照)。しかしながら、この方法ではブロンズ中に固溶 できる Sn濃度には限界があり(15. 8質量%以下)、このため生成される Nb Sn層の
3 厚さが薄ぐまた結晶性が劣化してしまい、高磁場特性が良くないという欠点があった [0004] 一方、 Nb Sn超伝導線材を製造する方法としては、上記ブロンズ法の他に、粉末
3
法も知られている。この粉末法としては、 Nbと Snの中間化合物粉末をコア材として N b製シース (管状体)に充填し、加工後熱処理を行うことにより、芯材と Nb製シースの 界面に Nb Sn層を生成する、いわゆる ECN法が知られている。
3
[0005] この ECN法では、固溶できる Sn濃度に限界がないので Sn濃度をできるだけ高く設 定でき、 Nb Sn層も非常に厚いものが得られ、超伝導特性が向上することになる。こ の製法では、非超伝導の部分をできるだけ少なくすることができ、超伝導部分の面積 率を高くすることができるので、線材面積当たりの臨界電流密度を非常に高くできる ことが知られている(例えば、非特許文献 2)。
[0006] また新 、粉末法 (溶融拡散粉末法)として、 Taと Snを高温で溶融拡散反応させ、 その反応物を粉砕して Ta— Sn合金粉末を得、この粉末を芯材 (後記粉末コア部)と して Nbまたは Nb基合金シース内に充填し、縮径加工した後熱処理をする方法も知 られている (例えば、特許文献 1参照)。この方法では、 Sn量の制限が無ぐまた Taと Nbの相互拡散により、ブロンズ法および ECN法よりも厚ぐ良質な Nb Sn層が生成
3
可能であるため、高磁場特性が優れた超伝導線材が得られることが示されて!/、る。
[0007] 図 1は、粉末法で Nb Sn超伝導線材を製造する状態を模式的に示した断面図であ
3
り、図中 1は Nbまたは Nb基合金力 なるシース (管状体)、 2は原料粉末が充填され る粉末コア部を夫々示す。粉末法を実施するに当たっては、 Snを含む原料粉末がシ ース 1の粉末コア部 2に充填され、これを押出し、伸線加工等の縮径加工を施すこと によって線材ィ匕される。そして得られた線材をマグネット等に巻き線してカゝら熱処理を 施すことによってシースと原料粉末の界面に Nb Sn超伝導層が形成される。
3
[0008] このとき用いる原料粉末としては、 Ta粉末または Nb粉末と Sn粉末を混合した粉末 や、両粉末を熱処理により反応させた金属間化合物粉末等が使用されている。また、 金属間化合物粉末の場合には、反応後に自動乳鉢やボールミル、ジェットミル等で 粉砕して用いられている。
[0009] ECN法や溶融拡散法で用いられる Ta粉末は、水素を添加して脆くした後、機械的 に粉砕して得られるもの(以下、「H添加 Ta粉末」と呼ぶ)や、電子ビームによって溶 解しつつ得られるもの(以下、「EB粉末」と呼ぶ)等が知られている。また、 Sn粉末は 、水によるアトマイズ法によって得られたものが一般的に採用されている。
[0010] 一方、超伝導層を形成するときの熱処理温度は、 930°C以上の高温とされる力 原 料粉末に Cuを添加することによって、熱処理温度を 750°C程度まで下げることがで きる。こうした観点から、 ECN法や溶融拡散法では、原料粉末中に微量の Cu粉末を 添加した後、金属間化合物生成の熱処理をしたり、シースの内側に Cuの薄い層を配 置したりしている。尚、前記図 1では、模式的に単芯であるものを示した力 実用上で は Cuマトリックス中に複数本発明の単芯が配置された多芯材の形で用いられるのが 一般的である。
[0011] これまで提案されている粉末法は、原料粉末に関して次のような問題があることが 指摘される。まず、 Ta粉末に関して、 H添加 Ta粉末や EB粉末等を用いた場合には 、金属間化合物生成のための熱処理 (以下、「MD熱処理」と呼ぶことがある)後に焼 成体が非常に硬くなり、粉砕処理が容易でなぐ作業時間が非常に長くなつてしまう という問題がある。特に、 Sn濃度が 50原子%以上になると Ta— Sn粉末の粉砕が非 常に困難になる。たとえ粉末が粉砕できても、化合物粉末の粒径が非常に大きくなつ て細径伸線時にシースが破損することがあり、この破損が超伝導特性に大いに影響 を与えるという問題点がある。最悪の場合にはシースが破断してしまい、超伝導線材 の製造自体が困難になることがある。
[0012] 尚、 H添加 Ta粉末の粒子形状を図 2 (図面代用電子顕微鏡写真)に、 EB溶解 Ta 粉末の粒子形状を図 3 (図面代用電子顕微鏡写真)に夫々示す。
[0013] また粉末が酸素ガスや水素ガスを多く含んでいると、加工性や反応性が劣化したり 、 MD熱処理時に水素が放出されて危険である上に、真空度が上がらないために脱 ガス完了まで待たなければならなくなる。
[0014] Sn粉末は、表面が非常に酸ィ匕されやす 、。表面にこうした酸化物が存在すると、 M D熱処理時における反応性が非常に低下してしまうことになる。また、各熱処理後に 得られる粉末の組織にバラツキが生じ、ひいては線材特性がばらつくことになる。
[0015] ところで、超伝導線材製造に用いる原料粉末中には Cu粉末が混合されるのが一般 的であるが、この Cu粉末の添カ卩時期を MD熱処理前にすると、比較的大きな Cu— S nィ匕合物が生成されることになる。このような化合物は、非常に硬くて脆いので、線材 の均一加工が劣化することになる。
[0016] また本発明者らが検討したところによれば、 Nb Sn超伝導相生成熱処理時に Cu—
3
Snィ匕合物があると、反応後にボイドが生じてしまい、線材の均一性を損なうことが判 明した。また、 Cu— Sn化合物が存在すると、 Nb Sn超伝導層生成熱処理時に端部
3
力も Snまたは Sn合金が噴出し易 ヽと 、う問題もある。
[0017] 原料粉末をシースに充填するには、一軸プレスによって行われるのが一般的である 力 このような充填方法では精々 lOMPa程度し力圧力が力からず、粉末の充填率は 50%程度に留まっているのが実情である。このような状態で、線材加工を行うと、長 手方向に均一な力卩ェが困難になって、シース材の一部が破損してしまうということが ある。
非特干文献 1 : K.Tachkawa Filamentary Al superconductors , Plenum Press(1980)pl 非特許文献 2 :W丄. Neijmeijer他, J丄 ess- commonMetal,Vol,160(1990)pl61 特許文献 1:特開平 11― 250749号公報
発明の開示
[0018] 本発明はこうした状況の下でなされたものであって、その目的は、製造時における不 都合を極力発生させることなく均一加工ができ、優れた超伝導特性を発揮することの できる粉末法 Nb Sn超伝導線材を製造するための有用な方法を提供することにある
3
[0019] 上記目的を達成することのできた本発明方法とは、 Nbまたは Nb基合金力 なるシ ース内に、 Ta粉末及び Nb粉末から選ばれる少なくとも 1種の金属粉末と Sn粉末から 得られる金属間化合物粉末若しくは前記金属粉末と Sn粉末の混合粉末を原料粉末 として充填し、前記シースを縮径加工して線材を形成し、前記線材を熱処理すること によって、前記シースと前記充填粉末の界面に超伝導層を形成する粉末法 Nb Sn
3 超伝導線材の製造方法であって、前記 Ta粉末及び Nb粉末から選ばれる少なくとも 1種の金属粉末は、微細な一次粒子が珊瑚状に凝集して二次粒子を形成した粉末 である。
[0020] 本発明方法によれば、 Ta粉末または Nb粉末として、特定の性質を有するものを用 いることによって、製造時における不都合を極力発生させることなく均一加工ができ、 優れた超伝導特性を発揮することのできる粉末法 Nb Sn超伝導線材を製造できる。
3
図面の簡単な説明
[0021] [図 1]粉末法によって得られた Nb Sn線材を模式的に示した断面図である。
3
[図 2]H添加 Ta粉末の粒子形状を示した図面代用電子顕微鏡写真である。
[図 3]EB溶解 Ta粉の粒子形状を示した図面代用電子顕微鏡写真である。
[図 4]Na還元粉の粒子形状を示した図面代用電子顕微鏡写真である。 [図 5]Na還元粉の粒子形状を拡大して示した図面代用電子顕微鏡写真である。 発明を実施するための最良の形態
[0022] 本発明によれば、微細な一次粒子が珊瑚状に凝集した Ta粉末または Nb粉末力ゝら得 られる金属間化合物粉末若しくは前記粉末の混合粉末を原料粉末の 1つとして用い ることによって、 Ta粉末または Nb粉末の表面積が増大して金属間化合物の生成率 が向上することが判明した。尚、「珊瑚状」とは、微細粉末同士が凝集して多孔質の 塊状になった状態を意味する。
[0023] これにより高性能な Nb Sn超伝導線材が実現できたのである力 本発明によれば、
3
その他次のような効果も発揮される。即ち、金属間化合物粉末が小さいものとなって 、得られる溶融拡散粉末も微細になり、粉砕が著しく容易になる。また、このようにして 得られた溶融拡散粉末を用いることによって、線材を縮径加工したときにも、シース 材を破損することもない。
[0024] 尚、このように珊瑚状に凝集した Ta粉末または Nb粉末とするには、 K TaFまたは
2 7
K NbFを Na, Mg, Ca等で還元すれば良い。
2 7
[0025] 本発明で用いる原料粉末は、微細な一次粒子が珊瑚状に凝集した Ta粉末または Nb粉末力も得られる粉末である力 この粉末においては水素濃度を lOOppm以下と することが好ましい。このように水素濃度を低減することによって、熱処理中の水素の 放出を抑制でき、製造の安全性が向上するとともに、熱処理中の圧力の増大を抑制 できる。
[0026] また Ta粉末または Nb粉末中の酸素濃度を 3000ppm以下に抑制することも好まし い。このように酸素濃度を低減することによって、 Nb Sn生成時の反応性を向上させ
3
ることができる。更に、 Ta粉末または Nb粉末の二次粒子の大きさは、混合して用いる Sn粉末と同等程度であることが好ましい。こうした粒度構成とすることによって、原料 粉末をより均一に混合することができ性能向上に有用である。また、粉末の流動性の 観点から、二次粒子の平均粒径は、 10〜: LOO /z m程度であることが好ましい。二次 粒子の平均粒径の測定は、例えば (株)セイシン企業製のレーザ回折法による粒度 分析装置 (LMS— 24、光源:半導体レーザ (波長 670nm) )を用いて行うことができ る。このときの測定には、例えばエタノールを分散媒として用いる。他の測定方法とし ては、電子顕微鏡観察による方法を挙げることができ、得られる電子顕微鏡写真によ つて二次粒子の平均粒径を求めてもよ!、。
[0027] 尚、 Ta粉末または Nb粉末の一次粒子の製造方法としては、 K TaFまたは K NbF
2 7 2 を Naで還元した後、熱処理によって H濃度を低減させることによって粉末を形成す
7
る Na還元法が最適である。 Na還元法は、微細な一次粒子(平均粒径: 0. 1〜20 m)が得られると共に、一次粒子が珊瑚状に凝集して二次粒子を形成した Ta粉末ま たは Nb粉末を製造することができる。また、この方法によれば、水素濃度や酸素濃 度を上記の程度に低減することができる。市販の粉末としては、力ボット社製ゃスタル ク社製の Na還元粉などがある。
[0028] 本発明で用いる原料粉末には、 Sn粉末が混合されることになる力 この Sn粉末は 酸素濃度が 2000ppm以下であることが好ま 、。このように酸素濃度を低減した Sn 粉末を用いることによって、加工性および Nb Sn生成時の反応性を向上することがで
3
きる。尚、こうした Sn粉末を製造する方法としては、 N等の不活性ガス雰囲気で行う
2
ガスアトマイズ法が適用できる。
[0029] Ta粉末または Nb粉末と、 Sn粉末との混合割合については特に限定されるもので はないが、超伝導特性の観点からして、(Taまたは Nb) : 311= 2 : 1〜1 : 2 (原子比) 程度であることが好ましい。
[0030] 原料粉末を調製する手順にっ 、ては、特に限定するものではな 、が、上記のような Ta粉末または Nb粉末と Sn粉末を混合、熱処理、および粉砕して Ta— Sn化合物粉 末または Nb— Sn化合物粉末を作成した後、 Cu粉末を添加して原料粉末とすること が好ましい。こうした手順で原料粉末を調製することによって、 MD熱処理時に Cu粉 末と Sn粉末が反応することがなくなり、 Nb Sn生成熱処理の段階で熱処理温度の低
3
減、 Snの溶出、同熱処理後の粉末コア部におけるボイドの発生を防止することがで きる。
[0031] 本発明方法においては、原料粉末をシースに充填するに際し、冷間静水圧加圧法
(CIP法)等を採用して、原料粉末を等方圧による圧粉処理することも有効である。こ うした処理を施すことによって、原料粉末のシースへの充填率を 70%以上に高めるこ とができ、均一加工が容易になる。また、こうした圧粉処理を実施するに当たっては、 金属化合物粉末を形成して ヽな ヽ未反応 Snの混合割合を 5質量%以上とすること が好ま ヽ。未反応 Snは金属化合物粉末中の未反応の Sn成分であってもよ ヽし、 金属化合物粉末とは別に Sn粉末を添加して調整することもでき、あるいは両者を併 用してもよい。このような未反応 Snは、押出し、伸線加工時の粒子間の滑り性が良好 となり、加工性を向上させることができる。
[0032] 以下、本発明を実施例によってより具体的に説明するが、下記実施例は本発明を 限定する性質のものではなぐ前 ·後記の趣旨に徴して設計変更することは、いずれ も本発明の技術的範囲に含まれるものである。
実施例
[0033] (実験例 1)
Na還元法によって得られた一次粒子が珊瑚状に凝集して二次粒子を形成する Ta 粉末が準備された。このときの一次粒子の平均粒径は、 10 /z m以下、二次粒子の粒 径は、 30〜200 /ζ πιであり、不活性ガス溶融法 (測定装置: LECO社製 RH—404 ( 水素), TC—4364R (酸素),測定条件:印加電圧 5000W,分析時間 85秒)によつ て測定した粉末中の水素濃度は 56ppm、酸素濃度は 600ppmであった。一次粒子 の平均粒径は、電子顕微鏡写真(5, 000倍)を用いて求められた。測定は、粒径が 測定できるものの中力もランダムに 30粒子が選択され、各粒子ごとにランダムに測つ た径の平均を平均粒径とした。二次粒子の粒径は、同様に電子顕微鏡写真(1, 000 倍)の写真が使用され、ランダムに数個を選択して、その大きさを測定した。
[0034] この Ta粉末の粒子構造を図 4 (図面代用顕微鏡写真)に示す。また、図 4に示した Ta粉末を高倍率で観察したときの粒子構造を図 5 (図面代用顕微鏡写真)に示す。
[0035] 一方、窒素ガスでアトマイズした Sn粉末(80%が粒径 20 μ m以下)を準備した。こ のときの Sn粉末における酸素濃度は上記と同様の方法により測定されたところ、 600 ppmで 3Dつた。
[0036] 上記各粉末は、 Ta : Sn=6 : 5 (原子比)となるように秤量され、 Vプレンダ一中で約 30分間混合された。
[0037] この混合粉末 (原料粉末)は、 10—3 Pa以下の真空中で 950°C、 10時間(昇温時間 は 5時間)の熱処理 (溶融拡散処理)が施され、 Ta— Sn化合物粉末が得られた。この 化合物粉末は荒粉砕された後、自動乳鉢にて 5分間粉砕された。その結果、ほぼ 10 0%の粉末が目開き 150 mのメッシュを通過した。得られた粉末の X線回折による 半定量的分析の結果、この粉末中に約 8 ± 1質量0 /0の未反応 Snが残留していた。
[0038] この粉末 100質量%に対して、 Sn粉末 10質量%、 Cu粉末 5質量%が添加された 後、 40mm φ X 210mmの内容量を持つゴム管に混合物が充填され、 CIPにて 200 MPa、 5分間圧縮された。
[0039] 得られた成形体は、外径: 50mm、内径: 30mmの Nb— 7. 5質量0 /0Ta合金製シ ース内に挿入され、更にシースは外径: 65mm、内径: 55mmの無酸素銅からなる押 し出しビレットに挿入された。この押し出しビレットは、静水圧押し出し装置にて押し出 された後、ダイス伸線により線径 lmmまでカ卩ェされた。
[0040] この線材は、 Nb Snを生成させるために、真空中で 700°C, 10時間の熱処理が施
3
された。この熱処理後の線材は、超伝導マグネット中で臨界電流密¾Cの測定が行 われた。その結果、温度 4. 2K、磁場 20Τ中で、臨界電流密度は 520± 36AZmm2 であった。
[0041] (実験例 2)
実験例 1において、 Ta粉末として 325メッシュ以下の平均粒径 (45 μ m以下)の図 2 に示す EB溶解粉末を用いた以外は、実験例 1と同様にして金属間化合物粉末を作 成した。その結果、溶融拡散熱処理後に実験例 1と同様の粉砕法では微細化できず 、自動乳鉢での粉砕を 1時間した後でも、目開き 150 mのメッシュを通過した粉末 量は約 60%程度であった。
[0042] (実験例 3)
実験例 1において、 Ta粉末として Na還元法により得られたもので、水素濃度 1500p pm、酸素濃度 4000ppmの粉末が準備された。この Ta粉末を用い溶融拡散処理が 開始されたが、温度約 500°C付近で水素の放出のため炉内圧力が上昇した。熱処 理炉の安全ため、加熱はストップされた。その後、温度が低くなると脱ガスが収まった 。圧力が回復した後、熱処理が再スタートされたが再び 500°C付近で脱ガスによる昇 温圧が生じた。以後、同様の過程が 10時間繰り返された。最終的に処理温度が 950 °Cに昇温するのに、 5時間の設定に対して 15時間と 3倍の時間を要した。 [0043] また、得られた粉末を用いて実験例 1と同様にして超伝導線材を作成し、臨界電流 密度が測定された。その結果、温度 4. 2K、磁場 19T中で、臨界電流密度は 50ΑΖ mm2程度であった。これは、 Ta粉末中の酸素が Nb Sn生成を阻害したためと思われ
3
た。
[0044] (実験例 4)
Sn粉末として、水アトマイズ法によって得られた粉末 (粒径は目開き 75 μ mのメッシ ュを通過するもの)が準備された。この粉末の酸素濃度は 4000ppmであった。この S n粉末を、実験例 1と同様にして Ta粉末と混合した後、同様の熱処理 (溶融拡散処理 )が行われた。得られた化合物粉末は粉砕され、 X線回折により分析された結果、粉 末中の残留 Sn量は 11 ± 9質量0 /0と非常にバラツキが大き力つた。
[0045] 得られた金属間化合物粉末を実験例 1と同様にして線材加工した後、熱処理を施 して超伝導線材とし、臨界電流の測定を行ったところ、温度 4. 2K、磁場 20Τで、臨 界電流密度は 450± 150AZmm2であり、実験例 1と比べて平均値も低くバラツキも 非常に大き力つた。
[0046] (実験例 5)
実験例 1と同様にして溶融拡散処理および粉砕された粉末に、同量の Sn粉末およ び Cu粉末を添加し、 CIPなどの等方圧による圧粉処理を用いずに一軸プレスでシー ス中に充填し、同様の条件で伸線していった。その結果、線径 1. 52mmでシースの 破れが発生していた。
[0047] なお、上記実施例では 、ずれも予め金属化合物粉末を原料粉末とする場合につ いて説明したが、本発明はこの方法に限られるものではない。すなわち、 Ta粉末及 び Nb粉末から選ばれる少なくとも 1種の金属粉末と Sn粉末の混合粉末を原料粉末 とし、これをシース内に充填することもできる。このような原料粉末を用いても、熱処理 により Nb Snを生成させる際のシース中の Nbと Snの反応'性に問題はない。
3
[0048] また、上記で説明されたように、本発明で用いる Ta粉末または Nb粉末の一次粒子 の平均粒径は、 20 m以下であることが好ましぐこうした粉末としては、 Na還元法 によって得られたものが挙げられる。また Ta粉末または Nb粉末は、水素濃度が 100 ppm以下で、且つ酸素濃度が 3000pm以下のものを用いることが好まし!/、。 [0049] 一方、 Sn粉末中の酸素濃度が 2000ppm以下であるものを用いることが好ましぐ こうした Sn粉末としては、不活性ガスアトマイズによって生成されたものが挙げられる
[0050] 本発明方法を実施するに当たっては、原料粉末をシースに充填する前に等方圧に よる圧粉処理を施すことが好ましぐ等方圧による圧粉処理前の原料粉末中には、 S n粉末が 5質量%以上含まれたものであることが好ましい。
[0051] 本発明では必要によって原料粉末中には、更に Cuを構成元素として含有すること もできる。このような原料粉末を製造する手順については、 Ta粉末及び Nb粉末から 選ばれる少なくとも 1種の金属粉末と Sn粉末を混合、熱処理、粉砕して Ta—Snィ匕合 物粉末または Nb— Sn化合物粉末を作成し、前記化合物粉末に Cu粉末を添加し、 シース中に充填することが挙げられる。

Claims

請求の範囲
[1] Nbまたは Nb基合金カゝらなるシース内に、 Ta粉末及び Nb粉末から選ばれる少なくと も 1種の金属粉末と Sn粉末から得られる金属間化合物粉末若しくは前記金属粉末と Sn粉末を含む混合粉末を原料粉末として充填し、前記シースを縮径加工して線材を 形成し、前記線材を熱処理することによって、前記シースと前記充填粉末の界面に 超伝導層を形成する粉末法 Nb Sn超伝導線材の製造方法であって、前記 Ta粉末
3
及び Nb粉末から選ばれる少なくとも 1種の金属粉末は、一次粒子が珊瑚状に凝集し て二次粒子を形成した粉末であることを粉末法 Nb Sn超伝導線材の製造方法。
3
[2] 前記 Ta粉末及び Nb粉末カゝら選ばれる少なくとも 1種の金属粉末の一次粒子の平均 粒径が 20 m以下である請求項 1に記載の粉末法 Nb Sn超伝導線材の製造方法。
3
[3] 前記 Ta粉末及び Nb粉末から選ばれる少なくとも 1種の金属粉末は、 Na還元法によ つて得られたものである請求項 1または 2に記載の粉末法 Nb Sn超伝導線材の製造
3
方法。
[4] 前記 Ta粉末及び Nb粉末から選ばれる少なくとも 1種の金属粉末は、水素濃度が 10 Oppm以下で、且つ酸素濃度が 3000pm以下である請求項 1〜3のいずれかに記載 の粉末法 Nb Sn超伝導線材の製造方法。
3
[5] 前記 Sn粉末の酸素濃度が 2000ppm以下である請求項 1〜4の 、ずれかに記載の 粉末法 Nb Sn超伝導線材の製造方法。
3
[6] 前記 Sn粉末は、不活性ガスアトマイズ法によって得られたものである請求項 5に記載 の粉末法 Nb Sn超伝導線材の製造方法。
3
[7] 前記原料粉末をシース内に充填する前に、前記原料粉末に対して等方圧による圧 粉処理を施す請求項 1〜6の!、ずれかに記載の粉末法 Nb Sn超伝導線材の製造方
3
法。
[8] 前記等方圧による圧粉処理前の原料粉末は、未反応 Snを 5質量%以上含むもので ある請求項 7に記載の粉末法 Nb Sn超伝導線材の製造方法。
3
[9] 前記原料粉末は、さらに Cu粉末を含む請求項 1〜8のいずれかに記載の粉末法 Nb
Sn超伝導線材の製造方法。
3
[10] 前記 Ta粉末及び Nb粉末から選ばれる少なくとも 1種の金属粉末と前記 Sn粉末を混 合、熱処理、粉砕して、 Ta— Sn化合物粉末または Nb— Sn化合物粉末を作成し、前 記化合物粉末に Cu粉末を添加し、シース中に充填する請求項 9に記載の粉末法 N b Sn超伝導線材の製造方法。
PCT/JP2005/008970 2004-05-25 2005-05-17 粉末法Nb3Sn超伝導線材の製造方法 WO2005117032A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/596,470 US7459030B2 (en) 2004-05-25 2005-05-17 Manufacturing method of Nb3Sn superconductive wire using powder technique
EP05744120A EP1750287A1 (en) 2004-05-25 2005-05-17 METHOD FOR PRODUCING Nb<sb>3</sb>Sn SUPERCONDUCTIVE WIRE BY POWDER PROCESS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-155254 2004-05-25
JP2004155254 2004-05-25

Publications (1)

Publication Number Publication Date
WO2005117032A1 true WO2005117032A1 (ja) 2005-12-08

Family

ID=35451109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/008970 WO2005117032A1 (ja) 2004-05-25 2005-05-17 粉末法Nb3Sn超伝導線材の製造方法

Country Status (3)

Country Link
US (1) US7459030B2 (ja)
EP (1) EP1750287A1 (ja)
WO (1) WO2005117032A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7459031B2 (en) 2004-09-15 2008-12-02 Kabushiki Kaisha Kobe Seiko Sho Method for producing Nb3Sn superconductive wire material using powder process
US8832926B2 (en) * 2008-08-08 2014-09-16 Supramagnetics, Inc. Method of manufacturing superconductor wire
EP2236634B1 (en) 2009-04-01 2016-09-07 Bruker BioSpin AG Sn based alloys with fine compound inclusions for Nb3Sn superconducting wires
TWI685391B (zh) * 2016-03-03 2020-02-21 美商史達克公司 三維部件及其製造方法
DE102019000906A1 (de) 2019-02-08 2020-08-13 Taniobis Gmbh Pulver auf Basis von Niobzinnverbindungen für die Herstellung von supraleitenden Bauteilen
DE102019000905A1 (de) * 2019-02-08 2020-08-13 Taniobis Gmbh Pulver auf Basis von Niobzinnverbindungen für die Herstellung von supraleitenden Bauteilen

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5269296A (en) * 1975-12-06 1977-06-08 Agency Of Ind Science & Technol Manufacture of superconductor wire
JPH04141916A (ja) * 1990-10-02 1992-05-15 Furukawa Electric Co Ltd:The Nb↓3Sn化合物超電導線材の製造方法
JP2003187654A (ja) * 2001-12-14 2003-07-04 Kobe Steel Ltd Nb▲3▼Sn超電導線材の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4728024B2 (ja) * 2005-03-24 2011-07-20 株式会社神戸製鋼所 粉末法Nb3Sn超電導線材の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5269296A (en) * 1975-12-06 1977-06-08 Agency Of Ind Science & Technol Manufacture of superconductor wire
JPH04141916A (ja) * 1990-10-02 1992-05-15 Furukawa Electric Co Ltd:The Nb↓3Sn化合物超電導線材の製造方法
JP2003187654A (ja) * 2001-12-14 2003-07-04 Kobe Steel Ltd Nb▲3▼Sn超電導線材の製造方法

Also Published As

Publication number Publication date
US7459030B2 (en) 2008-12-02
EP1750287A1 (en) 2007-02-07
US20070175543A1 (en) 2007-08-02

Similar Documents

Publication Publication Date Title
US7018954B2 (en) Processing of magnesium-boride superconductors
US20050163644A1 (en) Processing of magnesium-boride superconductor wires
Togano et al. Fabrication of seven-core multi-filamentary MgB2 wires with high critical current density by an internal Mg diffusion process
WO2005117032A1 (ja) 粉末法Nb3Sn超伝導線材の製造方法
US9224937B2 (en) Precursor of MgB2 superconducting wire, and method for producing the same
Marzik et al. PLASMA SYNTHESIZED BORON NANO‐SIZED POWDER FOR MgB 2 WIRES
Kario et al. Critical current density enhancement in strongly reactive ex situ MgB2 bulk and tapes prepared by high energy milling
US20080274900A1 (en) Sintered Body, Superconducting Apparatus, Method of Manufacturing Sintered Body, Superconducting Wire and Method of Manufacturing Superconducting Wire
Giunchi et al. Advancements in the Reactive Liquid ${\rm Mg} $ Infiltration Technique to Produce Long Superconducting ${\rm MgB} _ {2} $ Tubular Wires
EP2062302A1 (en) Superconducting materials and methods of synthesis
WO2006030744A1 (ja) 粉末法Nb3Sn超電導線材の製造方法
WO2019150678A1 (ja) MgB2超伝導線材及びその製造方法
WO2002098794A1 (en) Mgb2 based superconductor having high critical current density and method for preparation thereof
Mousavi et al. New nanoscale artificial pinning centres for NbTi superconductors
JP4652889B2 (ja) 粉末法Nb3Sn超電導線材の製造方法
JP2004075467A (ja) ホウ素亜酸化物粉末およびその焼結体の製造方法
Yamada et al. Superconducting Properties and Structure of In-Situ MgB $ _ {2} $ Tapes With SiC and TiC Addition Prepared by Hot Pressing
Tsapleva et al. The Materials Science of Modern Technical Superconducting Materials
KR20100026138A (ko) 기계적 합금법을 이용한 이종원소가 도핑된 MgB2 초전도체 제조방법
JP4193194B2 (ja) Nb3Sn超伝導線材の製造方法
US9773962B2 (en) Formation of bismuth strontium calcium copper oxide superconductors
KR101726732B1 (ko) 건식 밀링을 이용한 초전도성 이붕화마그네슘의 제조방법
Tachikawa et al. Nb3Sn superconductors prepared from intermediate compound phase
EP1500148A2 (en) High-field superconductors
JPH06275145A (ja) NbTi超電導線及びその製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11596470

Country of ref document: US

Ref document number: 2007175543

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2005744120

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 2005744120

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11596470

Country of ref document: US