WO2005115250A1 - 超音波診断装置 - Google Patents

超音波診断装置 Download PDF

Info

Publication number
WO2005115250A1
WO2005115250A1 PCT/JP2005/008278 JP2005008278W WO2005115250A1 WO 2005115250 A1 WO2005115250 A1 WO 2005115250A1 JP 2005008278 W JP2005008278 W JP 2005008278W WO 2005115250 A1 WO2005115250 A1 WO 2005115250A1
Authority
WO
WIPO (PCT)
Prior art keywords
reception
deflection angle
transmission beam
parallel
transmission
Prior art date
Application number
PCT/JP2005/008278
Other languages
English (en)
French (fr)
Inventor
Hiroshi Fukukita
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to EP05737152A priority Critical patent/EP1749478A4/en
Priority to JP2006515329A priority patent/JP4241825B2/ja
Priority to US10/578,159 priority patent/US20090048517A1/en
Publication of WO2005115250A1 publication Critical patent/WO2005115250A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography
    • A61B8/14Echo-tomography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8909Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
    • G01S15/8915Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
    • G01S15/8927Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array using simultaneously or sequentially two or more subarrays or subapertures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8909Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
    • G01S15/8915Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
    • G01S15/8925Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array the array being a two-dimensional transducer configuration, i.e. matrix or orthogonal linear arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52046Techniques for image enhancement involving transmitter or receiver

Definitions

  • the present invention relates to an ultrasonic diagnostic apparatus that has an arrayed transducer and scans a subject.
  • a conventional ultrasonic diagnostic apparatus includes a two-dimensional array 102 in which transducers 101 are arranged as shown in FIG. 8, column-wise delay addition circuits 103 to 106, and row-direction delay addition circuits 107 and 108. Be composed.
  • Column direction delay addition circuits 103 to 106 perform delay addition of signals detected by the transducers 101 in the column direction of the two-dimensional array 102.
  • the row-direction delay addition circuits 107 and 108 delay-add the signal groups delayed and added by the column-direction delay addition circuits 103 to 106. Thereby, parallel reception in the row direction and the column direction is realized with a small circuit scale (see Patent Document 1).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2000-254120 (Page 3, FIG. 1)
  • the conventional ultrasonic diagnostic apparatus has a problem that the relative sensitivity of parallel reception becomes non-uniform due to the deflection angle of the transmission beam.
  • An object of the present invention is to provide an ultrasonic diagnostic apparatus capable of maintaining uniform relative sensitivity of parallel reception regardless of a deflection angle of an ultrasonic transmission beam in order to solve a conventional problem. It is.
  • An ultrasonic diagnostic apparatus of the present invention includes an arrayed vibrator in which a plurality of vibrators for transmitting an ultrasonic wave to a subject and receiving a reflected wave thereof are arranged, and a reception signal obtained by the arrayed vibrator is provided.
  • an ultrasonic wave including a delay addition unit that performs parallel reception by performing delay addition, and a deflection angle control unit that controls a deflection angle of reception based on the delay addition setting performed by the delay addition unit.
  • the deflection angle control unit may control a plurality of directional directions of a plurality of receptions in parallel reception as a deflection angle of a transmission beam transmitted from the arrayed transducer increases. The angle between them is narrowed.
  • a configuration includes a correction unit that performs control to change the sensitivity correction amount for a plurality of reception signals in parallel reception so as to compensate for a decrease in relative sensitivity of transmission and reception due to an increase in the deflection angle of the transmission beam. May be.
  • the correction unit corrects the plurality of received signals having the same angle between the directional direction of the transmission beam and the directional direction of the parallel reception to make the relative sensitivity equal. Rub it.
  • the deflection angle control unit may be configured to reduce the difference between the deflection angles of adjacent transmission beams as the deflection angle of the transmission beam increases.
  • the plurality of transducers may be arranged at least two-dimensionally, and a point at which each of the plurality of transmission beams intersects the projection plane may form a two-dimensional grid point at equal intervals.
  • an ultrasonic diagnostic apparatus that keeps the relative sensitivity of parallel reception uniform regardless of the deflection angle of the ultrasonic transmission beam.
  • FIG. 1 is a block diagram showing a configuration of a reception front end of the ultrasonic diagnostic apparatus according to the first embodiment.
  • FIG. 2 is a diagram showing a configuration of a sub-array according to the first embodiment.
  • FIG. 3 is a diagram showing the azimuth angle dependence of the relative sensitivity of parallel reception in the first embodiment.
  • FIG. 4A is a diagram showing a relative sensitivity of reception when the deflection angle of the transmission beam is 0 ° in the first embodiment.
  • FIG. 4B is a diagram showing the relative sensitivity of reception when the deflection angle of the transmission beam is 30 ° in the first embodiment.
  • FIG. 5A is a diagram showing angles formed by directivity directions of parallel reception according to the first embodiment.
  • FIG. 5B is a diagram showing a difference in the deflection angle of the transmission beam in the first embodiment.
  • FIG. 6A is a side view showing an ultrasonic beam transmitted by an arrayed oscillator in the second embodiment.
  • FIG. 6B is a top view showing an ultrasonic beam according to the second embodiment.
  • FIG. 7 is a diagram showing the center of the light receiving sensitivity of the transmission beam and parallel reception of the ultrasonic diagnostic apparatus according to the third embodiment.
  • FIG. 8 is a block diagram showing a configuration of a reception front end of a conventional ultrasonic diagnostic apparatus.
  • FIG. 1 shows a block diagram of a main part of a reception front end of the ultrasonic diagnostic apparatus according to the first embodiment.
  • the array transducer 1 is configured by arranging a plurality of sub-arrays (SA) 2 in a first direction and a second direction.
  • SA sub-arrays
  • IP in-group processor
  • the output of the intra-group processor (IP) 3 is supplied to first direction delay addition circuits 4 to 7 (first direction delay addition units).
  • the plurality of parallel reception outputs of the first direction delay addition circuit 4 are supplied to second direction delay addition circuits 8 and 9 (second direction delay addition section).
  • a plurality of outputs of the first direction delay addition circuits 5 to 7 are supplied to the second direction delay addition circuits 8 and 9.
  • the deflection angle control circuit 14 (deflection angle control unit) has software for correcting the deflection angle of parallel reception.
  • the deflection angle control circuit 14 includes first direction delay addition circuits 4 to 7 and second direction delay addition circuits 8 and 9. Determine the delay addition value to be delayed added.
  • the plurality of parallel reception outputs S (l, 1) and S (l, 2) of the second direction delay addition circuit 8 are supplied to the correction circuits 10 and 11.
  • the plurality of parallel reception outputs S (2, 1) and S (2, 2) of the second direction delay addition circuit 9 are supplied to a correction circuit 12 and a correction circuit 13.
  • the correction circuits 10 to 13 (correction units) perform sensitivity correction on the parallel reception output based on the supplied parallel reception sensitivity correction signal.
  • the outputs of the correction circuits 10 to 13 are two-dimensional delay addition outputs.
  • FIG. 2 is a diagram showing a configuration of the sub-array (SA) 2.
  • the sub-array (SA) 2 includes a transmitting oscillator (X) and a receiving oscillator (R), and the respective oscillators are arranged in a row direction and a column direction.
  • the row direction matches the first direction
  • the column direction matches the second direction.
  • FIG. 3 is a diagram showing an example of the azimuth-angle dependence on the relative sensitivity of parallel reception.
  • Curves 21, 22, and 23 in FIG. 3 show the relative sensitivities of transmission and reception for different transmission directivity directions with respect to the transmission beam.
  • Curve 21 shows the case where the transmitting and receiving directions match.
  • Curve 22 shows that the transmit and receive directions are shifted by 1 ° due to parallel reception. If the transmit and receive directions are shifted by 0.5 °, curve 23 shows that the receive direction is shifted by 2 ° due to parallel reception. The direction of transmission and reception is shifted by 1 °.
  • the curved lines 22 and 23 show the case where the transmission and reception directions do not match. Also send When the difference between the directional directions of reception and reception increases, the relative sensitivity decreases.
  • FIG. 4A is a diagram illustrating an example of the relative sensitivity when the transmission beam deflection angle is 0 °
  • FIG. 4B is a diagram illustrating an example of the relative sensitivity when the transmission beam deflection angle is 30 °
  • FIG. 5A is a diagram showing the angle between the directivity directions of the parallel reception
  • FIG. 5B is a diagram showing the difference in the deflection angle of the transmission beam.
  • T (m) indicates the directivity of the transmission beam when it is not deflected
  • LI (m) to L4 (m) indicate the directivity of parallel reception corresponding to the directivity T (m) of the transmission beam
  • T (n) is the directivity of the transmission beam when it is deflected
  • LI (n) to L4 (n) are the directivity of parallel reception corresponding to T (n).
  • a transmission ultrasonic pulse is transmitted from the transmitting transducer (X) of the sub-array (SA) 2 to a region of interest.
  • the received signal from the receiving transducer (R) of the sub-array (SA) 2 is phased by the intra-loop processor (IP) 3.
  • the outputs of the in-group processors (IP) 3 corresponding to the sub-arrays (SA) 2 arranged in the first direction are collectively input to the first-direction delay calorimetric circuits 4 to 7.
  • the first direction delay addition circuits 4 to 7 output parallel reception signals pointing in the direction of the region of interest and having a plurality of pointing directions with respect to the first direction.
  • the second direction delay addition circuits 8 and 9 generate a reception delay time so as to change the directivity direction at every minute angle with respect to the second direction, and the parallel reception signals output by the first direction delay addition circuits 4 to 7 are generated. The delay time is corrected, and a parallel reception signal is output.
  • Correction circuits 10 to 13 correct the signal strengths of the parallel reception signal outputs output from the second direction delay addition circuits 8 and 9. As shown in FIG. 3, the relative sensitivity of transmission and reception in parallel reception greatly changes due to the difference between the direction of the transmission beam and the direction of reception. Therefore, when changing the difference between the directional directions of transmission and reception according to the deflection angle of transmission, it is necessary to correct the change in relative sensitivity in the correction circuits 10 to 13.
  • the deflection angle in the transmission directivity direction when the deflection angle in the transmission directivity direction is 0 °, the difference between the relative sensitivity peak and the side lobe, that is, the dynamic range is about 70 dB.
  • the dynamic range of the relative sensitivity is It is about 66dB.
  • angle ⁇ indicates an angle formed by a plurality of directivity directions L1 to L4 of parallel reception corresponding to transmit beam directivity direction T.
  • the angle ⁇ (m) corresponding to the transmission beam direction T (m) when the deflection angle is 0 ° is the angle ⁇ (n) corresponding to the transmission beam direction T (n) when deflected. Greater than.
  • the angle ⁇ (m) formed by the transmission beam directivity direction T (m) and T (m + 1) is large when the transmission deflection angle is large.
  • the angle is set to be larger than the angle ⁇ (n) formed by the directivity direction T (n) of the transmission beam and T (n + 1).
  • the deflection angle control circuit 14 changes the direction of a plurality of receptions in parallel reception as the transmission deflection angle increases.
  • the angle can be controlled to be narrow. Then, the difference between the relative sensitivities of transmission and reception due to different angles formed by the directional directions of reception in parallel reception is corrected by the correction circuits 10 to 13, and an image having a uniform relative sensitivity is obtained.
  • FIG. 6A and 6B show the intervals between the transmission beams of the ultrasonic diagnostic apparatus according to the second embodiment. Show.
  • portions having the same configurations and functions as those in FIG. 5B referred to in the first embodiment are denoted by the same reference numerals or symbols, and description thereof is omitted.
  • Other components not shown in FIG. 6 are the same as those in FIG.
  • FIG. 6A shows a side view of the arrayed vibrator 1, where the projection plane is arranged substantially parallel to the arrayed vibrator 1, and grid points P where the transmission beam and the projection plane intersect are indicated by circles.
  • FIG. 6B is a view of FIG. 6A as viewed from above.
  • the projection plane may be a plane perpendicular to the beam at the center of scanning.
  • grid points p are two-dimensionally arranged at intervals of ⁇ in the first direction and Ay in the second direction.
  • the angle ⁇ ⁇ (k) formed by the transmit beam directivity direction T (k) and T (k + 1) when the transmit deflection angle is small is the transmit beam directivity when the transmit beam deflection angle is large. It is set to be larger than the angle ⁇ ⁇ (j) formed by the directions T (j) and T (j + 1). Further, the angle formed by the parallel reception directivity directions corresponding to T (k) is made larger than the angle formed by the parallel reception directivity directions corresponding to T (j).
  • the grid point P which is the intersection between the transmission beam and the projection plane, is represented by ⁇ in the first direction, Ay in the second direction, and so on. Two-dimensionally arranged at intervals. Therefore, as the deflection angle of the transmission beam increases, the angle between the directivity directions of parallel reception decreases, and a good image with uniform relative sensitivity can be obtained.
  • FIG. 7 shows the center of the transmission beam and the center of the reception sensitivity of the parallel reception of the ultrasonic diagnostic apparatus according to the third embodiment.
  • parts having the same configurations and functions as those in FIG. 1 referred to in the first embodiment are given the same reference numerals or symbols, and description thereof is omitted.
  • Other components not shown in FIG. 7 are the same as those in FIG.
  • a mark indicates the center of the transmission beam, and a mark indicates the center of the reception sensitivity of the parallel reception.
  • the sign S (x, y) (1 ⁇ x ⁇ 4, 1 ⁇ 4) of the parallel reception signal corresponding to the center of the reception sensitivity of the parallel reception is added.
  • the parallel received signals are classified into three groups.
  • the first group is composed of S (1, 1), S (l, 4), S (4, 1), and S (4, 4), and each signal is transmitted from the center of the transmission beam.
  • the received signals are at equal distances and are received in a state in which the angle between the directional direction of the transmission beam and the directional direction by parallel reception is equal. Therefore, the correction is performed using the parallel reception sensitivity correction signal in the correction circuits 10 to 13.
  • the second group is composed of S (2, 2), S (2, 3), S (3, 2), S (3, 3), and each signal is This is a received signal that is located at an equal distance from the center of the transmission beam and that has the same angle between the direction of the transmission beam and the direction of parallel reception. Therefore, correction is performed in the correction circuits 10 to 13 using the same parallel reception sensitivity correction signal.
  • the third group is S (1, 2), S (1, 3), S (2, 1), S (2, 4), S (3, 1), S (3, 4), S (4, 2) and S (4, 3), each signal is at the same distance from the center of the transmitting beam, and the angle between the direction of the transmitting beam and the direction of the parallel receiving is equal. This is the received signal received. Therefore, the correction is performed using the parallel reception sensitivity correction signal in the correction circuits 10 to 13.
  • the 16 parallel reception signals S (x, y) are divided into three groups.
  • the sensitivity can be corrected using three types of parallel reception sensitivity correction signals, and thus control becomes easy.
  • the ultrasonic diagnostic apparatus of the present invention has an effect that an image having a uniform relative sensitivity can be obtained, and is useful as an ultrasonic diagnostic apparatus including an arrayed transducer for scanning a subject.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Acoustics & Sound (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

 被検体に超音波を送信しその反射波を受信する複数の振動子を配列した配列振動子1と、前記配列振動子からの信号に対して、遅延時間を加算することにより並列受信を行う遅延加算部4~9とを備える。前記配列振動子から送波される送信ビームの偏向角が大きくなるに従い、並列受信における複数の受信方向相互間のなす角度を狭くする制御を行う偏向角制御部14を有する。  超音波の送信ビームにおける偏向角によらず並列受信の相対感度を均一に保つ超音波診断装置を提供する。

Description

明 細 書
超音波診断装置
技術分野
[0001] 本発明は、配列振動子を有し、被検体を走査する超音波診断装置に関する。
背景技術
[0002] 従来の超音波診断装置は、図 8に示すようにトランスデューサ 101を配列した 2次 元アレイ 102と、列方向遅延加算回路 103〜106と、行方向遅延加算回路 107、 10 8とで構成される。列方向遅延加算回路 103〜106は、 2次元アレイ 102の列方向の トランスデューサ 101で検出された信号の遅延加算を行う。行方向遅延加算回路 10 7、 108は、列方向遅延加算回路 103〜106において遅延加算された信号群を遅延 加算する。これにより、少ない回路規模で行方向及び列方向の並列受信を実現して いる (特許文献 1参照)。
特許文献 1 :特開 2000— 254120号公報 (第 3頁、第 1図)
発明の開示
発明が解決しょうとする課題
[0003] 従来の超音波診断装置は、送信ビームの偏向角により並列受信の相対感度が不 均一となるという問題がある。
[0004] 本発明の目的は、従来の課題を解決するために、超音波の送信ビームにおける偏 向角によらず並列受信の相対感度を均一に保つことができる超音波診断装置を提 供することである。
課題を解決するための手段
[0005] 本発明の超音波診断装置は、被検体に超音波を送信しその反射波を受信する複 数の振動子を配列した配列振動子と、前記配列振動子により得られた受信信号に対 して、遅延加算を行うことにより並列受信を行う遅延加算部と、前記遅延加算部が行 う遅延加算の設定に基づき受信の偏向角を制御する偏向角制御部とを備えた超音 波診断装置において、前記偏向角制御部は、前記配列振動子から送波される送信 ビームの偏向角が大きくなるに従い、並列受信における複数の受信の指向方向相互 間のなす角度を狭くすることを特徴とする。
[0006] この構成により、送信ビームの偏向角による並列受信の相対感度の不均一性を低 減することができる。
[0007] また、前記送信ビームの偏向角が大きくなることによる送受信の相対感度の低下を 補償するように並列受信における複数の受信信号に対する感度補正量を変化する 制御を行う補正部を有する構成にしても良い。
[0008] また、前記補正部は、送信ビームの指向方向と並列受信の受信の指向方向とのな す角度が等しい前記複数の受信信号に対して、相対感度が等しくなる補正を行う構 成〖こすることちでさる。
[0009] この構成により、感度補正を容易に行うことができる。
[0010] また、前記偏向角制御部は、前記送信ビームの偏向角が大きくなるに従い隣接す る送信ビームの偏向角の差を小さくする構成にしても良い。
[0011] また、前記複数の振動子が少なくとも 2次元に配列され、複数の前記送信ビームが 各々投影面と交差する点が 2次元の等間隔の格子点をなす構成にすることもできる。
[0012] この構成により、 2次元に配列された複数の振動子を用いる場合に、送信ビームの 偏向角が大きくなるに従い、隣り合う送信ビームにおける偏向角の間隔が狭くなり、 偏向角によらず並列受信の相対感度を均一に保つことができる。
発明の効果
[0013] 本発明によれば、超音波の送信ビームにおける偏向角によらず並列受信の相対感 度を均一に保つ超音波診断装置を提供することができる。
図面の簡単な説明
[0014] [図 1]図 1は、第 1の実施の形態における超音波診断装置の受信フロントエンドの構 成を示すブロック図である。
[図 2]図 2は、第 1の実施の形態におけるサブアレイの構成を示す図である。
[図 3]図 3は、第 1の実施の形態における並列受信の相対感度に関する方位角度依 存を示す図である。
[図 4A]図 4Aは、第 1の実施の形態における送信ビームの偏向角が 0° の場合にお ける受信の相対感度を示す図である。 [図 4B]図 4Bは、第 1の実施の形態における送信ビームの偏向角が 30° の場合にお ける受信の相対感度を示す図である。
[図 5A]図 5Aは、第 1の実施の形態における並列受信の指向方向のなす角を示す図 である。
[図 5B]図 5Bは、第 1の実施の形態における送信ビームの偏向角の差を示す図であ る。
[図 6A]図 6Aは、第 2の実施の形態における配列振動子力 送波される超音波ビー ムを示す側面図である。
[図 6B]図 6Bは、第 2の実施の形態における超音波ビームを示す上面図である。
[図 7]図 7は、第 3の実施の形態における超音波診断装置の送信ビームと並列受信の 受光感度の中心を示す図である。
[図 8]図 8は、従来の超音波診断装置の受信フロントエンドの構成を示すブロック図で ある。
符号の説明
[0015] 1 配列振動子
2 サブアレイ(SA)
3 グループ内プロセッサ(IP)
4〜7 第 1方向遅延加算回路
8〜9 第 2方向遅延加算回路
10〜13 補正回路
14 偏向角制御回路
101 トランスデューサ
102 2次元アレイ
103-106 列方向遅延加算回路
107、 108 行方向遅延加算回路
発明を実施するための最良の形態
[0016] 以下、本発明の実施の形態における超音波診断装置について、図面を参照して説 明する。 [0017] (第 1の実施の形態)
図 1に、第 1の実施の形態における超音波診断装置の受信フロントエンドの要部ブ ロック図を示す。配列振動子 1は、複数のサブアレイ (SA) 2を第 1方向と第 2方向に 配列して構成される。図 1においてサブアレイ(SA) 2と後述のグループ内プロセッサ (IP) 3を構成する素子は、それぞれ接続されている。 i番目のサブアレイ(SA) 2iの出 力は、グループ内プロセッサ(IP) 3iに供給される。
[0018] グループ内プロセッサ (IP) 3の出力は、第 1方向遅延加算回路 4〜7 (第 1方向遅 延加算部)に供給される。第 1方向遅延加算回路 4の複数の並列受信出力は、第 2 方向遅延加算回路 8、 9 (第 2方向遅延加算部)に供給される。同様にして第 1方向遅 延加算回路 5〜7の複数の出力は、第 2方向遅延加算回路 8、 9に供給される。偏向 角制御回路 14 (偏向角制御部)は、並列受信の偏向角を補正するソフトを有しており 、第 1方向遅延加算回路 4〜7と、第 2方向遅延加算回路 8、 9とで遅延加算される遅 延加算値を決定する。
[0019] 第 2方向遅延加算回路 8の複数の並列受信出力 S (l、 1)と S (l、 2)は、補正回路 1 0と補正回路 11に供給される。第 2方向遅延加算回路 9の複数の並列受信出力 S (2 、 1)と S (2、 2)は、補正回路 12と補正回路 13に供給される。補正回路 10〜13 (補 正部)は、供給された並列受信感度補正信号に基づいて、並列受信出力に対して感 度補正を行う。補正回路 10〜13の出力は 2次元遅延加算出力となる。
[0020] 図 2はサブアレイ (SA) 2の構成を示す図である。サブアレイ(SA) 2は送信用の振 動子 (X)と受信用の振動子 (R)より構成され、各振動子は行方向と列方向に配列さ れている。行方向は第 1方向と、列方向は第 2方向と一致する。
[0021] 図 3は、並列受信の相対感度に関する方位角度依存性の一例を示す図である。図 3の曲線 21、 22、 23は、送信ビームに対して各々異なる受信の指向方向に対する 送受信の相対感度を示す。曲線 21は送信と受信の指向方向が一致する場合を示し ている。曲線 22は並列受信のため送信と受信の指向方向が 1° ずれることによって、 送受信の指向方向が 0. 5° ずれた場合、曲線 23は並列受信のため受信の指向方 向が 2° ずれることによって送受信の指向方向が 1° ずれた場合を示す。つまり、曲 線 22、 23は送信と受信の指向方向が一致していない場合を示している。また、送信 と受信の指向方向の差が大きくなると、相対感度が低下する。
[0022] 図 4Aは送信ビームの偏向角が 0° の場合における相対感度の一例、図 4Bは送信 ビームの偏向角が 30° の場合における相対感度の一例を示す図である。図 5Aは、 並列受信の指向方向のなす角を示す図、図 5Bは送信ビームの偏向角の差を示す 図である。 T(m)は偏向していない場合の送信ビームの指向方向、 LI (m)〜L4 (m) は送信ビームの指向方向 T(m)に対応する並列受信の指向方向を示している。 T(n )は偏向している場合の送信ビームの指向方向、 LI (n)〜L4 (n)は T(n)に対応す る並列受信の指向方向である。
[0023] 以上のように構成された超音波診断装置の受信フロントエンドについて、図 1〜図 5 Βを用いてその動作を説明する。
[0024] まず、サブアレイ (SA) 2の送信用の振動子 (X)からは送信超音波パルスが関心領 域に送波される。サブアレイ(SA) 2の受信用の振動子 (R)からの受信信号は、ダル ープ内プロセッサ(IP) 3において整相される。第 1方向に配列されたサブアレイ(SA ) 2に対応するグループ内プロセッサ (IP) 3の出力は、ひとまとまりで第 1方向遅延カロ 算回路 4〜7へ入力される。
[0025] 第 1方向遅延加算回路 4〜7は関心領域の方向に指向し、かつ第 1方向に関して 複数の指向方向を有する並列受信信号を出力する。第 2方向遅延加算回路 8、 9は 、第 2方向に関し微小角度毎に指向方向を変えるように受信遅延時間を発生し、第 1 方向遅延加算回路 4〜7が出力する並列受信信号に対して遅延時間の補正を行い 、並列受信信号を出力する。第 2方向遅延加算回路 8、 9から出力された並列受信信 号出力は、補正回路 10〜13においてその信号強度が補正される。図 3に示す様に 、並列受信において送受信の相対感度は、送信ビームの指向方向と受信の指向方 向の差により大きく変化する。したがって、送信の偏向角に応じて送信と受信の指向 方向の差を変える場合には、補正回路 10〜13において相対感度の変化を補正する 必要がある。
[0026] 図 4Aに示す様に、送信の指向方向の偏向角が 0° の場合は相対感度のピークと サイドローブの差、すなわちダイナミックレンジは 70dB程度である。一方、図 4Bに示 す様に、送信の指向方向の偏向角が 30° の場合は相対感度のダイナミックレンジは 66dB程度である。
[0027] そこで、偏向角が 30° の場合の並列受信における送信と受信の指向方向の差を、 0° の場合における差よりも小さくすることにより、図 3に示したように送受信の相対感 度を上げ、並列受信におけるメインローブの相対感度の減少を低減して、ダイナミツ クレンジの劣化を少なくすることができる。従って、送信ビームの偏向角が 0° の場合 と 30° の場合の各相対感度のダイナミックレンジの差を小さくすることができる。
[0028] 図 5Aにおいて、角度 φは、送信ビームの指向方向 Tに対応する並列受信の複数 の指向方向 L1〜L4のなす角を示している。偏向角が 0° の場合の送信ビームの指 向方向 T(m)に対応する角度 φ (m)は、偏向された場合の送信ビームの指向方向 T (n)に対応する角度 φ (n)よりも大きい。このため、図 5Bに示す様に、送信の偏向角 力 S小さい場合の送信ビームの指向方向 T(m)と T(m+ 1)のなす角度 Δ Θ (m)は、 送信の偏向角が大き 、場合の送信ビームの指向方向 T (n)と T (n + 1 )のなす角度 Δ θ (n)よりも大きくなるように設定される。
[0029] このような本実施の形態における超音波診断装置の受信フロントエンドにおいては 、偏向角制御回路 14によって、送信の偏向角が大きくなるに従い、並列受信におけ る複数の受信の指向方向がなす角を狭くするように制御することができる。そして、並 列受信における受信の指向方向がなす角が異なることによる送受信の相対感度の 差を補正回路 10〜13で補正し、相対感度が均一な画像が得られる。
[0030] さらに、送信の偏向角が大きくなるに従い、複数の並列受信における指向方向がな す角を狭くすることにより、隣接する送信に対応する受信の指向方向の間隔が広がる 問題を解消することができる。
[0031] なお、並列受信の偏向角を補正する方法としては、(1)補正値を演算により求める 方法、(2)補正用のデータテーブルに補正値を保存しておき、適切な補正値を選択 する方法、 (3) (1)と(2)との組み合わせを用いる方法等がある。さらに、これらを偏 向角制御回路 14に有する場合の他、第 1方向遅延加算回路 4〜7、第 2方向遅延加 算回路 8、 9に個々に有しても良い。
[0032] (第 2の実施の形態)
第 2の実施の形態における超音波診断装置の送信ビームの間隔を図 6A、図 6Bに 示す。なお、図 6において、第 1の実施の形態で参照した図 5Bと同じ構成及び機能 を有する部分については、同一の符号または記号を付して説明を省略する。また、 図 6に示していない他の構成要素については、図 1と同じである。
[0033] 図 6Aは配列振動子 1の側面図を示し、投影面は配列振動子 1とほぼ平行に配置さ れ、送信ビームと投影面が交差する格子点 Pを丸印で示す。図 6Bは、図 6Aを上側 力 見た図である。なお、投影面を走査の中心のビームに垂直な平面としても良い。
[0034] 以上のように構成された超音波診断装置における送信ビームの間隔について、図 6を用いてその動作を説明する。
[0035] まず、図 6Bにおいて、格子点 pは第 1方向に関して Δ χ、第 2方向に関して Ayの間 隔で 2次元に配置される。図 6Aにおいて、送信の偏向角が小さい場合の送信ビーム の指向方向 T(k)と T(k+ 1)のなす角度 Δ Θ (k)は、送信ビームの偏向角が大きい 場合の送信ビームの指向方向 T(j)と T(j + 1)のなす角度 Δ Θ (j)よりも大きくなるよう に設定される。さらに、 T(k)に対応する並列受信の指向方向がなす角は、 T(j)に対 応する並列受信の指向方向がなす角よりも大きくする。
[0036] 以上のように第 2の実施の形態における超音波診断装置は、送信ビームと投影面と の交点である格子点 Pを第 1方向に関して Δ χで、第 2方向に関して Ayで、等間隔に 2次元に配列した。そのため、送信ビームの偏向角が大きくなるに従い、並列受信の 指向方向がなす角を小さくし、相対感度が一様な良好な画像が得られる。
[0037] (第 3の実施の形態)
第 3の実施の形態における超音波診断装置の送信ビームの中心と並列受信の受 信感度の中心を図 7に示す。なお、図 7において、第 1の実施の形態で参照した図 1 と同じ構成及び機能を有する部分については同一の符号または記号を付して説明を 省略する。また、図 7に示していない他の構成要素は、図 1と同じである。
[0038] 図 7において口印は送信ビームの中心を示し、〇印は並列受信の受信感度の中心 を示す。並列受信の受信感度の中心に対応する並列受信信号の符号 S (x、 y) (1≤ x≤4、 1≤ ≤4)カ付けられる。
[0039] 以上のように構成された超音波診断装置における送信ビームと並列受信ビームに ついて、図 7を用いてその動作を説明する。 [0040] 並列受信信号を 3つのグループに分類する。図 7において、第 1のグループは、 S ( 1、 1)、 S (l、 4)、 S (4、 1)、 S (4、 4)で構成され、それぞれの信号は、送信ビーム中 心から等しい距離にあり、送信ビームの指向方向と並列受信による指向方向とのな す角度が等しい状態で受信された受信信号である。そのため、補正回路 10〜13に お 、て等し 、並列受信感度補正信号を用いて補正が行われる。
[0041] 同様にして、第 2のグループは、 S (2、 2)、 S (2、 3)、 S (3、 2)、 S (3、 3)で構成さ れ、それぞれの信号は、送信ビームの中心から等しい距離にあり、送信ビームの指 向方向と並列受信による指向方向との角度が等しい状態で受信された受信信号で ある。そのため、補正回路 10〜13において等しい並列受信感度補正信号を用いて 補正が行われる。さらに、第 3のグループは、 S (1、 2)、 S (1、 3)、 S (2、 1)、 S (2、 4) 、 S (3、 1)、 S (3、 4)、 S (4、 2)、 S (4、 3)で構成され、それぞれの信号は、送信ビー ム中心から等しい距離にあり、送信ビームの指向方向と並列受信による指向方向と の角度が等しい状態で受信された受信信号である。そのため、補正回路 10〜13に お 、て等し 、並列受信感度補正信号を用いて補正が行われる。
[0042] 以上のように第 3の実施の形態における超音波診断装置の送信ビームと並列受信 ビームによれば、 16個の並列受信信号 S (x、 y)を 3個のグループに分けた。そのこと により、 3種類の並列受信感度補正信号で感度補正を行うことができるので制御が容 易になる。
産業上の利用可能性
[0043] 本発明の超音波診断装置は、相対感度が一様な画像が得られるという効果を有し 、被検体を走査する配列振動子を備えた超音波診断装置として有用である。

Claims

請求の範囲
[1] 被検体に超音波を送信しその反射波を受信する複数の振動子を配列した配列振 動子と、前記配列振動子により得られた受信信号に対して、遅延加算を行うことによ り並列受信を行う遅延加算部と、前記遅延加算部が行う遅延加算の設定に基づき受 信の偏向角を制御する偏向角制御部とを備えた超音波診断装置において、 前記偏向角制御部は、前記配列振動子力も送波される送信ビームの偏向角が大き くなるに従い、並列受信における複数の受信の指向方向相互間のなす角度を狭くす ることを特徴とする超音波診断装置。
[2] 前記送信ビームの偏向角が大きくなることによる送受信の相対感度の低下を補償 するように並列受信における複数の受信信号に対する感度補正量を変化する制御 を行う補正部を有する請求項 1記載の超音波診断装置。
[3] 前記補正部は、送信ビームの指向方向と並列受信の受信の指向方向とのなす角 度が等し 、前記複数の受信信号に対して、相対感度が等しくなる補正を行う請求項
2記載の超音波診断装置。
[4] 前記偏向角制御部は、前記送信ビームの偏向角が大きくなるに従い隣接する送信 ビームの偏向角の差を小さくする請求項 1〜3のいずれか一項に記載の超音波診断 装置。
[5] 前記複数の振動子が少なくとも 2次元に配列され、複数の前記送信ビームが各々 投影面と交差する点が 2次元の等間隔の格子点をなす請求項 4に記載の超音波診 断装置。
PCT/JP2005/008278 2004-05-25 2005-05-02 超音波診断装置 WO2005115250A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP05737152A EP1749478A4 (en) 2004-05-25 2005-05-02 ULTRASOUND DIAGNOSTIC TOOL
JP2006515329A JP4241825B2 (ja) 2004-05-25 2005-05-02 超音波診断装置
US10/578,159 US20090048517A1 (en) 2004-05-25 2005-05-02 Ultrasonic diagnostic apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004155078 2004-05-25
JP2004-155078 2004-05-25

Publications (1)

Publication Number Publication Date
WO2005115250A1 true WO2005115250A1 (ja) 2005-12-08

Family

ID=35450621

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/008278 WO2005115250A1 (ja) 2004-05-25 2005-05-02 超音波診断装置

Country Status (6)

Country Link
US (1) US20090048517A1 (ja)
EP (1) EP1749478A4 (ja)
JP (1) JP4241825B2 (ja)
KR (1) KR100754097B1 (ja)
CN (1) CN100455268C (ja)
WO (1) WO2005115250A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009535097A (ja) * 2006-04-26 2009-10-01 シーメンス メディカル ソリューションズ ユーエスエー インコーポレイテッド 統合ビーム化が行われる方法および変換器アレイ
JP2010005138A (ja) * 2008-06-26 2010-01-14 Toshiba Corp 超音波診断装置
US9967660B2 (en) 2015-08-28 2018-05-08 Canon Kabushiki Kaisha Signal processing apparatus and method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180271492A1 (en) * 2014-11-07 2018-09-27 Samsung Electronics Co., Ltd. Ultrasonic apparatus and beamforming method for the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02206445A (ja) * 1989-02-03 1990-08-16 Toshiba Corp 超音波診断装置
JPH10328185A (ja) * 1997-06-04 1998-12-15 Aloka Co Ltd 超音波診断装置および診断用超音波送受信方法
JP2004033617A (ja) * 2002-07-05 2004-02-05 Matsushita Electric Ind Co Ltd 超音波診断装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53114282A (en) * 1977-03-16 1978-10-05 Tokyo Shibaura Electric Co Ultrasonic diagnosing device
JPH078492A (ja) * 1993-06-28 1995-01-13 Toshiba Corp 超音波診断装置
JP3094742B2 (ja) * 1993-09-03 2000-10-03 松下電器産業株式会社 超音波診断装置
JP3763924B2 (ja) * 1997-03-17 2006-04-05 フクダ電子株式会社 超音波診断装置
JP4260920B2 (ja) * 1998-05-13 2009-04-30 株式会社東芝 超音波診断装置
JP3847976B2 (ja) * 1998-10-14 2006-11-22 株式会社東芝 超音波診断装置
JP2000254120A (ja) * 1999-03-11 2000-09-19 Toshiba Corp 3次元超音波診断装置
JP2001327505A (ja) * 2000-05-22 2001-11-27 Toshiba Corp 超音波診断装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02206445A (ja) * 1989-02-03 1990-08-16 Toshiba Corp 超音波診断装置
JPH10328185A (ja) * 1997-06-04 1998-12-15 Aloka Co Ltd 超音波診断装置および診断用超音波送受信方法
JP2004033617A (ja) * 2002-07-05 2004-02-05 Matsushita Electric Ind Co Ltd 超音波診断装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1749478A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8465431B2 (en) 2005-12-07 2013-06-18 Siemens Medical Solutions Usa, Inc. Multi-dimensional CMUT array with integrated beamformation
JP2009535097A (ja) * 2006-04-26 2009-10-01 シーメンス メディカル ソリューションズ ユーエスエー インコーポレイテッド 統合ビーム化が行われる方法および変換器アレイ
JP2010005138A (ja) * 2008-06-26 2010-01-14 Toshiba Corp 超音波診断装置
US8888705B2 (en) 2008-06-26 2014-11-18 Kabushiki Kaisha Toshiba Ultrasound diagnosis apparatus
US9967660B2 (en) 2015-08-28 2018-05-08 Canon Kabushiki Kaisha Signal processing apparatus and method

Also Published As

Publication number Publication date
EP1749478A1 (en) 2007-02-07
CN100455268C (zh) 2009-01-28
JPWO2005115250A1 (ja) 2008-03-27
JP4241825B2 (ja) 2009-03-18
CN1905839A (zh) 2007-01-31
EP1749478A4 (en) 2008-12-24
KR20070005926A (ko) 2007-01-10
US20090048517A1 (en) 2009-02-19
KR100754097B1 (ko) 2007-08-31

Similar Documents

Publication Publication Date Title
EP0627635B1 (en) Ultrasonic imaging by radial scan of trapezoidal sector
JP4610719B2 (ja) 超音波撮影装置
US20090105592A1 (en) Multi-stage digital ultrasound beamformer
US10168428B2 (en) Ultrasound transducer arrays with variable patch geometries
WO2016060017A1 (ja) 超音波診断装置
WO2020164299A1 (zh) 超声成像宽波束发射方法及发射系统
CN105075291A (zh) 单层压电片式超声波探头
EP2944976B1 (en) Beam forming apparatus, method for forming beams, ultrasonic imaging apparatus, and ultrasonic probe
WO2005115250A1 (ja) 超音波診断装置
JP4128821B2 (ja) 超音波診断装置
US20050203412A1 (en) Method of controlling ultrasonic probe and ultrasonic diagnostic apparatus
US7029445B2 (en) Ultrasonic diagnosing apparatus
US20040193050A1 (en) Ultrasonic transmitting and receiving apparatus
US9599700B2 (en) Ultrasound diagnosis apparatus
JP3186999B2 (ja) 超音波診断装置および診断用超音波送受信方法
US8506484B2 (en) Ultrasonic imaging device
WO2014088079A1 (ja) 超音波診断装置及び超音波プローブ
JP7008549B2 (ja) 超音波診断装置
JP3772411B2 (ja) 球面アレイからの送波制御方法、並びに球面アレイ送波器
JP4154043B2 (ja) 超音波撮像装置
JP4418491B2 (ja) 超音波撮像装置
JP4593260B2 (ja) 超音波診断装置
US20160178738A1 (en) Ultrasonic diagnostic device and ultrasonic image generation method
JP2010151720A (ja) 送受波器、ラインアレイアンテナ、及びファンビーム生成方法
JP5269638B2 (ja) 超音波診断装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200580001816.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2006515329

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10578159

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020067011630

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2005737152

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 1020067011630

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005737152

Country of ref document: EP