WO2014088079A1 - 超音波診断装置及び超音波プローブ - Google Patents

超音波診断装置及び超音波プローブ Download PDF

Info

Publication number
WO2014088079A1
WO2014088079A1 PCT/JP2013/082745 JP2013082745W WO2014088079A1 WO 2014088079 A1 WO2014088079 A1 WO 2014088079A1 JP 2013082745 W JP2013082745 W JP 2013082745W WO 2014088079 A1 WO2014088079 A1 WO 2014088079A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
subarrays
subarray
ultrasonic transducers
array
Prior art date
Application number
PCT/JP2013/082745
Other languages
English (en)
French (fr)
Inventor
ゾラン バンジャニン,
ダニエル ブルースク,
Original Assignee
株式会社 東芝
東芝メディカルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/705,864 external-priority patent/US20140155751A1/en
Application filed by 株式会社 東芝, 東芝メディカルシステムズ株式会社 filed Critical 株式会社 東芝
Priority to CN201380063368.6A priority Critical patent/CN104822325A/zh
Publication of WO2014088079A1 publication Critical patent/WO2014088079A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52079Constructional features
    • G01S7/5208Constructional features with integration of processing functions inside probe or scanhead
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8909Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
    • G01S15/8915Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
    • G01S15/8925Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array the array being a two-dimensional transducer configuration, i.e. matrix or orthogonal linear arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8909Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
    • G01S15/8915Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
    • G01S15/8927Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array using simultaneously or sequentially two or more subarrays or subapertures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • A61B8/4488Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer the transducer being a phased array

Definitions

  • Embodiments relate to an ultrasonic diagnostic apparatus and an ultrasonic probe that form a dynamic sub-array.
  • the conventional ultrasonic imaging apparatus includes a processing unit 1, a display unit 2, a cable 3, and an ultrasonic probe ultrasonic transducer 4 via the cable 3. Connected to.
  • the processing unit 1 generally transmits an ultrasonic pulse toward a region of interest in the subject and controls the ultrasonic probe 4 to receive an ultrasonic echo reflected from the subject.
  • the processing unit 1 performs further processing such as simultaneously receiving the ultrasonic signals reflected from the ultrasonic probe 4 in real time and displaying an image of the region of interest of the subject on the display unit 2.
  • the ultrasonic probe 4 is provided corresponding to a channel on the ultrasonic probe side (that is, corresponding to one transducer) in order to transmit an ultrasonic signal and receive an ultrasonic echo.
  • the number of channels generally ranges from 64 to 256.
  • the number of channels required in a commercially available probe generally exceeds 1000.
  • the ultrasonic transducer probe 4 transmits an ultrasonic signal and receives an ultrasonic echo, the ultrasonic transducer probe 4 is used for real-time imaging. A large amount of reflected ultrasound data is simultaneously sent to the processing unit 1 via the cable 3.
  • SA sub-array
  • the received signals obtained from the transducers in the subarray are respectively delayed by the analog delay circuit, and added together to obtain one
  • One received signal delayed and added from the subarray is generated.
  • Analog signals are delayed and grouped into subarrays (subarrays) in the prior art.
  • an analog signal is typically summed from elements of a given subarray size, such as 3 ⁇ 3, 4 ⁇ 3, or 4 ⁇ 4 adjacent elements in a 2D array containing thousands of these elements .
  • the size of the sub-array is the number of signals that are added to the channel on the ultrasound system side (the ultrasound diagnostic apparatus body side) (that is, the number of received signals that are output from the ultrasound probe and input to the ultrasound diagnostic apparatus body side).
  • the upper limit is the number of signals for sending a reception signal from the probe to the ultrasonic diagnostic apparatus main body.). Therefore, the number of channels on the ultrasonic diagnostic apparatus main body side is equivalent to the number of subarrays.
  • the addition in the first step is performed statically in the conventional technique (that is, the number and size of subarrays are not changed).
  • several disadvantages occur when using a beam formed by such static addition.
  • the 2D image quality from a 2D array is inferior to that of conventional 1D and 1.5D arrays. That is, in the conventional system, the shape of the subarray is fixed in accordance with the circuit configuration. For example, reception signals from 4 ⁇ 4 transducers are collectively handled as one reception signal. Therefore, if the size of the transducer is constant, the subarray shape is fixed and a rough subarray compared to a 1D array or 1.5D array in which a delay time is individually set for each transducer and delay addition is performed. In the conventional 2D array that processes received signals in units of ⁇ , the spatial resolution is inferior.
  • the deterioration of the image quality is caused by the occurrence of side lobes caused by regularly fixing the shape of the subarray.
  • a subarray since there is a limit to the number of channels on the system side provided on the diagnostic apparatus side, a subarray must be provided to limit the number of channels on the system side.
  • a second step of beam formation using the digitized reception signal is performed.
  • This second step of beam forming is dynamic.
  • the digitized signal is used during dynamic beamforming after the analog signal is converted.
  • the second beamforming step can be dynamic, the range of flexibility is limited and the image quality is compromised by the analog signal statically summed from the first beamforming step.
  • the second step is to dynamically beamform the signal processed statically from the first step. Requires additional complexity.
  • the objective is to provide an ultrasonic diagnostic apparatus and an ultrasonic probe that can improve the image quality by using a dynamic sub-array and expand the flexibility when using a single probe.
  • the ultrasonic diagnostic apparatus includes a transducer array composed of a plurality of ultrasonic transducers each generating a reception signal in response to received ultrasonic waves, and the plurality of ultrasonic transducers.
  • a plurality of time delay circuits that are connected and give individual delay times to the reception signals generated by the plurality of ultrasonic transducers, and a control for defining a plurality of subarrays composed of the plurality of ultrasonic transducers
  • a control unit that generates a signal, and in response to the control signal, the plurality of subarrays are defined by dynamically switching a combination pattern related to the connection between the plurality of time delay circuits and the plurality of ultrasonic transducers.
  • at least one switch for generating a plurality of output signals corresponding to each of the sub-arrays, and an adder for adding the plurality of output signals.
  • FIG. 1 illustrates one exemplary prior art ultrasound imaging device.
  • FIG. 1 is a schematic view illustrating a first embodiment of an ultrasonic diagnostic apparatus according to an embodiment of the invention.
  • FIG. 6 shows an exemplary one-dimensional equivalent embodiment with additional components of a receiving unit and an ultrasound probe in a second embodiment of probe 100-1 according to an embodiment of the present invention.
  • FIG. 3 illustrates one exemplary sub-array (SA) organization for improving image quality and applicability of a two-dimensional (2D) array in an embodiment according to the present invention.
  • FIG. 6 shows a second exemplary subarray (SA) organization for improving image quality and applicability of a two-dimensional (2D) array in a second embodiment according to the present invention.
  • FIG. 6 shows a third exemplary subarray (SA) organization for improving image quality and applicability of a two-dimensional (2D) array in a third embodiment according to the present invention.
  • FIG. 10 illustrates a fourth exemplary subarray (SA) organization for improving image quality and applicability of a two-dimensional (2D) array in a fourth embodiment according to the present invention.
  • FIG. 10 illustrates a fifth exemplary subarray (SA) organization for improving image quality and applicability of a two-dimensional (2D) array in a fifth embodiment according to the present invention.
  • FIG. 4 is a flow diagram illustrating steps or operations associated with one implementation process for a probe according to the present invention.
  • the embodiment of the ultrasonic imaging apparatus includes an ultrasonic probe (hereinafter also simply referred to as “probe”), a processing unit, and a cable for connecting the probe to the processing unit.
  • probe embodiments include conventional ultrasound probe configurations, components, and at least some of the elements. That is, one embodiment of the probe generates ultrasonic pulses and transmits the ultrasonic pulses toward a certain part of the subject. This embodiment also receives ultrasound echoes reflected from the subject. Many embodiments of the probe are generally handheld devices, but some embodiments are not handheld devices.
  • FIG. 2 a schematic diagram illustrates a first embodiment of an ultrasound diagnostic apparatus according to the present invention.
  • the first embodiment includes an ultrasonic probe 100, a monitor 120, a touch input device 130, and an apparatus main body 1000.
  • One embodiment of the ultrasonic probe 100 further includes a plurality of ultrasonic transducers such as piezoelectric transducers that generate ultrasonic waves based on a drive signal supplied from a transmission unit 111 stored in the apparatus main body 1000. .
  • the transmitted ultrasonic wave is caused by the discontinuous surface of the acoustic impedance in the body tissue of the subject Pt. It is continuously reflected and also received by the piezoelectric transducer of the ultrasonic probe 100 as a reflected wave signal.
  • the amplitude of the received reflected wave signal depends on the difference in acoustic impedance of the discontinuous surface that reflects the ultrasonic wave. For example, when a transmitted ultrasound pulse is reflected by a moving blood flow or the surface of the heart wall, the reflected wave signal is affected by the frequency deviation. That is, due to the Doppler effect, the frequency deviation of the reflected wave signal depends on the velocity component of the moving subject in the ultrasonic transmission direction.
  • the apparatus main body 1000 finally generates a signal representing an ultrasonic image.
  • the apparatus main body 1000 controls transmission of ultrasonic waves from the probe 100 toward the relevant part in the subject and reception of reflected waves at the ultrasonic probe 100.
  • the apparatus main body 1000 includes a transmission unit 111, a reception unit 112, a B-mode processing unit 113, a Doppler processing unit 114, an image processing unit 115, an image memory 116, all of which are connected via an internal bus.
  • the transmission unit 111 includes a trigger generation circuit, a delay circuit, a pulsar circuit, and the like, and supplies a drive signal to the ultrasonic probe 100.
  • the pulsar circuit repeatedly generates rate pulses for forming transmission ultrasonic waves at a certain rate frequency.
  • the delay circuit controls the delay time in the rate pulse from the pulse circuit so as to use each of the piezoelectric vibrators so as to converge the ultrasonic wave from the ultrasonic probe 100 into the beam and determine the transmission directivity. To do. That is, the delay time when a rate pulse is transmitted from the pulse circuit to each piezoelectric vibrator is controlled.
  • the trigger generation circuit applies a drive signal (drive pulse) to the ultrasonic probe 100 based on the rate pulse.
  • the reception unit 112 includes a delay circuit, a switch such as a crosspoint switch, an amplifier circuit, an analog / digital (A / D) converter, an adder, and the like, and relates to a reflected wave signal received by the ultrasonic transducer of the ultrasonic probe 100.
  • Reflected wave data is generated by executing various processes.
  • the amplifier circuit performs gain correction by amplifying the reflected wave signal.
  • the A / D converter converts the gain-corrected reflected wave signal from an analog form to a digital form, and the delay circuit provides a delay time required to determine the reception directivity.
  • the adder generates reflected wave data by adding the reflected wave signals digitally converted from the A / D converter.
  • the adder emphasizes the reflection component from the direction corresponding to the reception directivity of the reflected wave signal.
  • each of the transmission unit 111 and the reception unit 112 controls the transmission directivity during ultrasonic transmission and controls the reception directivity during ultrasonic reception.
  • the crosspoint switch is directly connected to each of the outputs from the delay circuit that individually delays each of the output signals from the ultrasonic transducer. That is, the cross-point switch dynamically forms a flexible sub-array of element units desired during beam forming in response to a control signal generated by the sub-array configuration unit 115A (ie, forms transmission beam / reception to be formed). Adjust the shape of the subarray and the number of transducers that form the subarray to fit the shape of the beam, so that the individual delayed output signals from any signal ultrasound transducer can be Selectively combined with sonic transducer output.
  • the ultrasonic diagnostic apparatus forms an image based on a user input designating a dynamic subarray.
  • Touch input device 130 allows a user to input at least an image parameter value in order to generate an image.
  • an appropriate subarray shape is determined based on the image parameter value (ultrasonic scanning parameter value) set by the image parameter setting unit, and the subarray configuration unit re-forms the subarray. Also good.
  • the subarray configuration unit 115A uses a combination of a delay circuit and an ultrasonic transducer as a crosspoint switch, that is, a combination of ultrasonic transducers forming a subarray, triggered by the setting of the ultrasonic scanning parameter value. A control signal for changing is generated.
  • the image parameter setting unit 130A receives at least an image parameter value to generate an image.
  • the image processing unit 115 includes a separate subarray configuration unit 115A and provides a module or function for defining a dynamic subarray and generating a dynamic subarray formation signal.
  • the separate sub-array configuration unit is connected to the image parameter setting unit 130A, and defines a dynamic sub-array and generates a dynamic sub-array formation signal based on the parameter values set through the image parameter setting unit 130A. To do.
  • the subarray has a predetermined number of ultrasonic transducers, and each of the ultrasonic transducers outputs a signal.
  • the plurality of time delay circuits are directly connected to the subarray in order to individually delay each of the signals from the ultrasonic transducer for the purpose of outputting a time delay signal.
  • At least one switch such as a crosspoint switch, is connected to the time delay circuit and the subarray configuration unit, the switch defining a dynamic subarray based on the dynamic subarray formation signal and outputting a dynamic subarray signal In order to do this, any combination of time delay signals is connected.
  • the plurality of adders are connected to the switch for summing the dynamic subarray signals of the dynamic subarray for the purpose of outputting the summed subarray signal.
  • the image forming unit 115B forms an image based on the added subarray signal.
  • the subarray formation parameters including at least one of the number, shape, size, and number of ultrasonic transducers constituting each subarray are, for example, the deflection angle of the ultrasonic beam for ultrasonic imaging, It is preferable that the control is automatically performed according to the number of channels on the ultrasonic diagnostic apparatus main body side to which the acoustic probe is connected.
  • the sub-array formation parameter change timing includes, for example, the setting of an ultrasonic scanning parameter for ultrasonic imaging, and the dimension (two-dimensional, three-dimensional) of an ultrasonic scanning target region for ultrasonic imaging. Dimension scanning, etc.) is set, the direction of ultrasonic scanning for ultrasonic imaging is set, and the sidelobe suppression mode (described later) is selected.
  • FIG. 3 is a diagram illustrating a second embodiment of the probe 100-1 according to the present invention.
  • the second embodiment of the probe 100-1 includes a transmission unit 100A, a reception unit 100B, and an ultrasonic transducer array unit 70A.
  • the transmission unit 100A further includes a control unit (CTRL) 10A and a transmission circuit (Tx) 20A for controlling and generating ultrasonic pulses from the ultrasonic transducer array unit 70A toward the relevant part or subject in the subject.
  • CTRL control unit
  • Tx transmission circuit
  • the transmitting circuit 20A receives control information from the control unit 10A and / or an external source such as a processing unit, as indicated by the inward arrows.
  • the receiving unit 100B further includes a receiving circuit (Rx) 30A for receiving an analog signal from the transducer array unit 70A that receives an ultrasonic echo reflected from the site in the subject.
  • the receiver circuit 30A optionally sends an analog signal to an external source, such as a processing unit, as indicated by the outward arrows.
  • the receiving unit 100B further includes an analog-to-digital converter (ADC) 40A for converting the analog electrical signal into a digitized signal that is then processed by a digital beamformer unit (BF) 50A.
  • ADC analog-to-digital converter
  • BF digital beamformer unit
  • the beamformer unit 50A generates beam data, which is then stored in a non-transitory local memory storage or storage medium 60A.
  • the ultrasonic transducer array unit 70A further includes a predetermined number of ultrasonic transducers dynamically configured in the form of an array of a certain size for the receiving circuit 30A.
  • an ultrasonic transducer is dynamically configured in the form of a sub-array, and some portions, such as one or more rows of ultrasonic transducers, are dedicated to receiving 2D imaging data, whereas ultrasonic vibration The remaining part of the child is dedicated to 3D / 4D shooting volume data.
  • the figure illustrates additional components of the receiving unit 100B and the ultrasonic transducer array unit 70A in the second embodiment of the probe 100-1 according to the present invention.
  • the ultrasonic transducer array unit 70A includes an ultrasonic transducer array 200 having a predetermined number of ultrasonic transducers 200-1A through 200-5P, whereas the receiving unit 100B corresponds.
  • a number of time delay circuits 202, a predetermined number of crosspoint switches 204, and a predetermined number of adders 206 are included.
  • the 80 ultrasonic transducers 200-1A through 200-5P of the ultrasonic transducer array 200 are organized in 4 rows by 4 columns elements.
  • the ultrasonic transducers 200-1A to 200-5P receive the ultrasonic echoes reflected from the part in the subject in order to output an analog signal.
  • a corresponding one of the time delay circuits 202-1A to 202-5P delays the analog signal from one of the ultrasonic transducers 200-1A to 200-5P.
  • Time delay circuits 202-1A through 202-5P each process an appropriate amount of time delay with respect to the analog signal to generate a time delay signal. This appropriate delay is determined based on a predetermined criterion such as directivity.
  • Switches such as crosspoint switches 204-1 through 204-5, define a dynamic subarray and implement a time delay circuit 202 to implement any combination of time delay signals for the purpose of outputting a dynamic subarray signal.
  • a plurality of adders 206-1A to 206-5D are connected to the switches 204-1 to 204-5 to add the dynamic subarray signals of the dynamic subarrays for the purpose of outputting the added subarray signals. Is done.
  • the ultrasonic transducers 200-1A through 200-5P in the two-dimensional ultrasonic transducer array 200 are finally converted into dynamic subarrays on an elemental basis.
  • each transducer is incorporated into any subarray.
  • the two-dimensional ultrasonic transducer array 200 has 80 elements that are grouped into five exemplary subarrays (subarrays) 200-1 to 200-5, as illustrated in FIG.
  • Each of the five exemplary subarrays is organized by 4 ⁇ 4 ultrasound transducers. That is, each of the subarrays 200-1 to 200-5 has four ultrasonic transducers in both the height direction and the azimuth direction.
  • the sixteen ultrasonic transducers are individually referred to as one sub-array from 200-1A to 200-1P.
  • 16 ultrasonic transducers in the second sub-array 200-2 are individually referred to as one sub-array 200-2A to 200-2P
  • 200-3A to 200-3P are individually referred to as one subarray.
  • the subarray size is a specific It is not limited to size.
  • the number of subarrays is increased or decreased according to the number of channels on the ultrasonic diagnostic apparatus side, or the size of subarrays, that is, the number of ultrasonic transducers grouped as one subarray, is changed according to the increase or decrease in the number of subarrays. May be.
  • the subarray size is optionally different between subarrays (ie, the number of transducers may be different for each subarray).
  • the subarray just below the center of the array is finely formed (subarrays are formed with a small number of transducers), and the subarrays at locations away from the array center are rough (many You may form a subarray by the number of vibrators). Even when the sub-array is formed with the same number of channels on the system side, it is possible to take an accurate image directly under the center of the array.
  • the position where the sub-array is formed finely / roughly may be adjusted by an image parameter or the like.
  • volume data is imaged using a small number of subarrays (that is, a coarse subarray with a large number of ultrasonic transducers per subarray), and the user designates a position where the volume data is desired to be confirmed in detail.
  • ROI is designated in the volume data
  • the subarray may be rearranged so that the subarray corresponding to the position immediately above the ROI is formed finely, and the volume data may be rescanned by the rearranged subarray.
  • the subarray configuration is not limited to a particular shape.
  • each of the ultrasonic transducers 200-1A through 200-5P in the array 200 is directly connected to a corresponding one of the time delay circuits 202-1A through 202-5P. Is done.
  • the ultrasonic transducers 200-1A to 200-1P in the first subarray 200-1 are connected to the time delay circuits 202-1A to 202-1P, respectively.
  • Each of the ultrasonic transducers 200-1A to 200-5P in the array 200 generates an analog signal, and a corresponding one of the time delay circuits 202-1A to 202-5P can be any other with respect to the analog signal.
  • the analog signals are individually delayed by an appropriate amount of time (by an amount of time set in the delay time circuit). That is, according to the embodiment of the present invention, the number of time delay circuits 202-1A to 202-5P is equal to the number of ultrasonic transducers 200-1A to 200-5P for individually delaying analog signals. .
  • FIG. 4 illustrates the control of ultrasonic transducer units when switching or connecting time-delayed analog signals from individual ultrasonic transducers to dynamically form subarrays in one embodiment according to the present invention. Further examples.
  • a separate switch is dedicated to each of the subarrays to implement elemental control.
  • this embodiment includes five dynamic subarrays 200-1 through 200 based on time-delayed analog signals individually executed from ultrasonic transducers 200-1A through 200-5P. -5 was formed.
  • each of the five crosspoint switches 204-1 through 204-5 receives a set of 16 time delay signals from a corresponding one of the subarrays 200-1 through 200-5. Receive.
  • Each of the five crosspoint switches 204-1 through 2004-5 then elements 16 time-delayed signals from the corresponding subarray according to a predetermined rule or condition (ie, along the assigned subarray). Selectively combine on a unit basis.
  • Each of the five crosspoint switches 204-1 through 204-5 optionally exercises control on an element-by-element basis and outputs a combination from four sets of 16 signals. It is not limited to a specific number of 16 time delay signals or a specific pattern.
  • each of the five crosspoint switches 204-1 through 204-5 outputs four sets of arbitrarily combined signals from the individual ultrasonic transducers in the corresponding subarray.
  • each of the crosspoint switches 204-1 to 204-5 forms a dynamic sub-array based on the arbitrarily combined 64 signals.
  • FIG. 4 also illustrates additional control in switching or connecting signals from individual ultrasonic transducers in one embodiment in accordance with the present invention to dynamically form subarrays.
  • adders 206-1A through 206-5D further add or add together the set of analog output signals of the combined signals based on predetermined rules according to the present invention.
  • adders 206-1A through 206-1D each receive a set of corresponding analog output signals of 16 output signals from crosspoint switch 204-1.
  • each of summers 206-1A through 206-1D outputs a single subarray output signal.
  • the adders 206-1A to 206-1D are connected to the channels C1 to C6-1.
  • Four signals are output in C4.
  • the other 16 adders 206-2A through 206-2D, 206-3A through 206-3D, 206-4A through 206-4D, and 206-5A through 206-5D are connected within channels C5 through C20. Each of the 16 signals is output.
  • the 20 adders 206-1A to 206-5D are connected to the ultrasonic diagnostic apparatus while element-by-element control is exercised by the above-described process when forming the dynamic sub-array.
  • the number of subarrays is adjusted to satisfy the number of channels on the main body side, and the number of subarray output signals is reduced on the ultrasonic diagnostic apparatus main body side.
  • the channel requirements on the ultrasonic diagnostic apparatus main body side are flexibly satisfied based on the dynamic subarray information by independent control on the output signal from the ultrasonic transducer.
  • 206-1A and Two adders, such as 206-1B are used for each of the five crosspoint switches 204-1 through 204-5.
  • two of the four adders output zero to satisfy 10 channels that is the number of channels on the ultrasonic diagnostic apparatus main body side
  • four adders are used.
  • a single probe with the dynamic subarray formation function described above is used.
  • the number of subarrays, the shape, and the number of transducers included in each subarray are automatically set to match the number of channels on the ultrasonic diagnostic apparatus main body side.
  • the above embodiments are merely exemplary implementations and are not limited to a specific number of crosspoint switches and / or adders to implement the present invention.
  • another embodiment is optionally implemented using a single crosspoint switch that receives the same number of inputs as the number of ultrasound transducers in the array (entire ultrasound transducer).
  • the above embodiment represents just one exemplary implementation and is not limited to a specific number of output sets from a crosspoint switch embodying the present invention.
  • the crosspoint switch is directly connected to each of the outputs from the delay circuit that individually delays each of the output signals from the ultrasonic transducer. That is, the crosspoint switch can be used to transmit individually delayed output signals from any single ultrasound transducer to any other such ultrasound in a dynamically formed subarray for beamforming. Selectively combined with transducer output. In other words, the subarray is formed in a flexible manner during beam forming on an elemental basis.
  • this figure illustrates additional components of the receiving unit 100B and the ultrasonic transducer array unit 70A relating to the second embodiment of the probe 100-1 according to the present invention.
  • the above-described configuration is not limited to the second embodiment, and is optionally applicable to the first embodiment and other embodiments according to the present invention.
  • This figure is illustrated for clarity and includes a significantly reduced number of elements of the 2D array for clarity of explanation of the present embodiment.
  • FIG. 5 is an illustrative example with additional components of the receiving unit 100B and the ultrasonic transducer array unit 70A in the second embodiment of the probe 100-1 according to the present invention.
  • Figure 2 shows a one-dimensional equivalent embodiment.
  • receiving unit 100B includes an ultrasonic transducer array 300 having a predetermined number of subarrays 300-1 through 300-20, a corresponding number of delay circuits 302-1 through 302-20, and an adder. 304.
  • the ultrasonic transducers 300-1 to 300-64 of the ultrasonic transducer array 300 are organized into 20 subarrays 300-1 to 300-20 having 20 rows of a predetermined dimension, and each row is In order to output an analog signal, it has four elements for receiving an ultrasonic echo reflected from the part of the subject. Twenty subarrays 300-1 through 300-20 are dynamically formed to implement an equivalent one-dimensional array within probe 100-1.
  • the one-dimensional probe shown in the diagram of FIG. 5 does not require additional components such as delay circuits, crosspoint switches, and adders before the 20 outputs match the cable's 20-channel system requirements.
  • a corresponding one of the delay circuits 302-1 through 302-20 can be directly connected to each of the subarrays 300-1 through 300-20 1.
  • Time delay circuits 302-1 through 302-20 each process an appropriate amount of time delay with respect to the analog signal to generate a delayed signal.
  • Adder 304 is connected to sum the signals. Images from the one-dimensional array are generated by dynamic beamforming.
  • the first embodiment can output data not only for generating a two-dimensional image from a two-dimensional array, but also for generating a two-dimensional image from a simulated one-dimensional array. .
  • the exemplary embodiment has a two-dimensional array of ultrasonic transducers that are electronically configurable in one row and thus behave like a 1D array.
  • the vibrators arranged in one row of the 2D array can be grouped as one subarray.
  • by treating the transducers arranged in one row as one large transducer it is possible to perform a scan similar to a 1D array in which substantial transducers are arranged in the column direction.
  • By giving a delay time to the sub-array in the row direction it is possible to focus in the column direction (in the lens direction).
  • each of the exemplary subarrays is illustrated as having 2 ⁇ 2 ultrasonic transducers in the third embodiment according to the present invention.
  • the 80 ultrasonic transducers 400-1A to 400-20D of the ultrasonic transducer array 400 are organized into 20 subarrays 300-1 to 300-20 having two rows and two columns of a predetermined dimension.
  • each of the sub-arrays 300-1 to 300-20 has four elements for receiving an ultrasonic echo reflected from the corresponding part in the subject, that is, 2 ⁇ 2 in order to output an analog signal. It has an element.
  • subarray 400-1 has four elements, namely 400-1A, 400-1B, 400-C1, and 400-D.
  • the four ultrasonic transducers in the second sub-array 400-2 are individually referred to as 400-2A to 400-2D
  • the four ultrasonic transducers in the third sub-array 400-3 These ultrasonic transducers are individually referred to as 400-3A to 400-3D. That is, each of the sub-arrays 400-1 to 400-20 has two ultrasonic transducers in both the elevation direction and the azimuth direction.
  • the signals from the 20 subarrays 400-1 through 400-20 are dynamically summed to implement a two-dimensional array equal to the probe 100-1.
  • the diagram of FIG. 6 omits illustration of additional components such as delay circuits, crosspoint switches, and adders before the 80 channel output matches the cable's 20 channel requirements.
  • this embodiment includes 20 dynamic subarrays 400-1 through 400 based on time-delayed analog signals individually executed from the ultrasonic transducers 400-1A through 400-20D. -20 was formed.
  • the predetermined number of crosspoint switches receives a set of time delayed signals from a corresponding one of the subarrays 400-1 through 400-20. Thereafter, each of the crosspoint switches selectively combines time delay signals from the corresponding sub-array on a per element basis according to a predetermined rule or condition.
  • Each crosspoint switch optionally exercises control on an element-by-element basis and outputs a combination from 20 sets of 4 signals, so this combination is not limited to a specific number of time-delayed signals or a specific pattern .
  • each of the crosspoint switches outputs a predetermined number of sets of arbitrarily combined signals from the individual ultrasonic transducers in the corresponding subarray.
  • each of the crosspoint switches forms a dynamic sub-array based on arbitrarily combined signals.
  • the third embodiment is capable of outputting data for generating a three-dimensional image from a two-dimensional array according to the present invention.
  • a predetermined number of adders add or sum the combined output sets of signals according to a predetermined rule.
  • the adders each receive a corresponding set of output signals from one of the crosspoint switches.
  • each of the adders outputs a single output channel signal.
  • 20 adders are optionally added to the system channel while elemental control is exercised by the process described above in forming a dynamic subarray. Reduce the number of signals to meet the requirements.
  • FIG. 7 the figure illustrates one exemplary subarray (subarray) group for improving the image quality and applicability of a two-dimensional (2D) array in one embodiment according to the present invention.
  • the ultrasound transducers are grouped into various groups in a flexible manner, and the flexibly organized groups of ultrasound transducers are delayed and summed to produce multiple outputs.
  • the ultrasound transducer is controlled on an element-by-element basis with respect to the flexibly organized group.
  • this exemplary embodiment has an array 700 with 81 ultrasonic transducers in the form of 9 rows R1-R9 and 9 columns C1-C9.
  • 9 ⁇ 9 ultrasound transducers are formed to form sub-arrays along a predetermined horizontal direction, as indicated by arrow H, with the aim of substantially improving 2D image quality. Are combined flexibly.
  • a flexibly formed subarray (subarray) according to one embodiment is selectively used to generate data relating to horizontal, ie, zero degree, two-dimensional (2D) slices (in other words, For example, in order to perform ultrasonic scanning using a bundle of 1D arrays), transducers in the same row of ultrasonic probes are connected to a delay circuit that provides the same delay time.
  • 2D two-dimensional
  • each of the subarrays consists of nine ultrasonic transducers in each one of rows R1 to R9. That is, the nine elements in each of columns C1-C9 are summed together to form a single subarray. For example, nine elements 1 are summed together in column C1, while nine elements 2 are summed together in column C2. Similarly, sets of vertically arranged elements 3 to 9 are added together in each of columns C3 to C9.
  • Subarrays are flexibly formed by certain devices, such as crosspoint switches, by combining analog signals that are individually delayed by dedicated delay circuits.
  • the sub-array When the sub-array is formed in the horizontal direction, it is possible to perform the same scan as the 1D array in which the transducers are arranged in the vertical direction. By setting the delay time in the horizontal sub-array, it is possible to focus in the vertical direction (focus in the lens direction).
  • FIG. 8 illustrates a second exemplary subarray (subarray) organization for improving image quality and applicability of a two-dimensional (2D) array in a second embodiment according to the present invention.
  • ultrasonic transducers are grouped into various groups in a flexible manner, and the flexibly organized groups of ultrasonic transducers are delayed and summed to produce multiple outputs.
  • the ultrasound transducer is controlled on an element-by-element basis with respect to the flexibly organized group.
  • this exemplary embodiment has an array 800 with 81 ultrasonic transducers in the form of 9 rows R1-R9 and 9 columns C1-C9.
  • 9 ⁇ 9 ultrasound transducers are flexible to form sub-arrays along a predetermined vertical direction indicated by arrow V for the purpose of substantially improving 2D image quality.
  • a flexibly formed sub-array (sub-array) is optionally placed in the probe to generate data for a vertical, ie 90 degree, 2D slice. Formed by adding rows of elements. Assuming that the scan direction is perpendicular to the arrow V and substantially the same as the horizontal direction, each of the subarrays consists of nine ultrasonic transducers in each of the rows R1 to R. That is, the nine elements in each of rows R1 through R9 are summed together to form a single subarray. For example, 9 elements 1 are summed together in row 1R, while 9 elements 2 are summed together in row R2. Similarly, the set of horizontally arranged elements 3 to 9 is added together in each of the rows R3 to R9. Subarrays are flexibly formed by certain devices, such as crosspoint switches, by combining analog signals that are individually delayed by dedicated delay circuits.
  • FIG. 9 illustrates a third exemplary subarray (subarray) organization for improving the image quality and applicability of a two-dimensional (2D) array in a third embodiment according to the present invention.
  • ultrasonic transducers are grouped into various groups in a flexible manner, and the flexibly organized groups of ultrasonic transducers are delayed and summed to produce multiple outputs.
  • the ultrasound transducer is controlled on an element-by-element basis with respect to the flexibly organized group.
  • this exemplary embodiment has an array 900 with 81 ultrasonic transducers in the form of 9 rows R1-R9 and 9 columns C1-C9.
  • 9 ⁇ 9 ultrasonic vibrations are formed to form nine sub-arrays along a predetermined diagonal direction, as indicated by arrow D, for the purpose of improving 2D image quality. Children are flexibly combined.
  • a flexibly formed sub-array (sub-array) is optionally used to generate data for diagonal, ie 45 degree, 2D slices.
  • each of the subarrays is a number of ultrasonic vibrations in each of the nine subarrays G1 to G9. Consists of children.
  • the first to ninth subarrays G1 and G9 are each formed by combining nine ultrasonic transducers. All nine ultrasonic transducers are marked as 1 in the first sub-array G1.
  • the nine ultrasonic transducers are marked by corresponding numbers in the second to ninth subarrays G2 to G9.
  • the number of ultrasonic transducers is the same among the nine subarrays G1 to G9, but the shape of the nine subarrays G1 to G9 differs depending on the subarray.
  • the subarrays G1 to G9 are flexibly formed by a certain type of device such as a crosspoint switch by combining analog signals individually delayed by a dedicated delay circuit.
  • FIG. 10 illustrates a fourth exemplary subarray (subarray) organization for improving the image quality and applicability of a two-dimensional (2D) array in a fourth embodiment according to the present invention.
  • each subarray has an irregular and different shape for the purpose of sidelobe suppression (hereinafter, each subarray has an irregular and different shape for the purpose of sidelobe suppression. This mode is called “sidelobe suppression mode”).
  • sidelobe suppression mode In general, ultrasonic transducers are grouped into various groups in a flexible manner, and the flexibly organized groups of ultrasonic transducers are delayed and summed to produce multiple outputs. Finally, the ultrasound transducer is controlled on an element-by-element basis with respect to the flexibly organized group.
  • this exemplary embodiment has an array 1000 with 81 ultrasonic transducers in the form of 9 rows R1-R9 and 9 columns C1-C9.
  • lower sidelobes form 9 sub-arrays in the captured data with random edges in one direction for the purpose of improving 2D image quality.
  • 9 ⁇ 9 ultrasonic transducers can be combined flexibly.
  • a subarray set parallel to the horizontal direction corresponding to FIG. 8 is used, but an irregular subarray shape as shown in FIG. 10 is triggered by the instruction from the user to shift to the “sidelobe suppression mode”.
  • Subarrays may be switched to Furthermore, the image acquired in the sidelobe suppression mode and the image acquired in the non-sidelobe suppression mode may be displayed side by side or superimposed so that the influence of the sidelobe can be seen. .
  • a flexibly formed subarray (subarray) is optionally used to generate data in the form of 2D slices.
  • each of the subarrays consists of a number of ultrasonic transducers in each of the nine subarrays G1 to G9.
  • the first to ninth subarrays G1 and G9 are each formed by combining nine ultrasonic transducers. All nine ultrasonic transducers are marked as 1 in the first sub-array G1. Similarly, the nine ultrasonic transducers are marked by corresponding numbers in the second to ninth subarrays G2 to G9.
  • the number of ultrasonic transducers is the same among the nine subarrays G1 to G9, but the shape of the nine subarrays G1 to G9 differs depending on the subarray.
  • the subarrays G1 to G9 are flexibly formed by a certain type of device such as a crosspoint switch by combining analog signals individually delayed by a dedicated delay circuit.
  • FIG. 11 illustrates a fifth exemplary subarray (subarray) tissue for improving image quality and applicability of a two-dimensional (2D) array in a fifth embodiment according to the present invention.
  • ultrasonic transducers are grouped into various groups in a flexible manner, and the flexibly organized groups of ultrasonic transducers are delayed and summed to produce multiple outputs.
  • the ultrasound transducer is controlled on an element-by-element basis with respect to the flexibly organized group.
  • this exemplary embodiment has an array 1100 with 81 ultrasonic transducers in the form of 9 rows R1-R9 and 9 columns C1-C9.
  • 9x9 ultrasound transducers are flexible to form 9 sub-arrays in the captured data with irregular edges in both directions for the purpose of improving 2D image quality.
  • a subarray set having a uniform shape such as 4 ⁇ 4 is normally used, but an irregular subarray shape as shown in FIG. 10 is triggered by receiving an instruction from the user to shift to the “sidelobe suppression mode”. Subarrays may be switched to
  • a flexibly formed subarray (subarray) is optionally used to generate data in the form of 2D slices, with each subarray Have irregular and different shapes.
  • each of the subarrays consists of a number of ultrasonic transducers in each of the nine subarrays G1 to G9.
  • the first to ninth subarrays G1 and G9 are each formed by combining nine ultrasonic transducers. All nine ultrasonic transducers are marked as 1 in the first sub-array G1. Similarly, the nine ultrasonic transducers are marked by corresponding numbers in the second to ninth subarrays G2 to G9.
  • the number of ultrasonic transducers is the same among the nine subarrays G1 to G9, but the shape of the nine subarrays G1 to G9 differs depending on the subarray.
  • the subarrays G1 to G9 are flexibly formed by a certain type of device such as a crosspoint switch by combining analog signals individually delayed by a dedicated delay circuit.
  • FIG. 12 is a flow diagram illustrating the steps or operations associated with one implementation process for a probe according to the present invention.
  • the implementation process within the probe begins at step 5 when an ultrasound pulse is transmitted towards the site and a reflected ultrasound echo is received from the site.
  • the above transmission / reception is repeated while the received image data is displayed simultaneously.
  • the reflected ultrasound echo is received at an ultrasound transducer in the array.
  • the ultrasonic transducer generates an analog signal based on the received ultrasonic echo.
  • the ultrasonic transducer is provided in the form of a two-dimensional ultrasonic transducer array. Each of the ultrasonic transducers in the array is directly connected to a corresponding one of the time delay circuits.
  • analog signals are individually delayed by an appropriate amount of time in step S10 before any other steps are performed on the analog signal.
  • the number of time delay circuits is equal to the number of ultrasonic transducers for individually time delaying analog signals.
  • time delayed signals are now dynamically grouped into flexible sub-arrays at step S20B. That is, if it is determined in step S20A that the switching step S20B occurs, according to one embodiment of the present invention, the two-dimensional ultrasonic transducer array is optional and is dynamically changed on a per element basis in step S20B. Organized into subarrays. For example, a two-dimensional ultrasound transducer array has 80 elements grouped into 5 exemplary subarrays (subarrays), each of the 5 exemplary subarrays being 4 ⁇ 4 ultrasound. Organized into vibrators.
  • each of the five subarrays has four ultrasonic transducers in both the elevation and azimuth directions.
  • step S20A and S20B element-by-element control is exercised when switching or connecting time-delayed analog signals from individual delayed circuits to dynamically form subarrays.
  • FIG. 12 also illustrates additional control steps in switching or connecting signals from individual ultrasound transducers to dynamically form subarrays in one exemplary process according to the present invention.
  • the combined signal output set from step B20B is further added or summed based on predetermined rules in step S30 according to the present invention.
  • the adders each receive a corresponding set of output signals from the crosspoint switch.
  • each of the adders outputs a single output channel signal.
  • the adder is configured to count the number of signals to meet the system channel requirements. To reduce.
  • the above process is merely illustrative of an exemplary process and is not limited to a particular implementation, such as the number of crosspoint switches and / or adders for implementing the present invention.
  • the above steps are merely illustrative of one exemplary implementation and are not limited to a specific number of output sets from a crosspoint switch for implementing the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Acoustics & Sound (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

 動的サブアレイを使用して画像品質向上等が可能な超音波診断装置及び超音波プローブを提供すること。 それぞれが受信信号を発生する複数の超音波振動子から構成された振動子アレイと、前記複数の超音波振動子に接続され、前記複数の超音波振動子が発生する各受信信号に個別の遅延時間を与える複数の時間遅延回路と、前記複数の超音波振動子から構成される複数のサブアレイを規定するための制御信号を発生する制御ユニットと、前記制御信号に応答して、前記複数の時間遅延回路と前記複数の超音波振動子との接続に関する組み合わせパターンを動的に切り替えることで前記複数のサブアレイを規定し、前記各サブアレイに対応する複数の出力信号を生成する少なくとも一つのスイッチと、前記複数の出力信号を加算する加算器と、を具備する超音波診断装置である。

Description

超音波診断装置及び超音波プローブ
 実施形態は、動的なサブアレイを形成する超音波診断装置及び超音波プローブに関する。
 図1に例示されるように、従来の超音波画像装置は、処理ユニット1と、ディスプレイユニット2と、ケーブル3と、超音波プローブ超音波振動子4は、ケーブル3を経由して処理ユニット1に接続される。処理ユニット1は、一般に、被検体内の関心領域に向けて超音波パルスを送信して、被検体から反射された超音波エコーを受信するために超音波プローブ4を制御する。処理ユニット1は、超音波プローブ4から反射された超音波信号をリアルタイムで同時に受信し、被検体の関心領域の画像を、ディスプレイユニット2上に表示するといった、さらなる処理を実行する。
 詳細には、超音波プローブ4は、超音波信号を送信して、超音波エコーを受信するために、超音波プローブ側のチャネル(すなわち、1つの振動子に対応して設けられ、当該振動子から受信信号を受け取るためにプローブ側に設けられた信号線。従って、原則的に、超音波プローブ側のチャネルは超音波振動子数に等しくなる。)にグループ化される所定の数の超音波振動子(トランスデューサ)をさらに含む。二次元(2D)画像データを撮影する、一列に超音波振動子を配列した1Dプローブの場合、チャネルの数は、一般に、64から256に及ぶ。他方で、三次元(3D)画像データを撮影する、碁盤目状に超音波振動子を配列した2Dアレイプローブの場合、市販のプローブ内で必要とされるチャネルの数は、一般に、1000を超える。上述の従来の超音波画像装置では、超音波振動子プローブ4が超音波信号を送信して、超音波エコーを受信するのと同時に、超音波振動子プローブ4は、リアルタイムの撮影のために、ケーブル3を経由して大量の反射された超音波データを処理ユニット1に同時に送る。
 最新の2Dアレイプローブの大部分では、ビーム形成は2つのステップで実行される。第1のステップは、サブアレイ(SA)ビーム形成と呼ばれ、通常、近接する要素(超音波振動子)からのアナログ信号を遅延することと、合算(加算)することとを伴う。換言すれば、近接する振動子を1つのグループ(=サブアレイ)として扱い、サブアレイ内の各振動子から得られた受信信号に対してそれぞれアナログ遅延回路によって遅延を掛け、合算することで、1つのサブアレイから遅延加算された1つの受信信号を生成する。アナログ信号は、従来技術においては、遅延されて、サブアレイ(サブアレイ)にグループ化される。例えば、アナログ信号は、通常、数千ものこれらの要素を含む2Dアレイ内の3×3個、4×3個、または4×4個の隣接要素など、所定のサブアレイサイズの要素から合算される。サブアレイのサイズは、合算された信号の数が超音波システム側(超音波診断装置本体側)のチャネル(すなわち、超音波プローブから出力され超音波診断装置本体側が入力する受信信号の数。超音波プローブから超音波診断装置本体に受信信号を送り出すための信号数を上限とする。)の数に等しいように選択される。従って、超音波診断装置本体側のチャネル数は、サブアレイの数と等価となる。
 上記第1のステップでの加算は、従来技術においては、静的に実行される(すなわち、サブアレイの数及びサイズは変更されることがない。)。残念ながら、このような静的な加算によって形成されるビームを用いた場合、いくつかの弊害が発生する。例えば、2Dアレイからの2D画像品質は、従来の1Dアレイおよび1.5Dアレイの画像品質よりも劣る。すなわち、従来のシステムでは、その回路構成に合わせてサブアレイの形状を固定している。例えば4×4個の振動子からの受信信号をまとめて1つの受信信号として扱うこととなる。従って、振動子のサイズが一定であったとすると、1つ1つの振動子に対して個別に遅延時間を設定し遅延加算する1Dアレイや1.5Dアレイに比べ、サブアレイ形状が固定され、荒いサブアレイの単位で受信信号の処理を行う従来の2Dアレイでは、空間解像度が劣ることになる。
 このように画像品質の劣化は、サブアレイの形状を規則的に固定化することで引き起こされるサイドローブの発生も原因となる。しかしながら、診断装置側で設けられるシステム側のチャネル数には限界があるため、システム側のチャネル数の制限のためにサブアレイを設けざるを得ない。
 他方で、ひとたび超音波診断装置本体側へ受信信号が送信されると、ディジタル化された受信信号を用いたビーム形成の第2のステップが行われる。このビーム形成の第2のステップは動的である。通常、ディジタル化信号は、アナログ信号が変換された後で動的なビーム形成の際に利用される。残念ながら、第2のビーム形成ステップは動的であり得るが、柔軟性の範囲は限定され、画像品質は、第1のビーム形成ステップから静的に合算されたアナログ信号によって損なわれる。さらに、このビーム形成ステップは第1のビーム形成ステップで合算及び遅延された信号を扱うため、第2のステップは、第1のステップから静的に処理された信号を動的にビーム形成する際に追加の複雑さを必要とする。
 上記のため、2Dアレイで獲得されたデータを使用して2D画像内および3D画像内の画像品質を改善するために、サブアレイを動的に組織化することが依然として所望される。
 目的は、動的サブアレイを使用して画像品質を向上させ、単一のプローブを使用する際に柔軟性も拡張することができる超音波診断装置、超音波プローブを提供することである。
 本実施形態に係る超音波診断装置は、受信した超音波に応答して、それぞれが受信信号を発生する複数の超音波振動子から構成された振動子アレイと、前記複数の超音波振動子に接続され、前記複数の超音波振動子が発生する各受信信号に個別の遅延時間を与える複数の時間遅延回路と、前記複数の超音波振動子から構成される複数のサブアレイを規定するための制御信号を発生する制御ユニットと、前記制御信号に応答して、前記複数の時間遅延回路と前記複数の超音波振動子との接続に関する組み合わせパターンを動的に切り替えることで前記複数のサブアレイを規定し、前記各サブアレイに対応する複数の出力信号を生成する少なくとも一つのスイッチと、前記複数の出力信号を加算する加算器と、を具備することを特徴とするものである。
1つの例示的な先行技術の超音波画像装置を示す図。 本発明の実施形態による超音波診断装置の第1の実施形態を例示する概略図。 本発明の実施形態によるプローブの第2の実施形態を例示する図。 本発明の実施形態によるプローブの第2の実施形態における受信ユニットおよび超音波振動子プローブの追加の構成要素を例示する図。 本発明の実施形態によるプローブ100-1の第2の実施形態における受信ユニットおよび超音波プローブの追加の構成要素を備えた、ある例示的な一次元の同等の実施形態を示す図。 本発明による第3の実施形態における2個ずつの超音波振動子を有する例示的なサブアレイのそれぞれを示す図。 本発明による一実施形態における二次元(2D)アレイの画像品質と適用性とを改善するための1つの例示的なサブアレイ(SA)組織化を示す図。 本発明による第2の実施形態における二次元(2D)アレイの画像品質と適用性とを改善するための第2の例示的なサブアレイ(SA)組織化を示す図。 本発明による第3の実施形態における二次元(2D)アレイの画像品質と適用性とを改善するための第3の例示的なサブアレイ(SA)組織化を示す図。 本発明による第4の実施形態における二次元(2D)アレイの画像品質と適用性とを改善するための第4の例示的なサブアレイ(SA)組織化を示す図。 本発明による第5の実施形態における二次元(2D)アレイの画像品質と適用性とを改善するための第5の例示的なサブアレイ(SA)組織化を示す図。 本発明によるプローブに関する、1つの実施プロセスに伴うステップまたは動作を例示するフロー図。
 本発明による超音波画像装置の実施形態は、超音波プローブ(以下、単に「プローブ」とも言う)、処理ユニットと、プローブを処理ユニットに接続するケーブルとを含む。一般に、プローブの実施形態は、従来の超音波プローブの構成、構成要素、および要素のうちの少なくともいくつかを含む。すなわち、プローブの一実施形態は、超音波パルスを生成して、それらの超音波パルスを被検体の一定の部位に向けて送信する。この実施形態は、被検体から反射された超音波エコーをやはり受信する。プローブの多くの実施形態は、一般に、ハンドヘルドデバイスであるが、いくつかの実施形態はハンドヘルドデバイスではない。
 本発明によれば、超音波診断装置の例示的な実施形態は、下で、添付の図面を参照して詳細に説明される。次に図2を参照すると、概略図は、本発明による超音波診断装置の第1の実施形態を例示する。第1の実施形態は、超音波プローブ100と、モニタ120と、タッチ入力デバイス130と、装置本体1000とを含む。超音波プローブ100の一実施形態は、装置本体1000内に格納された送信ユニット111から供給される駆動信号に基づいて超音波を発生する、圧電振動子など、複数の超音波振動子をさらに含む。
 超音波が超音波プローブ100内の圧電振動子などの超音波振動子から被検体Ptに送信されるにつれて、送信された超音波は、被検体Ptの体内組織内の音響インピーダンスの不連続面によって連続的に反射されて、反射波信号として、超音波プローブ100の圧電振動子によってやはり受信される。受信された反射波信号の振幅は、超音波を反射する不連続面の音響インピーダンスの差に依存する。例えば、送信された超音波パルスが移動血流または心臓壁の表面によって反射されるとき、反射波信号は周波数偏差によって影響を受ける。すなわち、ドプラ効果により、反射波信号の周波数偏差は、移動する被検体の超音波送信方向の速度成分に依存する。
 装置本体1000は、最終的に、超音波画像を表す信号を生成する。装置本体1000は、プローブ100から被検体内の当該部位に向けた超音波の送信ならびに超音波プローブ100における反射波の受信を制御する。装置本体1000は、そのすべてが内部バスを経由して接続される送信ユニット111と、受信ユニット112と、Bモード処理ユニット113と、ドプラ処理ユニット114と、画像処理ユニット115と、画像メモリ116と、制御ユニット117と、内部記憶ユニット118とを含む。
 送信ユニット111は、トリガ生成回路、遅延回路、パルサ回路などを含み、駆動信号を超音波プローブ100に供給する。パルサ回路は、あるレート周波数で送信超音波を形成するためのレートパルスを反復して生成する。遅延回路は、超音波プローブ100からの超音波をビームに収束して、送信指向性を決定するように、圧電振動子のそれぞれを利用するためにパルス回路からのレートパルス内の遅延時間を制御する。すなわち、パルス回路から各圧電振動子へレートパルスを発信する際の遅延時間を制御する。各圧電振動子の超音波の発信タイミングが遅延時間によって微妙に異なることによって、各圧電振動子から放射された超音波は所定の箇所で焦点を形成する。トリガ生成回路は、レートパルスに基づいて、駆動信号(駆動パルス)を超音波プローブ100に印加する。
 受信ユニット112は、遅延回路、クロスポイントスイッチなどのスイッチ、増幅回路、アナログディジタル(A/D)コンバータ、加算器などを含み、超音波プローブ100の超音波振動子において受信された反射波信号に関して様々な処理を実行することによって、反射波データを生み出す。増幅回路は反射波信号を増幅することによって利得補正を実行する。A/Dコンバータは、利得補正された反射波信号をアナログ形態からディジタル形態に変換して、遅延回路は受信指向性を判断するために必要とされる遅延時間を提供する。加算器は、A/Dコンバータからディジタル変換された反射波信号を加算することによって反射波データを生み出す。加算処理によって、一例では、加算器は、反射波信号の受信指向性に応じた方向から反射成分を強調する。上述の様式では、送信ユニット111および受信ユニット112は、それぞれ、超音波送信の間に送信指向性を制御して、超音波受信の間に受信指向性を制御する。
 上述の第1の実施形態では、クロスポイントスイッチは、超音波振動子からの出力信号のそれぞれを個々に遅延させる遅延回路からの出力のそれぞれに直接的に接続される。すなわち、クロスポイントスイッチは、サブアレイ構成ユニット115Aが発生する制御信号に応答して、ビーム形成の際に所望される要素単位の柔軟なサブアレイを動的に形成する(すなわち、形成する送信ビーム・受信ビームの形状に合わせてサブアレイの形状やサブアレイを形成する振動子の個数を調整する)ように、任意の信号超音波振動子からの個々の遅延された出力信号を任意の他のそのような超音波振動子出力と選択的に組み合わせる。
 さらに、上述の第1の実施形態では、超音波診断装置は、動的サブアレイを指定するユーザ入力に基づいて画像を形成する。タッチ入力デバイス130は、ユーザが画像を生成するために、少なくとも画像パラメータ値を入力するのを可能にする。また、サブアレイ形状を直接入力する代わりに、画像パラメータ設定ユニットにより設定された画像パラメータ値(超音波走査パラメータ値)に基づいて適切なサブアレイ形状を判定し、サブアレイ構成ユニットがサブアレイを形成しなおしてもよい。このとき、サブアレイ構成ユニット115Aは、超音波走査パラメータ値が設定されたことをトリガとして、クロスポイントスイッチに遅延回路と超音波振動子との組み合わせ、すなわちサブアレイを形成する超音波振動子の組み合わせを変更させるための制御信号を発生する。
 別の実施形態では、画像パラメータ設定ユニット130Aは、画像を生成するために、少なくとも画像パラメータ値を受信する。画像処理ユニット115は、別個のサブアレイ構成ユニット115Aを含み、動的サブアレイを画定して、動的サブアレイ形成信号を生成するためのモジュール、すなわち機能を提供する。また、別個のサブアレイ構成ユニットは、画像パラメータ設定ユニット130Aに接続され、当該画像パラメータ設定ユニット130Aを介して設定されたパラメータ値に基づいて、動的サブアレイを画定し、動的サブアレイ形成信号を生成する。サブアレイは所定の数の超音波振動子を有し、超音波振動子のそれぞれは信号を出力する。複数の時間遅延回路は、時間遅延信号を出力する目的で、超音波振動子からの信号のそれぞれを個々に遅延させるために、サブアレイに直接的に接続される。クロスポイントスイッチなど、少なくとも1つのスイッチは、時間遅延回路とサブアレイ構成ユニットとに接続されて、そのスイッチは、動的サブアレイ形成信号に基づいて動的サブアレイを規定して、動的サブアレイ信号を出力するために、時間遅延信号の任意の組合せを接続する。その後で、複数の加算器は、合算されたサブアレイ信号を出力する目的で、動的サブアレイの動的サブアレイ信号を合算するために、スイッチに接続される。最終的に、画像形成ユニット115Bは、加算されたサブアレイ信号に基づいて画像を形成する。
 なお、サブアレイの数、形状、大きさ、各サブアレイを構成する超音波振動子の数の少なくとも一つを含むサブアレイの形成パラメータは、例えば、超音波撮像のための超音波ビームの偏向角、超音波プローブが接続される超音波診断装置本体側のチャネル数等に応じて、自動的に制御されることが好ましい。また、上記サブアレイの形成パラメータの変更タイミングは、例えば、超音波撮像のための超音波走査パラメータが設定されたこと、超音波撮像のための超音波走査の被走査領域の次元(2次元、3次元スキャン等)が設定されたこと、超音波撮像のための超音波走査の方向が設定されたこと、サイドローブ抑圧モード(後述)が選択されたこと等をトリガとして、実行される。
 図3は、本発明によるプローブ100-1の第2の実施形態を例示する図である。一般に、プローブ100-1の第2の実施形態は、送信ユニット100Aと、受信ユニット100Bと、超音波振動子アレイユニット70Aとを含む。送信ユニット100Aは、超音波振動子アレイユニット70Aから被検体内の当該部位または被写体に向けて超音波パルスを制御および生成するための制御ユニット(CTRL)10Aと送信回路(Tx)20Aとをさらに含む。この点で、送信回路20Aは、内向き矢印によって示されるように、制御情報を制御ユニット10Aおよびまたは処理ユニットなどの外部ソースから受信する。
 受信ユニット100Bは、被検体内の当該部位から反射された超音波エコーを受信する振動子アレイユニット70Aからアナログ信号を受信するための受信回路(Rx)30Aをさらに含む。受信回路30Aは、オプションで、外向き矢印によって示されるように、やはり、処理ユニットなどの外部ソースにアナログ信号を送り出す。受信ユニット100Bは、アナログ電気信号を、次いで、ディジタルビームフォーマユニット(digital beam former unit)(BF)50Aによって処理されるディジタル化信号に変換するためのアナログディジタルコンバータ(ADC)40Aもさらに含む。ビームフォーマユニット50Aは、ビームデータを生成し、このビームデータは、その後、一時的でないローカルメモリ記憶装置または記憶媒体60Aの中に記憶される。
 第2の実施形態では、超音波振動子アレイユニット70Aは、受信回路30A用の、あるサイズでアレイの形に動的に構成された所定の数の超音波振動子をさらに含む。例えば、超音波振動子は、サブアレイの形に動的に構成され、超音波振動子の1つまたは複数の列など、ある部分は2D撮影データの受信専用であるのに対して、超音波振動子の残りの部分は3D/4D撮影ボリュームデータ専用である。
 次に、特に図4を参照すると、図は本発明によるプローブ100-1の第2の実施形態における受信ユニット100Bおよび超音波振動子アレイユニット70Aの追加の構成要素を例示する。一実装形態では、超音波振動子アレイユニット70Aは所定の数の超音波振動子200-1A乃至200-5Pを有する超音波振動子アレイ200を含むのに対して、受信ユニット100Bは、対応する数の時間遅延回路202と、所定の数のクロスポイントスイッチ204と、所定の数の加算器206とを含む。例示的な実施形態では、超音波振動子アレイ200の80個の超音波振動子200-1A乃至200-5Pは、4行×4列の要素で組織化される。超音波振動子200-1A乃至200-5Pは、アナログ信号を出力するために、被検体内の当該部位から反射された超音波エコーを受信する。サブアレイに属するアナログ信号のそれぞれに関して、時間遅延回路202-1A乃至202-5Pのうちの対応する1つが超音波振動子200-1A乃至200-5Pのうちの1つからアナログ信号を遅延させるために直接的に接続される。時間遅延回路202-1A乃至202-5Pは、それぞれ、時間遅延信号を生成するために、アナログ信号に関して適切な量の時間遅延を処理する。この適切な遅延は、指向性など、所定の基準に基づいて判断される。クロスポイントスイッチ204-1乃至204-5などのスイッチは、動的サブアレイを規定して、動的サブアレイ信号を出力する目的で、時間遅延信号の任意の組合せを実現するために、時間遅延回路202-1A乃至202-5Pに接続される。さらに、複数の加算器206-1A乃至206-5Dは、加算されたサブアレイ信号を出力する目的で、動的サブアレイの動的サブアレイ信号を合算するために、スイッチ204-1乃至204-5に接続される。
 さらに図4を参照すると、本発明の一実施形態によれば、二次元超音波振動子アレイ200内の超音波振動子200-1A乃至200-5Pは、最終的に要素単位ベースで動的サブアレイに組織化される(すなわち、各振動子がいずれかのサブアレイに組み入れられる)。例えば、二次元超音波振動子アレイ200は、図4に例示されるように、5個の例示的なサブアレイ(サブアレイ)200-1乃至200-5にグループ化される80個の要素を有する。5個の例示的サブアレイのそれぞれは、4×4個の超音波振動子によって組織化される。すなわち、サブアレイ200-1乃至200-5のそれぞれは、高さ方向と方位方向の両方に4個の超音波振動子を有する。第1のサブアレイ200-1では、16個の超音波振動子は、200-1A乃至200-1Pが1つのサブアレイとして個々に参照される。同様に、第2のサブアレイ200-2内の16個の超音波振動子は200-2A乃至200-2Pが1つのサブアレイとして個々に参照されるのに対して、第3のサブアレイ200-3内の16個の超音波振動子は200-3A乃至200-3Pが1つのサブアレイとして個々に参照される。上記の例示的な実装形態では、5個のサブアレイ200-1乃至200-5が存在するが、本発明によれば、サブアレイの数は特定の数に限定されない。同様に、この例示的な実装形態では、5個のサブアレイ200-1乃至200-5のそれぞれの中に16個の超音波振動子が存在するが、本発明によれば、サブアレイサイズは特定のサイズに限定されない。つまり、サブアレイの数を超音波診断装置側のチャネル数に合わせて増減させたり、サブアレイの数の増減に合わせてサブアレイのサイズ、すなわち1つのサブアレイとしてグループ化される超音波振動子の数を変更してもよい。さらに、本発明によれば、サブアレイサイズは、オプションで、サブアレイ間で異なる(すなわち、サブアレイごとに振動子の数が異なっていても構わない)。例えば、アレイ中心直下で画像解像度が高くなるような画像を生成したい場合に、アレイ中心直下のサブアレイを細かく(少ない振動子数でサブアレイを形成し)アレイ中心から離れた箇所のサブアレイを荒く(多い振動子数でサブアレイを形成し)ても構わない。同一のシステム側のチャネル数でサブアレイを形成する場合であっても、アレイ中心直下で精度のよい画像撮像が可能となる。サブアレイを細かく・荒く形成する位置は、画像パラメータなどによって調整しても構わない。もしくは、一旦少ないサブアレイ数(すなわち、サブアレイあたりの超音波振動子数の多い、粗いサブアレイ)を使って一時的なボリュームデータを撮像し、ボリュームデータに対して精細に確認したい位置についてユーザが指定する(ROIをボリュームデータ中に指定する)と、ROIの位置の直上に対応するサブアレイを細かく形成するようサブアレイを配置し直して、配置しなおしたサブアレイによってボリュームデータを再スキャンしてもよい。最後に、サブアレイのそれぞれが同じ数の超音波振動子を含む場合ですら、サブアレイ構成は特定の形に限定されない。
 本発明の任意の実施形態では、アレイ200内の超音波振動子200-1A乃至200-5Pのそれぞれは、時間遅延回路202-1A乃至202-5Pのうちの対応する1つに直接的に接続される。例えば、第1のサブアレイ200-1内の超音波振動子200-1A乃至200-1Pは、時間遅延回路202-1A乃至202-1Pにそれぞれに接続される。アレイ200内の超音波振動子200-1A乃至200-5Pのそれぞれはアナログ信号を生成して、時間遅延回路202-1A乃至202-5Pのうちの対応する1つは、アナログ信号に関して任意の他の処理が実行される前に、適切な時間量だけ(遅延時間回路に設定された時間量だけ)アナログ信号を個々に遅延させる。すなわち、本発明の実施形態によれば、時間遅延回路202-1A乃至202-5Pの数は、アナログ信号を個々に時間遅延させるための超音波振動子200-1A乃至200-5Pの数に等しい。
 図4は、本発明による一実施形態における、サブアレイを動的に形成するために、時間遅延アナログ信号を個々の超音波振動子から切り替えるか、または接続する際の超音波振動子単位の制御をさらに例示する。一実施形態では、別個のスイッチは、要素単位の制御を実施するために、サブアレイのそれぞれに専用に設けられる。上記の例示的な実装形態では、この実施形態は、超音波振動子200-1A乃至200-5Pから個々に実行された時間遅延アナログ信号に基づいて、5個の動的サブアレイ200-1乃至200-5を形成した。同じ例示的な実施形態では、5個のクロスポイントスイッチ204-1乃至204-5のそれぞれは、16個の時間遅延信号のセットをサブアレイ200-1乃至200-5のうちの対応する1つから受信する。その後、5個のクロスポイントスイッチ204-1乃至2004-5のそれぞれは、所定の規則または条件に従って(すなわち、割り当てられたサブアレイに沿って)、対応するサブアレイからの16個の時間遅延信号を要素単位ベースで選択的に組み合わせる。5個のクロスポイントスイッチ204-1乃至204-5のそれぞれは、オプションで、要素単位ベースで制御を行使して、16個の信号の4個のセットからの組合せを出力するため、この組合せは16個の時間遅延信号という特定の数、または特定のパターンに限定されない。その結果、5個のクロスポイントスイッチ204-1乃至204-5のそれぞれは、対応するサブアレイ内の個々の超音波振動子からの任意に組み合わされた信号の4個のセットを出力する。これにより、クロスポイントスイッチ204-1乃至204-5のそれぞれは、任意に組み合わされた64個の信号に基づいて、動的サブアレイを形成する。
 図4は、本発明による一実施形態では、サブアレイを動的に形成するために、個々の超音波振動子からの信号を切り替えるか、または接続する際の追加の制御も例示する。一実施形態では、加算器206-1A乃至206-5Dは、本発明による所定の規則に基づいて、組み合わされた信号のアナログ出力信号のセットをさらに加算すなわち合算する。例えば、加算器206-1A乃至206-1Dは、クロスポイントスイッチ204-1から16個の出力信号の対応するアナログ出力信号のセットをそれぞれ受信する。この例示的な実装形態では、加算器206-1A乃至206-1Dのそれぞれは単一のサブアレイ出力信号を出力する。ケーブルC内に例示されるように、超音波診断装置本体が20個の超音波診断装置本体側のチャネルC1乃至C20を有すると仮定すると、加算器206-1A乃至206-1Dは、チャネルC1乃至C4内で4個の信号をそれぞれ出力する。同様に、他の16個の加算器206-2A乃至206-2D、206-3A乃至206-3D、206-4A乃至206-4D、および206-5A乃至206-5Dは、チャネルC5乃至C20内で16個の信号をそれぞれ出力する。その結果、本発明によれば、動的サブアレイを形成する際に上述のプロセスによって要素単位の制御が行使されている間に、20個の加算器206-1A乃至206-5Dが超音波診断装置本体側のチャネル数を満たすためにサブアレイ数を調整し、超音波診断装置本体側にサブアレイ出力信号の数を削減する。
 以下、説明の簡単のため、超音波診断装置本体側のチャネル数が10である場合を例とする。超音波振動子からの出力信号に関する独立した制御により、本発明による他の実施形態では、超音波診断装置本体側のチャネル要件は、動的サブアレイ情報に基づいて柔軟に満たされる。例えば、ケーブル内に10個のチャネルを必要とする超音波診断装置の場合、本発明による上述の実施形態では、5個のクロスポイントスイッチ204-1乃至204-5のそれぞれに関して、206-1Aおよび206-1Bなど、2個の加算器が使用される。本発明による上述の実施形態では、4個の加算器のうちの2個は、超音波診断装置本体側のチャネル数である10チャネルを満たすためにゼロを出力するのに対して、別の実装形態では、4個の加算器が使用される。したがって、様々なチャネル要件を有する異なるシステムに関して、上述の動的サブアレイ形成機能を有する単一のプローブが使用される。換言すれば、サブアレイの数、形状、各サブアレイに含まれる振動子の数は、超音波診断装置本体側のチャネル数に合うように、自動的に設定される。
 上記の実施形態は、単に例示的な実装形態を示し、本発明を実施するために、特定数のクロスポイントスイッチおよびまたは加算器に限定されない。例えば、別の実施形態は、オプションで、アレイ(超音波振動子全体)内の超音波振動子の数と同じ数の入力を受信する単一のクロスポイントスイッチを使用して実施される。同様に、上記の実施形態は、単に1つの例示的な実装形態を示し、本発明を実施するクロスポイントスイッチからの特定数の出力セットに限定されない。
 上述の第2の実施形態では、クロスポイントスイッチは、超音波振動子からの出力信号のそれぞれを個々に遅延させる遅延回路からの出力のそれぞれに直接的に接続される。すなわち、クロスポイントスイッチは、任意の単一の超音波振動子からの個々に遅延された出力信号を、ビーム形成のために動的に形成されたサブアレイ内の任意のその他のそのような超音波振動子出力と選択的に組み合わせる。言い換えると、サブアレイは、要素単位ベースでビーム形成の際に柔軟な形で形成される。
 さらに、この図は、本発明によるプローブ100-1の第2の実施形態に関する受信ユニット100Bおよび超音波振動子アレイユニット70Aの追加の構成要素を例示する。上述の構成は第2の実施形態に限定されず、オプションで、本発明による第1の実施形態およびその他の実施形態に適用可能である。この図は、分かりやすくするため例示され、本実施形態の説明を分かりやくするために、2Dアレイのかなり削減された数の要素を含む。
 次に、図5を参照すると、図は、本発明によるプローブ100-1の第2の実施形態における受信ユニット100Bおよび超音波振動子アレイユニット70Aの追加の構成要素を備えた、ある例示的な一次元の同等の実施形態を示す。一般に、受信ユニット100Bの一実装形態は、所定の数のサブアレイ300-1乃至300-20を有する超音波振動子アレイ300と、対応する数の遅延回路302-1乃至302-20と、加算器304とを含む。超音波振動子アレイ300の超音波振動子300-1乃至300-64は、所定の次元の20行を有する、20個のサブアレイ300-1乃至300-20に組織化され、それぞれの行は、アナログ信号を出力するために、被検体の当該部位から反射された超音波エコーを受信するための4個の要素を有する。20個のサブアレイ300-1乃至300-20は、プローブ100-1内で同等の一次元アレイを実施するために動的に形成される。図5の図に示される一次元プローブは、20個の出力がケーブルの20チャネルシステム要件に整合する前に、遅延回路、クロスポイントスイッチ、および加算器など、追加の構成要素を必要としない。
 さらに図5を参照すると、ある代替実施形態では、遅延回路302-1乃至302-20のうちの対応する1つは、サブアレイ300-1乃至300-20 1のそれぞれに直接的に接続可能である。時間遅延回路302-1乃至302-20は、遅延信号を生成するために、アナログ信号に関して適切な量の時間遅延をそれぞれ処理する。加算器304は、信号を合算するために接続される。上記の一次元アレイからの画像は、動的ビーム形成によって生成される。したがって、第1の実施形態は、二次元アレイから二次元画像を生成するためだけでなく、シミュレートされた一次元アレイから二次元画像を生成するためにもデータを出力することが可能である。言い換えると、例示的な実施形態は、1つの行に電子的に構成可能であり、したがって、1Dアレイのように振る舞う二次元アレイ超音波振動子を有する。例えば、2Dアレイの1つの行に並べられた振動子を1つのサブアレイとしてグルーピングすることができる。この場合、1つの行に並べられた振動子を1つの大きな振動子として扱うことにより、実質振動子が列方向に並べられた1Dアレイと同様のスキャンを行うことが可能となる。行方向のサブアレイに遅延時間を与えることにより、列方向に(レンズ方向に)フォーカスさせることもできる。
 同様に、3Dスキャンは、本発明による上述の実施形態を使用して、サブアレイを動的に形成することによって実施される。次に図6を参照すると、例示的なサブアレイのそれぞれは、本発明による第3の実施形態では2×2個の超音波振動子を有するとして例示される。超音波振動子アレイ400の80個の超音波振動子400-1A乃至400-20Dは、所定の次元の2行と2列とを有する20個のサブアレイ300-1乃至300-20に組織化される。すなわち、サブアレイ300-1乃至300-20のそれぞれは、アナログ信号を出力するために、被検体内の当該部位から反射された超音波エコーを受信するための4個の要素、すなわち、2×2個の要素を有する。例えば、サブアレイ400-1は、4個の要素、すなわち、400-1Aと、400-1Bと、400-C1と、400-Dとを有する。同様に、第2のサブアレイ400-2内の4個の超音波振動子は、400-2A乃至400-2Dとして個々に参照されるのに対して、第3のサブアレイ400-3内の4個の超音波振動子は、400-3A乃至400-3Dとして個々に参照される。すなわち、サブアレイ400-1乃至400-20のそれぞれは、仰角方向と方位方向の両方に2個の超音波振動子を有する。
 20個のサブアレイ400-1乃至400-20からの信号は、プローブ100-1に等しい二次元アレイを実施するために動的に合算される。分かりやすくするために、図6の図は、80個のチャネル出力がケーブルの20チャネル要件に整合する前に、遅延回路、クロスポイントスイッチ、および加算器など、追加の構成要素の例示を省略している。例示されないが、要素単位の制御は、本発明による例示的な実施例では、二次元サブアレイを動的に形成するために、個々の超音波振動子からの時間遅延アナログ信号を切り替えるか、または接続することによって達成される。一実施形態では、要素単位の制御を実施するために、別個のスイッチがサブアレイのそれぞれに専用に設けられる。上記の例示的な実装形態では、この実施形態は、超音波振動子400-1A乃至400-20Dから個々に実行された時間遅延アナログ信号に基づいて、20個の動的サブアレイ400-1乃至400-20を形成した。同じ例示的な実施形態で、所定の数のクロスポイントスイッチは、サブアレイ400-1乃至400-20のうちの対応する1つから時間遅延信号のセットを受信する。その後、クロスポイントスイッチのそれぞれは、所定の規則または条件に従って、要素単位ベースで対応するサブアレイからの時間遅延信号を選択的に組み合わせる。クロスポイントスイッチのそれぞれは、オプションで、要素単位ベースで制御を行使して、4個の信号の20セットから組合せを出力するため、この組合せは特定数の時間遅延信号または特定のパターンに限定されない。その結果、クロスポイントスイッチのそれぞれは、対応するサブアレイ内の個々の超音波振動子からの任意に組み合わされた信号の所定の数のセットを出力する。したがって、クロスポイントスイッチのそれぞれは、任意に組み合わされた信号に基づいて、動的サブアレイを形成する。したがって、第3の実施形態は、本発明に従って二次元アレイから三次元画像を生成するためにデータを出力することが可能である。
 さらに、図6に示されるような例示的な実施形態に関して、所定の数の加算器は、本発明によれば、所定の規則に従って組み合わされた信号の出力セットを加算すなわち合算する。例えば、加算器は、クロスポイントスイッチのうちの1つから出力信号の対応するセットをそれぞれ受信する。この例示的な実装形態では、加算器のそれぞれは、単一の出力チャネル信号を出力する。要約すれば、本発明によれば、20個の加算器は、オプションで、動的サブアレイを形成する際の上述のプロセスによって要素単位の制御が行使されている間に、オプションで、システムのチャネル要件を満たすために信号の数を削減する。
 次に、図7を参照すると、図は、本発明による一実施形態における二次元(2D)アレイの画像品質と適用性とを改善するための1つの例示的なサブアレイ(サブアレイ)グループを示す。一般に、超音波振動子は、柔軟な形で様々なグループにグループ化され、超音波振動子の柔軟に組織化されたグループは、遅延されて、複数の出力を生み出すために合算される。最終的に、超音波振動子は、上記の柔軟に組織化されたグループに関して要素単位ベースで制御される。説明のために、この例示的な実施形態は、9行R1乃至R9および9列C1乃至C9の形で、81個の超音波振動子を備えたアレイ700を有する。例示的なアレイ700では、2D画像品質を実質的に改善する目的で、矢印Hによって示されるように、所定の水平方向に沿ってサブアレイを形成するために、9×9個の超音波振動子は柔軟に組み合わされる。
 さらに図7を参照すると、一実施形態に従う柔軟に形成されたサブアレイ(サブアレイ)は、選択的に、水平の、すなわち、ゼロ度の二次元(2D)スライスに関するデータを生成するために(換言すれば、1Dアレイの束による超音波走査を実行するために)、超音波プローブの同一列の振動子を同一の遅延時間を与える遅延回路に接続することで形成される。
スキャン方向は矢印Hによって示される水平方向と実質的に同じであると仮定すると、サブアレイのそれぞれは、行R1乃至R9の1つ1つの中の9個の超音波振動子からなる。すなわち、列C1乃至C9のそれぞれの中の9個の要素は、単一のサブアレイを形成するために共に合算される。例えば、9個の要素1は列C1内で共に合算されるのに対して、9個の要素2は列C2内で共に合算される。同様に、垂直に配置された要素3乃至9のセットは、列C3乃至C9のそれぞれの中でそれぞれ合算される。サブアレイは、専用の遅延回路によって個々に遅延されているアナログ信号を組み合わせることによって、クロスポイントスイッチなど、ある種のデバイスによって柔軟に形成される。水平方向にサブアレイを形成する場合、垂直方向に振動子が配列された1Dアレイと同様のスキャンを行うことが可能となる。水平方向のサブアレイ内で遅延時間を設定しておくことにより、垂直方向に対するフォーカス(レンズ方向のフォーカス)を行うことが可能となる。
 次に、図8を参照すると、図は、本発明による第2の実施形態における二次元(2D)アレイの画像品質と適用性とを改善するための第2の例示的なサブアレイ(サブアレイ)組織化を示す。一般に、超音波振動子は、柔軟な形で様々なグループにグループ化され、超音波振動子の柔軟に組織化されたグループは、遅延されて、複数の出力を生成するために合算される。最終的に、超音波振動子は、上記の柔軟に組織化されたグループに関して要素単位ベースで制御される。説明のために、この例示的な実施形態は、9行R1乃至R9および9列C1乃至C9の形で、81個の超音波振動子を備えたアレイ800を有する。例示的なアレイ800では、2D画像品質を実質的に改善する目的で、矢印Vによって示される所定の垂直方向に沿ってサブアレイを形成するために、9×9個の超音波振動子は柔軟に組み合わされる。
 さらに図8を参照すると、本発明による第2の実施形態では、柔軟に形成されたサブアレイ(サブアレイ)は、オプションで、垂直の、すなわち90度の2Dスライスに関するデータを生成するためにプローブ内に要素の行を加算することによって形成される。スキャン方向が矢印Vに垂直で、水平方向と実質的に同じであると仮定すると、サブアレイのそれぞれは、行R1乃至Rの1つ1つの中の9個の超音波振動子からなる。すなわち、行R1乃至R9のそれぞれの中の9個の要素は、単一のサブアレイを形成するために共に合算される。例えば、9個の要素1は行1R内で共に合算されるのに対して、9個の要素2は行R2内で共に合算される。同様に、水平に配置された要素3乃至9のセットは、行R3乃至R9のそれぞれの中でそれぞれ合算される。サブアレイは、専用の遅延回路によって個々に遅延されているアナログ信号を組み合わせることによって、クロスポイントスイッチなど、ある種のデバイスによって柔軟に形成される。
 次に、図9を参照すると、図は、本発明による第3の実施形態における二次元(2D)アレイの画像品質と適用性とを改善するための第3の例示的なサブアレイ(サブアレイ)組織化を示す。一般に、超音波振動子は、柔軟な形で様々なグループにグループ化され、超音波振動子の柔軟に組織化されたグループは、遅延されて、複数の出力を生成するために合算される。最終的に、超音波振動子は、上記の柔軟に組織化されたグループに関して要素単位ベースで制御される。説明のために、この例示的な実施形態は、9行R1乃至R9および9列C1乃至C9の形で、81個の超音波振動子を備えたアレイ900を有する。例示的なアレイ900では、2D画像品質を改善する目的で、矢印Dによって示されるように、所定の対角方向に沿って9個のサブアレイを形成するために、9×9個の超音波振動子は柔軟に組み合わされる。
 さらに図9を参照すると、本発明による第3の実施形態では、柔軟に形成されたサブアレイ(サブアレイ)は、オプションで、斜めの、すなわち、45度の2Dスライスに関するデータを生成するために使用される。スキャン方向が矢印Dに対して45度で、水平方向と実質的に同じであると仮定すると、サブアレイのそれぞれは、9個のサブアレイ G1乃至G9の1つ1つの中のある数の超音波振動子からなる。例えば、第1乃至第9のサブアレイ G1およびG9は、それぞれ、9個の超音波振動子を組み合わせることによって形成される。第1のサブアレイ G1内で、9個の超音波振動子はすべて1とマーキングされる。同様に、9個の超音波振動子は、第2乃至第9のサブアレイ G2乃至G9の対応する数によってマーキングされる。超音波振動子の数は9個のサブアレイ G1乃至G9間で同じであるが、9個のサブアレイ G1乃至G9の形はサブアレイによって異なる。サブアレイ G1乃至G9は、専用の遅延回路によって個々に遅延されているアナログ信号を組み合わせることによって、クロスポイントスイッチなど、ある種のデバイスによって柔軟に形成される。
 次に、図10を参照すると、図は、本発明による第4の実施形態における二次元(2D)アレイの画像品質と適用性とを改善するための第4の例示的なサブアレイ(サブアレイ)組織化を示すものである。当該例では、サイドローブ抑制を目的として、各サブアレイは、互いに不規則で異なる形状となっている(以下、このように、サイドローブ抑制を目的として、各サブアレイは、互いに不規則で異なる形状とするモードを「サイドローブ抑圧モード」と呼ぶ)。一般に、超音波振動子は、柔軟な形で様々なグループにグループ化され、超音波振動子の柔軟に組織化されたグループは、遅延されて、複数の出力を生成するために合算される。最終的に、超音波振動子は、上記の柔軟に組織化されたグループに関して要素単位ベースで制御される。説明のために、この例示的な実施形態は、9行R1乃至R9および9列C1乃至C9の形で、81個の超音波振動子を備えたアレイ1000を有する。例示的なアレイ1000では、低サイドローブ(lower side lobes)が2D画像品質を改善する目的で、一方向に不規則なエッジ(random edges)を有する撮影データ内に9個のサブアレイを形成するために、9×9個の超音波振動子は柔軟に組み合わされる。通常は、図8相当の水平方向に平行なサブアレイセットを使用するが、ユーザから「サイドローブ抑圧モード」へ移行するよう指示を受けたことを契機として、図10のような不規則なサブアレイ形状にサブアレイを切り替えてもよい。さらに、サイドローブ抑圧モードによって取得された画像と、非サイドローブ抑圧モードによって取得された画像とを、並べて、或いは重畳させて表示するようにし、サイドローブによる影響がわかるように表示してもよい。
 さらに図10を参照すると、本発明による別の実施形態では、柔軟に形成されたサブアレイ(サブアレイ)は、オプションで、2Dスライスの形でデータを生成するために使用される。データが所定の方向に不規則なエッジを有すると仮定すると、サブアレイのそれぞれは、9個のサブアレイ G1乃至G9の1つ1つの中のある数の超音波振動子からなる。例えば、第1乃至第9のサブアレイ G1およびG9は、それぞれ、9個の超音波振動子を組み合わせることによって形成される。第1のサブアレイ G1内で、9個の超音波振動子はすべて1とマーキングされる。同様に、9個の超音波振動子は、第2乃至第9のサブアレイ G2乃至G9の対応する数によってマーキングされる。超音波振動子の数は9個のサブアレイ G1乃至G9間で同じであるが、9個のサブアレイ G1乃至G9の形はサブアレイによって異なる。サブアレイ G1乃至G9は、専用の遅延回路によって個々に遅延されているアナログ信号を組み合わせることによって、クロスポイントスイッチなど、ある種のデバイスによって柔軟に形成される。
 次に、図11を参照すると、図は、本発明による第5の実施形態における二次元(2D)アレイの画像品質と適用性とを改善するための第5の例示的なサブアレイ(サブアレイ)組織化を示す。一般に、超音波振動子は、柔軟な形で様々なグループにグループ化され、超音波振動子の柔軟に組織化されたグループは、遅延されて、複数の出力を生成するために合算される。最終的に、超音波振動子は、上記の柔軟に組織化されたグループに関して要素単位ベースで制御される。説明のために、この例示的な実施形態は、9行R1乃至R9および9列C1乃至C9の形で、81個の超音波振動子を備えたアレイ1100を有する。例示的なアレイ1100では、2D画像品質を改善する目的で、両方向に不規則なエッジを有する撮影データ内で9個のサブアレイを形成するために、9×9個の超音波振動子は柔軟に組み合わされる。また、通常は4×4などの均一形状のサブアレイセットを使用するが、ユーザから「サイドローブ抑圧モード」へ移行するよう指示を受けたことを契機として、図10のような不規則なサブアレイ形状にサブアレイを切り替えてもよい。
 さらに図11を参照すると、本発明による別の実施形態では、柔軟に形成されたサブアレイ(サブアレイ)は、オプションで、2Dスライスの形でデータを生成するために使用されるものであり、各サブアレイは、互いに不規則で異なる形状となっている。データが所定の二方向に不規則なエッジを有すると仮定すると、サブアレイのそれぞれは、9個のサブアレイ G1乃至G9の1つ1つの中のある数の超音波振動子からなる。例えば、第1乃至第9のサブアレイ G1およびG9は、それぞれ、9個の超音波振動子を組み合わせることによって形成される。第1のサブアレイ G1内で、9個の超音波振動子はすべて1とマーキングされる。同様に、9個の超音波振動子は、第2乃至第9のサブアレイ G2乃至G9の対応する数によってマーキングされる。超音波振動子の数は9個のサブアレイ G1乃至G9間で同じであるが、9個のサブアレイ G1乃至G9の形はサブアレイによって異なる。サブアレイ G1乃至G9は、専用の遅延回路によって個々に遅延されているアナログ信号を組み合わせることによって、クロスポイントスイッチなど、ある種のデバイスによって柔軟に形成される。
 図12は、本発明によるプローブに関する、1つの実施プロセスに伴うステップまたは動作を例示するフロー図である。プローブ内で実施プロセスは、ステップ5で、超音波パルスが当該部位に向けて送信されて、反射超音波エコーが当該部位から受信されるときに開始する。1つの実施されたプロセスでは、上述の送受信は反復されると同時に、受信された画像データが同時に表示されている。反射超音波エコーは、アレイ内の超音波振動子において受信される。超音波振動子は、受信された超音波エコーに基づいてアナログ信号を生成する。超音波振動子は、二次元超音波振動子アレイの形で提供される。アレイ内の超音波振動子のそれぞれは、時間遅延回路のうちの対応する1つに直接的に接続される。本発明による1つの例示的なプロセスでは、アナログ信号は、アナログ信号に関して、いずれかの他のステップが実行される前に、ステップS10で、適切な時間量だけ個々に遅延される。一実装形態では、本発明による実施形態では、時間遅延回路の数は、アナログ信号を個々に時間遅延するための超音波振動子の数に等しい。
 さらに図12を参照すると、本発明による1つの例示的なプロセスで、時間遅延された信号は、このとき、ステップS20Bで、柔軟なサブアレイに動的にグループ化される。すなわち、ステップS20Aで切替えステップS20Bが発生することが判断された場合、本発明の一実施形態によれば、二次元超音波振動子アレイは、オプションで、ステップS20Bにおいて、要素単位ベースで動的サブアレイに組織化される。例えば、二次元超音波振動子アレイは5個の例示的なサブアレイ(サブアレイ)にグループ化された80個の要素を有し、5個の例示的なサブアレイのそれぞれは4×4個の超音波振動子に組織化される。すなわち、本発明による1つの例示的なプロセスで、5個のサブアレイのそれぞれは、仰角方向と方位方向の両方に4個の超音波振動子を有する。ステップS20AおよびS20Bで、サブアレイを動的に形成するために、個々の遅延された回路から時間遅延アナログ信号を切り替えるか、または接続する際に要素単位の制御が行使される。
 図12は、本発明による1つの例示的なプロセスで、サブアレイを動的に形成するために、個々の超音波振動子からの信号を切り替えるか、または接続する際の追加の制御ステップも例示する。1つの例示的なプロセスでは、ステップB20Bからの組み合わされた信号の出力セットは、本発明によるステップS30で、所定の規則に基づいてさらに加算すなわち合算される。例えば、加算器は、クロスポイントスイッチから出力信号の対応するセットをそれぞれ受信する。この例示的な実装形態では、加算器のそれぞれは単一の出力チャネル信号を出力する。ステップS30の一実装形態では、本発明に従って動的なサブアレイを形成する際の上述のプロセスによって要素単位の制御が行使されている間に、加算器はシステムのチャネル要件を満たすために信号の数を削減する。
 上記のプロセスは、ある例示的なプロセスを単に説明し、本発明を実施するためのクロスポイントスイッチおよびまたは加算器の数など、特定の実装形態に限定されない。同様に、上記のステップは、1つの例示的な実装形態を単に説明し、本発明を実施するための、クロスポイントスイッチから特定数の出力セットに限定されない。
 いくつかの実施形態が説明されてきたが、これらの実施形態は例としてだけ提示されており、本発明の範囲を限定することが意図されない。実際には、本明細書で説明された新規性のある方法およびシステムは、様々なその他の形で実施可能である。さらに、本発明の趣旨から逸脱せずに、本明細書で説明された方法およびシステムの形で様々な省略、置換、および変更を行うことが可能である。添付の請求項およびその均等物は、本発明の範囲に包含されることになるそのような形または修正を網羅することが意図される。

Claims (11)

  1.  受信した超音波に応答して、それぞれが受信信号を発生する複数の超音波振動子から構成された振動子アレイと、
     前記複数の超音波振動子に接続され、前記複数の超音波振動子が発生する各受信信号に個別の遅延時間を与える複数の時間遅延回路と、
     前記複数の超音波振動子から構成される複数のサブアレイを規定するための制御信号を発生する制御ユニットと、
     前記制御信号に応答して、前記複数の時間遅延回路と前記複数の超音波振動子との接続に関する組み合わせパターンを動的に切り替えることで前記複数のサブアレイを規定し、前記各サブアレイに対応する複数の出力信号を生成する少なくとも一つのスイッチと、
     前記複数の出力信号を加算する加算器と、
     を具備することを特徴とする超音波診断装置。
  2.  前記少なくとも一つのスイッチは、クロスポイントスイッチであることを特徴とする請求項1記載の超音波診断装置。
  3.  前記制御ユニットは、超音波撮像のための超音波ビームの偏向角に応じて前記各サブアレイの形状が変更されるように、前記制御信号を発生することを特徴とする請求項1又は2記載の超音波診断装置。
  4.  前記制御ユニットは、前記各サブアレイを互いに異なる形状とするように、前記制御信号を発生することを特徴とする請求項1又は2記載の超音波診断装置。
  5.  前記制御ユニットは、前記振動子アレイを有する超音波プローブが接続される超音波診断装置本体側のチャネル数に応じて、前記複数のサブアレイの数を制御することを特徴とする請求項1乃至4のうちいずれか一項記載の超音波診断装置。
  6.  前記制御ユニットは、超音波撮像のための超音波走査パラメータが設定されたことをトリガとして、前記制御信号を発生することを特徴とする請求項1又は2記載の超音波診断装置。
  7.  前記制御ユニットは、超音波撮像のための超音波走査の被走査領域の次元が設定されたことをトリガとして、前記制御信号を発生することを特徴とする請求項6記載の超音波診断装置。
  8.  前記制御ユニットは、超音波撮像のための超音波走査の方向が設定されたことをトリガとして、前記制御信号を発生することを特徴とする請求項6記載の超音波診断装置。
  9.  前記制御ユニットは、サイドローブ低減モードが選択されたことをトリガとして、前記制御信号を発生することを特徴とする請求項6記載の超音波診断装置。
  10.  前記各時間遅延回路は、ベースバンドにダウンコンバートすること、及び前記ベースバンドをアップコンバートすること、の少なくとも一方を実施することで、前記各受信信号に個別の遅延時間を与えることを特徴とする請求項1乃至9のうちいずれか一項記載の超音波診断装置。
  11.  受信した超音波に応答して、それぞれが受信信号を発生する複数の超音波振動子から構成された振動子アレイと、
     前記複数の超音波振動子に接続され、前記複数の超音波振動子が発生する各受信信号に個別の遅延時間を与える複数の時間遅延回路と、
     超音波診断装置からの制御信号に応答して、前記複数の時間遅延回路と前記複数の超音波振動子との接続に関する組み合わせパターンを動的に切り替えることで前記複数のサブアレイを規定し、前記各サブアレイに対応する複数の出力信号を生成する少なくとも一つのスイッチと、
     前記複数の出力信号を加算する加算器と、
     を具備することを特徴とする超音波プローブ。
PCT/JP2013/082745 2012-12-05 2013-12-05 超音波診断装置及び超音波プローブ WO2014088079A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201380063368.6A CN104822325A (zh) 2012-12-05 2013-12-05 超声波诊断装置以及超声波探头

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US13/705,864 US20140155751A1 (en) 2012-12-05 2012-12-05 Method and system for element-by-element flexible subarray beamforming
US13/705,864 2012-12-05
JP2013252063A JP2014113490A (ja) 2012-12-05 2013-12-05 超音波診断装置及び超音波プローブ
JP2013-252063 2013-12-05

Publications (1)

Publication Number Publication Date
WO2014088079A1 true WO2014088079A1 (ja) 2014-06-12

Family

ID=50883491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/082745 WO2014088079A1 (ja) 2012-12-05 2013-12-05 超音波診断装置及び超音波プローブ

Country Status (1)

Country Link
WO (1) WO2014088079A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016084344A1 (en) * 2014-11-28 2016-06-02 Canon Kabushiki Kaisha Photoacoustic array probe with subgroups comprising non-adjoining transducers
US10959701B2 (en) 2014-11-28 2021-03-30 Canon Kabushiki Kaisha Probe, transducer unit, and subject information acquisition apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000033087A (ja) * 1998-05-28 2000-02-02 Hewlett Packard Co <Hp> グル―プ内プロセッサを有するフェ―ズドアレイ音響装置
JP2005034633A (ja) * 2003-06-25 2005-02-10 Aloka Co Ltd 超音波診断装置
JP2005040418A (ja) * 2003-07-24 2005-02-17 Aloka Co Ltd 超音波診断装置
JP2006102391A (ja) * 2004-10-08 2006-04-20 Matsushita Electric Ind Co Ltd 超音波診断装置
JP2007029268A (ja) * 2005-07-25 2007-02-08 Matsushita Electric Ind Co Ltd 超音波診断装置
JP2007044193A (ja) * 2005-08-09 2007-02-22 Aloka Co Ltd 超音波診断装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000033087A (ja) * 1998-05-28 2000-02-02 Hewlett Packard Co <Hp> グル―プ内プロセッサを有するフェ―ズドアレイ音響装置
JP2005034633A (ja) * 2003-06-25 2005-02-10 Aloka Co Ltd 超音波診断装置
JP2005040418A (ja) * 2003-07-24 2005-02-17 Aloka Co Ltd 超音波診断装置
JP2006102391A (ja) * 2004-10-08 2006-04-20 Matsushita Electric Ind Co Ltd 超音波診断装置
JP2007029268A (ja) * 2005-07-25 2007-02-08 Matsushita Electric Ind Co Ltd 超音波診断装置
JP2007044193A (ja) * 2005-08-09 2007-02-22 Aloka Co Ltd 超音波診断装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016084344A1 (en) * 2014-11-28 2016-06-02 Canon Kabushiki Kaisha Photoacoustic array probe with subgroups comprising non-adjoining transducers
US10959701B2 (en) 2014-11-28 2021-03-30 Canon Kabushiki Kaisha Probe, transducer unit, and subject information acquisition apparatus

Similar Documents

Publication Publication Date Title
JP2014113490A (ja) 超音波診断装置及び超音波プローブ
JP4386683B2 (ja) 超音波送受信装置及び超音波送受信方法
US11391838B2 (en) Ultrasound transducer arrays with variable patch geometries
Karaman et al. Minimally redundant 2-D array designs for 3-D medical ultrasound imaging
JP5137832B2 (ja) 容積測定画像形成のための湾曲2次元アレイ超音波トランスデューサ及び方法
US20080294050A1 (en) Ultrasonic Imaging Apparatus
US9314223B2 (en) Multi-stage digital ultrasound beamformer
JP4610719B2 (ja) 超音波撮影装置
JP6434629B2 (ja) 超音波撮像装置および超音波探触子
US10245005B2 (en) Ultrasound transducer probe with microbeamformer for multiline imaging
JP2018526177A (ja) 遅延補正されたフレネルサブ開口を用いてビーム形成するフェーズドアレイ及びフレネルゾーンプレートの組み合わせのシステム及び方法
CN107569254B (zh) 超声波信号处理装置、超声波信号处理方法以及超声波诊断装置
WO2014088079A1 (ja) 超音波診断装置及び超音波プローブ
US10383601B2 (en) Acoustic wave processing apparatus, signal processing method, and program for acoustic wave processing apparatus
CN109416400B (zh) 具有大线性阵列的快速合成聚焦超声成像
JP4599408B2 (ja) 超音波診断装置
Boni et al. Prototype 3D real-time imaging system based on a sparse PZT spiral array
JP2008183288A (ja) 超音波診断装置
JP2002165790A (ja) 超音波撮影装置
JP7169157B2 (ja) 超音波診断装置及びその動作方法
JP2015186494A (ja) 超音波診断装置
JP4418491B2 (ja) 超音波撮像装置
Kim et al. Hybrid beamformation for volumetric ultrasound imaging scanners using 2-D array transducers
JP2002165792A (ja) 超音波診断方法および装置
JP2019154977A (ja) 超音波診断装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13860677

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13860677

Country of ref document: EP

Kind code of ref document: A1