WO2020164299A1 - 超声成像宽波束发射方法及发射系统 - Google Patents

超声成像宽波束发射方法及发射系统 Download PDF

Info

Publication number
WO2020164299A1
WO2020164299A1 PCT/CN2019/123867 CN2019123867W WO2020164299A1 WO 2020164299 A1 WO2020164299 A1 WO 2020164299A1 CN 2019123867 W CN2019123867 W CN 2019123867W WO 2020164299 A1 WO2020164299 A1 WO 2020164299A1
Authority
WO
WIPO (PCT)
Prior art keywords
probe
delay
probe element
emission line
emission
Prior art date
Application number
PCT/CN2019/123867
Other languages
English (en)
French (fr)
Inventor
凌涛
孙凤
Original Assignee
飞依诺科技(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 飞依诺科技(苏州)有限公司 filed Critical 飞依诺科技(苏州)有限公司
Publication of WO2020164299A1 publication Critical patent/WO2020164299A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data

Definitions

  • the invention belongs to the field of medical ultrasonic diagnostic imaging, and in particular relates to a wide-beam transmitting method and a transmitting system for ultrasonic imaging.
  • Ultrasound imaging has become one of the most widely used clinical diagnostic tools because of its non-invasive, real-time, convenient operation, low price and many other advantages.
  • Commonly used functional modes of ultrasound imaging include two-dimensional black and white (B) mode, spectral Doppler mode (PW/CW), and color flow mode (CF/PDI).
  • B mode relies on the amplitude of the ultrasonic echo signal for imaging, and obtains the two-dimensional structure and morphological information of the tissue.
  • the basic principles of /CW and CF/PDI modes are the Doppler effect, which both rely on the phase of the ultrasound echo signal for imaging, and obtain blood flow information such as speed, direction, and energy.
  • the core components of ultrasound imaging equipment include: probe, probe board, transmitter/receiver board, transmitter/receiver control board, beamformer, signal and image processing unit, and display.
  • the basic workflow is: the probe emits a focused ultrasonic beam, and the probe is different
  • the primitive receives the ultrasonic echo signal and enters each channel for amplification and filtering.
  • the channel-level signal undergoes beam synthesis to obtain a radio frequency signal (RF signal).
  • RF signal radio frequency signal
  • the scanning process is repeated until a frame of radio frequency signal with a certain line density is obtained.
  • the quadrature signal (IQ signal) is obtained through demodulation and filtering.
  • the quadrature signal is processed to obtain an image, and the image is post-processed and finally displayed on the display.
  • the bulletin number "CN101190133A” and the invention title “Wide beam transmission method and device in ultrasonic diagnostic system” disclose a technology for realizing wide beam transmission, which divides the transmission aperture of the ultrasound probe into N Sub-apertures, and the focal point is divided into N sub-focuss laterally.
  • N sub-apertures and N sub-focuss establish a one-to-one correspondence.
  • Each sub-aperture has M elements, all of which are focused on the sub-focus corresponding to the aperture, and the pulse is generated
  • the N sub-apertures of the ultrasound probe are excited by the N sub-aperture to obtain a transversely stretched transmitting sound field.
  • the transmitting sound fields of the N sub-apertures are respectively superimposed after focusing at their corresponding sub-focuses, and finally form a sound field that can cover all received linewidth beams; Both N and M are integers greater than 2.
  • This solution divides the probe into sub-apertures and focuses the sub-apertures separately and then superimposes the sound field, which makes it possible to transmit a wide beam that can cover all the receiving line ranges from an ultrasonic machine that transmits unipolar or bipolar transmit waveforms.
  • a transmitting aperture is divided into several sub-apertures, each sub-aperture focuses on a focal point at a different lateral position at the same depth, and the position of each focal point corresponds to one of the receiving lines.
  • the purpose is to evenly distribute the sound field energy of each emission to multiple adjacent receiving lines to ensure that the multiple receiving lines received in parallel have relatively uniform energy, but the technology still shows strong focus at the focal point. Although it has stronger energy and better resolution at the focal depth, the energy becomes weaker and the resolution becomes worse outside the focal depth, which is shown in the image as the gray scale and resolution consistency of the near, middle and far fields. not good.
  • the announcement number "CN101396282A” and the invention title “Arc Wide Beam Transmission Method and Device for Ultrasonic Imaging” disclose another technology for realizing wide beam transmission.
  • This scheme sets the parameters of the focus arc, and based on the set parameters of the focus arc, calculates the emission delay of each element in the probe launch aperture to control each element to emit ultrasound.
  • This scheme adopts circular arc focusing, which changes the calculation method of strong focusing transmission delay, so that the beam is no longer focused to a point to obtain a wide beam.
  • the second solution of the prior art changes the emission focus into a focus arc, and its purpose is to evenly distribute the sound field energy of each emission to the focus arc, and increase the transmit beam width to ensure that the multiple receiving lines received in parallel have relatively uniform energy ;
  • This technology has stronger energy and better resolution at the depth of the focused arc, but the energy becomes weaker and the resolution becomes worse outside the depth of the focused arc.
  • the image is shown as gray in the near, middle and far fields. The order and resolution are not consistent.
  • the purpose of the present invention is to provide a wide-beam transmitting method and transmitting method for ultrasound imaging.
  • an embodiment of the present invention provides a wide-beam emission method for ultrasound imaging, the method comprising: sequentially setting a plurality of focal points arranged at equal intervals along the depth direction at the position of the emission line;
  • the probe primitives arranged symmetrically on both sides form a set of probe primitive groups, and each probe primitive group is arranged to focus on each set in sequence.
  • the probe primitive group closest to the midpoint of the emission line position corresponds to the focal point with the shallowest depth
  • the probe primitive group farthest from the midpoint of the emission line position corresponds to the focal point with the deepest depth
  • the method further includes:
  • the emission delay of each group of probe element groups corresponding to the emission channel is obtained;
  • each probe element group transmits the ultrasound signal according to its corresponding transmission delay through the transmission channel and focuses on its corresponding focal point.
  • the emission delay of each group of probe element groups corresponding to the emission channel is obtained.
  • the transmission delay corresponding to the probe element is expressed as:
  • Fm is the focal depth corresponding to the probe element i
  • dx is the lateral distance of the probe element i from the emission line
  • c is the propagation velocity of the ultrasonic wave.
  • the emission delay of each group of probe element groups corresponding to the emission channel is obtained.
  • the transmission delay corresponding to the probe element is expressed as:
  • Fm is the focal depth corresponding to the probe element i
  • ROC is the radius of curvature of the probe element i
  • is the deflection angle of the probe element i from the emission line
  • c is the propagation velocity of the ultrasonic wave.
  • the emission delay of each group of probe element groups corresponding to the emission channel is obtained.
  • the transmission delay corresponding to the probe element is expressed as:
  • Fm is the focal depth corresponding to the probe element i
  • dx is the lateral distance of the probe element i from the emission line
  • is the deflection angle of the emission line
  • c is the propagation velocity of the ultrasonic wave.
  • the method further includes:
  • the transmission delay delay(i) is converted to a positive number
  • min(delay) means to take the smallest negative value in the delay array
  • abs() means to find the absolute value of the number in parentheses.
  • an embodiment of the present invention provides an ultrasonic imaging wide-beam transmitting system, the system includes: a configuration module for sequentially setting a plurality of equally spaced focal points along the depth direction at the position of the transmitting line ;
  • the focusing module is used to take the position of the emission line as the midpoint, so that the two or two symmetrical probe primitives on both sides form a set of probe primitive groups, and make each probe primitive group focus sequentially in the order of arrangement At each focus set;
  • the probe primitive group closest to the midpoint of the emission line position corresponds to the focal point with the shallowest depth
  • the probe primitive group farthest from the midpoint of the emission line position corresponds to the focal point with the deepest depth
  • the system further includes: a delay processing module for acquiring each group of probes according to the distance and/or angle of the probe element from the emission line and the depth of the focal point corresponding to the probe element
  • the primitive group corresponds to the transmission delay of the transmission channel
  • each probe element group transmits the ultrasound signal according to its corresponding transmission delay through the transmission channel and focuses on its corresponding focal point.
  • the delay processing module is specifically configured to:
  • the transmission delay corresponding to the probe element is expressed as:
  • Fm is the focal depth corresponding to the probe element i
  • dx is the lateral distance of the probe element i from the emission line
  • c is the propagation velocity of the ultrasonic wave.
  • the delay processing module is specifically configured to:
  • the transmission delay corresponding to the probe element is expressed as:
  • Fm is the focal depth corresponding to the probe element i
  • ROC is the radius of curvature of the probe element i
  • is the deflection angle of the probe element i from the emission line
  • c is the propagation velocity of the ultrasonic wave.
  • the delay processing module is specifically configured to:
  • the transmission delay corresponding to the probe element is expressed as:
  • Fm is the focal depth corresponding to the probe element i
  • dx is the lateral distance of the probe element i from the emission line
  • is the deflection angle of the emission line
  • c is the propagation velocity of the ultrasonic wave.
  • the delay processing module is specifically configured to:
  • the transmission delay delay(i) is converted to a positive number
  • min(delay) means to take the smallest negative value in the delay array
  • abs() means to find the absolute value of the number in parentheses.
  • the beneficial effects of the present invention are: the ultrasonic imaging wide-beam transmitting method and transmitting system of the present invention can realize wide-beam transmission, and focus on each focus in the depth direction sequentially through symmetrical probe primitives, The beam width and energy uniformity in the depth direction are better, so that the near, middle, and far field grayscale and resolution are better consistent with ultrasound images.
  • FIG. 1 is a schematic flowchart of an ultrasonic imaging wide-beam emission method according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of the structure of the probe element and the focal point corresponding to the focal point in a specific example of the present invention
  • FIG. 3 is a schematic flowchart of a method for transmitting a wide beam of ultrasound imaging according to a preferred embodiment of the present invention
  • FIG. 4 is a schematic diagram showing the comparison between the emission sound field of the traditional single focus focusing method and the emission sound field of an embodiment of the present invention
  • Fig. 5 is a schematic diagram of modules of an ultrasonic imaging wide-beam transmitting system in an embodiment of the present invention.
  • an embodiment of the present invention provides a method for transmitting a wide beam of ultrasound imaging.
  • the method includes: sequentially setting a plurality of focal points arranged at equal intervals along the depth direction at the position of the transmitting line; taking the position of the transmitting line as At the midpoint, the probe primitives arranged symmetrically on both sides form a group of probe primitive groups, and each probe primitive group is arranged to focus on each focal point in turn;
  • the probe primitive group closest to the midpoint of the emission line position corresponds to the focal point with the shallowest depth
  • the probe primitive group farthest from the midpoint of the emission line position corresponds to the focal point with the deepest depth.
  • the upper solid box in the figure represents the probe element 10
  • the vertical dashed line in the vertical direction ie, the depth direction
  • the emission line 20 represents the emission line 20
  • the solid circle represents the focus point 30.
  • the symmetrical probe element 10 is connected to the same focal point of its two-by-two focusing by the inclined dotted line.
  • Fstart represents the position of the first focus that is the starting focus
  • Fend represents the position of the last focus that is the end focus
  • m The value is any integer between 1 and M.
  • the number of probe primitives is usually not fixed. It can be an odd or even number. In this embodiment, by rounding down, the number of probe primitives can be achieved. pair.
  • the number of probe primitives is 18, and the two-by-two symmetrical probe primitives are divided into one group, which is divided into 9 groups of probe primitive groups.
  • the depth direction is equal. 9 focal points are set at intervals, the shallowest focal point in the depth direction is the starting focal point, and the deepest focal point is the ending focal point; among them, according to its arrangement position, the first probe element and the 18th probe element form a probe base Tuples, and focus on the 9th focal point with the deepest depth in the depth direction.
  • the 9th probe primitive and the 10th probe primitive form a probe primitive group, and focus on the deepest focal point with the shallowest depth. 1 focus.
  • the method further includes: acquiring each group of probes according to the distance and/or angle of the probe element from the emission line and the depth of the focal point corresponding to the probe element
  • the primitive group corresponds to the transmission delay of the transmission channel; in the imaging process, each probe primitive group transmits the ultrasound signal through the transmission channel according to its corresponding transmission delay and focuses on its corresponding focal point.
  • the factors that affect the transmission delay also include the types of probes, such as linear array probes, arc array probes, and phased array probes. Specific analysis will be made below.
  • Fm is the focal depth corresponding to the probe element i
  • dx is the lateral distance of the probe element i from the emission line
  • c is the propagation velocity of the ultrasonic wave.
  • the probe is an arc array probe
  • Fm is the focal depth corresponding to the probe element i
  • ROC is the radius of curvature of the probe element i
  • is the deflection angle of the probe element i from the emission line
  • c is the propagation velocity of the ultrasonic wave.
  • Fm is the focal depth corresponding to the probe element i
  • dx is the lateral distance of the probe element i from the emission line
  • is the deflection angle of the emission line
  • c is the propagation velocity of the ultrasonic wave.
  • min(delay) means to take the smallest negative value in the delay array
  • abs() means to find the absolute value of the number in parentheses.
  • the calculated emission delay can be sent to the hardware layer, and the hardware layer controls the emission channel corresponding to each probe element to emit ultrasonic signals according to the corresponding delay to achieve the desired focusing effect.
  • the emission sound field of the traditional single focus focusing method is compared with the emission sound field of a specific example of the present invention.
  • the emission sound field of the traditional single focus focusing method is "hourglass”. "Strong focus of the shape, narrow beam width, strong energy, and good resolution in the focal zone, wider beam width outside the focal zone, weaker energy, and poorer resolution; while the emission sound field of the present invention is weakly focused, although at the expense of The resolution of a part of the original focal area position, but the beam width, energy uniformity and resolution consistency of the whole field are better.
  • the present invention changes the traditional single-focus focusing method in the depth direction into a multi-focus focusing method (similar to line focusing), which greatly increases the width of the transmitted beam, so that the transmitted sound field can cover multiple parallel beam technologies.
  • the receiving line sacrifices a part of the image resolution of the focal position, it improves the energy uniformity and resolution consistency of the near, middle, and far fields, and improves the performance of ultrasound images to a certain extent.
  • an embodiment of the present invention provides an ultrasonic imaging wide-beam transmitting system.
  • the system includes: a configuration module 100, a focus module 200, and a delay processing module 300.
  • the configuration module 100 is used to sequentially set a plurality of focal points arranged at equal intervals along the depth direction at the position of the emission line.
  • the focusing module 200 is used to take the position of the emission line as the midpoint, so that the two or two symmetrically arranged probe elements on both sides form a set of probe element groups, and each probe element group is sequentially focused in the arrangement order For each focal point set; among them, the probe primitive group closest to the midpoint of the emission line position corresponds to the focal point with the shallowest depth, and the probe primitive group farthest from the midpoint of the emission line position corresponds to the focal point with the deepest depth.
  • the delay processing module 300 is used to obtain the emission delay of the emission channel corresponding to each probe element group according to the distance and/or angle of the probe element from the emission line and the depth of the focal point corresponding to the probe element; in the imaging process, Each probe element group transmits the ultrasonic signal according to its corresponding transmission delay through the transmission channel and focuses on its corresponding focal point.
  • the factors that affect the transmission delay also include the types of probes, such as linear array probes, arc array probes, and phased array probes. Specific analysis will be made below.
  • the delay processing module 300 is also used to: if the acquired transmission delays are negative numbers, then the transmission
  • the delay processing module 300 is also used to send the calculated transmission delay to the hardware layer, and the hardware layer controls the transmission channel corresponding to each probe element to transmit the ultrasonic signal according to the corresponding delay to achieve the desired focusing effect. .
  • the ultrasonic imaging wide-beam transmitting method and transmitting system of the present invention can realize wide-beam transmission, and focus on each focus in the depth direction through the symmetrical probe element in turn, so that the beam width in the depth direction is equal to
  • the energy uniformity is better, so that the near, middle, and far field grayscale and resolution uniformity of ultrasound images are better.
  • the device implementations described above are only illustrative.
  • the modules described as separate components may or may not be physically separated, and the components displayed as modules may or may not be physical modules, that is, they may be located in One place, or it can be distributed to multiple network modules. Some or all of the modules may be selected according to actual needs to achieve the objectives of the solutions of this embodiment. Those of ordinary skill in the art can understand and implement it without creative work.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Surgery (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

一种超声成像宽波束发射方法,包括:在发射线(20)位置沿深度方向上依次设置多个等间距排列的焦点(30);以发射线(20)位置为中点,使其两侧每一两两对称设置的探头基元(10)分别形成一组探头基元组,并使每一探头基元组按排布顺序依次聚焦于所设置的每一个焦点(30);其中,距离发射线(20)位置中点最近的探头基元组对应具有最浅深度的焦点(30),距离发射线(20)位置中点最远的探头基元组对应具有最深深度的焦点(30)。这种超声成像宽波束发射方法及发射系统可以实现宽波束发射,且通过对称探头基元依次聚焦于深度方向上的每一个焦点,而使得深度方向上的波束宽度和能量均匀性较好,从而获得近、中、远场灰阶和分辨率一致性较好的超声图像。

Description

超声成像宽波束发射方法及发射系统 技术领域
本发明属于医用超声诊断成像领域,尤其涉及一种超声成像宽波束发射方法及发射系统。
背景技术
超声成像因为其无创性、实时性、操作方便、价格便宜等诸多优势,使其成为临床上应用最为广泛的诊断工具之一。超声成像常用的功能模式包括二维黑白(B)模式、频谱多普勒模式(PW/CW)以及彩色血流模式(CF/PDI)。B模式依赖于超声回波信号的幅度进行成像,获取的是组织二维结构和形态信息,回波信号强度越大则对应的图像像素灰度值越大,反之则灰度值越小;PW/CW以及CF/PDI模式的基本原理都是多普勒效应,均依赖于超声回波信号的相位进行成像,获取的是速度、方向、能量等血流信息。
超声成像设备的核心部件包括:探头、探头板、发射/接收板、发射/接收控制板、波束形成器、信号与图像处理单元、显示器,其基本工作流程是:探头发射聚焦超声波束,探头不同基元接收超声回超信号并进入每一个通道进行放大、滤波处理,通道级信号进行波束合成得到射频信号(RF信号),重复上述扫查过程直至得到一定线密度的一帧射频信号,射频信号经过解调滤波处理得到正交信号(IQ信号),正交信号经过处理得到图像,图像经过后处理最终经显示器显示。
早期超声成像通常一次扫查只能形成同一位置的一根接收线,因此图像帧频较低,后来出现的并行波束技术实现了一次扫查得到邻近位置的多根接收线,大大提高了图像帧频。近年来,由于电子技术和计算机技术的发展,一次扫查可以形成多达16根接收线。传统超声成像扫查时通常发射单焦点聚焦超声波束,导致深度方向上能量和分辨率不均匀,焦区附近的能量较高、分辨率较好, 而焦区以外的能量较低、分辨率较差;并且单焦点聚焦超声波束在焦区位置呈强聚焦,波束较窄,无法覆盖多根接收线,并不适用于较多接收线的并行波束技术。为了解决该问题,需要设计一种宽波束发射方法,使得发射声场能覆盖多根接收线。
现有的技术方案一中,公告号“CN101190133A”,发明名称“超声波诊断系统中宽波束的发射方法和装置”公开了一种实现宽波束发射的技术,该方案将超声探头的发射孔径分成N个子孔径,以及将焦点横向切分为N个子焦点,N个子孔径与N个子焦点建立一一对应关系,每个子孔径有M个阵元,全部都聚焦于与该孔径对应的子焦点,脉冲发生器激励超声探头的N个子孔径获得一个横向拉伸的发射声场,N个子孔径的发射声场分别在其对应的子焦点聚焦后相叠加,最后形成一个能覆盖所有接收线宽波束的声场;其中,N和M均为大于2的整数。该方案通过对探头划分子孔径并使各子孔径分别聚焦后叠加声场的方法,使得在发射单极性或者双极性发射波形的超声机器发射能覆盖所有接收线范围的宽波束成为可能。上述方案一把发射孔径分为若干个子孔径,每个子孔径聚焦于同一深度上不同横向位置的一个焦点,每一个焦点所在的位置对应其中一根接收线。因此,其目的是把每次发射的声场能量平均分配到相邻的多根接收线上,保证并行接收的多根接收线具有较为均匀的能量,但是该技术仍然在焦点位置表现出强聚焦,虽然在焦点深度具有较强的能量和较好的分辨率,但在焦点深度以外能量则变弱且分辨率变差,表现在图像上就是近、中、远场的灰阶和分辨率一致性不好。
现有的技术方案二中,公告号“CN101396282A”,发明名称“用于超声成像的圆弧宽波束发射方法与装置”公开了另一种实现宽波束发射的技术。该方案设置聚焦圆弧的参数,并基于所设置的聚焦圆弧的参数,计算探头发射孔径中各阵元的发射延时控制各阵元发射超声波。该方案采用圆弧聚焦,改变了强聚焦发射延时计算方法,从而使得波束不再聚焦为一点,以获得宽波束。现有技术方案二把发射焦点变成聚焦圆弧,其目的是把每次发射的声场能量平均分配 到聚焦圆弧上,增加发射波束宽度以保证并行接收的多根接收线具有较为均匀的能量;该技术在聚焦圆弧深度具有较强的能量和较好的分辨率,但是在聚焦圆弧深度以外则能量变弱且分辨率变差,表现在图像上就是近、中、远场的灰阶和分辨率一致性不好。
发明内容
为解决上述技术问题,本发明的目的在于提供一种超声成像宽波束发射方法及发射方法。
为了实现上述发明目的之一,本发明一实施方式提供一种超声成像宽波束发射方法,所述方法包括:在发射线位置沿深度方向上依次设置多个等间距排列的焦点;
以发射线位置为中点,使其两侧每一两两对称设置的探头基元分别形成一组探头基元组,并使每一探头基元组按排布顺序依次聚焦于所设置的每一个焦点;
其中,距离发射线位置中点最近的探头基元组对应具有最浅深度的焦点,距离发射线位置中点最远的探头基元组对应具有最深深度的焦点。
作为本发明一实施方式的进一步改进,所述方法还包括:
根据探头基元距离发射线的距离和/或角度、以及探头基元对应的焦点的深度获取每组探头基元组对应发射通道的发射延时;
在成像过程中,每一探头基元组通过发射通道按照其对应的发射延时发射超声信号并聚焦于其所对应的焦点。
作为本发明一实施方式的进一步改进,“根据探头基元距离发射线的距离和/或角度、以及探头基元对应的焦点的深度获取每组探头基元组对应发射通道的发射延时”具体包括:
若探头为线阵探头,则探头基元对应的发射延时表示为:
delay(i)=(Fm-sqrt(Fm2+dx2))/c,
其中,Fm为探头基元i对应的焦点深度,dx为探头基元i离发射线的横向距离,c为超声波的传播速度。
作为本发明一实施方式的进一步改进,“根据探头基元距离发射线的距离和/或角度、以及探头基元对应的焦点的深度获取每组探头基元组对应发射通道的发射延时”具体包括:
若探头为弧阵探头,则探头基元对应的发射延时表示为:
delay(i)=(Fm–sqrt((Fm+ROC)2+ROC2–2*(Fm+ROC)*ROC*cos(θ)))/c,
其中,Fm为探头基元i对应的焦点深度,ROC为探头基元i的曲率半径,θ为探头基元i离发射线的偏转角度,c为超声波的传播速度。
作为本发明一实施方式的进一步改进,“根据探头基元距离发射线的距离和/或角度、以及探头基元对应的焦点的深度获取每组探头基元组对应发射通道的发射延时”具体包括:
若探头为相控阵探头,则探头基元对应的发射延时表示为:
delay(i)=(Fm–sqrt(Fm2+dx2–2*Fm*dx*cos(π/2-θ)))/c,
其中,Fm为探头基元i对应的焦点深度,dx为探头基元i离发射线的横向距离,θ为发射线偏转角度,c为超声波的传播速度。
作为本发明一实施方式的进一步改进,所述方法还包括:
若获得的发射延时为负数,则将所述发射延时delay(i)转换为正数,
delay(i)=delay(i)+abs(min(delay)),
其中,min(delay)表示取delay数组中的最小负值,abs()表示对括号中的数求绝对值。
为了解决上述发明目的另一,本发明一实施方式提供一种超声成像宽波束发射系统,所述系统包括:配置模块,用于在发射线位置沿深度方向上依次设置多个等间距排列的焦点;
对焦模块,用于以发射线位置为中点,使其两侧每一两两对称设置的探头基元分别形成一组探头基元组,并使每一探头基元组按排布顺序依次聚焦于所 设置的每一个焦点;
其中,距离发射线位置中点最近的探头基元组对应具有最浅深度的焦点,距离发射线位置中点最远的探头基元组对应具有最深深度的焦点。
作为本发明一实施方式的进一步改进,所述系统还包括:延时处理模块,用于根据探头基元距离发射线的距离和/或角度、以及探头基元对应的焦点的深度获取每组探头基元组对应发射通道的发射延时;
在成像过程中,每一探头基元组通过发射通道按照其对应的发射延时发射超声信号并聚焦于其所对应的焦点。
作为本发明一实施方式的进一步改进,所述延时处理模块具体用于:
若探头为线阵探头,则探头基元对应的发射延时表示为:
delay(i)=(Fm-sqrt(Fm2+dx2))/c,
其中,Fm为探头基元i对应的焦点深度,dx为探头基元i离发射线的横向距离,c为超声波的传播速度。
作为本发明一实施方式的进一步改进,所述延时处理模块具体用于:
若探头为弧阵探头,则探头基元对应的发射延时表示为:
delay(i)=(Fm–sqrt((Fm+ROC)2+ROC2–2*(Fm+ROC)*ROC*cos(θ)))/c,
其中,Fm为探头基元i对应的焦点深度,ROC为探头基元i的曲率半径,θ为探头基元i离发射线的偏转角度,c为超声波的传播速度。
作为本发明一实施方式的进一步改进,所述延时处理模块具体用于:
若探头为相控阵探头,则探头基元对应的发射延时表示为:
delay(i)=(Fm–sqrt(Fm2+dx2–2*Fm*dx*cos(π/2-θ)))/c,
其中,Fm为探头基元i对应的焦点深度,dx为探头基元i离发射线的横向距离,θ为发射线偏转角度,c为超声波的传播速度。
作为本发明一实施方式的进一步改进,所述延时处理模块具体用于:
若获得的发射延时为负数,则将所述发射延时delay(i)转换为正数,
delay(i)=delay(i)+abs(min(delay)),
其中,min(delay)表示取delay数组中的最小负值,abs()表示对括号中的数求绝对值。
与现有技术相比,本发明的有益效果是:本发明的超声成像宽波束发射方法及发射系统,可以实现宽波束发射,且通过对称探头基元依次聚焦于深度方向上的每一个焦点,而使得深度方向上的波束宽度和能量均匀性较好,从而获得近、中、远场灰阶和分辨率一致性较好的超声图像。
附图说明
图1是本发明一实施方式的超声成像宽波束发射方法的流程示意图;
图2是本发明一具体示例中探头基元与焦点对应于焦点的结构示意图;
图3是本发明较佳实施方式的超声成像宽波束发射方法的流程示意图;
图4图为传统单焦点聚焦方式的发射声场与本发明一实施例的发射声场对比示意图;
图5是本发明一实施方式中超声成像宽波束发射系统的模块示意图。
具体实施方式
以下将结合附图所示的具体实施方式对本发明进行详细描述。但这些实施方式并不限制本发明,本领域的普通技术人员根据这些实施方式所做出的结构、方法、或功能上的变换均包含在本发明的保护范围内。
如图1所示,本发明一实施方式中提供一种超声成像宽波束发射方法,所述方法包括:在发射线位置沿深度方向上依次设置多个等间距排列的焦点;以发射线位置为中点,使其两侧每一两两对称设置的探头基元分别形成一组探头基元组,并使每一探头基元组按排布顺序依次聚焦于所设置的每一个焦点;其中,距离发射线位置中点最近的探头基元组对应具有最浅深度的焦点,距离发射线位置中点最远的探头基元组对应具有最深深度的焦点。
如图2所示,本发明一具体示例中,图示中上方实心方框表示探头基元 10,竖直方向(即深度方向)的竖直虚线表示发射线20,实心圆表示聚焦点30,对称探头基元10通过倾斜虚线连接至其两两聚焦的同一焦点。
接续上述示例,假设发射孔径的探头基元数量为N,沿深度方向依次设置M=floor(N/2)个等间隔排列的焦点,floor表示向下取整,则第m个焦点的深度可表示为Fm=Fstart+(m-1)*(Fend–Fstart)/(M-1),其中Fstart表示第一个焦点即起始焦点的位置,Fend表示最后一个焦点即结束焦点的位置,m的取值为1至M之间的任一整数,探头基元的数量通常不固定,其可以为奇数也可以为偶数,本实施方式中,通过向下取整,即可实现各个探头基元的配对。
本发明具体示例中,如图2所示,探头基元的数量为18个,两两对称的探头基元分为一组,共分为9组探头基元组,相应的,深度方向上等间距设置9个焦点,深度方向上最浅的焦点为起始焦点,最深的焦点为结束焦点;其中,按照其排布位置,第1个探头基元与第18个探头基元形成一个探头基元组,并聚焦于深度方向上具有最深深度的第9个焦点,第9个探头基元与第10个探头基元形成一个探头基元组,并聚焦于深度方向上具有最浅深度的第1个焦点。
进一步的,结合图3所示,本发明较佳实施方式中,所述方法还包括:根据探头基元距离发射线的距离和/或角度、以及探头基元对应的焦点的深度获取每组探头基元组对应发射通道的发射延时;在成像过程中,每一探头基元组通过发射通道按照其对应的发射延时发射超声信号并聚焦于其所对应的焦点。
本发明较佳实施方式中,影响发射延时的因素还包括探头的类型,例如:线阵探头、弧阵探头、相控阵探头,以下进行具体分析。
本发明第一实施方式中,探头为线阵探头,则探头基元对应的发射延时表示为:delay(i)=(Fm-sqrt(Fm 2+dx 2))/c;
其中,Fm为探头基元i对应的焦点深度,dx为探头基元i离发射线的横向距离,c为超声波的传播速度。
本发明第二实施方式中,探头为弧阵探头,则探头基元对应的发射延时表示为:delay(i)=(Fm–sqrt((Fm+ROC) 2+ROC 2–2*(Fm+ROC)*ROC*cos(θ)))/c;
其中,Fm为探头基元i对应的焦点深度,ROC为探头基元i的曲率半径,θ为探头基元i离发射线的偏转角度,c为超声波的传播速度。
本发明第三实施方式中,探头为相控阵探头,则探头基元对应的发射延时表示为:delay(i)=(Fm–sqrt(Fm 2+dx 2–2*Fm*dx*cos(π/2-θ)))/c;
其中,Fm为探头基元i对应的焦点深度,dx为探头基元i离发射线的横向距离,θ为发射线偏转角度,c为超声波的传播速度。
实际应用中,获得的发射延时大部分为负数,此时,为了实际需求,若获得的发射延时为负数,则将所述发射延时delay(i)转换为正数,即通过下述公式进行转换,delay(i)=delay(i)+abs(min(delay));
其中,min(delay)表示取delay数组中的最小负值,abs()表示对括号中的数求绝对值。
在成像过程中,可以将计算好的发射延时送往硬件层,硬件层控制每个探头基元对应的发射通道按照相应的延时发射出超声波信号,达到预期的聚焦效果。
结合图4所示,本发明一具体示例中,将传统单焦点聚焦方式的发射声场与本发明一具体示例的发射声场进行对比,从图示可知:传统单焦点聚焦方式的发射声场呈“沙漏”形状的强聚焦,焦区的波束宽度窄、能量强、分辨率好,焦区外波束宽度变宽、能量变弱、分辨率变差;而本发明的发射声场呈弱聚焦,虽然牺牲了一部分原焦区位置的分辨率,但整场的波束宽度、能量均匀性和分辨率一致性较好。
如上,本发明将传统的深度方向上单焦点聚焦的方式变成多焦点聚焦(类似于线聚焦)的方式,极大的提高了发射波束的宽度,使得发射声场能覆盖并行波束技术的多根接收线,虽然牺牲了一部分焦区位置的图像分辨率,但是改善了近、中、远场的能量均匀性与分辨率一致性,一定程度上提高了超声图像的性能。
结合图5所示,本发明一实施方式提供一种超声成像宽波束发射系统,所 述系统包括:配置模块100,对焦模块200以及延时处理模块300。
配置模块100用于在发射线位置沿深度方向上依次设置多个等间距排列的焦点。
对焦模块200用于以发射线位置为中点,使其两侧每一两两对称设置的探头基元分别形成一组探头基元组,并使每一探头基元组按排布顺序依次聚焦于所设置的每一个焦点;其中,距离发射线位置中点最近的探头基元组对应具有最浅深度的焦点,距离发射线位置中点最远的探头基元组对应具有最深深度的焦点。
延时处理模块300用于根据探头基元距离发射线的距离和/或角度、以及探头基元对应的焦点的深度获取每组探头基元组对应发射通道的发射延时;在成像过程中,每一探头基元组通过发射通道按照其对应的发射延时发射超声信号并聚焦于其所对应的焦点。
本发明较佳实施方式中,影响发射延时的因素还包括探头的类型,例如:线阵探头、弧阵探头、相控阵探头,以下进行具体分析。
所述延时处理模块300具体用于:若探头为线阵探头,则探头基元对应的发射延时表示为:delay(i)=(Fm-sqrt(Fm 2+dx 2))/c,其中,Fm为探头基元i对应的焦点深度,dx为探头基元i离发射线的横向距离,c为超声波的传播速度。
若探头为弧阵探头,则探头基元对应的发射延时表示为:delay(i)=(Fm–sqrt((Fm+ROC) 2+ROC 2–2*(Fm+ROC)*ROC*cos(θ)))/c,其中,Fm为探头基元i对应的焦点深度,ROC为探头基元i的曲率半径,θ为探头基元i离发射线的偏转角度,c为超声波的传播速度。
若探头为相控阵探头,则探头基元对应的发射延时表示为:delay(i)=(Fm–sqrt(Fm 2+dx 2–2*Fm*dx*cos(π/2-θ)))/c,其中,Fm为探头基元i对应的焦点深度,dx为探头基元i离发射线的横向距离,θ为发射线偏转角度,c为超声波的传播速度。
实际应用中,获得的发射延时大部分为负数,此时,为了实际需求,较佳的,所述延时处理模块300还用于:若获得的发射延时为负数,则将所述发射延时delay(i)转换为正数,即通过下述公式进行转换,delay(i)=delay(i)+abs(min(delay));其中,min(delay)表示取delay数组中的最小负值,abs()表示对括号中的数求绝对值。
进一步的,延时处理模块300还用于将计算好的发射延时送往硬件层,硬件层控制每个探头基元对应的发射通道按照相应的延时发射出超声波信号,达到预期的聚焦效果。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统的具体工作过程,可以参考前述方法实施方式中的对应过程,在此不再赘述。
综上所述,本发明的超声成像宽波束发射方法及发射系统,可以实现宽波束发射,且通过对称探头基元依次聚焦于深度方向上的每一个焦点,而使得深度方向上的波束宽度和能量均匀性较好,从而获得近、中、远场灰阶和分辨率一致性较好的超声图像。
为了描述的方便,描述以上装置时以功能分为各种模块分别描述。当然,在实施本发明时可以把各模块的功能在同一个或多个软件和/或硬件中实现。
以上所描述的装置实施方式仅仅是示意性的,其中所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络模块上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施方式方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施方式中的技术方案也可以经适当 组合,形成本领域技术人员可以理解的其他实施方式。
上文所列出的一系列的详细说明仅仅是针对本发明的可行性实施方式的具体说明,它们并非用以限制本发明的保护范围,凡未脱离本发明技艺精神所作的等效实施方式或变更均应包含在本发明的保护范围之内。

Claims (12)

  1. 一种超声成像宽波束发射方法,其特征在于,所述方法包括:
    在发射线位置沿深度方向上依次设置多个等间距排列的焦点;
    以发射线位置为中点,使其两侧每一两两对称设置的探头基元分别形成一组探头基元组,并使每一探头基元组按排布顺序依次聚焦于所设置的每一个焦点;
    其中,距离发射线位置中点最近的探头基元组对应具有最浅深度的焦点,距离发射线位置中点最远的探头基元组对应具有最深深度的焦点。
  2. 根据权利要求1所述的超声成像宽波束发射方法,其特征在于,所述方法还包括:
    根据探头基元距离发射线的距离和/或角度、以及探头基元对应的焦点的深度获取每组探头基元组对应发射通道的发射延时;
    在成像过程中,每一探头基元组通过发射通道按照其对应的发射延时发射超声信号并聚焦于其所对应的焦点。
  3. 根据权利要求2所述的超声成像宽波束发射方法,其特征在于,“根据探头基元距离发射线的距离和/或角度、以及探头基元对应的焦点的深度获取每组探头基元组对应发射通道的发射延时”具体包括:
    若探头为线阵探头,则探头基元对应的发射延时表示为:
    delay(i)=(Fm-sqrt(Fm 2+dx 2))/c,
    其中,Fm为探头基元i对应的焦点深度,dx为探头基元i离发射线的横向距离,c为超声波的传播速度。
  4. 根据权利要求2所述的超声成像宽波束发射方法,其特征在于,“根据探头基元距离发射线的距离和/或角度、以及探头基元对应的焦点的深度获取每组探头基元组对应发射通道的发射延时”具体包括:
    若探头为弧阵探头,则探头基元对应的发射延时表示为:
    delay(i)=(Fm–sqrt((Fm+ROC) 2+ROC 2–2*(Fm+ROC)*ROC*cos(θ)))/c,
    其中,Fm为探头基元i对应的焦点深度,ROC为探头基元i的曲率半径,θ为探头基元i离发射线的偏转角度,c为超声波的传播速度。
  5. 根据权利要求2所述的超声成像宽波束发射方法,其特征在于,“根据探头基元距离发射线的距离和/或角度、以及探头基元对应的焦点的深度获取每组探头基元组对应发射通道的发射延时”具体包括:
    若探头为相控阵探头,则探头基元对应的发射延时表示为:
    delay(i)=(Fm–sqrt(Fm 2+dx 2–2*Fm*dx*cos(π/2-θ)))/c,
    其中,Fm为探头基元i对应的焦点深度,dx为探头基元i离发射线的横向距离,θ为发射线偏转角度,c为超声波的传播速度。
  6. 根据权利要求3至5中的任意一项所述的超声成像宽波束发射方法,其特征在于,所述方法还包括:
    若获得的发射延时为负数,则将所述发射延时delay(i)转换为正数,
    delay(i)=delay(i)+abs(min(delay)),
    其中,min(delay)表示取delay数组中的最小负值,abs()表示对括号中的数求绝对值。
  7. 一种超声成像宽波束发射系统,其特征在于,所述系统包括:
    配置模块,用于在发射线位置沿深度方向上依次设置多个等间距排列的焦点;
    对焦模块,用于以发射线位置为中点,使其两侧每一两两对称设置的探头基元分别形成一组探头基元组,并使每一探头基元组按排布顺序依次聚焦于所设置的每一个焦点;
    其中,距离发射线位置中点最近的探头基元组对应具有最浅深度的焦点,距离发射线位置中点最远的探头基元组对应具有最深深度的焦点。
  8. 根据权利要求7所述的超声成像宽波束发射系统,其特征在于,所述系统还包括:延时处理模块,用于根据探头基元距离发射线的距离和/或角度、以及探头基元对应的焦点的深度获取每组探头基元组对应发射通道的发射延时;
    在成像过程中,每一探头基元组通过发射通道按照其对应的发射延时发射超声信号并聚焦于其所对应的焦点。
  9. 根据权利要求8所述的超声成像宽波束发射系统,其特征在于,所述延时处理模块具体用于:
    若探头为线阵探头,则探头基元对应的发射延时表示为:
    delay(i)=(Fm-sqrt(Fm 2+dx 2))/c,
    其中,Fm为探头基元i对应的焦点深度,dx为探头基元i离发射线的横向距离,c为超声波的传播速度。
  10. 根据权利要求8所述的超声成像宽波束发射系统,其特征在于,所述延时处理模块具体用于:
    若探头为弧阵探头,则探头基元对应的发射延时表示为:
    delay(i)=(Fm–sqrt((Fm+ROC) 2+ROC 2–2*(Fm+ROC)*ROC*cos(θ)))/c,
    其中,Fm为探头基元i对应的焦点深度,ROC为探头基元i的曲率半径,θ为探头基元i离发射线的偏转角度,c为超声波的传播速度。
  11. 根据权利要求8所述的超声成像宽波束发射系统,其特征在于,所述延时处理模块具体用于:
    若探头为相控阵探头,则探头基元对应的发射延时表示为:
    delay(i)=(Fm–sqrt(Fm 2+dx 2–2*Fm*dx*cos(π/2-θ)))/c,
    其中,Fm为探头基元i对应的焦点深度,dx为探头基元i离发射线的横向距离,θ为发射线偏转角度,c为超声波的传播速度。
  12. 根据权利要求9至11任一项所述的超声成像宽波束发射系统,其特征在于,所述延时处理模块具体用于:
    若获得的发射延时为负数,则将所述发射延时delay(i)转换为正数,
    delay(i)=delay(i)+abs(min(delay)),
    其中,min(delay)表示取delay数组中的最小负值,abs()表示对括号中的数求绝对值。
PCT/CN2019/123867 2019-02-13 2019-12-09 超声成像宽波束发射方法及发射系统 WO2020164299A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910112435.8A CN109674491A (zh) 2019-02-13 2019-02-13 超声成像宽波束发射方法及发射系统
CN201910112435.8 2019-02-13

Publications (1)

Publication Number Publication Date
WO2020164299A1 true WO2020164299A1 (zh) 2020-08-20

Family

ID=66195664

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/123867 WO2020164299A1 (zh) 2019-02-13 2019-12-09 超声成像宽波束发射方法及发射系统

Country Status (2)

Country Link
CN (1) CN109674491A (zh)
WO (1) WO2020164299A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200375574A1 (en) * 2019-05-28 2020-12-03 Vinno Technology (Suzhou) Co., Ltd. Ultrasound imaging spatial compounding method and system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109674491A (zh) * 2019-02-13 2019-04-26 飞依诺科技(苏州)有限公司 超声成像宽波束发射方法及发射系统
CN111184532B (zh) * 2020-04-09 2020-07-31 上海尽星生物科技有限责任公司 一种接触式柔性适形超声探头的超声系统及方法
CN112034427B (zh) * 2020-09-09 2023-10-27 京东方科技集团股份有限公司 一种相控阵多焦点测量的方法、装置及存储介质
CN112263277B (zh) * 2020-11-17 2022-12-23 深圳开立生物医疗科技股份有限公司 一种超声多普勒血流成像方法、装置、设备及计算机介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5922962A (en) * 1994-08-08 1999-07-13 Diasonics Ultrasound, Inc. Sparse two-dimensional transducer array with compound lens
US20040068186A1 (en) * 2001-01-22 2004-04-08 Kazunari Ishida Ultrasonic therapeutic probe and ultrasonic device
CN101770028A (zh) * 2009-12-31 2010-07-07 深圳市蓝韵实业有限公司 一种超声探头发射脉冲非球面聚焦方法
CN102809610A (zh) * 2012-06-04 2012-12-05 北京航空航天大学 一种基于改进的动态深度聚焦的相控阵超声检测方法
CN104434218A (zh) * 2014-12-15 2015-03-25 飞依诺科技(苏州)有限公司 超声波束合成聚焦延时的实时计算方法及装置
CN109674491A (zh) * 2019-02-13 2019-04-26 飞依诺科技(苏州)有限公司 超声成像宽波束发射方法及发射系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4022393B2 (ja) * 2001-12-12 2007-12-19 株式会社日立メディコ 超音波診断装置
CN101190133B (zh) * 2006-11-28 2011-05-18 深圳迈瑞生物医疗电子股份有限公司 超声波诊断系统中宽波束的发射方法和装置
CN101396282B (zh) * 2007-09-29 2013-03-27 深圳迈瑞生物医疗电子股份有限公司 用于超声成像的圆弧宽波束发射方法与装置
US20120105645A1 (en) * 2009-02-20 2012-05-03 Koninklijke Philips Electronics N.V. Ultrasonic imaging with a variable refractive lens
EP2600937B8 (en) * 2010-08-02 2024-03-06 Guided Therapy Systems, L.L.C. Systems for treating acute and/or chronic injuries in soft tissue

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5922962A (en) * 1994-08-08 1999-07-13 Diasonics Ultrasound, Inc. Sparse two-dimensional transducer array with compound lens
US20040068186A1 (en) * 2001-01-22 2004-04-08 Kazunari Ishida Ultrasonic therapeutic probe and ultrasonic device
CN101770028A (zh) * 2009-12-31 2010-07-07 深圳市蓝韵实业有限公司 一种超声探头发射脉冲非球面聚焦方法
CN102809610A (zh) * 2012-06-04 2012-12-05 北京航空航天大学 一种基于改进的动态深度聚焦的相控阵超声检测方法
CN104434218A (zh) * 2014-12-15 2015-03-25 飞依诺科技(苏州)有限公司 超声波束合成聚焦延时的实时计算方法及装置
CN109674491A (zh) * 2019-02-13 2019-04-26 飞依诺科技(苏州)有限公司 超声成像宽波束发射方法及发射系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200375574A1 (en) * 2019-05-28 2020-12-03 Vinno Technology (Suzhou) Co., Ltd. Ultrasound imaging spatial compounding method and system

Also Published As

Publication number Publication date
CN109674491A (zh) 2019-04-26

Similar Documents

Publication Publication Date Title
WO2020164299A1 (zh) 超声成像宽波束发射方法及发射系统
US6540683B1 (en) Dual-frequency ultrasonic array transducer and method of harmonic imaging
US8485977B2 (en) Ultrasound diagnosis apparatus
CN101190134B (zh) 超声波诊断系统中的多波束发射和接收方法及其装置
US4644795A (en) High resolution multiline ultrasonic beamformer
US8001843B2 (en) Circular arc wide beam transmission method and apparatus for ultrasonic imaging
EP3581961A1 (en) Method and apparatus for ultrasound imaging with improved beamforming
US8038620B2 (en) Fresnel zone imaging system and method
US9354313B2 (en) Ultrasound diagnostic apparatus and method for acquiring ultrasound data
CN110101411B (zh) 超声成像空间复合方法及系统
WO2016060017A1 (ja) 超音波診断装置
US10168428B2 (en) Ultrasound transducer arrays with variable patch geometries
US20160074016A1 (en) Transmit beamforming apparatus, receive beamforming apparatus, ultrasonic probe having the same, and beamforming method
US9295446B2 (en) Methods and systems for pulse scanning and simultaneously displaying a blood flow image and a B-mode image
Ramalli et al. Multi transmit beams for fast cardiac imaging towards clinical routine
JP3763924B2 (ja) 超音波診断装置
JP2005342194A (ja) 超音波診断装置
WO2020215735A1 (zh) 超声成像宽频带信号发射和处理方法及系统
WO2019208767A1 (ja) 超音波システムおよび超音波システムの制御方法
CN102423265B (zh) 超声诊断仪的复合成像方法
JP4772338B2 (ja) 超音波診断装置
WO2007039972A1 (ja) 超音波診断装置
JP2008183288A (ja) 超音波診断装置
TWI702035B (zh) 超音波成像裝置及其成像方法
JP2015186494A (ja) 超音波診断装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19915187

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19915187

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24.02.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19915187

Country of ref document: EP

Kind code of ref document: A1