WO2020215735A1 - 超声成像宽频带信号发射和处理方法及系统 - Google Patents

超声成像宽频带信号发射和处理方法及系统 Download PDF

Info

Publication number
WO2020215735A1
WO2020215735A1 PCT/CN2019/123800 CN2019123800W WO2020215735A1 WO 2020215735 A1 WO2020215735 A1 WO 2020215735A1 CN 2019123800 W CN2019123800 W CN 2019123800W WO 2020215735 A1 WO2020215735 A1 WO 2020215735A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
mapping relationship
center
signal
center frequency
Prior art date
Application number
PCT/CN2019/123800
Other languages
English (en)
French (fr)
Inventor
凌涛
吴方刚
Original Assignee
飞依诺科技(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 飞依诺科技(苏州)有限公司 filed Critical 飞依诺科技(苏州)有限公司
Publication of WO2020215735A1 publication Critical patent/WO2020215735A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/06Measuring blood flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/488Diagnostic techniques involving Doppler signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves

Definitions

  • This application relates to the field of medical ultrasonic diagnostic imaging, for example, to a method and system for transmitting and processing ultrasonic imaging broadband signals.
  • Ultrasound imaging has become one of the most widely used clinical diagnostic tools because of its non-invasive, real-time, convenient operation, low price and many other advantages.
  • Commonly used functional modes of ultrasound imaging include two-dimensional black and white (B) mode, spectral Doppler mode (pulsed wave (Pulsed Wave, PW)/continuous wave (Ccontinuous Wave, CW)) and color flow mode ((Color Flow, CF) )/Power Doppler Imaging (PDI).
  • B mode relies on the amplitude of the ultrasonic echo signal for imaging, and obtains the two-dimensional structure and morphological information of the tissue.
  • the core components of ultrasound imaging equipment include: probe, probe board, transmitter/receiver board, transmitter/receiver control board, beamformer, signal and image processing unit, and display.
  • the basic workflow is: the probe emits a focused ultrasonic beam, and the probe is different
  • the primitive receives the ultrasonic echo signal and enters each channel for amplification and filtering.
  • the channel-level signal undergoes beam synthesis to obtain a radio frequency signal (RF signal).
  • RF signal radio frequency signal
  • the scanning process is repeated until a frame of radio frequency signal with a certain line density is obtained.
  • the quadrature signal (IQ signal) is obtained through demodulation and filtering.
  • the quadrature signal is processed to obtain an image, and the image is post-processed and finally displayed on the display.
  • the bandwidth of the ultrasound transmitting and receiving signals affects the spatial resolution of the image.
  • Ultrasound imaging systems generally use multi-element probes to achieve focused emission through electronic delay. Each probe element emits ultrasound signals of the same frequency. If there is apodization of the emission, it only changes the amplitude or pulse width of the emission signal. Without affecting the center frequency, due to the inherent attenuation characteristics of ultrasound signals in human tissues, this single frequency and bandwidth transmission method is difficult to take into account the spatial resolution and penetration depth of imaging.
  • Announcement No. "CN102865839A” application name “A method and device for ultrasonic thickness measurement based on broadband frequency modulation and receiving compensation”, which uses chirp to construct an intermittent broadband chirp ultrasonic signal
  • the transmission of the ultrasonic broadband signal is mainly achieved by modulating the coded signal, such as a linear frequency modulation signal, and then performing pulse compression (decoding) processing during reception.
  • the related technology uses a chirp signal to modulate the carrier frequency.
  • the signal frequency changes linearly with time and has a large time bandwidth product. Therefore, the chirp signal can be used to obtain a larger bandwidth and higher spatial resolution; however, the chirp Signal and other encoding transmission methods involve signal modulation, encoding and decoding processing, which have higher requirements for hardware, and the system is complex and expensive, and is only used on a very small number of high-end ultrasound imaging equipment.
  • This application provides a method and system for transmitting and processing ultrasound imaging broadband signals.
  • An embodiment of the present application provides a method for transmitting and processing an ultrasonic imaging broadband signal, the method including:
  • Each mapping relationship is configured with a different transmission center frequency according to the distance between the primitive or the transmitting channel and the center of the transmitting aperture. The closer the primitive or the transmitting channel is to the center of the transmitting aperture, the correspondingly configured The higher the transmission center frequency.
  • the configuration of a different emission center frequency for each mapping relationship according to the distance between the primitives or the emission channel having the mapping relationship and the center of the emission aperture includes: each scan line corresponds to the position of the emission aperture center It is the central axis, so that every two or two symmetrically arranged probe primitives or transmitting channels that have a mapping relationship and are located on both sides of the central axis form independent groups, and each independent group is configured with the same transmitting center frequency.
  • the configuration of a different transmission center frequency for each mapping relationship according to the distance between the primitives having the mapping relationship or the transmission channel and the center of the emission aperture includes:
  • a window function is used to configure the transmission center frequency corresponding to each mapping relationship.
  • i represents the i-th element with a mapping relationship or the transmission channel corresponding to the i-th element
  • f(i) represents the central frequency of the transmitted signal corresponding to the i-th element
  • f ⁇ represents the single central frequency of the single-frequency transmission mode
  • F ⁇ _shift represents the shift of the maximum and minimum frequencies relative to f ⁇
  • winfun represents the window function
  • max and min represent the maximum and minimum values respectively.
  • the method further includes:
  • a transmission signal is generated corresponding to the transmission channel with a mapping relationship, and the transmitted signal is amplified and then stimulated to emit a broadband ultrasound signal with a primitive element with a mapping relationship.
  • the method further includes:
  • An embodiment of the present application provides an ultrasound imaging broadband signal transmission and processing system, the system includes:
  • the mapping relationship configuration module is set to reconfigure the primitives on the probe and the emission channel according to the position of each scan line to form a one-to-one mapping relationship, and ignore the primitives and/or that have not formed a mapping relationship Launch channel
  • the center frequency configuration module is configured to configure a different transmission center frequency for each mapping relationship according to the distance between the primitive or the transmission channel and the center of the transmission aperture, wherein the primitive or the transmission channel is from the center of the transmission aperture The closer the distance, the higher the transmission center frequency of the corresponding configuration.
  • the center frequency configuration module is set to:
  • each two symmetrically arranged probe primitives or emission channels that have a mapping relationship and are located on both sides of the central axis form an independent group, and each independent group
  • the configured transmit center frequency is the same.
  • the center frequency configuration module is set to:
  • a window function is used to configure the emission center frequency corresponding to each mapping relationship.
  • i represents the i-th element with a mapping relationship or the transmission channel corresponding to the i-th element
  • f(i) represents the central frequency of the transmitted signal corresponding to the i-th element
  • f ⁇ represents the single central frequency of the single-frequency transmission mode
  • F ⁇ _shift represents the shift of the maximum and minimum frequencies relative to f ⁇
  • winfun represents the window function
  • max and min represent the maximum and minimum values respectively.
  • the system further includes: a waveform module configured to determine the waveform of the transmission signal according to each transmission center frequency;
  • the delay module is set to calculate the transmission signal delay according to the scanning line, focus, and geometric positions of each probe primitive
  • the transmitting module is configured to generate a transmitting signal corresponding to the transmitting channel with a mapping relationship according to the obtained waveform and delay, and the transmitted signal is amplified and then stimulated to stimulate the primitive with the mapping relationship to transmit a broadband ultrasonic signal.
  • the system further includes: a receiving module configured to receive broadband ultrasonic signals;
  • the parsing module is set to configure different demodulation frequencies and demodulation bandwidths for different imaging depths in the process of parsing broadband ultrasound signals. Among them, from the near field to the far field, the configured demodulation frequency and demodulation bandwidth are in sequence reduce.
  • FIG. 1 is a schematic flowchart of an ultrasonic imaging broadband signal transmission and processing method according to an embodiment of the present application
  • Fig. 2 is a curve of the transmission center frequency corresponding to each probe element in an example of the present application
  • FIG. 3 is a schematic flowchart of a method for transmitting and processing an ultrasonic imaging broadband signal based on the embodiment of FIG. 1 of the present application;
  • Figure 4 is an image of sound intensity (left) and sound pressure (right) obtained by single-frequency emission
  • Figure 5 is an image of sound intensity (left) and sound pressure (right) obtained by using the ultrasonic imaging broadband signal transmission and processing method provided by this application;
  • FIG. 6 is a schematic flowchart of a method for transmitting and processing an ultrasonic imaging broadband signal based on the embodiment of FIG. 3 of the present application;
  • FIG. 7 is a schematic diagram of modules of an ultrasonic imaging broadband signal transmission and processing system in an embodiment of the present application.
  • FIG. 8 is a schematic diagram of modules of the ultrasound imaging broadband signal transmission and processing system in the embodiment of the present application based on FIG. 7;
  • FIG. 9 is a schematic diagram of modules of the ultrasound imaging broadband signal transmission and processing system in the embodiment of the present application based on FIG. 8.
  • an embodiment of the present application provides a method for transmitting and processing an ultrasonic imaging broadband signal.
  • the method includes:
  • the number of transmission channels and probe primitives is not limited.
  • the number of transmission channels and the number of probe primitives can be the same or different, but in the signal transmission process, one transmission channel corresponds to one primitive, so In step S1, it is necessary to configure primitives and emission channels to form a one-to-one mapping relationship.
  • primitives and/or emission channels that have not formed a mapping relationship do not participate in signal transmission and processing.
  • the number and position of the mapping relationship can be changed according to requirements each time it is transmitted, so I will not repeat it here.
  • the center position of the emission aperture corresponding to each scan line is taken as the central axis, so that every two or two symmetrically arranged probe primitives that have a mapping relationship and are on both sides of the central axis or
  • the transmitting channels form independent groups, and each independent group is configured with the same transmitting center frequency.
  • a window function is used to configure the transmission center frequency corresponding to each mapping relationship, and the window function includes: Triang window, Hamming window, Hanning window, Gaussian window, and so on.
  • f(i) (f ⁇ -f ⁇ _shift)+(winfun(i)-min(winfun))*f ⁇ _shift*2/(max(winfun)-min(winfun)).
  • i represents the transmission channel corresponding to the i-th element or the i-th element with a mapping relationship
  • f(i) represents the transmission center frequency corresponding to the i-th element
  • f ⁇ represents the single center frequency of the single-frequency transmission mode
  • f ⁇ _shift represents the shift of the maximum and minimum frequencies relative to f ⁇
  • winfun represents the window function
  • max and min represent the maximum and minimum values respectively.
  • this embodiment provides an ultrasound imaging broadband signal transmission and processing method based on the implementation of FIG. 1, and the method further includes:
  • a transmission signal is generated corresponding to the transmission channel with a mapping relationship, and the transmission signal is amplified to excite the primitive with the mapping relationship to transmit a broadband ultrasound signal.
  • Figure 4 shows the sound intensity (left) and sound pressure (right) images obtained by using single-frequency transmission
  • Figure 5 shows the wideband signal transmission and processing of ultrasonic imaging provided by this application.
  • the contour curves in Figures 4 and 5 indicate the -3dB beam width.
  • the method further includes: S6, receiving a broadband ultrasonic signal; During the ultrasonic signal process, different demodulation frequencies and demodulation bandwidths are configured for different imaging depths. Among them, from the far field to the near field, the configured demodulation frequency and demodulation bandwidth are increased in order to sacrifice the lateral resolution. Compensate to ensure the accuracy of the final result.
  • an embodiment of the present application provides an ultrasound imaging broadband signal transmission and processing system.
  • the system includes a mapping relationship configuration module 101 and a center frequency configuration module 103.
  • the mapping relationship configuration module 101 is configured to configure the primitives and emission channels on the probe to form a one-to-one mapping relationship, and ignore primitives and/or emission channels that do not form a mapping relationship.
  • the number of transmission channels and probe primitives is not limited.
  • the number of transmission channels and the number of probe primitives can be the same or different, but in the signal transmission process, one transmission channel corresponds to one primitive, so , It is necessary to configure primitives and emission channels to form a one-to-one mapping relationship.
  • primitives and/or emission channels that have not formed a mapping relationship do not participate in signal transmission and processing. According to different requirements, each During the second transmission, the number and position of the mapping relationship can be changed as required, and will not be repeated here.
  • the center frequency configuration module 103 is set to configure a different transmission center frequency for each mapping relationship according to the primitives having a mapping relationship or the distance between the transmission channel and the center of the transmission aperture, wherein the distance between the primitive or the transmission channel and the center of the transmission aperture The closer, the higher the transmission center frequency of the corresponding configuration.
  • the center frequency configuration module 103 is set to use the center position of the emission aperture corresponding to each scan line as the center axis, so that every two pixels that have a mapping relationship and are on both sides of the center axis Two symmetrically arranged probe primitives or emission channels respectively form independent groups, and the emission center frequency of each independent group configuration is the same.
  • the center frequency configuration module 103 is configured to configure the transmission center frequency corresponding to each mapping relationship by using a window function, and the window function includes: Triang window, Hamming window, Hanning window, Gaussian window, etc.
  • f(i) (f ⁇ -f ⁇ _shift)+(winfun(i)-min(winfun))*f ⁇ _shift*2/(max(winfun)-min(winfun)).
  • i represents the i-th element with a mapping relationship or the transmission channel corresponding to the i-th element
  • f(i) represents the transmission center frequency corresponding to the i-th element
  • f ⁇ represents the single center frequency of the single-frequency transmission mode
  • f ⁇ _shift Represents the offset of the maximum and minimum frequencies relative to f ⁇
  • winfun represents the window function
  • max and min represent the maximum and minimum values respectively.
  • the frequency curve can verify the results of the above-mentioned implementation.
  • the emission center frequency corresponding to the element or the emission channel near the center of the emission aperture is higher, while the element or the emission channel corresponding to the element far away from the center of the emission aperture has a lower emission center frequency.
  • this embodiment provides an ultrasound imaging broadband signal transmission and processing system based on the implementation of FIG. 7, and the system further includes: a waveform module 200, a delay module 300, and a transmission module 400.
  • the transmission center frequency corresponding to each mapping relationship is configured by the mapping relationship configuration module 101 and the center frequency configuration module 103.
  • the waveform module 200 is configured to determine the transmission signal waveform according to each transmission center frequency.
  • the delay module 300 is configured to calculate the transmission signal delay according to the scan line, focus, and geometric positions of each probe primitive.
  • the transmitting module 400 is configured to generate a transmission signal corresponding to the transmission channel with a mapping relationship according to the obtained waveform and delay, and the transmitted signal is amplified to excite the primitives with the mapping relationship to transmit a broadband ultrasound signal.
  • Figure 4 shows the sound intensity (left) and sound pressure (right) images obtained by using single-frequency transmission
  • Figure 5 shows the wideband signal transmission and processing of ultrasonic imaging provided by this application.
  • the sound intensity (left) and sound pressure (right) images obtained by the method; the contour curves in Figure 4 and Figure 5 represent the -3dB beam width.
  • the ultrasonic imaging broadband signal processing method of the present application is used The sound intensity and sound pressure in the far field are significantly increased, and the beam width is significantly narrowed. In this way, the application can effectively improve the lateral resolution and penetration of the far field image, and ensure the consistency of the near field and the far field in the image.
  • the ultrasonic imaging broadband signal transmission and the broadband signal transmission of the embodiment shown in FIG. 9 are evolved on the basis shown in FIG.
  • the processing system in this embodiment, a receiving module 500 and an analysis module 600 are added.
  • the receiving module 500 is configured to receive broadband ultrasound signals;
  • the analysis module 600 is configured to analyze the broadband ultrasound signals at different imaging depths. Configure different demodulation frequencies and demodulation bandwidths, among which, from the far field to the near field, the configured demodulation frequency and demodulation bandwidth are increased in order to compensate for the sacrificed lateral resolution and ensure the accuracy of the final result.
  • the ultrasound imaging broadband signal transmission and processing method and system provided in this application can configure different transmission center frequencies for each mapping relationship according to the distance between the primitives or the transmission channel and the center of the transmission aperture.
  • Realize the wideband signal transmission of ultrasound imaging effectively improve the lateral resolution and penetration of the far-field image, and ensure the consistency of the near-field and far-field in the image; by configuring different demodulation frequencies and demodulation bandwidths for different imaging depths , Can take into account the spatial resolution and penetration depth of imaging, realize the dynamic analysis of broadband signals, and this application can be realized on a common ultrasound platform without increasing hardware complexity and cost.
  • the device implementations described above are only illustrative.
  • the modules described as separate components may or may not be physically separated, and the components displayed as modules may or may not be physical modules, that is, they may be located in One place, or it can be distributed to multiple network modules. Some or all of the modules can be selected according to actual needs to achieve the objectives of the solutions of this embodiment.
  • this specification is described in accordance with the implementation manners, not each implementation manner only includes an independent technical solution. This description of the specification is only for describing the technical solution, and the technical solutions in each embodiment can also be appropriately combined. , Form other embodiments.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Hematology (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

超声成像宽频带信号发射和处理方法及系统,方法包括:根据每一扫查线的位置重新配置探头上的基元与发射通道,使其形成一一对应的映射关系,并忽略未形成映射关系的基元和/或发射通道(S1);按照具有映射关系的基元或发射通道距离发射孔径中心的距离对每一映射关系配置不同的发射中心频率,其中,基元或发射通道距离发射孔径中心的距离越近,其对应配置的发射中心频率越高(S2)。

Description

超声成像宽频带信号发射和处理方法及系统
本申请要求在2019年04月24日提交中国专利局、申请号为201910333800.8的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及医用超声诊断成像领域,例如涉及一种超声成像宽频带信号发射和处理方法及系统。
背景技术
超声成像因为其无创性、实时性、操作方便、价格便宜等诸多优势,使其成为临床上应用最为广泛的诊断工具之一。超声成像常用的功能模式包括二维黑白(B)模式、频谱多普勒模式(脉冲波(Pulsed Wave,PW)/连续波(Ccontinuous Wave,CW))以及彩色血流模式((Color Flow,CF)/能量多普勒成像(Power Doppler Imaging,PDI)。B模式依赖于超声回波信号的幅度进行成像,获取的是组织二维结构和形态信息,回波信号强度越大则对应的图像像素灰度值越大,反之则灰度值越小;PW/CW以及CF/PDI模式的基本原理都是多普勒效应,均依赖于超声回波信号的相位进行成像,获取的是速度、方向、能量等血流信息。
超声成像设备的核心部件包括:探头、探头板、发射/接收板、发射/接收控制板、波束形成器、信号与图像处理单元、显示器,其基本工作流程是:探头发射聚焦超声波束,探头不同基元接收超声回波信号并进入每一个通道进行放大、滤波处理,通道级信号进行波束合成得到射频信号(RF信号),重复上述扫查过程直至得到一定线密度的一帧射频信号,射频信号经过解调滤波处理得到正交信号(IQ信号),正交信号经过处理得到图像,图像经过后处理最终经显示器显示。
超声发射和接收信号的带宽影响图像的空间分辨率,带宽越宽空间分辨率越好,因此B模式成像通常发射短脉冲的宽带信号;彩色血流成像和频谱多普勒成像因为使用窄带模型和算法,通常发射长脉冲的窄带信号。超声成像系统一般利用多基元探头通过电子延时的方式实现聚焦发射,每个探头基元均发射同一频率的超声信号,如果有发射变迹,也仅仅是改变发射信号的幅度或脉宽,而不会影响中心频率,由于超声信号在人体组织中固有的衰减特性,这种采用单一频率和带宽的发射方式,很难兼顾成像的空间分辨率和穿透深度。
相关技术中,例如:公告号“CN102865839A”,申请名称“一种基于宽带调频及接收补偿的超声波测厚方法及装置”,其采用线性调频的方式来构造一 种间歇式宽带线性调频超声波信号,主要是通过调制编码信号例如是线性调频信号实现超声宽频带信号的发射,然后在接收时进行脉冲压缩(解码)处理。
相关技术采用线性调频信号对载波频率进行调制,其信号频率随时间线性变化,具有大的时间带宽积,因此利用线性调频信号可以获得较大的带宽和较高的空间分辨率;然而,线性调频信号等编码发射方式涉及信号的调制编码和解码处理,对硬件有较高的要求,系统复杂且成本昂贵,仅在极少数高端超声成像设备上使用。
发明内容
本申请提供一种超声成像宽频带信号发射和处理方法及系统。
本申请一实施方式提供一种超声成像宽频带信号发射和处理方法,所述方法包括:
根据每一扫查线的位置重新配置探头上的基元与发射通道,使其形成一一对应的映射关系,并忽略未形成映射关系的基元和/或发射通道;
按照具有映射关系的基元或发射通道距离发射孔径中心的距离对每一映射关系配置不同的发射中心频率,其中,所述基元或发射通道距离发射孔径中心的距离越近,其对应配置的发射中心频率越高。
作为本申请一实施方式,所述按照具有映射关系的基元或发射通道距离发射孔径中心的距离对每一映射关系配置不同的发射中心频率包括:以每一扫查线对应发射孔径中心的位置为中轴,使具有映射关系、且处于中轴两侧的每一两两对称设置的探头基元或发射通道分别形成独立组,每一独立组配置的发射中心频率相同。
作为本申请一实施方式,所述按照具有映射关系的基元或发射通道距离发射孔径中心的距离对每一映射关系配置不同的发射中心频率包括:
采用窗函数配置每一映射关系对应的发射中心频率,所述窗函数包括:三角Triang窗、汉明Hamming窗、汉宁Hanning窗、高斯窗,其中,f(i)=(fθ-fθ_shift)+(winfun(i)-min(winfun))*fθ_shift*2/(max(winfun)-min(winfun)),
i表示具有映射关系的第i个基元或第i个基元对应的发射通道,f(i)表示第i个基元对应的发射信号的中心频率,fθ表示单频发射方式的单一中心频率,fθ_shift表示最大和最小频率相对于的fθ的偏移,winfun表示窗函数,max和min分别表示求取最大值和最小值。
作为本申请一实施方式,所述方法还包括:
根据各个发射中心频率确定发射信号波形;
根据扫查线、焦点、各个探头基元的几何位置计算发射信号延时;
按照获得的波形及延时对应具有映射关系的发射通道产生发射信号,将发设信号经过放大后激励具有映射关系的基元发射宽频带超声信号。
作为本申请一实施方式的,所述方法还包括:
接收宽频带超声信号;
在解析宽频带超声信号过程中,对不同的成像深度配置不同的解调频率和解调带宽,其中,自近场至远场,配置的解调频率和解调带宽均依次降低。本申请一实施方式提供一种超声成像宽频带信号发射和处理系统,所述系统包括:
映射关系配置模块,设置为用于根据每一扫查线的位置重新配置探头上的基元与发射通道,使其形成一一对应的映射关系,并忽略未形成映射关系的基元和/或发射通道;
中心频率配置模块,设置为用于按照具有映射关系的基元或发射通道距离发射孔径中心的距离对每一映射关系配置不同的发射中心频率,其中,所述基元或发射通道距离发射孔径中心的距离越近,其对应配置的发射中心频率越高。
作为本申请一实施方式,所述中心频率配置模块是设置为:
以每一扫查线对应发射孔径中心的位置为中轴,使具有映射关系、且处于中轴两侧的每一两两对称设置的探头基元或发射通道分别形成独立组,每一独立组配置的发射中心频率相同。
作为本申请一实施方式,所述中心频率配置模块是设置为:
采用窗函数配置每一映射关系对应的发射中心频率,所述窗函数包括:Triang窗、Hamming窗、Hanning窗、高斯窗,其中,f(i)=(fθ-fθ_shift)+(winfun(i)-min(winfun))*fθ_shift*2/(max(winfun)-min(winfun)),
i表示具有映射关系的第i个基元或第i个基元对应的发射通道,f(i)表示第i个基元对应的发射信号的中心频率,fθ表示单频发射方式的单一中心频率,fθ_shift表示最大和最小频率相对于的fθ的偏移,winfun表示窗函数,max和min分别表示求取最大值和最小值。
作为本申请一实施方式,所述系统还包括:波形模块,设置为根据各个发射中心频率确定发射信号波形;
延时模块,设置为根据扫查线、焦点、各个探头基元的几何位置计算发射信号延时;
发射模块,设置为按照获得的波形及延时对应具有映射关系的发射通道产生发射信号,将发设信号经过放大后激励具有映射关系的基元发射宽频带超声信号。
作为本申请一实施方式,所述系统还包括:接收模块,设置为接收宽频带超声信号;
解析模块,设置为在解析宽频带超声信号过程中,对不同的成像深度配置不同的解调频率和解调带宽,其中,自近场至远场,配置的解调频率和解调带宽均依次降低。
附图说明
图1是本申请一实施方式的超声成像宽频带信号发射和处理方法的流程示意图;
图2是本申请一示例下,各探头基元对应的发射中心频率变化曲线;
图3是本申请基于图1的实施方式的超声成像宽频带信号发射和处理方法的流程示意图;
图4是采用单频发射方式获得的声强(图左)、声压(图右)图像;
图5是采用本申请提供的超声成像宽频带信号发射和处理方法获得的声强(图左)、声压(图右)图像;
图6是本申请基于图3的实施方式的超声成像宽频带信号发射和处理方法的流程示意图;
图7是本申请一实施方式中超声成像宽频带信号发射和处理系统的模块示意图;
图8是本申请基于图7的实施方式中超声成像宽频带信号发射和处理系统的模块示意图;
图9是本申请基于图8的实施方式中超声成像宽频带信号发射和处理系统的模块示意图。
具体实施方式
以下将结合附图所示的具体实施方式对本申请进行描述。但这些实施方式并不限制本申请。
如图1所示,本申请一实施方式中提供一种超声成像宽频带信号发射和处理方法,所述方法包括:
S1、根据每一扫查线的位置重新配置探头上的基元与发射通道,使其形成一一对应的映射关系,并忽略未形成映射关系的基元和/或发射通道。
在超声成像技术中,发射通道以及探头基元的数量均不作限定,发射通道的数量和探头基元的数量可以相同也可以不同,但在信号发射过程中,一个发射通道对应一个基元,如此,在步骤S1中,需要配置基元与发射通道,使其形成一一对应的映射关系,在成像过程中,未形成映射关系的基元和/或发射通道不参与信号的发射及处理,根据需求的不同,每次发射时,映射关系的数量及位置均可以根据需要变化,在此不做赘述。
S2、按照具有映射关系的基元或发射通道距离发射孔径中心的距离对每一映射关系配置不同的发射中心频率,其中,所述基元或发射通道距离发射孔径中心的距离越近,其对应配置的发射中心频率越高。
本申请实施方式中,为了降低计算量,以每一扫查线对应发射孔径的中心位置为中轴,使具有映射关系、且处于中轴两侧的每一两两对称设置的探头基元或发射通道分别形成独立组,每一独立组配置的发射中心频率相同。
本申请一实施方式中,采用窗函数配置每一映射关系对应的发射中心频率,所述窗函数包括:Triang窗、Hamming窗、Hanning窗、高斯窗等。
相应的,其具体实现方式如下公式表述:
f(i)=(fθ-fθ_shift)+(winfun(i)-min(winfun))*fθ_shift*2/(max(winfun)-min(winfun))。
i表示具有映射关系的第i个基元或第i个基元对应的发射通道,f(i)表示为第i个基元对应的发射中心频率,fθ表示单频发射方式的单一中心频率,fθ_shift表示最大和最小频率相对于的fθ的偏移,winfun表示窗函数,max和min分别表示求取最大值和最小值。
结合图2所示,本申请的示例中,以发射孔径为64基元,fθ=2.4MHz,fθ_shift=0.6MHz,winfun=Hamming窗为例,具有映射关系的基元(发射通道)对应的发射中心频率曲线可验证上述实施方式的结果,靠近发射孔径中心的基元或发射通道对应配置的发射中心频率较高,而远离发射孔径中心的基元或发射通道对应配置的发射中心频率较低。
结合图3所示,本实施例基于图1的实施方式提供一种超声成像宽频带信号发射和处理方法,所述方法还包括:
S3、根据各个发射中心频率确定发射信号波形。
S4、根据扫查线、焦点、各个探头基元的几何位置计算发射信号延时。
S5、按照获得的波形及延时对应具有映射关系的发射通道产生发射信号, 将发设信号经过放大后激励具有映射关系的基元发射宽频带超声信号。
结合图4、图5所示,图4为采用单频发射方式获得的声强(图左)、声压(图右)图像,图5为采用本申请提供的超声成像宽频带信号发射和处理方法获得的声强(图左)、声压(图右)图像,图4、图5中的轮廓曲线表示-3dB波束宽度,通过对比可知:采用本申请的超声成像宽频带信号发射和处理方法获得的远场的声强和声压都显著提高,波束宽度明显变窄,如此,本申请可以有效提高远场图像的横向分辨率和穿透力,保证图像中近场和远场的一致性。
随着近场波束宽度略微变宽,有可能牺牲一点横向分辨率,如此,本申请实施方式中,结合图6所示,所述方法还包括:S6、接收宽频带超声信号;在解析宽频带超声信号过程中,对不同的成像深度配置不同的解调频率和解调带宽,其中,自远场至近场,配置的解调频率和解调带宽均依次升高,以对牺牲的横向分辨率予以补偿,保证最终结果的准确性。
结合图7所示,本申请一实施方式提供一种超声成像宽频带信号发射和处理系统,所述系统包括:映射关系配置模块101,中心频率配置模块103。
映射关系配置模块101设置为配置探头上的基元与发射通道,使其形成一一对应的映射关系,并忽略未形成映射关系的基元和/或发射通道。
在超声成像技术中,发射通道以及探头基元的数量均不作限定,发射通道的数量和探头基元的数量可以相同也可以不同,但在信号发射过程中,一个发射通道对应一个基元,如此,需要配置基元与发射通道,使其形成一一对应的映射关系,在成像过程中,未形成映射关系的基元和/或发射通道不参与信号的发射及处理,根据需求的不同,每次发射时,映射关系的数量及位置均可以根据需要变化,在此不做赘述。
中心频率配置模块103设置为按照具有映射关系的基元或发射通道距离发射孔径中心的距离对每一映射关系配置不同的发射中心频率,其中,所述基元或发射通道距离发射孔径中心的距离越近,其对应配置的发射中心频率越高。
本申请实施方式中,为了降低计算量,中心频率配置模块103是设置为以每一扫查线对应发射孔径的中心位置为中轴,使具有映射关系、且处于中轴两侧的每一两两对称设置的探头基元或发射通道分别形成独立组,每一独立组配置的发射中心频率相同。
本申请一实施方式中,中心频率配置模块103是设置为采用窗函数配置每一映射关系对应的发射中心频率,所述窗函数包括:Triang窗、Hamming窗、Hanning窗、高斯窗等。
相应的,其具体实现方式如下公式表述:
f(i)=(fθ-fθ_shift)+(winfun(i)-min(winfun))*fθ_shift*2/(max(winfun)-min(winfun))。
i表示具有映射关系的第i个基元或第i个基元对应的发射通道,f(i)表示第i个基元对应的发射中心频率,fθ表示单频发射方式的单一中心频率,fθ_shift表示最大和最小频率相对于的fθ的偏移,winfun表示窗函数,max和min分别表示求取最大值和最小值。
结合图2所示,申请的示例中,以发射孔径为64基元,fθ=2.4MHz,fθ_shift=0.6MHz,winfun=Hamming窗为例,具有映射关系的基元(发射通道)对应的发射中心频率曲线可验证上述实施方式的结果,在靠近发射孔径中心的基元或发射通道对应配置的发射中心频率较高,而远离发射孔径中心的基元或发射通道对应配置的发射中心频率较低。
结合图8所示,本实施例基于图7的实施方式提供一种超声成像宽频带信号发射和处理系统,所述系统还包括:波形模块200,延时模块300,发射模块400。
通过映射关系配置模块101及中心频率配置模块103配置各个映射关系对应的发射中心频率。
波形模块200设置为根据各个发射中心频率确定发射信号波形。
延时模块300设置为根据扫查线、焦点、各个探头基元的几何位置计算发射信号延时。
发射模块400设置为按照获得的波形及延时对应具有映射关系的发射通道产生发射信号,将发设信号经过放大后激励具有映射关系的基元发射宽频带超声信号。
结合图4、图5所示,图4为采用单频发射方式获得的声强(图左)、声压(图右)图像,图5为采用本申请提供的超声成像宽频带信号发射和处理方法获得的声强(图左)、声压(图右)图像;图4、图5中的轮廓曲线表示-3dB波束宽度,通过对比可知:采用本申请的超声成像宽频率信号处理方法获得的远场的声强和声压都显著提高,波束宽度明显变窄,如此,本申请可以有效提高远场图像的横向分辨率和穿透力,保证图像中近场和远场的一致性。
随着近场波束宽度略微变宽,有可能牺牲一点横向分辨率,如此,本申请实施方式中,在上述图8所示基础上演变形成图9所示实施方式的超声成像宽频带信号发射和处理系统,在该实施方式中,增加接收模块500以及解析模块600,接收模块500设置为接收宽频带超声信号;所述解析模块600设置为在解析宽频带超声信号过程中,对不同的成像深度配置不同的解调频率和解调带宽,其中,自远场至近场,配置的解调频率和解调带宽均依次升高,以对牺牲的横 向分辨率予以补偿,保证最终结果的准确性。
为描述的方便和简洁,上述描述的方法或系统所引用部分的工作过程,可以参考所引用部分的实施方式中的对应过程,在此不再赘述。
综上所述,本申请提供的超声成像宽频带信号发射和处理方法及系统,根据具有映射关系的基元或发射通道距离发射孔径中心的距离对每一映射关系配置不同的发射中心频率,可以实现超声成像宽频带信号发射,有效提高远场图像的横向分辨率和穿透力,保证图像中近场和远场的一致性;通过对不同的成像深度配置不同的解调频率和解调带宽,可以兼顾成像的空间分辨率和穿透深度,实现宽频带信号动态解析,并且本申请在普通超声平台上即可实现,无需增加硬件复杂度和成本。
为了描述的方便,描述以上装置时以功能分为各种模块分别描述。在实施本申请时可以把各模块的功能在同一个或多个软件和/或硬件中实现。
以上所描述的装置实施方式仅仅是示意性的,其中所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络模块上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施方式方案的目的。虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为了对技术方案进行说明,各实施方式中的技术方案也可以经适当组合,形成其他实施方式。

Claims (10)

  1. 一种超声成像宽频带信号发射和处理方法,包括:
    根据每一扫查线的位置重新配置探头上的基元与发射通道,使其形成一一对应的映射关系,并忽略未形成映射关系的基元和/或发射通道;
    按照具有映射关系的基元或发射通道距离发射孔径中心的距离对每一映射关系配置不同的发射中心频率,其中,所述基元或发射通道距离发射孔径中心的距离越近,其对应配置的发射中心频率越高。
  2. 根据权利要求1所述的超声成像宽频带信号发射和处理方法,其中,所述按照具有映射关系的基元或发射通道距离发射孔径中心的距离对每一映射关系配置不同的发射中心频率包括:
    以每一扫查线对应发射孔径的中心位置为中轴,使具有映射关系、且处于中轴两侧的每一两两对称设置的探头基元或发射通道分别形成独立组,每一独立组配置的发射中心频率相同。
  3. 根据权利要求1所述的超声成像宽频带信号发射和处理方法,其中,所述根据每个映射关系中的基元或发射通道至发射孔径中心的距离为所述每个映射关系配置发射中心频率包括:
    采用窗函数配置每一映射关系对应的发射中心频率,所述窗函数包括:三角Triang窗、汉明Hamming窗、汉宁Hanning窗、高斯窗,其中,f(i)=(fθ-fθ_shift)+(winfun(i)-min(winfun))*fθ_shift*2/(max(winfun)-min(winfun));
    i表示具有映射关系的第i个基元或第i个基元对应的发射通道,f(i)表示第i个基元对应的发射中心频率,fθ表示单频发射方式的单一中心频率,fθ_shift表示最大和最小频率相对于的fθ的偏移,winfun表示窗函数,max和min分别表示求取最大值和最小值。
  4. 根据权利要求1至3任一项所述的超声成像宽频带信号发射和处理方法,还包括:
    根据各个发射中心频率确定发射信号波形;
    根据扫查线、焦点、各个探头基元的几何位置计算发射信号延时;
    按照获得的波形及延时对应具有映射关系的发射通道产生发射信号,将发射信号经过放大后激励具有映射关系的基元发射宽频带超声信号。
  5. 根据权利要求4所述的超声成像宽频带信号发射和处理方法,还包括:
    接收宽频带超声信号;
    在解析宽频带超声信号过程中,对不同的成像深度配置不同的解调频率和 解调带宽,其中,自近场至远场,配置的解调频率和解调带宽均依次降低。
  6. 一种超声成像宽频带信号发射和处理系统,包括:
    映射关系配置模块,设置为根据每一扫查线的位置重新配置探头上的基元与发射通道,使其形成一一对应的映射关系,并忽略未形成映射关系的基元和/或发射通道;
    中心频率配置模块,设置为按照具有映射关系的基元或发射通道距离发射孔径中心的距离对每一映射关系配置不同的发射中心频率,其中,所述基元或发射通道距离发射孔径中心的距离越近,其对应配置的发射中心频率越高。
  7. 根据权利要求6所述的超声成像宽频带信号发射和处理系统,其中,所述中心频率配置模块是设置为:
    以每一扫查线对应发射孔径的中心位置为中轴,使具有映射关系、且处于中轴两侧的每一两两对称设置的探头基元或发射通道分别形成独立组,每一独立组配置的发射中心频率相同。
  8. 根据权利要求6所述的超声成像宽频带信号发射和处理系统,其中,所述中心频率配置模块是设置为:
    采用窗函数配置每一映射关系对应的发射中心频率,所述窗函数包括:三角Triang窗、汉明Hamming窗、汉宁Hanning窗、高斯窗,其中,f(i)=(fθ-fθ_shift)+(winfun(i)-min(winfun))*fθ_shift*2/(max(winfun)-min(winfun));
    i表示具有映射关系的第i个基元或第i个基元对应的发射通道,f(i)表示第i个基元对应的发射信号的中心频率,fθ表示单频发射方式的单一中心频率,fθ_shift表示最大和最小频率相对于的fθ的偏移,winfun表示窗函数,max和min分别表示求取最大值和最小值。
  9. 根据权利要求6至8任一项所述的超声成像宽频带信号发射和处理系统,还包括:
    波形模块,设置为根据各个发射中心频率确定发射信号波形;
    延时模块,设置为根据扫查线、焦点、各个探头基元的几何位置计算发射信号延时;
    发射模块,设置为按照获得的波形及延时对应具有映射关系的发射通道产生发射信号,将发射信号经过放大后激励具有映射关系的基元发射宽频带超声信号。
  10. 根据权利要求9所述的超声成像宽频带信号发射和处理系统,还包括:
    接收模块,设置为接收宽频带超声信号;
    解析模块,设置为在解析宽频带超声信号过程中,对不同的成像深度配置不同的解调频率和解调带宽,其中,自近场至远场,配置的解调频率和解调带宽均依次降低。
PCT/CN2019/123800 2019-04-24 2019-12-06 超声成像宽频带信号发射和处理方法及系统 WO2020215735A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910333800.8 2019-04-24
CN201910333800.8A CN110013270A (zh) 2019-04-24 2019-04-24 超声成像宽频带信号发射和处理及其对应的系统

Publications (1)

Publication Number Publication Date
WO2020215735A1 true WO2020215735A1 (zh) 2020-10-29

Family

ID=67192355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/123800 WO2020215735A1 (zh) 2019-04-24 2019-12-06 超声成像宽频带信号发射和处理方法及系统

Country Status (2)

Country Link
CN (1) CN110013270A (zh)
WO (1) WO2020215735A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110013270A (zh) * 2019-04-24 2019-07-16 飞依诺科技(苏州)有限公司 超声成像宽频带信号发射和处理及其对应的系统
CN111214256B (zh) * 2020-01-13 2022-12-27 东软医疗系统股份有限公司 超声波成像方法、装置、电子设备、存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101411625A (zh) * 2007-10-15 2009-04-22 深圳迈瑞生物医疗电子股份有限公司 超声系统双极性脉冲调制发射方法
CN103175893A (zh) * 2013-02-04 2013-06-26 中国科学院声学研究所 一种基于宽频带超声相控阵的缺陷检测方法
CN104757998A (zh) * 2015-03-23 2015-07-08 深圳市理邦精密仪器股份有限公司 一种用于超声系统的降低功耗的方法及装置
CN107690313A (zh) * 2015-06-11 2018-02-13 皇家飞利浦有限公司 用于剪切波成像的超声换能器阵列探头
WO2018195873A1 (zh) * 2017-04-27 2018-11-01 深圳迈瑞生物医疗电子股份有限公司 一种超声连续波多普勒成像方法及装置、存储介质
CN108836384A (zh) * 2018-04-27 2018-11-20 沈阳东软医疗系统有限公司 超声成像方法、装置及超声成像设备
US20190090854A1 (en) * 2017-09-28 2019-03-28 Konica Minolta, Inc. Ultrasound signal processing method and ultrasound signal processing device
CN110013270A (zh) * 2019-04-24 2019-07-16 飞依诺科技(苏州)有限公司 超声成像宽频带信号发射和处理及其对应的系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005120355A1 (ja) * 2004-06-07 2005-12-22 Olympus Corporation 静電容量型超音波トランスデューサ
TWI275382B (en) * 2005-05-23 2007-03-11 Bai-Chi Lee Dynamically focusing device of ultrasonic image
JP2008307117A (ja) * 2007-06-12 2008-12-25 Panasonic Corp 超音波探触子
US9061320B2 (en) * 2012-05-01 2015-06-23 Fujifilm Dimatix, Inc. Ultra wide bandwidth piezoelectric transducer arrays
JP6074299B2 (ja) * 2013-03-22 2017-02-01 富士フイルム株式会社 超音波診断装置、超音波診断装置の信号処理方法およびプログラム
CN105982695A (zh) * 2015-02-03 2016-10-05 无锡祥生医学影像有限责任公司 超声成像系统及方法
CN105411622B (zh) * 2015-12-03 2016-08-17 西安邮电大学 一种用于控制超声相控阵连续波发射的控制方法及系统
CN105997142A (zh) * 2016-06-12 2016-10-12 飞依诺科技(苏州)有限公司 一种超声系统发射信号的复合、成像方法及装置
CN109350112B (zh) * 2018-11-13 2020-06-12 飞依诺科技(苏州)有限公司 超声图像的成像方法、装置及医疗设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101411625A (zh) * 2007-10-15 2009-04-22 深圳迈瑞生物医疗电子股份有限公司 超声系统双极性脉冲调制发射方法
CN103175893A (zh) * 2013-02-04 2013-06-26 中国科学院声学研究所 一种基于宽频带超声相控阵的缺陷检测方法
CN104757998A (zh) * 2015-03-23 2015-07-08 深圳市理邦精密仪器股份有限公司 一种用于超声系统的降低功耗的方法及装置
CN107690313A (zh) * 2015-06-11 2018-02-13 皇家飞利浦有限公司 用于剪切波成像的超声换能器阵列探头
WO2018195873A1 (zh) * 2017-04-27 2018-11-01 深圳迈瑞生物医疗电子股份有限公司 一种超声连续波多普勒成像方法及装置、存储介质
US20190090854A1 (en) * 2017-09-28 2019-03-28 Konica Minolta, Inc. Ultrasound signal processing method and ultrasound signal processing device
CN108836384A (zh) * 2018-04-27 2018-11-20 沈阳东软医疗系统有限公司 超声成像方法、装置及超声成像设备
CN110013270A (zh) * 2019-04-24 2019-07-16 飞依诺科技(苏州)有限公司 超声成像宽频带信号发射和处理及其对应的系统

Also Published As

Publication number Publication date
CN110013270A (zh) 2019-07-16

Similar Documents

Publication Publication Date Title
US8454517B2 (en) Ultrasonic diagnostic apparatus and ultrasonic diagnostic method
JP4116143B2 (ja) 超音波診断装置
CN103648400B (zh) 超声波诊断装置以及方法
US8932225B2 (en) Ultrasonic diagnostic apparatus and ultrasonic diagnostic method
EP3598950A1 (en) Ultrasound controller unit and method
JP2012511379A (ja) 超音波トランスデューサ・プローブ用のフロントエンド回路
CN111134719A (zh) 一种聚焦超声辐照相变纳米液滴的主被动超声复合成像方法及系统
JP2001327505A (ja) 超音波診断装置
US20150141828A1 (en) Ultrasonic diagnostic apparatus and ultrasonic diagnostic method
WO2020164299A1 (zh) 超声成像宽波束发射方法及发射系统
WO2020215735A1 (zh) 超声成像宽频带信号发射和处理方法及系统
JP4642977B2 (ja) 超音波診断装置及び超音波イメージング方法
US9295446B2 (en) Methods and systems for pulse scanning and simultaneously displaying a blood flow image and a B-mode image
Ramalli et al. Multi transmit beams for fast cardiac imaging towards clinical routine
EP2462872B1 (en) Providing additional information corresponding to change of blood flow with a time in ultrasound system
US9354300B2 (en) Ultrasound diagnostic apparatus and ultrasound image producing method
CN114601498A (zh) 用于超声信号数据中与深度有关的衰减的补偿方法和系统
US20090024031A1 (en) Ultrasonic diagnostic apparatus and ultrasonic diagnostic method
US20180235580A1 (en) Ultrasonic diagnostic apparatus and method for controlling the same
KR20160090059A (ko) 초음파 프로브, 이를 포함하는 초음파 진단장치 및 초음파 신호생성방법
US20120089024A1 (en) Method of providing three dimensional color doppler image and ultrasound system for implementing the same
US11896435B2 (en) Ultrasound diagnostic apparatus and examination method
JP4580490B2 (ja) 超音波診断装置
KR102220822B1 (ko) Arfi 이미징을 위한 교정
KR20080010035A (ko) 초음파 영상을 형성하는 초음파 시스템 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19926352

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19926352

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04/05/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19926352

Country of ref document: EP

Kind code of ref document: A1