WO2005106069A1 - Verfahren und vorrichtung zur kontinuierlichen beschichtung flacher substrate mit optisch aktiven schichtsystemen - Google Patents

Verfahren und vorrichtung zur kontinuierlichen beschichtung flacher substrate mit optisch aktiven schichtsystemen Download PDF

Info

Publication number
WO2005106069A1
WO2005106069A1 PCT/DE2005/000857 DE2005000857W WO2005106069A1 WO 2005106069 A1 WO2005106069 A1 WO 2005106069A1 DE 2005000857 W DE2005000857 W DE 2005000857W WO 2005106069 A1 WO2005106069 A1 WO 2005106069A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating
compartments
layer
compartment
layers
Prior art date
Application number
PCT/DE2005/000857
Other languages
English (en)
French (fr)
Inventor
Dietmar Schulze
Matthias List
Original Assignee
Von Ardenne Anlagentechnik Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Von Ardenne Anlagentechnik Gmbh filed Critical Von Ardenne Anlagentechnik Gmbh
Priority to CN2005800136994A priority Critical patent/CN1950539B/zh
Publication of WO2005106069A1 publication Critical patent/WO2005106069A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/001General methods for coating; Devices therefor
    • C03C17/002General methods for coating; Devices therefor for flat glass, e.g. float glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3657Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having optical properties
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/562Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks for coating elongated substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/568Transferring the substrates through a series of coating stations
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • C03C2218/154Deposition methods from the vapour phase by sputtering
    • C03C2218/156Deposition methods from the vapour phase by sputtering by magnetron sputtering

Definitions

  • the invention relates to a device for the continuous coating of flat substrates with optically active layer systems consisting of a plurality of partial layers, in which a transport device for transporting the substrates is arranged in a transport direction, and which is divided into individual compartments which are located one behind the other in the transport direction, such that that coating compartments with magnetrons are arranged for the deposition of the partial layers, which in turn are provided with targets, and these coating compartments are provided with vacuum pumps for evacuation in the coating compartments are separated from one another.
  • the invention also relates to a method for the continuous coating of flat substrates with optically active layer systems, consisting of several partial layers, in which a substrate is passed through several compartments of a device in a transport direction, at least some of the partial layers being successively deposited in each of the coating compartments will .
  • flat substrates are provided with optically active layer systems using sputter technology, e.g. with heat reflecting layer systems.
  • optically active layer systems using sputter technology, e.g. with heat reflecting layer systems.
  • Such layer systems are basically constructed in the following way:
  • first dielectric anti-reflective layer base layer
  • underblocker layer optionally - Ag layer - topblocker layer
  • second dielectric anti-reflective layer top layer
  • the layer systems are deposited from the corresponding individual layers in a vacuum in a single pass.
  • flat substrates are moved in a longitudinal vacuum system that has individual compartments that are connected to one another in the longitudinal direction.
  • Corresponding magnetrons are arranged in some of these compartments, which are thus designed as coating compartments.
  • the coating takes place in the coating compartments in a process gas atmosphere, which allows, for example, a reactive coating process.
  • the process gas supply required for each individual coating compartment is realized by gas inlet and pumping devices. This makes it possible to set and regulate process gas compositions for each individual magnetron in accordance with the layer properties to be realized.
  • the partial pressure ratio of two neighboring coating compartments is called the gas separation factor.
  • the gas separation factor defines the degree of decoupling of the compartments to be separated.
  • gas locks are required, which ensure decoupling of the gas compositions (gas separation) in the transport direction of the substrates successively arranged magnetron.
  • the gas locks are realized by compartments that are equipped with pump devices instead of magnetrons (pump compartments).
  • the base layer or the cover layer have generally been produced by reactive sputtering of metallic targets in an Ar / O 2 mixture.
  • this dielectric layer often consists of several partial layers of different materials.
  • Ti0 2 for example or Nb 2 0 5 to achieve an economically reasonable coating rate
  • partially reactive processes with so-called ceramic targets are already being used.
  • other sub-layers of this base or top layer are deposited in a fully reactive manner from metallic targets.
  • Both processes differ greatly in their reactive gas partial pressures.
  • the reactive gas partial pressures in the case of fully reactive processes are of the order of magnitude 10 times higher than in the case of partially reactive processes of ceramic targets. If both processes are arranged one behind the other in the direction of transport of the substrate, this requires a high gas separation factor of the order of 40 to 60 between these processes in order to avoid mutual interference and also to be able to regulate layer thickness homogeneities via the reactive gas distribution.
  • the cover layer is deposited from metal targets using fully reactive processes.
  • each gas separation with larger gas separation factors requires structural measures that increase the overall length of vacuum coating systems and increase the manufacturing outlay, for example due to an increased use of pumps.
  • both coatings are non-reactive. This is supposed to improve the optical Properties of optically active layer systems can be achieved. However, this does not involve a simplification of the system-side structure, since gas locks are provided between the coating compartments in question.
  • the invention is therefore based on the object of reducing the outlay for gas separations between pump compartments, in order to minimize both the outlay on the manufacturer and the outlay for the operator of elongated vacuum coating systems.
  • the object is achieved on the arrangement side in that, for the deposition of at least two partial layers of a layer system lying one on top of the other, the targets on the magnetrons of the coating compartments arranged one behind the other in the transport direction consist of the material of the layer to be produced.
  • the targets on the magnetrons of the coating compartments arranged one behind the other in the transport direction consist of the material of the layer to be produced.
  • a second possibility provides that pump compartments are provided which are provided with the vacuum pumps, with one pump compartment being arranged in the transport direction before a coating compartment, between the coating compartments and after a coating compartment.
  • the two coating compartments (8; 13) are connected to one another by avoiding an intermediate gas lock by means of a flow deflector.
  • both coating processes lying one behind the other can be carried out partially or non-reactively, whereby large differences in their reactive gas partial pressures can be avoided.
  • a gas lock between the coating compartments in which an additional vacuum suction between the coating compartments takes place with a pump compartment, can be dispensed with. This is done by either lining up the coating compartments directly when the pumps are arranged directly on them, for example on a cover located on the top of the coating compartment.
  • a pump compartment can also be provided for the arrangement of the vacuum pumps of the two coating compartments between them.
  • a flow resistance between the coating compartments is sufficient for the required gas separation and thus the arrangement of an additional pump compartment for realizing a gas lock is avoided.
  • the overall length of a longitudinal vacuum coating system can be shortened and the expenditure on vacuum pumps can be reduced.
  • the targets consist of electrically conductive stoichiometric or substoichiometric connections. These materials make it possible to run non-reactive or partially reactive sputtering processes. In this way, successive coating processes with very different partial pressures are avoided in a special way.
  • electrically conductive stoichiometric or substoichiometric connections are those materials which are generally referred to as "ceramic materials”.
  • Targets made of these materials consist, for example, of TiO x , Zn0 x : AlO x or NbO x .
  • the index "x" indicates that these materials are stoichiometric or sub-stoichiometric compound targets.
  • a reactive process is characterized by that of the stoichiometric compound layer is deposited on the substrate using a metallic target with the addition of reactive gas.
  • a partially reactive sputtering process means the deposition of the stoichiometric layer from an already substoichiometric or stoichiometric compound target under the condition of electrical conductivity of the target material with the addition of a significantly smaller amount of reactive gas than the reactive process.
  • a non-reactive process takes place without the addition of reactive gas.
  • the pump compartment arranged between two coating compartments is provided with a vacuum pump for the coating compartment on one side and a second vacuum pump for the coating compartment on the other side, which is vacuum-technically separated from the first vacuum pump.
  • a pump compartment is used when the vacuum pumps for the coating compartments cannot be connected directly to them. This means that two individual pump compartments for each coating compartment can be avoided and integrated in one pump compartment. This also serves to reduce the overall length.
  • the gas separation factor is less than 20 due to the flow resistance.
  • the gas separation factor is less than 10 due to the flow resistance.
  • the gas separation factor is 5 to 10 due to the flow resistance.
  • Preferred electrically conductive stoichiometric or substoichiometric compounds of the targets are TiO x , ZnO: A10 "or NbO".
  • the magnetron (s) with a target made of the material of the layer to be produced are designed as tubular magnetrons.
  • Tubular magnetron have a hollow cylindrical target body which is rotatably mounted around a magnet system. This ensures uniform removal of the material and thus high utilization of the target material.
  • target materials made of electrically conductive stoichiometric or substoichiometric compounds can thus be used inexpensively.
  • the object is achieved in that at least two directly successive partial layers are deposited non-or partially reactive from the one target from the material of the respective partial layer.
  • the successive coating steps can be realized with this method with smaller partial pressure differences, since this avoids a mixture of reactive and non-reactive coating processes, which reduces the technical complexity of the installation, both in production and in ongoing operation.
  • reactive coating processes can be avoided by depositing the partial layers from electrically conductive stoichiometric or substoichiometric connections.
  • An advantageous embodiment of the method according to the invention is provided for the production of an optically active layer, in particular a heat-reflecting layer, in that a substrate in the order of a base layer, consisting of dielectric sub-layers, a reflection layer with optional sub-layers and / or
  • One embodiment of the method according to the invention is that the gas separation factor is less than 20 due to the flow resistance.
  • the gas separation factor is less than 10 due to the flow contradiction.
  • the gas separation factor is 5 to 10 due to the flow resistance.
  • FIG. 2 shows a schematic cross section through a coating device according to the prior art for producing a layer system according to FIG. 1,
  • FIGS. 1 and 3 shows a schematic cross section through a coating device according to the invention for producing a layer system according to FIGS. 1 and
  • Fig. 4 shows a layer system constructed according to the inventive method as a second embodiment.
  • a layer system 1 which is applied to a substrate 2, consists of a base layer 3 lying on the substrate 2, an Ag layer 4 lying thereon, a blocker layer 5 deposited thereon and finally a cover layer 6.
  • the base layer consists of TiO. 2 shows the schematic cross section of a part of a vacuum coating system which is used to coat the layer sequence of base layer 3 and Ag layer 4.
  • This device consists of a first coating compartment 8 seen in the transport direction 7, in which a first tubular magnetron 9 is arranged.
  • This tubular magnetron has a first hollow cylindrical target 10 made of Ti.
  • a reactive gas containing 0 2 is introduced into the first coating compartment 8 during the coating, as a result of which a reactive coating of TiO x takes place.
  • a first pump compartment 11 with a first vacuum pump 12 is then arranged in the transport direction 7.
  • a second coating compartment 13 is provided, which is provided with a second tubular magnetron 14.
  • This second tubular magnetron 14 has a hollow cylindrical second target 15, which consists of metallic Ag.
  • a second pump compartment 16 which is located in the transport direction 7, is arranged, which is provided with a second vacuum pump 17.
  • FIG. 3 depicts the deposition of the base layer 3 and the Ag.
  • Layer 4 serves.
  • the same reference symbols and corresponding designations are also used here.
  • This device consists of a first coating compartment 8 seen in the transport direction 7, in which a first tubular magnetron 9 is arranged.
  • This tubular magnetron has a first hollow cylindrical target 10 made of TiO x .
  • the first target 10 sputtered non-reactively, ie essentially in an Ar atmosphere, because the material of the first target 10 corresponds to the layer material of the base layer 3.
  • a second coating compartment 13 is provided, which is provided with a second tubular magnetron 14.
  • This second tubular magnetron 14 has a hollow cylindrical second target 15, which consists of metallic Ag.
  • the Ag layer 4 is now deposited in a purely metallic manner.
  • a fourth pump compartment 20 is arranged between the first coating compartment 8 and the second coating compartment 13.
  • This fourth pump compartment is divided by a partition 21 into a first vacuum chamber 22 and a second vacuum chamber 23.
  • the first vacuum chamber 22 on the one hand with the first coating compartment 13 and on the other hand with the first vacuum pump 12 and the second vacuum chamber 23 with the second coating compartment 13 on the one hand and the second Vacuum pump 17 connected on the other hand.
  • the layer system 1 consists of a base layer 3 lying on the substrate 2, an Ag layer 4 lying thereon, and a cover layer 6.
  • the base layer 3 and the cover layer 6 are constructed such that they in turn consist of partial layers.
  • the base layer 3 thus consists of a lower partial layer 25 made of TiO x and an upper partial layer 26 made of ZnO x : AlO x .
  • the cover layer consists of a lower partial layer 27 made of ZnO x : AlO x and an upper partial layer 28 made of NbO x .
  • All partial layers can in turn be deposited from targets 10, 15 from electrically conductive stoichiometric or sub-stoichiometric compounds and thereby partially or non-reactively, whereby a lining up of coating compartments is possible without gas locks in between.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

Der Erfindung, die eine Vorrichtung zur kontinuierlichen Beschichtung flacher Substrate mit optisch aktiven Schichtsystemen bestehend aus mehreren Teilschichten betrifft, die in einzelne Beschichtungskompartments mit Magnetrons aufgeteilt ist, die ihrerseits mit Targets versehen sind, und die Beschichtungskompartments mit Vakuumpumpen zu Ihrer Evakuierung versehen sind, voneinander getrennt sind, und ein entsprechendes Verfahren betrifft, liegt die Aufgabe zugrunde, den Aufwand für die der Gasseparationen zwischen Pumpkompartments zu reduzieren, um damit sowohl den Herstelleraufwand als auch den Aufwand für den Betreiber von längserstreckten Vakuumbeschichtungsanlagen zu minimieren. Dies wird dadurch gelöst, dass zur Abscheidung von mindestens zwei aufeinander liegenden Teilschichten eines Schichtsystems die Targets auf den Magnetrons der entsprechend hintereinander angeordneten Beschichtungskompartments aus dem Material der zu erzeugenden Schicht bestehen und beide Beschichtungskompartments (8; 13) unter Vermeidung einer zwischenliegenden Gasschleuse über einen Strömungswiderstand miteinander verbunden sind.

Description

Verfahren und Vorrichtung zur kontinuierlichen Beschichtung flacher Substrate mit optisch aktiven SchichtSystemen
Die Erfindung betrifft eine Vorrichtung zur kontinuierlichen Beschichtung flacher Substrate mit optisch aktiven Schichtsystemen bestehend aus mehreren Teilschichten, bei der eine Transportvorrichtung zum Transport der Substrate in einer Transportrichtung angeordnet ist, und die in einzelne Kompartments, welche in Transportrichtung hintereinander liegen, aufgeteilt ist, derart, dass zur Abscheidung der Teilschichten Beschichtungskompartments mit Magnetrons angeordnet sind, die ihrerseits mit Targets versehen sind, und diese Beschichtungskompartments mit Vakuumpumpen zur Evakuierung in den Beschichtungskompartments versehen sind, voneinander getrennt sind.
Die Erfindung betrifft auch ein Verfahren zur kontinuierlichen Beschichtung flacher Substrate mit optisch aktiven Schichtsystemen, bestehend aus mehreren Teilschichten, bei dem ein Substrat in einer Transportrichtung durch mehrere Kompartments einer Vorrichtung geführt wird, wobei zumindest ein Teil der Teilschichten in jeweils einem der Beschichtungskompartment aufeinander folgend abgeschieden werde .
Vorzugsweise flache Substrate werden mit optisch aktiven SchichtSystemen mittels Sputtertechnik versehen, z.B. mit wärmereflektierenden Schichtsystemen. Derartige Schichtsysteme sind grundsätzlich in folgender Weise aufgebaut:
a) erste dielektrische Entspiegelungsschicht (Grundschicht) b) - Unterblockerschicht (optional) - Ag-Schicht - Oberblockerschicht c) zweite dielektrische Entspiegelungsschicht (Deckschicht)
Die Schichtsysteme werden aus den entsprechenden Einzelschichten in Vakuumfolge in einem Durchlauf abgeschieden. Dazu werden in einer längserstreckten Vakuumanlage, die einzelne Kompartments aufweist, die in Längsrichtung hintereinanderliegend miteinander verbunden sind, flache Substrate bewegt. In einigen dieser Kompartments sind entsprechende Magnetrons angeordnet, die damit zu Beschichtungskompartments gestaltet werden.
Die Beschichtung findet in den Beschichtungskompartments in einer Prozessgasatmosphäre statt, die beispielsweise einen reaktiven Beschichtungsvorgang erlaubt. Die dazu erforderliche Prozessgasversorgung jedes einzelnen Beschichtungskompartments wird durch Gaseinlass- und Pumpeinrichtungen realisiert. Dadurch wird es möglich, für jedes einzelne Magnetron, entsprechend den zu realisierenden Schichteigenschaften Prozessgaszusammensetzungen einzustellen und zu regeln.
Das Partialdruckverhältnis zweier benachbarter Beschichtungskompartments wird als Gasseparationsfaktor bezeichnet. Der Gasseparationsfaktor definiert den Entkopplungsgrad der zu trennenden Kompartments .
Zwischen den Magnetrons, die aus technologischen Gründen mit stark unterschiedlichen GasZusammensetzungen, d.h. mit einem großen Gasseparationsfaktor betrieben werden müssen, sind Gasschleusen erforderlich, die eine Entkopplung der GasZusammensetzungen (Gasseparation) in Transportrichtung der Substrate nacheinander folgend angeordneter Magnetron gewährleisten. Die Gasschleusen werden durch Kompartments, die anstelle von Magnetrons mit Pumpeinrichtungen bestückt sind (Pumpkompartments), realisiert.
Bisher werden die Grundschicht oder die Deckschicht im Allgemeinen durch reaktives Sputtern von metallischen Targets in einem Ar/02-Gemisch erzeugt. Oft besteht diese dielektrische Schicht jedoch aus mehreren Teilschichten unterschiedlicher Materialien. Um gerade beim Einsatz von beispielsweise Ti02 oder Nb205 eine ökonomisch sinnvolle Beschichtungsrate zu erreichen, werden bereits teilweise teilreaktive Prozesse mit sogenannten keramischen Targets eingesetzt. Gleichzeitig werden andere Teilschichten dieser Grund- oder Deckschicht vollreaktiv von metallischen Targets abgeschieden.
Beide Prozesse unterscheiden sich stark in ihren Reaktivgaspartialdrücken. So sind die Reaktivgaspartialdrücke bei vollreaktiven Prozessen in der Größenordnung lOmal höher als bei teilreaktiven Prozessen von keramischen Targets. Sind also beide Prozesse in Transportrichtung des Substrates hintereinander angeordnet, erfordert dies einen hohen Gasseparationsfaktor in der Größenordnung von 40 bis 60 zwischen diesen Prozessen, um eine gegenseitige Beeinflussung zu vermeiden und außerdem Schichtdickenhomogenitäten über de Reaktivgasverteilung ausregeln zu können.
Nach der Abscheidung der Grundschicht folgen im Allgemeinen metallische Prozesse mit geringen Reaktivgaspartialdrücken zur Abscheidung der Ag-Schicht und den umgebenden metallischen oder substöchiometrischen Blockerschichten, wie oben dargestellt. Die Abscheidung der Ag-Schicht erfolgt möglichst rein metallisch ohne eine Zugabe von Sauerstoff. Aus diesen Gründen ist im Allgemeinen ein Gasseparationsfaktor größer als 20 erforderlich, um die GasZusammensetzungen der metallischen Abscheidung der Ag-Schicht von der der reaktiven Abscheidung der dielektrischen Grund- und Deckschicht zu trennen. Die
Deckschicht wird mit vollreaktiven Prozessen von metallischen Targets abgeschieden.
Wie dargestellt, erfordert jede Gasseparation bei größeren Gasseparationsfaktoren, typischer Weise in der Größe von 10, bauliche Maßnahmen, die die Baulänge von Vakuumbe- schichtungsanlagen erhöhen und den Herstellungsaufwand, beispielsweise durch einen erhöhten Pumpeneinsatz, vergrößern.
In der EP 1 371 745 AI ist eine Abscheidung zweier benachbarter
Schichten beschrieben, wobei beide Beschichtungen nicht-reaktiv erfolgen. Damit soll eine Verbesserung der optischen Eigenschaften optisch aktiver Schichtsysteme erreicht werden. Eine Vereinfachung des anlagenseitigen Aufbaues ist damit jedoch nicht verbunden, da zwischen den in Frage kommenden Beschichtungskompartments Gasschleusen vorgesehen sind.
Der Erfindung liegt damit die Aufgabe zugrunde, den Aufwand für die der Gasseparationen zwischen Pumpkompartments zu reduzieren, um damit sowohl den Herstelleraufwand als auch den Aufwand für den Betreiber von längserstreckten Vakuumbeschichtungsanlagen zu minimieren.
Gemäß der Erfindung wird die Aufgabe anordnungsseitig dadurch gelöst, dass zur Abscheidung von mindestens zwei aufeinander liegenden Teilschichten eines Schichtsystems die Targets auf den Magnetrons der der entsprechenden in Transportrichtung hintereinander angeordneten Beschichtungskompartments aus dem Material der zu erzeugenden Schicht bestehen. Das bedeutet, dass reaktive Prozesse zur Erzeugung des Schichtmateriales - durch ein Zusammenwirken von Reaktivgas und einem von dem abzuscheidenden Schichtmaterial verschiedenen Targetmaterial - vermieden werden. Damit sind Gasschleusen zwischen den Beschichtungsprozessen der einzelnen Teilschichten nicht mehr erforderlich. Somit werden gemäß der Erfindung die Beschichtungskompartments in einer ersten Möglichkeit direkt mit den Vakuumpumpen versehen und die Beschichtungskompartments direkt miteinander verbunden. Eine zweite Möglichkeit sieht vor dass Pumpkompartments vorgesehen sind, die mit den Vakuumpumpen versehen sind, wobei jeweils ein Pumpkompartment in Transportrichtung vor einem Beschichtungskompartment, zwischen den Beschichtungskompartments und nach einem Beschichtungskompartment angeordnet ist. In jedem Falle sind beide Beschichtungskompartments (8; 13) unter Vermeidung einer zwischenliegenden Gasschleuse über einen Strömungswiders and miteinander verbunden.
Dadurch, dass die Targets der hintereinander angeordneten Beschichtungskompartments aus dem Material der zu erzeugenden Schicht bestehen, werden beide hintereinander liegenden Beschichtungsprozesse teil- oder nicht-reaktiv erfolgen können, wodurch starke Unterschiede in deren Reaktivgaspartialdrücken vermieden werden können. Dadurch kann eine Gasschleuse zwischen den Beschichtungskompartments, bei der mit einem Pumpkompartment eine zusätzliche Vakuumabsaugung zwischen den Beschichtungskompartments erfolgt, entfallen. Dies geschieht dadurch, dass die Beschichtungskompartments entweder direkt aneinander gereiht werden, wenn an ihnen die Pumpen direkt angeordnet sind, z.B. an einem auf der Oberseite des Beschichtungskompartments liegenden Deckel. Es kann aber auch eine Pumpkompartment für die Anordnung der Vakuumpumpen der beiden Beschichtungskompartments zwischen diesen vorgesehen werden. In jedem Falle wird durch die Erfindung erreicht, dass zur erforderlichen Gasseparation ein Strömungswiderstand zwischen den Beschichtungskompartments ausreichend ist und damit die Anordnung eines zusätzlichen Pumpkompartments zur Realisierung einer Gasschleuse vermieden. Dadurch kann die Baulänge einer längserstreckten Vakuumbeschichtungsanlage verkürzt und der Aufwand an Vakuumpumpen reduziert werden.
In einer bevorzugten Variante bestehen die Targets aus elektrisch leitfähigen stöchiometrischen oder substöchiometrischen Verbindungen. Mittels dieser Materialien wird es möglich, nicht-reaktive oder teilreaktive Sputterprozesse zu fahren. Damit werden in besonderer Weise aufeinanderfolgende Beschichtungsprozesse mit stark unterschiedlichen Partialdrücken vemieden. Vertreter von elektrische leitfähigen stöchiometrischen oder substöchiometrischen Verbindungen sind solche Materialien, die im allgemeinen als „keramische Materialen" bezeichnet werden.
Targets aus diesen Materialien bestehen beispielsweise aus TiOx, Zn0x:AlOx oder NbOx. Dabei gibt der Index „x" an, dass es sich bei diesen Materialien um stöchiometrischen oder substöchiometrischen Verbindungstargets handelt. Beispielsweise wird eine Schicht aus stöchiometrischen TiOx, bei dem x=2, d.h. Ti02, aus einem substöchiometrischen Target mit TiOx bei x=l,85 abgeschieden.
Ein reaktiver Prozess ist dadurch gekennzeichnet, dass von einem metallischen Target unter Zugagbe von Reaktivgas die stöchiometrische VerbindungsSchicht auf dem Substrat abgeschieden wird. Dementsprechend wird unter einem teilreaktiven Sputterprozess die Abscheidung der stöchimetrischen Schicht von einem bereits substöchimetrischen oder stöchimetrischen Verbindungstarget unter der Bedingung elektrischer Leitfähigkeit des Targetmateriales unter Zugabe einer gegenüber dem reaktiven Prozess deutlich geringeren Menge von Reaktivgas verstanden. Ein nicht-reaktiver Prozess findet ohne Zugabe von Reaktivgas statt.
In einer weiteren Ausgestaltung der Erfindung ist vorgesehen, dass das zwischen zwei Beschichtungskompartments angeordnete Pumpkompartment mit einer Vakuumpumpe für das Beschichtungskompartment auf der einen Seite und einer von der ersten Vakuumpumpe vakuumtechnisch getrennten zweiten Vakuumpumpe für das Beschichtungskompartment auf der anderen Seite versehen ist. Ein solches Pumpkompartment wird eingesetzt, wenn die Vakuumpumpen für die Beschichtungskompartments nicht direkt mit diesen verbunden werden können. Damit können zwei einzelne Pumpkompartments für je ein Beschichtungskompartment vermieden und in einem Pumpkompartment integriert werden. Auch dies dient der Verringerung von Baulänge.
In einer weiteren Ausführungsform ist vorgesehen, dass der Gassepartionsfaktor durch den Strömungswiderstand kleiner als 20 ist.
Günstig ist dabei wenn der Gassepartionsfaktor durch den Strömungswiderstand kleiner als 10 ist.
In einer besonders günstigen Ausführung ist vorgesehen, dass der Gassepartionsfaktor durch den Strömungswiderstand 5 bis 10 beträgt .
Bevorzugte elektrisch leitfähigen stöchiometrischen oder substöchiometrischen Verbindungen der Targets sind TiOx, ZnO :A10„ oder NbO„. In einer weiteren Ausgestaltung der erfindungsgemäßen Vorrichtung ist vorgesehen, dass das oder die Magnetron mit einem Target aus dem Material der zu erzeugenden Schicht als Rohrmagnetron ausgebildet sind. Rohrmagnetron weisen einen hohlzylinderförmigen Targetkörper auf, der um ein Magnetsystem herum drehbar gelagert ist. Damit wird ein gleichmäßiger Abtrag des Materials und damit eine hohe Ausnutzung des Targetmaterials erreicht. Somit lassen sich insbesondere Targetmaterialien aus elektrisch leitfähigen stöchiometrischen oder substöchiometrischen Verbindungen kostengünstig einsetzen.
Verfahrensseitig wird die Aufgabe dadurch gelöst, dass mindestens zwei direkt aufeinander folgender Teilschichten nicht- oder teil-reaktiv aus dem einem Target aus dem Material der jeweiligen Teilschicht abgeschieden werden. Die aufeinander folgenden Beschichtungsschritte können durch dieses Verfahren mit geringeren Partialdruckunterschieden realisiert werden, da damit eine Mischung von reaktiven und nicht-reaktiven Beschichtungsprozessen vermieden werden kann, wodurch sich der anlagentechnische Aufwand sowohl in der Herstellung als auch im laufenden Betrieb verringert.
Insbesondere können reaktive Beschichtungsprozesse dadurch vermieden werden, dass die Teilschichten aus elektrisch leitfähigen stöchiometrischen oder substöchiometrischen Verbindungen abgeschieden werden.
Eine vorteilhafte Gestaltung des erfindungsgemäßen Verfahrens ist für die Herstellung einer optisch aktiven Schicht, insbesondere einer wärmereflektierenden Schicht dadurch vorgesehen, dass ein Substrat in der Reihenfolge aus einer Grundschicht, bestehend aus dielektrischen Teilschichten, einer Reflektionsschicht mit optionalen Unter- und/oder
Oberblockschicht und einer Deckschicht bestehend aus dielektrischen Teilschichten beschichtet wird, wobei die dielektrischen Teilschichten der Grundschicht von Targets aus elektrisch leitfähigen stöchiometrischen oder substöchiometrischen Verbindungen abgeschieden werden. Dabei kommen die Vorteile des erfindungsgemäßen Verfahrens besonders vorteilhaft zum Tragen, wenn sowohl die dielektrischen Teilschichten der Grundschicht als auch die dielektrischen Teilschichten der Deckschicht von Targets aus elektrisch leitfähigen stöchiometrischen oder substöchiometrischen Verbindungen abgeschieden werden.
Eine Ausführungsform des erfindungsgemäßen Verfahrens besteht darin, dass der Gassepartionsfaktor durch den Strömungswiderstand kleiner als 20 ist.
Hierbei ist es günstig, dass der Gassepartionsfaktor durch den Strömungswiders and kleiner als 10 ist.
In einer besonders günstigen Ausführung beträgt der Gassepartionsfaktor durch den Strömungswiderstand 5 bis 10.
Die Erfindung soll nachfolgend anhand eines Ausführungsbeispieles näher erläutert werden. In den zugehörigen Zeichnungen zeigt
Fig. 1 einen Querschnitt durch ein optisches Schichtsystem nach dem Stand der Technik,
Fig. 2 einen schematischen Querschnitt durch eine BeschichtungsVorrichtung nach dem Stand der Technik zur Herstellung eines Schichtsystems nach Fig. 1,
Fig. 3 einen schematischen Querschnitt durch eine erfindungsgemäße Beschichtungsvorrichtung zur Herstellung eines Schichtsystems nach Fig. 1 und
Fig. 4 ein nach dem erfindungsgemäßen Verfahren aufgebautes Schichtsystem als zweites Ausführungsbeispiel .
Wie in Fig. 1 dargestellt, besteht ein Schichtsystem 1, das auf ein Substrat 2 aufgebracht ist, aus einer auf dem Substrat 2 aufliegenden Grundschicht 3, einer darauf liegenden Ag-Schicht 4, eine darauf abgeschiedenen Blockerschicht 5 und schließlich einer Deckschicht 6. Die Grundschicht besteht in diesem Ausführungsbeispiel aus TiO . In Fig. 2 der schematische Querschnitt eines Teiles einer Vakuumbeschichtungsanläge dargestellt, der der Beschichtung der Schichtenfolge Grundschicht 3 und Ag-Schicht 4 dient.
Diese Vorrichtung besteht aus einem in Transportrichtung 7 gesehen ersten Beschichtungskompartment 8, in dem ein erstes Rohrmagnetron 9 angeordnet ist. Dieses Rohrmagnetron weist ein erstes hohlzylinderförmiges Target 10 aus Ti auf. Zur Abscheidung des TiOx der Grundschicht wird in das erste Beschichtungskompartment 8 während der Beschichtung ein 02- haltiges Reaktivgas eingeleitet, wodurch eine reaktive Beschichtung von TiOx erfolgt.
Zur Einstellung des erforderlichen ProzessVakuums in dem ersten Beschichtungskompartment 8 ist in Transportrichtung 7 anschließend ein erstes Pumpkompartment 11 mit einer ersten Vakuumpumpe 12 angeordnet.
Zur Abscheidung der Ag-Schicht ist ein zweites Beschichtungskompartment 13 vorgesehen, das mit einem zweiten Rohrmagnetron 14 versehen ist. Dieses zweite Rohrmagnetron 14 weist ein hohlzylinderförmiges zweites Target 15, welches aus metallischem Ag besteht. In diesem zweiten
Beschichtungskompartment 13 wird nun die Ag-Schicht 4 rein metallisch abgeschieden.
Zur Einstellung des ProzessVakuums in dem zweiten Beschichtungskompartment 13 ist ein in Transportrichtung 7 vorher liegendes zweites Pumpkompartment 16 angeordnet, welches mit einer zweiten Vakuumpumpe 17 versehen ist.
Die unterschiedlichen Beschichtungsprozesse in den beiden Beschichtungskompartments 8 und 13 - nämlich der reaktive Prozess im ersten Beschichtungskompartment 8 und der nicht-oder teil-reaktive Prozess in dem zweiten Beschichtungskompartment
13 erfordern zwischen ihnen eine hohe Gasseparation, d.h. eine Gasseparation mit einem hohen Gasseparationsfaktor. Diese hohe Gasseparation kann nun über eine drittes Pumpkompartment 18 mit einer dritten Vakuumpumpe 19 realisiert werden, mit dem eine Gasschleuse durch eine Zwischenabsaugung der Transportstrecke 20 bewerkstelligt wird.
Zum besseren Vergleich der erfindungsgemäßen Vorrichtung nach dem Stand der Technik, wie sie in Fig. 2 dargestellt ist, mit der erfindungsgemäßen Vorrichtung ist in Fig. 3 der Teil der Vakuumbeschichtungsanläge in erfinderischer Ausgestaltung dargestellt, der ebenfalls der Abscheidung der Grundschicht 3 und der Ag-Schicht 4 dient. Zur besseren Vergleichbarkeit werden auch hier die gleichen Bezugszeichen und entsprechende Bezeichnungen verwandt.
Diese Vorrichtung besteht aus einem in Transportrichtung 7 gesehen ersten Beschichtungskompartment 8, in dem ein erstes Rohrmagnetron 9 angeordnet ist. Dieses Rohrmagnetron weist ein erstes hohlzylinderförmiges Target 10 aus TiOx auf. Zur Abscheidung des TiOx der Grundschicht wird von dem ersten Target 10 nicht-reaktiv, d.h. im wesentlichen in Ar-Atmosphäre, gesputtert, denn das Material des ersten Targets 10 entspricht dem Schichtmaterial der Grundschicht 3.
Zur Abscheidung der Ag-Schicht ist ein zweites Beschichtungskompartment 13 vorgesehen, das mit einem zweiten Rohrmagnetron 14 versehen ist. Dieses zweite Rohrmagnetron 14 weist ein hohlzylinderförmiges zweites Target 15, welches aus metallischem Ag besteht. In diesem zweiten Beschichtungskompartment 13 wird nun die Ag-Schicht 4 rein metallisch abgeschieden.
Zur Einstellung des erforderlichen ProzessVakuums in dem ersten Beschichtungskompartment 8 und in dem zweiten Beschichtungskompartment 13 ist zwischen dem ersten Beschichtungskompartment 8 und dem zweiten Beschichtungskompartment 13 liegendes viertes Pumpkompartment 20 angeordnet. Dieses vierte Pumpkompartment ist durch eine Trennwand 21 in eine erste Vakuumkammer 22 und eine zweite Vakuumkammer 23 geteilt. Dabei die erste Vakuumkammer 22 einerseits mit dem ersten Beschichtungskompartment 13 und andererseits mit der ersten Vakuumpumpe 12 und die zweite Vakuumkammer 23 mit der dem zweiten Beschichtungskompartment 13 einerseits und der zweiten Vakuumpumpe 17 andererseits verbunden.
Da in beiden Beschichtungskompartments 8 und 13 nicht- oder teil-reaktive Beschichtungsprozesse gefahren werden können, da die Materialien der Targets 10 und 15 erfindungsgemäß aus dem Material der durch sie erzeugten Schicht bestehen, kann ein Gasschleuse entfallen, denn die Partialdrücke werden durch eine statische GasSeparation, die durch Strömungswiderstände 24 realisiert wird, hinreichend getrennt.
In Fig. 4 ist ein zweites Ausführungsbeispiel dargestellt, bei dem das Schichtsystem 1 aus einer auf dem Substrat 2 aufliegenden Grundschicht 3, einer darauf liegenden Ag-Schicht 4, und einer Deckschicht 6 besteht. Die Grundschicht 3 und die Deckschicht 6 sind dabei so aufgebaut, dass sie ihrerseits aus Teilschichten bestehen. So besteht die Grundschicht 3 aus einer unteren Teilschicht 25 aus TiOx und einer oberen Teilschicht 26 aus ZnOx:AlOx. In ähnlicher Weise besteht die Deckschicht aus einer unteren Teilschicht 27 aus ZnOx:AlOx und einer oberen Teilschicht 28 aus NbOx. Alle Teilschichten können ihrerseits aus Targets 10, 15 aus elektrisch leitfähigen stöchiometrischen oder substöchiometrischen Verbindungen und dabei teil- oder nicht-reaktiv abgeschieden werden, wodurch eine Aneinanderreihung von Beschichtungskompartments ohne zwischenliegende Gasschleusen möglich wird.
Verfahren und Vorrichtung zur kontinuierlichen Beschichtung flacher Substrate mit optisch aktiven Schichtsystemen
Bezugszeichenliste Schichtsystem Substrat Grundschicht Ag-Schicht Blockerschicht Deckschicht Transportrichtung erstes Beschichtungskompartment erstes Rohrmagnetron0 erstes Target (aus Ti in Fig. 2 und TiOx in Fig. 3)1 erstes Pumpkompartment2 erste Vakuumpumpe3 zweites Beschichtungskompartment4 zweites Rohrmagnetron5 zweites Target6 zweites Pumpkompartment7 zweite Vakuumpumpe8 drittes Pumpkompartment9 dritte Vakuumpumpe 0 viertes Pumpkompartment1 Trennwand2 erste Vakuumkammer 3 zweite Vakuumkammer4 Strömungswiderstand5 untere Teilschicht der Grundschicht 6 obere Teilschicht der Grundschicht7 untere Teilschicht der Deckschicht8 obere Teilschicht der Deckschicht

Claims

Verfahren und Vorrichtung zur kontinuierlichen Beschichtung flacher Substrate mit optisch aktiven Schichtsystemen
Patentansprüche 1. Vorrichtung zur kontinuierlichen Beschichtung flacher Substrate mit optisch aktiven Schichtsystemen bestehend aus mehreren Teilschichten, bei der eine Transportvorrichtung zum Transport der Substrate in einer Transportrichtung angeordnet ist, und die in einzelne Kompartments, welche in Transportrichtung hintereinander liegen, aufgeteilt ist, derart, dass zur Abscheidung der Teilschichten Beschichtungskompartments mit Magnetrons angeordnet sind, die ihrerseits mit Targets versehen sind, und diese Beschichtungskompartments mit Vakuumpumpen zur Evakuierung in den Beschichtungskompartments versehen sind, voneinander getrennt sind, dadurch gekennzeichnet, dass zur Abscheidung von mindestens zwei aufeinander liegenden Teilschichten (3; 4) die Targets (10; 15) auf den Magnetrons (9; 14) der der entsprechenden in Transportrichtung (7) hintereinander angeordneten Beschichtungskompartments (8; 13) aus dem Material der zu erzeugenden Schicht (3; 4) bestehen und die Beschichtungskompartments (8; 13) entweder direkt mit den Vakuumpumpen (12; 17) versehen sind und die Beschichtungskompartments (8 ; 13) direkt miteinander verbunden sind oder Pumpkompartments (11; 16; 20) vorgesehen sind, die mit den Vakuumpumpen (12; 17) versehen sind, wobei jeweils ein Pumpkompartment (11; 16; 20) in Transportrichtung vor einem Beschichtungskompartment (8; 13) , zwischen den Beschichtungskompartments (8; 13) und nach einem Beschichtungskompartment (8; 13) angeordnet ist und
beide Beschichtungskompartments (8; 13) unter Vermeidung einer zwischenliegenden Gasschleuse über einen Strömungswiderstand miteinander verbunden sind.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet , dass die Targets (10) aus elektrisch leitfähigen stöchimetrischen oder substöchiometrischen Verbindungen bestehen.
3. Vorrichtung nach Anspruch 1 oder 2, dadurch g e k e n n z e i c h n e t , dass das zwischen zwei
Beschichtungskompartments angeordnete Pumpkompartment (20) mit einer Vakuumpumpe (12) für das Beschichtungskompartment (8) auf der einen Seite und einer von der ersten Vakuumpumpe (12) vakuumtechnisch getrennten zweiten Vakuumpumpe (17) für das Beschichtungskompartment (13) auf der anderen Seite versehen ist.
4. Vorrichtung nach einem der Ansprüchen 1 bis 3 , dadurch gekennzeichnet, dass der Gassepartionsfaktor durch den Strömungswiderstand (24) kleiner als 20 ist.
5. Vorrichtung nach einem der Ansprüchen 1 bis 4, dadurch gekennzeichnet , dass der Gassepartionsfaktor durch den Strömungswiderstand (24) kleiner als 10 ist.
6. Vorrichtung nach einem der Ansprüchen 1 bis 5, dadurch gekennzeichnet, dass der Gassepartionsfaktor durch den Strömungswiderstand (24) 5 bis 10 beträgt.
7. Vorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Target (10) aus TiOx besteht.
8. Vorrichtung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet , dass das Target aus ZnOx:AlOx besteht .
9. Vorrichtung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet , dass das Target aus NbOx besteht .
10. Vorrichtung nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass das oder die Magnetron (9; 14) mit einem Target (10; 15) aus dem Material der zu erzeugenden Schicht als Rohrmagnetron (9; 14) ausgebildet sind.
11. Verfahren zur kontinuierlichen Beschichtung flacher Substrate mit optisch aktiven SchichtSystemen, bestehend aus mehreren Teilschichten, bei dem ein Substrat in einer Transportrichtung durch mehrere Kompartments einer Vorrichtung geführt wird, wobei zumindest ein Teil der Teilschichten in jeweils einem der Beschichtungskompartments aufeinander folgend abgeschieden werden, dadurch gekennzeichnet , dass mindestens zwei direkt aufeinander folgende Teilschichten (3; 4) teil- oder nichtreaktiv aus einem Target (10; 15) aus dem Material der jeweiligen Teilschicht (3; 4) abgeschieden werden und ein Gasseparationsfaktor zwischen den Beschichtungskompartments zur Beschichtung der aufeinander folgenden Teilschichten mittels eines Strömungswiderstandes eingestellt wird.
12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass die Teilschichten (3 ; 4) aus einer elektrisch leitfähigen stöchimetrischen oder substöchimetrischen Verbindung abgeschieden werden.
13. Verfahren nach Anspruch 11 oder 12, dadurch gekennzeichnet , dass ein Substrat in der Reihenfolge aus einer Grundschicht (3), bestehend aus dielektrischen
Teilschichten, einer Reflektionsschicht (4) mit optionalen
Unter- und/oder Oberblockschicht (5) und einer Deckschicht
(6) bestehend aus dielektrischen Teilschichten beschichtet wird, wobei die dielektrischen Teilschichten der Grundschicht von Targets (10) aus elektrisch leitfähigen stöchimetrischen oder substöchimetrischen Verbindungen abgeschieden werden.
14. Verfahren nach Anspruch 13, dadurch gekennzeichnet , dass die dielektrischen Teilschichten der Deckschicht (6) von Targets aus elektrisch leitfähigen stöchimetrischen oder substöchimetrischen Verbindungen abgeschieden werden.
15. Verfahren nach einem der Ansprüche 11 bis 14, dadurch gekennzeichnet, dass der Gassepartionsfaktor durch den Strömungswiderstand (24) kleiner als 20 ist.
16. Verfahren nach einem der Ansprüchen 11 bis 15, dadurch gekennzeichnet, dass der Gassepartionsfaktor durch den Strömungswiderstand (24) kleiner als 10 ist.
17. Verfahren nach einem der Ansprüchen 11 bis 16, dadurch gekennzeichnet, dass der Gassepartionsfaktor durch den Strömungswiderstand (24) 5 bis 10 beträgt.
PCT/DE2005/000857 2004-04-30 2005-05-02 Verfahren und vorrichtung zur kontinuierlichen beschichtung flacher substrate mit optisch aktiven schichtsystemen WO2005106069A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2005800136994A CN1950539B (zh) 2004-04-30 2005-05-02 带旋光层系统的平基片的连续涂层的方法和装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200410021734 DE102004021734B4 (de) 2004-04-30 2004-04-30 Verfahren und Vorrichtung zur kontinuierlichen Beschichtung flacher Substrate mit optisch aktiven Schichtsystemen
DE102004021734.3 2004-04-30

Publications (1)

Publication Number Publication Date
WO2005106069A1 true WO2005106069A1 (de) 2005-11-10

Family

ID=34969764

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2005/000857 WO2005106069A1 (de) 2004-04-30 2005-05-02 Verfahren und vorrichtung zur kontinuierlichen beschichtung flacher substrate mit optisch aktiven schichtsystemen

Country Status (3)

Country Link
CN (1) CN1950539B (de)
DE (1) DE102004021734B4 (de)
WO (1) WO2005106069A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008014040A3 (en) * 2006-05-08 2008-05-08 Applied Materials Inc Apparatus and method for coating substrates with approximate process isolation
US20090139452A1 (en) * 2005-11-21 2009-06-04 Michael Hofmann Separating device for process chambers of vacuum coating installation and vacuum coating installation
DE102009029902A1 (de) * 2009-02-25 2010-09-02 Von Ardenne Anlagentechnik Gmbh Vakuumbeschichtungsanlage mit zwei oder mehr Vakuumkammern und Verfahren zur Behandlung von Substraten in der Anlage
WO2012052428A1 (en) * 2010-10-22 2012-04-26 Agc Glass Europe Modular coater separation

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007058052B4 (de) * 2007-11-30 2013-12-05 Von Ardenne Anlagentechnik Gmbh Vakuumbeschichtungsanlage
DE102008008320B4 (de) * 2008-02-07 2010-05-27 Von Ardenne Anlagentechnik Gmbh Transporteinrichtung für horizontale Vakuumbeschichtungsanlagen
DE102009042432A1 (de) 2008-09-29 2010-04-22 Von Ardenne Anlagentechnik Gmbh Transportvorrichtung für eine Vakuumprozessanlage, Antriebseinrichtung für eine Anlagenkomponente einer Vakuumprozessanlage, und Vakuumprozessanlage
DE102009005966A1 (de) 2008-09-29 2010-04-15 Von Ardenne Anlagentechnik Gmbh Transportvorrichtung für eine Vakuumprozessanlage, Antriebseinrichtung für eine Anlagenkomponente einer Vakuumprozessanlage, und Vakuumprozessanlage
CN101428972B (zh) * 2008-11-19 2013-01-30 苏州新爱可镀膜设备有限公司 镀膜玻璃用磁控镀膜真空腔室
DE102009011495B4 (de) 2009-03-06 2013-07-18 Von Ardenne Anlagentechnik Gmbh Verfahren und Vorrichtung zur Behandlung von Substraten unter Verwendung einer Gasseparation
DE102009059093B4 (de) 2009-12-18 2014-03-27 Von Ardenne Anlagentechnik Gmbh Vakuumprozessanlage mit einer Einrichtung zur Druckseparation
DE102012202715B4 (de) 2012-02-03 2014-05-08 Von Ardenne Anlagentechnik Gmbh Vakuumprozessanlage mit einer Einrichtung zur Druckseparation
CN102618839A (zh) * 2012-03-22 2012-08-01 威海金博新能源科技有限公司 卷对卷连续真空镀膜生产机

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6017396A (en) * 1995-08-04 2000-01-25 Sharp Kabushiki Kaisha Plasma film forming apparatus that prevents substantial irradiation damage to the substrate
DE10004786A1 (de) * 1999-09-14 2001-03-15 Ardenne Anlagentech Gmbh Vakuumbeschichtungsanlage
US6336999B1 (en) * 2000-10-11 2002-01-08 Centre Luxembourgeois De Recherches Pour Le Verre Et Al Ceramique S.A. (C.R.V.C.) Apparatus for sputter-coating glass and corresponding method
WO2005045092A2 (de) * 2003-11-04 2005-05-19 Von Ardenne Anlagentechnik Gmbh Längserstreckte vakuumanlage zur ein- oder beidseitigen beschichtung flacher substrate
WO2005045091A2 (de) * 2003-11-04 2005-05-19 Von Ardenne Anlagentechnik Gmbh Vakuumbeschichtungsanlage zum beschichten von längserstreckten substraten

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19651378A1 (de) * 1996-12-11 1998-06-18 Leybold Systems Gmbh Vorrichtung zum Aufstäuben von dünnen Schichten auf flache Substrate
EP1371745A1 (de) * 2002-06-10 2003-12-17 Scheuten Glasgroep Verfahren und Mehrkammervorrichtung zur Beschichtung eines Glassubstrats mit einem Schichtsystem SnO/ZnO/Ag/CrNOx

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6017396A (en) * 1995-08-04 2000-01-25 Sharp Kabushiki Kaisha Plasma film forming apparatus that prevents substantial irradiation damage to the substrate
DE10004786A1 (de) * 1999-09-14 2001-03-15 Ardenne Anlagentech Gmbh Vakuumbeschichtungsanlage
US6336999B1 (en) * 2000-10-11 2002-01-08 Centre Luxembourgeois De Recherches Pour Le Verre Et Al Ceramique S.A. (C.R.V.C.) Apparatus for sputter-coating glass and corresponding method
WO2005045092A2 (de) * 2003-11-04 2005-05-19 Von Ardenne Anlagentechnik Gmbh Längserstreckte vakuumanlage zur ein- oder beidseitigen beschichtung flacher substrate
WO2005045091A2 (de) * 2003-11-04 2005-05-19 Von Ardenne Anlagentechnik Gmbh Vakuumbeschichtungsanlage zum beschichten von längserstreckten substraten

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090139452A1 (en) * 2005-11-21 2009-06-04 Michael Hofmann Separating device for process chambers of vacuum coating installation and vacuum coating installation
US9057131B2 (en) * 2005-11-21 2015-06-16 Von Ardenne Gmbh Separating device for process chambers of vacuum coating installations and vacuum coating installation
WO2008014040A3 (en) * 2006-05-08 2008-05-08 Applied Materials Inc Apparatus and method for coating substrates with approximate process isolation
JP2010526932A (ja) * 2006-05-08 2010-08-05 アプライド マテリアルズ インコーポレイテッド 適切なプロセス分離により基板をコーティングする装置および方法
DE102009029902A1 (de) * 2009-02-25 2010-09-02 Von Ardenne Anlagentechnik Gmbh Vakuumbeschichtungsanlage mit zwei oder mehr Vakuumkammern und Verfahren zur Behandlung von Substraten in der Anlage
WO2012052428A1 (en) * 2010-10-22 2012-04-26 Agc Glass Europe Modular coater separation
US20130337193A1 (en) * 2010-10-22 2013-12-19 Agc Glass Europe Modular coater separation
EA025781B1 (ru) * 2010-10-22 2017-01-30 Агк Гласс Юроп Разделение модульного устройства для нанесения покрытия
US9938617B2 (en) 2010-10-22 2018-04-10 Agc Glass Europe Modular coater separation

Also Published As

Publication number Publication date
CN1950539B (zh) 2010-06-16
DE102004021734A1 (de) 2005-12-01
CN1950539A (zh) 2007-04-18
DE102004021734B4 (de) 2010-09-02

Similar Documents

Publication Publication Date Title
WO2005106069A1 (de) Verfahren und vorrichtung zur kontinuierlichen beschichtung flacher substrate mit optisch aktiven schichtsystemen
DE3442844A1 (de) Vorrichtung und anlage fuer die durchfuehrung einer behandlung unter vakuum
DE19606463C2 (de) Mehrkammer-Kathodenzerstäubungsvorrichtung
DE3602804C2 (de)
DE102010000001A1 (de) Inline-Beschichtungsanlage
EP1626433B1 (de) Magnetronsputtereinrichtung, Zylinderkathode und Verfahren zur Aufbringung von dünnen Mehrkomponentenschichten auf einem Substrat
WO2006034676A1 (de) Temperfähiges schichtsystem und verfahren zu seiner herstellung
DE19505258C2 (de) Beschichtungsvorrichtung
DE112019004100T5 (de) Vakuumbeschichtungseinrichtung, Verfahren zur Vakuumbeschichtung und Verfahren zur Herstellung einer Filmschicht in einer Filterkammer
DE102004014323B4 (de) Verfahren und Anordnung zur Herstellung von Gradientenschichten oder Schichtenfolgen durch physikalische Vakuumzerstäubung
DE10100223A1 (de) Verfahren zum Beschichten eines Substrats und beschichteter Gegenstand
DE19851824C2 (de) CVD-Reaktor
WO2018065251A1 (de) Multilayer-spiegel zur reflexion von euv-strahlung und verfahren zu dessen herstellung
DE102010042839B4 (de) Durchlauf-Vakuumbeschichtungsanlage zum Beschichten von Substraten
EP1876257A2 (de) Verfahren zur PVD-Beschichtung
EP1673488A2 (de) Modulare vorrichtung zur beschichtung von oberflächen
DE3624772C2 (de)
EP3133184B1 (de) Verfahren zum ausbilden einer schicht mit hoher lichttransmission und/oder niedriger lichtreflexion
EP3417086B1 (de) Vorrichtung und verfahren zur herstellung definierter eigenschaften von gradientenschichten in einem system mehrlagiger beschichtungen bei sputter-anlagen
EP0753601A2 (de) Vorrichtung zum Beschichten
EP1560253B1 (de) Vorrichtung zum Beschichten eines Substrats mit einer Absorberanordnung
EP1462538B1 (de) Verfahren zum reaktiven Magnetron-sputtern
EP0940482B1 (de) Vakuum-Plasma-Beschichtungsanlage und Anwendung derselben
EP2041434B1 (de) Getterpumpe und vakuumbeschichtungsanlage mit einer getterpumpe
DE4335224A1 (de) Vorrichtung für die Herstellung optischer Schichten

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580013699.4

Country of ref document: CN

122 Ep: pct application non-entry in european phase