WO2005106030A1 - 核酸の検出方法 - Google Patents

核酸の検出方法 Download PDF

Info

Publication number
WO2005106030A1
WO2005106030A1 PCT/JP2005/008005 JP2005008005W WO2005106030A1 WO 2005106030 A1 WO2005106030 A1 WO 2005106030A1 JP 2005008005 W JP2005008005 W JP 2005008005W WO 2005106030 A1 WO2005106030 A1 WO 2005106030A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
detecting
reaction
double
labeling substance
Prior art date
Application number
PCT/JP2005/008005
Other languages
English (en)
French (fr)
Inventor
Kazutaka Nishikawa
Tomonori Nagaoka
Seiji Kondo
Original Assignee
Olympus Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corporation filed Critical Olympus Corporation
Publication of WO2005106030A1 publication Critical patent/WO2005106030A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6827Hybridisation assays for detection of mutation or polymorphism

Definitions

  • the present invention relates to a nucleic acid detection method for detecting a target nucleic acid.
  • a genetic test that evaluates the expression changes or mutations of multiple types of mRNAs expressed in living tissue can be performed by using a nucleic acid that uses a short chain or fragment of a gene that forms a specific bond to a target gene as a probe.
  • Techniques that use hybridization technology have been developed.
  • techniques for identifying and quantifying proteinaceous molecules in living tissues and serum by an antigen-antibody reaction or a ligand-receptor binding reaction using an antibody or peptide as a probe have been developed.
  • Detection of a target nucleic acid based on nucleic acid hybridization generally involves forming a complementary hydrogen bond between a single-stranded probe nucleic acid and a target nucleic acid in a nucleobase sequence-specific manner, and forming the two formed nucleic acids. This is performed by detecting a strand nucleic acid.
  • radioactive and non-radioactive labeling substances have been used for detecting nucleic acids and proteins.
  • radiolabels have good sensitivity, available facilities are limited. It is not currently mainstream due to the danger of handling.
  • a non-radioactive label a label with a fluorescent substance is generally used.
  • Patent Literatures 1 and 2 are methods in which a nucleic acid sample is subjected to hybridization with a probe nucleic acid, and then an intercalator dye is introduced for detection.
  • the nucleic acid sample is labeled, the nucleic acid sample is subjected to hybridization with the probe nucleic acid, and a signal specific to the label is detected in accordance with the type of the probe nucleic acid, thereby detecting the target nucleic acid in the sample. Is also done.
  • the methods are roughly classified into a direct labeling method and an indirect labeling method.
  • a direct labeling method of a nucleic acid sample a method of incorporating a labeling substance at the time of replicating, repairing, or amplifying a nucleic acid sample is often used.
  • the accuracy of the detection signal can be improved by secondary detection of the labeling substance bound to the sample, or the activity of the enzyme substrate can be increased by using an enzyme-labeled substance.
  • a method for amplifying a detection signal by chemical modification eg, HRP enzyme and luminescent substrate ECL.
  • an enzyme modified to specifically bind to a label of an analyte is used to activate a detectable label-modified substrate, and the activation is performed. Deposit at a position where the substrate is stabilized.
  • a method using a tyramide signal amplification kit commercially available from PerkinElmer Inc.
  • Non-patent Document 1 for detection by a microarray using cDNA probes on a slide glass has been reported (Non-patent Document 1). 1).
  • the Tyramido conjugate is radicalized by the action of an enzyme and is covalently linked to some aromatic amino acids in the vicinity.
  • sensitization is achieved by adding a detectable modifying substance (for example, a fluorescent substance) to the tyramide-conjugated substance.
  • Patent Literature 4 describes a method for detecting RNA-DNA hybrids using a detectable antibody that elongates and specifically binds to the composition of an RNA-DNA hybrid.
  • the amount of a nucleic acid sample for obtaining an accurate detection result is insufficient with only a gene extracted from a specimen or the like. For example, if only a few mg of tissue obtained by needle biopsy, a small amount of cells in body fluids, or a small amount of mRNA obtained from several cells obtained by microdissection are measured using only the amount of sample obtained, the sample It is difficult to obtain accurate detection results due to the presence of only trace amounts in the target nucleic acid!
  • Patent Document 2 Japanese Patent No. 2948904
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2003-52397
  • Patent Document 4 U.S. Pat.No. 6,686,151B1
  • Non-Patent Document 1 Karsten et. Al., “Nucleic Acids Research” (UK), 2002, Vol. 30, No. 2, E4
  • the conventional method has the following problems since it is necessary to amplify the extracted gene and then subject it to nucleic acid hybridization after amplification.
  • the gene sample used in the amplification reaction needs to be sufficiently isolated and purified.
  • nucleic acids, proteins, saccharides, and the like need to be individually purified according to the purpose of measurement, so that the number of steps is increased. This requires more sophisticated techniques and time for sample preparation.
  • the present invention has been made in view of the above circumstances, and has as its object to detect a target nucleic acid in a sample simply, quickly, at low cost, and accurately.
  • the nucleic acid detection method of the present invention uses a nucleic acid probe having a base sequence complementary to a target nucleic acid and a double-stranded recognition compound having an affinity for a nucleic acid double-stranded nucleic acid, using a sample nucleic acid.
  • a first step of forming a nucleic acid double strand by contacting a sample containing the nucleic acid probe with the nucleic acid probe; and reacting the double strand recognition compound with the nucleic acid double strand to form the sample nucleic acid, the nucleic acid probe and the nucleic acid probe.
  • the second step of forming a complex containing the duplex recognition compound and the third step of directly or indirectly detecting the double-stranded recognition conjugate contained in the complex with a labeling substance It is characterized by having.
  • a first labeling substance is bound to the double-stranded recognition conjugate.
  • the third step is performed by directly detecting the first labeling substance. Yes.
  • the third step may be performed by a primary reaction specific to the first labeling substance, a secondary reaction involving a product of the primary reaction, and detection of a product of the secondary reaction. I like it.
  • the third step is a reaction between the first labeling substance and a specific substance capable of specifically binding to the first labeling substance and bound to the second labeling substance;
  • the detection is preferably performed by detecting the second labeling substance.
  • the detection of the second labeling substance is performed by detecting a primary reaction specific to the second labeling substance, a secondary reaction involving the product of the primary reaction, and a product of the secondary reaction. It is preferable to do it.
  • ligand-receptor reaction or an antigen-antibody reaction for the reaction between the first labeling substance and the specific substance.
  • the first labeling substance preferably contains one or more proteins, peptides, and sugar chains.
  • a reaction between the double-stranded recognition compound and a specific substance capable of specifically binding to the double-stranded recognition compound and to which a labeling substance is bound and The detection is preferably performed by detecting the labeling substance.
  • the detection of the labeling substance can be carried out by detecting a primary reaction specific to the labeling substance, a secondary reaction involving a product of the primary reaction, and a product of the secondary reaction. It is preferable to use a ligand-receptor reaction or an antigen-antibody reaction for the reaction between the double-stranded recognition compound and the specific substance.
  • the substance to be detected is preferably a product of an enzymatic reaction.
  • the third step it is preferable to measure a signal specific to the substance to be detected over time.
  • the double-stranded recognition compound preferably contains an intercalator substance.
  • the double-stranded recognition compound preferably contains an anti-nucleic acid antibody.
  • the sample nucleic acid is preferably subjected to a shift in transcription and reverse transcription reaction, and the sample nucleic acid is preferably also subjected to a shift in replication and amplification treatment. . It is preferable not to perform the nucleic acid isolation and purification treatment.
  • the temperature is preferably in the range of 20 ° C to 60 ° C.
  • nucleic acid probes are immobilized on one or more places on the surface of the carrier.
  • Area of the immobilized region of the nucleic acid probe 1 is a probe per m 2 to 2 mm 2, the region is preferably provided two or more positions on the carrier surface lcm per 2.
  • the carrier is also a porous substrate.
  • a target nucleic acid in a sample can be detected simply, quickly, at low cost, and accurately.
  • FIG. 1A is a conceptual diagram showing a first process of an embodiment of the present invention.
  • FIG. 1B is a conceptual diagram showing a state after the completion of the first step in one embodiment of the present invention.
  • FIG. 1C is a conceptual diagram showing a second process of one embodiment of the present invention.
  • FIG. 2A is a conceptual diagram showing a second process of another embodiment of the present invention.
  • FIG. 2B is a conceptual diagram showing the first half of the third step in another embodiment of the present invention.
  • FIG. 2C is a conceptual diagram showing the latter half of the third step in another embodiment of the present invention.
  • FIG. 3A is a conceptual diagram showing a second process of another embodiment of the present invention.
  • FIG. 3B is a conceptual diagram showing the first half of the third step of another embodiment of the present invention.
  • FIG. 3C is a conceptual diagram showing a latter half of a third step in another embodiment of the present invention.
  • FIG. 4A is a conceptual diagram showing first and second steps of another embodiment of the present invention.
  • FIG. 4B is a conceptual diagram showing a third step of another embodiment of the present invention.
  • FIG. 5 is a conceptual diagram showing another embodiment of the present invention.
  • FIG. 6A is a conceptual diagram showing first and second steps of another embodiment of the present invention.
  • FIG. 6B is a conceptual diagram showing a third step of another embodiment of the present invention.
  • the method for detecting a nucleic acid of the present invention uses a nucleic acid probe having a base sequence complementary to a target nucleic acid and a double-stranded recognition compound having an affinity for a nucleic acid double-stranded nucleic acid.
  • a first step of forming a nucleic acid double strand by contacting a sample containing the nucleic acid probe with the nucleic acid probe; and reacting the double strand recognition compound with the nucleic acid double strand to form the sample nucleic acid, the nucleic acid probe and the nucleic acid probe.
  • sample used in the method of the present invention may be any as long as it contains a nucleic acid (sample nucleic acid).
  • sample nucleic acid sample nucleic acid
  • This sample does not require pretreatment or preparation such as nucleic acid transcription, reverse transcription, replication, amplification, labeling, isolation and purification, as described below.
  • Transcription refers to the synthesis of RNA having a base sequence complementary to DNA in a nucleic acid
  • reverse transcription refers to synthesis of DNA having a base sequence complementary to RNA in a nucleic acid
  • Replicating refers to synthesizing a nucleic acid having a base sequence complementary to the nucleic acid to be a sample.
  • Amplification is a step of increasing the amount of nucleic acid by repeatedly replicating nucleic acid in a nucleic acid sample using a nucleic acid synthesis reaction.
  • Nucleic acid labeling refers to, for example, incorporating a labeling substance such as a dye or biotin into a sample nucleic acid or a complementary nucleic acid.
  • the nucleic acid probe used in the present invention (hereinafter sometimes referred to as “probe”) is a nucleic acid having a base sequence complementary to a target nucleic acid.
  • the type of the probe refers to the nucleotide sequence of the nucleic acid probe.
  • the target nucleic acid refers to a nucleic acid region having a specific base sequence to be detected by the method of the present invention.
  • the target nucleic acid may extend over the entire nucleic acid molecule of the target sample nucleic acid or may be a part of the nucleic acid molecule.
  • the double-stranded recognition conjugate used in the present invention has affinity for nucleic acid double-stranded.
  • the double-stranded recognition compound for example, an intercalator substance, an anti-nucleic acid antibody and the like can be used.
  • An intercalator substance is known as a substance exhibiting a property of entering a double-stranded structure formed between complementary nucleic acid molecules.
  • Intercalator substances include, for example, ethidium bromide, ataridine orange, providimethoxide, thiazole orange, oxazole yellow, diamidinophenylindole, naphthalenediimide, and derivatives thereof.
  • an anti-nucleic acid antibody is an antibody that specifically binds a nucleic acid or a complex of a nucleic acid and a substance having affinity for the nucleic acid as an antigen.
  • anti-nucleic acid antibodies anti-double-stranded DNA antibodies that are known to specifically bind to double-stranded DNA, or complexes of double-stranded nucleic acids with compounds having affinity for them Antibodies are preferred.
  • the double-stranded recognition compound is not limited to the above-mentioned intercalator substance ⁇ anti-nucleic acid antibody, as long as it has the property of being specifically introduced into the complex between the probe and the analyte, like these substances. good.
  • the double-chain recognition compound preferably contains an intercalator substance and Z or an anti-nucleic acid antibody.
  • a sample containing a sample nucleic acid is brought into contact with the nucleic acid probe to form a nucleic acid double strand.
  • the nucleic acid duplex formed in the first step is formed by binding a target nucleic acid in a sample nucleic acid and a region in the nucleic acid probe having a base sequence complementary to the target nucleic acid complementarily to each other. Things.
  • the nucleic acid double strand formed in the first step is reacted with the double-stranded recognition compound, and the complex comprising the sample nucleic acid, the nucleic acid probe and the double-stranded recognition compound is obtained. Allows the body to form.
  • the complex formed by the second step is a complex formed by binding a double-stranded recognition compound to a nucleic acid double-stranded.
  • a washing operation is performed between the second step and the third step to remove the double-stranded recognition compound not contained in the complex from the vicinity of the complex.
  • the signal intensity obtained in the third step is correlated with the amount of formation of the complex, and in turn, the amount of formation of a nucleic acid double strand composed of at least a part of each of the probe and the sample nucleic acid. Therefore, the presence or absence of a target nucleic acid in a sample can be estimated using the obtained signal intensity as an index.
  • the target nucleic acid in the sample can be quantified by performing the detection under conditions that give a signal intensity proportional to the amount of the double-stranded recognition compound contained in the complex.
  • the conditions include the type of a labeling substance described later, the time of signal intensity measurement, and the like.
  • the double-stranded recognition conjugate contained in the complex is detected directly or indirectly with a labeling substance, so that the correspondence between the abundance of the target nucleic acid and the signal to be detected is improved.
  • the signal and the frequency of the target nucleic acid can be accurately determined due to the variation in the amount of labeling.
  • the efficiency of each reaction that occurs with respect to the double-stranded structure formed by the probe and the target nucleic acid is kept constant, and the signal detected and the frequency of the target nucleic acid are reduced. Since they can be accurately matched, they have higher accuracy than when nucleic acid samples are labeled.
  • the present invention eliminates the need for any of the sample pretreatment and preparation steps of transcription, reverse transcription, amplification, labeling, isolation and purification, etc., which are required for conventional detection methods. With sufficient sensitivity, the presence of a target nucleic acid in a sample can be detected. Therefore, it is possible to reduce the time, cost, difficult preparation techniques and preparation errors involved in the above process. come.
  • the presence of a target nucleic acid in a sample can be detected simply, quickly, at low cost, and accurately.
  • the direct or indirect detection of the double-stranded recognition compound is carried out by using a double-stranded recognition compound (labeled double-stranded recognition Compound)) can be performed by direct or indirect detection of the first labeling substance.
  • labeling of the double-stranded recognition compound is not required, and the double-stranded recognition compound can be specifically bound to the double-stranded recognition compound, and the labeling can be performed using a specific substance bound to the compound.
  • the third step can be performed by directly detecting the first labeling substance.
  • FIGS. 1A to 1C This embodiment will be described as a first embodiment with reference to FIGS. 1A to 1C.
  • a nucleic acid probe 2 having a base sequence complementary to a target nucleic acid is immobilized on a surface of a carrier 1 and used.
  • a sample solution containing the sample nucleic acid 3 is supplied to the surface of the carrier 1 on which the nucleic acid probe 2 is immobilized as shown in FIG. 1A.
  • the sample nucleic acid 3 and the nucleic acid probe 2 are hybridized over the target nucleic acid and the nucleic acid region complementary thereto.
  • a binding pair (nucleic acid duplex) 20 is formed.
  • a solution of the double-stranded recognition compound 4 to which the first labeling substance composed of the fine particles 5 that can be detected optically or analytically is bound is supplied to the surface of the carrier 1.
  • the double-stranded recognition conjugate 4 reacts with the binding pair 20, and as shown in FIG. 1C, a complex 30 consisting of the sample nucleic acid 3, the nucleic acid probe 2, and the double-stranded recognition compound 4 is formed. Is done.
  • the microparticles 5 are detected optically or analytically in correspondence with the probe spots on which the nucleic acid probe 2 has been immobilized, thereby corresponding to the nucleic acid probe 2.
  • the complex 30 can be detected.
  • the presence of the target nucleic acid corresponding to the type of the nucleic acid probe 2 in the sample nucleic acid 3 can be detected. Furthermore, the intensity of the signal detected corresponding to the microparticles 5 is correlated with the frequency of formation of a binding pair between the nucleic acid probe 2 and the sample nucleic acid 3. Can be estimated.
  • the first labeling substance to be bound to the double-stranded recognition conjugate 4 is replaced with the microparticles 5 shown in FIG.1C and the enzyme 6 shown in FIG. Perform the first and second steps.
  • a substrate 7 that is reduced by the catalytic activity of the enzyme 6 and a conjugate 9 to which a labeling substance 10 that can be directly detected are bound are supplied to the surface of the carrier 1.
  • a primary reaction occurs in which the substrate 7 is reduced by the enzyme 6, and a reducing substance 8 and a radical (not shown) are generated as products.
  • the conjugate 9 is activated and a secondary reaction occurs in which the activated conjugate 11 is formed.
  • the activated conjugate 11 Since the activated conjugate 11 is unstable in energy, it is stabilized on the surface of the carrier 1 and deposited on the surface of the carrier 1 as shown in FIG. Deposit! To form a deposition phase 12.
  • the type of nucleic acid probe 2 in the sample is detected by detecting the labeling substance 10 in the deposition phase 12 corresponding to the probe spot on which various nucleic acid probes 2 are immobilized. Can be confirmed.
  • the primary and secondary reactions are continued as long as the substrate 7 and the conjugate 9 having the labeling substance 10 are present around the enzyme 6, and the deposition phase 12 is accumulated over time. To go. Therefore, even when the target nucleic acid present in the sample is very small, the above reaction is performed. As a result, a large amount of the labeling substance 10 is fixed around the complex 30, and after a predetermined time, the labeling substance 10 is in an amount sufficient for detection. Therefore, higher sensitivity can be achieved without performing steps such as labeling and amplification on the sample.
  • Conjugates 9 that can be used in the second embodiment include tyramide conjugates, quinazolones that produce visible precipitates by removing hydroxyl groups, benzimidazoles, benzothiazoles, benzoxazoles, quinolines, indolines, and phenanthamines. And the like.
  • the third step is performed by combining the first labeling substance with the first labeling substance.
  • the reaction can be performed by reacting with the specific substance that can be specifically bound to the labeling substance and to which the second labeling substance is bound, and detecting the second labeling substance.
  • the first antibody is bound to the double-stranded recognition conjugate as the first labeling substance, and is bound to the antigen-antibody or ligand-receptor site. What is necessary is just to use the substance which has.
  • either the first labeling substance or the specific substance may function as a ligand, and either may function as an antigen.
  • a ligand-receptor reaction or an antigen-antibody reaction can be easily used when the first labeling substance contains at least one selected from a protein, a peptide, and a sugar chain.
  • Examples of the ligand-receptor reaction include a binding reaction with biotin avidin, a binding reaction with a sugar lectin, and the like.
  • the second labeling substance may be the same or different from the first labeling substance, but is preferably different.
  • FIGS. 3A, 3B, and 4 show a method for directly detecting the second labeling substance as a third embodiment and a method for secondary detection of the second labeling substance as a fourth embodiment. This will be described with reference to FIG.
  • the first labeling substance to be bound to the double-stranded recognition compound 4 The first and second steps are performed in the same manner as in the first embodiment, except that the antigen 13 shown in FIG. 3A is used instead of the fine particles 5 shown in FIG. 1C.
  • Specific examples of the antigen 13 include proteins, peptides and the like.
  • an antibody 14 specific to the antigen 13 and bound with a directly detectable labeling substance 10 is supplied.
  • the antigen 13 bound to the double-stranded recognition conjugate 4 in the complex 30 and the antibody 14 specifically bind.
  • the presence of the target nucleic acid corresponding to the type of the nucleic acid probe 2 in the sample is detected by detecting the labeling substance 10 corresponding to the probe spot on which various nucleic acid probes 2 are immobilized. Can be confirmed.
  • the label bound to the antibody 14 is changed to the enzyme 6 shown in FIG. 4 instead of the labeling substance 10 shown in FIG. 3A.
  • An antibody 14 specific to the antigen 13 and bound to the enzyme 6 is supplied on the surface of the carrier 1.
  • the antigen 13 bound to the double-chain recognition compound 4 in the complex 30 specifically binds to the antibody 14.
  • the substrate 7 reduced by the catalytic activity of the enzyme 6 and the directly detectable labeling substance 10 were bound to the surface of the carrier 1 as shown in FIG.2B.
  • the conjugate 9 is supplied.
  • FIGS. 2B and 2C the primary and secondary reactions and the formation of the deposition phase 12 proceed as in the second embodiment.
  • the presence of the target nucleic acid corresponding to the type of the nucleic acid probe 2 in the sample can be confirmed by the same operation as in the second embodiment.
  • the double-stranded recognition compound in the third step, can be specifically bound to the double-stranded recognition compound, and the labeling substance is bound. It can also be carried out by reacting with a specific substance and detecting the labeling substance.
  • the specific substance may be a substance that recognizes and binds to the complex formed in the second step.
  • the reaction between the double-stranded recognition compound and the specific substance requires a ligand-receptor reaction. It is preferable to use a reaction or antigen-antibody reaction.
  • ligand-receptor reactions and antigen-antibody reactions that can be used in this reaction are the same as those described above for the reaction between the first labeling substance and the specific substance.
  • the detection of the labeling substance bound to the specific substance without labeling the double-stranded recognition compound is performed by the primary reaction specific to the labeling substance, the secondary reaction involving the product of the primary reaction, and the An example where detection is performed by detecting a product of the secondary reaction will be described as a fifth embodiment with reference to FIGS. 5A and 5B.
  • the first and second steps are performed in the same manner as in the first embodiment, except that the labeling substance is not bound to the double-stranded recognition compound 4.
  • the double-stranded recognition compound is introduced between the adjacent binding pairs, and a complex 30 composed of the sample nucleic acid 3, the nucleic acid probe 2, and the double-stranded recognition compound 4 is formed as shown in FIG. 5A. .
  • a substance 14 (an antibody in this example) bound to the enzyme 6 and bound to the double-stranded recognition compound 4 is supplied to the surface of the carrier 1.
  • the substrate 7 shown in FIG. 2B which is reduced by the catalytic activity of the enzyme 6, and the conjugate 9 to which a directly detectable labeling substance 10 is bound are supplied to the surface of the carrier 1. I do.
  • the deposition phase 12 is formed in the same manner as in the second embodiment, and the presence of the target nucleic acid corresponding to the type of the nucleic acid probe 2 in the sample can be confirmed.
  • the first labeling substance, the second labeling substance, and the labeling substance bound to the specific substance include those described in the above embodiment, Color substances (DAB, BCIP, ortho-diamine, etc.), chemiluminescent substances (luminol, BOLD (registered trademark), etc.), fluorescent substances (fluorescein, Alexa, cyanine, etc.), colloid particles (gold or silver metal, latex) Resin, glass, ceramics), fluorescent glass particles, fluorescent semiconductor particles, and the like.
  • Color substances DAB, BCIP, ortho-diamine, etc.
  • chemiluminescent substances luminol, BOLD (registered trademark), etc.
  • fluorescent substances fluorescein, Alexa, cyanine, etc.
  • colloid particles gold or silver metal, latex
  • the step of reacting the antibody which is included in the third embodiment, can be omitted. Can be.
  • the first labeling substance when bound to the double-stranded recognition compound, the As a first labeling substance, as a second labeling substance bound to a specific substance specific to the first labeling substance, and as a label bound to a specific substance specific to the double-stranded recognition compound. It is preferable that an enzyme is used as the substance, and a substance whose signal is detected as an indicator of complex formation in the third step is a product of an enzyme reaction.
  • a primary reaction product specific to the enzyme may be detected, or, as exemplified in the second embodiment, a secondary reaction product involving the primary reaction product. May be detected.
  • a weak detection signal may lose accuracy due to the background or noise of the signal. Therefore, it may be difficult to analyze particularly low-expressed genes.
  • the substance to be detected is a product of an enzymatic reaction
  • a substance reflecting the presence or absence of the hybridization is accumulated after the hybridization between the nucleic acid probe and the sample nucleic acid, thereby increasing the signal. Since the width can be increased, extremely sensitive detection is also possible. If a primary reaction specific to the enzyme and a secondary reaction involving the products of the primary reaction are performed, the detection signal can be further amplified, and the detection ability of the target nucleic acid can be further improved.
  • the accumulation of the signal detection substance differs depending on the conditions and conditions of the enzyme reaction, and even if the reaction is performed under a certain condition or time, the detection value may increase extremely and saturate. In such a case, the signal intensity is often not proportional to the amount of the nucleic acid present. However, by observing the actual progress of the reaction while measuring within a range in which the detected value does not saturate, a signal intensity proportional to the abundance of the nucleic acid can be obtained.
  • the progress of the enzyme reaction can be controlled by setting the temperature at which the temperature is kept constant, and measurement can be performed under more appropriate reaction conditions.
  • the type of the enzyme is not particularly limited. Examples include oxidoreductases, hydrolases, lyases, transferases, isomerases, ligases, and the like, preferably horseradish peroxidase (HRP) or alkaline phosphatase, for reasons such as cost and reaction conditions. Power often used.
  • HRP horseradish peroxidase
  • alkaline phosphatase for reasons such as cost and reaction conditions. Power often used.
  • Substances generated by the enzymatic reaction include chromogenic substrates such as diaminobenzidine (DAB) and bromide salt and indolyl phosphate (BCIP); substituted phenols such as tyramine; The force at which phosphorylated substituted phenols such as mouth synphosphates are preferably used.
  • DAB diaminobenzidine
  • BCIP bromide salt and indolyl phosphate
  • substituted phenols such as tyramine
  • the force at which phosphorylated substituted phenols such as mouth synphosphates are preferably used.
  • the present invention is not limited to this.
  • Various labeling substances and double-stranded recognition compounds used in the present invention are not particularly limited, and can be appropriately selected and used depending on conditions such as the amount of a target nucleic acid to be detected, the state of a specimen, and a buffer composition. .
  • a signal specific to the substance to be detected is measured over time.
  • the constant temperature is preferably in the range of 20 ° C to 60 ° C.
  • the efficiency and specificity of a nucleic acid hybridization reaction, an enzymatic reaction, or an antigen-antibody reaction are affected by the temperature during the reaction and the salt concentration of the solution.
  • the hybridization reaction temperature is higher than the temperature of a reaction derived from a living body such as an antigen-antibody reaction or ELISA.
  • a reaction derived from a living body such as an antigen-antibody reaction or ELISA.
  • the hybridization reaction is carried out by arbitrarily controlling the temperature in the range of about 55 to 65 ° C ! ⁇ Handle at room temperature.
  • the hybridization reaction can be performed without losing specificity even at a low temperature.
  • the formation of complementary hydrogen bonds between nucleic acid molecules can be controlled under severe reaction conditions, thereby suppressing the generation of nonspecific hydrogen bonds. it can.
  • the hybridization reaction can be performed at a lower temperature than the general hybridization temperature, and the hybridization reaction between the sample nucleic acid and the probe and other reactions can be performed.
  • the process can be performed at any constant temperature.
  • the steps after the first step are performed at a temperature of 20 ° C. or less. You can make use of points.
  • the production of the substance to be detected varies depending on the conditions and activities of the enzymatic reaction. There is a case where it is saturated with extremely increased force tl. However, if the process after the first process is performed at a low temperature of 20 ° C or less, the reaction time can be extended by proceeding the reaction while suppressing the enzyme activity, so that excessive reaction progress can be suppressed. it can. Here, if the production state of the labeling substance is measured over time, it is possible to further easily obtain the optimal timing for stopping the reaction.
  • the present invention can be widely applied to detection techniques and methods used in conventional nucleic acid tests. For example, it can be applied to Southern and Northern hybridizations, cell and tissue staining, DNA microarray, and the like.
  • the present detection method can amplify a detection signal at a site where a probe and a target nucleic acid are present, and thus can be applied to an array device that requires identification of a plurality of arranged probe regions.
  • a microarray in which one or more, preferably two or more nucleic acid probes are immobilized at one or more, preferably two or more positions on a carrier surface can be used in the method of the present invention.
  • the area of the solid-phased region of the nucleic acid probe (hereinafter, referred to as “probe region”) is 20 ⁇ m 2 to 2 mm 2 per probe (that is, per probe type).
  • the region is provided at two or more locations per 1 cm 2 of the surface of the carrier.
  • the probe area is circular, the diameter is 5 to 500 m, and if it is a polygon such as a square, if the length of one side is 10 to 500 ⁇ m, about 20 to 500 kinds of
  • the nucleic acid probe can be immobilized. Therefore, it is possible to detect a target nucleic acid with a very small amount of an analyte.
  • the present invention it is possible to realize signal amplification while maintaining linearity, which is advantageous when detecting various types of target nucleic acids. The advantage is remarkable when the type of the probe is 20 or more.
  • the reaction proceeds on a complex formed by complementary binding of the immobilized probe and the target nucleic acid. Therefore, each reaction is not affected by the material of the carrier. Therefore, a wide range of carriers can be selected.
  • inorganic materials such as glass and ceramics, or general-purpose polymers such as acryl, polyethylene, polypropylene, polyester, polycarbonate, polysiloxane, polystyrene, polyamide, polysaccharide, and polysulfone is expensive. Desired from a viewpoint.
  • a porous substrate having a penetrated fine pore structure as the carrier.
  • the supplied sample solution or the like is repeatedly driven through the porous base material, which has an effect of greatly promoting the reaction.
  • the nucleic acid probe is shown as being immobilized on a carrier.
  • the signal intensity may be measured according to the type of the nucleic acid probe.
  • the properties of the nucleic acid probe are not particularly limited. For example, a nucleic acid probe to which magnetic beads are bound can be used.
  • the nucleic acid detection method of the present invention can be suitably used in the field of disease diagnosis and the like by using a probe corresponding to an arbitrary target sequence.
  • a labeled double-stranded recognition conjugate in which fluorescent particles (fluorescent fine particles) were bonded as a labeling substance was used as the labeling substance.
  • Consists of a porous substrate as a solid-phased microarray of nucleic acid probes (probes) A DNA microarray was used, in which a probe region having one type of each probe immobilized on the surface of the carrier was provided at 20 sites in a 1 cm 2 region.
  • An AP-labeled atalidine derivative was used as a labeled double-stranded recognition conjugate.
  • the same microarray as in Example 1 was used.
  • the microarray was kept at a constant temperature of 60 ° C.
  • a blocking buffer was supplied to the array surface, and the temperature was controlled at a constant temperature of 25 ° C. 7) The blocking buffer was removed, a solution of an AP-labeled ataridine derivative was placed on the surface of the array, and reacted at 25 ° C for 20 minutes.
  • the buffer was replaced with a new buffer, and an array image was taken at an arbitrary exposure time.
  • the microarray was kept at a constant temperature of 60 ° C.
  • a blocking buffer was supplied to the array surface, and the temperature was controlled at a constant temperature of 25 ° C.
  • the array was replaced with a new buffer, and an array image was taken at an arbitrary exposure time.
  • Example 3-1 An array image was taken in the same manner as in Example 3-1 except that the temperature conditions in 9) and 10) were changed to 15 ° C. in the “Assy protocol” of Example 3-1.
  • a labeled double-chain recognition compound a peptide-labeled atalidine derivative was used.
  • Petit FITC-labeled anti-peptide antibody which is a fluorescently-labeled anti-peptide antibody, was used as a specific substance that was specific to the antibody and bound to the labeling substance.
  • the same DNA microarray as in Example 1 was used.
  • Example 5 A peptide-labeled atalidine derivative was used as the labeled double-chain recognition compound.
  • An HRP-labeled anti-peptide antibody was used as a specific substance that was specific to the peptide and bound to the labeling substance. That is, the antigen-antibody reaction was used for the reaction between the label of the double-stranded recognition compound and the specific substance.
  • a fluorescent substrate solution containing a substrate for the HRP enzyme reaction and a fluorescently labeled tyramide compound was prepared.
  • the same DNA microarray as in Example 1 was used.
  • the fluorescent substrate solution was supplied to the array surface. Next, the brightness of the spot on the array surface was observed at an arbitrary exposure time. The reaction was proceeded at 37 ° C while confirming that the detection signal was not saturated.
  • an athalidine derivative As a double-stranded recognition conjugate, an athalidine derivative was used.
  • An HRP-labeled antibody that recognizes a nucleic acid-atalydin complex as an antigen was used as a specific substance that was specific to the ataridin derivative and bound to the labeling substance.
  • an anti-nucleic acid antibody labeled with HRP and recognizing a double-stranded nucleic acid as an antigen was used.
  • Example 5 The same fluorescent substrate solution as in Example 5 was used.
  • the same DNA microarray as in Example 1 was used.
  • the array was replaced with a new buffer, and an array image was taken with a CCD camera at an arbitrary exposure time.
  • Example 6-1 (Atsusei protocol), the antibody used in 8) was changed to an HRP-labeled anti-nucleic acid antibody that specifically binds to double-stranded nucleic acid without performing 6) and 7). Except for this, the procedure was performed in the same manner as in Example 6-1, and array images were taken.
  • Example 1 the nucleic acid probe and the target nucleic acid double-stranded nucleic acid were detected by directly detecting the labeling substance that was recognized by the double-stranded recognition compound without transferring, amplifying, or labeling the sample. And the target nucleic acid could be measured. Therefore, simple, quick and accurate measurement was realized.
  • Example 3 it was found that the target nucleic acid in the sample can be detected by secondary detection of the labeling substance labeled on the double-stranded recognition compound.
  • accurate detection was possible without requiring transcription, reverse transcription, amplification, labeling, and purification of the target nucleic acid.
  • the detection target was a very small sample, the labeling substance was accumulated with the reaction time of the enzyme, so that it was possible to detect it more clearly. Therefore, simple, quick, low cost, And highly sensitive detection was realized.
  • Example 5 From the results of Example 5, it was found that the target nucleic acid in the sample can be measured by indirectly detecting the labeling substance labeled on the double-stranded recognition compound.
  • Example 6 From Example 6, it was found that the target nucleic acid can be measured even when the double-stranded recognition compound is unlabeled. Further, since the double-stranded recognition conjugate was unlabeled, the cost could be further reduced.
  • Examples 6-1 and 6-2 showed that the use of an antibody that recognizes a nucleic acid-atalizine complex as an antigen showed higher brightness than the use of an antibody that recognized a double-stranded nucleic acid as an antigen. . Therefore, the use of the double-stranded recognition conjugated product could improve the sensitivity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

 本発明は、簡便、迅速、低コストに、かつ正確に、試料中の標的核酸を検出することを目的とする。本発明は、標的核酸に相補的な塩基配列を有する核酸プローブと、核酸二本鎖に対して親和性を有する二本鎖認識化合物とを用い、試料核酸を含む試料と前記核酸プローブとを接触させて核酸二本鎖を形成させる第一過程と、該核酸二本鎖に前記二本鎖認識化合物を反応させ、前記試料核酸、前記核酸プローブ及び該二本鎖認識化合物を含む複合体を形成させる第二過程と、該複合体に含まれる二本鎖認識化合物を、標識物質により直接または間接的に検出する第三過程とを有することを特徴とする核酸の検出方法である。

Description

明 細 書
核酸の検出方法
技術分野
[0001] 本発明は、標的核酸を検出する核酸検出方法に関する。
背景技術
[0002] 近年、生体中の微量物質を測定することで、病気の診断をする技術の開発が進ん でいる。
例えば、生体組織中で発現した複数種の mRNAの発現変化量や突然変異などを 評価する遺伝子検査を、標的遺伝子に対して特異的な結合を形成する遺伝子の短 鎖や断片をプローブとした核酸ハイブリダィゼーシヨン技術によって行う技術が開発 されている。また、生体組織や血清中のタンパク性分子の同定および定量を、抗体 やペプチドをプローブとした抗原抗体反応やリガンドーレセプター結合反応によって 行う技術が開発されている。
核酸ハイブリダィゼーシヨンに基づく標的核酸の検出は、一般的には一本鎖のプロ ーブ核酸と標的核酸とに核酸塩基配列特異的に相補的水素結合を形成させ、形成 された二本鎖核酸を検出することにより行われる。
[0003] 従来、核酸やタンパク質の検出には、放射性や非放射性の各種標識物質が使用さ れてきた。なお、放射性標識は、感度は良好であるが、使用できる施設が限られてい る。また取り扱いに危険を伴うため、現在は主流ではない。非放射性標識としては、 蛍光物質での標識が一般的である。
例えば、ゲル電気泳動後の核酸を検出するためにェチジゥムブロマイド等のインタ 一力レーター物質を取り込ませて検出する方法が知られている。例えば、特許文献 1 、 2に記載された方法は、核酸サンプルをプローブ核酸とのハイブリダィゼーシヨンに 供した後に、インターカレーター色素を導入させて検出する方法である。
また、核酸サンプルを標識した後、プローブ核酸とのハイブリダィゼーシヨンに供し 、標識に特異的なシグナルをプローブ核酸の種類に対応して検出することで、試料 中の標的核酸を検出することも行われて ヽる。核酸サンプルに標識して解析を行う方 法には、大きく分けて直接標識法と間接標識法がある。
[0004] 核酸サンプルの直接標識法としては、核酸サンプルの複製、修復、増幅時に標識 物質を取り込ませる方法が多く用いられて 、る。
一方、核酸サンプルの間接標識法としては、サンプルに結合させた標識物質を 2次 的に検出することで検出信号の正確性を向上させたり、酵素標識した物質を用いて 、酵素の基質の活性化 (例えば、 HRP酵素と発光基質 ECLなど)によって検出信号 を増幅する方法が知られている。また、特許文献 3に記載された方法では、被検出物 質の標識と特異的に結合するように修飾された酵素を用いて、検出可能な標識物質 を修飾した基質を活性化し、その活性化基質を安定化する位置で沈着させる。この 方法を応用した例として、スライドガラスに cDNAプローブを用いたマイクロアレイによ る検出に、パーキンエルマ一社より市販されているチラミドシグナル増幅キットを用い る方法が報告されている(非特許文献 1)。チラミドィ匕合物は、酵素の作用によりラジカ ル化され、その近傍にある幾つかの芳香族アミノ酸に共有結合で結びつく。非特許 文献 1に記載の方法では、この性質を利用し、チラミドィ匕合物に検出可能な修飾物 質 (例えば、蛍光物質)をつけることで、増感を図っている。
支持体上の核酸を検出又は定量する方法として、検体の第一の核酸と固定化した 第二の相補的核酸とでハイブリダィゼーシヨンを行い、前記第二の核酸を、酵素を用 V、て伸長し、 RNA-DNAハイブリッドの組成に特異的に結合する検出可能な抗体を 用いて、 RNA—DNAノヽイブリツドの検出を行う方法が特許文献 4に記載されている
[0005] 従来の検出方法を用いる際、検体等から抽出した遺伝子だけでは、正確な検出結 果を得るための核酸サンプル量として不足である。例えば、針生検で取得した数 mg の組織、体液中の微量の細胞や、マイクロダイセクションで得られた数個の細胞から 得た微量 mRNAを、得られたサンプル量だけで測定すると、特にサンプル中に微量 しか含まれな!/、標的核酸につ!、て正確な検出結果を得るのは難 、。
そのため、測定可能なサンプル量にまで、抽出した遺伝子を増幅しなければならな い。そこで、例えば mRNAに対しては逆転写および増幅工程を経る事で、測定可能 なサンプル量まで増幅することが行われて 、る。 特許文献 1:特開 2003 - 52398号公報
特許文献 2:特許第 2948904号公報
特許文献 3:特開 2003 - 52397号公報
特許文献 4 :米国特許第 6686151B1号明細書
非特許文献 1 :カーステンら(Karsten et. al. )、「ヌクレイック 'ァシッズ'リサーチ( Nucleic Acids Research)」、(英国)、 2002年、第 30卷、第 2号 E4
発明の開示
発明が解決しょうとする課題
[0006] しかし、特許文献 1、 2に記載の方法では、サンプル中に標的核酸が微量にしか存 在しない場合、検出に使われるインターカレーター色素の蛍光輝度が非常に微弱で あるため、感度が十分ではなかった。
[0007] また、核酸サンプルに標識を施す場合、解析の度にサンプルに標識処理を行う手 間が必須となるのは勿論のこと、直接標識法および間接標識法の 、ずれにぉ ヽても 、以下の問題がある。
即ち、検出対象となる核酸またはその相補的核酸に標識する場合、標識物質の導 入効率を一定にしなければ検体の正確な測定ができな 、ので、標識工程に高度な 技術を必要とする。また、標識される核酸の長さ'量が一定でなければ、仮に標識の 効率が同じであっても標識量は異なる。このため、手間が非常にかかる、コストが上 昇する、実際に標識されるサンプル量にバラツキが発生する等の問題がある。
さらに、標識物質の立体障害や物性によってハイブリダィゼーシヨン反応に支障が 出るため、標識物質の付カ卩によって核酸ノヽイブリダィゼーシヨンの効率が低下すると いう問題も有している。また、標識工程の前後において、核酸の単離精製の工程が 必要である。
高感度化を図った特許文献 3、非特許文献 1に記載の方法においても、核酸試料 への酵素標識量の違いによって、標的遺伝子の頻度と、検出される信号との対応に 差異が生じてしまう。そのため画一的な条件や方法で測定を行っても測定値に大き な誤差範囲が生じる。
カロえて、特許文献 4に記載の方法では、核酸自身の抗原性が乏しぐ核酸サンプル が微量である場合、測定感度が低い。
[0008] 核酸ハイブリダィゼーシヨンに基づく標的核酸の検出を、病気の診断をするための 技術として確立するには、得られた微量のサンプルより簡便で迅速に正確な診断が できることが求められる。
しかし、従来の方法では、検体力も抽出した遺伝子を増幅した後に核酸ハイブリダ ィゼーシヨンに供する必要があるため、以下の問題がある。
[0009] 即ち、ハイブリダィゼーシヨンに用いる核酸サンプルを調製するためだけに、長時間 、煩雑、かつ高価な試薬を必要とする操作を行わなければならない。例えば RNAサ ンプルを調製するためだけに、逆転写および増幅工程として、 2〜4日間の煩雑かつ 高価な試薬を必要とする作業を行わなければならない。また、上記の逆転写および 増幅工程によって増幅されるサンプル量は、調製毎で常に一定とは限らず、増幅サ ンプル量のバラツキや複製ミス等の可能性が伴う。
また、増幅反応に用いる遺伝子サンプルは十分な単離精製を必要とする等、測定 の目的に応じて、検体を核酸やタンパク質や糖など個別に精製する必要があるから、 工程数が増加する。このため、サンプル調製のために高度な技術および時間がさら に必要とされる。
[0010] 本発明は上記事情に鑑みてなされたもので、簡便、迅速、低コストに、かつ正確に 、試料中の標的核酸を検出することを目的とする。
課題を解決するための手段
[0011] 本発明の核酸の検出方法は、標的核酸に相補的な塩基配列を有する核酸プロ一 ブと、核酸二本鎖に対して親和性を有する二本鎖認識化合物とを用い、試料核酸を 含む試料と前記核酸プローブとを接触させて核酸二本鎖を形成させる第一過程と、 該核酸二本鎖に前記二本鎖認識化合物を反応させ、前記試料核酸、前記核酸プロ ーブ及び該ニ本鎖認識化合物を含む複合体を形成させる第二過程と、該複合体に 含まれる二本鎖認識ィ匕合物を、標識物質により直接または間接的に検出する第三過 程とを有することを特徴とする。
[0012] 前記二本鎖認識ィ匕合物に第一の標識物質が結合していることが好ましい。
ここで、前記第三過程を、前記第一の標識物質の直接検出により行うことが好まし い。
また、前記第三過程を、前記第一の標識物質に特異的な 1次反応、該 1次反応の 生成物が関与する 2次反応、及び該 2次反応の生成物の検出により行うことが好まし い。
前記第三過程を、前記第一の標識物質と、該第一の標識物質に対して特異的に 結合可能であり、かつ第二の標識物質が結合された特異的物質との反応、及び該第 二の標識物質の検出により行うことが好ましい。
前記第二の標識物質の検出を、該第二の標識物質に特異的な 1次反応、該 1次反 応の生成物が関与する 2次反応、及び該 2次反応の生成物の検出により行うことが好 ましい。
前記第一の標識物質と、前記特異的物質との反応に、リガンドーレセプター反応又 は抗原抗体反応を用いる事が好まし 、。
前記第一の標識物質に、タンパク質、ペプチド、糖鎖力も選ばれる 1種以上が含ま れることが好ましい。
[0013] 前記第三過程を、前記二本鎖認識化合物と、該ニ本鎖認識化合物に対して特異 的に結合可能であり、かつ標識物質が結合された特異的物質との反応、及び、該標 識物質の検出により行うことが好ましい。
ここで、前記標識物質の検出を、該標識物質に特異的な 1次反応、該 1次反応の生 成物が関与する 2次反応、及び該 2次反応の生成物の検出により行うことが好ましい 前記二本鎖認識化合物と、前記特異的物質との反応に、リガンドーレセプター反応 又は抗原抗体反応を用いることが好ま 、。
[0014] 前記第三過程において、検出される物質が酵素反応による生成物であることが好 ましい。
前記第三過程において、検出される物質に特異的な信号を経時的に測定すること が好ましい。
[0015] 前記二本鎖認識化合物は、インターカレーター物質を含むことが好ましい。
前記二本鎖認識化合物は、抗核酸抗体を含むことが好ま Uヽ。 [0016] 前記試料核酸は、転写及び逆転写反応の 、ずれも施されて 、な 、ことが好ま 、 前記試料核酸は、複製及び増幅処理の ヽずれも施されて ヽな ヽことが好ま ヽ。 核酸の単離精製処理を行わな 、ことが好ま 、。
[0017] 一定温度で全ての反応を行うことが好ま 、。
ここで、前記温度は、 20°C〜60°Cの範囲であることが好ましい。
前記第一過程より後の過程を 20°C以下で行うことが好ましい。
[0018] 1種類以上の前記核酸プローブが、担体表面の 1箇所以上に固相化されていること が好ましい。
前記核酸プローブの固相化された領域の面積は、 1プローブ当り m2〜2mm2 であり、該領域が、担体表面 lcm2当りに 2箇所以上設けられていることが好ましい。 前記担体は、多孔質基材カもなることが好ましい。
発明の効果
[0019] 本発明の核酸の検出方法によれば、簡便、迅速、低コストに、かつ正確に、試料中 の標的核酸を検出することができる。
図面の簡単な説明
[0020] [図 1A]本発明における一実施形態の第一過程中を示す概念図である。
[図 1B]本発明における一実施形態の第一過程完了後を示す概念図である。
[図 1C]本発明における一実施形態の第二過程を示す概念図である。
[図 2A]本発明における他の実施形態の第二過程を示す概念図である。
[図 2B]本発明における他の実施形態の第三過程前半を示す概念図である。
[図 2C]本発明における他の実施形態の第三過程後半を示す概念図である。
[図 3A]本発明における他の実施形態の第二過程を示す概念図である。
[図 3B]本発明における他の実施形態の第三過程前半を示す概念図である。
[図 3C]本発明における他の実施形態の第三過程後半を示す概念図である。
[図 4A]本発明における他の実施形態の第一、第二過程を示す概念図である。
[図 4B]本発明における他の実施形態の第三過程を示す概念図である。
[図 5]本発明における他の実施形態を示す概念図である。 [図 6A]本発明における他の実施形態の第一、第二過程を示す概念図である。
[図 6B]本発明における他の実施形態の第三過程を示す概念図である。
符号の説明
[0021] 1 担体
2 核酸プローブ
3 試料核酸
4 二本鎖認識化合物
5 微粒子
6 酵素
7 基質
8 還元物質
9 接合体
10 標識物質
11 活性化接合体
12 沈着相
13 抗原
14 抗体
20 核酸二本鎖 (結合対)
30 複合体
100 反応前の基質
101 反応生成物
発明を実施するための最良の形態
[0022] 本発明の核酸の検出方法は、標的核酸に相補的な塩基配列を有する核酸プロ一 ブと、核酸二本鎖に対して親和性を有する二本鎖認識化合物とを用い、試料核酸を 含む試料と前記核酸プローブとを接触させて核酸二本鎖を形成させる第一過程と、 該核酸二本鎖に前記二本鎖認識化合物を反応させ、前記試料核酸、前記核酸プロ ーブ及び該ニ本鎖認識化合物を含む複合体を形成させる第二過程と、該複合体に 含まれる二本鎖認識ィ匕合物を、標識物質により直接または間接的に検出する第三過 程とを有することを特徴とする。
(試料)
本発明の方法に供される試料は、核酸 (試料核酸)を含むものであればよい。この 試料については、後述するように、核酸の転写、逆転写、複製、増幅、標識、単離精 製等の前処理や調製は必要でな 、。
転写とは核酸中の DNAと相補的な塩基配列力 なる RNAを合成する事であり、逆 転写とは核酸中の RNAと相補的な塩基配列力 なる DNAを合成する事である。複 製とは、サンプルとなる核酸と相補的な塩基配列を有する核酸を合成する事を指す。 増幅とは、核酸合成反応を用いて核酸サンプル中の核酸の複製を繰り返し行うこと で、核酸の量を増加させる工程を言う。核酸の標識とは、例えば試料核酸、または相 補的核酸に色素やピオチンなどの標識物質を取り込ませることを言う。
(核酸プローブ)
本発明に用いられる核酸プローブ(以下、「プローブ」という場合がある)は、標的核 酸に相補的な塩基配列を有する核酸である。以下、プローブの種類とは、核酸プロ ーブの塩基配列の別を 、う。
標的核酸とは、本発明の方法によって検出しょうとする、特定塩基配列を有する核 酸領域をいう。この標的核酸は、対象となる試料核酸の核酸分子全体に渡ってもよ いし、核酸分子の一部であってもよい。
(二本鎖認識化合物)
本発明に用いられる二本鎖認識ィ匕合物は、核酸二本鎖に対して親和性を有する。 二本鎖認識化合物としては、例えば、インターカレーター物質、抗核酸抗体等を用 いることがでさる。
インターカレーター物質は、相補的な核酸分子間で形成される 2本鎖構造に入り込 む性質を示す物質として知られている。インターカレーター物質としては、例えば、ェ チジゥムブロマイド、アタリジンオレンジ、プロビジゥムョーダイド、チアゾールオレンジ 、ォキサゾールイエロー、ジアミジノフエニルインドール、ナフタレンジイミド、及びこれ らの誘導体等が挙げられる。
各種インターカレーター物質に、タンパク質等の任意の化合物を結合させて化学 修飾することができる。そのため、核酸の 2本鎖構造を認識する物質として機能させ つつ、別途、化学修飾による標識を施す事が容易であり、インターカレーター物質は 本発明における二重鎖認識ィ匕合物として好適である。
インターカレーター物質の中でも、化学的に安定かつ標識物質を結合させやすい 構造を有する化合物が好ましぐアタリジ-ゥム化合物、フエナンスリジニゥム化合物、 アントラセン環、ピレン環を有する化合物、ナフタレン環を有する化合物が好適である 抗核酸抗体は、核酸、又は、核酸と核酸に親和性を有する物質との複合体を抗原 として特異的に結合する抗体である。抗核酸抗体の中でも、 2本鎖を形成した DNA に特異的に結合することが知られている抗 2本鎖 DNA抗体、若しくは 2本鎖核酸とこ れに親和性を有する化合物との複合体に対する抗体が好ましい。
二本鎖認識化合物は、上記インターカレーター物質ゃ抗核酸抗体に限定されず、 これらの物質と同様に、プローブと分析対象物質との複合体に特異的に導入される 性質を有していれば良い。但し、二本鎖認識化合物は、インターカレーター物質及 び Z又は抗核酸抗体を含むことが好まし 、。
(第一過程)
第一過程にお!ヽては、試料核酸を含む試料と前記核酸プローブとを接触させて核 酸二本鎖を形成させる。
第一過程によって形成される核酸二本鎖は、試料核酸中の標的核酸と、前記核酸 プローブ中の、標的核酸に相補的な塩基配列を有する領域とが、互いに相補的に結 合してなるものである。
(第二過程)
第二過程においては、第一過程で形成された核酸二本鎖に、前記二本鎖認識ィ匕 合物を反応させ、前記試料核酸、前記核酸プローブ及び該ニ本鎖認識化合物を含 む複合体を形成させる。
第二過程によって形成される複合体は、核酸二本鎖に、二本鎖認識化合物が結合 してなるものである。
(第三過程) 第三過程にお!、ては、第二過程で形成された複合体に含まれる二本鎖認識化合 物を、標識物質により直接または間接的に検出する。
なお、所望により、第二過程と第三過程との間に、複合体に含まれない二本鎖認識 化合物を複合体近傍から除去する洗浄操作を行う。
[0025] 第三過程で得られる信号強度は、前記複合体の形成量、ひ 、ては、プローブ及び 試料核酸の、各々少なくとも一部からなる核酸二本鎖の形成量に相関している。した がって、得られた信号強度を指標として、試料における標的核酸の有無を推定するこ とがでさる。
さらに、検出を、前記複合体に含まれる二本鎖認識化合物の存在量に比例する信 号強度を与えるような条件で行えば、試料中の標的核酸を定量することができる。条 件としては、後述する標識物質の種類、信号強度測定の時点等が挙げられる。
[0026] 従来の検出方法においては、核酸試料を標識することに伴う誤差要因や、インター カレーター色素自体の信号が微弱であることによる感度不足の問題があった。
これに対し本発明では、複合体に含まれる二本鎖認識ィ匕合物を、標識物質により 直接または間接的に検出することにより、標的核酸の存在量と、検出される信号との 対応に誤差要因を生じずに、増感を含む、所望の感度の信号を与えるような検出方 法を選択して、核酸二本鎖の存在量に対応し、かつ感度の高い検出結果を得ること が可能となる。
また、従来のように核酸サンプルを標識し、この標識に由来する信号を、プローブと 核酸サンプルとの二本鎖形成の指標とすると、標識量のバラツキにより、信号と標的 核酸の頻度とが正確に対応しない可能性があつたのに対し、本発明では、プローブ と標的核酸が形成した 2本鎖構造に対して生じる各反応の効率を一定とし、検出され る信号と、標的核酸の頻度が正確に対応させられるから、核酸サンプルを標識する 場合に比し、より高い正確性を有している。
し力も、本発明によれば、従来の検出方法に必要とされていた、試料の前処理およ び調製工程である転写、逆転写、増幅、標識、単離精製等をいずれも不要としつつ 、充分な感度をもって、試料中の標的核酸の存在を検出することができる。したがつ て、上述工程に伴う所要時間、費用、難しい調製技術、調製誤差を削減する事が出 来る。
したがって、試料における標的核酸の存在を、簡便、迅速、低コストに、かつ正確に 検出することができる。
[0027] 前記第三過程において、二本鎖認識ィ匕合物の直接または間接的な検出は、第一 の標識物質が結合されて!ヽるニ本鎖認識化合物 (標識型二本鎖認識化合物)を利 用して、第一の標識物質の直接または間接的な検出によって行うことができる。また、 二本鎖認識化合物の標識を必要とせず、二本鎖認識化合物に対して特異的に結合 可能であり、かつ標識物質が結合された特異的物質を利用して行うこともできる。
[0028] 以下、本発明の実施態様を例示する。
(実施態様 1)
本発明の一実施態様として、前記二本鎖認識化合物に第一の標識物質が結合し ている場合において、前記第三過程を、前記第一の標識物質の直接検出により行う ことができる。
この態様を第一の実施態様として、図 1A〜図 1Cを参照して説明する。図 1A〜図 1 Cに示す例では、担体 1表面に、標的核酸と相補的な塩基配列を有する核酸プロ一 ブ 2を固相化して用いて 、る。
[0029] まず、第一過程として、図 1Aに示す核酸プローブ 2の固相化された担体 1の表面 に、試料核酸 3を含む試料溶液を供給する。試料核酸 3に標的核酸が存在すると、 図 1Bに示すように、試料核酸 3と核酸プローブ 2とが、標的核酸と、これに相補的な 核酸領域にぉ 、てハイブリダィゼーシヨンしてなる結合対 (核酸二本鎖) 20が形成さ れる。
次いで、第二過程として、光学的または分析ィ匕学的に検出可能な微粒子 5からなる 第一の標識物質が結合した二本鎖認識化合物 4の溶液を、担体 1の表面に供給す る。このことにより、結合対 20に二本鎖認識ィ匕合物 4が反応し、図 1Cに示すように、 試料核酸 3、核酸プローブ 2、及び二本鎖認識化合物 4からなる複合体 30が形成さ れる。
その後、第三過程として、核酸プローブ 2が固相化されたプローブスポットに対応し て、微粒子 5を光学的または分析ィ匕学的に検出することで、核酸プローブ 2に対応し て、複合体 30を検出することができる。
したがって、核酸プローブ 2の種類に対応する標的核酸が、試料核酸 3中に存在す ることを検出できる。さらに、微粒子 5に対応して検出される信号の強度は、核酸プロ ーブ 2と試料核酸 3による結合対形成の頻度に相関するから、得られる信号強度を用 いて、試料核酸 3における標的核酸の頻度を推定することができる。
[0030] (実施態様 2)
前記第三過程を、前記第一の標識物質に特異的な 1次反応、該 1次反応の生成物 が関与する 2次反応、及び該 2次反応の生成物の検出により行う態様を、第二の実 施態様として、図 2A〜図 2Cを参照して説明する。
以下、第一の実施態様と同様の部位には図 1A〜図 1Cと同一の符号を付し、説明 を省略する。
二本鎖認識ィ匕合物 4に結合させておく第一の標識物質を、図 1Cに示す微粒子 5に 代わり、図 2Aに示す酵素 6とする以外は、第一の実施態様と同様に第一、第二過程 を行う。
第三過程において、図 2Bに示すように、担体 1表面に、酵素 6の触媒活性により還 元される基質 7と、直接検出可能な標識物質 10を結合した接合体 9とを供給する。こ のとき、図 2Bに示すように、基質 7が酵素 6により還元される 1次反応が起こり、生成 物として、還元物質 8、及び図示しないラジカルが発生する。このラジカルにより、接 合体 9が活性化され活性ィ匕接合体 11が生成する 2次反応が起こる。
活性ィ匕接合体 11はエネルギー的に不安定なため、図 2Cに示すように担体 1の表 面で安定化され、担体 1の表面に沈着し、標識物質 10を有する接合体 9が担体に沈 着して!/ヽる沈着相 12を形成する。
担体 1表面を洗浄した後、各種の核酸プローブ 2が固相化されたプローブスポット に対応して、沈着相 12中の標識物質 10を検出することで、試料における、核酸プロ ーブ 2の種類に対応する標的核酸の存在を確認できる。
[0031] この態様において、 1次、 2次反応は、基質 7と、標識物質 10を有する接合体 9とが 酵素 6の周りに存在する限り継続され、沈着相 12は時間の経過とともに累積されてい く。このため、試料中に存在する標的核酸が非常に微少量の場合にも、上記反応を 経ることで標識物質 10が複合体 30の周囲に数多く定着し、所定時間後には検出に 十分なほどの量となっている。したがって、試料に標識、増幅等の工程を行うことなく 、さらなる高感度化を実現することができる。
第二の態様で利用可能な接合体 9としては、チラミドィ匕合物、ヒドロキシル基を除去 することにより可視沈殿を生ずるキナゾロン、ベンゾイミダゾール、ベンゾチアゾール、 ベンゾォキサゾール、キノリン、インドリン、フエナント口リン類等が例示される。
[0032] 本発明では、前記二本鎖認識ィ匕合物に第一の標識物質が結合している場合にお いて、前記第三過程を、前記第一の標識物質と、該第一の標識物質に対して特異的 に結合可能であり、かつ第二の標識物質が結合された特異的物質との反応、及び該 第二の標識物質の検出により行うことができる。
ここで、第一の標識物質と、特異的物質との反応に、リガンドーレセプター反応又は 抗原抗体反応を用いる事が好ましい。この場合、特異的物質として、二本鎖認識ィ匕 合物に第一の標識物質として結合して 、る抗原 ·抗体もしくはリガンド ·レセプター部 位に対して結合する抗体'抗原やレセプター ·リガンド部位を有する物質を用いれば 良い。
すなわち、第一の標識物質と特異的物質のいずれがリガンドとして機能してもよい し、いずれが抗原として機能しても構わない。例えば、第一の標識物質に、タンパク 質、ペプチド、糖鎖力 選ばれる 1種以上が含まれることで、リガンド—レセプター反 応又は抗原抗体反応を容易に用いることができる。
なお、リガンドーレセプター反応として、ピオチン アビジンによる結合反応、糖類 レクチンによる結合反応等が例示される。
第二の標識物質は、第一の標識物質と同じでも異なっていてもよいが、異なってい ることが好ましい。
以下、第二の標識物質を直接検出する方式を第三の実施態様として、第二の標識 物質を 2次的に検出する方式を第四の実施態様として、図 3A、図 3B、図 4を参照し て説明する。
[0033] (実施態様 3)
第三の実施態様では、二本鎖認識化合物 4に結合させておく第一の標識物質を、 図 1Cに示す微粒子 5に代わり、図 3Aに示す抗原 13とする以外は、第一の実施態様 と同様に第一、第二過程を行う。抗原 13の具体例としては、タンパク質、ペプチド等 が挙げられる。
第三過程において、図 3Bに示すように、担体 1表面に、抗原 13に特異的であり、 直接検出可能な標識物質 10を結合した抗体 14を供給する。このことにより、図 3Bに 示すように、複合体 30中の二本鎖認識ィ匕合物 4に結合された抗原 13と、抗体 14とが 特異的に結合する。
担体 1表面を洗浄した後、各種の核酸プローブ 2が固相化されたプローブスポット に対応して、標識物質 10を検出することで、試料における、核酸プローブ 2の種類に 対応する標的核酸の存在を確認できる。
[0034] (実施態様 4)
第四の実施態様では、第三の実施態様と同様に、図 3Aで示される第一、第二過 程を行う。
第三過程において、抗体 14に結合している標識を、図 3Aに示す標識物質 10に代 わり、図 4に示す酵素 6とする。担体 1表面に、抗原 13に特異的であり、酵素 6を結合 した抗体 14を供給する。このことにより、図 4に示すように、複合体 30中の二本鎖認 識化合物 4に結合された抗原 13と、抗体 14とが特異的に結合する。
酵素 6が結合された抗体 14を供給した後、担体 1表面に、図 2Bに示されるように、 酵素 6の触媒活性により還元される基質 7と、直接検出可能な標識物質 10を結合し た接合体 9とを供給する。このことにより、図 2B、図 2Cに示されるような、上記第二の 実施態様と同様の 1次反応、 2次反応と、沈着相 12の形成が進行する。
担体 1表面を洗浄した後、第二の実施態様と同様の操作で、試料における、核酸プ ローブ 2の種類に対応する標的核酸の存在を確認できる。
[0035] 本発明においては、上述したとおり、前記第三過程を、前記二本鎖認識化合物と、 該ニ本鎖認識化合物に対して特異的に結合可能であり、かつ標識物質が結合され た特異的物質との反応、及び、該標識物質の検出により行うこともできる。ここで特異 的物質は、第二過程で形成された複合体を認識して結合するものであってもよ ヽ。 前記二本鎖認識化合物と、前記特異的物質との反応には、リガンドーレセプター反 応又は抗原抗体反応を用いる事が好ま U、。この反応で利用可能な 、し好まし 、リ ガンドーレセプター反応、抗原抗体反応は、上述した第一の標識物質と特異的物質 との反応における例示と同様である。
二本鎖認識化合物を標識せず、特異的物質に結合された標識物質の検出を、該 標識物質に特異的な 1次反応、該 1次反応の生成物が関与する 2次反応、及び該 2 次反応の生成物の検出により行う例を、第五の実施態様として、図 5A、図 5Bを参照 して説明する。
[0036] (実施態様 5)
二本鎖認識化合物 4に標識物質が結合されていない以外は、第一の実施態様と同 様に第一、第二過程を行う。これにより、二本鎖認識化合物が隣接する結合対間に 導入され、図 5Aに示すように、試料核酸 3、核酸プローブ 2、及び二本鎖認識化合 物 4からなる複合体 30が形成される。
第三過程において、図 5Bに示すような、酵素 6が結合され二本鎖認識化合物 4に 特異的な物質 (この例では抗体) 14を、担体 1表面に供給する。その後、第二の実施 態様と同様に、図 2Bに示される、酵素 6の触媒活性により還元される基質 7と、直接 検出可能な標識物質 10を結合した接合体 9とを担体 1表面に供給する。第二の実施 態様と同様に沈着相 12を形成させ、試料における、核酸プローブ 2の種類に対応す る標的核酸の存在を確認できる。
[0037] 本発明の核酸の検出方法において、上記第一の標識物質、第二の標識物質、特 異的物質に結合される標識物質としては、上述の実施態様で示したものも含め、発 色物質(DAB、 BCIP、オルソフヱ-レンジァミンなど)、化学発光物質 (ルミノール、 B OLD (登録商標)など)、蛍光物質 (フルォレセイン、アレクサ、シァニンなど)、コロイ ド粒子 (金や銀の金属、ラテックス等の榭脂、ガラス、セラミックス)、蛍光ガラス粒子、 蛍光半導体粒子などを用いることができる。
なお、上記第二の態様のように、二本鎖認識化合物 4に酵素 6で標識した標識型二 本鎖認識化合物を用いれば、第三の態様に含まれる、抗体を反応させる工程を省く ことができる。
[0038] 本発明にお 、ては、前記二本鎖認識化合物に第一の標識物質が結合して 、る場 合の第一の標識物質として、第一の標識物質に特異的な特異的物質に結合された 第二の標識物質として、また前記二本鎖認識化合物に特異的な特異的物質に結合 した標識物質として、酵素を用い、前記第三過程において、複合体形成の指標とし て信号が検出される物質を、酵素反応による生成物とすることが好ましい。
酵素を用いる場合、酵素に特異的な 1次反応の生成物を検出してもよいし、第二の 態様等で例示したように、 1次反応の生成物が関与する 2次反応の生成物を検出し てもよい。
蛍光物質の信号を検出して、複合体形成の指標とする方式を用いると、信号のバッ クグラウンドやノイズにより、弱い検出信号が正確性を失う場合がある。そのため、特 に低発現の遺伝子についての解析は困難な場合がある。これに対し、検出される物 質を、酵素反応による生成物とすれば、核酸プローブと試料核酸とのハイブリダィゼ ーシヨンの後に、ハイブリダィゼーシヨンの有無を反映する物質を蓄積し、信号を増 幅させることができるので、極めて高感度な検出も可能となる。酵素に特異的な 1次 反応と、 1次反応の生成物が関与する 2次反応を行えば、検出信号をさらに増幅し、 標的核酸の検出能をさらに向上させることができる。
なお、信号検出物質の蓄積が酵素反応の条件や状態により異なり、一定の条件や 時間で反応を行っても、検出値が極端に増加して飽和する場合が在る。このようなと きには、核酸の存在量に比例した信号強度ではなくなつてしまうことが多い。しかし、 実際の反応の進行具合を観察しながら、検出値が飽和しない範囲にて測定を行う事 により、核酸の存在量に比例した信号強度を取得する事が出来る。
また、恒温する温度の設定により酵素反応の進行を制御する事も可能であり、より 適切な反応条件で測定する事が出来る。
本発明において酵素を用いる場合、酵素の種類については特に制限は無い。例え ば、酸化還元酵素、加水分解酵素、リアーゼ、転移酵素、異性化酵素、リガーゼ等が 挙げられ、好ましくはホースラディッシュペルォキシターゼ (HRP)またはアルカリフォ スファターゼが、コストや反応条件等の都合力 良く用いられる。
酵素反応によって生成される物質としては、ジァミノベンチジン (DAB)、臭化塩ィ匕 インドリルリン酸エステル (BCIP)等の発色基質や、チラミン等の置換フエノール、チ 口シンホスフェート等のホスホリル化置換フエノールなどが好適に用いられる力 これ に限られるものではない。
本発明で使用する各種の標識物質、二本鎖認識化合物は、特に制限を受けるもの ではなぐ検出する標的核酸の量、検体の状態、バッファー組成などの条件により、 適宜選択して用いることができる。
[0040] また、本発明においては、前記第三過程において、検出される物質に特異的な信 号を経時的に測定することが好まし 、。
経時的な測定を行うことにより、核酸の動的な解析を行うことができる。特に、酵素 反応の生成物の信号を指標として検出する場合においては、生成物の生成状態を 経時的に測定することで、反応を停止する最適なタイミングを得ることができる。
本発明の核酸の検出方法において、一定温度で全ての反応を行い、より簡便な、 また自動化に適した方法とすることができる。この場合、一定温度は、 20°C〜60°Cの 範囲であることが好ましい。
一般に、核酸のハイブリダィゼーシヨン反応、および酵素反応や抗原抗体反応の効 率や特異性は、反応時の温度および溶液の塩濃度に影響を受ける。
一般的にハイブリダィゼーシヨン反応温度は、抗原抗体反応や ELISA等の生体由 来の反応の温度より高!、。例えば非放射性標識のサザンハイブリダィゼーシヨンなど は、 55〜65°C程度の範囲で任意に温度制御してハイブリダィゼーシヨン反応を行!ヽ 、それ以降の作業では特に温度の制御は無ぐ自然の室温で取り扱う。
ところが、溶液の塩濃度をコントロールすることで、ハイブリダィゼーシヨン反応が低 温度であっても特異性を失わずにハイブリダィゼーシヨン反応を行う事ができる。例え ば低塩濃度のハイブリダィゼーシヨンバッファーを用いる事により、核酸分子間の相 補的水素結合の形成が厳しい反応条件にする事で、非特異的水素結合の発生を抑 制する事ができる。
この性質を用いて、一般的なノ、イブリダィゼーシヨン温度に比べて低温度でノヽイブ リダィゼーシヨン反応を行う事ができ、試料核酸とプローブのハイブリダィゼーシヨン 反応と、それ以外の反応工程の温度を任意の一定温度で行う事ができる。
[0041] また、本発明にお 、て、前記第一過程より後の過程を 20°C以下で行!、、以下の利 点を発揮させることちできる。
試料核酸及び核酸プローブのハイブリダィゼーシヨン反応の後に、 20°C以下に温 度変更すると、一般的な生体由来の反応の進行に厳しい条件となるので、反応時間 は余計に掛カるが、非特異的な反応が起こりに《なる。
第三過程において、検出される物質を生成する酵素反応を利用する場合、検出さ れる物質の生成が酵素反応の条件や活性により異なり、一定の条件や時間で反応を 行っても、検出値が極端に増力 tlして飽和する場合が在る。しかし、第一過程より後の 過程を、 20°C以下の低温で行えば、酵素活性を抑えながら反応を進める事で反応 時間を長く取ることができるので、過度の反応進行を抑制する事ができる。ここでさら に、標識物質の生成状態を経時的に測定すれば、反応を停止する最適なタイミング をさらに得やすくすることができる。
本発明は従来の核酸の検査に用いられている検出技術や方法に広く応用する事 が出来る。例えばサザンおよびノーザンハイブリダィゼーシヨン、細胞および組織染 色、 DNAマイクロアレイ等に応用する事が出来る。
本検出方法は、プローブおよび標的核酸が存在する部位で検出信号を増幅するこ とができるので、複数配置したプローブ領域の識別を必要とするアレイデバイスにお 、てち適用することができる。
例えば、 1種類以上、好ましくは 2種類以上の核酸プローブが、担体表面の 1箇所 以上、好ましくは 2箇所以上に固相化されたマイクロアレイを構成して、本発明の方 法に用いることができる。
このようなマイクロアレイにおいて、前記核酸プローブの固相化された領域(以下、「 プローブ領域」という)の面積は、 1プローブ当り(すなわち、プローブ種類 1種あたり) 20 μ m2〜2mm2であり、該領域が、担体表面 lcm2当りに 2箇所以上設けられている ことが好ましい。
プローブ領域が円形の場合は直径が 5〜500 m、四角形等の多角形の場合は、 1辺の長さが 10〜500 μ mであると、直径 4mm程度の領域に 20〜 500種類程度の 核酸プローブを固相化できる。したがって、極少量の被検体で標的核酸を検出する ことが可能である。 従来、多種の標的核酸を検出する場合は、それぞれの標的核酸に最適な条件下 で試料核酸をプローブに捕捉させることが難し ヽので、得られる信号が弱くなつてし まう場合があった。これに対し、本発明によれば、線形性を保ったまま信号の増幅を 実現することが可能であり、多種の標的核酸を検出する場合に有利である。プローブ の種類が 20以上の場合に有利性が顕著である。
[0043] 核酸プローブを担体表面に固相化して用いる場合、本発明の全過程では、固相化 されたプローブおよび標的核酸が相補的に結合して形成された複合体に対して反応 が進行するので、各反応は担体の材質に影響を受けない。よって幅広い担体を選定 する事が出来る。
一般的にはガラス、セラミック等の無機材料、もしくはアクリル、ポリエチレン、ポリプ ロピレン、ポリエステル、ポリカーボネート、ポリシロキサン、ポリスチレン、ポリアミド、ポ リサッカライド、ポリスルホン等の汎用性高分子を用いるのが、コスト等の視点から望ま しい。
さらに、担体として、貫通した微細空孔構造を有する多孔質基材を用いる事が好ま しい。この場合、各過程での反応において、供給された試料溶液等を、多孔質基材 を介して繰り返し駆動する事で、反応を大幅に促進する効果がある。
[0044] なお、上述の実施態様では、核酸プローブを、担体上に固相化されたものとして示 したが、本発明においては、信号強度を、核酸プローブの種類に対応して測定する ことができれば、核酸プローブの性状は特に限定されない。例えば、磁性ビーズの結 合した核酸プローブも利用可能である。
[0045] 以上本発明の核酸の検出方法は、任意の標的配列に対応したプローブを用いるこ とにより、病気の診断等の分野に好適に用いることができる。
実施例 1
[0046] 以下、実施例を用いて、本発明をさらに具体的に説明する。
試料核酸と核酸プローブとのハイブリダィゼーシヨンの検出を行った。
アタリジン誘導体力もなる二本鎖認識ィ匕合物に、標識物質として蛍光を発する微粒 子 (蛍光微粒子)が結合した標識型二本鎖認識ィ匕合物を使用した。
核酸プローブ (プローブ)の固相化されたマイクロアレイとして、多孔質基材からなる 担体の表面に、各 1種類のプローブが固相化されたプローブ領域が、 1cm2の領域 にお!/、て 20箇所設けられた DNAマイクロアレイを用いた。
[0047] (アツセィプロトコール)
以下の順序で操作を行った。
1)ラットの肝臓より totalRNA 0. 2 gを抽出し、この total RNAをそのまま(逆転 写、複製、核酸精製処理のいずれも施さずに)試料とした。
2)マイクロアレイを設定温度 42°Cの恒温条件に保持した。
3)洗浄液でアレイ表面の洗浄を行った。
4)洗浄液を除去し、試料をバッファーに溶カゝしたサンプル溶液を、マイクロアレイ表 面に供給した。その後、温度条件 42°Cでハイブリダィゼーシヨン反応を行った。
5)サンプル溶液を除去し、ノ ッファーでアレイを洗浄した。
6)バッファーをろ紙で取り去り、蛍光微粒子で標識したアタリジン誘導体の溶液をァ レイ表面にのせ、 42°Cで 20分間反応させた。
7)溶液を除去し、バッファーで洗浄した。
8) CCDカメラを用いて任意の露光時間でアレイ表面のプローブ領域 (スポット)の明 るさを観察し、検出信号が飽和する露光時間を確認した。
9)新しいバッファーに置換し、任意の露光時間でアレイ画像を撮影した。
撮影結果を解析した結果、表 1に示すように、プローブ種類ごとに陽性'陰性を判 別可能な強度比をもってシグナル輝度データを得ることができた。また、各種 RNAの 量が既知のラット total RNAサンプルを用い、同様にして解析した結果を表 2に示 す。
表 1と表 2を比較したところ、表 1に示すデータは、 RNAの量が既知のサンプルの各 種 RN A量と良い相関と示すものであった。
[0048] [表 1] ブローブ シグナル ブローブ シグナル プローブ シグナル ブローブ シグナル
輝度 No. 輝度 No. 輝度 No. 輝度
1 142 6 2105 1 1 1446 16 2288
2 1 101 7 1858 12 840 17 613
3 850 8 231 13 25 18 219
4 1989 9 22 14 1266 19 1007
5 325 10 47 15 1680 20 722 表 2] ブローブ シグナル ブローブ シグナル ブローブ シグナル ブ□ーブ シグナル
No. 輝度 No. 輝度 No. 輝度 Mo. 輝度
1 71 6 1040 1 1 723 16 1 144
2 518 7 929 12 420 17 299
3 425 8 1 15 13 13 18 109
4 990 9 1 1 14 533 19 497
5 155 10 23 15 840 20 361 実施例 2
標識型二本鎖認識ィ匕合物として AP標識アタリジン誘導体を使用した。解析には実 施例 1と同様のマイクロアレイを用 Vヽた。
(アツセィプロトコール)
以下の順序で操作を行った。
1)ラットの肝臓より totalRNA 0. 2 gを抽出し、この total RNAをそのまま試料と した。
2)マイクロアレイを 60°Cの恒温条件に保持した。
3)洗浄液でアレイ表面の洗浄を行った。
4)洗浄液を除去し、試料をバッファーに溶かしたサンプル溶液を、マイクロアレイ表 面に供給した。その後、温度条件 60°Cでハイブリダィゼーシヨン反応を行った。
5)サンプル溶液を除去し、新 、バッファーでアレイを洗浄した。
6)アレイ表面にブロッキングバッファーを供給し、設定温度 25°Cの恒温条件に制御 した。 7)ブロッキングバッファーを除去し、 AP標識アタリジン誘導体の溶液をアレイ表面に のせ、 25°Cで 20分間反応させた。
8)溶液を除去し、アレイ表面をブロッキングバッファーで洗浄した。
9)設定温度 25°Cの恒温条件に制御した。
10)蛍光基質 100の溶液をアレイ表面に供給した。ついで、任意の露光時間にてァ レイ表面のスポットの明るさを観察した。検出可能な反応生成物である 101を検出し 、信号が飽和しな 、ことを確認しながら 25°Cで反応を進めた。
11)溶液を除去し、ノ ッファーで洗浄した。
12)新しいバッファーに交換し、任意の露光時間でアレイ画像を撮影した。
撮影結果を解析した結果、表 3に示すように、サンプルにおける各種標的核酸の R NA量を反映するシグナル輝度データを得ることができた。
[0051] [表 3]
Figure imgf000024_0001
実施例 3
[0052] 標識型二本鎖認識ィ匕合物として HRP標識アタリジン誘導体を使用した。実施例 1と 同様のマイクロアレイを用いて解析を行った。
'実施例 3—1
(アツセィプロトコール)
1)ラットの肝臓より totalRNA 0. 2 gを抽出し、これをそのまま試料とした。
2)マイクロアレイを 60°Cの恒温条件に保持した。
3)洗浄液でアレイ表面の洗浄を行った。 4)洗浄液を除去し、試料をバッファーに溶カゝしたサンプル溶液を、マイクロアレイ表 面に供給した。その後、温度条件 60°Cでハイブリダィゼーシヨン反応を行った。
5)サンプル溶液を除去し、新し 、バッファーで洗浄した。
6)アレイ表面にブロッキングバッファーを供給し、設定温度 25°Cの恒温条件に制御 した。
7)ブロッキングバッファーを除去し、 HRP標識アタリジン誘導体の溶液をアレイ表面 にのせ、 25°Cで 20分間反応させた。
8)溶液を除去し、アレイ表面をブロッキングバッファーで洗浄した。
9)設定温度 25°Cの恒温条件に制御した。
10)蛍光基質の溶液をアレイ表面に供給した。ついで、任意の露光時間にてアレイ 表面のスポットの明るさを観察した。検出信号が飽和しな!/、事を確認しながら 25°Cで 反応を進めた。
11)溶液を除去し、バッファーで洗浄した。
12)新しいバッファーに置換し、任意の露光時間でアレイ画像を撮影した。
'実施例 3 - 2
上記実施例 3— 1の「アツセィプロトコール」において、 9)および 10)の温度条件を 1 5°Cに変更した以外は、実施例 3—1と同様に実施し、アレイ画像を撮影した。
[0053] 撮影結果を解析した結果、表 4に示すように、サンプルにおける各種標的核酸の R NA量を反映するシグナル輝度データを得ることができた。
[0054] [表 4]
Figure imgf000025_0001
実施例 4
[0055] 標識型二本鎖認識化合物として、ペプチド標識アタリジン誘導体を用いた。ぺプチ ドに特異的であり、かつ標識物質の結合した特異的物質として、蛍光標識抗ぺプチ ド抗体である FITC標識抗ペプチド抗体を使用した。また、実施例 1と同様の DNAマ イクロアレイを用いた。
(アツセィプロトコール)
1)ラットの肝臓より totalRNA 0. 2 gを抽出し、これをそのまま試料とした。
2)マイクロアレイを 37°Cの恒温条件に保持した。
3)洗浄液でアレイ表面の洗浄を行った。
4)洗浄液を除去し、試料をバッファーに溶力 たサンプル溶液を、マイクロアレイ表 面に供給した。その後、温度条件 37°Cでハイブリダィゼーシヨン反応を行った。
5)サンプル溶液を除去し、新し!、バッファーで洗浄を行った。
6)バッファーを除去し、ペプチド標識アタリジン誘導体の溶液をアレイ表面にのせ、 3 7°Cで 20分間反応させた。
7)溶液を除去し、アレイ表面をバッファーで洗浄した。
8)洗浄した液を除去後、ノ ッファーに溶かした FITC標識抗ペプチド抗体溶液をァレ ィ表面にのせ、 37°Cで 10分間反応させた。
9)溶液を除去し、新しいバッファーで洗浄した。
10)洗浄した液をろ紙で除去し、任意の露光時間でアレイ画像を撮影した。
[0056] 撮影結果を解析した結果、表 5に示すように、サンプルの各種 RNA量を反映する シグナル輝度データを得ることができた。また、一定温度で検出までの全ての反応を 行いつつ、正確なデータを確保することができた。
[0057] [表 5]
Figure imgf000026_0001
実施例 5 [0058] 標識型二本鎖認識化合物として、ペプチド標識アタリジン誘導体を用いた。ぺプチ ドに特異的であり、かつ標識物質の結合した特異的物質として、 HRP標識した抗ぺ プチド抗体を使用した。すなわち、二本鎖認識化合物の標識と、特異的物質との反 応に、抗原抗体反応を利用した。
HRP酵素反応の基質と、蛍光標識されたチラミド化合物とを含む蛍光基質溶液を 準備した。また、実施例 1と同様の DNAマイクロアレイを用いた。
(アツセィプロトコール)
1)ラットの肝臓より totalRNA 0. 2 gを抽出し、これをそのまま試料とした。
2)マイクロアレイを 37°Cの恒温条件に保持した。
3)洗浄液でアレイ表面の洗浄を行った。
4)洗浄液を除去し、試料をバッファーに溶カゝしたサンプル溶液を、マイクロアレイ表 面に供給した。その後、温度条件 37°Cでハイブリダィゼーシヨン反応を行った。
5)サンプル溶液を除去し、アレイをハイブリダィゼーシヨンバッファーで洗浄した。
6)洗浄した液を除去し、ペプチド標識アタリジン誘導体の溶液をアレイ表面にのせ、 37°Cで 20分間反応させた。
7)溶液を除去し、新 、バッファーでアレイを洗浄した。
8)洗浄液を除去し、 HRP標識抗ペプチド抗体をバッファーに溶カゝした酵素標識抗 体溶液を、マイクロアレイ表面に供給した。その後、温度条件 37°Cで 10分間反応さ せた。
9)溶液を除去し、新し 、バッファーでアレイを洗浄した。
10)蛍光基質溶液をアレイ表面に供給した。ついで任意の露光時間にてアレイ表面 のスポットの明るさを観察した。検出信号が飽和しな 、事を確認しながら 37°Cで反応 を進めた。
11)溶液を除去し、ノ ッファーで洗浄した。
12)新 U、バッファーに置換し、 CCDカメラで任意の露光時間でアレイ画像を撮影し た。
[0059] 撮影結果を解析した結果、表 6に示すように、サンプルの各種 RNA量を反映する データを得ることができた。 [0060] [表 6]
Figure imgf000028_0001
実施例 6
[0061] 二本鎖認識ィ匕合物として、アタリジン誘導体を用いた。アタリジン誘導体に特異的 であり、かつ標識物質の結合した特異的物質として、 HRPで標識した、核酸-アタリジ ン複合体を抗原として認識する抗体を使用した。また別途、 HRPで標識した、二本 鎖核酸を抗原として認識する抗核酸抗体を使用した。
実施例 5と同様の蛍光基質溶液を用いた。また、実施例 1と同様の DNAマイクロア レイを用いた。
<実施例 6— 1 >
(アツセィプロトコール)
1)ラットの肝臓より totalRNA 0. 2 gを抽出し、これをそのまま試料とした。
2)マイクロアレイを 37°Cの恒温条件に保持した。
3)洗浄液でアレイ表面の洗浄を行った。
4)洗浄液を除去し、試料をバッファーに溶カゝしたサンプル溶液を、マイクロアレイ表 面に供給した。その後、温度条件 37°Cでノヽイブリダィゼーシヨン反応を行った。
5)サンプル溶液を除去し、アレイをバッファーで洗浄した。
6)洗浄した液を除去し、二本鎖認識化合物の溶液をアレイに供給し、 37°Cで 20分 間反応させた。
7)溶液を除去し、新しレ、バッファーでアレイを洗浄した。
8)バッファーを除去し、 HRPで標識した核酸-アタリジン複合体を抗原として認識す る抗体溶液をアレイ表面にのせ、 37°Cで 10分間反応させた。
9)溶液を除去し、ノ ッファーでアレイを洗浄した。 10)蛍光基質溶液をアレイ表面に供給した。ついで任意の露光時間にてアレイ表面 の各スポットの明るさを観察した。検出信号が飽和しない事を確認しながら 37°Cで反 応を進めた。
11)溶液を除去し、ノ ッファーで洗浄した。
12)新しレ、バッファーに置換し、 CCDカメラで任意の露光時間でアレイ画像を撮影し た。
[0062] 撮影結果を解析した結果、表 7に示すように、サンプル中の各種 RNA量を反映す るデータを得ることができた。
[0063] [表 7]
Figure imgf000029_0001
[0064] <実施例 6— 2 >
上記実施例 6— 1の(アツセィプロトコール)において、 6)、及び 7)を行わず、 8)に て用いた抗体を、二本鎖核酸に特異的に結合する HRP標識抗核酸抗体に変更した 以外は、実施例 6—1と同様に実施し、アレイ画像を撮影した。
実施例 1において、試料の転写、増幅、標識を行わずに、二本鎖認識化合物に標 識された標識物質を直接検出することにより、核酸プローブと標的核酸力 なる核酸 2本鎖を検出し、標的核酸を測定する事ができた。よって、簡易、迅速、かつ正確な 測定が実現された。
実施例 3において、二本鎖認識化合物に標識された標識物質を 2次的に検出する ことにより、サンプル中の標的核酸を検出できることが解った。本実施例では、標的 核酸の転写、逆転写、増幅、標識、精製を必要とせずに正確な検出が可能であった 。さらに、検出対象が微量サンプルであっても酵素の反応時間に伴って標識物質が 蓄積されていくため、より明確に検出する事ができた。よって、簡易、迅速、低コスト、 且つ高感度な検出が実現された。
実施例 3— 1と 3— 2の解析結果は殆ど同程度であった力 25°Cでの酵素反応にお ける高輝度のシグナルが飽和しきるまでの反応時間は 0. 5〜1分程度であつたのに 対し、 15°Cの場合は 3〜5分程度であった。よって、低温度設定により反応の過度な 進行を抑え、反応停止のタイミングに時間的余裕を持たせる事ができることが示され た。
実施例 5の結果から、二本鎖認識化合物に標識された標識物質を間接的に検出 することにより、サンプル中の標的核酸を測定できることが解った。
実施例 6より、二本鎖認識化合物が非標識であっても、標的核酸を測定できること が解った。さらに、二本鎖認識ィ匕合物が非標識であるので、よりコストを低減する事が 出来た。
実施例 6— 1と 6— 2の解析結果は、核酸 -アタリジン複合体を抗原として認識する 抗体を用いるほうが、二本鎖核酸を抗原として認識する抗体を用いた場合より高い輝 度を呈した。よって、二本鎖認識ィ匕合物の使用により、感度を向上させることができた

Claims

請求の範囲
[1] 標的核酸に相補的な塩基配列を有する核酸プローブと、核酸二本鎖に対して親和 性を有する二本鎖認識化合物とを用い、
試料核酸を含む試料と前記核酸プローブとを接触させて核酸二本鎖を形成させる 第一過程と、
該核酸二本鎖に前記二本鎖認識化合物を反応させ、前記試料核酸、前記核酸プ ローブ及び該ニ本鎖認識化合物を含む複合体を形成させる第二過程と、
該複合体に含まれる二本鎖認識化合物を、標識物質により直接または間接的に検 出する第三過程とを有することを特徴とする核酸の検出方法。
[2] 前記二本鎖認識ィ匕合物に第一の標識物質が結合していることを特徴とする請求項
1に記載の核酸の検出方法。
[3] 前記第三過程を、前記第一の標識物質の直接検出により行うことを特徴とする請求 項 2に記載の核酸の検出方法。
[4] 前記第三過程を、前記第一の標識物質に特異的な 1次反応、該 1次反応の生成物 が関与する 2次反応、及び該 2次反応の生成物の検出により行うことを特徴とする請 求項 2に記載の核酸の検出方法。
[5] 前記第三過程を、前記第一の標識物質と、該第一の標識物質に対して特異的に 結合可能であり、かつ第二の標識物質が結合された特異的物質との反応、及び該第 二の標識物質の検出により行うことを特徴とする請求項 2に記載の核酸の検出方法。
[6] 前記第二の標識物質の検出を、該第二の標識物質に特異的な 1次反応、該 1次反 応の生成物が関与する 2次反応、及び該 2次反応の生成物の検出により行うことを特 徴とする請求項 5に記載の核酸の検出方法。
[7] 前記第一の標識物質と、前記特異的物質との反応に、リガンドーレセプター反応又 は抗原抗体反応を用いることを特徴とする請求項 5または 6に記載の核酸の検出方 法。
[8] 前記第一の標識物質に、タンパク質、ペプチド、糖鎖力も選ばれる 1種以上が含ま れることを特徴とする請求項 2〜7のいずれかに記載の核酸の検出方法。
[9] 前記第三過程を、前記二本鎖認識化合物と、該ニ本鎖認識化合物に対して特異 的に結合可能であり、かつ標識物質が結合された特異的物質との反応、及び、該標 識物質の検出により行うことを特徴とする請求項 1に記載の核酸の検出方法。
[10] 前記標識物質の検出を、該標識物質に特異的な 1次反応、該 1次反応の生成物が 関与する 2次反応、及び該 2次反応の生成物の検出により行うことを特徴とする請求 項 9に記載の核酸の検出方法。
[11] 前記二本鎖認識化合物と、前記特異的物質との反応に、リガンドーレセプター反応 又は抗原抗体反応を用いる事を特徴とする請求項 9または 10に記載の核酸の検出 方法。
[12] 前記第三過程において、検出される物質が酵素反応による生成物であることを特 徴とする請求項 1〜11のいずれかに記載の核酸の検出方法。
[13] 前記第三過程において、検出される物質に特異的な信号を経時的に測定すること を特徴とする請求項 1〜12のいずれかに記載の核酸の検出方法。
[14] 前記二本鎖認識化合物は、インターカレーター物質を含むことを特徴とする請求項
1〜13のいずれかに記載の核酸の検出方法。
[15] 前記二本鎖認識化合物は、抗核酸抗体を含むことを特徴とする請求項 1〜 14のい ずれかに記載の核酸の検出方法。
[16] 前記試料核酸は、転写及び逆転写反応の ヽずれも施されて ヽな ヽことを特徴とす る請求項 1〜15のいずれかに記載の核酸の検出方法。
[17] 前記試料核酸は、複製及び増幅処理の ヽずれも施されて ヽな ヽことを特徴とする 請求項 1〜16のいずれかに記載の核酸の検出方法。
[18] 核酸の単離精製処理を行わないことを特徴とする請求項 1〜17のいずれかに記載 の核酸の検出方法。
[19] 一定温度で全ての反応を行うことを特徴とする請求項 1〜18のいずれかに記載の 核酸の検出方法。
[20] 前記温度は、 20°C〜60°Cの範囲であることを特徴とする請求項 19に記載の核酸 の検出方法。
[21] 前記第一過程より後の過程を 20°C以下で行うことを特徴とする請求項 1〜18のい ずれかに記載の核酸の検出方法。
[22] 1種類以上の前記核酸プローブが、担体表面の 1箇所以上に固相化されていること を特徴とする請求項 1〜 21のいずれかに記載の核酸の検出方法。
[23] 前記核酸プローブの固相化された領域の面積は、 1プローブ当り 20 /ζ πι2〜2πιπι2 であり、該領域が、担体表面 lcm2当りに 2箇所以上設けられていることを特徴とする 請求項 22に記載の核酸の検出方法。
[24] 前記担体は、多孔質基材カもなることを特徴とする請求項 22または 23に記載の核 酸の検出方法。
PCT/JP2005/008005 2004-04-30 2005-04-27 核酸の検出方法 WO2005106030A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-136426 2004-04-30
JP2004136426 2004-04-30

Publications (1)

Publication Number Publication Date
WO2005106030A1 true WO2005106030A1 (ja) 2005-11-10

Family

ID=35241685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/008005 WO2005106030A1 (ja) 2004-04-30 2005-04-27 核酸の検出方法

Country Status (1)

Country Link
WO (1) WO2005106030A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007105786A1 (ja) * 2006-03-16 2007-09-20 National University Corporation Akita University 核酸検出方法及び核酸検出キット
US11175258B2 (en) * 2007-06-29 2021-11-16 Applied Biosystems, Llc Systems and methods for electronic detection with nanoFETs

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05199898A (ja) * 1990-09-28 1993-08-10 Toshiba Corp 遺伝子検出法
WO2001059454A1 (fr) * 2000-02-07 2001-08-16 Kyowa Medex Co., Ltd. Procede de detection d'une substance
JP2001321198A (ja) * 2000-03-08 2001-11-20 Fuji Photo Film Co Ltd 試料核酸断片の相補性の検定方法
JP2002181816A (ja) * 2000-12-08 2002-06-26 Univ Waseda 二本鎖核酸の検出試薬と二本鎖核酸検出方法
JP2004093331A (ja) * 2002-08-30 2004-03-25 Ebara Corp 高感度アフィニティー反応検出チップ及びその作製方法並びに検出装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05199898A (ja) * 1990-09-28 1993-08-10 Toshiba Corp 遺伝子検出法
WO2001059454A1 (fr) * 2000-02-07 2001-08-16 Kyowa Medex Co., Ltd. Procede de detection d'une substance
JP2001321198A (ja) * 2000-03-08 2001-11-20 Fuji Photo Film Co Ltd 試料核酸断片の相補性の検定方法
JP2002181816A (ja) * 2000-12-08 2002-06-26 Univ Waseda 二本鎖核酸の検出試薬と二本鎖核酸検出方法
JP2004093331A (ja) * 2002-08-30 2004-03-25 Ebara Corp 高感度アフィニティー反応検出チップ及びその作製方法並びに検出装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007105786A1 (ja) * 2006-03-16 2007-09-20 National University Corporation Akita University 核酸検出方法及び核酸検出キット
JP5429962B2 (ja) * 2006-03-16 2014-02-26 国立大学法人秋田大学 核酸検出方法及び核酸検出キット
US11175258B2 (en) * 2007-06-29 2021-11-16 Applied Biosystems, Llc Systems and methods for electronic detection with nanoFETs

Similar Documents

Publication Publication Date Title
JP4516273B2 (ja) オリゴヌクレオチド識別子
Lee et al. Diffractometric detection of proteins using microbead-based rolling circle amplification
JP5070314B2 (ja) 免疫分析に基づいた抗原検出用キット及び抗原検出方法
JP2006501817A (ja) 新規高密度アレイおよび検体分析方法
CN102272600A (zh) 用于使用核苷酸缀合物的免疫测定的方法和设备
WO2010081114A2 (en) Oligonucleotide-coated affinity membranes and uses thereof
JP2000249706A (ja) 新規の生物学的チップ及び分析方法
JP4425640B2 (ja) Dna−結合タンパク質の検出法
KR101048429B1 (ko) 바이오칩을 이용한 표적 물질 검출 및 정량 방법
EP4337788A2 (en) Spatial analysis of a planar biological sample
US20240044833A1 (en) Electrochemical biosensor for target analyte detection
CN104271771A (zh) 核酸的检测方法及核酸检测试剂盒
Shlyapnikov et al. Detection of microarray-hybridized oligonucleotides with magnetic beads
WO2005106030A1 (ja) 核酸の検出方法
US20130309675A1 (en) Microparticle having single-molecule nucleic acid probe, method for producing same, method for analyzing nucleic acid using same, device for nucleic acid analysis, and apparatus for analyzing nucleic acid
JP2005502366A (ja) 読み取り、検出、定量方法、前記方法で使用するハイブリッドまたは複合体およびそれを使用するバイオチップ
US20240159746A1 (en) System and method for conducting a multiplexed assay
JP6076500B2 (ja) 標的物質の検出方法
KR101262644B1 (ko) 트롬빈 표지를 포함하는 샌드위치 타입의 표적 dna 검출용 키트
WO2007108378A1 (ja) シグナルプローブポリマーの形成方法
JP6736921B2 (ja) Fish染色方法
WO2024059153A2 (en) Target recycling amplification process (trap)
US20160299129A1 (en) Ultra Sensitive and Specific Multiplex Biosensor System Based on Multiple Cooperative Interactions
CN117836426A (zh) 平面生物样品的空间分析
US20050239078A1 (en) Sequence tag microarray and method for detection of multiple proteins through DNA methods

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP