WO2005104229A1 - Leistungshalbleiteranordnung - Google Patents

Leistungshalbleiteranordnung Download PDF

Info

Publication number
WO2005104229A1
WO2005104229A1 PCT/EP2005/003617 EP2005003617W WO2005104229A1 WO 2005104229 A1 WO2005104229 A1 WO 2005104229A1 EP 2005003617 W EP2005003617 W EP 2005003617W WO 2005104229 A1 WO2005104229 A1 WO 2005104229A1
Authority
WO
WIPO (PCT)
Prior art keywords
power semiconductor
arrangement according
oxide layer
semiconductor arrangement
base body
Prior art date
Application number
PCT/EP2005/003617
Other languages
English (en)
French (fr)
Inventor
Thomas Licht
Thomas Passe
Original Assignee
eupec Europäische Gesellschaft für Leistungshalbleiter mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by eupec Europäische Gesellschaft für Leistungshalbleiter mbH filed Critical eupec Europäische Gesellschaft für Leistungshalbleiter mbH
Publication of WO2005104229A1 publication Critical patent/WO2005104229A1/de
Priority to US11/549,765 priority Critical patent/US20070200227A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/40Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs
    • H01L23/4006Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs with bolts or screws
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L24/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L24/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/71Means for bonding not being attached to, or not being formed on, the surface to be connected
    • H01L24/72Detachable connecting means consisting of mechanical auxiliary parts connecting the device, e.g. pressure contacts using springs or clips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/82Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by forming build-up interconnects at chip-level, e.g. for high density interconnects [HDI]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/40Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs
    • H01L23/4006Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs with bolts or screws
    • H01L2023/4018Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs with bolts or screws characterised by the type of device to be heated or cooled
    • H01L2023/4031Packaged discrete devices, e.g. to-3 housings, diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/2401Structure
    • H01L2224/2402Laminated, e.g. MCM-L type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/2405Shape
    • H01L2224/24051Conformal with the semiconductor or solid-state device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/241Disposition
    • H01L2224/24151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/24221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/24225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/24226Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the HDI interconnect connecting to the same level of the item at which the semiconductor or solid-state body is mounted, e.g. the item being planar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/2499Auxiliary members for HDI interconnects, e.g. spacers, alignment aids
    • H01L2224/24996Auxiliary members for HDI interconnects, e.g. spacers, alignment aids being formed on an item to be connected not being a semiconductor or solid-state body
    • H01L2224/24998Reinforcing structures, e.g. ramp-like support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/82Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by forming build-up interconnects at chip-level, e.g. for high density interconnects [HDI]
    • H01L2224/82007Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by forming build-up interconnects at chip-level, e.g. for high density interconnects [HDI] involving a permanent auxiliary member being left in the finished device, e.g. aids for holding or protecting a build-up interconnect during or after the bonding process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01012Magnesium [Mg]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01027Cobalt [Co]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01032Germanium [Ge]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01058Cerium [Ce]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01073Tantalum [Ta]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19043Component type being a resistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30107Inductance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/05Insulated conductive substrates, e.g. insulated metal substrate
    • H05K1/053Insulated conductive substrates, e.g. insulated metal substrate the metal substrate being covered by an inorganic insulating layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/13Moulding and encapsulation; Deposition techniques; Protective layers
    • H05K2203/1305Moulding and encapsulation
    • H05K2203/1311Foil encapsulation, e.g. of mounted components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/13Moulding and encapsulation; Deposition techniques; Protective layers
    • H05K2203/1333Deposition techniques, e.g. coating
    • H05K2203/1344Spraying small metal particles or droplets of molten metal
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/14Related to the order of processing steps
    • H05K2203/1461Applying or finishing the circuit pattern after another process, e.g. after filling of vias with conductive paste, after making printed resistors
    • H05K2203/1469Circuit made after mounting or encapsulation of the components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/14Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using spraying techniques to apply the conductive material, e.g. vapour evaporation

Definitions

  • a power semiconductor device A power semiconductor device
  • the invention is in the field of power circuit technology and relates to a power semiconductor device with, for example, a heat sink or a heat-dissipating substrate for mounting, contacting and cooling electrical components, in particular power semiconductor components.
  • DE 199 42 915 AI discloses a substrate, also known as DCB (Direct Coping Bonding), with a ceramic carrier material that is metallized on both sides (for example copper-clad) and that has several components on one top side, the so-called layout or component side ( Power semiconductor modules).
  • the components are electrically connected to conductor track structures which are formed in the top-side metallization.
  • the metallized underside of the substrate is in physical contact with a cooling element in order to be able to dissipate heat loss that occurs during the operation of the components. Otherwise, this heat loss could lead to damage or shortening the life of the parts or components.
  • the object of the present invention is therefore to improve the cooling, in particular of semiconductor components, with at least consistently good electrical insulation and with at least consistently high mechanical strength or stability.
  • the power semiconductor arrangement according to the invention accordingly comprises a heat-dissipating base body with at least one flat outer surface, the base body consisting of metallic material or being provided with a layer of physical material and on the one outer side of which an electrically insulating oxide layer is at least partially formed on the metallic material , Furthermore, at least one power semiconductor component is provided, which is arranged on one outside of the base body in such a way that it is electrically insulated from the base body by the oxide layer. An electrically insulating film is at least partially laminated onto the one outer side over the one power semiconductor component, the film having recesses in the area of the one power semiconductor component for contacting the power semiconductor component. Finally, an upper metallization is applied over a large area or in a structured manner to the film and in its recesses also to the power semiconductor component.
  • a heat-insulating layer which can serve, for example, as a substrate or heat sink, is thus provided with a base body, which consists of metallic material or is provided with a layer of metallic material, with at least one electrical one on the upper side
  • Component is to be arranged, and with an electrically insulating oxide layer, which is on the entire surface of the base body or partially in the form of oxide layer islands and which isolates at least one active or passive component (transistor, IGBT, resistor, busbar, conductor track, etc.), the oxide layer being formed by oxidation of the metallic material.
  • an electrically insulating oxide layer which is on the entire surface of the base body or partially in the form of oxide layer islands and which isolates at least one active or passive component (transistor, IGBT, resistor, busbar, conductor track, etc.), the oxide layer being formed by oxidation of the metallic material.
  • a first essential aspect of the invention is that the electrical insulation of the component is realized by an oxide layer which is produced from the base body material or from a suitable oxidizable coating of the base body.
  • the oxide layer can be produced directly on the base body. This guarantees a thermal conductivity that corresponds in quality to the DCB technology mentioned at the beginning.
  • Another essential aspect of the invention is that very small insulation layer thicknesses can be realized without mechanical stability problems.
  • the mechanical strength and rigidity is in fact advantageously ensured by the base body, regardless of the insulation layer thickness, which can be dimensioned according to the mechanical load to be expected.
  • Another essential aspect of the invention brings about the reduction in the construction volume, the improvement in the thermal impedance of electrical components and connecting conductors and the reduction in static and dynamic electrical losses through the use of flat metallization levels on the top of the components, which are applied in particular by means of metal spraying technology become.
  • the construction volume is also reduced by the thin layer thickness.
  • Suitable materials can also be used for cooling on both sides, since the surface is now almost planar and the distances between the metallization surface and the second cooling structure (for example, heat sinks) can be kept small, so that the cooling of the component is improved.
  • the oxide layer covers only one area or - quasi island-like - several areas of the heat-insulating layer or the metallic layer, namely on the Places where components or assemblies are to be mounted in an electrically insulated manner.
  • the thickness of the insulating oxide layer can advantageously be controlled by the process parameters during the oxidation process (for example in the anodizing process known per se by selection of the voltage, current strength, temperature and / or oxidation duration) and can be adapted to the respective electrical insulation requirements. optimally adjusted.
  • Other known oxidation processes are Plasma Electrolytical Oxidation (PEO) or Micro Are Oxidation (MAO). This advantageously opens up the possibility of local optimization of the insulation layer thickness depending on the voltage to be insulated (potential difference). In other words: the oxide layer can have different thicknesses depending on the voltage to be insulated from the component.
  • an advantageous further development of the invention provides that additional material for increasing the electrical insulation properties and / or the mechanical strength and / or the thermal conductivity is additionally applied to and / or in the oxide layer or is introduced. Such materials are also known under the term "filler".
  • epoxy material can be provided as an additional insulation layer.
  • a top-side metallization for mounting and contacting the component is provided on the oxide layer.
  • This metallization can be created by various methods. It can e.g. be applied galvanically, chemically, by sputtering or by hot dipping. This creates a high temperature resistant substrate.
  • the metallization can be structured - both before and after it has been applied - by methods known per se, for example photolithography, in order to Form traces that are used for contacting and / or connecting the components mounted on the heat-insulating layer.
  • the components can be soldered, welded, glued or clamped onto the conductor tracks.
  • An advantageous development of the invention in this regard provides that an initialization layer is applied to the oxide layer, on which the metallization is produced by growth (e.g. by electrodeposition).
  • a preferred variant for producing the metallization on the oxide layer provides that the metallization is laminated onto the oxide layer.
  • a thin plastic layer can be provided, preferably with “filler” to improve the thermal conductivity.
  • This plastic layer which serves as an adhesion promoter, can be very thin so that it does not impair the thermal conductivity of the substrate; it also has the positive Side effect of additional electrical insulation.
  • a multi-layer or multi-layer substrate can be produced by applying layers of metallization.
  • the base body is a cooling element.
  • the cooling element can e.g. be designed as an air cooler or a liquid cooler.
  • the basic body in a dual function performs both a mechanically stabilizing and a heat-dissipating function, advantageously there being no additional thermal interface between the heat-insulating layer and the cooling element.
  • the oxide layer and metallic starting material have different thermal expansion properties. These can lead to mechanical stresses, which in the worst case cause crack formation in the oxide layer.
  • the oxide layer or the oxide layer islands have a rounded edge profile.
  • the mechanical stresses can preferably also be (further) reduced in that the oxide layer or the oxide layer islands have or have a layer thickness that decreases towards their edges.
  • the oxide layer or the oxide layer islands for mechanical decoupling from the base body can preferably be surrounded by a circumferential trench.
  • the trench can advantageously have rounded corner areas.
  • the trench can be preferred by embossing and subsequent tempering of the base body or the layer of metallic material, by casting - for example by die-cast aluminum -, by eroding, milling or by deep drawing of the basic body material can be produced, the levels of the trench and / or island being at the same height as the surface of the basic body or also above or below.
  • FIG. 1 shows a schematic diagram of the lower part of a power semiconductor module with a substrate
  • FIGS. 2 and 3 cutouts from a substrate according to the invention with grown oxide layers
  • FIGS. 4 and 5 cutouts from a substrate with applied metallizations
  • FIGS. 6 and 7 a substrate optimized in terms of mechanical stresses with applied oxide islands in a top view and cross section
  • FIGS. 9 and 10 possible shapes of the base body
  • Figure 11 is a schematic diagram of a power semiconductor module according to the invention.
  • FIG. 12 shows a schematic diagram of a development of the power semiconductor module according to FIG. 11.
  • FIG. 1 schematically shows a section of a power semiconductor module with a heat-insulating layer formed as a substrate 1, on which a power semiconductor component (eg a power diode) 2 is arranged.
  • a metallization 4 is applied to the top 3 of the substrate 1, in which conductor tracks (not shown) can be formed by appropriate structuring.
  • the underside of the component 2 is electrically and mechanically connected to the metallization 4. Electrical power loss, which is inevitably generated in the form of heat during operation of the component 2, is dissipated to the environment by external cooling devices, because otherwise excessive temperatures occur in the component or the other components and can lead to mechanical and / or electrical damage.
  • the substrate comprises a base body 10 on the underside, which is also designed as a cooling element.
  • the cooling element made of metal for the purpose of good heat conduction is electrically insulated from the component or the metallization for circuitry reasons.
  • An electrical insulator 9 is provided for this.
  • FIGS. 2 and 3 show a substrate according to the invention, with a base body 10 made of metal - specifically here made of aluminum. Is on this main body. grown an oxide layer 12 of aluminum oxide A1 2 0 3 ; this layer 12a (FIG. 2), which is formed only by natural growth processes, is usually relatively thin and can therefore only insulate relatively low electrical voltages.
  • a significantly thicker aluminum oxide layer 12b can be grown as a high-voltage-resistant insulation layer 14 with a layer thickness d by suitable, known methods.
  • suitable, known methods e.g. anodic oxidation processes (e.g. anodizing processes, phase electrolytic oxidation, hard anodizing or micro are oxidation) are suitable.
  • the layer thickness d is measured according to the voltages that can be expected from operation and reliably isolated and can be adapted or trained as required by setting the process parameters (e.g. oxidation current, temperature, etc.) accordingly. In this way, an overall very low, but sufficiently stress-resistant oxide layer thickness can be achieved, which only insignificantly affects the thermal conductivity.
  • the oxide layer 12b can contain “filler” 15, which further improve the thermal and / or electrical conductivity of the insulation layer 14.
  • the solid base body 10 means that the substrate can withstand high mechanical loads and is resistant.
  • the base body can also preferably be designed as a cooling element ,
  • the substrate is thus optimized with regard to a minimal insulation layer thickness and thereby guarantees a very good thermal coupling of the electronic components applied to the metallization to a cooling element with very high mechanical stability.
  • FIGS. 4 and 5 show sections of a substrate according to the invention in order to illustrate variants of the application of the metallizations.
  • FIG. 4 shows a metal foil 20 which is laminated in a manner known per se from printed circuit board technology (PCB / Printed Circuit Board) by means of a thin plastic layer 21 underneath, for example made of epoxy.
  • the plastic layer is applied to the oxide layer 12 of the base body 10 and serves as an adhesion promoter with an optional additional insulation effect. Since it is made very thin, it practically does not impair the thermal conductivity of the substrate according to the invention.
  • the metallization (metal foil) 20 can be structured before or after the coating.
  • FIG. 5 shows a variant in which the metallization 22 has grown onto the oxide layer 12 via an initialization layer 23.
  • the initialization layer can be formed, for example, from polymorphic glass, on which a copper layer 24 is then grown, for example as a metallization.
  • This substrate is resistant to high temperatures because it is free of low-melting or decomposing substances (e.g. plastics).
  • FIG. 6 shows a base body 30 on which a plurality of islands 31, 32, 33 made of oxide are applied. Components or assemblies can be electrically insulated on these islands, FIG. 6 showing only one component 35 by way of example.
  • the islands or oxide layers each have rounded edges; they are e.g. circular or oval or, as can be seen in the island 32, have rounded corner regions 36. This configuration helps to keep the mechanical stresses which occur due to the different thermal properties (expansion coefficients) of the islands on the one hand and the non-oxidized base material on the other hand low. This prevents cracks in the edge area in particular.
  • the islands 31 can have an oxide layer thickness which differs from that of FIG. 7
  • Island edges 38 rises towards the center 39 of the island, the island being able to be wider in the vertical middle region than in the region of the upper side.
  • the oxide islands are formed in a metal layer 40 which is applied to the base body 41 of the substrate 30.
  • FIG. 8 schematically shows a structuring process with which the desired geometries of the oxide islands can be generated.
  • process step A a film 51 provided with openings according to the desired island positions is applied from a supply roll 52 to a carrier (substrate) 53.
  • the top surface of the substrate 54 is thus masked; such Masking could also be created by applying varnish or a photolithographic process.
  • step B The substrate is then immersed in an electrolyte bath (as shown in step B with the enlarged section I).
  • the desired oxide islands 57 are generated on the metallic material of the substrate 53 in the region of the cutouts 56 in the film 51 (step B).
  • the masking, i.e. the film 51 is removed or pulled off again (step C), so that the substrate top provided with oxide islands remains.
  • Figures 9 and 10 show possible configurations of the mold substrate ⁇ to further minimize the mechanical burdens by reducing the mechanical coupling between the oxide layer and substrate material.
  • FIG. 9 shows, in a greatly enlarged illustration, an oxide island 60 which is formed in a depression 61 of a base body 63.
  • a circumferential rounded depression or trench 64 is provided around the island area.
  • Figure 10 shows three variants of a trench design, all of which are characterized by avoiding sharp transitions or sharp edges or corners. Both the respective bottom area 70 of the trenches 71, 72, 73 and the changes in direction occurring in the course of the trench are rounded and smooth. The transitions 74 between the trench and the base body top (see also FIG. 9) are also flowing and rounded. This leads to an even more diminished
  • oxide islands 75, 76, 77 are surrounded by trenches 71, 72, 73.
  • the structures shown can be produced in the base body, for example, by stamping and subsequent tempering to heal the mechanical stresses introduced by stamping. It is also conceivable to mill the trench structures or by casting the base body with simultaneous formation of the trenches.
  • such a substrate is created which, with known means and proven technologies, has only the oxide layer thickness required according to the electrical dimensions, which hardly affects the thermal conductivity and whose very thin design nevertheless does not cause mechanical instabilities.
  • an electrical insulation layer in the form of an oxide layer 81 is applied to a carrier material - in the present case a heat sink 80.
  • a structured metallization in the form of conductor tracks 82 is in turn applied to the oxide layer 81.
  • the oxide layer 81 and the conductor tracks 82 are produced in the manner described in FIGS. 1 to 10.
  • An electrical component - in the present case a MOS transistor 83 - is mechanically fastened at a specific point on the conductor track 82, for example by soldering, and is electrically connected to the conductor tracks 82.
  • An insulating film 84 is laminated on top of this arrangement of heat sink 80, oxide layer 81, conductor tracks 82 and MOS transistor 83. At certain points on the conductor track 82 and the MOS transistor 83, the film 84 has cutouts.
  • the film can consist, for example, of a certain plastic material such as polymide, polyethylene, polyphenol, polyether ketone and / or epoxy.
  • the recesses can be introduced into the film before lamination or, preferably, after lamination by opening the laminated film at the appropriate points.
  • a metallization 85 is then applied to the film 84 and in the cutouts on the conductor track 82 and the MOS transistor 83.
  • the film 84 also serves as a mask for the metallization 85 and can alternatively can also be designed as a hard material mask or a lacquer mask, in particular a photoresist mask.
  • a metal spraying technique is preferably used to produce the metallization 85. Following this (not shown in the drawing for the sake of simplicity), an insulating film, a photoresist or the like can again be applied and serve as a mask and electrical insulation for further metallizations.
  • the use of metal spraying techniques has a clear advantage over conventional galvanic metallizations, for example in terms of time, material and equipment. In addition, thicker layers (> 1mm) can be produced with it.
  • the result is a low-resistance and low-inductance connection structure of the electrical components both on the top and on the bottom.
  • the contact areas can be many times larger than the typical bond wire connections.
  • the construction volume is also considerably reduced since no bond wire geometries stand out from the carrier material.
  • FIG. 11 A development of the arrangement according to FIG. 11 is shown in FIG. Starting from the arrangement shown in FIG. 11 with a heat sink 80, an insulating oxide layer 81, a structured metallization in the form of conductor tracks 82 thereon, a component 83 fastened thereon, a film 84 laminated thereon and the metallization 85 thereon built up a system level, which in reverse order is similar to that system level formed by the heat sink 80, the insulating oxide layer 81 and the conductor tracks 82 become. Accordingly, any insulating layer 87 is applied to the underside of a further heat-dissipating carrier material, in the present case a heat spreader 86, on the free surface of which there is a structured metallization 88.
  • a further heat-dissipating carrier material in the present case a heat spreader 86, on the free surface of which there is a structured metallization 88.
  • a full-area metallization can also be provided instead of a structured metallization 88.
  • the metallization 88 and the metallization 85 are both electrically and thermally connected to one another via a coupling piece 89.
  • the coupling piece 89 is solid and made of metal, so that it has good electrical and thermal conduction properties.
  • the coupling piece can also by partial massive application such. B. generated by electroplating or metal spraying.
  • the coupling of the coupling piece 89 with the metallization 85 and the metallization 88 is carried out by pressing (soldering, welding, gluing, etc. also possible), the contact pressure being achieved by a pressing device shown only partially in FIG Heatspreader 86, the associated oxide layer 87, the structured metallization 88 and through the metallizations 85, the insulating film 84, optionally the metallization 82 and the oxide layer 81, and screwing device 90 screwed into a thread in the heat sink 80 and a spring element 91
  • the head of the screw device 90 and the heat spreader 86, the spring element 91 is arranged, which provides the necessary force for pressing.
  • the heat spreader 86 By using the heat spreader 86 it is now achieved that the electrical component (in the exemplary embodiment the MOS transistor 83) is cooled on both sides and electrically contacted. This considerably reduces the thermal resistance of the component and significantly increases the performance of the power semiconductor module.
  • further electrical interconnections can also be implemented in the heat spreader level. The further one on this In this case, the electrical insulation layer (oxide layer 87) located on the plane enables electrical insulation between the conductor tracks of the metallization 88 and the heat spreader body. In order to mechanically couple the two levels, the arrangement is held by means of a spring, as shown, with heat spreader 86 and heat sink 80 being positioned and fastened.
  • A, B, C process steps d layer thickness

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

Leistungshalbleiteranordnung mit einem entwärmenden Grundkör­per (10, 30, 41, 63, 80) mit zumindest einer flächig ausgebilde­ ten Aussenseite, wobei der Grundkörper (10, 30, 41, 63, 80) aus metallischem Material besteht oder mit einer Schicht aus me­tallischem Material versehen ist und an dessen Aussenseite zu­mindest teilweise eine elektrisch isolierende Oxidschicht (12, 81) auf dem metallischen Material ausgebildet ist; mit mindestens einem Leistungshalbleiterbauteil (2, 32, 83), das auf der einen Aussenseite des Grundkörpers angeordnet ist derart, dass es durch die Oxidschicht von dem Grundkörper elektrisch isoliert ist; mit einer über das eine Leistungshalbleiterbau­teil (2, 32, 83) hinweg auf die eine Aussenseite zumindest teilweise auflaminierten, elektrisch isolierenden Folie (84), wobei die Fo­lie im Bereich des einen Leistungshalbleiterbauteils (2, 32, 83) Aus­sparungen zur Kontaktierung des einen Leistungshalbleiterbau­teils (2, 32, 83) aufweist; und mit einer auf die Folie und in deren Aussparungen auf das Leistungshalbleiterbauteil grossflächig oder strukturiert aufgebrachten oberen Metallisierung (85).

Description

Beschreibung
Leistungshalbleiteranordnung
Die Erfindung liegt auf dem Gebiet der Leistungsschaltungs- technik und betrifft eine Leistungshalbleiteranσrdnung mit beispielsweise einem Kühlkörper oder einem entwärmendem Substrat zur Montage, Kontaktierung und Kühlung elektrischer Bauteile, insbesondere Leistungshalbleiterbauteile.
Die DE 199 42 915 AI offenbart ein auch als DCB (Direct Cop- per Bonding) bezeichnetes Substrat mit einem beidseitig metallisierten (z.B. kupferkaschierten) keramischen Trägermaterial, das auf der einen Oberseite, der sog. Layout- oder Be- stückseite, mehrere Bauteile (Leistungshalbleitermodule) trägt. Die Bauteile sind mit Leiterbahnstrukturen elektrisch verbunden, die in der oberseitigen Metallisierung ausgebildet sind.
Die metallisierte Unterseite des Substrats steht mit einem Kühlelement in physischem Kontakt, um beim Betrieb der Bauteile auftretende Verlustwärme abführen zu können. Andernfalls könnte diese Verlustwärme zu Schädigungen oder Lebensdauerverkürzungen der Bauteile oder Komponenten führen.
Es ist dabei notwendig, die Bauteile untereinander und/oder gegenüber unterseitig vorgesehenen leitenden Komponenten (z.B. einem Kühlelement) elektrisch zu isolieren. Insbesondere bei diskreten Leistungskomponenten, wie z.B. Leistungs- transistoren in TO 220-Gehäusen, besteht oft keine elektrische Isolierung zur Wärmeableitkontaktfläche des Gehäuses. Grundsätzlich ist es in diesen Fällen denkbar, zur Isolierung Folien oder Glimmerplättchen zu verwenden. Diese sind aber bei der Montage einzeln zu handhaben und zu platzieren, wo- durch sich die Montage aufwendig gestaltet. Außerdem führt diese elektrische Isolierung auch zu einer unerwünschten thermischen Isolierung. Neben einer guten thermischen Ankopplung an das Kühlelement bei ausreichender elektrischer Isolierung ist auch eine hohe mechanische Festigkeit des Substrats gewünscht. Insoweit ste- hen sich gegensätzliche Forderungen gegenüber: Einerseits ist für eine gute thermische Leitfähigkeit eine geringe Substratdicke (Trägermaterialdicke) wünschenswert. Andererseits ist eine hohe mechanische Stabilität (Bruch-Festigkeit) erwünscht, die aber bei keramischen Substratmaterialien mit verminderter Schichtdicke des spröden Substratmaterials abnimmt .
Als Alternative ist die Verwendung von weit weniger sprödem und damit bruchunempfindlichem Kunststoff als beidseitig me- tallisiertes Trägermaterial für das Substrat in sogenannter IMS-Technologie denkbar. Wegen der erheblich schlechteren Temperaturbeständigkeit von Kunststoffen sind die Anwendungsgebiete begrenzt. Außerdem erfordert die Art der Aufbringung von Kunststoffen höhere Schichtdicken. Da Kunststoff im Ver- gleich zu Keramiken aber einen viel schlechteren Wärmeleitwert aufweist, führt die größere Schichtdicke zu einer deutlich schlechteren Wärmeabfuhr mit den eingangs geschilderten Problemen.
Darüber hinaus besteht auch das Problem, die Bauelemente untereinander sowie nach außen elektrisch zu verbinden. Diese Verbindungen werden üblicherweise an der dem Kühlkörper gegenüberliegenden Seite des Bauelements mittels der sogenannten Bond-Technik vorgenommen. Dazu werden an die zu verbindenden Bauelemente Verbindungsdrahte mittels Ultraschall befestigt. Neben der erhöhten Störanfälligkeit bei der Herstellung und im Betrieb ist vor allem auch die große Bauhöhe, Stromeinschnürungen und die praktisch nicht mögliche Kühlung der O- berseite der Bauelemente aufgrund der dort befindlichen Ver- bindungsdrähte sehr nachteilig. Aufgabe der vorliegenden Erfindung ist daher die Kühlung insbesondere von Halbleiterbauteilen zu verbessern bei zumindest gleichbleibend guter elektrischen Isolierung und bei zumindest gleichbleibend hoher mechanischer Festigkeit bzw. Stabilität.
Diese Aufgabe wird durch eine Anordnung gemäß Patentanspruch 1 gelöst. Ausgestaltungen und Weiterbildungen des Erfindungsgedankens sind Gegenstand von Unteransprüche .
Das erfindungsgemäße Leistungshalbleiteranordnung umfasst demnach einen entwärmenden Grundkörper mit zumindest einer flächig ausgebildeten Außenseite, wobei der Grundkörper aus metallischem Material besteht oder mit einer Schicht aus rae- tallischem Material versehen ist und an dessen einen Außenseite zumindest teilweise eine elektrisch isolierende Oxidschicht auf dem metallischen Material ausgebildet ist. Des Weiteren ist mindestens ein Leistungshalbleiterbauteil vorgesehen, das auf der einen Außenseite des Grundkörpers angeord- net ist derart, dass es durch die Oxidschicht von dem Grundkörper elektrisch isoliert ist. Über das eine Leistungshalbleiterbauteil hinweg ist auf die eine Außenseite zumindest teilweise eine elektrisch isolierenden Folie auflaminiert , wobei die Folie im Bereich des einen Leistungshalbleiterbau- teils Aussparungen zur Kontaktierung des Leistungshalbleiterbauteils aufweist. Auf die Folie und in deren Aussparungen auch auf das Leistungshalbleiterbauteil ist schließlich großflächig oder strukturiert eine obere Metallisierung aufgebracht .
Es ist somit eine entwärmende Isolationsschicht, die beispielsweise als Substrat oder Kühlkörper dienen kann, vorgesehen mit einem Grundkörper, die aus metallischem Material besteht oder einer Schicht aus metallischem Material versehen ist, wobei auf deren Oberseite mindestens ein elektrisches
Bauteil angeordnet werden soll, und mit einer elektrisch isolierenden Oxidschicht, die auf dem Grundkörper ganzflächig oder teilweise in Form von Oxidschichtinseln ausgebildet ist und die mindestens ein aktives oder passives Bauteil (Transistor, IGBT, Widerstand, Stromschiene, Leiterbahn etc.) isoliert, wobei die Oxidschicht durch Oxidation des metallischen Materials gebildet ist.
Ein erster wesentlicher Aspekt der Erfindung besteht darin, dass die elektrische Isolierung des Bauteils durch eine Oxidschicht realisiert wird, die aus dem Grundkörpermaterial oder aus einer geeigneten oxidierbaren Beschichtung des Grundkörpers erzeugt ist. Die Oxidschicht kann unmittelbar auf dem Grundkörper erzeugt sein. Damit ist eine Wärmeleitfähigkeit gewährleistet, die in ihrer Qualität durchaus der eingangs genannten DCB-Technologie entspricht.
Ein weiterer wesentlicher Aspekt der Erfindung besteht darin, dass sehr geringe Isolationsschichtdicken realisiert werden können, ohne dass sich mechanische Stabilitätsprobleme ergeben. Die mechanische Festigkeit und Steifigkeit wird nämlich vorteilhafterweise unabhängig von der Isolationsschichtdicke durch den Grundkörper gewährleistet, der je nach zu erwartender mechanischer Belastung dimensioniert werden kann.
Ein weiterer wesentlicher Aspekt der Erfindung bewirkt die Reduzierung des Bauvolumens, die Verbesserung der thermischen Impedanz von elektrischen Bauelementen und Verbindungsleitern sowie die Verringerung der statischen und dynamischen elektrischen Verluste durch die Nutzung von flächigen Metallisierungsebenen an der Oberseite der Bauelemente, die insbesonde- re mittels Metallspritztechnik aufgebracht werden.
Bei diesem Lösungsweg können die Aufbauinduktivitäten sowie die Verbindungswiderstände nochmals reduziert werden und somit die im Modul auftretenden elektrischen Verluste verrin- gert werden. Gerade im Automobilbereich ist bei den hohen
Strömen eine niederohmige und niederinduktive Aufbautechnologie sehr vorteilhaft . Da die statischen Verlustleistungen quadratisch mit dem Strom eingehen, ist bei Niedervoltappli- kationen die niederohmige elektrische Verbindung entscheidend.
Ebenso wird das Bauvolumen durch die geringe Schichtdicke reduziert. Mittels geeigneter Materialien kann darüber hinauseine beidseitige Entwärmung realisiert werden, da die Oberfläche nun annähernd planar ist und die Abstände zwischen der Metallisierungsoberfläche zur zweiten entwärmenden Struktur (zum Beispiel Kühlkörper) damit gering gehalten werden kann, sodass die Entwärmung des Bauelementes verbessert wird.
Es wird also erreicht, die elektrischen Verbindungen zwischen den elektrischen Bauelementen und zu den Anschlusselementen in der nächst höheren Systemebene mittels einer geeigneten Metallisierungsschicht (zum Beispiel mittels Metallspritztechnik oder Laminiertechnik) zu erzeugen, um eine verbesserte Entwärmung zu ermöglichen, eine geringere Verlustleistung des Moduls zu erhalten sowie ein geringeres Bauvolumen zu re- alisieren. Des Weiteren verringert sich bei der Nutzung von elektrischen Isolationsfolien die zu oxidierende Fläche und reduziert somit den Prozessaufwand beim Oxidationsverfahren.
Im Hinblick auf die unterschiedlichen thermischen Ausdeh- nungseigenschaften von Oxidschicht und metallischem Ausgangsmaterial kann es insbesondere bei großflächigen entwärmenden Isolationsschichten vorteilhaft sein, wenn die Oxidschicht nur einen Bereich oder - quasi inselartig - mehrere Bereiche der entwärmenden Isolationsschicht bzw. der metallischen Schicht bedeckt und zwar an den Stellen, an denen Bauteile oder Baugruppen elektrisch isoliert montiert werden sollen.
Die Dicke der isolierenden Oxidschicht kann vorteilhafterweise durch die Prozessparameter beim Oxidationsvorgang (z.B. beim an sich bekannten Eloxal-Verfahren durch Wahl der Spannung, Stromstärke, Temperatur und/oder Oxidationsdauer) gesteuert und an die jeweiligen elektrischen Isolationsanforde- rungen optimal angepasst werden. Weitere bekannte Oxidations- verfahren sind die Plasma Electrolytical Oxidation (PEO) oder die Micro Are Oxidation (MAO) . Damit eröffnet sich vorteilhafterweise die Möglichkeit einer lokalen Optimierung der I- solationsschichtdicke je nach zu isolierender Spannung (Potentialunterschied) . Mit anderen Worten: Die Oxidschicht kann je nach gegenüber dem Bauteil zu isolierender Spannung unterschiedlich dick ausgebildet sein.
Um die Eigenschaften insbesondere größerer Isolationsschichtdicken weiter zu optimieren, sieht eine vorteilhafte Fortbildung der Erfindung vor, dass auf die und/oder in die Oxidschicht zusätzlich weiteres Material zur Erhöhung der elektrischen Isolationseigenschaften und/oder der mechanischen Festigkeit und/oder der thermischen Leitfähigkeit aufgebracht bzw. eingebracht ist. Derartige Materialien sind auch unter dem Begriff „Filier" bekannt.
So kann beispielsweise Epoxy-Material als zusätzliche Isola- tionsschicht vorgesehen werden. Zu Erhöhung der thermischen Leitfähigkeit kann in das Epoxy-Material gut wärmeleitendes Material - z. B. keramisches Material oder Carbon - eingebracht sein.
Bei einer vorteilhaften Ausgestaltung der Erfindung ist vorgesehen, dass auf der Oxidschicht eine oberseitige Metallisierung zur Montage und Kontaktierung des Bauteils vorgesehen ist.
Diese Metallisierung kann durch verschiedene Verfahren erzeugt werden. Sie kann z.B. galvanisch, chemisch, durch Sput- tern oder durch Schmelztauchen aufgebracht sein. Damit ist ein hochtemperaturbeständiges Substrat geschaffen.
Die Metallisierung kann - sowohl bevor als auch nachdem sie aufgebracht worden ist - durch an sich bekannte, z.B. fotolithographische, Verfahren strukturiert werden, um in ihr Lei- terbahnen auszubilden, die zur Kontaktierung und/oder Ver- schaltung der auf der entwärmenden Isolationsschicht montierten Bauteile dienen. Die Bauteile können dazu auf die Leiterbahnen gelötet, geschweißt, geklebt oder geklemmt werden.
Eine diesbezüglich vorteilhafte Weiterbildung der Erfindung sieht vor, dass auf die Oxidschicht eine Initialisierungsschicht aufgebracht ist, auf der die Metallisierung durch Aufwachsen (z.B. durch galvanisches Abscheiden) erzeugt ist.
Eine bevorzugte Variante zur Erzeugung der Metallisierung auf der Oxidschicht sieht vor, dass die Metallisierung auf die Oxidschicht auflaminiert ist. Dabei kann eine dünne KunststoffSchicht vorgesehen sein, der bevorzugt „Filier" zur Ver- besserung der thermischen Leitfähigkeit beigesetzt sind. Diese als Haftvermittler dienende Kunststoffschicht kann sehr dünn sein, so dass sie die thermische Leitfähigkeit des Substrats nicht beeinträchtigt; sie hat dazu noch den positiven Nebeneffekt einer zusätzlichen elektrischen Isolierung.
Es ist auch möglich, die Metallisierung oder Leiterbahnen als individuelle Elemente aufzukleben, aufzuschrauben oder auch aufzulöten bzw. aufzuschweißen sofern eine entsprechende Metallisierung vorhanden ist.
Durch mehrschichtiges Aufbringen von Metallisierungen kann ein Mehrschicht- oder Multi-Layer-Substrat hergestellt werden.
Eine fertigungstechnisch vorteilhafte und kostengünstige Ausgestaltung der Erfindung sieht vor, dass der Grundkδrper bevorzugt aus Aluminium bzw. Aluminiumlegierung (z. B. Silizium-Aluminium, Aluminium-Silizium) oder aus Titan, Tantal oder Magnesium besteht und die Oxidschicht eine Substratmetall- oxidschicht ist. Es ist aber auch möglich, auf einen Grundkörper aus einem anderen Material - z.B. aus Kupfer - eine oxidierbare Schicht - z.B. eine Aluminiumschicht - aufzubrin- gen, die zumindest teilweise (schichtweise) nach ihrer (anodischen) Oxidation (z.B. zu Al203) als Isolationsschicht dient .
Eine weitere vorteilhafte Ausgestaltung der Erfindung sieht vor, dass der Grundkörper ein Kühlelement ist. Das Kühlelement kann z.B. als Luftkühler oder als Flüssigkeitskühler ausgebildet sein. Damit übt der Grundkörper in Doppelfunktion sowohl eine mechanisch stabilisierende als auch eine wärmeab- leitende Funktion aus, wobei vorteilhafterweise zwischen entwärmender Isolationsschicht und Kühlelement keine zusätzliche thermische Schnittstelle besteht.
Wie bereits angesprochen, weisen Oxidschicht und metallisches Ausgangsmaterial unterschiedliche thermische Ausdehnungseigenschaften auf. Diese können zu mechanischen Spannungen führen, die ungünstigstenfalls Rissbildungen in der Oxidschicht verursachen. Vor diesem Hintergrund ist nach einer vorteilhaften Weiterbildung der Erfindung vorgesehen, dass die Oxid- schicht bzw. die Oxidschichtinseln einen gerundeten Randverlauf aufweisen.
Die mechanischen Spannungen können bevorzugt auch dadurch (weiter) vermindert werden, dass die Oxidschicht bzw. die O- xidschichtinseln eine zu ihren Rändern hin abnehmende Schichtdicke aufweist bzw. aufweisen.
Alternativ oder zusätzlich können die Oxidschicht bzw. die Oxidschichtinseln zur mechanischen Entkopplung gegenüber dem Grundkörper bevorzugt von einem umlaufenden Graben umgeben sein. Der Graben kann vorteilhafterweise abgerundete Eckbereiche aufweisen.
Fertigungstechnisch bevorzugt kann der Graben durch Prägen und anschließendes Tempern des Grundkörpers bzw. der Schicht aus metallischem Material, durch Gießen - z.B. durch Alumini- umdruckguss -, durch Erodieren, Fräsen oder durch Tiefziehen des Grundkörpermaterials erzeugt sein, wobei die Ebenen von Graben und/oder Insel auf gleicher Höhe wie die Oberfläche des Grundkδrpers oder aber auch darüber oder darunter liegen können.
Die Erfindung wird nachfolgend anhand der in den Figuren der Zeichnung dargestellten Ausführungsbeispiele näher erläutert. Es zeigt :
Figur 1 eine Prinzipskizze des unteren Teils eines Leistungshalbleitermoduls mit einem Substrat,
Figuren 2 und 3 Ausschnitte aus einem erfindungsgemäßen Substrat mit aufgewachsenen Oxidschichten,
Figuren 4 und 5 Ausschnitte aus einem Substrat mit aufgebrachten Metallisierungen,
Figuren 6 und 7 ein hinsichtlich der mechanischen Spannungen optimiertes Substrat mit aufgebrachten Oxidinseln in Aufsicht und Querschnitt,
Figuren 8 schematisch einen Prozess zur Oxidschicht- strukturierung,
Figuren 9 und 10 mögliche Formgebungen des Grundkörpers,
Figur 11 eine Prinzipskizze eines erfindungsgemäßen Leistungshalbleitermoduls und
Figur 12 eine Prinzipskizze einer Weiterbildung des Leistungshalbleitermoduls nach Figur 11.
Figur 1 zeigt schematisch einen Ausschnitt eines Leistungs- halbleitermoduls mit einer als Substrat 1 ausgebildeten ent- wärmenden Isolationsschicht, auf dem ein Leistungshalbleiter- bauteil (z.B. eine Leistungsdiode) 2 angeordnet ist. Auf die Oberseite 3 des Substrats 1 ist eine Metallisierung 4 aufgebracht, in der durch entsprechende Strukturierung nicht dargestellte Leiterbahnen ausgebildet sein können. Die Untersei- te des Bauteils 2 ist mit der Metallisierung 4 elektrisch und mechanisch verbunden. Während des Betriebs des Bauteils 2 unvermeidlich in Form von Wärme entstehende elektrische Verlustleistung wird durch externe Kühleinrichtungen an die Umgebung abgeführt, weil andernfalls zu hohe Temperaturen in dem Bauteil bzw. den übrigen Komponenten auftreten und zu mechanischen und/oder elektrischen Schädigungen führen können. Das Substrat umfasst dazu einen unterseitigen Grundkörper 10, der zugleich als Kühlelement ausgestaltet ist .
Das zum Zwecke einer guten Wärmeleitung aus Metall bestehende Kühlelement ist aus schaltungstechnischen Gründen von dem Bauteil bzw. der Metallisierung elektrisch isoliert. Dazu ist ein elektrischer Isolator 9 vorgesehen.
Die Figuren 2 und 3 zeigen ein erfindungsgemäßes Substrat, mit einem Grundkörper 10 aus Metall - und zwar hier aus Aluminium - aufweist . Auf diesem Grundkörper ist. eine Oxidschicht 12 aus Aluminiumoxid A1203 aufgewachsen; diese nur durch natürliche Aufwachsprozesse entstandene Schicht 12a (Figur 2) ist üblicherweise relativ dünn und kann daher nur relativ geringe elektrische Spannungen isolieren.
Wie Figur 3 zeigt, kann durch geeignete, an sich bekannte Verfahren eine deutlich dickere Aluminiumoxid-Schicht 12b als hochspannungsfeste Isolationsschicht 14 mit einer Schichtdicke d aufgewachsen werden. Als Verfahren sind dazu z.B. anodische Oxidationsverfahren (z.B. Eloxal-Verfahren, phasen- elektrolytische Oxidation, Hart-Anodisieren oder Micro Are Oxidation) geeignet .
Die Schichtdicke d bemisst sich nach den betriebsgemäß zu erwartenden und zuverlässig zu isolierenden Spannungen und kann bedarfsweise angepasst bzw. ausgebildet werden, indem die Prozessparameter (z.B. Oxidationsstrom, Temperatur etc.) entsprechend eingestellt werden. Damit kann eine insgesamt noch sehr geringe, aber ausreichend spannungsfeste Oxidschichtdi- cke realisiert werden, die die thermische Leitfähigkeit nur unwesentlich beeinträchtigt.
Die Oxidschicht 12b kann „Filier" 15 enthalten, die die thermische und/oder elektrische Leitf higkeit der Isolations- Schicht 14 weiter verbessern. Durch den massiven Grundkörper 10 ist das Substrat mechanisch hochbelastbar und widerstandsfähig. Bevorzugt kann auch hier der Grundkörper als Kühlelement ausgebildet sein.
Das Substrat ist somit hinsichtlich einer minimalen Isolationsschichtdicke optimiert und gewährleistet dabei eine sehr gute thermische Ankopplung der auf der Metallisierung aufgebrachten elektronischen Bauteile an ein Kühlelement- bei sehr hoher mechanischer Stabilität.
Die Figuren 4 und 5 zeigen Ausschnitte aus einem erfindungsgemäßen Substrat, um Varianten der Aufbringung der Metallisierungen zu illustrieren.
Figur 4 zeigt eine Metallfolie 20, die in an sich aus der Leiterplattentechnik (PCB/Printed Circuit Board) bekannter Weise mittels darunter liegender dünner KunststoffSchicht 21, z.B. aus Epoxy, auflaminiert ist. Die Kunststoffschicht ist auf die Oxidschicht 12 des Grundkörpers 10 aufgebracht und dient als Haftvermittler mit optionaler zusätzlicher Isolationswirkung. Da sie sehr dünn ausgebildet ist, beeinträchtigt sie die thermische Leitfähigkeit des erfindungsgemäßen Substrats praktisch nicht. Bei diesem Verfahren kann die Metallisierung (Metallfolie) 20 vor oder nach dem Aufla inieren strukturiert werden. Figur 5 zeigt eine Variante, bei der die Metallisierung 22 auf die Oxidschicht 12 über eine Initialisierungsschicht 23 aufgewachsen ist. Die Initialisierungsschicht kann z.B. aus polymorphem Glas gebildet sein, auf dem dann z.B. als Metal- lisierung eine Kupferschicht 24 aufgewachsen ist. Dieses Substrat ist hochtemperaturfest, da es frei von niedrigschmelzenden oder zersetzenden Stoffen (z. B. Kunststoffen) ist.
Figur 6 zeigt einen Grundkörper 30, auf dem mehrere Inseln 31, 32, 33 aus Oxid aufgebracht sind. Auf diesen Inseln können elektrisch isoliert Bauteile oder Baugruppen montiert werden, wobei Figur 6 exemplarisch nur ein Bauteil 35 zeigt. Die Inseln bzw. Oxidschichten haben jeweils abgerundete Randverläufe; sie sind dazu z.B. kreisförmig oder oval ausgestal- tet oder haben - wie bei der Insel 32 erkennbar - abgerundete Eckbereiche 36. Diese Ausgestaltung hilft, die infolge der unterschiedlichen thermischen Eigenschaften (Ausdehnungskoeffizienten) der Inseln einerseits und des nicht oxidierten Grundkörpermaterials andererseits auftretenden mechanischen Spannungen gering zu halten. Damit werden vor allem Rissbildungen im Randbereich vermieden.
Zusätzlich können, wie in Figur 7 mit der Darstellung eines Querschnitts entlang der Linie VII-VII in Figur 6 gezeigt, die Inseln 31 eine Oxidschichtdicke aufweisen, die von den
Inselrändern 38 zur Inselmitte 39 hin ansteigt, wobei die Insel im vertikalen mittleren Bereich breiter als im Bereich der Oberseite sein kann. Wie Figur 7 weiter erkennen lässt, sind die Oxidinseln in einer Metallschicht 40 ausgebildet, die auf den Grundkörper 41 des Substrats 30 aufgebracht ist.
Figur 8 zeigt schematisch einen Strukturierungsprozess, mit dem die gewünschten Geometrien der Oxidinseln erzeugt werden können. Im Prσzessschritt A wird eine gemäß den gewünschten Inselpositionen mit Öffnungen versehene Folie 51 von einer Vorratsrolle 52 auf einen Träger (Substrat) 53 aufgebracht. Damit wird die Substratoberseite 54 maskiert; eine solche Maskierung könnte auch durch Lackaufbringung oder einen fotolithographischen Prozess erzeugt werden.
Anschließend wird (wie im Schritt B anhand des vergrößerten Ausschnitts I gezeigt) das Substrat in ein Elektrolytbad getaucht. Dabei werden im Bereich der Aussparungen 56 der Folie 51 die gewünschten Oxidinseln 57 auf dem Metallischen Material des Substrats 53 erzeugt (Schritt B) . Dann wird die Maskierung, d.h. die Folie 51 wieder entfernt bzw. abgezogen (Schritt C) , so dass die mit Oxidinseln versehene Substrat- Oberseite verbleibt.
Die Figuren 9 und 10 zeigen mögliche Formgestaltungen des Substrats zur weiteren Minimierung der mechanischen Belastun- gen durch Reduktion der mechanischen Kopplung zwischen Oxidschicht und Substratmaterial .
Figur 9 zeigt dazu in stark vergrößerter Darstellung eine O- xidinsel 60, die in einer Vertiefung 61 eines Grundkörpers 63 ausgebildet ist. Um den Inselbereich ist eine umlaufende gerundete Vertiefung oder ein Graben 64 vorgesehen.
Figur 10 zeigt drei Varianten einer Grabengestaltung, die sich alle durch Vermeidung spitzer Übergänge oder scharfer Kanten oder Ecken auszeichnen. Sowohl der jeweilige Bodenbereich 70 der Gräben 71, 72, 73 als auch die im Grabenverlauf auftretenden Richtungsänderungen erfolgen gerundet und sanft . Auch die oberseitigen Übergänge 74 zwischen Graben und Grundkörperoberseite (siehe auch Figur 9) sind fließend und gerun- det ausgebildet. Dies führt zu einer noch weiter verminderten
Rissempfindlichkeit. Von den Gräben 71, 72, 73 sind wie vorbeschrieben jeweils Oxidinseln 75, 76, 77 umgeben. Die dargestellten Strukturen können in den Grundkörper z.B. durch Einprägen und anschließendes Tempern zur Ausheilung der durch das Prägen eingebrachten mechanischen Spannungen erzeugt werden. Es ist auch denkbar, die Grabenstrukturen durch Fräsen oder durch Gießen des Grundkörpers unter gleichzeitiger Bildung der Gräben zu erzeugen.
Erfindungsgemäß ist so ein Substrat geschaffen, das mit bekannten Mitteln und erprobten Technologien nur die nach den elektrischen Dimensionierungen erforderliche Oxidschichtdicke aufweist, die die thermische Leitfähigkeit kaum beeinträchtigt und deren sehr dünne Ausbildung dennoch keine mechanischen Instabilitäten verursacht.
Bei dem erfindungsgemäßen Leistungshalbleitermodul gemäß Figur 11 ist auf einem Trägermaterial - im vorliegenden Fall einen Kühlkörper 80 - eine elektrische Isolationsschicht in Form einer Oxidschicht 81 aufgebracht. Auf der Oxidschicht 81 wiederum ist eine strukturierte Metallisierung in Form von Leiterbahnen 82 aufgebracht. Die Oxidschicht 81 und die Leiterbahnen 82 sind in der in den Figuren 1 bis 10 beschriebenen Weise hergestellt. Ein elektrisches Bauelement - im vorliegenden Fall ein MOS-Transistor 83 - ist an einer bestimm- ten Stelle der Leiterbahn 82 beispielsweise durch Auflöten mechanisch befestigt und elektrisch mit den Leiterbahnen 82 verbunden.
Über dieser Anordnung aus Kühlkörper 80, Oxidschicht 81, Lei- terbahnen 82 sowie MOS-Transistor 83 ist eine isolierende Folie 84 auflaminiert . An bestimmten Stellen der Leiterbahn 82 sowie des MOS-Transistors 83 weist die Folie 84 Aussparungen auf. Die Folie kann dabei beispielsweise aus einem bestimmten Kunststoffmaterial wie etwa Polymid, Polyethylen, Polyphenol, Polyetherketon und/oder Epoxid bestehen. Die Aussparungen können dabei bereits vor dem Laminieren in die Folie eingebracht werden oder aber bevorzugt nach dem Laminieren durch Öffnen der auflaminierten Folie an den entsprechenden Stellen. Auf die Folie 84 sowie in den Aussparungen auf die Lei- terbahn 82 und den MOS-Transistor 83 wird dann eine Metallisierung 85 aufgebracht. Die Folie 84 dient dabei gleichzeitig als Maskierung für die Metallisierung 85 und kann alternativ auch als Hartstoffmaske oder Lackmaske, insbesondere Fotolackmaske ausgeführt werden. Zur Erzeugung der Metallisierung 85 wird bevorzugt eine Metallspritztechnik eingesetzt. Im An- schluss daran kann (in der Zeichnung der Einfachheit halber nicht dargestellt) wiederum eine isolierende Folie, ein Fotolack oder ähnliches aufgebracht werden und als Maske sowie elektrische Isolierung für weitere Metallisierungen dienen. Die Verwendung von Metallspritztechniken ist im Hinblick auf den zeitlichen, materiellen und apparativen Aufwand bei- spielsweise gegenüber üblichen galvanischen Metallisierungen deutlich im Vorteil. Darüber hinaus können damit dickere Schichten (> 1mm) hergestellt werden. Durch Aufbringen einer Metallisierung in Verbindung mit dem Auflaminieren von isolierenden Folien wird auf einfache Weise eine elektrische Kontaktierung an der Oberseite der Bauelemente und Leiterbahnen erreicht, die sich durch eine geringe Bauhöhe, eine geringe Störanfälligkeit und durch erweiterte Einsatzmöglichkeiten sich auszeichnet.
Das Resultat ist eine niederohmige sowie niederinduktive Verbindungsstruktur der elektrischen Bauelemente sowohl an der Oberseite als auch an der Unterseite. Die Kontaktflächen können um ein Vielfaches größer sein gegenüber den typischen Bonddrahtverbindungen. Das Bauvolumen wird zudem erheblich reduziert, da sich keine Bonddrahtgeometrien vom Trägermaterial mehr abheben.
In Figur 12 ist eine Weiterbildung der Anordnung nach Figur 11 dargestellt. Ausgehend von der in Figur 11 gezeigten An- Ordnung mit einem Kühlkörper 80, einer isolierenden Oxidschicht 81, einer darauf befindlichen strukturierten Metallisierung in Form von Leiterbahnen 82, einem daran befestigten Bauelement 83, eine darüber hinweg auflaminierte Folie 84 sowie der darauf befindlichen Metallisierung 85 ist eine Sys- temebene aufgebaut, die in umgekehrter Reihenfolge derjenigen Systemebene ähnlich ist, die durch den Kühlkörper 80, die i- solierende Oxidschicht 81 und die Leiterbahnen 82 gebildet werden. Demnach ist an der Unterseite eines weiteren entwärmenden Trägermaterials, im vorliegenden Fall eines Heatsprea- ders 86, eine beliebige isolierende Schicht 87 aufgebracht, an deren freien Oberfläche sich eine strukturierte Metalli- sierung 88 befindet. Im einfachsten Fall kann jedoch anstelle einer strukturierten Metallisierung 88 auch eine ganzflächige Metallisierung vorgesehen werden. Die Metallisierung 88 und die Metallisierung 85 sind dabei über ein Kopplungsstück 89 miteinander sowohl elektrisch als auch thermisch verbunden. Zu diesem Zweck ist das Kopplungsstück 89 massiv und aus Metall ausgeführt, so dass es gute elektrische und thermische Leitungseigenschaften aufweist. Das Kopplungsstück kann aber auch durch partielles massives Aufbringen z. B. durch Galvanisieren oder Metallspritzen erzeugt werden.
Die Kopplung des Kopplungsstücks 89 mit der Metallisierung 85 und der Metallisierung 88 erfolgt durch Anpressen (auch Löten, Schweißen, Kleben etc. möglich), wobei der Anpressdruck erzielt wird durch eine in der Figur 12 nur in Teilen gezeig- ten Anpressvorrichtung bestehend aus einer durch Heatspreader 86, die zugehörige Oxidschicht 87, die strukturierte Metallisierung 88 sowie durch die Metallisierungen 85, die isolierende Folie 84, gegebenenfalls die Metallisierung 82 sowie die Oxidschicht 81 hindurch gehenden und in ein Gewinde im Kühlkörper 80 eingeschraubten Schraubvorrichtung 90 und einem Federelement 91. Zwischen den Kopf der Schraubenvorrichtung 90 und dem Heatspreader 86 ist das Federelement 91 angeordnet, das die notwendige Kraft zum Anpressen bereitstellt.
Durch die Verwendung des Heatspreaders 86 wird nun erreicht, dass das elektrische Bauelement (im Ausführungsbeispiel der MOS-Transistor 83) beidseitig gekühlt und elektrisch kontaktiert wird. Damit wird der thermische Widerstand des Bauelementes erheblich reduziert und die Leistungsfähigkeit des Leistungshalbleitermoduls deutlich erhöht. Darüber hinaus können auch weiterführende elektrische Verschaltungen in der Heatspreader-Ebene realisiert werden. Die weitere, auf dieser Ebene befindliche elektrische Isolationsschicht (Oxidschicht 87) ermöglicht hierbei die elektrische Isolation zwischen den Leiterbahnen der Metallisierung 88 und dem Heatspreader- Körper. Um die beiden Ebenen mechanisch zu kuppeln, wird - wie gezeigt - mittels einer Feder die Anordnung gehalten, wobei Heatspreader 86 und Kühlkörper 80 positioniert und befestigt werden.
Bezugszeichenliste :
1 Substrat
2 Leistungshalbleiterbauteil
3 Oberseite
4 Metallisierung
9 Isolator
10 Grundkörper
12 Oxidschicht
12a Schicht
12b Schicht
14 Isolationsschicht
15 Filier
20 Metallfolie
21 KunststoffSchicht
22 Metallisierung
23 Initialisierungsschicht
24 Kupferschicht
30 Grundkörper
31, 32, 33 Oxidinsel
35 Bauteil
36 Eckbereiche
38 Inselränder
39 Inselmitte
40 Metallschicht
41 Grundkörper
51 Folie
52 Vorratsrolle
53 Träger (Substrat)
54 Substratoberseite
56 Aussparungen
57 Oxidinseln
60 Oxidinsel
61 Vertiefung
63 Grundkörper 64 Graben
70 Bodenbereich
71, 72, 73 Gräben
74 Übergänge
75, 76, 77 Oxidinseln
80 Kühlkörper
81, 87 Oxidschicht
82 Leiterbahn
83 MOS-Transistor
84 isolierende Folie
85, 88 Metallisierung
86 Heatspreader
89 Kopplungsstück
90 Schraubvorrichtung
91 Federelement
A, B, C Prozessschritte d Schichtdicke

Claims

P a t ent ansprüche
1 . Leistungshalbleiteranordnung mit
einem entwärmenden Grundkörper (10, 30, 41, 63) mit zumindest einer flächig ausgebildeten Außenseite, wobei der Grundkörper (10, 30, 41, 63) aus metallischem Material besteht oder mit einer Schicht aus metallischem Material versehen ist und an dessen Außenseite zumindest teilweise eine elektrisch isolie- rende Oxidschicht (12, 81, 87) auf dem metallischen Material ausgebildet ist,
mindestens einem Leistungshalbleiterbauteil (2) , das auf der einen Außenseite des Grundkörpers angeordnet ist derart, dass es durch die Oxidschicht von dem Grundkörper elektrisch isoliert ist,
einer über das eine Leistungshalbleiterbauteil (2) hinweg auf die eine Außenseite zumindest teilweise auflaminierten, e- lektrisch isolierenden Folie, wobei die Folie im Bereich des einen Leistungshalbleiterbauteils (2) Aussparungen zur Kontaktierung des einen Leistungshalbleiterbauteils (2) aufweist, und
einer auf die Folie und in deren Aussparungen auf das Leistungshalbleiterbauteil (2) großflächig oder strukturiert aufgebrachten oberen Metallisierung.
2. Leistungshalbleiteranordnung nach Anspruch 1, bei der die obere Metallisierung mittels Laminieren auf die Folie und in deren Aussparungen auf das Leistungshalbleiterbauteil aufgebracht ist.
3. Leistungshalbleiteranordnung nach Anspruch 1, bei der die obere Metallisierung mittels Metallspritztechnik auf die Folie und in deren Aussparungen auf das Leistungshalbleiterbauteil aufgebracht ist.
4. Leistungshalbleiteranordnung nach einem der vorherigen Ansprüche, bei der die Oxidschicht (12, 81, 87) durch Oxidation des metallischen Materials gebildet ist.
5. Leistungshalbleiteranordnung nach Anspruch 4, bei der die Dicke (d) der Oxidschicht (12, 81, 87) entsprechend der gegenüber dem Leistungshalbleiterbauteil (2) zu isolierenden Spannung bemessen ist.
6. Leistungshalbleiteranordnung nach einem der vorherigen Ansprüche, bei der auf die und/oder in die Oxidschicht (12, 81, 87) weiteres Material zur weiteren Erhöhung der elektrischen Isolationseigenschaften und/oder der mechanischen Festigkeit und/oder der thermischen Leitfähigkeit aufgebracht bzw. ein- gebracht ist. . Leistungshalbleiteranordnung nach einem der vorherigen Ansprüche, bei der auf der Oxidschicht (12, 81, 87) eine untere Metallisierung (4, 22, 85, 88) zur Montage und Kontaktierung des Bauteils (2) vorgesehen ist.
8. Leistungshalbleiteranordnung nach Anspruch 7, bei der auf die Oxidschicht (12, 81, 87) eine Initialisierungsschicht (23) aufgebracht ist, auf der die untere Metallisierung (4, 22, 85, 88) durch Aufwachsen erzeugt ist.
9. Leistungshalbleiteranordnung nach Anspruch 7, bei der die untere Metallisierung (4, 22, 85, 88) auf die Oxidschicht (12, 81, 87) auflaminiert ist.
10. Leistungshalbleiteranordnung nach einem der vorherigen Ansprüche, bei der der Grundkörper (10, 30, 41, 63) aus Aluminium oder Aluminiumlegierung besteht und die Oxidschicht (12, 81, 87) eine Aluminiumoxidschicht ist.
11. Leistungshalbleiteranordnung nach einem der vorherigen Ansprüche, bei der der Grundkörper (10, 30, 41, 63) ein Kühl- element ist .
12. Leistungshalbleiteranordnung nach einem der vorherigen Ansprüche, bei der die Oxidschicht (12, 81, 87) einen gerundeten Randverlauf aufweist .
13. Leistungshalbleiteranordnung nach einem der vorherigen Ansprüche, bei der die Oxidschicht (12, 81, 87) eine zu ihren Rändern (38) hin abnehmende Schichtdicke aufweist.
14. Leistungshalbleiteranordnung nach einem der vorherigen Ansprüche, bei der die Oxidschicht (12, 81, 87) mechanisch gegenüber dem Grundkörper entkoppelt ist.
15. Leistungshalbleiteranordnung nach Anspruch 14, bei der die Oxidschicht (12, 81, 87) zur mechanischen Entkopplung gegenüber dem Grundkörper von einem umlaufenden Graben (64) um- geben sind.
16. Leistungshalbleiteranordnung nach Anspruch 15, bei der der Graben abgerundete Eckbereiche aufweist.
17. Leistungshalbleiteranordnung nach Anspruch 15 oder 16, bei der der Graben durch Prägen und anschließendes Tempern des Grundkörpers bzw. der Schicht aus metallischem Material erzeugt ist.
18. Leistungshalbleiteranordnung nach einem der vorherigen
Ansprüche, bei der ein weiterer entwärmender Grundkörper (86) vorgesehen ist, der in elektrischem und/oder thermischem Kontakt mit der oberen Metallisierung (85) steht.
19. Leistungshalbleiteranordnung nach Anspruch 18, bei der der elektrische bzw. thermische Kontakt über mindestens ein Kontaktelement (89) hergestellt wird.
20. Leistungshalbleiteranordnung nach Anspruch 18 oder 19, bei der weitere entwärmende Grundkδrper (10, 30, 41, 63) zumindest einer flächig ausgebildete Außenseite aufweist, aus metallischem Material besteht oder mit einer Schicht aus me- tallischem Material versehen ist und an seiner Außenseite zumindest teilweise eine elektrisch isolierende Oxidschicht (12, 81, 87) auf dem metallischen Material ausgebildet ist.
21. Leistungshalbleiteranordnung nach einem der vorherigen Ansprüche, bei der die Folie aus Polyimid, Polyethylen, Poly- phenol, Polyetheretherketon und/oder Epoxidharz besteht.
22. Leistungshalbleiteranordnung nach einem der vorherigen Ansprüche, bei der mehrere Folien und Metallisierungen über- einander angeordnet sind.
PCT/EP2005/003617 2004-04-16 2005-04-06 Leistungshalbleiteranordnung WO2005104229A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/549,765 US20070200227A1 (en) 2004-04-16 2006-10-16 Power semiconductor arrangement

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004018475.5 2004-04-16
DE102004018475A DE102004018475A1 (de) 2004-04-16 2004-04-16 Leistungshalbleiteranordnung

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/549,765 Continuation US20070200227A1 (en) 2004-04-16 2006-10-16 Power semiconductor arrangement

Publications (1)

Publication Number Publication Date
WO2005104229A1 true WO2005104229A1 (de) 2005-11-03

Family

ID=34962939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/003617 WO2005104229A1 (de) 2004-04-16 2005-04-06 Leistungshalbleiteranordnung

Country Status (3)

Country Link
US (1) US20070200227A1 (de)
DE (1) DE102004018475A1 (de)
WO (1) WO2005104229A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007096017A1 (de) 2006-02-20 2007-08-30 Siemens Aktiengesellschaft Verfahren zur herstellung von planaren isolierschichten mit positionsgerechten durchbrüchen mittels laserschneiden und entsprechend hergestellte vorrichtungen
WO2008025832A1 (de) * 2006-08-31 2008-03-06 Siemens Aktiengesellschaft Verfahren und vorrichtung zum herstellen eines elektronischen moduls
WO2009019190A1 (de) * 2007-08-03 2009-02-12 Siemens Aktiengesellschaft Federkontaktierung von elektrischen kontaktflächen eines elektronischen bauteils
DE102008016487A1 (de) * 2008-03-31 2009-10-01 Osram Opto Semiconductors Gmbh Optoelektronisches Halbleiterbauteil und Verfahren zur Herstellung eines optoelektronischen Halbleiterbauteils
WO2009147546A1 (en) * 2008-06-02 2009-12-10 Nxp B.V. Method for manufacturing an electronic device
US8395257B2 (en) 2006-08-10 2013-03-12 Siemens Aktiengesellschaft Electronic module and method for producing an electric functional layer on a substrate by blowing powder particles of an electrically conductive material

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007024159B3 (de) * 2007-05-24 2008-11-06 Semikron Elektronik Gmbh & Co. Kg Leistungshalbleitermodul
US7559061B1 (en) * 2008-03-16 2009-07-07 International Business Machines Corporation Simultaneous multi-threading control monitor
DE102011004171A1 (de) * 2011-02-15 2012-08-16 Brose Fahrzeugteile GmbH & Co. Kommanditgesellschaft, Würzburg Temperierelement und Verfahren zur Befestigung eines Elektrobauteils an dem Temperierelement
US20130279119A1 (en) * 2012-04-20 2013-10-24 GM Global Technology Operations LLC Electronic assemblies and methods of fabricating electronic assemblies

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5994438A (ja) * 1982-11-19 1984-05-31 Tdk Corp パタ−ン化されたアルミニウム層を形成する方法
EP0139030A1 (de) * 1983-10-19 1985-05-02 Olin Corporation Gedruckte Schaltungsplatte
US5055967A (en) * 1988-10-26 1991-10-08 Texas Instruments Incorporated Substrate for an electrical circuit system and a circuit system using that substrate
US5198693A (en) * 1992-02-05 1993-03-30 International Business Machines Corporation Aperture formation in aluminum circuit card for enhanced thermal dissipation
US5578869A (en) * 1994-03-29 1996-11-26 Olin Corporation Components for housing an integrated circuit device
US5774336A (en) * 1996-02-20 1998-06-30 Heat Technology, Inc. High-terminal conductivity circuit board
US20020001177A1 (en) * 2000-06-23 2002-01-03 Alstom Power module having electronic power components, and a method of manufacturing such a module
EP1253637A2 (de) * 2001-04-25 2002-10-30 Denso Corporation Halbleiterbauelement mit Wärmesenken und Herstellungsverfahren dafür
WO2003030247A2 (de) * 2001-09-28 2003-04-10 Siemens Aktiengesellschaft Verfahren zum kontaktieren elektrischer kontaktflächen eines substrats und vorrichtung aus einem substrat mit elektrischen kontaktflächen

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE8914493U1 (de) * 1989-12-08 1990-05-17 Siemens Ag, 1000 Berlin Und 8000 Muenchen, De
DE19617055C1 (de) * 1996-04-29 1997-06-26 Semikron Elektronik Gmbh Halbleiterleistungsmodul hoher Packungsdichte in Mehrschichtbauweise
US6246583B1 (en) * 1999-03-04 2001-06-12 International Business Machines Corporation Method and apparatus for removing heat from a semiconductor device
US6469398B1 (en) * 2001-03-29 2002-10-22 Kabushiki Kaisha Toshiba Semiconductor package and manufacturing method thereof
DE10118384A1 (de) * 2001-04-12 2002-10-24 Siemens Ag Anordnung zur Kühlung eines Leistungs-Halbleiterelementes
US6690580B1 (en) * 2002-03-07 2004-02-10 Amd, Inc. Integrated circuit structure with dielectric islands in metallized regions
DE10244791B4 (de) * 2002-09-26 2009-03-26 Robert Bosch Gmbh Vorrichtung zur Kühlung von elektronischen Bauelementen
US20040262781A1 (en) * 2003-06-27 2004-12-30 Semiconductor Components Industries, Llc Method for forming an encapsulated device and structure
JP4012496B2 (ja) * 2003-09-19 2007-11-21 カシオ計算機株式会社 半導体装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5994438A (ja) * 1982-11-19 1984-05-31 Tdk Corp パタ−ン化されたアルミニウム層を形成する方法
EP0139030A1 (de) * 1983-10-19 1985-05-02 Olin Corporation Gedruckte Schaltungsplatte
US5055967A (en) * 1988-10-26 1991-10-08 Texas Instruments Incorporated Substrate for an electrical circuit system and a circuit system using that substrate
US5198693A (en) * 1992-02-05 1993-03-30 International Business Machines Corporation Aperture formation in aluminum circuit card for enhanced thermal dissipation
US5578869A (en) * 1994-03-29 1996-11-26 Olin Corporation Components for housing an integrated circuit device
US5774336A (en) * 1996-02-20 1998-06-30 Heat Technology, Inc. High-terminal conductivity circuit board
US20020001177A1 (en) * 2000-06-23 2002-01-03 Alstom Power module having electronic power components, and a method of manufacturing such a module
EP1253637A2 (de) * 2001-04-25 2002-10-30 Denso Corporation Halbleiterbauelement mit Wärmesenken und Herstellungsverfahren dafür
WO2003030247A2 (de) * 2001-09-28 2003-04-10 Siemens Aktiengesellschaft Verfahren zum kontaktieren elektrischer kontaktflächen eines substrats und vorrichtung aus einem substrat mit elektrischen kontaktflächen

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FILLION R ET AL: "A HIGH PERFORMANCE POLYMER THIN FILM POWER ELECTRONICS PACKAGING TECHNOLOGY", ADVANCING MICROELECTRONICS, IMAPS, RESTON, VA,, US, vol. 30, no. 5, September 2003 (2003-09-01), pages 7 - 12, XP009047125 *
PATENT ABSTRACTS OF JAPAN vol. 008, no. 209 (E - 268) 22 September 1984 (1984-09-22) *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007096017A1 (de) 2006-02-20 2007-08-30 Siemens Aktiengesellschaft Verfahren zur herstellung von planaren isolierschichten mit positionsgerechten durchbrüchen mittels laserschneiden und entsprechend hergestellte vorrichtungen
US8395257B2 (en) 2006-08-10 2013-03-12 Siemens Aktiengesellschaft Electronic module and method for producing an electric functional layer on a substrate by blowing powder particles of an electrically conductive material
WO2008025832A1 (de) * 2006-08-31 2008-03-06 Siemens Aktiengesellschaft Verfahren und vorrichtung zum herstellen eines elektronischen moduls
WO2009019190A1 (de) * 2007-08-03 2009-02-12 Siemens Aktiengesellschaft Federkontaktierung von elektrischen kontaktflächen eines elektronischen bauteils
DE102008016487A1 (de) * 2008-03-31 2009-10-01 Osram Opto Semiconductors Gmbh Optoelektronisches Halbleiterbauteil und Verfahren zur Herstellung eines optoelektronischen Halbleiterbauteils
US8563998B2 (en) 2008-03-31 2013-10-22 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor component and method of producing an optoelectronic semiconductor component
WO2009147546A1 (en) * 2008-06-02 2009-12-10 Nxp B.V. Method for manufacturing an electronic device
US8695207B2 (en) 2008-06-02 2014-04-15 Nxp B.V. Method for manufacturing an electronic device
CN102047402B (zh) * 2008-06-02 2017-11-03 Nxp股份有限公司 一种电子器件制造方法

Also Published As

Publication number Publication date
US20070200227A1 (en) 2007-08-30
DE102004018475A1 (de) 2005-11-10

Similar Documents

Publication Publication Date Title
WO2005104229A1 (de) Leistungshalbleiteranordnung
DE102014109981B4 (de) Chip-Package mit passiven Komponenten
DE102004018469B3 (de) Leistungshalbleiterschaltung
DE102018207955B4 (de) Leiterplattenmodul mit integriertem leistungselektronischen Metall-Keramik-Modul sowie Verfahren zu dessen Herstellung
EP3625823B1 (de) Leistungsmodul mit mindestens einem leistungshalbleiter
WO2006034767A1 (de) Elektrische anordnung und verfahren zum herstellen einer elektrischen anordnung
DE102017220175A1 (de) Platinentechnologie für leistungselektronische Schaltungen
DE102006006175A1 (de) Leistungselektronikanordnung
DE102014115909B4 (de) Press-Pack-Zelle und Verfahren zum Betrieb einer Press-Pack-Zelle
WO2002058142A2 (de) Leistungsmodul
DE102014115815B4 (de) Verfahren zur herstellung eines schaltungsträgers, verfahren zur herstellung einer halbleiteranordung, verfahren zum betrieb einer halbleiteranordnung und verfahren zur herstellung eines halbleitermoduls
WO2014139666A1 (de) Elektronisches bauteil, verfahren zu dessen herstellung und leiterplatte mit elektronischem bauteil
DE102004041088A1 (de) Halbleiterbauteil in Flachleitertechnik mit einem Halbleiterchip
DE102016214607B4 (de) Elektronisches Modul und Verfahren zu seiner Herstellung
DE102012216086B4 (de) Leistungselektronikmodul
DE102004058806B4 (de) Verfahren zur Herstellung von Schaltungsstrukturen auf einem Kühlkörper und Schaltungsstruktur auf einem Kühlkörper
DE102015107109B4 (de) Elektronische Vorrichtung mit einem Metallsubstrat und einem in einem Laminat eingebetteten Halbleitermodul
EP3529832B1 (de) Leistungsmodul
EP3281218A1 (de) Verfahren zur elektrischen kontaktierung eines bauteils mittels galvanischer anbindung eines offenporigen kontaktstücks und entsprechendes bauteilmodul
DE10339692A1 (de) Entwärmende Isolationsschicht
DE102012215656B4 (de) Verfahren zur Herstellung eines Leistungshalbleitermoduls
DE10229711B4 (de) Halbleitermodul mit Mikrokühler
DE102012213555B4 (de) Verfahren zur Herstellung eines Leistungshalbleitermoduls
DE10320877A1 (de) Halbleiterbauelement und Verfahren zum Herstellen eines Halbleiterbauelements
WO2006058860A2 (de) Wärmeaustauschvorrichtung für ein halbleiterbauelement und verfahren zu ihrer herstellung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11549765

Country of ref document: US

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 11549765

Country of ref document: US