WO2005101597A1 - レーザ駆動装置、レーザ駆動ic、光ピックアップ及び情報再生装置 - Google Patents

レーザ駆動装置、レーザ駆動ic、光ピックアップ及び情報再生装置 Download PDF

Info

Publication number
WO2005101597A1
WO2005101597A1 PCT/JP2005/006460 JP2005006460W WO2005101597A1 WO 2005101597 A1 WO2005101597 A1 WO 2005101597A1 JP 2005006460 W JP2005006460 W JP 2005006460W WO 2005101597 A1 WO2005101597 A1 WO 2005101597A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
voltage controlled
controlled oscillator
oscillation amplitude
laser
Prior art date
Application number
PCT/JP2005/006460
Other languages
English (en)
French (fr)
Inventor
Hisashi Senga
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Publication of WO2005101597A1 publication Critical patent/WO2005101597A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/125Optical beam sources therefor, e.g. laser control circuitry specially adapted for optical storage devices; Modulators, e.g. means for controlling the size or intensity of optical spots or optical traces
    • G11B7/126Circuits, methods or arrangements for laser control or stabilisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0427Electrical excitation ; Circuits therefor for applying modulation to the laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/06804Stabilisation of laser output parameters by monitoring an external parameter, e.g. temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters

Definitions

  • Laser drive device laser drive IC , optical pickup and information reproducing device
  • the present invention relates to a laser drive device, a laser drive IC, an optical pickup, and an information reproducing device, and in particular, in an optical disk recorder or an optical disk drive for a PC, information is recorded on a phase change recording type optical disk such as a DVD Related to things used to play
  • a semiconductor laser light source is used in an optical disc recording / reproducing apparatus to reproduce information from the optical disc.
  • the semiconductor laser light source outputs the light intensity necessary for reading out information, when an appropriate drive current is supplied from the laser drive device.
  • the laser driving device there is a problem of return light noise in which the light emission intensity fluctuates when the reflected light of the optical disk power returns to the semiconductor laser.
  • a laser drive apparatus has been proposed in which a high frequency signal is superimposed on the drive current of the semiconductor laser and the semiconductor laser is oscillated in multiple modes.
  • Patent Document 1 Patent No. 2756820
  • the conventional configuration has the following problems.
  • the higher the temperature the lower the series resistance of the semiconductor laser. Therefore, when high frequency signals are superimposed on a semiconductor laser, the influence of the drop in series resistance is greater than the drop in differential quantum efficiency 7 ?, and the peak level of the light emission intensity may rise. Therefore, the light device If the margin of the reproduction light intensity which does not deteriorate the recording mark is narrowed along with the improvement of the recording density of the image, the peak value of the light emission intensity may deteriorate the information recorded on the optical disc.
  • Figure 7 shows an example of the temperature change of series resistance in a red laser.
  • the blue laser mainly composed of GaN is considered to be approximately 2 to 4 times as large as the red laser whose series equivalent resistance value is high due to its structure.
  • the present invention is intended to solve the above-mentioned conventional problems, and it is an object of the present invention to provide a laser drive device capable of always performing optimum modulation of the light emission intensity even if the load changes due to temperature change.
  • a laser drive device superimposes a constant current on a current source for supplying a constant current to a semiconductor laser and a high frequency signal whose oscillation amplitude changes according to temperature. And a voltage controlled oscillator.
  • the voltage controlled oscillator preferably has a voltage controlled oscillator and a resistor whose value changes with temperature.
  • the resistance has a characteristic that the relative resistance value rises with temperature, and the voltage control oscillator generates a high frequency signal with an oscillation amplitude set in inverse proportion to the relative resistance value. Is preferred.
  • the voltage controlled oscillator preferably has a temperature sensor which measures temperature and outputs it as an electrical signal, and a voltage controlled oscillator which generates a high frequency signal whose oscillation amplitude changes according to the measured temperature.
  • the voltage controlled oscillator further comprises a temperature compensation table having information to determine the oscillation amplitude of the voltage controlled oscillator based on the measured temperature.
  • the semiconductor laser can always be driven with the optimum emission intensity regardless of the temperature, and the temperature margin in the optical disc reproduction can be expanded. be able to.
  • FIG. 1 is a main configuration diagram of a laser drive device according to a first embodiment of the present invention.
  • FIG. 2 (a) A diagram showing the relationship between the relative resistance value Ra of the temperature compensation resistor and the temperature (b) A diagram showing the relationship between the oscillation amplitude K and the temperature
  • FIG. 4 A main configuration diagram of a laser drive device according to a second embodiment of the present invention
  • FIG. 6 Diagram showing oscillation amplitude A, series resistance Rs, laser drive current Id, and laser emission waveform at each temperature
  • FIG. 8 A diagram showing an optical pickup equipped with a laser drive device according to the present invention, and an information reproducing device (Embodiment 3).
  • FIG. 9 A diagram showing an optical pickup equipped with a laser drive device according to the present invention, and an information reproducing device (Embodiment 4)
  • FIG. 1 is a block diagram of a laser drive device or a laser drive IC according to Embodiment 1 of the present invention.
  • the semiconductor laser 15 is used as a light source of an optical pickup such as a DVD, and has an equivalent resistance Rs.
  • a laser driving device or a laser driving IC is a device for supplying a driving current to a semiconductor laser 15, and includes a current source 11, a temperature compensation resistor 12, a voltage control oscillator 13, and a high pass filter 14. Is equipped.
  • the current source 11 outputs a drive current Ir which is supplied to the semiconductor laser 15 so as to obtain a desired light intensity.
  • the voltage control oscillator 13 is connected to the temperature compensation resistor 12.
  • the voltage controlled oscillator 13 and the temperature compensation resistor 12 constitute a voltage controlled oscillator in which a high frequency signal HF whose oscillation amplitude changes according to the temperature is superimposed on a constant current Ir.
  • the temperature compensation resistor 12 has a characteristic that the relative resistance value Ra rises according to the temperature
  • the voltage control oscillator 13 has a temperature It oscillates with the oscillation amplitude set in inverse proportion to the relative resistance value Ra of the compensation resistor 12!
  • the oscillation frequency of the voltage control oscillator 13 is set to reduce return light noise, and is generally set in the range of 250 to 450 [MHz].
  • the voltage control oscillator 13 superimposes the high frequency signal HF on the drive current signal Ir via the high pass filter 14 and superimposes the high frequency signal HF on the drive current signal Ir.
  • the current Id is supplied to the semiconductor laser 15. As a result, the semiconductor laser 15 oscillates in a multi mode.
  • the feature of the present invention is to make the oscillation amplitude A of the high frequency signal HF superimposed on the drive current Ir outputted from the current source 11 variable according to the temperature. That is, the oscillation amplitude A of the high-frequency signal HF is determined so as to have a monotonically decreasing characteristic with respect to the temperature in inverse proportion to the relative resistance value Ra of the temperature compensation resistor 12, that is, as shown in FIG. .
  • the monotonically decreasing function is related by the temperature characteristic (which decreases as the temperature increases) of the equivalent resistance Rs of the semiconductor laser 15 shown in FIG.
  • the drive signal Id input to the semiconductor laser 15 is changed according to the temperature change to maintain the light emission waveform of the semiconductor laser 15 equal regardless of the temperature change.
  • the temperature T 25 ° C.
  • the equivalent series resistance Rs of the semiconductor laser 15 is 5 ⁇ (see FIG. 7).
  • FIG. 4 is a block diagram of a laser drive device or a laser drive IC according to a second embodiment of the present invention.
  • the semiconductor laser 6 is used as a light source of an optical pickup such as a DVD Have equivalent resistance Rs.
  • a laser driving device or a laser driving IC is a device for supplying a driving current Id to the semiconductor laser 6, and includes a current source 1, a temperature sensor 2, a temperature compensation table 3, and a voltage controlled oscillator. 4 and a high pass filter 5 are provided.
  • the current source 11 outputs a drive current Ir which is supplied to the semiconductor laser 15 so as to obtain a desired light intensity.
  • the temperature sensor 2 measures the temperature and outputs the measured temperature as an electrical signal.
  • the temperature compensation table 3 sets the amplitude of the voltage control oscillator 4 according to the temperature measured by the temperature sensor 2.
  • the voltage control oscillator 4, the temperature compensation table 3, and the temperature sensor 2 constitute a voltage control oscillation device in which a high frequency signal HF whose oscillation amplitude changes according to temperature is superimposed on a constant current Ir.
  • the temperature compensation table 3 holds the correspondence between the temperature and the output current of the voltage control oscillator 4 as data, and as a result, the amplitude of the voltage control oscillator 4 is determined by the temperature compensation table 3.
  • the oscillation frequency of the voltage controlled oscillator 4 is set to reduce the return light noise.
  • the voltage controlled oscillator 4 superimposes the high frequency signal HF on the drive current signal Ir via the high pass filter 5, and the current Id in which the high frequency signal HF is superimposed on the drive current signal Ir is supplied to the semiconductor laser 6. As a result, the semiconductor laser 6 oscillates in multi mode.
  • the laser drive device or the laser drive IC includes the temperature sensor 2 and the temperature compensation table 3 to define the temperature characteristic of the oscillation amplitude of the voltage controlled oscillator 4. Ru.
  • the feature of the present invention is to make the oscillation amplitude A of the high frequency signal HF superimposed on the drive current Ir of the semiconductor laser 6 variable according to the temperature. That is, the temperature compensation table 3 determines the oscillation amplitude A of the high frequency signal HF in a monotonically decreasing relationship as shown in FIG. 5 with respect to the temperature measured by the temperature sensor 2.
  • the monotonically decreasing function is related by the temperature characteristic (which decreases as the temperature increases) of the equivalent resistance R S of the semiconductor laser 6 as shown in FIG.
  • the operation of maintaining the emission waveform of the semiconductor laser 6 equally regardless of the temperature change will be described by changing the drive signal Id input to the semiconductor laser 6 according to the temperature change using FIG. Do.
  • Rs 5 ⁇ , equivalent load
  • the optical pickup provided with the laser driving device described in the first and second embodiments of the present invention to the information reproducing device, the effect can be exhibited.
  • An information reproducing apparatus 110 of FIG. 8 includes an optical pickup 100, a main substrate 111, and a motor 115.
  • the optical pickup 100 irradiates the optical disk 119 with a laser beam to convert the information recorded on the optical recording medium into an electric signal and outputs the electric signal.
  • the optical pickup 100 includes a laser drive device 101, a semiconductor laser 102, a polarization beam splitter 103, an optical detector 104, an objective lens 105, and a light receiving element 106.
  • the semiconductor laser 102 is driven by the laser driving device 101 of the present invention, and light intensity output necessary for reproducing information is made.
  • the objective lens 105 condenses the light on the information recording layer of the optical disc 119. Further, the reflected light from the information recording layer is irradiated to the light receiving element 106 by the polarization beam splitter 103, and is converted into an electric signal as a reproduction signal and a servo signal.
  • the main substrate 111 includes a controller 112, a laser power control 113, a servo circuit 114, a read channel 116, and an error correction and address decoder unit 117.
  • the reproduction signal output from the optical pickup 100 has no waveform equalization by the read channel 116.
  • the servo signal output from the optical pickup 100 is input to the controller 112, and the control signal is output to the servo circuit 114.
  • the servo circuit 114 drives the actuator 104 based on the control signal to perform focus control and tracking control of the light spot on the optical disc 119.
  • An EEP-ROM 118 is mounted on the main board 111 shown in FIG.
  • the characteristics of the pickup 100 are stored in the EEP-RO M18.
  • the EEP-ROM 118 holds the offset and detection sensitivity of the light receiving element 106 in order to improve the accuracy of laser power control in tracking control and focus control.
  • the threshold current of the laser, the slope efficiency, the amplitude setting value of high frequency superposition, the frequency setting value and the like are held.
  • the contents stored in the temperature compensation table 3 of the second embodiment are also stored in the EEP-ROM 118. In this case, the EEP-ROM 118 functions as the temperature compensation table 3
  • the following method may be considered.
  • the characteristic value of the pickup 100 is measured and stored in the EEP-ROM.
  • a characteristic value is previously described as a bar code on the pickup 100, and after combining the pickup 100 and the drive, the bar code is read and the characteristic value of the pickup 100 is stored in the EEP-ROM 118. Do. In this case, it is possible to absorb the element variation of the temperature characteristic of the high frequency superposition amplitude.
  • the EEP-ROM 120 is mounted on the pickup 100, and the characteristic value of the pickup 100 is held in the EEP-ROM 120.
  • This structure has the advantage of shortening the manufacturing process of the optical disc apparatus. Furthermore, since the E EP-ROM 120 on the pickup 100 has the function of the temperature compensation table 3, it is possible to absorb the element variation of the temperature characteristic of the high frequency superposition amplitude.
  • the laser driving device has high light intensity characteristics without depending on temperature, and is useful as a DVD recording / reproducing device or the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Head (AREA)
  • Semiconductor Lasers (AREA)

Abstract

 半導体レーザに一定電流を供給するための電流源(11)と、温度に応じて発振振幅が変化する高周波電流を、前記一定電流に重畳する電圧制御発振器(13)と備える。本構成によって、温度によって直列等価抵抗Rsが変化したとしても、その温度に応じて高周波信号の発振振幅を変化させれば、つまり、高温ほど発振振幅が小さくなるように制御すれば、発光強度のピーク値上昇を抑制することができる。

Description

明 細 書
レーザ駆動装置、レーザ駆動 IC、光ピックアップ及び情報再生装置 技術分野
[0001] 本発明は、レーザ駆動装置、レーザ駆動 IC、光ピックアップ及び情報再生装置に 関し、特に、光ディスクレコーダー若しくは PC用光ディスクドライブにおいて、 DVD等 の相変化記録型光ディスクに対して情報を記録 ·再生するために用 、るものに関する
背景技術
[0002] 従来、光ディスクの記録再生装置にお!/、て、光ディスクから情報を再生するために 半導体レーザ光源が使用されている。半導体レーザ光源は、レーザ駆動装置から適 切な駆動電流を供給されると、情報の読み出しに必要な光強度を出力する。
レーザ駆動装置では、光ディスク力 の反射光が半導体レーザに戻ることにより発 光強度が変動する戻り光ノイズの問題がある。戻り光ノイズを低減するために、半導 体レーザの駆動電流に高周波信号を重畳し、半導体レーザをマルチモードで発振さ せるレーザ駆動装置が提案されて 、る。
高周波信号の重畳方法においては、適宜半導体レーザの微分量子効率 7?を求め 、この微分量子効率 7?に応じて重畳すべき高周波電流を制御している方法がある。 すなわち、一般に半導体レーザは、周囲温度が高くなると微分量子効率 7?は、その 傾斜角度が小さくなる。したがって、同じ駆動電流を流した場合には光出力レベルが 低下する。この課題に対しては、微分量子効率 7?に応じて重畳すべき高周波電流を 制御することにより解決が可能である(特許文献 1を参照。;)。
特許文献 1:特許第 2756820号公報
発明の開示
[0003] し力しながら、前記従来の構成には以下のような問題がある。一般に温度が高くな ると、半導体レーザの直列抵抗が低下する。そのため、半導体レーザに対して高周 波信号の重畳を行うと、微分量子効率 7?の低下の影響よりも直列抵抗の低下の影響 が大きくなり、発光強度のピークレベルが上昇する場合がある。したがって、光デイス クの記録密度の向上に伴い、記録マークを劣化させない再生光強度のマージンが狭 小化すると、発光強度のピーク値上昇により光ディスク上に記録された情報を劣化さ せること〖こなる。
図 7に赤色レーザにおける直列抵抗の温度変化の例を示す。常温( = 25° )以下 になると急激に直列等価抵抗 (Rs)が増加する。 GaNを主成分とする青色レーザで は、構造上、直列等価抵抗値が高ぐ赤色レーザのほぼ 2〜4倍になるとされている。 本発明は、前記従来の課題を解決するもので、温度変化によって負荷が変動して も、常に最適な発光強度の変調を行うことができるレーザ駆動装置を提供することを 目的とする。
前記従来の課題を解決するために、本発明のレーザ駆動装置は、半導体レーザに 一定電流を供給するための電流源と、温度に応じて発振振幅が変化する高周波信 号を、一定電流に重畳する電圧制御発振器と備えたことを特徴とする。
本構成によって、温度によって半導体レーザの直列等価抵抗 Rsが変化したとして も、その温度に応じて高周波信号の発振振幅を変化させれば、つまり、高温ほど発 振振幅が小さくなるように制御すれば、発光強度のピーク値上昇を抑制することがで きる。
電圧制御発振装置は、電圧制御発振器と、温度に応じて値が変化する抵抗とを有 することが好ましい。
抵抗は、相対的な抵抗値が温度に応じて上昇する特性を有しており、電圧制御発 振器は、相対的な抵抗値に反比例するように設定した発振振幅で高周波信号を発 生することが好ましい。
電圧制御発振装置は、温度を測定して電気的な信号として出力する温度センサー と、測定温度に応じて発振振幅が変化する高周波信号を発生する電圧制御発振器 とを有することが好ましい。
電圧制御発振装置は、測定温度に基づ!/、て電圧制御発振器の発振振幅を決定す る情報を有する温度補償テーブルをさらに有して 、ることが好ま 、。
本発明のレーザ駆動装置によれば、温度に係わらず、常に最適な発光強度で半導 体レーザを駆動させることができ、光ディスク再生における温度マージンを拡大する ことができる。
図面の簡単な説明
[0004] [図 1]本発明の実施の形態 1におけるレーザ駆動装置の主要構成図
[図 2] (a)温度補償抵抗の相対抵抗値 Raと温度の関係を示す図 (b)発振振幅 Kと温 度の関係を示す図
[図 3]各温度における、発振振幅 Aと、直列抵抗 Rsと、レーザ駆動電流 Idと、レーザ 発光波形を示す図
[図 4]本発明の実施の形態 2におけるレーザ駆動装置の主要構成図
[図 5]発振振幅 Kと温度の関係を示す図
[図 6]各温度における、発振振幅 Aと、直列抵抗 Rsと、レーザ駆動電流 Idと、レーザ 発光波形を示す図
[図 7]赤色レーザにおける直列等価抵抗と温度の関係を示す図
[図 8]本発明のレーザ駆動装置を搭載した光ピックアップ、および情報再生装置を示 す図(実施の形態 3)
[図 9]本発明のレーザ駆動装置を搭載した光ピックアップ、および情報再生装置を示 す図(実施の形態 4)
符号の説明
[0005] 1 電流源
2 温度センサー
3 温度補償テーブル
4 電圧制御発振器
5 ハイパスフィルタ
6 半導体レーザ
100 光ピックアップ
101 レーザ駆動装置
102 半導体レーザ
103 ビームスプリッタ
104 ァクチユエータ 105 対物レンズ
106 受光素子
112 コントローラ
113 レーザ制御回路
114 サーボ回路
115 スピンドノレモータ
116 リードチャネル
117 エラー訂正およびアドレスデコーダ部
119 光ディスク
発明を実施するための最良の形態
以下本発明の実施の形態について、図面を参照しながら説明する。
(実施の形態 1)
図 1は本発明の実施の形態 1におけるレーザ駆動装置またはレーザ駆動 ICのプロ ック図である。半導体レーザ 15は、 DVD等の光ピックアップの光源として用いられて おり、等価抵抗 Rsを有している。
図 1において、レーザ駆動装置またはレーザ駆動 ICは、半導体レーザ 15に駆動電 流を供給するための装置であり、電流源 11と、温度補償抵抗 12と、電圧制御発振器 13と、ハイパスフィルタ 14とを備えている。
電流源 11は、所望の光強度が得られるように半導体レーザ 15に供給する駆動電 流 Irを出力する。電圧制御発振器 13は、温度補償抵抗 12に接続されている。電圧 制御発振器 13と温度補償抵抗 12は、温度に応じて発振振幅が変化する高周波信 号 HFを一定電流 Irに重畳する電圧制御発振装置を構成している。具体的には、温 度補償抵抗 12が、図 2 (a)に示すように、相対的な抵抗値 Raが温度に応じて上昇す る特性を有しており、電圧制御発振器 13が、温度補償抵抗 12の相対的な抵抗値 Ra に反比例するように設定した発振振幅で発振するようになって!/ヽる。電圧制御発振器 13の発振周波数は、戻り光ノイズを低減するように設定され、一般的には 250〜450 [MHz]の範囲に設定される。電圧制御発振器 13は、ハイパスフィルタ 14を介して高 周波信号 HFを駆動電流信号 Irに重畳し、駆動電流信号 Irに高周波信号 HFが重畳 された電流 Idが半導体レーザ 15に供給される。その結果、半導体レーザ 15がマル チモードで発振する。
本発明の特徴は、電流源 11から出力される駆動電流 Irに重畳する高周波信号 HF の発振振幅 Aを温度に応じて可変とするところにある。すなわち、温度補償抵抗 12の 相対的な抵抗値 Raに反比例して、つまり図 2 (b)に示すように高周波信号 HFの発振 振幅 Aを温度に対して単調減少な特性になるように決定する。この単調減少の関数 は、図 7で示す半導体レーザ 15の等価抵抗 Rsの温度特性 (高温ほど減少する)によ つて関連付けられる。
次に、図 3を用いて、温度変化に対応させて半導体レーザ 15に入力される駆動信 号 Idを変化させることで、温度変化にかかわらず半導体レーザ 15の発光波形を同等 に維持する動作を説明する。温度 T= 25°Cの場合は、半導体レーザ 15の等価直列 抵抗 Rsが 5 Ωになるとする(図 7参照)。このとき、 Rs = 5 Q、等価負荷容量 C、インダ クタ Lとで決定される周波数特性に応じて、半導体レーザ 15の発光強度のピーク値 が許容値以下になるように、発振振幅 A=40[mA]が決定される(図 3の上半分を参 照。)。
一方、 T= 50°Cの場合、半導体レーザの直列等価抵抗 Rsは 2. 5 Ωまで低下する ので周波数特性が高周波側に変化する傾向となる。このとき、 T= 25°Cのときと同じ 発振振幅 A=40[mA]で高周波信号 HFを供給すれば、半導体レーザの発光強度 のピーク値が許容値を超過し、最悪、光ディスク上に記録された情報を劣化させるこ とになる。
そこで本実施の形態においては、高温で直列等価抵抗 Rsが低下したときは、それ に応じて発振振幅を図 3の関係に従って低減させることにしている。その結果、 T= 5 0°Cにお!/、ては A= 20 [mA]となり、適切な発光強度のピーク値を得ることができる。 言い換えると、温度 T= 25°Cの場合と同等の発光波形が得られる(図 3の下半分を 参照。)。
(実施の形態 2)
図 4は本発明の実施の形態 2におけるレーザ駆動装置またはレーザ駆動 ICのプロ ック図である。半導体レーザ 6は、 DVD等の光ピックアップの光源として用いられて おり、等価抵抗 Rsを有している。
図 4において、レーザ駆動装置またはレーザ駆動 ICは、半導体レーザ 6に駆動電 流 Idを供給するための装置であり、電流源 1と、温度センサー 2と、温度補償テープ ル 3と、電圧制御発振器 4と、ハイパスフィルタ 5とを備えている。
電流源 11は、所望の光強度が得られるように半導体レーザ 15に供給する駆動電 流 Irを出力する。温度センサー 2は温度を測定し、測定温度を電気的な信号として出 力する。温度補償テーブル 3は、温度センサー 2の測定温度に応じて電圧制御発振 器 4の振幅を設定する。電圧制御発振器 4と温度補償テーブル 3と温度センサー 2は 、温度に応じて発振振幅が変化する高周波信号 HFを一定電流 Irに重畳する電圧制 御発振装置を構成している。具体的には、温度補償テーブル 3は、温度と電圧制御 発振器 4の出力電流との対応をデータとして保持しており、その結果電圧制御発振 器 4の振幅は温度補償テーブル 3によって決定される。電圧制御発振器 4の発振周 波数は戻り光ノイズを低減するように設定される。電圧制御発振器 4は、ハイパスフィ ルタ 5を介して高周波信号 HFを駆動電流信号 Irに重畳し、駆動電流信号 Irに高周 波信号 HFが重畳された電流 Idが半導体レーザ 6に供給される。その結果、半導体レ 一ザ 6がマルチモードで発振する。
以上に述べたように、実施の形態 2に示すレーザ駆動装置またはレーザ駆動 ICは 、温度センサー 2と温度補償テーブル 3を備えることにより、電圧制御発振器 4の発振 振幅の温度特性を定義して ヽる。
本発明の特徴は、半導体レーザ 6の駆動電流 Irに重畳する高周波信号 HFの発振 振幅 Aを温度に応じて可変とするところにある。すなわち、温度センサー 2が測定した 温度に対し、温度補償テーブル 3は図 5に示すような単調減少の関係で高周波信号 HFの発振振幅 Aを決定する。この単調減少の関数は、図 7で示されるような半導体 レーザ 6の等価抵抗 RSの温度特性 (高温ほど減少する)によって関連付けられる。 次に、図 6を用いて、温度変化に対応させて半導体レーザ 6に入力される駆動信号 Idを変化させることで、温度変化にかかわらず半導体レーザ 6の発光波形を同等に 維持する動作を説明する。温度 T= 25°Cのときの半導体レーザの等価直列抵抗 Rs が 5 Ωになるとする(図 7参照)。このとき T= 25°Cにお 、ては、 Rs = 5 Ω、等価負荷 容量 C、インダクタ Lとで決定される周波数特性に応じて、半導体レーザの発光強度 のピーク値が許容値以下になるように、発振振幅 A=40[mA]が決定される(図 6の 上半分を参照。)。
一方、 T= 50°Cの場合、半導体レーザの直列等価抵抗 Rsは 2. 5 Ωまで低下する ので周波数特性が高周波側に変化する傾向となる。このとき、 T= 25°Cのときと同じ 発振振幅 A=40[mA]で高周波信号 HFを供給すれば、半導体レーザの発光強度 のピーク値が許容値を超過し、最悪、光ディスク上に記録された情報を劣化させるこ とになる。
そこで本実施の形態においては、高温で直列等価抵抗 Rsが低下したときは、それ に応じて発振振幅を図 6の関係に従って低減させることにしている。その結果、 T= 5 0°Cにお!/、ては A= 20 [mA]となり、適切な発光強度のピーク値を得ることができる。 言い換えると、温度 T= 25°Cの場合と同等の発光波形が得られる(図 6の下半分を 参照。)。(実施の形態 3)
また、本発明の実施の形態 1、 2で述べたレーザ駆動装置を備えた光ピックアップを 、情報再生装置に搭載することにより、その効果を発揮することができる。
図 8の情報再生装置 110は、光ピックアップ 100と、メイン基板 111と、モータ 115と を有している。
光ピックアップ 100は、レーザ光を光ディスク 119に照射することによって、光記録 媒体上に記録された情報を電気信号に変換して出力する。光ピックアップ 100は、レ 一ザ駆動装置 101と、半導体レーザ 102と、偏光ビームスプリッタ 103と、ァクチユエ ータ 104と、対物レンズ 105と、受光素子 106とを有している。
半導体レーザ 102は、本発明のレーザ駆動装置 101により駆動され、情報の再生 に必要な光強度出力がなされる。対物レンズ 105は光ディスク 119の情報記録層に 光を集光する。また、情報記録層からの反射光は、偏光ビームスプリッタ 103により受 光素子 106に照射され、再生信号およびサーボ信号として電気信号に変換される。 メイン基板 111は、コントローラ 112と、レーザパワー制御 113と、サーボ回路 114と 、リードチャネル 116と、エラー訂正およびアドレスデコーダ部 117とを有している。光 ピックアップ 100から出力された再生信号は、リードチャネル 116により波形等化がな され、エラー訂正およびアドレスデコーダ部 117により再生データとして出力される。 光ピックアップ 100から出力されたサーボ信号はコントローラ 112に入力され、制御信 号をサーボ回路 114に出力される。サーボ回路 114は制御信号に基づいてァクチュ エータ 104を駆動し、光ディスク 119上の光スポットのフォーカス制御およびトラツキン グ制御がなされる。
図 8に示すメイン基板 111には、 EEP— ROM118が搭載されている。 EEP— RO Ml 18には、ピックアップ 100の特性が記憶されている。具体的には、 EEP— ROM 118には、トラッキング制御、フォーカス制御の、レーザパワー制御の精度を向上させ るため、受光素子 106のオフセット、検出感度が保持されている。また、半導体レー ザ 102やレーザ駆動装置 101のばらつきを吸収するため、レーザの閾値電流、スロ ープ効率、高周波重畳の振幅設定値、周波数設定値などが保持されている。さらに 、 EEP— ROM118には、実施の形態 2の温度補償テーブル 3に記憶される内容も 記憶されており、この場合は EEP— ROM118は温度補償テーブル 3として機能する
EEP—ROM118へのデータ記録方法としては以下の方法が考えられる。第 1の方 法として、情報再生装置 110の製造工程において、ピックアップ 100とドライブを組み 合わせた後に、ピックアップ 100の特性値を測定して EEP— ROMに格納する。第 2 の方法として、ピックアップ 100にあら力じめ特性値をバーコードとして記述しておき、 ピックアップ 100とドライブを組み合わせた後に、バーコードを読み込んでピックアツ プ 100の特性値を EEP— ROM118に格納する。この場合は、高周波重畳振幅の温 度特性の素子ばらつきを吸収することが可能になる。
(実施の形態 4)
図 9に示す情報再生装置 110では、ピックアップ 100上 EEP - ROM 120を搭載 し、ピックアップ 100の特性値を EEP— ROM120に保持している。この構造では、光 ディスク装置の製造工程を短縮するという利点がある。さらに、ピックアップ 100上の E EP— ROM120に温度補償テーブル 3の機能を持たせることになるため、高周波重 畳振幅の温度特性の素子ばらつきを吸収することが可能になる。
産業上の利用可能性 本発明にかかるレーザ駆動装置は、温度に依存しない良好な発光強度のピ' 特性を有し、 DVDの記録再生装置等として有用である。

Claims

請求の範囲
[1] 半導体レーザに一定電流を供給するための電流源と、
温度に応じて発振振幅が変化する高周波信号を、前記一定電流に重畳する電圧 制御発振装置と、
備えたことを特徴とするレーザ駆動装置。
[2] 前記電圧制御発振装置の発振振幅は、高温ほど減少する特性を有することを特徴 とする請求項 1記載のレーザ駆動装置。
[3] 前記電圧制御発振装置は、電圧制御発振器と、温度に応じて値が変化する抵抗と を有することを特徴とする、請求項 1または 2に記載のレーザ駆動装置。
[4] 前記抵抗は、相対的な抵抗値が温度に応じて上昇する特性を有しており、
前記電圧制御発振器は、前記相対的な抵抗値に反比例するように設定した発振 振幅で高周波信号を発生することを特徴とする、請求項 1または 2に記載のレーザ駆 動装置。
[5] 前記電圧制御発振装置は、温度を測定して電気的な信号として出力する温度セン サ一と、前記測定温度に応じて発振振幅が変化する高周波信号を発生する電圧制 御発振器とを有することを特徴とする請求項 3に記載のレーザ駆動装置。
[6] 前記電圧制御発振装置は、前記測定温度に基づ!、て前記電圧制御発振器の発 振振幅を決定する情報を有する温度補償テーブルをさらに有している、請求項 5に 記載のレーザ駆動装置。
[7] 半導体レーザに一定電流を供給するための電流源と、
温度に応じて発振振幅が変化する高周波信号を、前記一定電流に重畳する電圧 制御発振装置と、
備えたことを特徴とするレーザ駆動 IC。
[8] 前記電圧制御発振装置の発振振幅は、高温ほど減少する特性を有することを特徴 とする請求項 7記載のレーザ駆動 IC。
[9] 前記電圧制御発振装置は、電圧制御発振器と、温度に応じて値が変化する抵抗と を有することを特徴とする、請求項 7または 8に記載のレーザ駆動 IC。
[10] 前記抵抗は、相対的な抵抗値が温度に応じて上昇する特性を有しており、 前記電圧制御発振器は、前記相対的な抵抗値に反比例するように設定した発振 振幅で高周波信号を発生することを特徴とする、請求項 9に記載のレーザ駆動 IC。
[11] 前記電圧制御発振装置は、温度を測定して電気的な信号として出力する温度セン サ一と、前記測定温度に応じて発振振幅が変化する高周波信号を発生する電圧制 御発振器とを有することを特徴とする請求項 7または 8に記載のレーザ駆動 IC。
[12] 前記電圧制御発振装置は、前記測定温度に基づ!、て前記電圧制御発振器の発 振振幅を決定する情報を有する温度補償テーブルをさらに有して!/ヽる、請求項 11に 記載のレーザ駆動 IC。
[13] 対物レンズと、
前記対物レンズに対してレーザ光を出射可能な半導体レーザと、
前記半導体レーザに一定電流を供給するための電流源と、温度に応じて発振振幅 が変化する高周波信号を前記一定電流に重畳する電圧制御発振器とを有するレー ザ駆動装置と、
を備えたことを特徴とする光ピックアップ。
[14] 前記電圧制御発振装置の発振振幅は、高温ほど減少する特性を有することを特徴 とする請求項 13記載の光ピックアップ。
[15] 前記電圧制御発振装置は、電圧制御発振器と、温度に応じて値が変化する抵抗と を有することを特徴とする、請求項 13または 14に記載の光ピックアップ。
[16] 前記抵抗は、相対的な抵抗値が温度に応じて上昇する特性を有しており、
前記電圧制御発振器は、前記相対的な抵抗値に反比例するように設定した発振 振幅で高周波信号を発生することを特徴とする、請求項 15に記載の光ピックアップ。
[17] 前記電圧制御発振装置は、温度を測定して電気的な信号として出力する温度セン サ一と、前記測定温度に応じて発振振幅が変化する高周波信号を発生する電圧制 御発振器とを有することを特徴とする請求項 13または 14に記載の光ピックアップ。
[18] 前記電圧制御発振装置は、前記測定温度に基づ!、て前記電圧制御発振器の発 振振幅を決定する情報を有する温度補償テーブルをさらに有している、請求項 17に 記載の光ピックアップ。
[19] 光ピックアップから出射されるレーザ光を光記録媒体に照射することによって、光記 録媒体上に記録された情報を読み出す情報再生装置であって、 前記光記録媒体を駆動するモータと、
請求項 13〜 17に記載の光ピックアップと、
前記モータ及び前記光ピックアップを制御する制御部と、 を備えた情報再生装置。
PCT/JP2005/006460 2004-04-15 2005-04-01 レーザ駆動装置、レーザ駆動ic、光ピックアップ及び情報再生装置 WO2005101597A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004120128A JP2007234624A (ja) 2004-04-15 2004-04-15 レーザ駆動装置
JP2004-120128 2004-04-15

Publications (1)

Publication Number Publication Date
WO2005101597A1 true WO2005101597A1 (ja) 2005-10-27

Family

ID=35150286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/006460 WO2005101597A1 (ja) 2004-04-15 2005-04-01 レーザ駆動装置、レーザ駆動ic、光ピックアップ及び情報再生装置

Country Status (2)

Country Link
JP (1) JP2007234624A (ja)
WO (1) WO2005101597A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010146673A (ja) * 2008-12-22 2010-07-01 Hitachi Ltd 光情報再生方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0575192A (ja) * 1991-09-11 1993-03-26 Ricoh Co Ltd 半導体レ−ザ駆動回路
JP2001167439A (ja) * 1999-12-03 2001-06-22 Matsushita Electric Ind Co Ltd 光ディスク記録再生装置および撮像装置
JP2002111120A (ja) * 2000-09-28 2002-04-12 Toshiba Electronic Engineering Corp 光送信モジュール
JP2002335041A (ja) * 2001-05-07 2002-11-22 Sony Corp レーザ駆動装置及びレーザ駆動方法
JP2003308624A (ja) * 2002-04-12 2003-10-31 Matsushita Electric Ind Co Ltd 光ディスク装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0575192A (ja) * 1991-09-11 1993-03-26 Ricoh Co Ltd 半導体レ−ザ駆動回路
JP2001167439A (ja) * 1999-12-03 2001-06-22 Matsushita Electric Ind Co Ltd 光ディスク記録再生装置および撮像装置
JP2002111120A (ja) * 2000-09-28 2002-04-12 Toshiba Electronic Engineering Corp 光送信モジュール
JP2002335041A (ja) * 2001-05-07 2002-11-22 Sony Corp レーザ駆動装置及びレーザ駆動方法
JP2003308624A (ja) * 2002-04-12 2003-10-31 Matsushita Electric Ind Co Ltd 光ディスク装置

Also Published As

Publication number Publication date
JP2007234624A (ja) 2007-09-13

Similar Documents

Publication Publication Date Title
JP3688484B2 (ja) 光学式記録媒体のドライブ装置
JP3818820B2 (ja) 光学式ディスクプレーヤのサーボ制御装置
JPH0595150A (ja) レーザ制御回路
WO2005101597A1 (ja) レーザ駆動装置、レーザ駆動ic、光ピックアップ及び情報再生装置
US7230890B2 (en) Apparatus and method for stabilizing operation of disc driver in section for setting mode conversion
WO1990001206A1 (en) Laser diode driving apparatus
JP2005108358A (ja) 光ディスク装置及びレーザ制御方法
JP4158702B2 (ja) 異なる光記録媒体用の再生又は記録装置
JP2007172770A (ja) 光ディスク装置
US7742371B2 (en) Information recording/reproducing device, information recording/reproducing method, and information recording/reproducing program
JP2008299994A (ja) 光記録媒体装置
JP4580868B2 (ja) 光ディスク装置および情報記録再生方法
US20060114766A1 (en) Wobbling signal reproduction device
JP4071453B2 (ja) 光ディスク装置
JP4434018B2 (ja) 光ディスク装置
JP2008112490A (ja) 光記録媒体再生装置および光ピックアップ装置
JP3311161B2 (ja) 光学式データ読み取り装置
JP4023406B2 (ja) 再生信号処理回路及びこれを備えた光ディスク装置
JPH11161995A (ja) 光記録再生方法及び光記録再生装置
JP2008016107A (ja) 光ピックアップ装置および光ディスクドライブ
US20030048723A1 (en) Optical pickup and optical disk recording/playback unit
JP2007272939A (ja) 光ピックアップ
JP2003187481A (ja) 光磁気記録再生装置
JP2010244609A (ja) 光源駆動装置、光ピックアップ及び光ディスク装置
JPH0594634A (ja) デイスク装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP