WO2005099785A1 - Osteogenes matrixkomposit, verfahren zu dessen herstellung sowie implantat und scaffold für das tissue engineering mit einer beschichtung aus einem osteogenen matrixkomposit - Google Patents

Osteogenes matrixkomposit, verfahren zu dessen herstellung sowie implantat und scaffold für das tissue engineering mit einer beschichtung aus einem osteogenen matrixkomposit Download PDF

Info

Publication number
WO2005099785A1
WO2005099785A1 PCT/DE2005/000728 DE2005000728W WO2005099785A1 WO 2005099785 A1 WO2005099785 A1 WO 2005099785A1 DE 2005000728 W DE2005000728 W DE 2005000728W WO 2005099785 A1 WO2005099785 A1 WO 2005099785A1
Authority
WO
WIPO (PCT)
Prior art keywords
collagen
matrix composite
osteogenic
fibrillogenesis
composite according
Prior art date
Application number
PCT/DE2005/000728
Other languages
English (en)
French (fr)
Inventor
Dieter Scharnweber
Hartmut Worch
Susanne Bierbaum
Original Assignee
Nexilis Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nexilis Ag filed Critical Nexilis Ag
Priority to CA2563545A priority Critical patent/CA2563545C/en
Priority to JP2007507667A priority patent/JP2007532211A/ja
Priority to EP05748181A priority patent/EP1735022B1/de
Priority to AT05748181T priority patent/ATE435668T1/de
Priority to KR1020067021372A priority patent/KR101162191B1/ko
Priority to US11/578,607 priority patent/US20070237799A1/en
Priority to DE502005007658T priority patent/DE502005007658D1/de
Priority to AU2005232363A priority patent/AU2005232363B2/en
Publication of WO2005099785A1 publication Critical patent/WO2005099785A1/de
Priority to US12/572,884 priority patent/US8043627B2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/26Mixtures of macromolecular compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/44Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • A61L27/48Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix with macromolecular fillers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants

Definitions

  • Osteogenic matrix composite process for its production as well as implant and scaffold for tissue engineering with a coating of an osteogenic matrix composite
  • the invention relates to an osteogenic matrix composite of collagen and non-collagen components of the extracellular matrix (ECM components), a method for its production, a method for producing an implant or a scaffold for tissue engineering with a coating of an osteogenic matrix composite, and implants and Scaffolds for tissue engineering with a coating of the osteogenic matrix composite to stimulate and accelerate the formation of hard tissue, such as in the field of osseointegration of implants in bones.
  • ECM extracellular matrix
  • the native ECM represents a highly ordered, tissue-specific network consisting of co-genes, glycoproteins, proteoglycans and glycosaminoglycans (GAG).
  • GAG glycosaminoglycans
  • the main structural protein of the native bone matrix is type I collagen, but various other matrix proteins such as proteoglycans and glycoproteins can interact with the collagen and affect the structure and function of the matrix. These non-collagenous ECM proteins fulfill specific functions in the matrix. In addition to cell-binding, fibronectin also has collagen and GAG-binding properties [Stamatoglou and Keller, 1984, Biochim Biophys Acta.
  • Proteoglycans and glycoproteins differ in their degree of glycosylation, whereby the sugar portion of the particularly highly glycosylated proteoglycans consists of different glycosaminoglycans.
  • the distribution of these chains, such as for decorin, can be tissue-specific (chondroitin sulfate in the bone, dermatan sulfate in the skin).
  • the glycosaminoglycans are large, unbranched polysaccharides, which consist of repeating disaccharides, which are composed of N- Compose acetylgalactosamine, N-acetylglucosamine, glucuronate or iduronate, which are sulfated to different degrees.
  • sugar chains are bound to the proteoglycans in vivo and play an important role in the function of these proteins, ie in growth factor binding and modulation [Bernfield et al, 1999, Annu Rev Biochem, 68: 729-777].
  • ECM components especially collagen
  • collagen are already used for the biocompatible modification of scaffolds and implants in order to improve cell adhesion and healing behavior.
  • other ECM components such as polysaccharides are used in various applications. Bone tissue was cross-linked with glycosaminoglycans in order to produce a three-dimensional scaffold for applications in tissue culture (WO 01 / 02030A2).
  • a mixture containing chondroitin sulfate is used for the repair of bone defects; this promotes the healing of the connective tissue, mainly due to the proportion of amino sugars and a resulting increased matrix production (WO 98/27988, WO 99/39757).
  • plant polysaccharides are used as wound dressings (EP 0140569 A2), and a combination of chitosan and GAG's is described as an agent for stimulating the regeneration of hard tissue (WO 96/02259).
  • Collagen-GAG mixtures are produced by acid coprecipitation, an unstructured precipitate and no defined collagen fibrils comparable to those produced in the native ECM (US 4448718, US 5716411, US 6340369).
  • bone morphogenetic proteins (BMP 2, 4-7) are of particular interest, since they induce the differentiation of mesenchymal stem cells in chondrocytes and osteoblasts and the regeneration of bones [Celeste AJ, Taylor R, Yamaji N, Wang J, Ross J, Wozney JM (1994) J. Cell Biochem. 16F, 100; Wozney JM, Rosen V (1993) Bone morphogenetic proteins in Mundy, GR, Martin TJ (Ed.) Physiology and pharmacology of bone.
  • BMPs are used in various carrier materials to promote and improve bone regeneration.
  • Effective carriers for morphogenetic proteins are said to bind them, protect them from hydrolysis, enable subsequent, controlled release and the associated cell responses.
  • such carriers should be biocompatible and biodegradable.
  • Preferred carrier materials for BMPs are, for example, xenogeneic bone matrix (WO 99/39757) or natural tissue subsequently crosslinked with GAG's (WO 01/02030 A2), or HAP, collagen, TCP, methyl cellulose, PLA, PGA, and various copolymers (EP 0309241 A2, DE 19890329, EP 0309241 A2, DE 19890906, WO 8904646 AI, DE 19890601).
  • Further applications include a cross-linked synthetic polymer, which can contain additional components such as GAG's, collagen or bioactive factors (WO 97/22371), or cross-linked collagen mixed with glycosaminoglycans and osteogenic factors (WO 91/18558, WO 97/21447).
  • the collagen-GAG mixture is also produced by acid coprecipitation.
  • the use of recombinant growth factors is associated with major disadvantages. Since the recombinant factors usually have a lower activity than the endogenous, naturally occurring factors in the tissue, in order to achieve an effect in vivo, unphysiologically high doses are necessary. The administration of recombinant factors can only incompletely simulate the effect of endogenous factors.
  • Another object of the invention is a coating of carrier materials (scaffolds) for tissue engineering, which supports the production of hard tissue in vitro and subsequently in vivo.
  • the invention is based on the scientific knowledge that, in most cases, a sufficient amount of endogenous bone-forming factors is present for implants in contact with the bone due to the surrounding tissue and the blood flow.
  • the bone-inducing effect of the BMPs which can be observed in vivo under physiological conditions, is in all probability not over triggered a single growth factor type, but the result of the synergistic effect of a variety of endogenous factors.
  • an implant coating is desirable, which takes advantage of the endogenous bone-forming factors that are present at the implantation site.
  • the object is achieved by an osteogenic matrix composite of collagen and at least one non-collagenic ECM component or its derivatives, in which the collagen component consists of uncrosslinked collagen fibrils produced by fibrillogenesis, into which the at least one non-collagenous ECM component or its Derivatives are integrated.
  • components of the extracellular matrix are used according to the invention which are as similar as possible in composition and morphology to the matrix components as naturally occur in the bone, which are biocompatible and biodegradable, and have bone-tissue-specific functions both in the binding and presentation of growth factors , as well as directly influencing the reactions of the cells.
  • This provides the cells with a microenvironment as close as possible to the in vivo conditions, which has a positive influence on cell functions and the reaction to bone-forming factors such as growth factors.
  • collagen encompasses all types of collagen that form fibrils. Any source of collagen that provides non-crosslinked, acid-soluble collagen monomers, recombinant or purified, with and without telopeptides is contemplated.
  • non-collagenic ECM components encompasses both glycosaminoglycans and non-collagenic proteins, which are known components of the native ECM.
  • non-collagenous proteins encompasses all matrix proteins with a non-collagenic (proteoglycans and glycoproteins) or partially collagenic (FACIT's) structure.
  • the main component of the osteogenic matrix composite is collagen type I, II, III, V, IX, XI, or combinations thereof.
  • any type of fibril-forming collagen can be used which provides non-crosslinked, acid-soluble collagen monomers, with collagen I, III and V being preferred since these are the main collagens represented in bone.
  • the osteogenic matrix composition contains chondroitin sulfate A, C, D, E as GAG components; Dermatan sulfate, keratan sulfate, heparan sulfate, heparin, hyaluronic acid or their derivatives, both individually and mixed, with chondroitin sulfate being preferred.
  • the sugars used are either synthetically produced or isolated from biological sources.
  • the osteogenic matrix composition can contain fibronectin, decorin, biglycan, laminin or versican, both individually and as a mixture, with decorin and biglycan being preferred.
  • the proteins used are either produced recombinantly or isolated natively from biological sources.
  • type I collagen, decorin and biglycan and / or their GAG chains such as chondroitin sulfate are preferably used.
  • Decorin or Biglykan are used to exploit bonds or synergisms between matrix, growth factor and cell.
  • GAG chains which bind the body's own growth factors or can potentiate their effect; in particular the chondroitin sulfate that is frequently found in bone.
  • chondroitin sulfate that is frequently found in bone.
  • VEGF heparan sulfate
  • an osteogenic matrix composite is produced from collagen and at least one non-collagenic ECM components or their derivatives in such a way that collagen fibrils are generated by fibrillogenesis in such a way that at least one non-collagenous ECM component or its derivatives is added before fibrillogenesis.
  • the collagen fibrils produced in this way can be used as a coating solution or lyophilized after the resuspension in water or in a buffer system.
  • Fibrillogenesis (ie the formation of collagen fibrils) takes place under the following conditions: temperature range from 4 ° C to 40 ° C, preferably 25 ° C to 37 ° C, collagen concentration 50 to 50O0 ⁇ g / ml, preferably 250 to 1000 ⁇ g / ml, pH 4 to pH 9, preferably pH 6 to pH 8, phosphate content up to 500 mmol / 1, preferably 30 to 60 mmol / 1, NaCl content up to 1000 mmol / 1. preferably up to 300 mmol / 1.
  • the manufacturing method according to the invention creates an osteogenic matrix composite with a defined structure and composition comparable to the situation in the native ECM.
  • Characteristic for collagen fibrils in-vivo is an ordered offset association of the collagen monomers, whereby a typical band pattern with a periodicity of 64 to 67 ⁇ m arises. This association is partly due to the charge pattern of the monomers. Fibril formation in vitro is triggered by bringing the pH, the temperature and the ionic strength of a cold, acidic collagen solution to values close to the physiological parameters.
  • Glycosaminoglycans or other matrix components are added to the solution containing collagen monomers prior to fibrillogenesis and thereby included in the subsequent process of fibrillogenesis.
  • these are integrated into the resulting fibril and a matrix is formed which corresponds to the composition and structure of the native ECM with regard to the components used.
  • collagen forms the characteristic striated fibrils analogous to the in vivo structures, the structure of the resulting fibrils being influenced by the process parameters (pH, ionic strength, phosphate concentration) and by the type and amount of the non-collagenous components present in the reaction solution.
  • process parameters pH, ionic strength, phosphate concentration
  • type and amount of the non-collagenous components present in the reaction solution For in vivo matrix-modifying proteoglycans such as decorin, this gives the greatest possible approximation to their native biological function, since they can thus influence the structure of the fibrils formed, even under in vitro conditions.
  • collagen aggregation can also be triggered in the acidic environment by the addition of a polyanion, as represented by the glycosaminoglycans, whereby the electrostatic interactions existing between the GAG and the collagen monomer are the cause.
  • a polyanion as represented by the glycosaminoglycans
  • the association of the collagen monomers cannot be compared with that under approximately physiological conditions.
  • the collagen fibrils are not crosslinked according to the invention. Networking would increase stability, but on the other hand it would have a negative effect on domains that can form specific bonds with endogenous bone-forming factors. This is particularly important for the function of the GAGs, since their growth factor binding properties are based on free mobility of the sugar chain, which is restricted by the crosslinking. At the same time, the sugars can be released from the matrix, which is important for the presentation of the growth factors on the cell surface.
  • the invention comprises the use of the osteogenic matrix composite according to the invention for the coating of implants or scaffolds for tissue engineering.
  • an implant is understood to mean all metallic, ceramic and polymeric implants or implants composed of different material groups, the surfaces of which are at least partially in contact with bone tissue.
  • the osteogenic matrix composite described above is particularly suitable for the coating of non-degradable implants in contact with the bone, such as artificial hip joints, dental implants or other load-bearing applications, for which rapid and firm integration of the implant into the bone is necessary.
  • the osteogenic matrix in combination with a three-dimensional, degradable implant that is implanted as a bone replacement can advantageously accelerate the integration and remodeling of the implant, as well as new bone formation.
  • These implants can have, for example, particulate or three-dimensional structures made of calcium phosphates as a basic component, but also polymeric materials.
  • the osteogenic matrix composition in combination with a scaffold can be advantageous for proliferation and differentiation of the bone-forming cells.
  • All three-dimensional, porous structures come from synthetic and / or natural polymers (eg collagen), ceramic or metal individually or in combination, whereby biodegradable polymer and / or ceramic scaffolds are preferred.
  • bone-forming factors such as B. growth factors that are present in vivo are bound to the surface of the implant after implantation and their activity is increased.
  • Different endogenous factors that are present at the implantation site are advantageously recruited by the implant coated with the osteogenic matrix composite.
  • the coating solution containing the osteogenic matrix composite is used in order to advantageously immobilize the osteogenic matrix composite on its surface by means of a dip-coating process.
  • the collagen concentration of the coating solution can be between 0.5 mg / ml to 5 mg / ml, with 1 mg / ml to 2 mg / ml being the preferred range.
  • the osteogenic matrix composite is immobilized by incubating the implant for 5 to 20 minutes at room temperature, then dried and washed with water.
  • the thickness of the resulting layer can be influenced by the concentration of the coating solution and the number of process repetitions.
  • the component mixture is advantageously introduced into the scaffold, which can be of metallic, ceramic and / or polymeric origin, before the start of fibril formation.
  • the fibrillogenesis is then triggered by an increase in temperature.
  • the fibrils formed in situ can either remain as a collagen gel or can be dried analogously to the surface coating.
  • the implant or scaffold produced in this way can advantageously be sterilized using the known non-thermal methods such as ethylene oxide or gamma radiation and stored at room temperature.
  • the implant or scaffold coated according to the invention with an osteogenic matrix composite distinguishes itself from the solutions known from the prior art by the following advantages:
  • Fig. 1 Influence of decorin and chondroitin sulfate (CS) on the formation of collagen fibrils, measured as an increase in the turbidity of a fibrillogenesis solution in OD over time
  • FIG. 5 Behavior of primary rat calvaria osteoblasts on various osteogenic matrix composites according to the invention - influence on adhesion and osteopontin expression
  • a solution of collagen monomers in 0.01 M acetic acid is prepared by stirring for 24 hours at 4 ° C.
  • the Collagen fibrils are then passed through in the presence of the non-collagen components. a process of self-aggregation (fibrillogenesis) in aqueous phosphate buffer solutions at neutral pH and a temperature of 37 ° C is formed.
  • the range for the formation of the fibrils is between 0.5 and 5 mg collagen / ml and 0.1 to 5 mg glycosaminoglycan / ml, whereby 1 mg / ml collagen and 0.2 mg / ml GAG and 30 ⁇ g / ml proteoglycan preferred conditions are.
  • the preferred fibrillogenesis parameters were a 30 mmol / 1 phosphate buffer pH 7.0, either with 135 mmol / 1 NaCl or without the addition of TSfaCl.
  • Glycosaminoglycans or other matrix components are added to the collagen monomers prior to fibrillogenesis and thereby at least partially integrated into the resulting fibrils in the subsequent process of fibrillogenesis
  • FIG. 2 The influence of the formation conditions on the structure of the resulting fibrils in AFM images is documented in FIG. 2. Adding decorin reduces the fibril diameter (a and d) under all conditions. For chondroitin sulfate, a clearly more heterogeneous distribution of the fibril diameters is visible, especially under conditions of low ionic strength, with an increase in the average fibril diameter (f), while the effect is not obvious at higher ionic strengths (c). b and e show the fibril structure without non-collagen additives.
  • Formation conditions 250 ⁇ g / ml collagen, 37 ° C, 30 mmol / 1 phosphate buffer pH 7.4 (buffer A) or 30 mmol / 1 phosphate buffer pH 7.4 with 135 mmol / 1 NaCl (buffer B).
  • the collagen monomers during fibrillogenesis in vitro form the characteristic striated fibrils analogous to the in vivo structures, the structure of the resulting fibrils being determined both by the process parameters (pH, ionic strength, phosphate concentration) and by the type and amount of the non-collagens added Components is affected.
  • Collagen fibrils with non-collagen components such as glycosaminoglycans or decorin can consequently be produced in a comparatively broad range of mass ratios within which the integration of the collagen into the fibrils is not or only slightly influenced.
  • a solution of collagen monomers in 0.01 M acetic acid is prepared by stirring for 24 hours at 4 ° C.
  • the collagen fibrils are then formed in the presence of the non-collagen components by a process of self-aggregation (fibrillogenesis) in aqueous phosphate buffer solutions at neutral pH. Formation conditions: 250 ⁇ g / ml collagen, 37 ° C, 30 mmol / 1 phosphate buffer pH 7.4 (buffer A) or 30 mmol / 1 phosphate buffer pH 7.4 with 135 mmol / 1 NaCl (buffer B) with different chondroitin sulfate and decorin concentrations.
  • chondroitin sulfate For chondroitin sulfate, the extent of integration depends on the ionic strength of the buffer system used. For low ionic strengths (buffer A), about 2.5 ⁇ g CS of the 20 ⁇ g to 250 ⁇ g collagen used are incorporated, whereas for high ionic strengths (buffer B) only a third of this amount (FIG. 3).
  • Matrices composed and produced according to the invention can accelerate and improve bone formation and attachment without the use of recombinant growth factors by recruiting endogenous growth factors. In the experiment, such a binding behavior can only be demonstrated with recombinant growth factors.
  • a sandblasted, cylindrical sample of TiA16V4 with a diameter of 10 mm is cleaned with ethanol, acetone and water.
  • a solution of 1 mg / ml bovine collagen type I in 0.01 M acetic acid is generated by stirring overnight at 4 ° C.
  • Non-collagenous ECM components (glycosaminoglycan 30 ⁇ g / ml, proteoglycans 15 ⁇ g / ml) are added to this solution.
  • the mixtures are mixed with fibrillogenesis buffer (60 mmol / 1 phosphate, 270 mmol / 1 NaCl, pH 7.4) on ice and incubated at 37 ° C. for 18 h.
  • the resulting fibrils are centrifuged, washed, homogenized and resuspended to a final concentration of 1 mg / ml.
  • the cylindrical sample is dip-coated with this solution at RT for 15 min, washed with water and dried.
  • growth factors (recombinant BMP-4 or TGF-lß) are immobilized on these surfaces by an adsorption process (4 ° C, 18h, from PBS) and then determined by means of ELISA.
  • Formation conditions of the matrix 500 ⁇ g / ml collagen, 30 ⁇ g / ml decorin or chondroitin sulfate, 37 ° C, 30 mmol / 1 phosphate buffer pH 7.4 with 135 mmol / l NaCl.
  • Figure 5 shows the behavior of primary rat calvary osteoblasts on various
  • Focal Adhesion Complexes analyzed using integrin receptors (immunostaining against vinculin). Adhesion was most pronounced after 2 hours on collagen CS matrices followed by collagen decorin. The formation of the FACS (green-yellow dots and red at the ends of the actin fibrils) was also promoted and accelerated by Decorin and especially CS. Controls with pure collagen matrices showed significantly less FACS after 2 hours.
  • Osteoblasts on collagen-CS surfaces produce 5 times more after 8 days
  • Ti implants which have annular incisions across the axis and thus represent a defect model, are cleaned with 1% Triton X-100, acetone and 96% ethanol, rinsed with distilled water and dried.
  • the implants used are coated in two successive dip-coating steps with:
  • the implants are washed with distilled water, air dried and sterilized for 12 hours with ethylene oxide at 42 ° C.
  • the surface condition C is coated with recombinant BMP-4 (400 ng / ml) at 4 ° C. overnight and then dried.
  • the implants are inserted into the lower jaw of mini-pigs.
  • the bone-implant contact was determined histomorphometrically after 6 months.
  • FACITs Fibril associated collagen with interrupted triple helix

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dermatology (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Composite Materials (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Botany (AREA)
  • Materials For Medical Uses (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Abstract

Die Erfindung betrifft ein osteogenes Matrixkomposit aus Kollagen und nicht kollagenen Komponenten der extrazellulären Matrix (ECM-Komponenten), ein Verfahren zu dessen Herstellung, ein Verfahren zur Herstellung eines Implantats oder eines Scaffolds für das Tissue Engineering mit einer Beschichtung aus einem osteogenen Matrixkomposit sowie Implantate und Scaffolds für das Tissue Engineering mit einer Beschichtung aus dem osteogenen Matrixkomposit zur Stimulierung und beschleunigten Bildung von Hartgewebe, wie zum Beispiel auf dem Gebiet der Osseointegration von Implantaten in Knochen. Erfindungsgemäß besteht das osteogenene Matrixkomposit aus Kollagen und mindestens einer nicht-kollagenen ECM-Komponente oder deren Derivaten, wobei die Kollagenkomponente aus mittels Fibrillogenese erzeugten, unvernetzten Kollagenfibrillen besteht und dass in diese die mindestens eine nicht kollagene ECM-Komponente oder deren Derivate integriert sind.

Description

Osteogenes Matrixkomposit, Verfahren zu dessen Herstellung sowie Implantat und Scaffold für das Tissue Engineering mit einer Beschichtung aus einem- osteogenen Matrixkomposit
Die Erfindung betrifft ein osteogenes Matrixkomposit aus Kollagen und nichit-kollagenen Komponenten der extrazellulären Matrix (ECM-Komponenten), ein Verfahren zu dessen Herstellung, ein Verfahren zur Herstellung eines Implantats oder eines Scaffolds für das Tissue Engineering mit einer Beschichtung aus einem osteogenen Matrixkomposit sowie Implantate und Scaffolds für das Tissue Engineering mit einer Beschichtu-iig aus dem osteogenen Matrixkomposit zur Stimulierung und beschleunigten Bildung von Hartgewebe, wie zum Beispiel auf dem Gebiet der Osseointegration von Implantaten in Knochen. Im Gewebe sind die Zellen in die native extrazelluläre Matrix (ECM) eingebettet, die ein wichtiger Bestandteil der zellulären Umgebung ist. Die native ECM stellt ein hoch geordnetes, gewebespezifisches Netzwerk dar, welches aus KoUagenen, Glykoproteinen, Proteoglykanen und Glykosaminoglykanen (GAG) besteht. Die Zusammensetzung für verschiedene Gewebe und für verschiedene Entwicklungsstadien ist dabei sehr unterschiedlich, so dass die jeweilige Matrix spezifische Eigenschaften hin-sichtlich der Wechselwirkung mit Zellen und Wachstumsfaktoren aufweist.
Das hauptsächliche Strukturprotein der nativen Knochenmatrix ist Kollagen Typ I, aber verschiedene andere Matrixproteine wie Proteoglykane und Glykoproteine kön-nen mit dem Kollagen wechselwirken und Struktur und Funktion der Matrix beeinflussen. Diese nicht- kollagenen ECM Proteine erfüllen spezifische Funktionen in der Matrix. So weist Fibronektin neben zellbindenden auch kollagen- und GAG-bindende Eigenschaften auf [Stamatoglou und Keller, 1984, Biochim Biophys Acta. Oct 28; 719(l):90-7], während small leucin rieh proteins (SLRP's) wie Decorin nicht nur in der Organisation der nativen ECr eine Rolle spielen (Decorin moduliert die Fibrillenbildung in vivo), sondern auch Wachsimmsfaktoren wie TGF-ß binden oder selbst eine Rolle als Signalmoleküle spielen [Kresse und Schönherr, 2001, J Cell Phys 189:266-274].
Proteoglykane und Glykoproteine unterscheiden sich durch ihren Glykosilierungsgrad, wobei der Zuckeranteil der besonders hoch glykosilierten Proteoglykane aus verschiedenen Glykosaminoglykanen besteht. Die Verteilung dieser Ketten kann, wie beispielsweise für das Decorin, gewebespezifisch sein (Chondroitinsulfat im Knochen, Dermatansulfat in der Haut). Die Glykosaminoglykane sind große, unverzweigte Polysaccharide, die aus sich wiederholenden Disacchariden bestehen, welche sich beispielsweise aus N- Acetylgalactosamin, N-Acetylglucosamin, Glucuronat oder Iduronat zusammensetzen, die zu unterschiedlichen Graden sulfatiert sind. Die Zuckerketten liegen in vivo gebunden an die Proteoglykane vor und spielen eine wichtige Rolle in der Funktion dieser Proteine, i.e. in der Wachstumsfaktorbindung und -modulation [Bernfield et al, 1999, Annu Rev Biochem, 68:729-777].
Einzelne ECM-Bestandteile, insbesondere Kollagen, werden bereits für die biokompatible Modifikation von Scaffolds und Implantaten genutzt, um die Zelladhäsion und das Einheilverhalten zu verbessern. Neben Kollagen werden in verschiedenen Anwendungen weitere ECM-Komponenten wie Polysaccharide genutzt. So wurde Knochengewebe mit Glykosaminoglykanen vernetzt, um einen drei-dimensionalen Scaffold für Anwendungen in der Gewebekultur herzustellen (WO 01/02030A2).
Eine Chondroitinsulfat enthaltende Mischung wird für die Reparatur von Knochendefekten verwendet; diese fördert die Heilung des Bindegewebes, hauptsächlich aufgrund des Anteils an Aminozuckern und einer dadurch bedingten gesteigerten Matrixproduktion (WO 98/27988, WO 99/39757). In Kombination mit Kollagen werden pflanzliche Polysaccharide als Wundauflagen verwendet (EP 0140569 A2), und eine Kombination von Chitosan und GAG's wird als Agens für die Stimulierung der Regeneration von Hartgewebe beschrieben (WO 96/02259). Kollagen-GAG-Gemische werden dabei durch Säure-Kopräzipitation hergestellt, wobei ein unstrukturiertes Präzipitat und keine definierten Kollagenfibrillen vergleichbar denen in der nativen ECM entstehen (US 4448718, US 5716411, US 6340369). Mit fortschreitender Verfügbarkeit rekombinanter Wachstumsfaktoren sind solche osteoinduktiven Faktoren, die die Wechselwirkungen zwischen Implantat und umgebendem Gewebe aktiv beeinflussen, zunehmend von Interesse für Implantatanwendungen [Anselme K (2000). Biomaterials 21, 667-68]. Im Zusammenhang mit der Knochenheilung sind insbesondere die ,bone morphogenetic proteins' (BMP 2, 4-7) interessant, da sie die Differenzierung mesenchymaler Stammzellen in Chondrozyten und Osteoblasten und die Neubildung von Knochen induzieren [Celeste AJ, Taylor R, Yamaji N, Wang J, Ross J, Wozney JM (1994) J. Cell Biochem. 16F, 100; Wozney JM, Rosen V (1993) Bone morphogenetic proteins in Mundy, GR, Martin TJ (Ed.) Physiology and pharmacology of bone. Handbook of experimental pharmacology, vol. 107. Springer Verlag, Berlin, 725-748]. Aufgrund dieser starken knocheninduzierenden Effekte werden rekombinante BMPs in verschiedenen Carriermaterialien eingesetzt, um die Regeneration von Knochen zu fördern und zu verbessern. Effektive Träger für morphogenetische Proteine sollen diese binden, vor Hydrolyse schützen, eine nachfolgende, kontrollierte Freisetzung ermöglichen und die assoziierten Zellreaktionen fordern. Darüber hinaus sollen solche Träger biokompatibel und biodegradabel sein. Bevorzugte Trägermaterialien für BMPs sind beispielsweise xenogene Knochenmatrix (WO 99/39757) oder natürliches Gewebe nachträglich vernetzt mit GAG's (WO 01/02030 A2), oder HAP, Kollagen, TCP, Methylcellulose, PLA, PGA, und verschiedene Kopolymere (EP 0309241 A2, DE 19890329, EP 0309241 A2, DE 19890906, WO 8904646 AI, DE 19890601). Weitere Anwendungen beinhalten ein quervernetztes synthetischen Polymer, welches zusätzliche Komponenten wie GAG's, Kollagen oder bioaktive Faktoren enthalten kann (WO 97/22371), oder quervernetztes Kollagen gemischt mit Glykosaminoglykanen und osteogenen Faktoren (WO 91/18558, WO 97/21447). Das Kollagen-GAG-Gemisch wird dabei ebenfalls durch Säure-Kopräzipitation hergestellt. Die Verwendung rekombinanter Wachstumsfaktoren ist mit großen Nachteilen verbunden. Da die rekombinanten Faktoren meist eine niedrigere Aktivität aufweisen als die endogenen, natürlich im Gewebe vorkommenden Faktoren, sind, um einen Effekt in vivo zu erzielen, unphysiologisch hohe Dosen notwendig. Die Gabe von rekombinanten Faktoren kann nur sehr unvollständig die Wirkung von endogenen Faktoren simulieren.
Durch die Verwendung von Faktoren, welche die Wirkung der BMPs (Bone morphogenetic protein) fordern, oder durch den Einsatz von Zellen, die die Wachstumsfaktoren an Ort und Stelle exprimieren können, wird versucht, dieses Problem zu minimieren oder zu umgehen (WO 97/21447, WO 98/25460). Weitere Probleme können durch die Tatsache entstehen, dass Rezeptoren für BMP in vielen verschiedenen Geweben auftreten, die Funktion dieser Wachstumsfaktoren also nicht auf den Knochen limitiert ist.
Aufgabe der vorliegenden Erfindung ist es, ein biokompatibles und biodegradables Matrixkomposit anzugeben, welches die Rnochenanlagerung und das Knochenwachstum in der unmittelbaren Umgebung und auf der Oberfläche von mit dem Matrixkomposit beschichteten Implantaten fördert und beschleunigt, und welches insbesondere für die Beschichtung von synthetischen, metallischen oder keramischen Implantaten verwendbar ist. Ein weiteres Ziel der Erfindung ist eine Beschichtung von Trägermaterialien (Scaffolds) für das Tissue Engineering, welche die Erzeugung von Hartgewebe in vitro und folgend in vivo unterstützt.
Die Erfindung beruht auf der wissenschaftlichen Erkenntnis, dass für Implantate im Knochenkontakt in den allermeisten Fällen aufgrund des umgebenden Gewebes und der Durchblutung eine ausreichende Menge an endogenen knochenbildender Faktoren anwesend ist. Auch ist der knocheninduzierende Effekt der BMPs, der unter physiologischen Bedingungen in vivo beobachtet werden kann, aller Wahrscheinlichkeit nach nicht durch einen einzelnen Wachstumsfaktortyp ausgelöst, sondern das Resultat der synergistischen Wirkung einer Vielzahl von endogenen Faktoren.
Vor diesem Hintergrund ist eine Implantatbeschichtung erstrebenswert, welche die endogenenen knochenbildenden Faktoren, die an der Implantationsstelle vorhandenen sind, in vorteilhafter Weise ausnützt.
Erfindungsgemäß wird die Aufgabe gelöst durch ein osteogenes Matrixkomposit aus Kollagen und mindestens einer nicht-kollagenen ECM-Komponente oder deren Derivaten, bei dem die Kollagenkomponente aus mittels Fibrillogenese erzeugten, unvernetzten Kollagenfibrillen besteht, in die die mindestens eine nicht-kollagene ECM-Komponente oder deren Derivate integriert sind.
Für das osteogene Matrixkomposit werden erfindungsgemäß Bestandteile der extrazellulären Matrix verwendet, die den Matrixbestandteilen, wie sie natürlicherweise im Knochen vorkommen, in Zusammensetzung und Morphologie möglichst ähnlich sind, die biokompatibel und biologisch abbaubar sind, und knochengewebsspezifische Funktionen sowohl in der Bindung und Präsentation von Wachstumsfaktoren haben, als auch direkt die Reaktionen der Zellen beeinflussen können. Dadurch wird den Zellen eine den in vivo Gegebenheiten möglichst angenäherte Mikroumgebung geboten, welche die Zellfunktionen und die Reaktion auf knochenbildende Faktoren wie Wachsrumsfaktoren positiv beeinflusst.
Der Begriff Kollagen umfasst alle fibrillenbildenden Kollagentypen. Jede Kollagenquelle kommt in Betracht, die nicht-vernetzte, säurelösliche Kollagenmonomere liefert, rekombinant oder aufgereinigt, mit und ohne Telopeptide.
Der Begriff nicht-kollagene ECM-Komponenten umfasst sowohl Glykosaminoglykane als auch nicht-kollagenen Proteine, welche bekannte Bestandteile der nativen ECM sind.
Der Begriff nicht-kollagene Proteine umfasst alle Matrixproteine mit nicht-kollagener (Proteoglykane und Glykoproteine) oder teil-kollagener (FACIT's) Struktur.
Hauptbestandteil des osteogenen Matrixkomposits ist Kollagen vom Typ I, II, III, V, IX, XI, oder deren Kombinationen. Im Prinzip kann jeder fibrillenbildende Kollagentyp verwendet werden, der nicht-vernetzte, säurelösliche Kollagenmonomere liefert, wobei Kollagen I, III und V bevorzugt werden, da diese die im Knochen hauptsächlich vertretenen Kollagene sind. Als GAG-Komponenten enthält die osteogene Matrixkomposition Chondroitinsulfat A, C, D, E; Dermatansulfat, Keratansulfat, Heparansulfat, Heparin, Hyaluronsäure oder deren Derivate, sowohl einzeln als auch gemischt, wobei Chondroitinsulfat bevorzugt wird. Die verwendeten Zucker sind entweder synthetisch hergestellt oder aus biologischen Quellen isoliert.
Als weitere nicht-kollagene Matrixproteine kann die osteogene Matrixkomposition Fibronektin, Decorin, Biglycan, Laminin oder Versikan, sowohl einzeln als auch gemischt enthalten, wobei Decorin und Biglycan bevorzugt werden. Die verwendeten Proteine sind entweder rekombinant hergestellt oder nativ aus biologischen Quellen isoliert. Um eine möglichst knochenanaloge Matrix zu generieren, werden bevorzugt Kollagen Typ I, Decorin sowie Biglykan und/oder deren GAG-Ketten wie Chondroitinsulfat eingesetzt. Decorin oder Biglykan werden dabei verwendet, um Bindungen bzw. Synergismen zwischen Matrix, Wachstumsfaktor und Zelle auszunutzen. Eine weitere Möglichkeit, der hier der Vorzug gegeben wird, ist der Einsatz von GAG-Ketten, welche körpereigene Wachstumsfaktoren binden bzw. in ihrer Wirkung potenzieren können; insbesondere das im Knochen häufig vorkommenden Chondroitinsulfat. Durch Kombination von Kollagen mit weiteren GAGs oder Matrixbestandteilen lassen sich auch weitere körpereigene Wachstumsfaktoren für eine beschleunigte Einheilung utilisieren, wie beispielsweise VEGF durch Heparansulfat zur Förderung der Invaskularisierung.
Erfindungsgemäß wird ein osteogenes Matrixkomposit aus Kollagen und mindestens einer nicht-kollagenen ECM-Komponenten oder deren Derivaten so hergestellt, dass Kollagenfibrillen mittels Fibrillogenese erzeugt werden, dass vor der Fibrillogenese mindestens eine nicht-kollagene ECM-Komponente oder deren Derivate zugegeben wird. Die so erzeugten Kollagenfibrillen können nach der Resuspension in Wasser oder in einem Puffersystem als Beschichrungslösung genutzt oder lyophylisiert werden.
Die Fibrillogenese (d. h. die Ausbildung von Kollagenfibrillen) läuft unter folgenden Bedingungen ab: Temperaturbereich von 4°C bis 40°C, vorzugsweise 25 °C bis 37 °C, Kollagenkonzentration 50 bis 50O0 μg/ml, vorzugsweise 250 bis 1000 μg/ml, pH 4 bis pH 9, vorzugsweise pH 6 bis pH 8, Phosphatgehalt bis 500 mMol/1, vorzugsweise 30 bis 60 mMol/1, NaCl-Gehalt bis zu 1000 mMol/1. vorzugsweise bis zu 300 mMol/1. Durch das erfindungsgemäße Herstellungsverfahren entsteht ein osteogenes Matrixkomposit mit einer definierten Struktur und Zusammensetzung vergleichbar der Situation in der nativen ECM.
Charakteristisch für Kollagenfibrillen in -vivo ist eine geordnet gegeneinander versetzte laterale Assoziation der Kollagenmonomere, wobei ein typisches Bandenmuster mit einer Periodizität von 64 bis 67 um entsteht. Diese Assoziation ist unter anderem durch das Ladungsgmuster der Monomere bedingt. Fibrillenbildung in vitro wird dadurch ausgelöst, dass der pH, die Temperatur und die Ionenstärke einer kalten, sauren Kollagenlösung auf Werte in der Nähe der physiologischen Parameter gebracht werden.
Glykosaminoglykane oder andere Matrixkomponenten werden vor der Fibrillogenese zu der Kollagenmonomere enthaltenden Lösung hinzugefügt und dadurch in den folgenden Prozess der Fibrillogenese einbezogen. Durch die Anwesenheit der nicht-kollagenen ECM- Komponenten während der Fibrillogenese werden diese in die entstehende Fibrille integriert und es wird eine Matrix gebildet, die bezüglich der verwendeten Komponenten der Zusammensetzung und Struktur der nativen ECM entspricht.
Während der Fibrillogenese in vitro bildet Kollagen die charakteristischen quergestreiften Fibrillen analog den in vivo Strukturen, wobei die Struktur der entstehenden Fibrillen durch die Prozessparameter (pH, Ionenstärke, Phosphatkonzentration) und durch Art und Menge der in der Reaktionslösung vorliegnden nicht-kollagenen Komponenten beeinflusst wird. Für in vivo matrix-modifizierende Proteoglykane wie Decorin erhält man auf diese Weise die größtmögliche Annährung an ihre native biologische Funktion, da sie so auch unter in vitro Bedingungen die Struktur der entstehenden Fibrillen beeinflussen können. Im Gegensatz zur Strukturbildung infolge Aggregation durch Fibrillogenese kann im sauren Milieu Kollagenaggregation auch durch, die Zugabe eines Polyanions, wie es die Glykosaminoglykane darstellen, ausgelöst werden, wobei die zwischen dem GAG und dem Kollagenmonomer existierenden elektrostatischen Wechselwirkungen ursächlich sind. In einem solchen Säurepräzipitat kann die Assoziation der Kollagenmonomere nicht mit derjenigen unter angenähert physiologischen Bedingungen verglichen werden. Es bildet sich entweder ein amorphes Präzipitat oder, bei entsprechenden Mengenverhältnissen und hinreichender Übereinstimmung der Ladungsmuster, ein polymorphes Aggregat wie segment- long-spacing Kristallite.
Für Glykoproteine oder Proteoglykane wie Decorin besteht keine Möglichkeit einer Präzipitation aus dem sauren Milieu. Um möglichst dicht an den Gegebenheiten in vivo zu bleiben, werden die Kollagenfibrillen erfindungsgemäß nicht vernetzt. Eine Vernetzung würde zwar die Stabilität erhöhen, sich aber andererseits nachteilig auf solche Domänen auswirken, die spezifische Bindungen mit endogenen knochenbildenden Faktoren eingehen können. Insbesondere für die Funktion der GAG's ist dies von Bedeutung, da ihre wachstumsfaktorbindenden Eigenschaften auf einer freien Beweglichkeit der Zuckerkette beruhen, die durch die Vernetzung eingeschränkt wird. Gleichzeitig können die Zucker so aus der Matrix freigesetzt werden, was für die Präsentation der Wachstumsfaktoren an der Zelloberfläche von Bedeutung ist.
Die Erfindung umfasst die Verwendung des erfindungsgemäßen osteogenen Matrixkomposits für die Beschichtung von Implantaten oder Scaffolds für das Tissue Engineering.
Unter Implantat im Sinne der Erfindung werden alle metallischen, keramischen und polymeren oder aus verschiedenen Materialgruppen zusammengesetzten Implantate verstanden, deren Oberflächen zumindest teilweise in Kontakt zu Knochengewebe stehen. Ebenso alle metallischen, keramischen und polymeren oder aus verschiedenen Materialgruppen zusammengesetzten Strukturen, die als Scaffold für das Tissue Engineering von Hartgewebe dienen.
Das zuvor beschriebene osteogene Matrixkomposit eignet sich insbesondere für die Beschichtung von nicht degradierbaren Implantaten im Knochenkontakt, wie künstliche Hüftgelenke, Zahnimplantate oder andere lasttragende Applikationen, für die eine schnelle und feste Integration des Implantates in den Knochen notwendig ist.
Die osteogene Matrix in Kombination mit einem dreidimensionalen, degradierbaren Implantat, das als Knochenersatz implantiert wird, kann vorteilhaft die Integration und den Umbau des Implantats sowie die Knochenneubildung beschleunigen. Diese Implantate können beispielsweise als Grundkomponente partikuläre oder dreidimensionale Strukturen aus Calciumphosphaten, aber auch polymeren Materialien aufweisen.
Für das Tissue Engineering kann die osteogene Matrixkomposition in Kombination mit einem Scaffold vorteilhaft für Proliferation und Differenzierung der knochenbildenden Zellen sein. Als Scaffold kommen alle dreidimensionalen, porösen Strukturen aus synthetischen und/oder natürlichen Polymeren (z.B. Kollagen), Keramik oder Metall einzeln oder in Kombination in Frage, wobei biodegradablen Scaffolds aus Polymer und/oder Keramik der Vorzug gegeben wird.
Durch das osteogene Matrixkomposit werden knochenbildenden Faktoren, wie z. B. Wachstumsfaktoren, die in vivo vorliegen, nach der Implantation an die Oberfläche des Implantats gebunden und ihre Aktivität verstärkt. Vorteilhaft werden durch das mit dem osteogenen Matrixkomposit beschichtete Implantat unterschiedliche endogene Faktoren, die an der Implantationsstelle vorhanden sind, rekrutiert.
Zur Herstellung eines Implantats oder eines Scaffolds für das Tissue Engineering wird die das osteogene Matrixkomposit enthaltende Beschichtungslösung genutzt, um das osteogene Matrixkomposit vorteilhaft durch einen dip-coating Prozess auf deren Oberfläche zu irαrnobilisieren. Die Kollagenkonzentration der Beschichtungslösung kann zwischen 0,5 mg/ml bis 5 mg/ml liegen, wobei 1 mg/ml bis 2 mg/ ml der bevorzugte Bereich sind. Die osteogene Matrixkomposit wird durch Inkubation des Implantates für 5 bis 20 Minuten bei Raumtemperatur immobilisiert, anschließend getrocknet und mit Wasser gewaschen. Die Dicke der entstehenden Schicht kann durch die Konzentration der Beschichtungslösung und durch die Anzahl der Prozesswiederholungen beeinflusst werden.
Für die Generierung eines beschichteten dreidimensionalen Scaffolds in Kombination mit dem beschriebenen osteogenen Matrixkomposit wird die Komponentenmischung vorteilhaft vor Beginn der Fibrillenbildung in den Scaffold, der metallischen, keramischen und/oder polymeren Ursprungs sein kann, eingebracht. Die Fibrillogenese wird anschließend durch Temperaturerhöhung ausgelöst. Die in situ gebildeten Fibrillen können entweder als Kollagengel verbleiben, oder analog zur Oberflächenbeschichtung getrocknet werden.
Das so hergestellte Implantat oder Scaffold kann vorteilhaft mit den bekannten nichtthermischen Verfahren wie Ethylenoxid oder Gamma-Bestrahlung sterilisiert und bei Raumtemperatur gelagert werden. Das erfindungsgemäß mit einem osteogenen Matrixkomposit beschichtete Implantat oder Scaffold grenzt sich durch folgende Vorteile von den aus dem Stand der Technik bekannten Lösungen ab:
• Gute biologische Kompatibilität und Funktionalität der erzeugten Matrix durch weitgehend physiologische Zusammensetzung und Struktur aufgrund der Bedingungen in der Herstellung und Einsatz von Komponenten, die denen der natürlichen Zellumgebung entsprechen. • Hohe Variabilität in Bezug auf einsetzbare Komponenten und deren Anteile in der Komponentenmischung • Leichte Lagerungs- und Sterilisationsbedingungen • Hohe Spezifizität und Effizienz durch die Nutzung der körpereigenen osteogenen Faktoren
Anhand der nachfolgenden Ausfiihrungsbeispiele, Vergleichsversuche und Figuren wird die Erfindung näher erläutert.
Dabei zeigen
Fig. 1: Einfluss von Decorin und Chondroitinsulfat (CS) auf die Bildung von Kollagenfibrillen, gemessen als Zunahme der Trübung einer Fibrillogeneselösung in OD über die Zeit
Fig. 2 AFM-Aufiiahmen der Fibrillenstruktur
Fig. 3 In erfindungsgemäßen osteogenen Matrixkompositen vorhandenes Chondroitinsulfat und Decorin
Fig. 4 Bindungsverhalten erfindungsgemäßer osteogener Matrixkomposite für die rekombinanten Wachstumsfaktoren BMP-4 und TGF-lß
Fig. 5 Verhalten von primären Rattencalvaria-Osteoblasten auf verschiedenen erfindungsgemäßen osteogenen Matrixkompositen - Einfluss auf Adhäsion und Osteopontin-Expression
Fig. 6 Aktivität der alkalischen Phosphatase in Ratttencalvarienzellen auf verschiedenen erfindungsgemäßen osteogenen Matrixkompositen nach Zugabe von 4 pmol/cm2 BMP-4
Fig. 7 Knochenneubildung an der Implantatoberfläche in Prozent nach 6 Monaten im Minischwein-Kiefer
Ausführungsbeispiel 1
Fibrillenstruktur nach Fibrillogenese unter verschiedenen Bedingungen
Für die Generierung des osteogenen Matrixkomposits wird eine Lösung von Kollagen- Monomeren in 0,01 M Essigsäure durch Rühren für 24 Stunden bei 4°C hergestellt. Die Kollagenfibrillen werden anschließend in Anwesenheit der nicht-kollagenen Komponenten durch. einen Prozess der Selbstaggregation (Fibrillogenese) in wässrigen Phosphatpufferlösungen bei neutralem pH und einer Temperatur von 37 °C gebildet.
Der Bereich für die Bildung der Fibrillen liegt zwischen 0,5 und 5 mg Kollagen/ml und 0,1 bis 5 mg Glykosaminoglykan/ml, wobei 1 mg/ml Kollagen und 0,2 mg/ml GAG und 30 μg/ml Proteoglykan die bevorzugten Bedingungen sind. Die bevorzugten Fibrillogenese- Parameter waren ein 30 mMol/1 Phosphatpuffer pH 7.0, entweder mit 135 mMol/1 NaCl oder ohne TSfaCl-Zusatz.
Glykosaminoglykane oder andere Matrixkomponenten werden vor der Fibrillogenese zu den Kollagenmonomeren hinzugefügt und dadurch im folgenden Prozess der Fibrillogenese zumindest teilweise in die entstehenden Fibrillen integriert
Fig. 1 zeigt in einer Messung der durch die Fibrillenbildung bewirkten Trübung einer Lösung, über die Zeit, dass steigende Mengen von Decorin (angegeben in molaren Verhältnissen) eine Verlangsamung der Bildungskinetik und eine Reduktion der maximalen OD- Werte bewirken, Indikativ für eine Verringerung des Fibrillendurchmessers. Für Chondroitinsulfat ist ein gegenteiliger Effekt zu beobachten. Bildungsbedingungen: 250 μg/ml Kollagen, 37°C, 30 mMol/1 Phosphatpuffer pH 7,4 mit 135 mMol/1 NaCl.
In Fig. 2 ist der Einfluss der Bildungsbedingungen auf die Struktur der entstehenden Fibrillen in AFM-Aufnahmen dokumentiert. Zugabe von Decorin verringert unter allen Bedingungen den Fibrillendurchmesser (a und d). Für Chondroitinsulfat ist insbesondere unter Bedingungen niedriger Ionenstärke eine deutlich heterogenere Verteilung der Fibrillendurchmesser sichtbar unter Zunahme des durchschnittlichen Fibrillendurchmessers (f), während der Effekt bei höheren Ionenstärken nicht offensichtlich ist (c). b und e zeigen die Fibrillenstruktur ohne nicht-kollagene Zusätze. Bildungsbedingungen: 250 μg/ml Kollagen, 37°C, 30 mMol/1 Phosphatpuffer pH 7,4 (Puffer A) oder 30 mMol/1 Phosphatpuffer pH 7,4 mit 135 mMol/1 NaCl (Puffer B).
In allen Fällen aber bilden die Kollagenmonomere während der Fibrillogenese in vitro die charakteristischen quergestreiften Fibrillen analog den in vivo Strukturen, wobei die Struktur der entstehenden Fibrillen sowohl durch die Prozessparameter (pH, Ionenstärke, Phosphatkonzentration) als auch durch Art und Menge der zugefügten nicht-kollagenen Komponenten beeinflusst wird. Kollagenfibrillen mit nicht-kollagenen Bestandteilen wie Glykosaminoglykane oder Decorin können demzufolge in einem vergleichsweise breiten Bereich von Massenverhältnissen erzeugt werden, innerhalb derer die Integration des Kollagens in die Fibrillen nicht oder nur geringfügig beeinflusst wird.
Ausführungsbeispiel 2
Einbau von nicht-kollagenen Komponenten in Kollagenfibrille-n
Für die Generierung des osteogenen Matrixkomposits wird eine Lösung von Kollagen- Monomeren in 0,01 M Essigsäure durch Rühren für 24 Stunden bei 4°C hergestellt. Die Kollagenfibrillen werden anschließend in Anwesenheit der nicht-kollagenen Komponenten durch einen Prozess der Selbstaggregation (Fibrillogenese) in wässrigen Phosphatpufferlösungen bei neutralem pH gebildet. Bildungsbedingungen: 250 μg/ml Kollagen, 37°C, 30 mMol/1 Phosphatpuffer pH 7,4 (Puffer A) oder 30 mMol/1 Phosphatpuffer pH 7,4 mit 135 mMol/1 NaCl (Puffer B) mit unterschiedlichen Chondroitinsullat- und Decorin-Konzentrationen.
In die Fibrillen integriertes Decorin und Chondroitinsulfat wurde nach waschen und Hydrolysieren der Fibrillen in 500 μl 6 M HC1 bei 105°C für 6 Stunden nach der Methode von Pieper et al. [Pieper JS, Hafmans T, Veerkamp JH, van Kuppeveit TH. Development of tailor-made collagen-glycosaminoglycan matrices: EDC/NHS crosslinking, and ultrastructural aspects. Biomaterials 2000;21(6):581-93] bestimmt.
Für Chondroitinsulfat ist das Ausmaß der Integration abhängig von der Ionenstärke des verwendeten Puffersystems. Für geringe Ionenstärken (Puffer A) werden von den eingesetzten 20 μg auf 250 μg Kollagen etwa 2,5 μg CS eingebaut, für hohe Ionenstärken (Puffer B) hingegen nur ein Drittel dieser Menge (Fig. 3).
Auch der Einbau von Decorin hängt vom verwendeten Puffersystern ab. Für Puffer A wird ein Drittel der eingesetzten Menge eingebaut, während die Werte für Puffer B wiederum deutlich niedriger waren Ausführungsbeispiel 3
Rekrutierung von Wachstumsfaktoren durch ein mit einem osteogenen Matrixkomposit beschichtetes Implantat
Erfindungsgemäß zusammengesetzte und erzeugte Matrices können ohne den Einsatz rekombinanter Wachstumsfaktoren durch die Rekrutierung körpereigener Wachstumsfaktoren die Knochenbildung und -anlagerung beschleunigen und verbessern. Im Experiment kann ein derartiges Bindungsverhalten nur mit rekombinanten Wachstumsfaktoren nachgewiesen werden.
Eine sandgestrahlte, zylindrische Probe aus TiA16V4 mit einem Durchmesser von 10 mm wird mit Ethanol, Aceton und Wasser gereinigt.
Eine Lösung von 1 mg/ml bovinem Kollagen Typ I in 0.01 M Essigsäure -wird durch Rühren über Nacht bei 4°C erzeugt. Zu dieser Lösung werden nicht-kollagene ECM-Komponenten (Glykosaminoglykan 30 μg/ml, Proteoglykane 15 μg/ml) gegeben. Die Mischungen werden auf Eis mit Fibrillogenese-Puffer (60 mMol/1 Phosphat, 270 mMol/1 NaCl, pH 7,4) versetzt und 18 h bei 37°C inkubiert. Die entstandenen Fibrillen werden abzentrifugiert, gewaschen, homogenisiert und resuspendiert zu einer endgültigen Konzentration von 1 mg/ml.
Die zylindrische Probe wird für 15 min bei RT mit dieser Lösung beschichtet (dip-coating), mit Wasser gewaschen und getrocknet.
Anschließend werden Wachstumsfaktoren (rekombinantes BMP-4 bzw. TGF-lß) durch einen Adsorptionsprozess (4°C, 18h, aus PBS) auf diesen Oberflächen immobilisiert und anschließend mittels ELISA bestimmt.
Diese in vitro Versuche mit rekombinanten Wachstumsfaktoren zeigen, dass durch den erfindungsgemäßen Zusatz von nicht-kollagenen Komponenten die Bindung der Wachstumsfaktoren rhBMP-4 (insbesondere durch Zusatz von Chondroitinsulfat) oder rhTGF-lß (insbesondere durch Zusatz von Decorin) an die Matrix erhöht wird. Für BMP wird bei geringen Mengen (2 - 20 ng/cm2) kein Effekt beobachtet, bei höheren Mengen (ab 50 ng/cm2) erfolgt aber eine um etwa 10% höher Bindung an die chondroitinsulfathaltige gegenüber der reinen Kollagenschicht, dargestellt in % der eingesetzten Menge (Fig. 4). Für rhTGF-lß ist sowohl für 1 ng/cm2 als auch für 10 ng/cm2 auf decorinhaltigen Oberflächen eine erhöhte Bindung feststellbar.
Bildungsbedingugen der Matrix: 500 μg/ml Kollagen, 30 μg/ml Decorin bzw. Chondroitinsulfat, 37°C, 30 mMol/1 Phosphatpuffer pH 7,4 mit 135mMol/l NaCl.
Ausführungsbeispiel 4
Untersuchungen mit Rattencalvarien-Osteoblasten auf verschiedenen
Matrixkompositen
Fig. 5 zeigt das Verhalten von primären Rattencalvarien-Osteoblasten auf verschiedenen
Matrices. Initiale Adhäsion der Zellen auf unterschiedlichen Matrixkompositionen wurde über
Zellmorphologie, zrytoskeletale Organisation (Aktin-Färbung mit Phalloidin) und Bildung der
Focal Adhesion Complexes mittels Integrin-Rezeptoren (Immunofarbung gegen Vinculin) analysiert. Adhäsion war nach 2 Stunden am ausgeprägtesten auf Kollagen-CS-Matrices gefolgt con Kollagen-Decorin. Auch die Bildung der FACS (grün-gelbe Punkte und rot an den Enden der Aktinfibrillen) wurde von Decorin und besonders CS gefördert und beschleunigt. Kontrollen mit reinen Kollagen-Matrices zeigten wesentlich weniger FACS nach 2 Stunden.
Der Einfluss der Matrixkomposition auf die Differenzierung der Osteoblasten wurde über die
Expression des M-arkerproteins Osteopontin mittels fluoreszenzaktiviertem Cell Scanning untersucht. Osteoblasten auf Kollagen-CS-Oberflächen produzieren nach 8 Tagen 5 mal mehr
Osteopontin (» 25O0 Fluoreszenzeinheiten) als Zellen auf reine Kollagenoberflächen (» 500
Fluoreszenzeinheiten). Bildungsbedingungen der Matrix: 500 μg/ml Kollagen, 30 μg/ml
Decorin bzw. Chondroitinsulfat, 37°C, 30 mMol/1 Phosphatpuffer pH 7,4 mit 135 mMol/1
NaCl.
Weitere Untersuchungen mit Rattencalvarien-Osteoblasten zeigen unterschiedliche Zellreaktionen auf rhBMP-4 in Abhängigkeit von der Zusammensetzung der Trägermatrix. Fig. 6 zeigt die Aktivität der alkalischen Phosphatase in Aktivitätseinheiten U pro mg Protein nach Zugabe von 4 pmol/ cm2 rhBMP-4 zu Rattencalvarienzellen. Auf decorinhaltigen Matrices wird die BMP- Aktivität heruntergeregelt, während sie auf chondroitinsulfathaltigen Matrices verstärkt wird. Bildungsbedingungen der Matrix: 500 μg/ml Kollagen, 30 μg/ml Decorin bzw. Chondroitinsulfat, 37°C, 30 mMol/1 Phosphatpuffer pH 7,4 mit 135 mMol/1 NaCl. Ausführungsbeispiel 5 Tierversuche
In Tierversuchen wurde überraschend festgestellt, dass mit rekombinanten Wachstumsfaktoren versehene Matrices bezüglich der induzierten Knocbenbildung deutlich schlechter abschneiden als die erfindungsgemäßen nicht vernetzten osteogenen Matrixkomposite auf der Basis von Kollagen Typ I und Chondroitinsulfat.
Ti-Implantate, -welche ringförmige Einschnitte quer zur Achse aufweisen und so ein Defektmodell darstellen, werden mit 1% Triton X-100, Aceton und 96% Ethanol gereinigt, mit destilliertem Wasser gespült und getrocknet.
Die eingesetzten Implantate werden in zwei aufeinander folgenden Dip-coating Schritten beschichtet mit:
A. Fibrillen aus Kollagen Typ I, B. Erfindungsgemäßer osteogener Matrixkomposit auf der Basis von Kollagen Typ I und Chrondroitinsulfat nach Ausführungsbeispiel 1 C. Erfindungsgemäßer osteogener Matrixkomposit auf der Basis von Kollagen Typ I und Chrondroitinsulfat nach Ausführungsbeispiel 1
Die Implantate werden, mit destilliertem Wasser gewaschen, luftgetrocknet und für 12 h mit Ethylenoxid bei 42°C sterilisiert. Unmittelbar vor der Implantation wird der Oberflächen- zustand C mit rekombinantem BMP-4 (400 ng/ml) bei 4°C über Nacht beschichtet und anschließend getrocknet.
Die Implantate werden in die Unterkiefer von Minischweinen eingesetzt. Der Knochen- Implantat Kontakt wurde nach 6 Monaten histomorphometrisch bestimmt.
Den höchsten Prozentsatz für diesen Kontakt erhält man für mit der erfindungsgemäße osteogene Matrix auf der Basis von Kollagen und Chondroitinsulfat beschichtete Implantate (27,8%), während Implantate mit derselben Beschichtung und rekombinantem BMP-4 und der Kombination um 15% und damit deutlich niedriger liegen. Die geringsten Werte erhält man für die reine Kollagenbeschichrung (12,8%) (Fig. 7). In der Erfindungsbeschreibung werden folgende Abkürzungen verwendet:
bFGF Basic fibroblastic growth factor
BMP Bone morphogenetic protein
ECM Extrazelluläre Matrix
EGF Endothelial growth factor
FACITs Fibril associated collagen with interrupted triple helix
FACS Focal adhesion contacts
FGF Fibroblastic growth factor
GAG Glykosaminoglykan
HAP Hydroxylapatit
IGF-I Insuline-like growth factor
PGA Polyglygolic acid
PLA Polylactic acid
SLRP Small leucine rieh protein
TCP Tricalziuimphosphat Phasen
TES (N-[Tris(hydroxymethyl)methyl]-2-aminoethane-sulfonic acid)-
TGF-ß Transforming growth factor ß
VEGF Vascular endothelial growth factor
WF Wachstumsfaktor

Claims

Patentansprüche
1. Osteogenes Matrixkomposit aus Kollagen und mindestens einer nicht-kollagenen ECM- Komponente oder deren Derivaten, dadurch gekennzeichnet, dass die Kollagenkomponente aus mittels Fibrillogenese erzeugten, unvernetzten Kollagenfibrillen bestellt und dass in diese die mindestens eine nicht-kollagene ECM-Komponente oder deren Derivate integriert sind.
2. Osteogenes Matrixkomposit nach Anspruch 1, dadurch gekennzeichnet, dass die nicht- kollagenen ECM-Komponenten Glykosaminoglykane enthalten.
3. Osteogenes Matrixkomposit nach Anspruch 2, dadurch gekennzeichnet, dass die nicht- kollagene ECM-Komponente Chondroitinsulfat vom Typ A, C, D, oder E, Dermatansulfat, Keratansulfat, Heparansulfat, Heparin, Hyaluronsäure und deren Derivate, einzeln oder gemischt enthält.
4. Osteogenes Matrixkomposit nach Anspruch 1, dadurch gekennzeichnet, dass die nicht- kollagene ECM-Komponente nicht-kollagene Matrixproteine enthält.
5. Osteogenes Matrixkomposit nach Anspruch 4, dadurch gekennzeichnet, dass die nicht- kollagene ECM-Komponente als nicht-kollagene Matrixproteine Fibronektin, Decorin, Biglycan, Laminin, Versikan einzeln oder gemischt enthält.
6. Osteogenes Matrixkomposit nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Kollagenkomponente aus einem der Kollagene I, II, III, V, IX, XI, oder deren Kombinationen besteht.
7. Verfahren zur Herstellung eines osteogenen Matrixkomposits aus Kollagen und mindestens einer nicht-kollagenen ECM-Komponenten oder deren Derivaten, dadurch gekennzeichnet, dass Kollagenfibrillen mittels Fibrillogenese erzeugt werden, dass vor der Fibrillogenese die mindestens eine nicht-kollagene ECM-Komponente oder deren Derivate zugegeben wird, dass die so erzeugten Kollagenfibrillen in Wasser oder in einem Puffersystem resuspendiert und gegebenenfalls lyophylisiert werden.
8. Verfahren nach A-nspruch 7, dadurch gekennzeichnet, dass die Fibrillogenese unter den Bedingungen, Temperaturbereich von 4°C bis 40°C, vorzugsweise 25 °C bis 37 °C, Kollagenkonzentration 50 bis 5000 μg/ml, vorzugsweise 250 bis 1000 μg/ml, pH 4 bis pH 9, vorzugsweise pH 6 bis pH 8, Phosphatgehalt bis 500 mMol/1, vorzugsweise 30 bis 60 mMol/1, NaCl-Ge-halt bis zu 1000 mMol/1, vorzugsweise bis zu 300 mMol/1 durchgeführt wird.
9. Verwendung eines osteogenen Matrixkomposits nach einem der Ansprüche 1 bis 8 für die Beschichtung von Implantaten oder Scaffolds für das Tissue Engineering.
10. Verfahren zur Herstellung eines Implantates oder eines Scaffolds für das Tissue Engineering mit einer Beschichtung aus einem osteogenen Matrixkomposit nach einem der Ansprüche 1 bis 6 dadurch gekennzeichnet, dass Kollagenfibrillen mittels Fibrillogenese erzeugt werden, dass vor der Fibrillogenese die mindestens eine nicht- kollagene ECM-Komponente oder deren Derivate zugegeben werden, dass die so erzeugten Kollagenfibrillen in Wasser oder in einem Puffer resuspendiert werden und anschließend auf der Oberfläche des Implantates oder des Scaffolds in einem dip-coating Prozess immobilisiert werden.
11. Verfahren zur Herstellung eines Scaffolds für das Tissue Engineering mit einer Beschichtung aus einem osteogenen Matrixkomposit nach einem der Ansprüche 1 bis 6 dadurch gekennzeichnet, dass Kollagenfibrillen mittels Fibrillogenese erzeugt werden, dass vor der Fibrillogenese die mindestens eine nicht-kollagene ECM-Komponente oder deren Derivate zugegeben werden, derart, dass die Fibrillenbildung in dem Scaffold ausgelöst wird, wo die in situ entstandenen Fibrillen entweder als Gel verbleiben oder getrocknet werden.
12. Implantat oder Scaffold für das Tissue Engineering mit einer Beschichtung aus einem osteogenen Matrixkomposit nach einem der Ansprüche 1 bis 6.
13. Beschichtungslösung, enthaltend ein osteogenes Matrixkomposit nach einem der Ansprüche 1 bis 6.
PCT/DE2005/000728 2004-04-15 2005-04-15 Osteogenes matrixkomposit, verfahren zu dessen herstellung sowie implantat und scaffold für das tissue engineering mit einer beschichtung aus einem osteogenen matrixkomposit WO2005099785A1 (de)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CA2563545A CA2563545C (en) 2004-04-15 2005-04-15 Osteogenic matrix composite, method for the production thereof, and implant and scaffold for tissue engineering having a coating of an osteogenic matrix composite
JP2007507667A JP2007532211A (ja) 2004-04-15 2005-04-15 骨形成マトリックス複合体、その製造方法および骨形成複合体マトリックスのコーティングを有する組織工学用のインプラントおよび骨組
EP05748181A EP1735022B1 (de) 2004-04-15 2005-04-15 Osteogenes matrixkomposit, verfahren zu dessen herstellung sowie implantat und scaffold für das tissue engineering mit einer beschichtung aus einem osteogenen matrixkomposit
AT05748181T ATE435668T1 (de) 2004-04-15 2005-04-15 Osteogenes matrixkomposit, verfahren zu dessen herstellung sowie implantat und scaffold für das tissue engineering mit einer beschichtung aus einem osteogenen matrixkomposit
KR1020067021372A KR101162191B1 (ko) 2004-04-15 2005-04-15 뼈 형성용 기질 복합재, 그의 제조 방법 및 그로 코팅된 조직 공학용 지지체
US11/578,607 US20070237799A1 (en) 2004-04-15 2005-04-15 Osteogenic Composite Matrix, Method for the Production Thereof and Implant and Scaffold for Tissue Engineering Provided with a Coating Formed by Said Osteogenic Composite matrix
DE502005007658T DE502005007658D1 (de) 2004-04-15 2005-04-15 Osteogenes matrixkomposit, verfahren zu dessen herstellung sowie implantat und scaffold für das tissue engineering mit einer beschichtung aus einem osteogenen matrixkomposit
AU2005232363A AU2005232363B2 (en) 2004-04-15 2005-04-15 Osteogenic composite matrix, method for the production thereof and implant and scaffold for tissue engineering provided with a coating formed by said osteogenic composite matrix
US12/572,884 US8043627B2 (en) 2004-04-15 2009-10-02 Osteogenic composite matrix, method for the production thereof and implant and scaffold for tissue engineering provided with a coating formed by said osteogenic composite matrix

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004018959 2004-04-15
DE102004018959.5 2004-04-15

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11/578,607 A-371-Of-International US20070237799A1 (en) 2004-04-15 2005-04-15 Osteogenic Composite Matrix, Method for the Production Thereof and Implant and Scaffold for Tissue Engineering Provided with a Coating Formed by Said Osteogenic Composite matrix
US12/572,884 Continuation US8043627B2 (en) 2004-04-15 2009-10-02 Osteogenic composite matrix, method for the production thereof and implant and scaffold for tissue engineering provided with a coating formed by said osteogenic composite matrix

Publications (1)

Publication Number Publication Date
WO2005099785A1 true WO2005099785A1 (de) 2005-10-27

Family

ID=34969398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2005/000728 WO2005099785A1 (de) 2004-04-15 2005-04-15 Osteogenes matrixkomposit, verfahren zu dessen herstellung sowie implantat und scaffold für das tissue engineering mit einer beschichtung aus einem osteogenen matrixkomposit

Country Status (10)

Country Link
US (2) US20070237799A1 (de)
EP (1) EP1735022B1 (de)
JP (1) JP2007532211A (de)
KR (1) KR101162191B1 (de)
AT (1) ATE435668T1 (de)
AU (1) AU2005232363B2 (de)
CA (1) CA2563545C (de)
DE (1) DE502005007658D1 (de)
ES (1) ES2329153T3 (de)
WO (1) WO2005099785A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010029150A2 (de) * 2008-09-11 2010-03-18 Technische Universität Dresden Kompositmaterialien aus einer mit silikat und calciumphosphatphasen mineralisierten kollagenmatrix, verfahren zu deren herstellung und deren verwendung
US7718616B2 (en) 2006-12-21 2010-05-18 Zimmer Orthobiologics, Inc. Bone growth particles and osteoinductive composition thereof
US8613938B2 (en) 2010-11-15 2013-12-24 Zimmer Orthobiologics, Inc. Bone void fillers
US8690874B2 (en) 2000-12-22 2014-04-08 Zimmer Orthobiologics, Inc. Composition and process for bone growth and repair

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2623106C (en) 2005-09-19 2013-12-24 Histogenics Corporation Cell-support matrix having narrowly defined uniformly vertically and non-randomly organized porosity and pore density and a method for preparation thereof
EP1902739A1 (de) * 2006-09-20 2008-03-26 Centre National De La Recherche Scientifique (Cnrs) Mehrschichtige künstliche Strukturen mit biopolymeren Fasern
RU2451527C2 (ru) 2006-12-22 2012-05-27 Лаборатуар Медидом С.А. Система in-situ для внутриартикулярной регенерации хрящевой и костной тканей
JP2009268494A (ja) * 2008-04-30 2009-11-19 St Marianna Univ School Of Medicine 人工骨・軟骨一体型バイオマテリアル
US10315246B2 (en) 2011-02-07 2019-06-11 The Trustees Of Dartmouth College System and method for nuclear reactor fuel having freeze-cast matrix impregnated with nucleotide-rich material
US20140158020A1 (en) * 2011-02-07 2014-06-12 The Trustees Of Dartmouth College Ice-Tempered Hybrid Materials
KR101644828B1 (ko) * 2014-04-21 2016-08-02 한림대학교 산학협력단 조직 재생용 3차원 구조체의 제조 방법, 제조 장치 및 이에 따른 구조체
US10077420B2 (en) 2014-12-02 2018-09-18 Histogenics Corporation Cell and tissue culture container
JP7165326B2 (ja) * 2016-12-28 2022-11-04 株式会社高研 高強度コラーゲンスポンジ
CN108295303A (zh) * 2018-02-08 2018-07-20 中山大学附属第三医院(中山大学肝脏病医院) 一种钛金属植入物及其制备方法和用途
US20200000962A1 (en) * 2018-07-02 2020-01-02 Medtronic Vascular, Inc. Load bearing crowded collagen constructs
RU2740132C9 (ru) * 2019-04-28 2021-04-01 Евгений Геннадьевич Объедков Способ нанесения коллагеностимулирующего покрытия на эндопротез
US20230357710A1 (en) * 2022-05-06 2023-11-09 The Regents Of The University Of Michigan Engineered fibrillar extracellular matrix networks for three-dimensional (3d) cellular support systems

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4544516A (en) * 1982-07-28 1985-10-01 Battelle Development Corporation Collagen orientation
US5116389A (en) * 1989-01-04 1992-05-26 Vladimir Mitz Method of obtaining collagen human-skin fibers, fibers thus produced, and a compound containing them
US20030141618A1 (en) * 2001-11-30 2003-07-31 Cambridge Polymer Group, Inc. Layered aligned polymer structures and methods of making same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1515963A (en) 1975-07-15 1978-06-28 Massachusetts Inst Technology Crosslinked collagen-mucopolysaccharide composite materials
US4448718A (en) 1983-09-13 1984-05-15 Massachusetts Institute Of Technology Method for the preparation of collagen-glycosaminoglycan composite materials
US5162430A (en) * 1988-11-21 1992-11-10 Collagen Corporation Collagen-polymer conjugates
US5645591A (en) 1990-05-29 1997-07-08 Stryker Corporation Synthetic bone matrix
US20020090725A1 (en) * 2000-11-17 2002-07-11 Simpson David G. Electroprocessed collagen
EP1088564A1 (de) 1999-09-30 2001-04-04 Orbus Medical Technologies, Inc. Intraluminale Vorrichtung, Beschichtung für eine solche Vorrichtung und Verfahren zu deren Herstellung
DE10029520A1 (de) * 2000-06-21 2002-01-17 Merck Patent Gmbh Beschichtung für metallische Implantatmaterialien
US7201917B2 (en) * 2001-07-16 2007-04-10 Depuy Products, Inc. Porous delivery scaffold and method
JP4412537B2 (ja) * 2001-08-22 2010-02-10 秦 順一 骨の再生方法
CA2412012C (en) 2001-11-20 2011-08-02 Ed. Geistlich Soehne Ag Fuer Chemische Industrie Resorbable extracellular matrix containing collagen i and collagen ii for reconstruction of cartilage

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4544516A (en) * 1982-07-28 1985-10-01 Battelle Development Corporation Collagen orientation
US5116389A (en) * 1989-01-04 1992-05-26 Vladimir Mitz Method of obtaining collagen human-skin fibers, fibers thus produced, and a compound containing them
US20030141618A1 (en) * 2001-11-30 2003-07-31 Cambridge Polymer Group, Inc. Layered aligned polymer structures and methods of making same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8690874B2 (en) 2000-12-22 2014-04-08 Zimmer Orthobiologics, Inc. Composition and process for bone growth and repair
US7718616B2 (en) 2006-12-21 2010-05-18 Zimmer Orthobiologics, Inc. Bone growth particles and osteoinductive composition thereof
US8742072B2 (en) 2006-12-21 2014-06-03 Zimmer Orthobiologics, Inc. Bone growth particles and osteoinductive composition thereof
WO2010029150A2 (de) * 2008-09-11 2010-03-18 Technische Universität Dresden Kompositmaterialien aus einer mit silikat und calciumphosphatphasen mineralisierten kollagenmatrix, verfahren zu deren herstellung und deren verwendung
WO2010029150A3 (de) * 2008-09-11 2010-11-11 Technische Universität Dresden Kompositmaterialien aus einer mit silikat und calciumphosphatphasen mineralisierten kollagenmatrix, verfahren zu deren herstellung und deren verwendung
US9265861B2 (en) 2008-09-11 2016-02-23 Technische Universität Dresden Composite material consisting of a collagen matrix mineralised with silicate and calcium phosphate phases, method for the production and use thereof
US8613938B2 (en) 2010-11-15 2013-12-24 Zimmer Orthobiologics, Inc. Bone void fillers

Also Published As

Publication number Publication date
AU2005232363A2 (en) 2005-10-27
DE502005007658D1 (de) 2009-08-20
ES2329153T3 (es) 2009-11-23
KR20070004844A (ko) 2007-01-09
EP1735022B1 (de) 2009-07-08
AU2005232363B2 (en) 2010-10-21
EP1735022A1 (de) 2006-12-27
JP2007532211A (ja) 2007-11-15
CA2563545C (en) 2013-02-12
US20100119575A1 (en) 2010-05-13
KR101162191B1 (ko) 2012-07-05
CA2563545A1 (en) 2005-10-27
AU2005232363A1 (en) 2005-10-27
ATE435668T1 (de) 2009-07-15
US20070237799A1 (en) 2007-10-11
US8043627B2 (en) 2011-10-25

Similar Documents

Publication Publication Date Title
EP1735022B1 (de) Osteogenes matrixkomposit, verfahren zu dessen herstellung sowie implantat und scaffold für das tissue engineering mit einer beschichtung aus einem osteogenen matrixkomposit
DE69115934T2 (de) Synthetische knochenbildungsschicht
US7547449B2 (en) Method for treating a bone defect with an organic/inorganic composite
DE602004002491T2 (de) Ein keramischer Überzug mit einem biologischen Aktivstoff und Verfahren zur Herstellung
DE69632829T2 (de) Knochentransplantatmatrix
Yoshida et al. Bone augmentation using a highly porous PLGA/β‐TCP scaffold containing fibroblast growth factor‐2
CH667394A5 (de) Kuenstliches knochenbildendes biomaterial und dieses enthaltendes implantationsmaterial.
EP1135177A1 (de) Poröse kompositmatrix, deren herstellung und verwendung
EP1744793A2 (de) Biomimetische organische/anorganische verbundstoffe, verfahren zu deren herstellung sowie verwendungsverfahren
Góes et al. Apatite coating on anionic and native collagen films by an alternate soaking process
Du et al. In vitro and in vivo evaluation of bone morphogenetic protein-2 (BMP-2) immobilized collagen-coated polyetheretherketone (PEEK)
Mohamed Biocomposite materials
DE60103402T2 (de) Verwendung eines polysaccharids aus dem bakterium vibrio diabolicus zur wundheilung beim knochen
DE102004044102B4 (de) Implantat zur Behandlung von osteochondralen Defekten, sowie Verfahren zu dessen Herstellung
EP1171175A1 (de) Endoprothese mit langzeitstabilisierung
DE102005018643A1 (de) Osteogenes Matrixkomposit, Verfahren zu dessen Herstellung sowie Implantat und Scaffold für das Tissue Engineering mit einer Beschichtung aus einem osteogenen Matrixkomposit
DE102005016443A1 (de) Bioresorbierbares und mineralisiertes Material zur Füllung von Knochendefekten
DE102008053892A1 (de) Medizinisches Implantat mit biofunktionalisierter Oberfläche
DE102005034421A1 (de) Bioresorbierbares mineralisiertes Material zur Füllung von Knochendefekten
DE102017206453B4 (de) Natives Knochenersatzmaterial zur Förderung der Osteogenese, Verfahren zu dessen Herstellung und Verwendungen
Rodrigues Preparation of collagen-hydroxyapatite biocomposite scaffolds by cryogelation method for tissue engineering applications
WO2008107122A2 (de) Zusammensetzung zur behandlung von knochen- und/oder knorpeldefekten
Ramos Rivera Development and characterization of new bioactive and antibacterial coatings for biomedical applications using electric field assisted processing
de AbreuI et al. The biopolymer sugarcane as filling material of critical defects in rats1

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005748181

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2005232363

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 1020067021372

Country of ref document: KR

Ref document number: 2007507667

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2563545

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2005232363

Country of ref document: AU

Date of ref document: 20050415

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005232363

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2005748181

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067021372

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2007237799

Country of ref document: US

Ref document number: 11578607

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 11578607

Country of ref document: US