WO2005099014A1 - 固体電解質型燃料電池 - Google Patents

固体電解質型燃料電池 Download PDF

Info

Publication number
WO2005099014A1
WO2005099014A1 PCT/JP2005/004183 JP2005004183W WO2005099014A1 WO 2005099014 A1 WO2005099014 A1 WO 2005099014A1 JP 2005004183 W JP2005004183 W JP 2005004183W WO 2005099014 A1 WO2005099014 A1 WO 2005099014A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
heat recovery
solid oxide
oxide fuel
gas
Prior art date
Application number
PCT/JP2005/004183
Other languages
English (en)
French (fr)
Inventor
Masanobu Kawazoe
Nobuki Matsui
Kazuo Yonemoto
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to US10/594,388 priority Critical patent/US20080057365A1/en
Priority to EP05720454A priority patent/EP1734605A4/en
Publication of WO2005099014A1 publication Critical patent/WO2005099014A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • H01M8/04022Heating by combustion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • H01M8/2475Enclosures, casings or containers of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04126Humidifying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • H01M8/0675Removal of sulfur
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a solid oxide fuel cell having a solid oxide fuel cell stack housed in a storage container.
  • the solid oxide fuel cell described in Patent Document 1 forms a fluid flow path between a high-temperature insulating material and a low-temperature insulating material surrounding a fuel cell stack, and the fuel cell stack passes through the fluid flow path.
  • the fuel is supplied from the fuel supply source to the fuel inlet of the fuel cell stack after being preheated by the preheater.
  • the fuel cell described in Patent Document 2 has a fuel gas supply pipe in which a cell stack composed of a plurality of fuel cells is housed inside a storage container having a pipe between a frame and a heat insulating material.
  • the fuel gas is supplied through the pipe, and the oxygen-containing gas is supplied through the oxygen-containing gas pipe and the pipe.
  • Patent Document 1 JP 2003-151610 A
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2003-249256
  • a solid oxide fuel cell operates at a high temperature of about 700 to 1000 ° C, it maintains the temperature of the cell stack that generates power appropriately, prevents heat loss, and performs power generation with high efficiency.
  • the battery module containing the battery stack In order to keep the outer surface below the allowable temperature, the battery module containing the battery stack In this case, the battery module had to be covered with a thick heat insulating material, which prevented the compactness of the battery module including the surrounding heat insulating layer.
  • Patent Document 1 a technique is known in which an air passage is provided in a heat insulating layer around the battery module to improve the efficiency of the battery module, and heat loss from the battery module is recovered by air flowing through the air passage.
  • Patent Document 2 all the air supplied to the battery stack flows through the air passage, so that it is necessary to increase the cross-sectional area of the air passage in order to supply air with low power.
  • the battery module since the flow rate of air is excessive, the battery module may be cooled too much.
  • the heat insulation layer between the air flow path for heat recovery and the battery module must be thickened to some extent. The thickness of the heat insulation layer, including the air passages, was also increasing.
  • the amount of supplied air also decreases as the amount of power generation decreases, and the flow rate of air flowing through the heat recovery air passage decreases.
  • the temperature of the battery stack must be maintained at the same temperature during partial load operation as during rated operation, the heat loss
  • the ratio of the flow rate of the air flowing through the heat recovery air flow path to the total flow rate at the time of partial load should be relative to the rated flow. Need to increase. The same applies to standby operation (hot standby) in which the temperature of the battery stack is maintained by minute power generation or combustion. However, the flow rate of air flowing through the heat recovery air flow path cannot be changed with respect to the total flow rate in order to meet such a demand.
  • the present invention has been made in view of the above problems, and has a solid electrolyte fuel cell capable of appropriately controlling the flow rate of a fluid flowing through a heat recovery flow path with respect to the total flow rate. It is intended to provide.
  • the solid oxide fuel cell of the present invention provides a battery stack for generating electric power from a fuel gas and an oxygen-containing gas, and a combustion unit for bringing the remaining fuel gas and oxygen-containing gas from the battery stack into contact and burning. And a heat recovery passage for recovering heat loss from the battery module around the battery module containing
  • a branch flow rate adjusting means for branching a supply fluid, which is one of a fuel gas and an oxygen-containing gas, to the battery stack, and for adjusting a flow rate of the supply fluid to be branched;
  • a branch flow path for supplying a fluid to the heat recovery passage.
  • the heat recovery passage can be made thinner and the thickness of the heat insulating layer can be made smaller. As a whole, a large compact dagger can be achieved.
  • the branch flow rate can be adjusted, appropriate heat recovery can be performed even during a partial load operation or a standby operation, and excellent high-efficiency operation can be achieved.
  • the branch flow rate adjusting means responds to the fact that the solid oxide fuel cell is performing the partial load operation or the standby operation, and the flow rate of the branched supply fluid with respect to the total flow rate. It is preferable to increase the ratio.
  • the heat recovery passage is formed in a plurality of layers based on the battery module.
  • the heat recovery passage may also surround a heat exchanger that exchanges heat with flue gas.
  • the battery module may also house a heat exchanger that exchanges heat with flue gas.
  • the heat recovery passage may also surround a vaporizer for vaporizing the fuel gas to which water has been added.
  • the battery module may also house a vaporizer for vaporizing a fuel gas to which water has been added.
  • a solid oxide fuel cell provides a battery stack for generating electric power from a fuel gas and an oxygen-containing gas, and combustion in which the remaining fuel gas and oxygen-containing gas from the battery stack are brought into contact and burned. Having a heat recovery passage for recovering heat loss from the battery module around the battery module including the
  • the fuel cell system includes a first flow path that guides the oxygen-containing gas to the battery stack, and a second flow path that guides the oxygen-containing gas to the heat recovery path.
  • the flow rate of the oxygen-containing gas supplied to the heat recovery passage can be made smaller than the total flow rate, so that the heat recovery passage can be made thinner and the thickness of the heat insulating layer is made smaller.
  • the present invention has a specific effect that the solid oxide fuel cell can be significantly reduced in size as a whole, and good high-efficiency operation can be achieved regardless of the operation state.
  • FIG. 1 is a schematic diagram showing one embodiment of a solid oxide fuel cell according to the present invention.
  • FIG. 2 is a partially cutaway schematic perspective view showing an example of a configuration of a heat recovery passage.
  • FIG. 3 is a cross-sectional view showing an example of a configuration of a heat recovery passage.
  • FIG. 4 is a cross-sectional view showing another example of the configuration of the heat recovery passage.
  • FIG. 5 is a transverse sectional view showing still another example of the configuration of the heat recovery passage.
  • FIG. 6 is a schematic diagram showing another embodiment of the solid oxide fuel cell of the present invention.
  • FIG. 7 is a schematic view showing still another embodiment of the solid oxide fuel cell of the present invention.
  • FIG. 8 is a schematic diagram showing still another embodiment of the solid oxide fuel cell device of the present invention.
  • FIG. 9 is a schematic diagram showing still another embodiment of the solid oxide fuel cell of the present invention.
  • FIG. 10 is a schematic diagram showing still another embodiment of the solid oxide fuel cell device of the present invention.
  • FIG. 1 is a schematic diagram showing one embodiment of a solid oxide fuel cell according to the present invention.
  • This solid oxide fuel cell includes a fuel cell stack 1, a storage container 2 for storing the fuel cell stack 1, a heat insulating material member 3 surrounding the storage container 2, a fuel gas supply source 4, A desulfurizer 5 that receives a fuel gas and performs a desulfurization process, a water addition unit 6 that adds water to an output (desulfurized fuel gas) from the desulfurizer 5, and a combustion gas from the fuel cell stack 1.
  • a heat exchanger that exchanges heat with the gas output from 7 to increase the temperature of the air from the air supply source 9 to supply the fuel cell stack 1 through the high-temperature container 2;
  • a heat recovery passage 11 formed in the member 3 and communicated with an air supply unit of the fuel cell stack 1, and branches the air between the air supply source 9 and the heat exchanger 10 to separate the branched air. It has a branch flow rate adjusting unit 12 for guiding the heat to the heat recovery passage 11 and adjusting the amount of the branched air.
  • a mechanism for supporting the fuel cell stack 1 is not shown in the drawings because it is conventionally known.
  • the solid oxide fuel cell having the above configuration receives the supply of the fuel gas and the air, burns the fuel gas, and recovers the exhaust heat, thereby reducing the operating temperature of about 7001,000 ° C. It is conventionally known that the fuel gas is maintained and the combustion of the fuel gas is continued. Therefore, a detailed description is omitted here.
  • the heat recovery passage 11 since the amount of air passing through the heat recovery passage 11 provided in the heat insulating material member 3 is made smaller than the total amount required for power generation, the heat recovery passage 11 is thinned to reduce the cross-sectional area. The thickness of the heat insulating layer can be greatly reduced, and the overall size can be significantly reduced. [0026] Further, since the flow rate of the branched air can be adjusted by the branch flow rate adjusting unit 12, the amount of air that is branched according to the operating state such as during rated operation, partial load operation, or standby operation. The flow rate can be set to an appropriate amount, and the ability to realize good high-efficiency operation regardless of the operation state can be achieved.
  • a force indicating that the heat recovery passage 11 extends in the vertical direction in the figure (for example, in a direction parallel to the central axis of the cylindrical heat insulating material member 3) As shown in FIG. It may extend in a ring shape (for example, a ring shape centered on the central axis of the cylindrical heat insulating material member 3). In this case, as shown in FIG. 3, it may be folded in the same plane concentrically, as shown in FIG. 4, in series so that air is concentric with each other in the same plane and guides air in the same direction. As shown in FIG. 5, the shape may be a single ring shape in the same plane. However
  • FIG. 6 is a schematic diagram showing another embodiment of the solid oxide fuel cell of the present invention.
  • This solid oxide fuel cell differs from the solid oxide fuel cell of FIG. 1 in that instead of providing the branch flow rate adjusting unit 12 between the air supply source 9 and the heat exchanger 10, the desulfurizer 5 It is only the point provided between the hydrogenation unit 6 and the hydrogenation unit 6.
  • the desulfurizing fuel gas can be guided to the heat recovery passage 11 to recover exhaust heat S, and the same operation as the embodiment of FIG. 1 in which exhaust heat is recovered by air can be achieved. be able to.
  • FIG. 7 is a schematic diagram showing still another embodiment of the solid oxide fuel cell of the present invention.
  • This solid oxide fuel cell differs from the solid oxide fuel cell of FIG. 1 only in that water is vaporized by the vaporizer 7 and then added to the desulfurized fuel gas.
  • water is vaporized and then added to the desulfurized fuel gas.
  • FIG. 8 is a schematic diagram showing still another embodiment of the solid oxide fuel cell of the present invention.
  • This solid oxide fuel cell differs from the solid oxide fuel cell of FIG. 1 in that a heat insulating material member 3 is formed so as to individually surround the vaporizer 7 and the heat exchanger 10, respectively. The only difference is that the heat recovery passage 11 is formed so as to also surround the gasifier 7 and the heat exchanger 10.
  • the heat recovery efficiency can be further improved, and the same operation as the embodiment of FIG. 1 can be achieved.
  • the same changes as in the embodiment of FIG. 8 can be made to the embodiments of FIGS.
  • FIG. 9 is a schematic diagram showing still another embodiment of the solid oxide fuel cell of the present invention.
  • This solid oxide fuel cell differs from the solid oxide fuel cell of Fig. 1 only in that a vaporizer 7 and a heat exchanger 10 are also accommodated in the space accommodating the fuel cell stack 1. You.
  • the heat recovery efficiency can be further improved, and the same operation as the embodiment of Fig. 1 can be achieved.
  • the same changes as in the embodiment of FIG. 9 can be made to the embodiments of FIGS.
  • FIG. 10 is a schematic diagram showing still another embodiment of the solid oxide fuel cell of the present invention.
  • This solid oxide fuel cell differs from the solid oxide fuel cell of FIG. 1 in that a first flow path 13 for guiding air to the heat exchanger 10 and a The only difference is that a second flow path 14 for guiding the heat to the heat recovery passage 11 is provided, and flow control sections 15 and 16 are provided in the respective flow paths 13 and 14.
  • the heat recovery passage 11 since the amount of air passing through the heat recovery passage 11 provided in the heat insulating material member 3 is made smaller than the total amount required for power generation, the heat recovery passage 11 is thinned to reduce the cross-sectional area. In addition, the thickness of the heat insulating layer can be significantly reduced, and the overall size can be significantly reduced. [0043] In addition, since the flow rate of each air can be adjusted by the flow rate adjusting units 15 and 16 provided in the respective flow paths 13 and 14, the operation state such as the rated operation, the partial load operation, and the standby operation is used. Therefore, the flow rate of the air branched according to the flow rate can be made an appropriate amount, and good high-efficiency operation can be realized regardless of the operation state.
  • the reformer 8 can be omitted by adopting a completely internal reforming type configuration.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fuel Cell (AREA)

Abstract

 熱回収用の流路に流す流体の流量を全流量に対して適正に制御するために、空気供給源9と熱交換器10との間で空気を分岐させ、分岐された空気を熱回収通路11に導くとともに、分岐される空気の量を調整する分岐流量調整部12を有している。    

Description

明 細 書
固体電解質型燃料電池
技術分野
[0001]
この発明は、固体電解質型燃料電池スタックを収納容器内に収納してなる固体電 解質型燃料電池に関する。
背景技術
[0002]
従来から、燃料ガスと酸素含有ガスとから発電を行う電池スタックおよびこの電池ス タックからの残余の燃料ガスと酸素含有ガスとを接触させて燃焼させる燃焼部とを内 包する電池モジュールの周囲に電池モジュールからの損失熱を回収する熱回収通 路を設けてなる燃料電池が提案されてレ、る(特許文献 1、特許文献 2参照)。
[0003] 特許文献 1に記載された固体電解質型燃料電池は、燃料電池スタックを包囲する 高温断熱材と低温断熱材との間に流体流路を形成し、この流体流路を通して燃料電 池スタックの空気投入口に空気を供給するとともに、燃料供給源から燃料を予熱器で 予熱した後に燃料電池スタックの燃料投入口に供給するよう構成されている。
[0004] 特許文献 2に記載された燃料電池は、枠体と断熱材との間に配管を有する収納容 器の内部に、複数の燃料電池セルからなるセルスタックを収納し、燃料ガス供給管を 通して燃料ガスを供給し、酸素含有ガス管、および前記配管を通して酸素含有ガス を供給するよう構成されてレ、る。
特許文献 1 :特開 2003 - 151610号公報
特許文献 2:特開 2003 - 249256号公報
発明の開示
発明が解決しょうとする課題
[0005] 固体電解質型燃料電池は、約 700— 1000°Cの高温で作動するのであるから、発 電を行う電池スタックの温度を適正に維持し、熱の損失を防ぎ高効率で発電を行レ、、 更に外面を許容される温度以下に保っために、電池スタックを内包する電池モジュ ールを厚い断熱材で覆う必要があり、周囲の断熱層も含めた電池モジュールのコン パクト化が妨げられていた。
[0006] また、電池モジュールの高効率化のため電池モジュール廻りの断熱層に空気通路 を設け、空気通路を流れる空気で電池モジュールからの損失熱を回収する技術は知 られている(特許文献 1、特許文献 2参照)。しかし、特許文献 1、特許文献 2の構成で は電池スタックに供給する全ての空気を空気通路を通して流すため、低動力で空気 を供給するためには空気流路の断面積を大きくする必要があり、また、空気の流量が 過大であるために電池モジュールを冷却しすぎる恐れがあるので熱回収用の空気流 路と電池モジュールとの間の断熱層をある程度厚くせざるを得ず、熱回収用の空気 通路を含めた断熱層の厚さも厚くなつていた。
[0007] また、部分負荷運転においては、発電量の減少に伴い供給空気量も減少させるこ とになり、熱回収用の空気通路を流れる空気の流量は減少する。し力、しながら、電池 スタックの温度は部分負荷運転時においても定格運転時と同じ温度に保つ必要があ るため損失熱量は
発電量、供給流量に対し相対的に大きくなる。そのため、適正な熱回収を行い電池 モジュールを適正な温度に維持するためには部分負荷時には、熱回収用の空気流 路を流す空気の流量の全流量に対する割合を、定格運転時に対し相対的に増やす 必要がある。微小な発電、または燃焼で電池スタックの温度を維持する待機運転 (ホ ットスタンバイ)の場合も同様である。しかし、このような要請に応えるように熱回収用 の空気流路を流す空気の流量を全流量に対して変化させることはできない。
[0008] この発明は上記の問題点に鑑みてなされたものであり、熱回収用の流路に流す流 体の流量を全流量に対して適正に制御することができる固体電解質型燃料電池を提 供することを目的としている。
課題を解決するための手段
[0009] この発明の固体電解質型燃料電池は、燃料ガスと酸素含有ガスとから発電を行う 電池スタックおよびこの電池スタックからの残余の燃料ガスと酸素含有ガスとを接触さ せて燃焼させる燃焼部とを内包する電池モジュールの周囲に、電池モジュールから の損失熱を回収する熱回収通路を設けてなるものにおいて、 前記電池スタックへの、燃料ガス、酸素含有ガスの一方である供給流体を分岐し、 かつ分岐される供給流体の流量を調整する分岐流量調整手段と、分岐され、かつ流 量が調整された供給流体を前記熱回収通路に供給する分岐流路とを含むものであ る。
[0010] したがって、熱回収通路に供給される供給流体の流量を全流量よりも少なくできる ことに起因して、熱回収通路を薄くできるとともに、断熱層の厚みを小さくすることがで き、ひいては、全体として大幅なコンパクトィ匕を達成することができる。また、分岐流量 を調整することができるので、部分負荷運転時や待機運転時においても適正な熱回 収が可能となり、良好な高効率運転を達成することができる。
[0011] この場合において、前記分岐流量調整手段は、固体電解質型燃料電池が部分負 荷運転または待機運転を行っていることに応答して、前記分岐される供給流体の流 量の全流量に対する割合を増加させるものであることが好ましい。
[0012] また、前記熱回収通路は、前記電池モジュールを基準として複数層に形成されて レ、ることが好ましい。
[0013] さらに、前記熱回収通路は、燃焼排ガスとの間で熱交換を行う熱交換器をも包囲す るものであってもよレ、。また、前記電池モジュールは、燃焼排ガスとの間で熱交換を 行う熱交換器をも収納するものであってもよレ、。
[0014] さらに、前記熱回収通路は、水を添加した燃料ガスを気化させる気化器をも包囲す るものであってもよレ、。また、前記電池モジュールは、水を添加した燃料ガスを気化さ せる気化器をも収納するものであってもよい。
[0015] 他の発明の固体電解質型燃料電池は、燃料ガスと酸素含有ガスとから発電を行う 電池スタックおよびこの電池スタックからの残余の燃料ガスと酸素含有ガスとを接触さ せて燃焼させる燃焼部とを内包する電池モジュールの周囲に、電池モジュールから の損失熱を回収する熱回収通路を有するものにおいて、
酸素含有ガスを前記電池スタックに導く第 1の流路と、酸素含有ガスを前記熱回収 通路に導く第 2の流路とを含むものである。
[0016] したがって、熱回収通路に供給される酸素含有ガスの流量を全流量よりも少なくで きることに起因して、熱回収通路を薄くできるとともに、断熱層の厚みを小さくすること がで
き、ひいては、全体として大幅なコンパクトィ匕を達成することができる。また、酸素含有 ガスの流量を独立に調整することができるので、部分負荷運転時や待機運転時にお いても適正な熱回収が可能となり、良好な高効率運転を達成することができる。 発明の効果
[0017] この発明は、固体電解質型燃料電池を全体として大幅に小型化することができ、し 力も、運転状態に拘らず良好な高効率運転を達成することができるという特有の効果 を奏する。
図面の簡単な説明
[0018] [図 1]この発明の固体電解質型燃料電池の一実施形態を示す概略図である。
[図 2]熱回収通路の構成の一例を示す一部切欠概略斜視図である。
[図 3]熱回収通路の構成の一例を示す横断面図である。
[図 4]熱回収通路の構成の他の例を示す横断面図である。
[図 5]熱回収通路の構成のさらに他の例を示す横断面図である。
[図 6]この発明の固体電解質型燃料電池の他の実施形態を示す概略図である。
[図 7]この発明の固体電解質型燃料電池のさらに他の実施形態を示す概略図である
[図 8]この発明の固体電解質型燃料電池のさらに他の実施形態を示す概略図である
[図 9]この発明の固体電解質型燃料電池のさらに他の実施形態を示す概略図である
[図 10]この発明の固体電解質型燃料電池のさらに他の実施形態を示す概略図であ る。
符号の説明
[0019] 1 燃料電池スタック
3 断熱材部材
10 熱交換器
11 熱回収通路 12 分岐流量調整部
発明を実施するための最良の形態
[0020] 以下、添付図面を参照して、この発明の固体電解質型燃料電池の実施形態を詳 細に説明する。
[0021] 図 1はこの発明の固体電解質型燃料電池の一実施形態を示す概略図である。
[0022] この固体電解質型燃料電池は、燃料電池スタック 1と、この燃料電池スタック 1を収 納する収納容器 2と、この収納容器 2を包囲する断熱材部材 3と、燃料ガス供給源 4と 、燃料ガスを受け取って脱硫処理を行う脱硫器 5と、脱硫器 5からの出力(脱硫燃料 ガス)に水を添加する水添加部 6と、前記燃料電池スタック 1からの燃焼ガスとの間で 熱交換を行って、水が添加された脱硫燃料ガスを気化させる気化器 7と、気化された 水添加脱硫燃料ガスを改質して前記燃料電池スタック 1に供給する改質器 8と、空気 供給源 9と、気化器
7から出力されるガスとの間で熱交換を行って空気供給源 9からの空気を昇温させて 前記高温容器 2を通して前記燃料電池スタック 1に供給する熱交換器 10と、前記断 熱材部材 3に形成され、かつ前記燃料電池スタック 1の空気供給部に連通された熱 回収通路 11と、前記空気供給源 9と熱交換器 10との間で空気を分岐させ、分岐され た空気を熱回収通路 11に導くとともに、分岐される空気の量を調整する分岐流量調 整部 12とを有している。
[0023] また、燃料電池スタック 1を支持する機構は従来公知であるから図示を省略してある
[0024] 上記の構成の固体電解質型燃料電池は、燃料ガスと空気との供給を受け、燃料ガ スを燃焼させるとともに、排熱を回収することによって約 700 1, 000°Cの動作温度 を維持して燃料ガスの燃焼を継続させる点は従来公知であるから、ここでは詳細な説 明を省略する。
[0025] この実施形態では、断熱材部材 3に設けられた熱回収通路 11を通る空気の量を、 発電に対する全必要量よりも少なくするので、熱回収通路 11を薄くして断面積を減 少させることができ、し力も断熱層の厚みを大幅に低減して、全体としての大幅な小 型化を達成することができる。 [0026] また、分岐流量調整部 12によって、分岐される空気の流量を調整できるので、定格 運転時、部分負荷運転時、待機運転時などのような運転状態に応じて分岐される空 気の流量を適正量にすることができ、運転状態に拘らず良好な高効率運転を実現す ること力 Sできる。
[0027] 図 1においては、熱回収通路 11を図中上下方向(例えば、円筒状の断熱材部材 3 の中心軸と平行な方向)に延びるものとして示している力 図 2に示すように、リング状 (例えば、円筒状の断熱材部材 3の中心軸を中心とするリング状)に延びるものであつ てもよレ、。この場合において、図 3に示すように、同一平面内において互いに同心に 折り返し状であってもよぐ図 4に示すように、同一平面内において互いに同心であつ て同一方向に空気を導くよう直列接続された形状であってもよぐ図 5に示すように、 同一平面内において単一のリング状となるよう形成された形状であってもよレ、。ただし
、図 3から図 5の何れの場合にも、図 2における異なる平面の熱回収通路 11との間で 所望の接続通路による接続が達成されている。
[0028] 図 6はこの発明の固体電解質型燃料電池の他の実施形態を示す概略図である。
[0029] この固体電解質型燃料電池が図 1の固体電解質型燃料電池と異なる点は、分岐流 量調整部 12を空気供給源 9と熱交換器 10との間に設ける代わりに、脱硫器 5と水添 加部 6との間に設けた点のみである。
[0030] この実施形態においては、脱硫燃料ガスを熱回収通路 11に導いて排熱を回収す ること力 Sでき、空気により排熱を回収する図 1の実施形態と同様の作用を達成すること ができる。
[0031] 図 7はこの発明の固体電解質型燃料電池のさらに他の実施形態を示す概略図であ る。
[0032] この固体電解質型燃料電池が図 1の固体電解質型燃料電池と異なる点は、水を気 化器 7で気化させた後に脱硫燃料ガスに添加する点のみである。
[0033] この実施形態においては、水を気化させてから脱硫燃料ガスに添加させるのである が、
最終的には、図 1の実施形態と同じ状態で、水が添加された脱硫燃料ガスを燃料電 池スタック 1に供給することができ、ひいては、図 1の実施形態と同様の作用を達成す ること力 Sできる。
[0034] 図 8はこの発明の固体電解質型燃料電池のさらに他の実施形態を示す概略図であ る。
[0035] この固体電解質型燃料電池が図 1の固体電解質型燃料電池と異なる点は、気化器 7、および熱交換器 10をもそれぞれ個別に包囲するように断熱材部材 3を形成し、気 化器 7、および熱交換器 10をも包囲するように熱回収通路 11を形成した点のみであ る。
[0036] この実施形態においては、熱回収効率を一層高めることができるほか、図 1の実施 形態と同様の作用を達成することができる。ただし、図 6、図 7の実施形態に対して図 8の実施形態と同様の変更を施すことが可能である。
[0037] 図 9はこの発明の固体電解質型燃料電池のさらに他の実施形態を示す概略図であ る。
[0038] この固体電解質型燃料電池が図 1の固体電解質型燃料電池と異なる点は、燃料電 池スタック 1を収容する空間に気化器 7、および熱交換器 10をも収容した点のみであ る。
[0039] この実施形態においても、熱回収効率を一層高めることができるほか、図 1の実施 形態と同様の作用を達成することができる。ただし、図 6、図 7の実施形態に対して図 9の実施形態と同様の変更を施すことが可能である。
[0040] 図 10はこの発明の固体電解質型燃料電池のさらに他の実施形態を示す概略図で ある。
[0041] この固体電解質型燃料電池が図 1の固体電解質型燃料電池と異なる点は、分岐流 量調整部 12に代えて、空気を熱交換器 10に導く第 1の流路 13、および空気を熱回 収通路 11に導く第 2の流路 14を設け、各流路 13、 14に流量調整部 15、 16を設け た点のみである。
[0042] この実施形態では、断熱材部材 3に設けられた熱回収通路 11を通る空気の量を、 発電に対する全必要量よりも少なくするので、熱回収通路 11を薄くして断面積を減 少させることができ、し力、も断熱層の厚みを大幅に低減して、全体としての大幅な小 型化を達成することができる。 [0043] また、各流路 13、 14に設けた流量調整部 15、 16によって、各々の空気の流量を 調整できるので、定格運転時、部分負荷運転時、待機運転時などのような運転状態 に応じて分岐される空気の流量を適正量にすることができ、運転状態に拘らず良好 な高効率運転を実現することができる。
[0044] また、以上の各実施形態において、完全内部改質型の構成を採用することによつ て、改質器 8を省略することが可能である。

Claims

請求の範囲
[1] 燃料ガスと酸素含有ガスとから発電を行う電池スタック(1)およびこの電池スタック(1
)からの残余の燃料ガスと酸素含有ガスとを接触させて燃焼させる燃焼部とを内包す る電池モジュールの周囲に、電池モジュールからの損失熱を回収する熱回収通路(
11)を有する固体電解質型燃料電池において、
前記電池スタック(1)への、燃料ガス、酸素含有ガスの一方である供給流体を分岐し
、かつ分岐される供給流体の流量を調整する分岐流量調整手段(12)と、分岐され、 かつ流量が調整された供給流体を前記熱回収通路(11)に供給する分岐流路と を含むことを特徴とする固体電解質型燃料電池。
[2] 前記分岐流量調整手段(12)は、固体電解質型燃料電池が部分負荷運転または待 機運転を行っていることに応答して、前記分岐される供給流体の流量の全流量に対 する割合を増加させるものである請求項 1に記載の固体電解質型燃料電池。
[3] 前記熱回収通路(11)は、前記電池モジュール(1)を基準として複数層に形成されて いる請求項 1または請求項 2に記載の固体電解質型燃料電池。
[4] 前記熱回収通路(11)は、燃焼排ガスとの間で熱交換を行う熱交換器(10)をも包囲 するものである請求項 1から請求項 3の何れかに記載の固体電解質型燃料電池。
[5] 前記電池モジュールは、燃焼排ガスとの間で熱交換を行う熱交換器(10)をも収納す るものである請求項 1から請求項 3の何れかに記載の固体電解質型燃料電池。
[6] 前記熱回収通路(11)は、水を添加した燃料ガスを気化させる気化器(7)をも包囲す るものである請求項 1から請求項 5の何れかに記載の固体電解質型燃料電池。
[7] 前記電池モジュールは、水を添加した燃料ガスを気化させる気化器(7)をも収納する ものである請求項 1から請求項 5の何れかに記載の固体電解質型燃料電池。
[8] 燃料ガスと酸素含有ガスとから発電を行う電池スタック(1)およびこの電池スタック(1
)からの残余の燃料ガスと酸素含有ガスとを接触させて燃焼させる燃焼部とを内包す る電池モジュールの周囲に、電池モジュールからの損失熱を回収する熱回収通路(
11)を有する固体電解質型燃料電池にぉレ、て、
酸素含有ガスを前記電池スタック(1)に導く第 1の流路と、酸素含有ガスを前記熱回 収通路(11)に導く第 2の流路と を含むことを特徴とする固体電解質型燃料電池。
PCT/JP2005/004183 2004-03-31 2005-03-10 固体電解質型燃料電池 WO2005099014A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/594,388 US20080057365A1 (en) 2004-03-31 2005-03-10 Solid Electrolyte Type Fuel Cell
EP05720454A EP1734605A4 (en) 2004-03-31 2005-03-10 FERTELECTROLYTTYF FUEL CELL

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-106588 2004-03-31
JP2004106588A JP4696461B2 (ja) 2004-03-31 2004-03-31 固体電解質型燃料電池

Publications (1)

Publication Number Publication Date
WO2005099014A1 true WO2005099014A1 (ja) 2005-10-20

Family

ID=35125390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/004183 WO2005099014A1 (ja) 2004-03-31 2005-03-10 固体電解質型燃料電池

Country Status (5)

Country Link
US (1) US20080057365A1 (ja)
EP (1) EP1734605A4 (ja)
JP (1) JP4696461B2 (ja)
CN (1) CN100474676C (ja)
WO (1) WO2005099014A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020013660A (ja) * 2018-07-13 2020-01-23 東京瓦斯株式会社 燃料電池モジュール及びプログラム

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4979952B2 (ja) * 2006-01-30 2012-07-18 三菱マテリアル株式会社 燃料電池発電装置及び制御プログラム並びに制御方法
JP5122083B2 (ja) * 2006-05-22 2013-01-16 三菱マテリアル株式会社 燃料電池発電装置及び制御プログラム並びに燃料電池発電装置の制御方法
JP5233249B2 (ja) * 2007-11-09 2013-07-10 日産自動車株式会社 燃料電池
JP4678025B2 (ja) * 2007-12-17 2011-04-27 カシオ計算機株式会社 反応装置及び電子機器
WO2009096291A1 (ja) * 2008-01-29 2009-08-06 Kyocera Corporation 燃料電池モジュールおよび燃料電池装置
US20090253092A1 (en) * 2008-04-07 2009-10-08 Hunter Manufacturing Co. Fuel cell heater
JP5519357B2 (ja) * 2009-03-24 2014-06-11 大阪瓦斯株式会社 固体酸化物形燃料電池システム及びこれを備えたコージェネレーションシステム
JP2011014495A (ja) * 2009-07-06 2011-01-20 Toyota Motor Corp 燃料電池モジュール
JP5539754B2 (ja) * 2010-02-26 2014-07-02 Jx日鉱日石エネルギー株式会社 燃料電池用脱硫器の加熱方法及び燃料電池システム
JP6497509B2 (ja) * 2015-02-25 2019-04-10 Toto株式会社 固体酸化物形燃料電池装置
JP2017183135A (ja) * 2016-03-31 2017-10-05 Toto株式会社 固体酸化物形燃料電池装置
JP6768327B2 (ja) * 2016-03-31 2020-10-14 森村Sofcテクノロジー株式会社 固体酸化物形燃料電池装置
JP2017183131A (ja) * 2016-03-31 2017-10-05 Toto株式会社 固体酸化物形燃料電池装置
JP2017183130A (ja) * 2016-03-31 2017-10-05 Toto株式会社 固体酸化物形燃料電池装置
JP6848101B2 (ja) * 2020-01-24 2021-03-24 森村Sofcテクノロジー株式会社 固体酸化物形燃料電池装置
JP6848100B2 (ja) * 2020-01-24 2021-03-24 森村Sofcテクノロジー株式会社 固体酸化物形燃料電池装置
JP6848104B2 (ja) * 2020-02-18 2021-03-24 森村Sofcテクノロジー株式会社 固体酸化物形燃料電池装置
GB2614325A (en) * 2021-12-30 2023-07-05 Ceres Ip Co Ltd Fuel cell system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08505491A (ja) * 1992-11-25 1996-06-11 エス. スー,マイケル 高温電気化学変換器における再生熱及び放射熱の集積
JP2002252003A (ja) * 2001-02-22 2002-09-06 Nippon Steel Corp 固体酸化物形燃料電池と燃焼を利用する産業プロセスとのコンバインドシステム
JP2003059521A (ja) * 2001-08-13 2003-02-28 Nippon Steel Corp 固体酸化物形燃料電池と燃焼を利用する産業プロセスとのコンバインドシステムとその運転方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0398111A1 (de) * 1989-05-18 1990-11-22 Asea Brown Boveri Ag Vorrichtung zur Umwandlung chemischer Energie von Kohlenwasserstoffen in elektrische Energie mittels eines elektrochemischen Hochtemperaturprozesses
EP0580918B1 (de) * 1992-07-27 1995-12-13 Sulzer Innotec Ag Vorrichtung mit Hochtemperatur-Brennstoffzellen
DE4319411A1 (de) * 1993-06-14 1994-12-15 Siemens Ag Hochtemperaturbrennstoffzellenanlage
DE4425186C1 (de) * 1994-07-16 1996-03-07 Mtu Friedrichshafen Gmbh Brennstoffzellenanordnung und Verfahren zum Betreiben einer Brennstoffzellenanordnung
DE19712864C2 (de) * 1997-03-27 2002-12-19 Mtu Friedrichshafen Gmbh Brennstoffzellenanordnung mit internen und externen Gasverteilungsvorrichtungen
US6794074B2 (en) * 2000-10-12 2004-09-21 Rayovac Corporation Air manager for metal-air cells
KR100533298B1 (ko) * 2002-09-30 2005-12-05 가부시끼가이샤 도시바 연료 전지 시스템

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08505491A (ja) * 1992-11-25 1996-06-11 エス. スー,マイケル 高温電気化学変換器における再生熱及び放射熱の集積
JP2002252003A (ja) * 2001-02-22 2002-09-06 Nippon Steel Corp 固体酸化物形燃料電池と燃焼を利用する産業プロセスとのコンバインドシステム
JP2003059521A (ja) * 2001-08-13 2003-02-28 Nippon Steel Corp 固体酸化物形燃料電池と燃焼を利用する産業プロセスとのコンバインドシステムとその運転方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1734605A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020013660A (ja) * 2018-07-13 2020-01-23 東京瓦斯株式会社 燃料電池モジュール及びプログラム
JP7066561B2 (ja) 2018-07-13 2022-05-13 東京瓦斯株式会社 燃料電池モジュール及びプログラム

Also Published As

Publication number Publication date
EP1734605A1 (en) 2006-12-20
CN100474676C (zh) 2009-04-01
US20080057365A1 (en) 2008-03-06
CN1938890A (zh) 2007-03-28
EP1734605A4 (en) 2009-07-29
JP2005293999A (ja) 2005-10-20
JP4696461B2 (ja) 2011-06-08

Similar Documents

Publication Publication Date Title
WO2005099014A1 (ja) 固体電解質型燃料電池
JP5214190B2 (ja) 燃料電池システム及びその運転方法
CA2519529C (en) Thermally integrated fuel cell system
US7846599B2 (en) Method for high temperature fuel cell system start up and shutdown
JP5098134B2 (ja) 固体電解質型燃料電池
JP2008541382A (ja) 一体化熱交換器ネットワークを有する高温型燃料電池システム
US11196059B2 (en) Fuel cell system
JP3685936B2 (ja) 固体高分子型燃料電池システム
JP2006269332A (ja) 固体酸化物形燃料電池システム
JP2009032596A (ja) 固体酸化物形燃料電池システムの運転温度制御法
US20190140298A1 (en) High efficiency fuel cell system with hydrogen and syngas export
JP5697577B2 (ja) 燃料電池モジュール
JP6237114B2 (ja) 燃料電池装置
JP2001143731A (ja) 燃料電池システム
US11742498B1 (en) Thermal management of a solid oxide fuel cell system
WO2023163182A1 (ja) 燃料電池システム
WO2023182490A1 (ja) 燃料電池システム
JP5738319B2 (ja) 燃料電池システム
JP2023023237A (ja) 固体酸化物形燃料電池システム
JP2005294000A (ja) 固体電解質型燃料電池
JPH06310163A (ja) 燃料電池発電システム
JP2015109226A (ja) 燃料電池装置
JP2012221562A (ja) 燃料電池システム

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005720454

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200580010177.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 2005720454

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10594388

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10594388

Country of ref document: US