WO2005098904A1 - Dielectric barrier discharge lamp - Google Patents

Dielectric barrier discharge lamp Download PDF

Info

Publication number
WO2005098904A1
WO2005098904A1 PCT/JP2005/006980 JP2005006980W WO2005098904A1 WO 2005098904 A1 WO2005098904 A1 WO 2005098904A1 JP 2005006980 W JP2005006980 W JP 2005006980W WO 2005098904 A1 WO2005098904 A1 WO 2005098904A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
light
conductor
transmitting window
dielectric barrier
Prior art date
Application number
PCT/JP2005/006980
Other languages
French (fr)
Japanese (ja)
Inventor
Koji Hosotani
Kazuya Hatase
Shingo Ezaki
Original Assignee
Japan Storage Battery Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co., Ltd. filed Critical Japan Storage Battery Co., Ltd.
Publication of WO2005098904A1 publication Critical patent/WO2005098904A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J65/00Lamps without any electrode inside the vessel; Lamps with at least one main electrode outside the vessel
    • H01J65/04Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels
    • H01J65/042Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field
    • H01J65/046Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field the field being produced by using capacitive means around the vessel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/04Electrodes; Screens; Shields
    • H01J61/06Main electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/30Vessels; Containers
    • H01J61/305Flat vessels or containers

Definitions

  • the present invention relates to a dielectric paria discharge lamp. Background art
  • the solid discharge electrode 105 is disposed on the upper and outer surfaces of the discharge tube 103 of the conventional dielectric barrier discharge lamp, and the mesh electrode 107 is disposed on the lower outer surface.
  • Ultraviolet light (indicated by the arrow in FIG. 9) is radiated from the mesh gap of the mesh electrode 107.
  • the surface of the object to be processed 109 such as a glass substrate used for a liquid crystal display device
  • organic substances on the surface of the object to be processed 109 are decomposed. Thereby, the object to be processed 109 is washed. Disclosure of the invention
  • the intensity of the ultraviolet light emitted by the dielectric barrier discharge lamp 100 gradually decreases due to deterioration accompanying use. Therefore, it is necessary to measure the intensity of the ultraviolet light in order to grasp the replacement time of the dielectric barrier discharge lamp 100.
  • an object of the present invention is to provide a dielectric flash discharge lamp capable of measuring the intensity of ultraviolet light on the solid electrode side.
  • the first electrode is formed of a Megsch-like conductor
  • the second electrode is formed of a solid conductor, and a part thereof.
  • the region is a light-transmitting window lacking a conductor, and the light-transmitting window is provided with a mesh-shaped conductor.
  • the conductor is electrically connected to the solid conductor around the light-transmitting window. Connected.
  • the second electrode is a solid electrode, no ultraviolet light leaks from the second electrode side. Therefore, deterioration of the member (for example, resin coating of the power cord) disposed on the second electrode side is suppressed. Further, since the partial region of the second electrode is a light-transmitting window through which the ultraviolet light lacking the conductor passes, the intensity of the ultraviolet light is measured by the ultraviolet light emitted from the light-transmitting window.
  • the “solid electrode” means an electrode formed in a film shape by a metal conductor that does not transmit ultraviolet light. Also, it means an electrode that does not leak ultraviolet light because there is no hole. However, electrodes that are extremely small and have holes that are not capable of substantially measuring the intensity of ultraviolet light are included in “solid electrodes”.
  • the second electrode is provided with a light-transmitting window (see reference numeral 40 in FIG. 6) for transmitting ultraviolet light, no discharge occurs in this portion. For this reason, at the position on the first electrode side facing the translucent window (see position B in FIG. 6), the intensity of the emitted ultraviolet light is smaller than that of the other parts (see position C and position D in FIG. 6). . Also, the measurement error of the ultraviolet intensity becomes large.
  • the light-transmitting window is provided with a mesh-shaped conductor, and the conductor is electrically connected to the conductor around the light-transmitting window. Therefore, discharge occurs also in the light transmitting window portion. Therefore, even at the position on the first electrode side facing the light-transmitting window (see position B in FIG. 7), the ultraviolet intensity becomes almost the same as the other parts (see position C and position D in FIG. 7). In addition, since discharge is generated also in the light transmitting window portion, a decrease in the intensity of the ultraviolet light radiated from the light transmitting window is suppressed, and a measurement error is suppressed.
  • the light-transmitting window may be disposed at an end of the solid conductor. This is illustrated, for example, by FIG. According to such an embodiment, the effect of the present invention can be obtained.
  • the conductor electrically connected to the second electrode may have any shape such as a mesh shape, a strip shape, a radial shape, or a spiral shape. Regardless of the shape of the conductor, the effects of the present invention can be obtained as long as the discharge in the light transmitting portion is captured.
  • An ultraviolet irradiation device is configured by combining the dielectric barrier discharge lamp of the present application with a sensor capable of detecting ultraviolet intensity. This provides an ultraviolet irradiation device having a uniform ultraviolet intensity and capable of measuring a change in the ultraviolet intensity.
  • FIG. 1 is a sectional view of a dielectric barrier discharge lamp.
  • FIG. 2 is a perspective view of the discharge tube.
  • FIG. 3 is a perspective view of the discharge tube.
  • FIG. 4 is an enlarged plan view of the translucent window.
  • FIG. 5 is a cross-sectional view of a discharge tube (type 1).
  • Figure 6 is a cross-sectional view of a discharge tube (type 2).
  • FIG. 7 is a cross-sectional view of a discharge tube (type 3).
  • FIG. 8 is a perspective view of a discharge tube according to another embodiment.
  • FIG. 9 is a perspective view of a conventional dielectric barrier discharge lamp.
  • 1 is a dielectric barrier discharge lamp
  • 3 is a discharge tube
  • 7 is an electrode
  • 7 A is a first electrode
  • 7 B is a second electrode
  • 40 is a translucent window
  • 43 is a metal film
  • 45 is metal. Show the membrane.
  • the vertical direction is based on FIG.
  • the right side in Fig. 1 is the front.
  • a discharge space 5 formed by the discharge tube 3 is filled with a gas for dielectric barrier discharge.
  • a pair of electrodes 7 A and 7 B facing each other are provided on the outer surface of the discharge tube 3.
  • a lead wire 9 is connected to these electrodes 7A and 7B.
  • the electrode 7A has a mesh shape.
  • Electrode 7B is solid.
  • Part of the solid electrode 7B has a light transmitting window 40.
  • a mesh-shaped conductor 43 is formed in the translucent window 40.
  • Electrode 7A is connected to ground, and electrode 7B is connected to a power supply (not shown) that applies AC voltage.
  • the dielectric barrier discharge gas xenon (X e), argon (A r), and krypton (K r), noble gases etc, and fluorine (F 2), halogen such as chlorine (C 1 2) Gas or the like is used.
  • the dielectric barrier discharge lamp 1 emits excimer light having different wavelengths (wavelengths such as 1722 nm, 222 nm, and 308 nm) depending on the type of gas. For example, excimer light having a center wavelength of 170 nm is used for cleaning electronic components, that is, for decomposing organic compounds attached to electronic components. Therefore, in this case, a gas containing xenon (Xe) is used.
  • Gas filling pressure is particularly limited However, it is usually sealed at a pressure of about 10 to 60 KPa.
  • the discharge tube 3 is formed by closing both ends of a flat rectangular tube made of synthetic quartz.
  • a first electrode 7A which is a mesh-like (mesh-like) chrome Z nickel film (corresponding to a conductor), is formed by vapor deposition.
  • a second electrode 7B which is a chromium / nickel film (corresponding to a conductor), is formed on the upper and outer surfaces of the discharge tube 3.
  • the thickness of each of the first electrode 7A and the second electrode 7B is preferably 0.1 to 100 ⁇ m.
  • the second electrode 7B is formed of a solid metal film, and a part of the second electrode 7B is a light-transmitting window 40 for ultraviolet intensity measurement lacking the solid metal film. This structure will be described later in detail. Both electrodes 7 A and 7 B are formed up to near both ends of the discharge tube 3. A solid portion 7C is formed at the front end of the first electrode 7A, and a rectangular extending portion 7D extending forward from the solid portion 7C is provided. The second electrode 7B also has an extension 7D similar to that of the first electrode 7A.
  • the light transmitting window 40 is formed in an oval shape at a position near the rear end of the second electrode 7B.
  • the area of the transparent window 40 is not particularly limited, but is preferably 0.5 cm 2 or more. If it is 0.5 cm 2 or more, sufficient ultraviolet light for measuring the ultraviolet light intensity can be obtained from the light transmitting window 40.
  • the light receiving portion 50 of a general ultraviolet sensor has a substantially cylindrical shape with a diameter of about 4 mm. Therefore, if the area of the light transmitting window 40 is too large, the light receiving portion Since the amount of ultraviolet rays leaking to the rear of the light receiving portion 50 without being received by 50 increases, the amount is preferably 2 cm 2 or less.
  • a mesh-shaped metal film 43 is provided in the light-transmitting window 40, and the metal film 43 is electrically connected to the metal film 45 around the light-transmitting window 40.
  • the mesh-like metal film 43 is formed by arranging linear element portions in a lattice.
  • the opening dimension L of the mesh-like metal film 43 shown in FIG. 4 is not particularly limited, but is preferably 3 mm or less. If the opening dimension L is larger than 3 mm, the discharge density of the light transmitting window 40 tends to be lower than that of the solid metal film 45. On the other hand, if the opening dimension L is larger than 3 mm, the uniformity of the ultraviolet intensity distribution in the longitudinal direction is impaired because the discharge density decreases.
  • the opening dimension L is preferably 1 mm or more.
  • the dielectric barrier discharge lamp 1 is configured. When the dielectric z rear discharge lamp 1 is used, the light receiving portion 50 of the ultraviolet intensity sensor is installed above the light transmitting window 40, and the light receiving portion 50 receives ultraviolet light for intensity measurement.
  • the light receiving section 50 of the ultraviolet intensity sensor was disposed at a position A above the light transmitting window 40.
  • the position B facing the position A, the position C at the center of the discharge tube 3, and the position D near the right end of the discharge tube 3 in FIGS. Were arranged, and the ultraviolet intensity at each of the positions A to D was measured.
  • the distance between the discharge tube 3 and the light receiving section 50 of the ultraviolet intensity sensor was set to about 4 mm.
  • the discharge tube 3 had a size of about 35 OmmX about 4 OmmX about 13 mm.
  • Xenon was sealed at a pressure of 40 KPa.
  • the peak voltage (lamp peak voltage) Vp applied between the electrodes during lighting was 6.5 kV.
  • the frequency f was fixed at 30 kHz.
  • the line width W of the strands composing the type 3 mesh was set to 0.4 mm, and the opening dimension L of the mesh was set to 2 mm (see Fig. 4).
  • Type 1 ⁇ 20.3 2 0.2 20.1 Type 2 3.7 4.9 20.1 20.0
  • Type 3 1 5.4 20.1 2 0.2 20.3
  • the ultraviolet intensity at position A was about four times that of type 2, and it was confirmed that the measurement error in UV intensity measurement could be reduced.
  • the ultraviolet intensities at positions B to D on the first electrode 7A side were almost the same.
  • the ultraviolet intensity was lower at the position B facing the translucent window 40 than at the positions C and D.
  • the ultraviolet intensity in the tube axis direction of the discharge tube 3 did not vary. This is considered to be because in the type 3, the light transmitting window 40 is also discharged by the mesh-like metal film 43.
  • the first electrode 7A and the second electrode 7B are both chromium Z nickel electrodes.
  • the conductor constituting the electrode is not particularly limited.
  • "cermet" or the like which is an intermediate material between metal and ceramic, may be used in addition to metal.
  • the shape of the light transmitting window 40 is an oval.
  • the shape is not particularly limited.
  • the discharge tube main body 13 is a rectangular tube.
  • the shape is not particularly limited.
  • the discharge tube body 13 may be in the shape of a round tube.
  • the position of the translucent window 40 is not particularly limited.
  • the position of the light transmitting window 40 may be provided at the end of the second electrode 7B.
  • the shape of the conductor arranged in the light transmitting window is not limited to a mesh shape.
  • the shape may be a stripe shape, a spiral shape, a radial shape, or the like.
  • the portion of the light-transmitting window referred to in the invention of the present application may be constituted by "a film conductor having a plurality of small holes".
  • the second electrode is a portion where the / J is formed in a part of the second electrode and a plurality of holes are densely formed (in this portion, the ultraviolet intensity can be measured.
  • the small hole of the film-shaped conductor may be formed in any shape such as a circle, an ellipse, and a square.

Abstract

A dielectric barrier discharge lamp, comprising a first electrode and a second electrode (7B) mounted on the outer surface of a discharge tube (3). The first electrode is formed of a mesh-like conductor, and the second electrode (7B) is formed of a solid conductor (45) and partly formed in a light transmitting window (40) by cutting out the conductor (45). The mesh-like conductor (43) is disposed at the light transmitting window (40) and electrically connected to the solid conductor (45) around the light transmitting window (40).

Description

明細書 誘電体バリア放電ランプ 技術分野  Description Dielectric barrier discharge lamp Technical field
本発明は、 誘電体パリア放電ランプに関する。 背景技術  The present invention relates to a dielectric paria discharge lamp. Background art
従来から、 特開 2 0 0 0— 2 6 0 3 9 6公報で開示されている ように、 図 9のよう な方形箱形の放電容器 1 0 3を用いた誘電体バリア放電ランプ 1 0 0が知られている この従来の誘電体バリァ放電ランプの放電管 1 0 3の上外面にはベタ電極 1 0 5が 、 また、 下外面にはメッシュ電極 1 0 7がそれぞれ配置されてい る。 紫外線 (図 9中 矢印で示す) は、 メッシュ電極 1 0 7の網目の隙間から放射される。 この紫外線が被 処理物 1 0 9 (液晶表示装置に用いられるガラス基板等) の表面に照射されることに よって、 被処理物 1 0 9表面の有機物が分解する。 これによつて、 被処理物 1 0 9が 洗浄される。 発明の開示  Conventionally, as disclosed in Japanese Patent Application Laid-Open No. 2000-260396, a dielectric barrier discharge lamp 100 using a rectangular box-shaped discharge vessel 103 as shown in FIG. The solid discharge electrode 105 is disposed on the upper and outer surfaces of the discharge tube 103 of the conventional dielectric barrier discharge lamp, and the mesh electrode 107 is disposed on the lower outer surface. Ultraviolet light (indicated by the arrow in FIG. 9) is radiated from the mesh gap of the mesh electrode 107. By irradiating the surface of the object to be processed 109 (such as a glass substrate used for a liquid crystal display device) with the ultraviolet rays, organic substances on the surface of the object to be processed 109 are decomposed. Thereby, the object to be processed 109 is washed. Disclosure of the invention
誘電体バリア放電ランプ 1 0 0が放射する紫外線の強度は、 用に伴う劣化によつ て、 徐々に低下する。 そのため、 誘電体バリア放電ランプ 1 0 0 の交換時期を把握す るために、 紫外線強度を測定する必要がある。  The intensity of the ultraviolet light emitted by the dielectric barrier discharge lamp 100 gradually decreases due to deterioration accompanying use. Therefore, it is necessary to measure the intensity of the ultraviolet light in order to grasp the replacement time of the dielectric barrier discharge lamp 100.
しかし、 従来の誘電体バリア放電ランプにおいては、 ベタ電梃 1 0 5側から紫外線 が放射されない。 そのため、 紫外線強度を測定することができ かった。 メッシュ電 極 1 0 7側で紫外線強度を測定することもできるにも思われる 、 メ ッシュ電極 1 0 7側には被処理物 1 0 9が配されるため、 紫外線強度測定用の irンサの受光部を配置 することは困難であった。  However, in the conventional dielectric barrier discharge lamp, no ultraviolet light is emitted from the solid electric lever 105 side. Therefore, it was not possible to measure the UV intensity. It seems that the UV intensity can be measured on the mesh electrode 107 side, but since the object to be treated 1109 is arranged on the mesh electrode 107 side, an infrared sensor for measuring the UV intensity can be used. It was difficult to arrange the light receiving section.
そこで、 本発明は、 上記事情に基づいて完成された。 すなわち、 本発明は、 ベタ電 極側において、 紫外線強度を測定することができる誘電体バリ ^放電ランプを提供す ることを目的としている。  Therefore, the present invention has been completed based on the above circumstances. That is, an object of the present invention is to provide a dielectric flash discharge lamp capable of measuring the intensity of ultraviolet light on the solid electrode side.
上記の目的を達成するための手段として、 放電管の外面に第 1 電極及び第 2電極を 備えた誘電体バリア放電ランプにおいて、 前記第 1電極は、 メグシュ状の導電体によ り形成され、 前記第 2電極は、 ベタ状の導電体により形成され ¾とともに、 その一部 領域は導電体を欠いた透光窓とされ、 前記透光窓には、 メッシュ状の導電体が配され ており、 この導電体は、 前記透光窓周りのベタ状の前記導電体と電気的に接続されて いる。 As a means for achieving the above object, in a dielectric barrier discharge lamp including a first electrode and a second electrode on an outer surface of a discharge tube, the first electrode is formed of a Megsch-like conductor, The second electrode is formed of a solid conductor, and a part thereof. The region is a light-transmitting window lacking a conductor, and the light-transmitting window is provided with a mesh-shaped conductor. The conductor is electrically connected to the solid conductor around the light-transmitting window. Connected.
本願発明によれば、 第 2電極は、 ベタ状の電極であるから、 第 2電極側から紫外線 がもれない。 そのため、 第 2電極側に配される部材 (例えば、 電源コードの樹脂被覆 ) の劣化が抑制される。 さらに、 第 2電極の一部領域は導電体を欠いた紫外線が透過 する透光窓とされているので、 この透光窓から放射された紫外線により、 紫外線強度 が測定されることとなる。 なお、 ここでいう 「ベタ状の電極」 とは、 紫外線を透過し ない金属導電体によって、 膜状に形成された電極を意味する。 また、 穴が無いことに よって、 紫外線が漏れない電極を意味する。 ただし、 極めて小さいために、 実質的に 紫外線強度を測定することができない程度の穴が空いている電極は、 「ベタ状の電極 」 に含むものとする。  According to the present invention, since the second electrode is a solid electrode, no ultraviolet light leaks from the second electrode side. Therefore, deterioration of the member (for example, resin coating of the power cord) disposed on the second electrode side is suppressed. Further, since the partial region of the second electrode is a light-transmitting window through which the ultraviolet light lacking the conductor passes, the intensity of the ultraviolet light is measured by the ultraviolet light emitted from the light-transmitting window. Here, the “solid electrode” means an electrode formed in a film shape by a metal conductor that does not transmit ultraviolet light. Also, it means an electrode that does not leak ultraviolet light because there is no hole. However, electrodes that are extremely small and have holes that are not capable of substantially measuring the intensity of ultraviolet light are included in “solid electrodes”.
第 2電極に、 紫外線が透過するための透光窓 (図 6の符号 4 0参照) が設けられた とすれば、 この部分では放電を生じない。 このため、 透光窓と対向する第 1電極側の 位置 (図 6の位置 B参照) では、 放射される紫外線の強度が、 その他の部分 (図 6の 位置 C , 位置 D参照) より小さくなる。 また、 紫外線強度の測定誤差が大きくなる。  If the second electrode is provided with a light-transmitting window (see reference numeral 40 in FIG. 6) for transmitting ultraviolet light, no discharge occurs in this portion. For this reason, at the position on the first electrode side facing the translucent window (see position B in FIG. 6), the intensity of the emitted ultraviolet light is smaller than that of the other parts (see position C and position D in FIG. 6). . Also, the measurement error of the ultraviolet intensity becomes large.
しかし、 本願発明においては、 透光窓には、 メッシュ状の導電体が配されており、 且つ、 この導電体は、 透光窓周りの導電体と電気的に接続されている。 したがって、 透光窓部分においても放電が生じる。 そのため、 透光窓と対向する第 1電極側の位置 (図 7の位置 B参照) でも、 紫外線強度がその他の部分 (図 7の位置 C , 位置 D参照 ) とほぼ同じになる。 また、 透光窓部分でも放電が生じるから、 透光窓から放射され る紫外線の強度の低下が抑制され、 測定誤差が抑えられる。  However, in the present invention, the light-transmitting window is provided with a mesh-shaped conductor, and the conductor is electrically connected to the conductor around the light-transmitting window. Therefore, discharge occurs also in the light transmitting window portion. Therefore, even at the position on the first electrode side facing the light-transmitting window (see position B in FIG. 7), the ultraviolet intensity becomes almost the same as the other parts (see position C and position D in FIG. 7). In addition, since discharge is generated also in the light transmitting window portion, a decrease in the intensity of the ultraviolet light radiated from the light transmitting window is suppressed, and a measurement error is suppressed.
本願発明において、 透光窓は、 ベタ状の前記導電体の端部に配されることができる 。 これは、 たとえば、 図 8によって示される。 このような実施の形態によっても、 本 願発明の効果が得られる。  In the present invention, the light-transmitting window may be disposed at an end of the solid conductor. This is illustrated, for example, by FIG. According to such an embodiment, the effect of the present invention can be obtained.
透光窓には、 前記第 2電極と電気的に接続された導電体は、 メッシュ状、 ス トライ プ状、 放射状、 又は渦巻き状等どのような形状であってもよい。 導電体の形状がどの ようなものであっても、 透光部における放電が捕われていれば、 本願発明の効果が得 られる。  In the light transmitting window, the conductor electrically connected to the second electrode may have any shape such as a mesh shape, a strip shape, a radial shape, or a spiral shape. Regardless of the shape of the conductor, the effects of the present invention can be obtained as long as the discharge in the light transmitting portion is captured.
本願の誘電体バリア放電ランプと紫外線強度を検知できるセンサとを組み合わせる ことよって、 紫外線照射装置が構成される。 これによつて、 紫外線強度が均一であり 、 且つ紫外線強度の変化を測定することを可能とした紫外線照射装置が提供される。 図面の簡単な説明 An ultraviolet irradiation device is configured by combining the dielectric barrier discharge lamp of the present application with a sensor capable of detecting ultraviolet intensity. This provides an ultraviolet irradiation device having a uniform ultraviolet intensity and capable of measuring a change in the ultraviolet intensity. Brief Description of Drawings
図 1は、 誘電体バリア放電ランプの断面図である。  FIG. 1 is a sectional view of a dielectric barrier discharge lamp.
図 2は、 放電管の斜視図である。  FIG. 2 is a perspective view of the discharge tube.
図 3は、 放電管の斜視図である。  FIG. 3 is a perspective view of the discharge tube.
図 4は、 透光窓の拡大平面図である。  FIG. 4 is an enlarged plan view of the translucent window.
図 5は、 放電管 (タイプ 1 ) の断面図である。  FIG. 5 is a cross-sectional view of a discharge tube (type 1).
図 6は、 放電管 (タイプ 2) の断面図である。  Figure 6 is a cross-sectional view of a discharge tube (type 2).
図 7は、 放電管 (タイプ 3) の断面図である。  FIG. 7 is a cross-sectional view of a discharge tube (type 3).
図 8は、 他の実施形態に関する放電管の斜視図である。  FIG. 8 is a perspective view of a discharge tube according to another embodiment.
図 9は、 従来例の誘電体バリァ放電ランプの斜視図である。  FIG. 9 is a perspective view of a conventional dielectric barrier discharge lamp.
ここで、 1は誘電体パリア放電ランプ、 3は放電管、 7は電極、 7 Aは第 1電極、 7 Bは第 2電極、 40は透光窓、 4 3は金属膜、 4 5は金属膜を示す。 発明を実施するための形態  Here, 1 is a dielectric barrier discharge lamp, 3 is a discharge tube, 7 is an electrode, 7 A is a first electrode, 7 B is a second electrode, 40 is a translucent window, 43 is a metal film, and 45 is metal. Show the membrane. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の一実施形態を図 1から図 7を参照しつつ説明する。  One embodiment of the present invention will be described with reference to FIGS.
なお、 以下の説明では、 上下方向については図 1を基準とする。 また、 前後方向に ついては、 図 1の右側を前方とする。  In the following description, the vertical direction is based on FIG. In the front-rear direction, the right side in Fig. 1 is the front.
本実施形態の誘電体バリア放電ランプ 1は、 放電管 3によって形成された放電空間 5内に、 誘電体パリア放電用のガスが充填されたものである。 放電管 3の外表面には 互いに対向する一対の電極 7 A, 7 Bが設けられている。 これらの電極 7 A, 7 Bに は、 リー ド線 9が接続されている。 電極 7 Aはメッシュ状である。 電極 7 Bはベタ状 である。  In the dielectric barrier discharge lamp 1 of the present embodiment, a discharge space 5 formed by the discharge tube 3 is filled with a gas for dielectric barrier discharge. A pair of electrodes 7 A and 7 B facing each other are provided on the outer surface of the discharge tube 3. A lead wire 9 is connected to these electrodes 7A and 7B. The electrode 7A has a mesh shape. Electrode 7B is solid.
ベタ状の電極 7 Bの一部は透光窓 40を有する。 透光窓 40にはメッシュ状の導電 体 4 3が酉 Sされている。  Part of the solid electrode 7B has a light transmitting window 40. In the translucent window 40, a mesh-shaped conductor 43 is formed.
電極 7 Aはアース, 電極 7 Bは交流電圧を印加する電源装置 (図示せず) に接続さ れている。  Electrode 7A is connected to ground, and electrode 7B is connected to a power supply (not shown) that applies AC voltage.
誘電体バリア放電用ガスとしては、 キセノン (X e) 、 アルゴン (A r ) 、 及びク リプトン (K r ) 、 等の希ガス、 並びにフッ素 (F2) 、 塩素 (C 1 2) 等のハロゲン ガス等が使用される。 誘電体バリア放電ランプ 1は、 ガスの種類によって、 異なる波 長 (1 7 2 nm、 2 2 2 n m、 3 0 8 n m等の波長) のエキシマ光を発光する。 例え ば、 電子部品の洗浄、 すなわち、 電子部品に付着した有機化合物を分解するためには 、 1 7 2 nmを中心波長とするエキシマ光が用いられる。 したがって、 この場合には 、 キセノ ン (X e ) を含有するガスが使用される。 なお、 ガスの封入圧力は特に限定 されないが、 通常、 1 0〜6 0 K P a程度の圧力で封入される。 The dielectric barrier discharge gas, xenon (X e), argon (A r), and krypton (K r), noble gases etc, and fluorine (F 2), halogen such as chlorine (C 1 2) Gas or the like is used. The dielectric barrier discharge lamp 1 emits excimer light having different wavelengths (wavelengths such as 1722 nm, 222 nm, and 308 nm) depending on the type of gas. For example, excimer light having a center wavelength of 170 nm is used for cleaning electronic components, that is, for decomposing organic compounds attached to electronic components. Therefore, in this case, a gas containing xenon (Xe) is used. Gas filling pressure is particularly limited However, it is usually sealed at a pressure of about 10 to 60 KPa.
放電管 3は、 合成石英製の扁平な長角筒の両端を閉じたものである。  The discharge tube 3 is formed by closing both ends of a flat rectangular tube made of synthetic quartz.
放電管 3の下外面には、 網目状 (メッシュ状) のクロム Zニッケル膜 (導電体に相 当) である第 1電極 7 Aが蒸着形成されている。 また、 放電管 3の上外面には、 クロ ム /ニッケル膜 (導電体に相当) である第 2電極 7 Bが形成されている。 なお、 第 1 電極 7 A及び第 2電極 7 Bの膜厚は、 ともに 0 . 1 ~ 1 0 0 μ mが好ましい。  On the lower outer surface of the discharge tube 3, a first electrode 7A, which is a mesh-like (mesh-like) chrome Z nickel film (corresponding to a conductor), is formed by vapor deposition. A second electrode 7B, which is a chromium / nickel film (corresponding to a conductor), is formed on the upper and outer surfaces of the discharge tube 3. The thickness of each of the first electrode 7A and the second electrode 7B is preferably 0.1 to 100 μm.
第 2電極 7 Bは、 ベタ状の金属膜により形成され、 その一部領域はベタ状の金属膜 を欠いた紫外線強度測定用の透光窓 4 0とされている。 この構造は、 後に詳述する。 両電極 7 A , 7 Bは、 放電管 3の両端付近まで形成されている。 第 1電極 7 Aの前 端部には、 ベタ部 7 Cが形成されており、 ベタ部 7 Cから前方に延びる矩形状の延設 部 7 Dが設けられている。 なお、 第 2電極 7 Bにも、 第 1電極 7 Aの場合と同様の延 設部 7 Dが形成されている。  The second electrode 7B is formed of a solid metal film, and a part of the second electrode 7B is a light-transmitting window 40 for ultraviolet intensity measurement lacking the solid metal film. This structure will be described later in detail. Both electrodes 7 A and 7 B are formed up to near both ends of the discharge tube 3. A solid portion 7C is formed at the front end of the first electrode 7A, and a rectangular extending portion 7D extending forward from the solid portion 7C is provided. The second electrode 7B also has an extension 7D similar to that of the first electrode 7A.
透光窓 4 0は、 第 2電極 7 Bの後端寄りの位置に長円形に形成されている。 この透 光窓 4 0の面積は、 特に限定されないが、 0 . 5 c m 2以上であることが好ましい。 0 . 5 c m 2以上であれば、 紫外線強度を測定するために十分な紫外線が透光窓 4 0から 得られるからである。 一方、 図 2に示すように一般的な紫外線センサの受光部 5 0は 、 直径 4 m m程度の概円柱形をしているため、 あまりに透光窓 4 0の面積を大きくす ると、 受光部 5 0に受光されずに受光部 5 0後方に漏れる紫外線量が多くなるから 2 c m 2以下が好ましい。 The light transmitting window 40 is formed in an oval shape at a position near the rear end of the second electrode 7B. The area of the transparent window 40 is not particularly limited, but is preferably 0.5 cm 2 or more. If it is 0.5 cm 2 or more, sufficient ultraviolet light for measuring the ultraviolet light intensity can be obtained from the light transmitting window 40. On the other hand, as shown in FIG. 2, the light receiving portion 50 of a general ultraviolet sensor has a substantially cylindrical shape with a diameter of about 4 mm. Therefore, if the area of the light transmitting window 40 is too large, the light receiving portion Since the amount of ultraviolet rays leaking to the rear of the light receiving portion 50 without being received by 50 increases, the amount is preferably 2 cm 2 or less.
さらに、 透光窓 4 0部分には、 メッシュ状の金属膜 4 3が配されており、 金属膜 4 3は、 透光窓 4 0周りの金属膜 4 5と電気的に接続されている。 なお、 メッシュ状の 金属膜 4 3は、 直線状の素線部を格子状に配置して形成されている。  Further, a mesh-shaped metal film 43 is provided in the light-transmitting window 40, and the metal film 43 is electrically connected to the metal film 45 around the light-transmitting window 40. The mesh-like metal film 43 is formed by arranging linear element portions in a lattice.
図 4に示されるメッシュ状の金属膜 4 3の開口寸法 Lは特に限定されないが、 3 m m以下が好ましい。 開口寸法 Lが 3 m mより大きいと、 透光窓 4 0部分の放電密度が ベタ状の金属膜 4 5部分と比べて低くなる傾向にあるからである。 また、 開口寸法 L が 3 m mより大きいと、 放電密度が低下するために長手方向の紫外線強度分布の均一 性が損なわれるからである。  The opening dimension L of the mesh-like metal film 43 shown in FIG. 4 is not particularly limited, but is preferably 3 mm or less. If the opening dimension L is larger than 3 mm, the discharge density of the light transmitting window 40 tends to be lower than that of the solid metal film 45. On the other hand, if the opening dimension L is larger than 3 mm, the uniformity of the ultraviolet intensity distribution in the longitudinal direction is impaired because the discharge density decreases.
ところで、 開口寸法 Lは、 放電密度を増加させるためには、 できるだけ小さくする 方が望ましいが、 線幅 Wを一定幅とした状態で、 開口寸法 Lを小さく していくと、 開 口率が減少し、 紫外線が素線部の隙間から放射されにくくなる。 このため、 開口寸法 Lを小さく しつつ、 かつ開口率を維持するためには、 線幅 Wも、 これに伴って小さく しなければならない。 しかし、 線幅 Wを小さくすることは、 製造上困難である。 従つ て、 開口寸法 Lは、 1 m m以上であることが好ましい。 以上のように、 本願発明に関する誘電体バリア放電ランプ 1が構成される。 この誘 電体 z リア放電ランプ 1の使用に際しては、 紫外線強度センサの受光部 5 0が透光窓 40の上方位置に設置され、 この受光部 50により強度測定用の紫外線が受光される By the way, it is desirable to reduce the opening dimension L as much as possible in order to increase the discharge density.However, when the opening dimension L is reduced with the line width W kept constant, the opening ratio decreases. In addition, ultraviolet rays are less likely to be radiated from the gaps between the strands. For this reason, in order to reduce the opening dimension L and maintain the opening ratio, the line width W must also be reduced accordingly. However, reducing the line width W is difficult in manufacturing. Therefore, the opening dimension L is preferably 1 mm or more. As described above, the dielectric barrier discharge lamp 1 according to the present invention is configured. When the dielectric z rear discharge lamp 1 is used, the light receiving portion 50 of the ultraviolet intensity sensor is installed above the light transmitting window 40, and the light receiving portion 50 receives ultraviolet light for intensity measurement.
く実験 1 > Experiment 1>
この実験では、 透光窓 4 0から放射される紫外線強度、 及び第 1電極 7 A側から放 射される紫外線の強度が、 放電管 3の管軸方向でどの程度ばらつくかを調べた。 放電管 3としては、 図 5〜図 7の断面図に示すような 3種類が用いられた。 すなわ ち、 透光窓 40を設けない従来のタイプ 1 (図 5) 、 透光窓 40を設けてあるが透光 窓 4 Oにメッシュ状の金属膜 4 3が配されていないタイプ 2 (図 6) 、 及び透光窓 4 0を穀け、 かつ透光窓 40にメッシュ状の金属膜 4 3が配されているタイプ 3 (図 7 ) である。  In this experiment, it was examined how much the intensity of the ultraviolet light radiated from the light transmitting window 40 and the intensity of the ultraviolet light radiated from the first electrode 7A side varied in the tube axis direction of the discharge tube 3. Three types of discharge tubes 3 were used as shown in the sectional views of FIGS. That is, the conventional type 1 without the light-transmitting window 40 (FIG. 5) and the type 2 without the light-transmitting window 40 but having the mesh-like metal film 43 disposed on the light-transmitting window 4O (FIG. 5). This is a type 3 (FIG. 7) in which the light-transmitting window 40 is grained and the light-transmitting window 40 is provided with a mesh-shaped metal film 43.
そして、 図 5〜 7で示すように、 第 2電極 7 B側では、 透光窓 40の上方の位置 A に紫外線強度センサの受光部 5 0が配置された。 第 1電極 7A側では、 位置 Aと対向 する位置 B、 放電管 3の中央の位置 C、 放電管 3の図 5〜 7の右端部寄りの位置 Dに 、 それぞれ紫外線強度センサの受光部 5 0が配置され、 各位置 A~Dにおける紫外線 強度が測定された。  Then, as shown in FIGS. 5 to 7, on the second electrode 7B side, the light receiving section 50 of the ultraviolet intensity sensor was disposed at a position A above the light transmitting window 40. On the first electrode 7A side, the position B facing the position A, the position C at the center of the discharge tube 3, and the position D near the right end of the discharge tube 3 in FIGS. Were arranged, and the ultraviolet intensity at each of the positions A to D was measured.
なお、 いずれの位置においても放電管 3と紫外線強度センサの受光部 5 0との間隔 は約 4 mmとした。  In each of the positions, the distance between the discharge tube 3 and the light receiving section 50 of the ultraviolet intensity sensor was set to about 4 mm.
また、 上記いずれのタイプにおいても、 放電管 3は、 約 3 5 OmmX約 4 OmmX 約 1 3 mmのサイズと した。 封入ガスとしては、 キセノンが 40 K P aの圧力で封入 された。 点灯中に電極間に印加するピーク電圧 (ランプピーク電圧) V pは、 6. 5 kVとされた。 また、 周波数 f は 3 0 k H zで一定とされた。  Further, in any of the above types, the discharge tube 3 had a size of about 35 OmmX about 4 OmmX about 13 mm. Xenon was sealed at a pressure of 40 KPa. The peak voltage (lamp peak voltage) Vp applied between the electrodes during lighting was 6.5 kV. The frequency f was fixed at 30 kHz.
また、 タイプ 2及ぴタイプ 3において、 透光窓 40は、 長さ L a = l 8 mm, 幅 W a = 8 mmの長円形とされた。  In type 2 and type 3, the light-transmitting window 40 had an elliptical shape with a length L a = 18 mm and a width W a = 8 mm.
タイプ 3のメッシュを構成する素線部の線幅 Wは 0. 4mmとし、 メッシュの開口 寸法 Lは 2 mmとされた (図 4参照) 。  The line width W of the strands composing the type 3 mesh was set to 0.4 mm, and the opening dimension L of the mesh was set to 2 mm (see Fig. 4).
<:結果 1 >  <: Result 1>
実験結果を以下の表 1に示す。 放電管のタイプ 紫外線強度 (mW/C m2) The experimental results are shown in Table 1 below. Discharge tube type UV intensity (mW / C m 2 )
位置 A 位置 B 位置 C 位置 D  Position A Position B Position C Position D
タイプ 1 ― 20. 3 2 0. 2 20. 1 タイプ 2 3. 7 4. 9 20. 1 20. 0 タイプ 3 1 5. 4 20. 1 2 0. 2 20. 3 タイプ 2及びタイプ 3では、 透光窓 40が第 2電極 7 Bに設けられているため、 第 2電極 7 B側の A位置において、 紫外線強度を測定することができた。 これに対して 、 タイプ 1では、 透光窓 4 0が第 2電極 7 Bに設けられていないため、 第 2電極 7 B 側の A位置で紫外線強度を測定することができなかった。 さらに、 タイプ 3の場合に は、 A位置における紫外線強度がタイプ 2に比べて約 4倍となり、 紫外線強度測定に おける測定誤差を小さくできることが確認された。  Type 1 ― 20.3 2 0.2 20.1 Type 2 3.7 4.9 20.1 20.0 Type 3 1 5.4 20.1 2 0.2 20.3 For Type 2 and Type 3, Since the translucent window 40 was provided in the second electrode 7B, the ultraviolet intensity could be measured at the position A on the second electrode 7B side. On the other hand, in the case of type 1, since the translucent window 40 was not provided in the second electrode 7B, the ultraviolet intensity could not be measured at the position A on the second electrode 7B side. Furthermore, in the case of type 3, the UV intensity at position A was about four times that of type 2, and it was confirmed that the measurement error in UV intensity measurement could be reduced.
また、 タイプ 3では、 第 1電極 7 A側の位置 B〜Dの紫外線強度はほぼ同じであつ た。 タイプ 2では、 透光窓 40と対向する位置 Bでは、 位置 C及び位置 Dに比べて紫 外線強度が小さかった。 このように、 タイプ 3では、 放電管 3の管軸方向の紫外線強 度がばらつかないことが分かった。 これは、 タイプ 3では透光窓 40部分もメッシュ 状の金属膜 4 3により放電するためと考えられる。  In type 3, the ultraviolet intensities at positions B to D on the first electrode 7A side were almost the same. In the type 2, the ultraviolet intensity was lower at the position B facing the translucent window 40 than at the positions C and D. Thus, it was found that in type 3, the ultraviolet intensity in the tube axis direction of the discharge tube 3 did not vary. This is considered to be because in the type 3, the light transmitting window 40 is also discharged by the mesh-like metal film 43.
<実験 2 > <Experiment 2>
タイプ 3の場合に関して、 開口寸法 Lを変化させた実験を行った。 その他の条件は 実験 1の場合と同様である。  For type 3, an experiment was performed in which the opening dimension L was changed. Other conditions are the same as in Experiment 1.
<結果 2 >  <Result 2>
実験結果を以下の表 2に示す。 ■  The experimental results are shown in Table 2 below. ■
Figure imgf000008_0001
この結果から、 開口寸法を 3 mm以下とすれば、 第 1電極 7 A側の位置 B〜Dの紫 外線強度は、 ほぼ同じとなることが分かった。 つまり、 放電管 3の管軸方向の紫外線 強度が、 ばらつかないことが分かった。
Figure imgf000008_0001
From these results, it was found that if the opening size was set to 3 mm or less, the ultraviolet intensity at the positions BD on the first electrode 7A side was almost the same. That is, ultraviolet rays in the direction of the tube axis of the discharge tube 3 The strength was found not to vary.
<他の実施形態について > <Other embodiments>
本発明は上記記述及び図面によって説明した実施形態に限定されるものではない。 例えば、 次のような実施形態も本発明の技術的範囲に含まれる。  The present invention is not limited to the embodiment described above with reference to the drawings. For example, the following embodiments are also included in the technical scope of the present invention.
さらに、 下記以外の実施形態であっても、 発明の要旨を逸脱しない範囲内であれば 、 種々変更した形態が実施されうる。  Further, even in the embodiments other than those described below, various modified embodiments can be implemented without departing from the gist of the invention.
( 1 ) 上記実施形態では、 第 1電極 7 A及び第 2電極 7 Bは、 ともにクロム Zニッ ケル電極とされた。 しかし、 電極を構成する導電体は特に限定されない。 例えば、 第 1電極 7 A及び第 2電極 7 Bには、 金属のほかに、 金属とセラミックとの中間の材料 である 「サーメット」 等が用いられてもよい。  (1) In the above embodiment, the first electrode 7A and the second electrode 7B are both chromium Z nickel electrodes. However, the conductor constituting the electrode is not particularly limited. For example, for the first electrode 7A and the second electrode 7B, "cermet" or the like, which is an intermediate material between metal and ceramic, may be used in addition to metal.
( 2 ) 上記実施形態では、 透光窓 4 0の形状は、 長円形とされている。 しカゝし、 そ の形状は特に限定されない。  (2) In the above embodiment, the shape of the light transmitting window 40 is an oval. However, the shape is not particularly limited.
( 3 ) 上記実施形態では、 放電管本体 1 3を角筒とされた。 しかし、 その形状は特 に限定されない。 例えば、 放電管本体 1 3は、 丸筒の形状とされてもよい。  (3) In the above embodiment, the discharge tube main body 13 is a rectangular tube. However, the shape is not particularly limited. For example, the discharge tube body 13 may be in the shape of a round tube.
( 4 ) 透光窓 4 0の位置は特に限定されない。 例えば、 図 8に示されるように、 透 光窓 4 0の位置は第 2電極 7 Bの端部に設けられてもよい。  (4) The position of the translucent window 40 is not particularly limited. For example, as shown in FIG. 8, the position of the light transmitting window 40 may be provided at the end of the second electrode 7B.
( 5 ) 透光窓に配された導電体の形状は、 メッシュ状に限定されない。 たとえば、 ス トライプ状、 渦巻き状、 放射状などの形状にしてもよい。  (5) The shape of the conductor arranged in the light transmitting window is not limited to a mesh shape. For example, the shape may be a stripe shape, a spiral shape, a radial shape, or the like.
( 6 ) 本願発明でいう透光窓の部分は、 「小さな穴が複数形成された膜状導電体」 によって構成されることもできる。 この場合における第 2電極は、 第 2電極の一部に /J、さな穴が複数密集して形成された部分 (この部分では、 紫外線強度が測定されうる 。 そして、 この部分が、 透光部として機能する。 ) を有する膜状導電体を意味する。 このような実施の形態によっても、 本願発明の効果は得られる。 なお、 この実施の形 態において、 膜状導電体の小さな穴は、 丸、 長円、 四角等どのような形状で形成され ていても良い。  (6) The portion of the light-transmitting window referred to in the invention of the present application may be constituted by "a film conductor having a plurality of small holes". In this case, the second electrode is a portion where the / J is formed in a part of the second electrode and a plurality of holes are densely formed (in this portion, the ultraviolet intensity can be measured. Means a film-shaped conductor having According to such an embodiment, the effect of the present invention can be obtained. In this embodiment, the small hole of the film-shaped conductor may be formed in any shape such as a circle, an ellipse, and a square.
なお、 本出願は、 2 0 0 4年 4月 7日出願の日本特許出願 (特願 2 0 0 4 - 1 1 3 5 3 1 ) に基づくものであり、 それらの内容はここに参照として取り込まれる。  This application is based on a Japanese patent application filed on April 7, 2004 (Japanese Patent Application No. 2004-1-113531), the contents of which are incorporated herein by reference. It is.

Claims

請求の範囲 The scope of the claims
1 . 放電管の外面に第 1電極及び第 2電極を備えた誘電体バリア放電ランプにおい て、 1. In a dielectric barrier discharge lamp having a first electrode and a second electrode on the outer surface of a discharge tube,
前記第 1電極は、 メッシュ状の導電体により形成され、  The first electrode is formed of a mesh-shaped conductor,
前記第 2電極は、 ベタ状の導電体により形成されるとともに、 その一部領域は導 電体を欠いた透光窓とされ、  The second electrode is formed of a solid conductor, and a part of the second electrode is a light-transmitting window lacking the conductor,
前記透光窓には、 メッシュ状の導電体が配されており、  The translucent window is provided with a mesh-shaped conductor,
この導電体は、 前記透光窓周りのベタ状の前記導電体と電気的に接続されている  The conductor is electrically connected to the solid conductor around the light-transmitting window.
2 . 請求の範囲第 1項に記載された誘電体バリア放電ランプにおいて、 2. In the dielectric barrier discharge lamp according to claim 1,
前記透光窓が、 ベタ状の前記導電体の端部に配されている。  The light-transmitting window is disposed at an end of the solid conductor.
3 . 請求の範囲第 1項の誘電体パリア放電ランプ、 及び 3. The dielectric barrier discharge lamp of claim 1; and
前記透光窓から照射される紫外線の強度を測定するセンサ  A sensor for measuring the intensity of ultraviolet light emitted from the light transmitting window
を備えた紫外線照射装置。  UV irradiation device equipped with.
4 . 放電管を備えた誘電体バリァ放電ランプにおいて、 4. In a dielectric barrier discharge lamp with a discharge tube,
前記放電管の外面には、 第 1電極及び第 2電極が備えられ、  A first electrode and a second electrode are provided on an outer surface of the discharge tube,
前記第 2電極は、 透光窓を有する膜状導電体であり、  The second electrode is a film conductor having a light-transmitting window,
前記透光窓には、 前記第 2電極と電気的に接続された導電体が配されている。  A conductor electrically connected to the second electrode is disposed in the light transmitting window.
5 . 請求の範囲第 4項に記載された誘電体バリア放電ランプにおいて、 5. The dielectric barrier discharge lamp according to claim 4, wherein:
前記第 2電極と電気的に接続された前記導電体が、 メッシュ状、 ストライプ状、 放射状、 又は渦卷き状である。  The conductor electrically connected to the second electrode has a mesh shape, a stripe shape, a radial shape, or a spiral shape.
6 . 請求の範囲第 4項又は第 5項に記載された誘電体バリア放電ランプにおいて、 前記第 1電極は、 メッシュ状の導電体により形成される。 6. The dielectric barrier discharge lamp according to claim 4 or 5, wherein the first electrode is formed of a mesh-shaped conductor.
7 . 請求の範囲第 6項に記載された誘電体パリア放電ランプにおいて、 7. The dielectric barrier discharge lamp according to claim 6, wherein:
前記透光窓が、 前記第 2電極の端部に配されている。 請求の範囲第 4項又は第 5項の誘電体バリア放電ランプ、 及び 前記透光窓から照射される紫外線の強度を測定するセンサ を備えた紫外線照射装置。 The light-transmitting window is provided at an end of the second electrode. 6. An ultraviolet irradiation device, comprising: the dielectric barrier discharge lamp according to claim 4 or 5; and a sensor for measuring intensity of ultraviolet light emitted from the translucent window.
PCT/JP2005/006980 2004-04-07 2005-04-04 Dielectric barrier discharge lamp WO2005098904A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-113531 2004-04-07
JP2004113531 2004-04-07

Publications (1)

Publication Number Publication Date
WO2005098904A1 true WO2005098904A1 (en) 2005-10-20

Family

ID=35125346

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/006980 WO2005098904A1 (en) 2004-04-07 2005-04-04 Dielectric barrier discharge lamp

Country Status (4)

Country Link
KR (1) KR100717704B1 (en)
CN (1) CN100524606C (en)
TW (1) TWI258163B (en)
WO (1) WO2005098904A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3925632A1 (en) * 2020-06-17 2021-12-22 The Boeing Company Systems and methods for maintaining electrical contact in relation to an ultraviolet lamp

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5307029B2 (en) * 2007-12-17 2013-10-02 株式会社オーク製作所 Discharge lamp
JP5201042B2 (en) * 2009-03-23 2013-06-05 ウシオ電機株式会社 Excimer lamp
WO2011114937A1 (en) * 2010-03-18 2011-09-22 株式会社Gsユアサ Dielectric barrier discharge lamp and lamp unit
CN103081057A (en) * 2010-08-24 2013-05-01 耶合-奥灯具创造有限公司 Energy efficient lamp
TW201232601A (en) * 2010-09-30 2012-08-01 Gs Yuasa Int Ltd Dielectric barrier discharge lamp device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0896769A (en) * 1994-09-20 1996-04-12 Ushio Inc Dielectric barrier discharge lamp device
JPH0992227A (en) * 1995-09-25 1997-04-04 Toshiba Lighting & Technol Corp Fluorescent lamp and lighting system
JP2004097986A (en) * 2002-09-11 2004-04-02 Japan Storage Battery Co Ltd Ultraviolet irradiation device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3025390B2 (en) * 1993-04-23 2000-03-27 ウシオ電機株式会社 Dielectric barrier discharge lamp
JP3353684B2 (en) * 1998-01-09 2002-12-03 ウシオ電機株式会社 Dielectric barrier discharge lamp light source device
US6603248B1 (en) * 1998-03-24 2003-08-05 Corning Incorporated External electrode driven discharge lamp
KR100503221B1 (en) * 1999-10-28 2005-07-25 우시오덴키 가부시키가이샤 Dielectric-barrier discharge lamp and irradiation apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0896769A (en) * 1994-09-20 1996-04-12 Ushio Inc Dielectric barrier discharge lamp device
JPH0992227A (en) * 1995-09-25 1997-04-04 Toshiba Lighting & Technol Corp Fluorescent lamp and lighting system
JP2004097986A (en) * 2002-09-11 2004-04-02 Japan Storage Battery Co Ltd Ultraviolet irradiation device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3925632A1 (en) * 2020-06-17 2021-12-22 The Boeing Company Systems and methods for maintaining electrical contact in relation to an ultraviolet lamp

Also Published As

Publication number Publication date
CN1806311A (en) 2006-07-19
TW200534322A (en) 2005-10-16
CN100524606C (en) 2009-08-05
KR100717704B1 (en) 2007-05-11
TWI258163B (en) 2006-07-11
KR20060052655A (en) 2006-05-19

Similar Documents

Publication Publication Date Title
JP4561448B2 (en) Dielectric barrier discharge lamp and ultraviolet irradiation device
US7187138B2 (en) Excimer lamp apparatus
US5581152A (en) Dielectric barrier discharge lamp
WO2005098904A1 (en) Dielectric barrier discharge lamp
JP2010027268A (en) Excimer lamp
TW201123261A (en) Ultraviolet lamp and ultraviolet irradiating device
CN112735938A (en) Excimer ultraviolet light source device
TWI261288B (en) Excimer lamp
WO2009145253A1 (en) External electrode discharge lamp and ultraviolet ray irradiating apparatus using the same
JP4311266B2 (en) Excimer lamp and UV irradiation device
JP2007073494A (en) External electrode discharge lamp and its lamp apparatus
US6437494B1 (en) Dielectric barrier discharge lamp
JP5148803B2 (en) Silent discharge lamp
JP2008052916A (en) Ultraviolet ray applicator
JP3593934B2 (en) Dielectric barrier discharge lamp irradiation device
JP3163919B2 (en) Dielectric barrier discharge lamp device
JP3125606B2 (en) Dielectric barrier discharge lamp device
KR20080002628A (en) Dielectric barrier discharge lamp
JP3912139B2 (en) Discharge lamp device
JPH0714553A (en) Dielectric barrier discharge lamp
CN215266190U (en) Excimer ultraviolet light source device
JP3209094B2 (en) Dielectric barrier discharge lamp
JP3891192B2 (en) Dielectric barrier discharge lamp irradiation device
JP2005332711A (en) Dielectric barrier discharge lamp
JP3922072B2 (en) Fluorescent lamp and lighting equipment

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200580000556.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020057010380

Country of ref document: KR

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1020057010380

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWG Wipo information: grant in national office

Ref document number: 1020057010380

Country of ref document: KR

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP