WO2005098846A1 - 強誘電体記録媒体用の情報再生装置 - Google Patents

強誘電体記録媒体用の情報再生装置 Download PDF

Info

Publication number
WO2005098846A1
WO2005098846A1 PCT/JP2005/006942 JP2005006942W WO2005098846A1 WO 2005098846 A1 WO2005098846 A1 WO 2005098846A1 JP 2005006942 W JP2005006942 W JP 2005006942W WO 2005098846 A1 WO2005098846 A1 WO 2005098846A1
Authority
WO
WIPO (PCT)
Prior art keywords
ferroelectric layer
ferroelectric
probe
capacitance
electric field
Prior art date
Application number
PCT/JP2005/006942
Other languages
English (en)
French (fr)
Inventor
Yasuo Cho
Atsushi Onoe
Original Assignee
Pioneer Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Corporation filed Critical Pioneer Corporation
Priority to EP05728530A priority Critical patent/EP1736981A4/en
Priority to JP2006512133A priority patent/JP4328355B2/ja
Priority to US11/547,980 priority patent/US20080002502A1/en
Publication of WO2005098846A1 publication Critical patent/WO2005098846A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B9/00Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor
    • G11B9/06Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using record carriers having variable electrical capacitance; Record carriers therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B9/00Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor
    • G11B9/02Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using ferroelectric record carriers; Record carriers therefor
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B9/00Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor
    • G11B9/12Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor
    • G11B9/14Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor using microscopic probe means, i.e. recording or reproducing by means directly associated with the tip of a microscopic electrical probe as used in Scanning Tunneling Microscopy [STM] or Atomic Force Microscopy [AFM] for inducing physical or electrical perturbations in a recording medium; Record carriers or media specially adapted for such transducing of information
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/08Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by electric charge or by variation of electric resistance or capacitance
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B9/00Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor
    • G11B9/12Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor
    • G11B9/14Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor using microscopic probe means, i.e. recording or reproducing by means directly associated with the tip of a microscopic electrical probe as used in Scanning Tunneling Microscopy [STM] or Atomic Force Microscopy [AFM] for inducing physical or electrical perturbations in a recording medium; Record carriers or media specially adapted for such transducing of information
    • G11B9/1409Heads

Definitions

  • the present invention relates to an information reproducing apparatus for a ferroelectric recording medium that retains information by spontaneous polarization of a ferroelectric.
  • Patent Document 1 describes a technique for recording and reproducing information on and from a ferroelectric recording medium by the SNDM method.
  • the outline of recording and playback of information by the SNDM method is outlined below.
  • the ferroelectric recording medium is, for example, lithium niobate (LiNbO) or lithium tantalate.
  • a nanometer-scale probe formed of a metal such as tungsten is used.
  • the probe When recording information on a ferroelectric recording medium, the probe is brought into contact with the surface (recording surface) of the ferroelectric recording medium, or the probe is moved very close to the surface of the ferroelectric recording medium. Let it. Then, an electric field exceeding the coercive electric field is applied to the ferroelectric layer of the ferroelectric recording medium from the probe to reverse the polarization direction of the ferroelectric layer immediately below the probe. This applied voltage is a pulse signal whose level changes according to the information to be recorded. The pulse signal is applied to the ferroelectric layer via the probe, and the position of the probe with respect to the ferroelectric recording medium is changed. Move in a direction parallel to the surface. Thus, information can be recorded on the ferroelectric recording medium as the polarization state of the ferroelectric layer.
  • the nonlinear dielectric constant of the ferroelectric layer is read by detecting a change in the capacitance of the ferroelectric layer, and thereby information recorded as the polarization state of the ferroelectric layer is reproduced.
  • the probe is brought into contact with the surface of the ferroelectric recording medium, or the probe is brought very close to the surface of the ferroelectric recording medium.
  • an alternating electric field smaller than the coercive electric field is applied to the ferroelectric layer of the ferroelectric recording medium to create a state in which the capacitance of the ferroelectric layer changes alternately. In this state, the change in the capacitance of the ferroelectric layer is detected via the probe.
  • the detection of the change in capacitance of the ferroelectric layer is performed as follows. That is, the LC resonance circuit is formed from the capacitance of the ferroelectric layer and the inductance of the external inductor. Further, the LC resonance circuit is connected to an amplification circuit to form an oscillator as a whole. Thereby, the oscillator outputs an oscillation signal whose frequency changes in response to a change in capacitance of the ferroelectric layer. Subsequently, the frequency change of the oscillation signal is converted into an amplitude change. Subsequently, a component corresponding to the capacitance of the ferroelectric layer is extracted from the frequency-amplitude converted signal. Then, information is reproduced based on the extracted components.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-085969
  • the present invention has been made in view of the problems exemplified above, and an object of the present invention is to provide an information reproducing apparatus for a ferroelectric recording medium having high information reproducing accuracy or high stability. It is in.
  • an information reproducing apparatus of the present invention reads and reproduces the information from a recording medium having a ferroelectric layer and holding the information by spontaneous polarization of the ferroelectric layer.
  • An information reproducing apparatus wherein a probe that scans the surface of the recording medium and detects the capacitance of the ferroelectric layer faces a surface of the recording medium at a predetermined interval, and is in the vicinity of the probe.
  • a resonator that forms a resonance circuit together with the capacitance of the dielectric layer, and an oscillation signal generator that generates an oscillation signal having a resonance frequency selected by the resonator and the capacitance of the ferroelectric layer detected by the probe. It comprises a stage, and an information reproducing means for reproducing the information held in the recording medium based on the oscillation signal generated by the oscillation signal generating means.
  • FIG. 1 is a block diagram showing a first embodiment of an information reproducing apparatus of the present invention.
  • FIG. 2 is a block diagram showing a second embodiment of the information reproducing apparatus of the present invention.
  • FIG. 3 is a block diagram showing an embodiment of the information reproducing apparatus of the present invention.
  • FIG. 4 is a block diagram showing another embodiment of the information reproducing apparatus of the present invention.
  • Information reproduction means (frequency-amplitude conversion circuit
  • FIG. 1 shows a first embodiment of the information reproducing apparatus of the present invention.
  • the information reproducing device 10 in FIG. 1 is a device that reads and reproduces information recorded and held on the ferroelectric recording medium 1.
  • the information reproducing device 10 is used for information reproduction processing in various devices that handle digital information such as a computer, a video device, an audio device, a communication device, a medical device, and a control device, for example, like a disk drive and a disc player. can do.
  • the recording medium 1 is made of, for example, lithium niobate (LiNbO 3) or lithium tantalate (LiTa).
  • ferroelectric layer 2 formed from a ferroelectric such as O 2).
  • Information on the ferroelectric layer 2 It is recorded as the polarization direction, and is retained by the spontaneous polarization property of the ferroelectric.
  • a back electrode 3 is formed on the back surface of the ferroelectric layer 2, and an electric field can be applied to the ferroelectric layer 2 via the back electrode 3 and the return electrode 12.
  • the information reproducing apparatus 10 employs the SNDM method.
  • the principle of reproducing information held as the polarization direction of the ferroelectric substance by the SNDM method is as follows.
  • the non-linear dielectric constant of a ferroelectric varies depending on the polarization direction of the ferroelectric.
  • the nonlinear dielectric constant of the ferroelectric substance differs depending on whether the polarization direction of the ferroelectric substance is upward or downward.
  • the difference in the nonlinear dielectric constant of the ferroelectric can be known by applying an electric field smaller than the coercive electric field to the ferroelectric and detecting the capacitance of the ferroelectric.
  • an electric field smaller than the coercive electric field is applied to the ferroelectric.
  • a change in the capacitance inside or in the surface layer of the ferroelectric is directly detected according to the difference in the nonlinear dielectric constant of the ferroelectric, that is, the difference in the polarization direction of the ferroelectric.
  • the electric field applied to the ferroelectric may be a DC electric field, but an alternating electric field can increase the detection sensitivity.
  • an alternating electric field is applied to the ferroelectric, the capacitance of the ferroelectric changes alternately according to the alternating electric field. At this time, the curve drawn by the capacitance change differs depending on whether the polarization direction of the ferroelectric is upward or downward.
  • the polarization change of the strong dielectric with respect to the change of the applied electric field has a property of drawing a hysteresis curve. Therefore, when an alternating electric field is applied to the ferroelectric material, the change in the capacitance of the ferroelectric material is detected, and the difference in the curve of the change in the capacitance can be identified. And the polarization direction of the ferroelectric can be known. Then, the information recorded and held as the polarization direction can be reproduced.
  • the information reproducing apparatus 10 includes a probe 11, a return electrode 12, an electric field applying unit 13, a resonator 14, an oscillation signal generating unit 15, and an information reproducing unit 16.
  • the probe 11 is a member that scans the surface of the recording medium 1 (ferroelectric layer 2) and detects the capacitance of the ferroelectric layer 2.
  • the probe 11 is formed of, for example, a metal such as tungsten or a carbon nanotube.
  • the probe 11 is formed in a needle shape, and has a tip diameter of, for example, several nanometers to several hundred nanometers.
  • the probe 11 is disposed above the recording medium 1 and extends in a manner perpendicular to the surface of the recording medium 1.
  • the return electrode 12 has a function of applying an electric field output from the electric field applying means 13 to the ferroelectric layer 2 together with the back electrode 3.
  • the return electrode 12 has a function of forming an electric path S from the tip of the probe 11 to the return electrode 12 through the ferroelectric layer 2. Then, the electric path S becomes a part of a resonance circuit formed by the capacitance Cs of the ferroelectric layer 2 and the resonator 14. That is, the return electrode 12 is a path constituting a part of a feedback circuit for selecting a resonance frequency in the resonance circuit.
  • the return electrode 12 faces the surface of the recording medium 1 at a predetermined interval, and is arranged near the probe 11. Specifically, the return electrode 12 is arranged above the surface located on one side of the ferroelectric layer 2 together with the probe 11.
  • the distance between the return electrode 12 and the surface of the recording medium 1 is, for example, about several tens of nanometers to several tens of micrometers. Since the return electrode 12 is arranged near the probe 11, the electric field output from the electric field applying means 13 is applied to the ferroelectric layer 2 in a region including just below the tip of the probe 11 and its periphery. In addition, since the return electrode 12 faces the recording medium 1 with a relatively small surface force and is disposed near the probe 11, the electric path S is extremely short. By shortening the electric path S, it is possible to suppress noise such as unpredictable stray capacitance from being mixed in when the capacitance change of the ferroelectric layer 2 is detected by the probe 11.
  • the shape of the return electrode 12 may be any other shape as long as the positional relationship with the probe 11 and the positional relationship with the surface of the recording medium 1 can be appropriately set as described above.
  • the electric field applying means 13 applies an electric field to the ferroelectric layer 2 in order to enable or facilitate the detection of the capacitance Cs of the ferroelectric layer 2 by the probe 11.
  • the electric field applying means 13 generates an alternating voltage or a DC voltage and supplies it between the return electrode 12 and the back electrode 3. As a result, an alternating electric field or a DC electric field is applied to the ferroelectric layer 2.
  • the intensity of the electric field applied by the electric field applying means 13 is smaller than the coercive electric field of the ferroelectric layer 2. If the electric field applied by the electric field applying means 13 is an alternating electric field, the frequency of the alternating electric field may be It is about 5k to 100kHz.
  • the electric field applying means 13 can be realized by a normal electric circuit that generates an AC voltage or a DC voltage.
  • a DC electric field or an alternating electric field is applied to the ferroelectric layer 2 via the return electrode 12 and the back electrode 3. This electric field is applied to the ferroelectric layer via the probe 11 and the back electrode 3. It is also possible to apply to layer 2.
  • the resonator 14 forms a resonance circuit 17 together with the capacitance Cs of the ferroelectric layer 2 detected by the probe 11. That is, the resonator 14 has a function of selecting the resonance frequency together with the capacitance Cs of the ferroelectric layer 2. Then, the resonance frequency selected by the capacitance Cs of the ferroelectric layer 2 and the resonator 14 is the frequency of the oscillation signal generated by the oscillation signal generation means 15.
  • the average of the resonance frequency selected by the capacitance Cs of the ferroelectric layer 2 and the resonator 14 is, for example, about 1 GHz (note that, as will be described later, this resonance frequency varies with the capacitance change of the ferroelectric layer 2). For example, it changes around 1GHz).
  • resonator 14 various resonators, oscillators, or vibrators such as a SAW (Surface Acoustic Wave) resonator, a crystal oscillator, or a ceramic oscillator can be used.
  • SAW Surface Acoustic Wave
  • crystal oscillator a crystal oscillator
  • ceramic oscillator a SAW resonator
  • the oscillation signal generation means 15 generates an oscillation signal having a resonance frequency selected by the capacitance Cs of the ferroelectric layer 2 detected by the probe 11 and the resonator 14.
  • the oscillation signal generation means 15 forms an oscillator together with the resonance circuit 17 formed by the capacitance Cs of the ferroelectric layer 2 and the resonator 14.
  • the oscillation signal generation means 15 can be realized by, for example, various elements for configuring an oscillator together with the resonance circuit 17 in addition to the amplification circuit. More specifically, the circuit configuration (excluding the voltage control part) used for VCSO (Voltage Controlled SAW Oscillator) or VCXO (Voltage Controlled X'tal (crystal) Oscillator).
  • the capacitance of the ferroelectric layer 2 is variable. (Equivalent to a capacitive element) can be applied.
  • the information reproducing means 16 reproduces the information held in the recording medium based on the oscillation signal generated by the oscillation signal generating means 15. As described later, the capacitance Cs of the ferroelectric layer 2 is The frequency of the oscillation signal changes according to the change.
  • the information reproducing means 16 detects the change in the frequency of the oscillation signal, knows the change in the capacitance Cs of the ferroelectric layer 2, and, based on this, knows the nonlinear dielectric constant of the ferroelectric layer 2, and furthermore, Know the polarization direction of body layer 2. Since the information is held as the polarization direction of the ferroelectric layer 2, the information held in the ferroelectric layer 2 can be reproduced by performing such detection and analysis.
  • the operation of the information reproducing apparatus 10 having such a configuration is as follows.
  • a positioning mechanism (not shown) moves the probe 11 or the recording medium 1, and brings the tip of the probe 11 into contact with the surface of the recording medium 1, or Then, the tip of the probe 11 is brought close to a position separated from the surface force of the recording medium 1 by several nanometers to several tens nanometers.
  • the electric field applying means 13 supplies, for example, an alternating voltage between the back electrode 3 and the return electrode 12. As a result, an alternating electric field is applied to the ferroelectric layer 2.
  • a change in the capacitance Cs of the ferroelectric layer 2 (specifically, a change in the capacitance Cs inside or at the surface of the ferroelectric layer 2 as shown in FIG. 1) is detected by the probe 11.
  • the resonance frequency of the resonance circuit 17 formed by the capacitance Cs of the ferroelectric layer 12 and the resonator 14 changes according to the change of the capacitance Cs of the ferroelectric layer 12, and accordingly, the oscillation signal generation means The frequency of the oscillation signal generated by 15 changes.
  • This oscillation signal is supplied to the information reproducing means 16.
  • the information reproducing unit 16 recognizes a change in the capacitance Cs of the ferroelectric layer 2 based on the oscillation signal, and reproduces information held in the ferroelectric layer 2.
  • the resonator 14 is used in the resonance circuit 17 for changing the frequency of the oscillation signal according to the change in the capacitance Cs of the ferroelectric layer 2.
  • a resonance circuit 17 having a high Q can be realized.
  • a change in the frequency of the oscillation signal can be accurately and sharply followed by a change in the capacitance Cs of the ferroelectric layer 2. That is, even if the change in the capacitance Cs of the ferroelectric layer 2 is small, the frequency of the oscillation signal can be changed according to the small change.
  • the frequency of the oscillation signal can be changed according to the high-speed change.
  • the information reproducing apparatus 10 the information Raw accuracy and speed can be improved.
  • the use of the resonator 14 reduces the amplitude of the alternating electric field applied to the ferroelectric layer 2 without lowering the information reproducing accuracy or the SN ratio. it can. Even if a configuration in which a DC electric field is applied instead of the alternating electric field is adopted, highly accurate information reproduction can be realized. The reason is as follows.
  • the difference in the curve of the capacitance change of the ferroelectric when an alternating electric field is applied to the ferroelectric is identified, and based on this, the ferroelectric Know the polarization direction. Specifically, first, an alternating electric field is applied to the ferroelectric to change the capacitance of the ferroelectric. Subsequently, the change in the frequency of the oscillation signal is made to follow the change in the capacitance of the ferroelectric substance by using the resonance circuit, so that the change in the capacitance of the ferroelectric substance is converted into the change in the frequency of the oscillation signal.
  • the signal detection process is performed on the frequency change of the oscillation signal to determine the polarization direction of the ferroelectric. Therefore, if the sensitivity of the resonance circuit is poor, a change in the capacitance of the ferroelectric cannot be accurately converted into a change in the frequency of the oscillation signal, and it is difficult to accurately know the polarization direction of the ferroelectric.
  • One method for solving this problem is to increase the amplitude of the alternating electric field.
  • the amplitude of the alternating electric field is increased, the change in capacitance of the ferroelectric material increases, and the difference in the curve of the capacitance change corresponding to the difference in the polarization direction of the ferroelectric material becomes remarkable. Therefore, even if the sensitivity of the resonance circuit is poor, the polarization direction of the ferroelectric can be read from the frequency change of the oscillation signal.
  • the intensity of the alternating electric field cannot exceed the coercive electric field of the ferroelectric, there is a limit to increasing the amplitude of the alternating electric field. For this reason, this method may not be able to sufficiently increase the recognition accuracy of the polarization direction of the ferroelectric.
  • the resonance circuit 17 is formed using the resonator 14 having a high Q, the sensitivity of the resonance circuit 17 is good. . For this reason, a change in the capacitance of the ferroelectric can be accurately converted to a change in the frequency of the oscillation signal, and the polarization direction of the ferroelectric can be accurately known. Since the sensitivity of the resonance circuit 17 is good, it is not necessary to increase the amplitude of the alternating electric field. Furthermore, since the sensitivity of the resonance circuit 17 is good, even if the amplitude of the alternating electric field is reduced, the polarization direction of the ferroelectric can be accurately known. Wear.
  • the amplitude of the alternating electric field applied to the ferroelectric layer 2 can be reduced without lowering the accuracy of information reproduction or the SN ratio, and a configuration in which a DC electric field is applied instead of the alternating electric field can be adopted. It becomes.
  • FIG. 2 shows an information reproducing apparatus according to a second embodiment of the present invention.
  • the feature of the second embodiment is that the information reproducing means is more specifically illustrated. That is, the information reproducing apparatus 20 in FIG.
  • the information reproducing means 21 includes a converting means 22 and an extracting means 23.
  • the conversion unit 22 converts a frequency change of an oscillation signal corresponding to a change in capacitance of the ferroelectric layer 2 detected by the probe 11 into a change in amplitude, and outputs a converted signal.
  • the conversion means 22 can be realized by, for example, a frequency-voltage conversion circuit or an FM demodulator.
  • the extracting unit 23 extracts a component corresponding to a change in capacitance of the ferroelectric layer 2 detected by the probe 11 from the signal converted by the converting unit 22.
  • the extracting means 23 can be realized by a detection circuit such as a lock-in amplifier.
  • a configuration is used in which an alternating voltage is supplied between the return electrode 12 and the back electrode 3 by the electric field applying means 13 and thereby the alternating electric field is applied to the ferroelectric layer 2, the alternating voltage is extracted. It is desirable to use it as a reference signal in the signal component extraction processing (detection processing) in the means 13 (see the dotted connection line in FIG. 2). Thereby, the accuracy of the signal component extraction processing (detection processing) can be improved.
  • the recording medium 30 includes a ferroelectric layer 31 and a back electrode 32.
  • the ferroelectric layer 31 is formed of, for example, lithium niobate (LiNbO).
  • Back electrode 32 is made of aluminum
  • the ferroelectric layer 31 is formed (stacked) on the back surface of the ferroelectric layer 31 by a thin film forming process such as sputtering or vapor deposition.
  • the information reproducing apparatus 40 includes a probe 41, a return electrode 42, an AC power supply 43, and a SAW resonator 44. And a frequency-amplitude conversion circuit 46 and a lock-in amplifier 47.
  • the probe 41 is a member that scans the surface of the recording medium 30 (ferroelectric layer 31) and detects the capacitance of the ferroelectric layer 31.
  • the probe 11 is formed in a needle shape by, for example, tungsten, and has a tip diameter of about several tens of nanometers. When reproducing the information held in the recording medium 30, the tip of the probe 41 approaches the reading position on the surface of the recording medium 30. At this time, the distance between the tip of the probe 41 and the surface of the recording medium 30 is about several nanometers or about several tens of nanometers.
  • the probe 41 can easily scan the surface of the recording medium 30 ⁇ Thus, the same electrical action can be realized as when the contact is made with the surface of the recording medium 30. Further, the tip of the probe 41 may be brought into contact with the surface of the recording medium 30.
  • the return electrode 42 has a function of applying an electric field output from the AC power supply 43 to the ferroelectric layer 31 together with the back electrode 32. Furthermore, the return electrode 42 has a function of forming an electrical path S from the tip of the probe 41 to the return electrode 42 through the ferroelectric layer 31.
  • the return electrode 42 faces the surface of the recording medium 30 at a predetermined interval. The distance between the return electrode 42 and the surface of the recording medium 30 is, for example, about several hundred nanometers.
  • the return electrode 42 is formed in a ring shape and surrounds the probe 41.
  • the AC power supply 43 is a power supply that applies an alternating electric field to the ferroelectric layer 31 in order to enable or facilitate the detection of the capacitance Cs of the ferroelectric layer 31 by the probe 41.
  • the AC power supply 43 generates an alternating voltage and supplies it between the return electrode 42 and the back electrode 32. As a result, an alternating electric field is applied to the ferroelectric layer 31.
  • the intensity of the electric field applied by the AC power supply 43 is smaller than the coercive electric field of the ferroelectric layer 31, and its frequency is, for example, about 5 kHz.
  • the SAW resonator 44 forms a resonance circuit 49 together with the capacitance Cs of the ferroelectric layer 31 detected by the probe 41. That is, the resonator 44 has a function of selecting the resonance frequency together with the capacitance Cs of the ferroelectric layer 31.
  • the capacitance Cs of the ferroelectric layer 31 and the SAW resonator 44 The average of the resonance frequencies selected by is, for example, about 1 GHz.
  • the oscillation amplification circuit 45 is a circuit that generates an oscillation signal having a resonance frequency selected by the capacitance Cs of the ferroelectric layer 31 detected by the probe 41 and the SAW resonator 44. That is, the capacitance Cs of the ferroelectric layer 31, the SAW resonator 44, and the oscillation amplifier circuit 45 constitute an oscillator as a whole, and the capacitance Cs of the ferroelectric layer 31 and the SAW resonator 44 force S
  • the oscillation amplification circuit 45 corresponds to a frequency selection circuit, and the oscillation amplification circuit 45 corresponds to an amplification circuit of the oscillator.
  • the frequency-amplitude conversion circuit 46 is a circuit that converts a frequency change of an oscillation signal corresponding to a change in capacitance of the ferroelectric layer 31 detected by the probe 41 into an amplitude change, and outputs the converted signal. is there.
  • the lock-in amplifier 47 is a circuit that extracts a component corresponding to a change in capacitance of the ferroelectric layer 31 detected by the probe 41 from the signal converted by the frequency-amplitude conversion circuit 46.
  • the AC voltage output from the AC power supply 43 is supplied not only to the return electrode 42 and the back electrode 32 but also to a lock-in amplifier 47.
  • the lock-in amplifier 47 uses this AC voltage as a reference signal to extract a component corresponding to a change in capacitance of the ferroelectric layer 31 and reproduce the information held in the ferroelectric layer 2.
  • the moving mechanism 48 is, for example, an XY stage, and moves the recording medium 30 placed thereon in a direction parallel to the surface of the recording medium 30 (the X direction and the Y direction in FIG. 3). It is a mechanism to move. By moving the recording medium 30 by the moving mechanism 48, scanning of the surface of the recording medium 30 by the probe 41 is realized.
  • FIG. 4 shows another embodiment of the present invention.
  • the SAW resonator 44 and the SAW resonator 44 and the probe 41 in the resonance circuit 49 constituted by the capacitance Cs of the ferroelectric layer 31 detected by the probe 41 are used.
  • an inductor 51 is inserted, and the frequency selected by the inductor 51 and the capacitance Cs of the ferroelectric layer 31 detected by the probe 41 in the resonance frequency of the SAW resonator 44 is determined by the resonance frequency of the resonance circuit 49. The condition is satisfied, and this is the oscillation frequency of the oscillation amplifier circuit 45.
  • the information reproducing apparatus for a ferroelectric recording medium according to the present invention can be used, for example, as an information reproducing apparatus for a ferroelectric recording medium that retains information by spontaneous polarization of a ferroelectric.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Recording Or Reproducing By Magnetic Means (AREA)
  • Semiconductor Memories (AREA)
  • Oscillators With Electromechanical Resonators (AREA)

Abstract

 記録媒体1の強誘電体層2の容量Csと共振子14とにより共振回路17を形成し、この共振回路により、強誘電体層2の容量Csの変化を発振信号の周波数に変換する。共振子14として、SAW共振子などのQの高い共振素子を用いる。

Description

明 細 書
強誘電体記録媒体用の情報再生装置
技術分野
[0001] 本発明は、強誘電体の自発分極により情報を保持する強誘電体記録媒体用の情 報再生装置に関する。
背景技術
[0002] 高密度情報記録媒体として、ハードディスクドライブ等の磁気メモリー、およびコン ノタトディスク、 DVD等の光メモリーが広く普及している。このような高密度情報記録 媒体の技術分野においては、記録媒体の記録密度の向上を目指して、 日々、研究 開発が行われている。ところが、磁気メモリーにあっては超常磁性限界により、また、 光メモリーにあっては回折限界により、記録密度の向上にはそれぞれ限界がある。例 えば、磁気メモリーにあっては、垂直磁気記録を利用しても、 6. 45平方センチメート ル( 1平方インチ)あたり 1テラビットの記録密度が限界であることが知られて 、る。
[0003] そこで、近時、強誘電体の自発分極を利用して情報を保持する強誘電体記録媒体 の開発が行われている。強誘電体記録媒体は、まだ開発途上であり、一般に普及す るまでには至っていない。強誘電体記録媒体は、理論的には、強誘電体の結晶格子 単位まで記録密度を向上させることが可能である。したがって、強誘電体記録媒体に よれば、磁気メモリーまたは光メモリーの記録密度の限界を超えることが可能である。 例えば、走査型非線形誘電率顕微鏡(SNDM : Scanning Nonlinear Dielectric Microscope)の技術を応用した記録再生方式(以下、「SNDM方式」という。)によれ ば、 6. 45平方センチメートルあたり 1. 5テラビットの記録密度で強誘電体記録媒体 に情報を記録し、かつ再生し得ることが実験により明らかにされている。
[0004] 特開 2003— 085969号公報(特許文献 1)には、 SNDM方式により、強誘電体記 録媒体に対し情報の記録および再生を行う技術が記載されている。以下、 SNDM方 式による情報の記録 '再生について概説する。
[0005] 強誘電体記録媒体は、例えばニオブ酸リチウム (LiNbO )またはタンタル酸リチウ
3
ム (LiTaO )等の強誘電体から形成された強誘電体層を有する。情報はこの強誘電 体層に記録され、保持される。そして、情報の記録 ·再生には、タングステン等の金属 から形成されたナノメートルスケールのプローブを用いる。
[0006] 強誘電体記録媒体に情報を記録するときには、プローブを強誘電体記録媒体の表 面 (記録面)に接触させ、またはプローブを強誘電体記録媒体の表面のきわめて近 い位置に接近させる。そして、プローブから強誘電体記録媒体の強誘電体層に抗電 界を超える電界を印加し、プローブ直下の強誘電体層の分極方向を反転させる。こ の印加電圧を記録すべき情報に従ってレベルが変化するパルス信号とし、これを、 プローブを介して強誘電体層に印加しながら、強誘電体記録媒体に対するプローブ の位置を強誘電体記録媒体の表面に平行な方向に移動させる。これにより、強誘電 体記録媒体に情報を強誘電体層の分極状態として記録することができる。
[0007] 一方、強誘電体記録媒体に記録された情報を再生するときには、強誘電体層の分 極方向に従って強誘電体層の非線形誘電率が異なることを利用する。すなわち、強 誘電体層の非線形誘電率を強誘電体層の容量の変化を検出することによって読み 取り、これにより、強誘電体層の分極状態として記録されている情報を再生する。具 体的には、プローブを強誘電体記録媒体の表面に接触させ、またはプローブを強誘 電体記録媒体の表面のきわめて近い位置に接近させる。そして、強誘電体記録媒体 の強誘電体層に、抗電界よりも小さい交番電界を印加し、強誘電体層の容量が交番 的に変化する状態を作る。この状態で、強誘電体層の容量変化を、プローブを介し て検出する。
[0008] この強誘電体層の容量変化の検出は以下のようにして行う。すなわち、強誘電体層 の容量と、外付けのインダクタのインダクタンスとから LC共振回路を形成する。さらに 、この LC共振回路に増幅回路に接続し、全体として発振器を形成する。これにより、 当該発振器は、強誘電体層の容量変化に対応して周波数が変化する発振信号を出 力する。続いて、この発振信号の周波数変化を振幅変化に変換する。続いて、この 周波数 振幅変換された信号から、強誘電体層の容量に対応する成分を抽出する 。そして、この抽出された成分に基づいて情報を再生する。
[0009] 特許文献 1:特開 2003— 085969号公報
発明の開示 発明が解決しょうとする課題
[0010] ところで、上述した特開 2003— 085969号公報に記載によれば、 LC共振回路を 含む発振器を用いて、強誘電体記録媒体の強誘電体層の容量変化を検出し、情報 を再生する。情報再生の精度または安定性を高めるためには、強誘電体層の容量変 化を精度よく発振信号の周波数変化に変換することが求められる。このため、 LC共 振回路の Qが高いことが望ましい。しかし、インダクタンス素子としてインダクタを用い た LC共振回路では、 Qを高くすることが困難である。このため、情報再生の精度また は安定性を高めることが難し 、と 、う問題がある。
[0011] 本発明は上記に例示したような問題点に鑑みなされたものであり、本発明の課題は 、情報再生の精度または安定性の高い強誘電体記録媒体用の情報再生装置を提 供することにある。
課題を解決するための手段
[0012] 上記課題を解決するために本発明の情報再生装置は、強誘電体層を有し前記強 誘電体層の自発分極により情報を保持する記録媒体から、前記情報を読み取って再 生する情報再生装置であって、前記記録媒体の表面を走査し、前記強誘電体層の 容量を検出するプローブと、前記記録媒体の表面に所定の間隔をもって対向し、か つ、前記プローブの近傍に配置されたリターン電極と、前記プローブによる前記強誘 電体層の容量検出を可能にするために、前記強誘電体層に電界を印加する電界印 加手段と、前記プローブにより検出された前記強誘電体層の容量と共に共振回路を 形成する共振子と、前記プローブにより検出された前記強誘電体層の容量と前記共 振子とにより選定された共振周波数を有する発振信号を生成する発振信号生成手 段と、前記発振信号生成手段により生成された発振信号に基づいて前記記録媒体 に保持された情報を再生する情報再生手段とを備えている。
[0013] 本発明のこのような作用及び他の利得は次に説明する実施形態及び実施例から 明らかにされる。
図面の簡単な説明
[0014] [図 1]本発明の情報再生装置の第 1実施形態を示すブロック図である。
[図 2]本発明の情報再生装置の第 2実施形態を示すブロック図である。 [図 3]本発明の情報再生装置の実施例を示すブロック図である。
[図 4]本発明の情報再生装置の他の実施例を示すブロック図である。
符号の説明
[0015] 1…記録媒体
2…強誘電体層
10、 20、 40、 50· ··情報再生装置
11、 41· ··プローブ
12、 42· --リターン電極
13、 43· ··電界印加手段 (交流電源)
14、 44· ··共振子 (SAW共振子)
15、 45· ··発振信号生成手段 (発振用増幅回路)
16、 21、 46、 47…情報再生手段 (周波数—振幅変換回路、
17、 49· ··共振回路
発明を実施するための最良の形態
[0016] 以下、本発明を実施するための最良の形態について実施形態毎に順に図面に基 づいて説明する。なお、本発明の実施形態の説明に用いる図面の内容は、本発明 の構成要素等を、本発明の技術思想を説明する限りにおいて具体ィ匕したものであり 、各構成要素等の形状、大きさ、位置、接続関係などは、これに限定されるものでは ない。また、本発明を実施するためのより具体的な例は、「実施例」という項目の下に 開示する。
[0017] (第 1実施形態)
図 1は、本発明の情報再生装置の第 1実施形態を示している。図 1中の情報再生装 置 10は、強誘電体記録媒体 1に記録'保持された情報を読み取って再生する装置で ある。情報再生装置 10は、例えば、ディスクドライブ、ディスクプレーヤ等と同様に、コ ンピュータ、映像機器、オーディオ機器、通信機器、医療機器、制御機械などデジタ ル情報を取り扱う種々の機器における情報再生処理に利用することができる。
[0018] 記録媒体 1は、例えばニオブ酸リチウム (LiNbO )またはタンタル酸リチウム(LiTa
3
O )等の強誘電体から形成された強誘電体層 2を有する。情報は、強誘電体層 2の 分極方向として記録されており、強誘電体の自発分極の性質より保持されている。強 誘電体層 2の背面には、背面電極 3が形成されており、背面電極 3およびリターン電 極 12を介して強誘電体層 2に電界を印加することができるようになって!/、る。
[0019] 情報再生装置 10は、 SNDM方式を採用している。 SNDM方式により、強誘電体 の分極方向として保持されている情報を再生する原理は、以下のとおりである。一般 に、強誘電体の非線形誘電率は、強誘電体の分極方向に応じて相違する。例えば、 図 1中の矢示 Pに示すように、強誘電体の非線形誘電率は、強誘電体の分極方向が 上向きか下向きかによつて相違する。この強誘電体の非線形誘電率の相違は、強誘 電体にその抗電界よりも小さい電界を印加して強誘電体の容量を検出することにより 知ることができる。具体的には、強誘電体にその抗電界よりも小さい電界を印加する 。そして、図 1に示すように、強誘電体の非線形誘電率の相違つまり強誘電体の分極 方向の相違に応じた、強誘電体の内部または表層部における静電容量の変化を直 接検出する。強誘電体に印加する電界は直流電界でもよいが、交番電界の方が検 出感度を高めることができる。強誘電体に交番電界を印加すると、交番電界に従って 強誘電体の容量が交番的に変化する。このとき、強誘電体の分極方向が上向きか下 向きかで、容量変化の描くカーブが異なる。これは、印加電界の変化に対する強誘 電体の分極変化がヒステリシス曲線を描く性質をもっているためである。したがって、 強誘電体に交番電界を印加した状態で、強誘電体の容量変化を検出し、この容量 変化のカーブの相違を識別することにより、強誘電体の非線形誘電率の相違を知る ことができ、そして強誘電体の分極方向を知ることができる。そして、分極方向として 記録'保持されている情報を再生することができるのである。
[0020] 図 1に示すように、情報再生装置 10は、プローブ 11、リターン電極 12、電界印加手 段 13、共振子 14、発振信号生成手段 15および情報再生手段 16を備えている。
[0021] プローブ 11は、記録媒体 1 (強誘電体層 2)の表面を走査し、強誘電体層 2の容量 を検出する部材である。プローブ 11は、例えばタングステン等の金属またはカーボン ナノチューブなどに形成されている。プローブ 11は針状に形成されており、その先端 径は、例えば、数ナノメートルないし数百ナノメートルである。プローブ 11は、記録媒 体 1の上側に配置されており、記録媒体 1の表面に垂直な方法に伸びている。 [0022] リターン電極 12は、背面電極 3と共に、電界印加手段 13から出力される電界を強 誘電体層 2に印加する機能を有する。さらに、リターン電極 12は、プローブ 11の先端 から強誘電体層 2を通って当該リターン電極 12に至る電気経路 Sを形成する機能を 有する。そして、電気経路 Sは、強誘電体層 2の容量 Csと共振子 14とから形成される 共振回路の一部となる。つまり、リターン電極 12は、この共振回路における共振周波 数を選定するための帰還回路の一部を構成する経路である。リターン電極 12は、記 録媒体 1の表面に所定の間隔をもって対向し、かつ、プローブ 11の近傍に配置され ている。具体的には、リターン電極 12は、プローブ 11と共に強誘電体層 2の一側に 位置する表面の上方に配置されている。リターン電極 12と記録媒体 1の表面との間 の距離は、例えばおよそ数十ナノメートルないし数十マイクロメートルである。リターン 電極 12がプローブ 11の近傍に配置されているため、電界印加手段 13から出力され る電界は、強誘電体層 2においてプローブ 11の先端直下とその周辺を含む領域に 印加される。また、リターン電極 12が記録媒体 1の表面力も比較的微小な間隔をもつ て対向し、かつプローブ 11の近傍に配置されているため、電気経路 Sがきわめて短く なる。電気経路 Sを短くすることにより、プローブ 11により強誘電体層 2の容量変化を 検出するときに、予測不能な浮遊容量等のノイズが混入するのを抑制することができ る。なお、図 1中のリターン電極 12は、リング状に形成されており、リングの中央にプロ ーブ 11が配置されている。リターン電極 12をリング状に形成することにより、電界印 加手段 13から出力される電界をプローブ 11の近傍周辺に均等に印加することがで きるという利点がある。し力し、リターン電極 12の形状は、プローブ 11との間の位置関 係および記録媒体 1の表面との間の位置関係を上述したように適切に設定できれば 、他の形状でもよい。
[0023] 電界印加手段 13は、プローブ 11による強誘電体層 2の容量 Csの検出を可能また は容易にするために、強誘電体層 2に電界を印加する。電界印加手段 13は、交番電 圧または直流電圧を生成し、これをリターン電極 12と背面電極 3との間に供給する。 これにより、交番電界または直流電界が強誘電体層 2に印加される。電界印加手段 1 3により印加される電界の強度は、強誘電体層 2の抗電界よりも小さい。また、電界印 加手段 13により印加される電界が交番電界の場合には、交番電界の周波数は例え ば 5kないし 100kHz程度である。電界印加手段 13は、交流電圧または直流電圧を 生成する通常の電気回路により実現することができる。なお、図 1では、直流電界ま たは交番電界をリターン電極 12および背面電極 3を介して強誘電体層 2に印加して いる力 この電界をプローブ 11および背面電極 3を介して強誘電体層 2に印加するこ とも可能である。
[0024] 共振子 14は、プローブ 11により検出された強誘電体層 2の容量 Csと共に共振回路 17を形成する。すなわち、共振子 14は、強誘電体層 2の容量 Csと共に、共振周波 数を選定する機能を有する。そして、強誘電体層 2の容量 Csと共振子 14によって選 定された共振周波数は、発振信号生成手段 15により生成される発振信号の周波数 となる。強誘電体層 2の容量 Csと共振子 14とにより選定される共振周波数の平均は 、例えば 1GHz程度である(なお、後述するように、この共振周波数は、強誘電体層 2 の容量変化に従って例えば 1GHzを中心に変化する)。共振子 14として、例えば SA W (Surface Acoustic Wave)共振子、水晶発振子またはセラミック発振子など、種々 の共振子、発振子または振動子を用いることができる。もっとも、 Qが高いことが望ま L 、ので、共振子 14として SAW共振子または水晶発振子を用いることが望ま 、。 さらに、一般に、 SAW共振子の方が水晶発振子よりも (背が高いので、 Qをより高める 観点から、共振子 14として SAW共振子を用いることがより望ま 、。
[0025] 発振信号生成手段 15は、プローブ 11により検出された強誘電体層 2の容量 Csと 共振子 14とにより選定された共振周波数を有する発振信号を生成する。例えば、発 振信号生成手段 15は、強誘電体層 2の容量 Csと共振子 14とから形成される共振回 路 17と共に発振器を構成する。発振信号生成手段 15は、例えば、増幅回路のほか 、共振回路 17と共に発振器を構成するための種々の素子により実現することができ る。より具体的には、 VCSO (Voltage Controlled SAW Oscillator)または VCXO (V oltage Controlled X'tal(crystal) Oscillator)に用いられる回路構成(電圧制御部分を 除く。また、強誘電体層 2の容量が可変容量素子に相当する)を適用することが可能 である。
[0026] 情報再生手段 16は、発振信号生成手段 15により生成された発振信号に基づいて 記録媒体に保持された情報を再生する。後述するように、強誘電体層 2の容量 Csの 変化に対応して発振信号の周波数が変化する。情報再生手段 16は、この発振信号 の周波数の変化を検出し、強誘電体層 2の容量 Csの変化を知り、これに基づいて、 強誘電体層 2の非線形誘電率を知り、さらに強誘電体層 2の分極方向を知る。情報 は強誘電体層 2の分極方向として保持されているので、このような検出'分析を行うこ とで、強誘電体層 2に保持された情報を再生することができる。
[0027] このような構成を有する情報再生装置 10の動作は以下のとおりである。記録媒体 1 に保持された情報を再生するとき、まず、図示しない位置決め機構が、プローブ 11ま たは記録媒体 1を移動させ、プローブ 11の先端を記録媒体 1の表面に接触させ、ま たは、プローブ 11の先端を記録媒体 1の表面力 数ナノメートルないし数十ナノメー トル離れた位置まで接近させる。続いて、電界印加手段 13は、背面電極 3とリターン 電極 12との間に例えば交番電圧を供給する。これにより、交番電界が強誘電体層 2 に印加される。そして、交番電界の印加により、強誘電体層 2においてプローブ 11の 先端直下とその周辺の領域の容量 Csが、交番電界に従って交番的に変化する。強 誘電体層 2の容量 Csの変化 (具体的には図 1に示すように強誘電体層 2の内部また は表層部における容量 Csの変化)は、プローブ 11により検出される。そして、強誘電 体層 12の容量 Csの変化に従って、強誘電体層 12の容量 Csと共振子 14とから形成 される共振回路 17の共振周波数が変化するので、これに従って、発振信号生成手 段 15により生成される発振信号の周波数が変化する。この発振信号は、情報再生手 段 16に供給される。続いて、情報再生手段 16は、発振信号に基づいて強誘電体層 2の容量 Csの変化を認識し、強誘電体層 2に保持された情報を再生する。
[0028] 以上より、情報再生装置 10では、強誘電体層 2の容量 Csの変化に従って発振信 号の周波数を変化させるための共振回路 17において、共振子 14を用いている。共 振子 14を用いたことにより、高い Qを有する共振回路 17を実現することができる。こ れにより、強誘電体層 2の容量 Csの変化に発振信号の周波数の変化を高精度かつ 鋭敏に追従させることができる。すなわち、たとえ強誘電体層 2の容量 Csの変化が微 小でも、この微小な変化に従って発振信号の周波数を変化させることができる。また 、たとえ強誘電体層 2の容量 Csの変化が高速でも、この高速な変化に従って発振信 号の周波数を変化させることができる。この結果、情報再生装置 10によれば、情報再 生の精度および速度を向上させることができる。
[0029] また、情報再生装置 10によれば、共振子 14を用いたことにより、情報再生の精度ま たは SN比を低下させることなぐ強誘電体層 2に印加する交番電界の振幅を小さく できる。また、交番電界に代えて直流電界を印加する構成を採用しても、高精度な情 報再生を実現することが可能となる。この理由は、以下のとおりである。
[0030] すなわち、上述したように、 SNDM方式では、強誘電体に交番電界を印加したとき の強誘電体の容量変化のカーブの相違を識別し、これに基づ!、て強誘電体の分極 方向を知る。具体的には、まず、強誘電体に交番電界を印加し、強誘電体の容量を 変化させる。続いて、共振回路を用いて、強誘電体の容量変化に発振信号の周波数 の変化を追従させ、いわば、強誘電体の容量変化を発振信号の周波数変化に変換 する。続いて、発振信号の周波数変化に対して信号検出処理を行って、強誘電体の 分極方向を知る。したがって、共振回路の感度が悪いと、強誘電体の容量変化を発 振信号の周波数変化に精度よく変換することができず、強誘電体の分極方向を正確 に知ることが困難となる。
[0031] この問題を解決するための一つの方法として、交番電界の振幅を大きくする方法が ある。交番電界の振幅を大きくすれば、強誘電体の容量変化が大きくなり、強誘電体 の分極方向の相違に対応する容量変化のカーブの相違が顕著となる。したがって、 共振回路の感度が悪くても、発振信号の周波数変化から、強誘電体の分極方向を 読み取ることができる。ところが、交番電界の強度は強誘電体の抗電界を超えること はできないので、交番電界の振幅を大きくするのには限界がある。このため、この方 法では、強誘電体の分極方向の認識精度を十分に高めることができない場合がある
[0032] これに対し、本発明の第 1実施形態である情報再生装置 10によれば、 Qの高い共 振子 14を用いて共振回路 17を形成しているため、共振回路 17の感度が良い。この ため、強誘電体の容量変化を発振信号の周波数変化に精度よく変換することができ 、強誘電体の分極方向を正確に知ることができる。そして、共振回路 17の感度が良 いため、交番電界の振幅を大きくしなくてもよい。さらには、共振回路 17の感度が良 いため、交番電界の振幅を小さくしても、強誘電体の分極方向を正確に知ることがで きる。したがって、情報再生の精度または SN比を低下させることなぐ強誘電体層 2 に印加する交番電界の振幅を小さくでき、さらには、交番電界に代えて直流電界を 印加する構成を採用することが可能となるのである。
[0033] (第 2実施形態)
図 2は、本発明による情報再生装置の第 2実施形態を示している。第 2実施形態の 特徴は、情報再生手段をより具体ィ匕した点にある。すなわち、図 2中の情報再生装置 20は、情報再生手段 21を有する。情報再生手段 21は、変換手段 22および抽出手 段 23を備えている。
[0034] 変換手段 22は、プローブ 11により検出された強誘電体層 2の容量変化に対応する 発振信号の周波数変化を振幅変化に変換し、変換された信号を出力する。変換手 段 22は、例えば、周波数 電圧変換回路または FM復調器などにより実現すること ができる。
[0035] 抽出手段 23は、変換手段 22により変換された信号から、プローブ 11により検出さ れた強誘電体層 2の容量変化に対応する成分を抽出する。抽出手段 23は、ロックィ ンアンプなどの検波回路により実現することができる。電界印加手段 13によりリターン 電極 12と背面電極 3との間に交番電圧を供給し、これにより強誘電体層 2に交番電 界を印加する構成を採用した場合には、この交番電圧を、抽出手段 13における信号 成分抽出処理 (検波処理)に参照信号として用いることが望ま 、(図 2中の点線の 接続ラインを参照)。これにより、信号成分抽出処理 (検波処理)の精度を向上させる ことができる。
[0036] (実施例)
以下、本発明の実施例について図面を参照しながら説明する。以下の実施例は、 本発明を実施するための好適な一例である。
[0037] 記録媒体 30は、強誘電体層 31および背面電極 32を備えている。強誘電体層 31 は、例えばニオブ酸リチウム (LiNbO )から形成されている。背面電極 32は、アルミ
3
ユウム、白金または銅などの導体から形成されており、強誘電体層 31の背面に、スパ ッタリングや蒸着などの薄膜形成プロセスによって形成 (積層)されている。
[0038] 情報再生装置 40は、プローブ 41、リターン電極 42、交流電源 43、 SAW共振子 44 、発振用増幅回路 45、周波数—振幅変換回路 46およびロックインアンプ 47を備え ている。
[0039] プローブ 41は、記録媒体 30 (強誘電体層 31)の表面を走査し、強誘電体層 31の 容量を検出する部材である。プローブ 11は、例えばタングステンにより針状に形成さ れており、その先端径は、数十ナノメートル程度である。記録媒体 30に保持された情 報を再生するとき、プローブ 41の先端は、記録媒体 30表面上の読取位置に接近す る。このときのプローブ 41の先端と記録媒体 30の表面との間の距離は、数ナノメート ルな 、し数十ナノメートル程度である。プローブ 41の先端と記録媒体 30表面とをこの ような微小な距離となるまで接近させることにより、プローブ 41による記録媒体 30表 面の走査の容易性'迅速性を確保しつつ、プローブ 41の先端が記録媒体 30の表面 と接触しているのと同様の電気的作用を実現することができる。また、プローブ 41の 先端と記録媒体 30の表面とを接触させても構わな 、。
[0040] リターン電極 42は、背面電極 32と共に、交流電源 43から出力される電界を強誘電 体層 31に印加する機能を有する。さら〖こ、リターン電極 42は、プローブ 41の先端か ら強誘電体層 31を通って当該リターン電極 42に至る電気経路 Sを形成する機能を 有する。リターン電極 42は、記録媒体 30の表面に所定の間隔をもって対向している 。リターン電極 42と記録媒体 30の表面との間の距離は、例えばおよそ数百ナノメート ル程度である。また、リターン電極 42は、リング状に形成されており、プローブ 41の周 囲を囲んでいる。
[0041] 交流電源 43は、プローブ 41による強誘電体層 31の容量 Csの検出を可能または容 易にするために、強誘電体層 31に交番電界を印加する電源である。交流電源 43は 、交番電圧を生成し、これをリターン電極 42と背面電極 32との間に供給する。これに より、交番電界が強誘電体層 31に印加される。交流電源 43により印加される電界の 強度は、強誘電体層 31の抗電界よりも小さぐその周波数は例えば 5kHz程度であ る。
[0042] SAW共振子 44は、プローブ 41により検出された強誘電体層 31の容量 Csと共に 共振回路 49を形成する。すなわち、共振子 44は、強誘電体層 31の容量 Csと共に、 共振周波数を選定する機能を有する。強誘電体層 31の容量 Csと SAW共振子 44と により選定される共振周波数の平均は、例えば 1GHz程度である。
[0043] 発振用増幅回路 45は、プローブ 41により検出された強誘電体層 31の容量 Csと S AW共振子 44とにより選定された共振周波数を有する発振信号を生成する回路であ る。すなわち、強誘電体層 31の容量 Cs、 SAW共振子 44および発振用増幅回路 45 は、全体で発振器を構成しており、強誘電体層 31の容量 Csおよび SAW共振子 44 力 S当該発振器の周波数選定回路に相当し、発振用増幅回路 45が当該発振器の増 幅回路に相当する。
[0044] 周波数—振幅変換回路 46は、プローブ 41により検出された強誘電体層 31の容量 変化に対応する発振信号の周波数変化を振幅変化に変換し、変換された信号を出 力する回路である。
[0045] ロックインアンプ 47は、周波数 振幅変換回路 46により変換された信号から、プロ ーブ 41により検出された強誘電体層 31の容量変化に対応する成分を抽出する回路 である。交流電源 43から出力される交流電圧は、リターン電極 42および背面電極 32 に供給されるだけでなぐロックインアンプ 47にも供給される。ロックインアンプ 47は、 この交流電圧を参照信号として用 ヽて、強誘電体層 31の容量変化に対応する成分 の抽出を行い、強誘電体層 2に保持された情報を再生する。
[0046] 移動機構 48は、例えば、 X— Yステージであり、その上に載置された記録媒体 30を 、記録媒体 30の表面と平行な方向(図 3中の X方向および Y方向)に移動させる機構 である。移動機構 48により記録媒体 30を移動させることにより、プローブ 41による記 録媒体 30表面の走査が実現される。
[0047] (他の実施例)
図 4に本発明の他の実施例を示す。情報再生装置 50においては、前述の実施例 において SAW共振子 44、プローブ 41により検出される強誘電体層 31の容量 Csに より構成される共振回路 49中の SAW共振子 44、プローブ 41間に更にインダクタ 51 が挿入されており、 SAW共振子 44の共振周波数の中で、プローブ 41により検出さ れた強誘電体層 31の容量 Csとインダクタ 51によって選択される周波数が共振回路 4 9の共振条件を満たし、これが発振用増幅回路 45の発振周波数となる。
[0048] なお、本発明は、請求の範囲および明細書全体力 読み取ることのできる発明の 要旨または思想に反しない範囲で適宜変更可能であり、そのような変更を伴う装置も また本発明の技術思想に含まれる。
産業上の利用可能性
本発明に係る強誘電体記録媒体用の情報再生装置は、例えば、強誘電体の自発 分極により情報を保持する強誘電体記録媒体用の情報再生装置に利用可能である

Claims

請求の範囲
[1] 強誘電体層を有し前記強誘電体層の自発分極により情報を保持する記録媒体か ら、前記情報を読み取って再生する情報再生装置であって、
前記記録媒体の表面を走査し、前記強誘電体層の容量を検出するプローブと、 前記記録媒体の表面に所定の間隔をもって対向し、かつ、前記プローブの近傍に 配置されたリターン電極と、
前記プローブによる前記強誘電体層の容量検出を可能にするために、前記強誘電 体層に電界を印加する電界印加手段と、
前記プローブにより検出された前記強誘電体層の容量と共に共振回路を形成する 共振子と、
前記プローブにより検出された前記強誘電体層の容量と前記共振子とにより選定さ れた共振周波数を有する発振信号を生成する発振信号生成手段と、
前記発振信号生成手段により生成された発振信号に基づいて前記記録媒体に保 持された情報を再生する情報再生手段と
を備えて 、ることを特徴とする情報再生装置。
[2] 前記共振子は、 SAW (Surface Acoustic Wave)共振子であることを特徴とする請求 の範囲第 1項に記載の情報再生装置。
[3] 前記共振子は、水晶発振子であることを特徴とする請求の範囲第 1項に記載の情 報再生装置。
[4] 前記電界印加手段は、前記強誘電体層に交番電界を印加することを特徴とする請 求の範囲第 1項に記載の情報再生装置。
[5] 前記情報再生手段は、
前記プローブにより検出された前記強誘電体層の容量変化に対応する前記発振 信号の周波数変化を振幅変化に変換し、変換された信号を出力する変換手段と、 前記変換手段により変換された信号から、前記プローブにより検出された前記強誘 電体層の容量変化に対応する成分を抽出する抽出手段と
を備えていることを特徴とする請求の範囲第 1項に記載の情報再生装置。
PCT/JP2005/006942 2004-04-08 2005-04-08 強誘電体記録媒体用の情報再生装置 WO2005098846A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP05728530A EP1736981A4 (en) 2004-04-08 2005-04-08 INFORMATION REPRODUCTION DEVICE FOR A FERROELECTRIC RECORDING MEDIUM
JP2006512133A JP4328355B2 (ja) 2004-04-08 2005-04-08 強誘電体記録媒体用の情報再生装置
US11/547,980 US20080002502A1 (en) 2004-04-08 2005-04-08 Information reproducing device for ferroelectric recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-114578 2004-04-08
JP2004114578 2004-04-08

Publications (1)

Publication Number Publication Date
WO2005098846A1 true WO2005098846A1 (ja) 2005-10-20

Family

ID=35125321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/006942 WO2005098846A1 (ja) 2004-04-08 2005-04-08 強誘電体記録媒体用の情報再生装置

Country Status (5)

Country Link
US (1) US20080002502A1 (ja)
EP (1) EP1736981A4 (ja)
JP (1) JP4328355B2 (ja)
CN (1) CN1957406A (ja)
WO (1) WO2005098846A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011023929A (ja) * 2009-07-15 2011-02-03 Panasonic Corp 弾性波素子とこれを用いた電子機器
JP2011023930A (ja) * 2009-07-15 2011-02-03 Panasonic Corp 弾性波素子とこれを用いた電子機器

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7796494B2 (en) * 2008-08-26 2010-09-14 Seagate Technology, Llc Asymmetric write for ferroelectric storage

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08139525A (ja) * 1994-11-11 1996-05-31 Nec Corp 電圧制御型saw発振器
JP2003085969A (ja) * 2001-09-10 2003-03-20 Pioneer Electronic Corp 誘電体情報装置、テープ状媒体記録再生装置及びディスク状媒体記録再生装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5945286B2 (ja) * 1977-09-05 1984-11-05 松下電器産業株式会社 弾性表面波先振器用素子
US4410852A (en) * 1980-08-22 1983-10-18 Harold Guretzky Angle-position transducer
JPS57119509A (en) * 1981-01-19 1982-07-26 Toshiba Corp Surface acoustic wave resonator
JPH09120593A (ja) * 1995-08-23 1997-05-06 Sony Corp 記録再生装置
JP2003296979A (ja) * 2002-01-31 2003-10-17 Yasuo Cho 誘電体記録媒体の記録条件抽出システム及び記録条件抽出方法並びに情報記録装置
JP4141745B2 (ja) * 2002-06-06 2008-08-27 康雄 長 誘電体記録再生ヘッド、誘電体記録媒体ユニット及び誘電体記録再生装置
JP3954457B2 (ja) * 2002-07-09 2007-08-08 パイオニア株式会社 誘電体記録媒体及び誘電体記録再生装置
JP3701268B2 (ja) * 2002-09-11 2005-09-28 康雄 長 誘電体記録装置、誘電体再生装置及び誘電体記録再生装置
JP4141811B2 (ja) * 2002-11-18 2008-08-27 パイオニア株式会社 情報記録読取ヘッド

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08139525A (ja) * 1994-11-11 1996-05-31 Nec Corp 電圧制御型saw発振器
JP2003085969A (ja) * 2001-09-10 2003-03-20 Pioneer Electronic Corp 誘電体情報装置、テープ状媒体記録再生装置及びディスク状媒体記録再生装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP1736981A4 *
vol. 4, 1 January 1992, CQ PUBLISING CO., LTD., article "Transistor Gijutsu Zokan Torawaza", pages: 67, XP002993440 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011023929A (ja) * 2009-07-15 2011-02-03 Panasonic Corp 弾性波素子とこれを用いた電子機器
JP2011023930A (ja) * 2009-07-15 2011-02-03 Panasonic Corp 弾性波素子とこれを用いた電子機器

Also Published As

Publication number Publication date
US20080002502A1 (en) 2008-01-03
JP4328355B2 (ja) 2009-09-09
EP1736981A4 (en) 2008-05-07
JPWO2005098846A1 (ja) 2008-07-31
EP1736981A1 (en) 2006-12-27
CN1957406A (zh) 2007-05-02

Similar Documents

Publication Publication Date Title
JP3701268B2 (ja) 誘電体記録装置、誘電体再生装置及び誘電体記録再生装置
JP4274571B2 (ja) 記録再生ヘッド及び記録再生装置
JP4017104B2 (ja) 誘電体記録再生ヘッド及びトラッキング方法
JP4098689B2 (ja) 誘電体再生装置、誘電体記録装置及び誘電体記録再生装置
JP3954457B2 (ja) 誘電体記録媒体及び誘電体記録再生装置
JP3958196B2 (ja) 誘電体記録再生ヘッド及び誘電体記録再生装置
JP4082947B2 (ja) 記録再生ヘッド及びその製造方法
JP2005004890A (ja) 針状部材を用いたデータ記録再生装置およびデータ記録再生方法
JP4328355B2 (ja) 強誘電体記録媒体用の情報再生装置
JP4642073B2 (ja) 信号処理回路及び再生装置
US20050163021A1 (en) Recording medium using ferroelectric substance, recording apparatus and reproducing apparatus
US20050128928A1 (en) Recording / reproducing head, recording / reproducing head array, method of producing the same, and recording apparatus and reproducing apparatus
US20100208573A1 (en) Method and device for detecting ferroelectric polarization
US7602170B2 (en) Probe, manufacturing method of the probe, recording apparatus, and reproducing apparatus
JP2006260720A (ja) 探針空隙制御方法、及び、記録再生装置
JP2006268894A (ja) 誘電体記録・再生装置および記録方法ならびにその電極
JP4328357B2 (ja) 記録媒体、記録装置及び方法、再生装置及び方法、並びにコンピュータプログラム
JPH0344363B2 (ja)
JP2000315330A (ja) 情報記録再生装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2006512133

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200580012052.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2005728530

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005728530

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11547980

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 11547980

Country of ref document: US