WO2005097941A1 - 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置 - Google Patents

有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置 Download PDF

Info

Publication number
WO2005097941A1
WO2005097941A1 PCT/JP2005/004681 JP2005004681W WO2005097941A1 WO 2005097941 A1 WO2005097941 A1 WO 2005097941A1 JP 2005004681 W JP2005004681 W JP 2005004681W WO 2005097941 A1 WO2005097941 A1 WO 2005097941A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic electroluminescent
electroluminescent device
organic
group
electron
Prior art date
Application number
PCT/JP2005/004681
Other languages
English (en)
French (fr)
Inventor
Tomohiro Oshiyama
Eisaku Katoh
Hiroshi Kita
Shuichi Oi
Yoshio Inoue
Original Assignee
Konica Minolta Holdings, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Holdings, Inc. filed Critical Konica Minolta Holdings, Inc.
Priority to JP2006511954A priority Critical patent/JPWO2005097941A1/ja
Publication of WO2005097941A1 publication Critical patent/WO2005097941A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0086Platinum compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1022Heterocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/346Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising platinum
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/348Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising osmium

Definitions

  • Organic electroluminescent device organic electroluminescent device
  • the present invention relates to a novel organic electroluminescent device, and an organic electroluminescent device containing the organic electroluminescent device, a display device, and a lighting device.
  • ELD electroluminescent display
  • organic EL device an organic electroluminescent device
  • Inorganic electroluminescent devices have been used as flat light sources, but high voltage AC is required to drive the light emitting devices.
  • An organic EL device has a configuration in which a light-emitting layer containing a compound that emits light is sandwiched between a cathode and an anode. Electrons and holes are injected into the light-emitting layer and recombined to generate excitons.
  • a stilbene derivative, a distyrylarylene derivative, or a tristyrylarylene derivative is doped with a small amount of a phosphor to achieve an improvement in light emission luminance and a longer life of the device. ing.
  • an element having an organic light-emitting layer obtained by using an 8-hydroxyquinoline aluminum complex as a host conjugate and adding a small amount of a phosphor thereto for example, JP-A-63-264692
  • a quinoline aluminum complex is used as a hostile dangling product, and a quinacridone color
  • An element having an organic light emitting layer doped with silicon for example, Japanese Patent Application Laid-Open No. 3-255190 is known.
  • the upper limit of the internal quantum efficiency is 100%, so the luminous efficiency is quadrupled in principle compared to the case of the excited singlet, and it is possible to obtain almost the same performance as a cold cathode tube Because of its potential, it is attracting attention as a lighting application.
  • the emission wavelength of the light-emitting material is shortened to achieve blue, While high-efficiency devices can be achieved, the light-emitting lifetime of the devices is significantly degraded, and there is a need for an improvement in the trade-off.
  • Patent Document 1 JP 2001-181616 A Patent Document 2: JP-A-2002-332291
  • Patent Document 3 JP-A-2002-332292
  • Patent Document 4 JP-A-2002-338588
  • Patent Document 5 JP-A-2002-226495
  • Patent Document 6 Japanese Patent Application Laid-Open No. 2002-234894
  • Patent Document 7 International Publication No. 02Z15645 pamphlet
  • Patent Document 8 Japanese Patent Application Laid-Open No. 2003-123982
  • Patent Document 9 Japanese Patent Application Laid-Open No. 2002-117978
  • Patent Document 10 Japanese Patent Application Laid-Open No. 2003-146996
  • Patent Document 11 International Publication No. 04Z16711 pamphlet
  • Non-Patent Document 1 Inorganic Chemistry, Vol. 41, No. 12, pp. 3055-3066 (2002)
  • Non-patent document 2 Applied Physics Letters, vol. 79, page 2082 (2001)
  • Non-patent document 3 Applied Physics Letters, vol. 83, page 3818 (2003)
  • Non-patent document 4 New Journal of Chemistry, 26 Vol., P. 1171 (2002) Disclosure of the Invention
  • the present invention has been made in view of the above problems, and an object of the present invention is to introduce a substituent into a specific position (position) of phenyluridine, which is a ligand of a platinum complex.
  • phenyluridine which is a ligand of a platinum complex.
  • an organic EL element a lighting device, and a display device that exhibit high light emission efficiency and have a long light emission life by using a phosphorescent blue light emission blocking material whose compound is designed to have a controlled light emission wavelength. It is in.
  • the object of the present invention is to provide a platinum complex containing a platinum complex in which an oxygen or sulfur-containing group is introduced into the 4-position of pyridine, and a specific substituent is introduced into a specific position.
  • FIG. 1 is a schematic diagram showing an example of a display device configured with an organic EL element.
  • FIG. 2 is a schematic diagram of a display unit A.
  • FIG. 3 is an equivalent circuit diagram of a drive circuit forming a pixel.
  • FIG. 4 is a schematic view of a display device using a passive matrix system.
  • FIG. 5 is a schematic diagram of a sealing structure of an organic EL element OLED1-1.
  • FIG. 6 is a schematic view of a lighting device including an organic EL element.
  • the best mode for carrying out the present invention has the following configuration. However, the present invention is not limited by these.
  • An organic electroluminescent device material comprising a platinum complex represented by the following general formula (1).
  • R, R, R, R, R, and R represent a hydrogen atom or a substituent
  • Ra represents a substituent
  • Xa represents an oxygen atom or a sulfur atom
  • Y-L-Y represents a bidentate ligand, and Y and Y each independently represent an oxygen atom
  • a nitrogen atom, a carbon atom or a sulfur atom, L represents a bidentate ligand together with Y and Y
  • Ra represents an alkyl group, wherein the organic electroluminescent device material according to the above item 11 or 2, wherein Ra represents an alkyl group.
  • R 1, R 2, R 3, R 4, R 5, R 6 and R are hydrogen atoms or substituents R 1, R 2
  • At least one of the three is electron-withdrawing.
  • b represents an oxygen atom or a sulfur atom.
  • Y-L-Y represents a bidentate ligand, and Y and Y each independently represent an oxygen atom
  • Electronoluminescence element material Electronoluminescence element material.
  • an organic electroluminescent device having a light emitting layer as a constituent layer, 12.
  • the hole blocking layer contains the organic electroluminescent device material according to any one of the first to fourth aspects.
  • An organic electroluminescent device having an organic EL port is provided.
  • a display device comprising the organic electroluminescent device according to any one of the above items 12 to 14.
  • a lighting device comprising the organic electorophore luminescent element according to any one of the items (1) to (12).
  • the present inventors have conducted intensive studies in view of the above problems, and as a result, have found that a metal complex in which a substituent having a certain electronic property is introduced at a specific position (location) of phenolylidine,
  • an organic EL element that is included as an organic EL element material
  • an organic EL element manufactured using a conventional metal complex for blue, particularly an organic EL element material whose emission wavelength is controlled to a shorter wavelength only by an electron-withdrawing group is greatly improved.
  • the effective substitution positions for shortening the wavelength and increasing the wavelength were the 4th and 3p-6p positions.
  • the shortening of the wavelength when the substituent is an electron donating group, the introduction of substituents at the 4-, 4-, and 6p-positions is effective, whereas when the substituent is an electron-withdrawing group, the 3-p-position The introduction of a substituent at the 5p position was effective.
  • the present inventors have studied and synthesized based on the above guidelines as a means for shortening the emission wavelength to blue, and found that the emission wavelength control almost satisfies the simulation results. I can do it.
  • Gaussian 98 (revision A. 11.4, MJ Frisch, G. W. Trucks, HB Schlegel, GE Scuseria, MA Robb, JR Cheeseman, VG Zakrzewski, JA Montgomery, Jr., RE Stratmann, JC Burant, S. Dapprich, JM Millam, AD Daniels, KN Kudin, MC Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Po melli , C. Adamo, S. Clifford, J. Ochterski, GA Petersson, PY Ayala, Q. Cui, K. Morokuma, N.
  • the calculation was performed by optimizing the structure using the B3LYP method, and then using the TD-DFT calculation to calculate the phosphorescence wave. The length was calculated to determine the emission wavelength.
  • a layer containing the platinum complex in the device As a layer containing the platinum complex in the device, a light-emitting layer and a Z or hole blocking layer are preferable, and when the platinum complex is contained in the light-emitting layer, it is used as a light-emitting dopant in the light-emitting layer. As a result, the effect described in the present invention, that is, a longer luminescent lifetime of the organic EL element, was achieved.
  • the term “electron-donating substituent” refers to a substituent having a negative ⁇ ⁇ value of the group described below, and such a substituent Has a property that it easily gives an electron to a bonding atom side as compared with a hydrogen atom.
  • the substituent having an electron donating property include a hydroxyl group, an alkoxy group (for example, a methoxy group), an acetyloxy group, an amino group, a dimethylamino group, an acetylamino group, an alkyl group (for example, a methyl group, And an aryl group (eg, a phenyl group, a mesityl group, etc.).
  • an alkoxy group for example, a methoxy group
  • an acetyloxy group an amino group
  • a dimethylamino group for acetylamino group
  • an alkyl group for example, a methyl group
  • an aryl group eg, a phenyl group, a mesityl group, etc.
  • the Hammett's ⁇ ⁇ value according to the present invention refers to Hammett's substituent constant ⁇ ⁇ .
  • the value of ⁇ ⁇ of No, Met is a substituent constant for which the electronic effect of the substituent on the hydrolysis of ethyl benzoate was determined by Hammett et al., And is referred to as “Drug structure-activity relationship” (Nan-Edo: 1979) , “SuDstituent Constants for Correlation Analysis,” hemistry and Biology J (C. Hansch and A. Leo, John Wiley & Sons, New York, 1979) and the like can be cited.
  • R 1, R 2, R 3, R 4, R 5, R 6 and R are the general formula (1) of the present invention.
  • Ra represents a substituent
  • Xa represents an oxygen atom or a sulfur atom.
  • the substituent represented by Ra is not particularly limited.
  • Alkyl group for example, methyl group, ethyl group, isopropyl group, tert-butyl group, etc.
  • cycloalkyl group for example, cyclohexyl group, cyclopentyl group, cyclopropyl group, etc.
  • alkenyl group for example, vinyl group, aryl group, etc.
  • alkyl group eg, ethynyl group, propyl group, etc.
  • aryl group eg, phenyl group, 2-naphthyl group, 2-pyridyl group, 2-chenyl group, 3 furyl group, etc.
  • heterocyclic group N morpholyl group, 2-tetrahydrofural group, etc.
  • Ra is preferably an alkyl group having 113 carbon atoms.
  • Ra—Xa— is preferably an alkoxy group or an alkylthio group.
  • the substituent represented by R—R includes an alkyl group (eg, a methyl group, an isopropyl group, a tert-butyl group, etc.), a cycloalkyl group (eg, a cyclohexyl group, a cyclopentyl) Group, cyclopropyl group, etc.), alkenyl group (eg, butyl group, aryl group, 2-butenyl group, etc.), alkyl group (eg, ethur group, propynyl group, etc.), aryl group (eg, phenyl group) , 2 naphthyl, 9 phenanthryl, 2 pyridyl, mesityl, carbazolyl, fluorenyl, 2 chel, 3 furyl, etc., heterocyclic (N morpholyl, 2-tetrahydrofuranyl, etc.), Amino group, alkylamino group (eg, dimethylamino
  • At least one of the groups represented by R, R, R, and R is an electron donating group
  • An electron donating group and at least one of the electron donating groups has a ⁇ ⁇ of 0.20 or less.
  • the following are preferably used, but most preferably, the electron donating group is introduced into R or R of the general formula (1), wherein R and R are both the electron donating group.
  • Electron donating group having ⁇ ⁇ of -0.20 or less >>
  • examples of the electron donating group having a carbon number of 0.20 or less include a cyclopropyl group (0.21), a cyclohexyl group (-0.22), and a tert-butyl group (-0.20). ), —CH Si (CH) (-
  • Y L Y represents a bidentate ligand
  • Y and Y each independently represent an acid
  • L Represents an elementary atom, a nitrogen atom, a carbon atom, or a sulfur atom, and L is a bidentate with Y, Y
  • bidentate ligand represented by YLY are not particularly limited.
  • it is a derivative such as phenylpyridine, acetic acid, acetylethylacetone, thiocarbamic acid derivative, 2-acylphenol, picolinic acid, etc., which may have! /.
  • At least one substituent which is preferably introduced at the 3p-6p position in the structure and does not bond to each other to form a ring includes the general formula: A group represented by R, R, R, and R in (1),
  • R, R, R, R, R is a donating substituent. More preferably, R, R, R, R, R, R
  • At least two of the groups are electron donating substituents.
  • R and R are electron-donating substituents.
  • the electron donating substituent is most preferably an alkyl group, an alkoxy group, or an alkylamino group among the above groups.
  • the platinum complex represented by the general formula (2) according to the present invention will be described.
  • R 1, R 2, R 3, R 4, R 5, R 6, and R 7 each represent a substituent represented by
  • R and R are independently electron-withdrawing groups, and both R and R are
  • 11 13 More preferably, it is an electron-withdrawing group, and more preferably, ⁇ ⁇ of the electron-withdrawing group is 0.10 or more.
  • Electron-withdrawing group having ⁇ ⁇ of 0.10 or more >>
  • ⁇ ⁇ force ⁇ examples of electron-withdrawing groups of 10 or more include, for example, ⁇ ( ⁇ ) (0.12),
  • the platinum complex according to the organic EL device material of the present invention is described, for example, in Organic Letter Magazine, vol 3, No. 16, p2579-2581 (2001), Helvetica Chemica Acta, Vol. 69, p. ), Inorganic Chemistry, Vol. 41, No. 12, pp. 3055-3066 (2002), New Journal of Chemistry, Vol. 26, p. 1171 (2002), and references cited in these documents. Can be synthesized by applying a method such as
  • the organic electroluminescent device containing the above-mentioned compound means that some organic layers constituting an organic EL device are formed or contained in the organic layer. However, it is preferable that the compound is contained in the light emitting layer as a light emitting dopant or in the hole blocking layer.
  • the luminescent dopant also simply referred to as dopant
  • the luminescent host hereinafter simply referred to as host
  • a main component is called a host and other components are called a dopant.
  • the mixing ratio of the luminescent dopant to the host conjugate, which is the main component is preferably less than 0.1% by mass to less than 30% by mass.
  • the platinum complex represented by the general formula (1) according to the present invention is used as a phosphorescent light emitting dopant.
  • the platinum complex may be used by mixing a plurality of types of compounds, and the mixing partner may be an orthometallic metal complex having a different structure, another phosphorescent dopant, or a fluorescent dopant. Good.
  • the light-emitting dopant is roughly classified into two types, a fluorescent dopant that emits fluorescence and a phosphorescent dopant that emits phosphorescence.
  • fluorescent dopant examples include coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squarium dyes, oxobenzanthracene dyes, fluorescein dyes, and rhodamines. Dyes, pyrylium dyes, perylene dyes, styrben dyes, polythiophene dyes, rare earth complex fluorescent materials, and other known fluorescent compounds.
  • a typical example of the latter is preferably a complex compound containing a metal belonging to Group VIII in the periodic table of elements, and more preferably an iridium compound, an osmium compound, a palladium compound or Other platinum compounds (platinum complex compounds), of which U is the most preferred is an iridium compound.
  • JP 2002-280178 JP 2001-181616, JP 2002-2801 79, JP 2001-181617, JP 2002-280180, JP 2001-247859, JP 2002-2-299060, JP 2001-313178, JP 2002-302671, JP 2001-345183, JP 2002-324679, WO02 / 15645, JP 2002-332291, JP 2002-50484, JP 2002-332292, JP 2002-83684 , Tokushu 2002-540572, JP 2002- 117978, JP 2002-338588, JP 2002-170684, JP 2002-352960, JP WOlZ93642, JP 2002-50483, JP 2002-100476, JP 2002-173674, JP 2002-359082, JP JP 2002-175884, JP 2002-363552, JP 2002-184582, JP 2003-7469, JP 2002-525808, JP 2003-7471, JP 2002-5258
  • a light-emitting host (also referred to simply as a host!) Means a compound having the highest mixing ratio (mass) in a light-emitting layer composed of two or more compounds, and the other compounds are referred to as “do”.
  • One panto compound also simply referred to as a dopant
  • the luminescent host used in the present invention a compound having a shorter wavelength than the phosphorescent 0-0 band of the luminescent dopant used in combination is preferable.
  • the phosphorescent host preferably has a 0-0 band power of 50 nm or less.
  • the luminescent host of the present invention is not particularly limited in structure, but is typically a carbazole derivative, a triarylamine derivative, an aromatic borane derivative, a nitrogen-containing heterocyclic compound, a thiophene derivative, A compound having a basic skeleton such as a furan derivative or an oligoarylene compound and having the 0-0 band of 450 nm or less is a preferable compound.
  • the light emitting host of the present invention may be a low molecular weight compound, a high molecular weight compound having a repeating unit, or a low molecular weight compound having a polymerizable group such as a vinyl group or an epoxy group (a vapor deposition polymerizable light emitting host). Good.
  • the luminescent host a compound which has a hole transporting ability and an electron transporting ability, prevents a longer wavelength of light emission, and has a high Tg (glass transition temperature) is preferable.
  • a ring in which at least one of carbon atoms of a carboline derivative or a hydrocarbon ring constituting a carboline ring of the carboline derivative is substituted with a nitrogen atom is used.
  • it is a derivative having a structure.
  • the platinum complex which is an organic EL device material according to the present invention, is contained in a hole blocking layer.
  • the hole blocking layer is an electron transporting layer in a broad sense as described later, and has a material power having a function of transporting electrons and having extremely small ability to transport holes. By blocking holes, the probability of recombination between electrons and holes can be improved.
  • the hole blocking layer in the present invention includes an electron transport layer.
  • the platinum complex which is an organic EL device material according to the present invention, may be included in an electron blocking layer.
  • the electron blocking layer has a function of a hole transport layer in a broad sense as described later, and has a material capability of transporting holes while having a function of transporting holes. By blocking electrons, the recombination probability of electrons and holes can be improved.
  • anode in the organic EL device a material having a large work function (4 eV or more), such as a metal, an alloy, an electrically conductive compound, and a mixture thereof is preferably used.
  • an electrode material include metals such as Au, and conductive transparent materials such as Cul, indium tin oxide (ITO), SnO, and ZnO. Also, IDIXO (In O ZnO) etc.
  • a material that is amorphous and can form a transparent conductive film may be used.
  • the anode is formed by depositing these electrode materials into a thin film by vapor deposition, sputtering, or the like, and then using a photolithography method to form a pattern of the desired shape. (About 100 ⁇ m or more), a pattern may be formed through a mask having a desired shape at the time of vapor deposition or sputtering of the electrode material.
  • the transmittance be greater than 10%
  • the sheet resistance of the anode is preferably several hundred ⁇ aperture or less.
  • the film thickness is selected within the range of usually 10-1000 nm, preferably 10-200 nm, depending on the material.
  • a metal having a small work function (4 eV or less) (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof are used as an electrode material.
  • an electrode material include sodium, sodium-potassium alloy, magnesium, lithium, a mixture of magnesium and copper, a mixture of magnesium and silver, a mixture of magnesium and aluminum, a mixture of indium and magnesium, and a mixture of aluminum and aluminum.
  • the cathode can be manufactured by forming a thin film from these electrode substances by a method such as evaporation or sputtering. Further, the sheet resistance as the cathode is preferably several hundred ⁇ / square or less, and the film thickness is preferably selected from the range of usually 10 nm-1 OOOnm, preferably 50 nm-200 nm. In order to transmit light, if either the anode or the cathode of the organic EL element is transparent or translucent, the light emission luminance is advantageously improved.
  • Injection layer >>: electron injection layer, hole injection layer
  • the injection layer is provided as needed, and has an electron injection layer and a hole injection layer. As described above, the injection layer exists between the anode and the light emitting layer or the hole transport layer, and between the cathode and the light emitting layer or the electron transport layer. May be present.
  • the injection layer is a layer provided between the electrode and the organic layer for lowering the driving voltage and improving the light emission luminance.
  • the details are described in Chapter 2, Chapter 2, “Electrode Materials” (pages 123-166) of Vol. 2, No. 2, pp. 123-166, and the hole injection layer (anode buffer layer) and the electron injection layer (cathode buffer). One).
  • the anode buffer layer (hole injection layer) is described in detail in JP-A-9-45479, JP-A-9-260062, JP-A-8-288069 and the like.
  • Copper phthalate One layer of phthalocyanine buffer typified by cyanine, one layer of oxide buffer typified by vanadium oxide, one layer of amorphous carbon buffer, polymer buffer using conductive polymer such as polyaline (emeraldine) or polythiophene And one layer.
  • the thickness of the buffer layer is preferably in the range of 0.1 nm to 100 nm, although it depends on the material to be used.
  • the blocking layer is provided as necessary in addition to the basic constituent layers of the organic compound thin film as described above.
  • the hole blocking layer is an electron transporting layer in a broad sense, and is a material that has a function of transporting electrons and has an extremely small ability to transport holes. While blocking holes, the probability of recombination between electrons and holes can be improved.
  • an electron blocking layer is a hole transporting layer in a broad sense, and is a material having a function of transporting holes and having extremely small ability to transport electrons. Blocking can improve the recombination probability of electrons and holes.
  • the hole transport layer is made of a material having a function of transporting holes.
  • a hole injection layer and an electron blocking layer are also included in the hole transport layer.
  • This injection layer can be formed by thin-filming the above-mentioned material by a known method such as a vacuum evaporation method, a spin coating method, a casting method, an ink jet method, and an LB method.
  • the thickness of the injection layer is not particularly limited, but is usually about 5 to 5000 nm.
  • the injection layer may have a single-layer structure in which one or more of the above-mentioned materials are used.
  • the platinum complex represented by the general formula (1) according to the present invention is used as a light emitting dopant. May be used together.
  • the fluorescence maximum wavelength is preferably 415 nm or less, and the 0-0 band of phosphorescence is more preferably 450 nm or less.
  • the light emitting layer can be formed by forming the above compound by a known thin film forming method such as a vacuum evaporation method, a spin coating method, a casting method, and an LB method.
  • the thickness of the light emitting layer is not particularly limited, but is usually selected in the range of 5 nm to 5 ⁇ m.
  • the light-emitting layer may have a single-layer structure having one or two or more of these light-emitting materials, or may have a laminated structure including a plurality of layers having the same composition or different compositions.
  • this light-emitting layer is formed by dissolving the above-mentioned light-emitting material together with a binder such as resin in a solvent to form a solution.
  • a binder such as resin
  • the thickness of the light emitting layer thus formed is usually in the range of 5 nm to 5 ⁇ m as described above.
  • the hole transport layer is made of a material having a function of transporting holes.
  • a hole injection layer and an electron blocking layer are also included in the hole transport layer.
  • the hole transport layer may be provided as a single layer or a plurality of layers.
  • the hole transporting material is not particularly limited, and is conventionally used as a charge injecting and transporting material for holes in photoconductive materials, and is used for a hole injecting layer and a hole transporting layer of an EL element. Any one of known ones used can be selected and used.
  • the hole transporting material has a hole injection / transportation or electron barrier property of! /, And may be either an organic substance or an inorganic substance.
  • triazole derivatives oxazidazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, furylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styryl anthracene derivatives, fluorenone derivatives, hydrazone derivatives , Stilbene derivatives, silazane derivatives, aniline-based copolymers, and conductive polymer oligomers, particularly thiophene oligomers.
  • the hole transporting material the above-mentioned materials can be used. It is preferable to use a porphyrin compound, an aromatic tertiary amine compound and a styrylamine compound, particularly an aromatic tertiary amine compound. ,.
  • N, N, N ', N'-tetraphenyl-4,4'-diaminophenol N, N '—Diphenyl N, N'-bis (3-methylphenyl) — [1,1'-biphenyl] 4,4'diamine (TPD); 2,2-bis (4-zy p-tolylaminophenol ) Propane; 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane; N, N, N ', N'-tetra-p-tolyl 4,4'diaminobiphenyl; 1,1bis ( 4-G-p-tolylaminophenyl) 4-phenylcyclohexane; bis (4-dimethylamino-2-methylphenyl) phenylmethane; bis (4-g-p-tolylaminophen
  • Pat. No. 5,061,569 which has two condensed aromatic rings in the molecule, for example, 4,4'bis [N-(1naphthyl) N phenylamino] Biphenyl (NPD), 4, 4 ', A "—tris [? ⁇ — (3—) in which three triphenylamine units described in JP-A-4-308688 are connected in a starburst type Methylphenyl) -N-phenylamino] triphenylamine (MTDATA).
  • NPD 4,4'bis [N-(1naphthyl) N phenylamino] Biphenyl
  • MTDATA triphenylamine
  • a polymer material in which these materials are introduced into a polymer chain, or in which these materials are used as a polymer main chain, can also be used.
  • inorganic compounds such as p-type Si and p-type SiC can also be used as the hole injection material and the hole transport material.
  • the hole transport material of the hole transport layer may have a maximum fluorescence wavelength of 415 nm or less when applied to a blue or white light emitting element, a display device, and a lighting device. More preferably, the 0-0 band power of the preferred phosphorescent light is 50 nm or less.
  • the hole transport material is preferably a compound having a high Tg.
  • the hole transporting layer is formed by coating the hole transporting material with, for example, a vacuum deposition method, a spin coating method, or a key. It can be formed by thinning by a known method such as a just method, an inkjet method, and an LB method.
  • the thickness of the hole transport layer is not particularly limited, but is usually about 5 to 5000 nm.
  • the hole transport layer may have a single-layer structure made of one or more of the above materials.
  • the electron transport layer is a material having a function of transporting electrons.
  • an electron injection layer and a hole blocking layer are also included in the electron transport layer.
  • the electron transporting layer has a function of transmitting electrons injected from the cathode to the light emitting layer.
  • the electron transporting layer can be a single layer or a plurality of layers.
  • the platinum complex represented by the general formula (1) according to the present invention can be used as a hole blocking material (electron transport material). Therefore, in an organic EL device having a hole blocking layer as a constituent layer, it may be used as a hole blocking material, or may be contained as a hole blocking material in the electron transport layer. In this case, the electron transport layer also serves as a hole blocking layer.
  • an arbitrary material can be selected from conventionally known compounds.
  • the electron transporting material also serving as a hole blocking material used for the electron transporting layer that is adjacent to the cathode side with respect to the light emitting layer when the electron transporting layer has a single layer and a plurality of layers is as follows.
  • the above mentioned materials are known. That is, nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, heterocyclic tetracarboxylic anhydrides such as naphthalene perylene, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, oxaziazole derivatives And the like.
  • a thiazine diazole derivative in which an oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron-withdrawing group may also be used as the electron transport material.
  • a polymer material in which these materials are introduced into a polymer chain, or in which these materials are used as a polymer main chain, can also be used.
  • a metal complex of an 8-quinolinol derivative for example, tris (8-quinolinol) aluminum- ⁇ Aluminum (Alq), tris (5,7-dichloro mouth-8-quinolinol) aluminum, tris (5,7-dibutone 8-quinolinol) aluminum, tris (2-methyl-8quinolinol) aluminum, tris (5- Methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), and metal complexes in which the central metal of these metal complexes is replaced with In, Mg, Cu, Ca, Sn, Ga, or Pb It can be used as a transport material.
  • 8-quinolinol derivative for example, tris (8-quinolinol) aluminum- ⁇ Aluminum (Alq), tris (5,7-dichloro mouth-8-quinolinol) aluminum, tris (5,7-dibutone 8-quinolinol) aluminum, tris (2-methyl-8quinolin
  • metal-free or metal phthalocyanine or those whose terminals are substituted with an alkyl group ⁇ sulfonic acid group or the like can be preferably used as the electron transporting material.
  • the distyryl virazine derivative exemplified as a material for the light emitting layer can be used as an electron transporting material, and like the hole injection layer and the hole transporting layer, n-type Si, n-type SiC, etc.
  • Inorganic semiconductors can also be used as electron transport materials.
  • a preferable compound used in the electron transport layer is a phosphorescent light having a maximum fluorescence wavelength of preferably 415 nm or less when applied to a blue or white light-emitting element, a display device, and a lighting device. — More preferably, the zero band force is 50 nm or less.
  • the compound used in the electron transport layer is preferably a compound having a high Tg.
  • the electron transport layer can be formed by thinning the above-mentioned electron transport material by a known method such as a vacuum evaporation method, a spin coating method, a casting method, an inkjet method, and an LB method. it can.
  • the thickness of the electron transport layer is not particularly limited, but is usually about 5 to 5000 nm.
  • the electron transport layer may have a single-layer structure made of one or more of the above materials.
  • the substrate for the organic EL device of the present invention is not particularly limited in the type of glass, plastic, etc., and is not particularly limited as long as it is transparent. And a light-transmitting resin film.
  • Particularly preferred V is a resin film that can provide flexibility to the organic EL device.
  • Examples of the resin film include, but are not particularly limited to, polyesters such as polyethylene terephthalate and polyethylene naphthalate, polyethylene, polypropylene, cellophane, senorelose diacetate, senorelostriacetate, senorelose acetate butyrate, and senolle.
  • polyesters such as polyethylene terephthalate and polyethylene naphthalate, polyethylene, polypropylene, cellophane, senorelose diacetate, senorelostriacetate, senorelose acetate butyrate, and senolle.
  • the organic-inorganic hybrid resin include those obtained by combining an inorganic polymer (for example, silica, alumina,
  • An inorganic or organic film or a hybrid film of both of them may be formed on the surface of the resin film.
  • the coating include a silica layer formed by a sol-gel method, and an organic layer formed by coating a polymer (for example, an organic material film having a polymerizable group is post-treated by means such as ultraviolet irradiation or heating).
  • a DLC film, a metal oxide film or a metal nitride film examples include metal oxides such as silicon oxide, titanium oxide, and aluminum oxide; metal nitrides such as silicon nitride; silicon oxynitride; Metal oxynitrides such as titanium nitride
  • the above-mentioned resin film having a surface formed with an inorganic or organic film or a hybrid film of both thereof is preferably a high-nori film having a water vapor transmission rate of 0.01 gZm 2 'dayatm or less. Better ,.
  • the organic light-emitting device of the present invention has an external emission efficiency at room temperature of preferably 1% or more, more preferably 2% or more.
  • the quantum efficiency (%) extracted from the outside is the number of photons emitted to the outside of the organic EL element Z The number of electrons flowing to the organic EL element X 100.
  • a hue improving filter such as a color filter may be used in combination.
  • a film having a roughened surface When used in lighting applications, a film having a roughened surface (Anti-glare film, etc.).
  • organic EL element glasses When used as a multicolor display device, at least two types of organic EL element glasses having different emission maximum wavelengths are used. A preferred example of manufacturing an organic EL element will be described.
  • a desired electrode material for example, a thin film as a material for an anode is formed on a suitable substrate by a method such as vapor deposition or sputtering so as to have a thickness of 1 ⁇ m or less, preferably lOnm-200 nm.
  • a method such as vapor deposition or sputtering so as to have a thickness of 1 ⁇ m or less, preferably lOnm-200 nm.
  • organic compound thin films of a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer, which are element materials, are formed thereon.
  • Examples of the method of forming a thin film of the organic compound thin film include a spin coating method, a casting method, an inkjet method, an evaporation method, and a printing method as described above.
  • the vacuum evaporation method or the spin coating method is particularly preferred in terms of, for example, the fact that the formation of a film is difficult. Further, a different film forming method may be applied to each layer.
  • the deposition conditions may vary due to kinds of materials used, generally boat temperature 50- 450 ° C, vacuum degree of 10- 6 Pa- 10- 2 Pa, deposition rate 0 Olnm—50 nmZ seconds, substrate temperature 50 ° C-300 ° C, film thickness 0.1 nm—5 ⁇ m are desirable.
  • a thin film which is also a material for a cathode is formed thereon by a method such as vapor deposition or sputtering so as to have a thickness of 1 ⁇ m or less, preferably 5 Onm-200 nm.
  • a desired organic EL device can be obtained by forming and providing a cathode. In the production of this organic EL device, it is preferable to produce from the hole injection layer to the cathode consistently by one evacuation, but it is not tough to take it out and apply a different film forming method. At that time, consideration must be given to performing the work in a dry inert gas atmosphere.
  • a shadow mask is provided only when a light emitting layer is formed, and a film can be formed on one surface by an evaporation method, a casting method, a spin coating method, an inkjet method, a printing method, or the like.
  • the method is not particularly limited, but is preferably an evaporation method, an inkjet method, or a printing method.
  • the evaporation method use a shadow mask. Putter Jung used is preferred.
  • the production order can be reversed, and the cathode, the electron injection layer, the electron transport layer, the light emitting layer, the hole transport layer, the hole injection layer, and the anode can be manufactured in this order.
  • the multicolor display device of the present invention can be used as a display device, a display, and various light emission light sources.
  • full-color display is possible by using three types of organic EL devices that emit blue, red, and green light.
  • Examples of the display device and display include a television, a computer, a mopile device, an AV device, a character broadcast display, and information display in a car.
  • the driving method may be either a simple matrix (passive matrix) method or an active matrix method.
  • FIG. 1 is a schematic diagram showing an example of a display device configured with an organic EL element.
  • FIG. 2 is a schematic view of a display such as a mobile phone for displaying image information by light emission of an organic EL element.
  • the display 1 also includes a display unit A having a plurality of pixels and a control unit B that performs image scanning of the display unit A based on image information.
  • the control unit B is electrically connected to the display unit A, sends a scanning signal and an image data signal to each of the plurality of pixels based on image information from the outside, and controls the pixels for each scanning line by the scanning signal. , Sequentially emit light according to the image data signal, perform image scanning, and display image information on the display unit A.
  • FIG. 2 is a schematic diagram of the display unit A.
  • the display unit A has a wiring portion including a plurality of scanning lines 5 and data lines 6 and a plurality of pixels 3 and the like on a substrate.
  • the main members of the display unit A will be described below.
  • the figure shows a case where the light power emitted by the pixel 3 is extracted in the direction of the white arrow (downward).
  • the scanning line 5 and the plurality of data lines 6 in the wiring portion are each made of a conductive material, and the scanning line 5 and the data line 6 are orthogonal to each other in a grid pattern, and are connected to the pixels 3 at orthogonal positions ( Details are not shown).
  • the pixel 3 When a scanning signal is applied from the scanning line 5, the pixel 3 receives an image data signal from the data line 6, and emits light in accordance with the received image data.
  • the pixel 3 By properly arranging pixels in the red, green, and blue light emission regions on the same substrate, full color display is possible.
  • FIG. 3 is a schematic diagram of a pixel.
  • the pixel includes an organic EL element 10, a switching transistor 11, a driving transistor 12, a capacitor 13, and the like.
  • a full-color display can be performed by using red, green, and blue light emitting organic EL elements as the organic EL elements 10 for a plurality of pixels and juxtaposing them on the same substrate.
  • the image data signal is also applied to the drain of the switching transistor 11 via the data line 6 in the control unit B.
  • a scanning signal is applied to the gate of the switching transistor 11 via the control unit B scanning line 5
  • the driving of the switching transistor 11 is turned on, and the image data signal applied to the drain is transferred to the capacitor 13 and the driving transistor. It is transmitted to the gate of star 12.
  • the capacitor 13 is charged according to the potential of the image data signal, and the driving of the driving transistor 12 is turned on.
  • the drive transistor 12 has a drain connected to the power supply line 7, a source connected to the electrode of the organic EL element 10, and an organic EL element connected from the power supply line 7 according to the potential of the image data signal applied to the gate. Element 10 is supplied with current.
  • the driving of the switching transistor 11 is turned off. However, even if the driving of the switching transistor 11 is turned off, the capacitor 13 holds the potential of the charged image data signal, so that the driving of the driving transistor 12 is kept on and the next scanning signal is applied.
  • the organic EL element 10 continues to emit light until the light is emitted.
  • the driving transistor 12 is driven according to the potential of the next image data signal synchronized with the scanning signal, and the organic EL element 10 emits light.
  • the organic EL element 10 emits light by providing a switching transistor 11 and a driving transistor 12 that are active elements to the organic EL element 10 of each of the plurality of pixels, and The element 10 emits light.
  • a light emitting method is called an active matrix method.
  • the light emission of the organic EL element 10 may be light emission of a plurality of gradations by a multi-valued image data signal having a plurality of gradation potentials, or a predetermined light emission amount by a binary image data signal. No, it's a talent! /.
  • the potential of the capacitor 13 may be maintained until the next scan signal is applied, or may be discharged immediately before the next scan signal is applied.
  • the present invention is not limited to the active matrix method described above, and may employ a passive matrix light emission drive in which an organic EL element emits light in accordance with a data signal only when a scanning signal is scanned.
  • FIG. 4 is a schematic diagram of a display device using a noisy matrix method.
  • a plurality of scanning lines 5 and a plurality of image data lines 6 are provided in a grid pattern facing each other with the pixel 3 interposed therebetween.
  • the pixels 3 connected to the applied scanning line 5 emit light according to the image data signal.
  • the organic EL material according to the present invention can also be applied to an organic EL element that emits substantially white light as a lighting device. Simultaneous emission of multiple luminescent colors by multiple luminescent materials To obtain white light by color mixing.
  • a combination of a plurality of emission colors a combination of three emission maximum wavelengths of the three primary colors of blue, green and blue may be used, or a combination of complementary colors such as blue and yellow, and blue-green and orange may be used. It may be one containing two emission maximum wavelengths.
  • the combination of light emitting materials for obtaining a plurality of emission colors is a combination of a plurality of materials that emit light by phosphorescence or fluorescence, a light emitting material that emits light by fluorescence or phosphorescence, and a light emitting material. Any combination of a dye material that emits the above-mentioned light as excitation light may be used. However, in the white organic electroluminescent device according to the present invention, it is only necessary to mix and combine a plurality of light-emitting dopants. A mask is provided only when forming a light emitting layer, a hole transport layer, an electron transport layer, or the like.
  • Patterning such as a mask is not required because other layers are common because they are simply arranged by separately applying the mask.
  • an electrode film can be formed on one surface by a vapor deposition method, a casting method, a spin coating method, an inkjet method, a printing method, or the like, and the productivity is also improved.
  • the element itself emits white light, unlike a white organic EL device in which light-emitting elements of a plurality of colors are arranged in parallel in an array.
  • the luminescent material used for the luminescent layer is not particularly limited.
  • the platinum complex according to the present invention may be used so as to conform to a wavelength range corresponding to CF (color filter) characteristics. Also, it is only necessary to select and combine arbitrary materials from known light emitting materials to whiten them.
  • the white light-emitting organic EL device of the present invention can be used as a kind of lamp such as a home light, a vehicle light, or an exposure light as various light-emitting light sources and lighting devices. It is also useful for display devices such as backlights of liquid crystal display devices.
  • a backlight such as a clock, a signboard advertisement, a traffic light, a light source such as an optical storage medium, a light source of an electronic photocopier, a light source of an optical communication processor, a light source of an optical sensor, and a display device are required.
  • a wide range of applications such as general household electric appliances.
  • Substrate with 150 nm ITO deposited on glass as anode (NH-Techno Glass: NA-45) After the patterning, the transparent support substrate provided with the ITO transparent electrode was ultrasonically washed with isopropyl alcohol, dried with dry nitrogen gas, and washed with UV ozone for 5 minutes.
  • the transparent support substrate was fixed to a substrate holder of a commercially available vacuum vapor deposition apparatus, while five tantalum-made resistance heat boats were charged with ⁇ -NPD, CBP, Ir-12, BCP, and Alq, respectively. Entering
  • lithium fluoride was placed in a resistance heating boat made of tantalum, and aluminum was placed in a resistance heating boat made of tungsten, and they were attached to a second vacuum tank of a vacuum evaporation apparatus.
  • the heating boat containing CBP and the boat containing Ir 12 are independently passed through, and the deposition rate of CBP as a light emitting host and Ir to 12 as a light emitting dopant becomes 100: 7. This was adjusted to a thickness of 30 nm to provide a light emitting layer.
  • the heating boat containing the BCP was energized and heated to provide a hole blocking layer having a thickness of 10 nm at a deposition rate of 0.2 InmZ seconds to 0.2 nmZ seconds. Further, the heating containing Alq
  • the boat was energized and heated, and a 40 nm-thick electron transport layer was provided at a deposition rate of 0.1-0.2 nmZ seconds.
  • OLED1-1 was fabricated using the replaced sealing structure.
  • barium oxide 105 as a water trapping agent is a high-purity barium oxide powder manufactured by Aldrich.
  • the powder was attached to a glass sealing can 104 with a fluororesin-based semipermeable membrane (Microtex S-NTF8031Q manufactured by Nitto Denko) with an adhesive, and was used in advance.
  • An ultraviolet curable adhesive 107 was used to bond the sealing can and the organic EL element, and the two were adhered by irradiating an ultraviolet lamp to produce a sealing element.
  • 101 is a glass substrate provided with a transparent electrode
  • 102 is an organic EL layer including the above-described hole injection Z transport layer, light emitting layer, hole blocking layer, electron transport layer
  • 103 is a cathode.
  • organic EL device OLED1-1 In the preparation of the above-mentioned organic EL device OLED1-1, as shown in Table 1, the luminescent dopant was changed from the comparative compound 115 to the platinum complex according to the present invention (indicated by the compound No. in the table). Organic EL devices OLED1-2-1-30 were produced in the same manner except that the above was changed to.
  • OLED1-1 In the preparation of OLED1-1, the organic light emitting host was changed from CBP to AZ1, and the organic light emitting dopant was the platinum complex of the present invention (indicated by the compound number in the table).
  • EL devices OLED 1-31 1-1-33 were fabricated.
  • the external extraction quantum efficiency was expressed as a relative value when the organic EL element OLED1-1 was set to 100.
  • each element of the organic EL element OLED1-1- 1-33, 2. performs continuous lighting by constant current conditions 5mAZcm 2, the time required to becomes half of the initial luminance (tau) It was measured.
  • the luminous life is assuming that the organic EL element OLED1-1 is 100 Expressed as a relative value.
  • the CIE chromaticity was measured using CS-1000 (manufactured by Minolta).
  • the external extraction quantum efficiency was represented by a relative value when the organic EL element OLED1-1 was set to 100.
  • the luminescent dopant was changed from Ir12 to Ir1, and the hole-blocking material BCP was replaced with the platinum complex according to the present invention as shown in Table 2.
  • the organic EL device OLED2-1-2-2-26 was fabricated in the same manner except that the compound No. was used.
  • the measurement of the quantum efficiency extracted from the outside and the emission lifetime were performed using the method described in Example 1.
  • the values of the organic EL element OLED2-1 were set to 100 and expressed as relative values of each sample of the organic EL element. Table 2 shows the obtained results.
  • the organic EL element OLED 1-10 of Example 1 was used as a blue light emitting element.
  • the organic EL element OLED2-2 of Example 2 was used as a green light emitting element.
  • a red light emitting device was prepared in the same manner as in OLED 1-10, except that the light emitting dopant was changed from 1 to Ir-9 in the organic EL device OLED1-10 of Example 1.
  • FIG. 2 shows only a schematic diagram of the display unit A of the display device manufactured. That is, the same On the substrate, a wiring portion including a plurality of scanning lines 5 and data lines 6 and a plurality of juxtaposed pixels 3 (e.g., pixels in a red region, pixels in a green region, pixels in a blue region, and the like) are arranged.
  • the scanning line 5 and the plurality of data lines 6 of the wiring portion are each made of a conductive material, and the scanning line 5 and the data line 6 are orthogonal to each other in a grid pattern and are connected to the pixel 3 at orthogonal positions (for details, see FIG. Not shown).
  • the plurality of pixels 3 are driven by an active matrix method provided with an organic EL element corresponding to each emission color, a switching transistor as an active element, and a driving transistor, and a scanning signal is applied from a scanning line 5. Then, an image data signal is received from the data line 6 and light is emitted according to the received image data.
  • a full-color display device was manufactured by juxtaposing the red, green, and blue pixels as appropriate.
  • the electrode of the transparent electrode substrate of Example 1 was patterned into 20 mm ⁇ 20 mm, and ⁇ -NPD was formed thereon as a hole injection / transport layer with a thickness of 25 nm as in Example 1, and further,
  • the above-mentioned heated boat containing CBP, the boat containing Compound 6 of the present invention, and the boat containing Ir 9 are independently energized to emit CBP as a light-emitting host and compounds 6 and Ir to 9 of the present invention as light-emitting dopants.
  • the deposition rate was adjusted to 100: 5: 0.6, and the deposition was performed to a thickness of 30 nm to provide a light emitting layer.
  • BCP was formed by lOnm to form a hole blocking layer.
  • Alq was deposited at 40nm.
  • An electron transport layer was provided.
  • Example 2 a square perforated mask having substantially the same shape as the transparent electrode made of stainless steel was placed on the electron injection layer, and 0.5 nm of lithium fluoride and a cathode were formed as a cathode buffer layer.
  • a cathode buffer layer was formed by vapor deposition of aluminum with a thickness of 150 nm.
  • FIG. 6 shows a schematic diagram of a flat lamp.
  • Fig. 6 (a) shows a schematic plan view and
  • Fig. 6 (b) shows a schematic cross-sectional view.
  • an organic EL device material which is a metal complex in which a substituent having a certain electronic property is introduced into a specific portion of ferbilidine and the device material are used, and exhibit high luminous efficiency, and An organic EL element, a lighting device, and a display device having a long light-emitting life can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 白金錯体の配位子であるフェニルピリジンの4位に酸素または硫黄含有基を導入し、さらに、特定の位置への特定の置換基を導入した一般式(1)で表される白金錯体を含有することを特徴とする有機エレクトロルミネッセンス素子材料。明細書中に示された一般式(1)中において、R1、R2、R3、R4、R5、R6、R7は水素原子または置換基を表すが、その少なくとも一つは電子供与性の置換基である。前記有機エレクトロルミネッセンス素子材料を用いた有機EL素子、照明装置及び表示装置を提供することが可能である。

Description

明 細 書
有機エレクト口ルミネッセンス素子材料、有機エレクト口ルミネッセンス素子
、表示装置及び照明装置
技術分野
[0001] 本発明は、新規な有機エレクト口ルミネッセンス素子材料及び該有機エレクト口ルミ ネッセンス素子材料を含有する有機エレクト口ルミネッセンス素子、表示装置及び照 明装置に関する。
背景技術
[0002] 従来、発光型の電子ディスプレイデバイスとして、エレクト口ルミネッセンスディスプレ ィ(以下 ELDという)がある。 ELDの構成要素としては、無機エレクト口ルミネッセンス 素子や有機エレクト口ルミネッセンス素子(以下、有機 EL素子という)が挙げられる。 無機エレクト口ルミネッセンス素子は平面型光源として使用されてきたが、発光素子を 駆動させるためには交流の高電圧が必要である。有機 EL素子は、発光する化合物 を含有する発光層を、陰極と陽極で挟んだ構成を有し、発光層に電子及び正孔を注 入して、再結合させることにより励起子 (エキシトン)を生成させ、このエキシトンが失 活する際の光の放出 (蛍光'燐光)を利用して発光する素子であり、数 V—数十 V程 度の電圧で発光が可能であり、さらに、自己発光型であるために視野角に富み、視 認性が高ぐ薄膜型の完全固体素子であるために省スペース、携帯性等の観点から 注目されている。
[0003] し力しながら、今後の実用化に向けた有機 EL素子においては、さらに低消費電力 で効率よく高輝度に発光する有機 EL素子の開発が望まれている。
[0004] 例えば、特許第 3093796号明細書では、スチルベン誘導体、ジスチリルァリーレン 誘導体又はトリススチリルァリーレン誘導体に、微量の蛍光体をドープし、発光輝度 の向上、素子の長寿命化を達成している。
[0005] また、 8—ヒドロキシキノリンアルミニウム錯体をホストイ匕合物として、これに微量の蛍 光体をドープした有機発光層を有する素子 (例えば、特開昭 63— 264692号公報)、 8—ヒドロキシキノリンアルミニウム錯体をホストイ匕合物として、これにキナクリドン系色 素をドープした有機発光層を有する素子 (例えば、特開平 3— 255190号公報)等が 知られている。
[0006] 以上のように、励起一重項力 の発光を用いる場合、一重項励起子と三重項励起 子の生成比が 1 : 3であるため発光性励起種の生成確率が 25%であり、光の取り出し 効率が約 20%であるため、外部取り出し量子効率( r? ext)の限界は 5%とされている
[0007] ところが、プリンストン大より、励起三重項からの燐光発光を用いる有機 EL素子の 報告(M. A. Baldo et al. , Nature, 395卷、 151— 154ページ(1998年))力 れて以来、室温で燐光を示す材料の研究が活発になってきている。例えば M. A. B aldo et al. , Nature, 403卷、 17号、 750— 753ページ(2000年)、又米国特許 第 6, 097, 147号などにも開示されている。励起三重項を使用すると、内部量子効 率の上限が 100%となるため、励起一重項の場合に比べて原理的に発光効率が 4 倍となり、冷陰極管とほぼ同等の性能が得られる可能性があることから照明用途とし ても注目されている。
[0008] 例えば、 S. Lamansky et al. , J. Am. Chem. Soc. , 123卷、 4304ページ(2
001年)等においては、多くの化合物がイリジウム錯体系など重金属錯体を中心に合 成検討されている。
[0009] 又、前述の M. A. Baldo et al. , Nature, 403卷、 17号、 750— 753ページ(2 000年)においては、ドーパントとして、トリス(2—フエ-ルビリジン)イリジウムを用いた 検討がされている。
[0010] その他、 M. E. Tompsonらは、 The 10th International Workshop on In organic and Organic Electroluminescence (EL ' 00、浜松)【こお ヽて、ド ~~ノヽ ン卜として L Ir (acac)例えば (ppy) Ir (acac)を、又、 Moon-Tae Youn. Og, Tets
2 2
uo Tsutsui等 ίま、や ίまり、 The 10th International Workshop on Inorgani c and Organic Electroluminescence (EL, 00、浜松)において、ドーノントとし て、トリス(2— (P—トリル)ピリジン)イリジウム (Ir (ptpy) ) ,トリス (ベンゾ [h]キノリン)ィ
3
リジゥム (Ir (bzq) )等を用いた検討をおこなって!/、る。
3
[0011] 又、前記、 S. Lamansky et al. , J. Am. Chem. Soc. , 123巻、 4304ページ (2001年)等にぉ 、ても、各種イリジウム錯体を用いて素子化する試みがされて!/、る
[0012] 又、高い発光効率を得るために、 The 10th International Workshop on I norganic and Organic Electroluminescence (EL ' 00、浜松)では、 Ikaiらは ホール輸送性の化合物を燐光性ィ匕合物のホストとして用いている。また、 M. E. To mpsonらは、各種電子輸送性材料を燐光性ィ匕合物のホストとして、これらに新規なィ リジゥム錯体をドープして用いて 、る。
[0013] 一方で、リン光を発光する発光ドーパントとして Ir錯体以外の化合物も検討されて いる(例えば、特許文献 1参照)が、この場合前記 Ir錯体に比べて発光輝度や発光効 率の点で劣る。
[0014] 中心金属を白金としたオルトメタル錯体は、配位子に特徴をもたせた例が多数知ら れており(例えば、特許文献 2— 6及び非特許文献 1参照)、発光素子とした場合の発 光輝度や発光効率は、その発光がリン光に由来することから、従来の素子に比べ大 幅に改良されるものである力 素子の発光寿命にっ 、ては従来の素子よりも低 ヽと ヽ う問題点があった。
[0015] また、リン光性の高効率の発光材料としては、色純度の良い青色発光材料が求め られているにもかかわらず、発光波長の短波化が難しぐ実用に耐えうる性能を充分 に達成できていないのが現状である。波長の短波化に関しては、これまで、フエニル ピリジンにフッ素原子、トリフルォロメチル基、シァノ基等の電子吸引性基を置換基と して導入すること、配位子としてピコリン酸やビラザボール系の配位子を導入すること が知られている(例えば、特許文献 7— 11及び非特許文献 1一 4)力 これらの配位 子では、発光材料の発光波長が短波化して青色を達成し、高効率の素子を達成で きる一方で、素子の発光寿命は大幅に劣化するため、そのトレードオフの改善が求 められていた。
[0016] フエ-ルビリジンへの置換基として、アルコキシ基やアルキルチオ基の導入されたも のがあるが、他の置換基との組み合わせが最適化されておらず、色純度と発光寿命 の両立を達成するまでには至っていな力つた (非特許文献 1、特許文献 10)。
特許文献 1 :特開 2001— 181616号公報 特許文献 2 :特開 2002— 332291号公報
特許文献 3:特開 2002-332292号公報
特許文献 4 :特開 2002-338588号公報
特許文献 5:特開 2002-226495号公報
特許文献 6:特開 2002— 234894号公報
特許文献 7 :国際公開第 02Z15645号パンフレット
特許文献 8:特開 2003— 123982号公報
特許文献 9:特開 2002—117978号公報
特許文献 10:特開 2003— 146996号公報
特許文献 11 :国際公開第 04Z16711号パンフレット
非特許文献 1 : Inorganic Chemistry,第 41卷,第 12号, 3055— 3066ページ(2 002年)
非特許文献 2 : Applied Physics Letters,第 79卷, 2082ページ(2001年) 非特許文献 3 : Applied Physics Letters,第 83卷, 3818ページ(2003年) 非特許文献 4 : New Journal of Chemistry,第 26卷, 1171ページ(2002年) 発明の開示
[0017] 本発明は、カゝかる課題に鑑みてなされたものであり、本発明の目的は、白金錯体の 配位子であるフエ二ルビリジンの特定の位置 (箇所)への置換基導入により、発光波 長が制御された、化合物設計されたリン光性の青色発光阻止材料を用いて、高い発 光効率を示し、かつ、発光寿命の長い有機 EL素子、照明装置及び表示装置を提供 することにある。
[0018] 本発明の上記目的は白金錯体の配位子であるフエ-ルビリジンの 4位に酸素また は硫黄含有基を導入し、さらに特定の位置へ特定の置換基を導入した白金錯体を 含有することを特徴とする有機エレクト口ルミネッセンス素子材料によって達成された 図面の簡単な説明
[0019] [図 1]図 1は有機 EL素子力 構成される表示装置の一例を示した模式図である。
[図 2]図 2は表示部 Aの模式図である。 [図 3]図 3は画素を構成する駆動回路の等価回路図である。
[図 4]図 4はパッシブマトリクス方式による表示装置の模式図である。
[図 5]図 5は有機 EL素子 OLED1— 1の封止構造の概略模式図である。
[図 6]図 6は有機 EL素子を具備してなる照明装置の模式図である。
発明を実施するための最良の形態
[0020] 本発明を実施するための最良の形態は以下の構成を有している。ただし、本発明 はこれらにより限定されるものではない。
(1)下記一般式 (1)で表される白金錯体を含有することを特徴とする有機エレ外口 ルミネッセンス素子材料。
Figure imgf000006_0001
[0021] 〔式中、 R、R、R、R、R、R、Rは水素原子または置換基を表すが、その少なく
1 2 3 4 5 6 7
とも一つは電子供与性の置換基である。 Raは置換基を表し、 Xaは酸素原子または 硫黄原子を表す。 Y - L - Yは 2座の配位子を表し、 Y、 Yは各々独立に酸素原子
1 1 2 1 2
、窒素原子、炭素原子または硫黄原子を表し、 Lは Y、 Yと共に 2座の配位子を形
1 1 2
成するのに必要な原子群を表す。〕
(2)前記一般式(1)において、 R、 R、 R、 Rの少なくとも二つが電子供与性の置換
1 2 3 4
基であることを特徴とする前記第 1項に記載の有機エレクト口ルミネッセンス素子材料
(3)前記電子供与性基の少なくとも一つのノ、メットの置換基定数 σ ρがー 0. 20以下 であることを特徴とする前記第 1項に記載の有機エレクト口ルミネッセンス素子材料。
(4)前記電子供与性基の置換基が、前記一般式(1)の Rまたは Rに導入されること
2 4
を特徴とする前記第 1項に記載の有機エレクト口ルミネッセンス素子材料。さらに好ま しくは、 Rおよび Rがともに前記電子供与性基である前記第 1項に記載の有機エレ
2 4
タトロルミネッセンス素子材料。
(5)前記一般式(1)において、 Raはアルキル基をあらわすことを特徴とする前記第 1 1項または第 2項に記載の有機エレクト口ルミネッセンス素子材料。
(6)前記電子供与性の置換基がアルキル基であることを特徴とする前記第 1項また は第 2項に記載の有機エレクト口ルミネッセンス素子材料。
(7)前記電子供与性の置換基がアルコキシ基であることを特徴とする前記第 1項また は第 2項に記載の有機エレクト口ルミネッセンス素子材料。
(8)前記電子供与性の置換基がアルキルアミノ基であることを特徴とする前記第 1項 または第 2項に記載の有機エレクト口ルミネッセンス素子材料。
(9)下記一般式 (2)で表される白金錯体を含有することを特徴とする有機エレクト口 ルミネッセンス素子材料。
Figure imgf000007_0001
〔式中、 R 、R 、R 、R 、R 、R 、R は水素原子または置換基を表す力 R 、R
11 12 13 14 15 16 17 11 1
3 、の少なくとも一つは電子吸引性である。 R
bは置換基を表し、 X
bは酸素原子または 硫黄原子を表す。 Y - L - Yは 2座の配位子を表し、 Y、 Yは各々独立に酸素原子
3 2 4 3 4
、窒素原子、炭素原子または硫黄原子を表し、 L 、 Y
2は Y
3 4と共に 2座の配位子を形 成するのに必要な原子群を表す。〕
(10) R 、R 、が共に電子吸引性であることを特徴とする前記第 9項に記載の有機
11 13
エレクトロノレミネッセンス素子材料。
(11)前記電子吸引性のハメットの置換基定数 σ ρが 0. 10以上であることを特徴とす る前記第 9項に記載の有機エレクト口ルミネッセンス素子材料。
(12)前記第 1項力 第 11項のいずれ力 1項に記載の有機エレクト口ルミネッセンス素 子材料を含有することを特徴とする有機エレクト口ルミネッセンス素子。
(13)構成層として発光層を有する有機エレクト口ルミネッセンス素子にお 、て、該発 光層が前記第 1項力 第 11項のいずれか 1項に記載の有機エレクト口ルミネッセンス 素子材料を含有することを特徴とする有機エレクト口ルミネッセンス素子。
(14)構成層として正孔阻止層を有する有機エレクト口ルミネッセンス素子において、 該正孔阻止層が前記第 1項力 第 11項のいずれか一つに記載の有機エレクト口ルミ ネッセンス素子材料を含有することを特徴とする有機エレクト口ルミネッセンス素子。
(15)前記項目 12から 14のいずれ力 1項に記載の有機エレクト口ルミネッセンス素子 を有することを特徴とする表示装置。
(16)前記第 12項力も第 14項のいずれ力 1項に記載の有機エレクト口ルミネッセンス 素子を有することを特徴とする照明装置。
[0023] 以下、本発明に係る各構成要素の詳細について、順次説明する。
[0024] 本発明者等は、上記問題点に鑑み鋭意検討を行った結果、フエ-ルビリジンの特 定の位置 (箇所)に、ある電子的性質をもった置換基を導入した金属錯体を、有機 E L素子材料として含む有機 EL素子を用いることにより、従来の青色用の金属錯体、 特に電子吸引基によってのみ発光波長を短波側に制御してきた有機 EL素子材料を 用いて作製された有機 EL素子の問題点であった、短い発光寿命が大幅に改善され ることを見出した。
[0025] この検討にあたっては、下記の構造を例にして分子軌道計算による発光波長のシミ ユレーシヨンにより、フエ-ルビリジンへの置換基効果と発光波長の変動を詳細に検 B、Jした。
Figure imgf000008_0001
その結果、波長の短波化,長波化に有効な置換位置は, 4位と 3p— 6p位であるこ とが見出された。特に、短波化に関しては、置換基が電子供与性基の場合、 4位、 4p 位、 6p位への置換基導入が有効である一方、置換基が電子吸引性基の場合、 3p位 、 5p位への置換基導入が有効であることが分力つた。
[0027] また、 3, 5, 6位は置換基の電子的性質によらず長波化することがわ力つた。
さらに、置換基の電子的性質に関して相補的であった。
[0028] この結果を受けて、本発明者らは発光波長を青色まで短波化するための手段とし て、上記指針に基づき検討を進め合成検討したところ、シミュレーション結果をほぼ 満足する発光波長の制御ができることを見出した。
[0029] この知見に基づ ヽて種々の白金錯体を合成検討し、有機 EL素子としての評価を 行ったところ、上記構造における 4位に、本発明に係わる一般式(1)における- Xa-R aで表される基を導入した場合であって、かつ、 3p— 6p位に少なくとも一つの置換基 が導入されており、かつ、それらの置換基が互いに結合して環を形成しない場合に、 本発明の目的である青の色純度と寿命の両方を両立できることが分力つた。
[0030] このような知見に基づき、更に検討を重ねた結果、本発明の構成で表される分子構 造に到達し、本発明に至った。
[0031] 発光波長の計算には、 Gaussian 98 (revision A. 11. 4, M. J. Frisch, G. W . Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr. , R. E. Stratmann, J. C. Burant , S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O . Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Po melli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, N. Rega, P. Salvador, J. J. Dannenberg, D. K. Ma lick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V . Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al— Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B . Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head- Gordon, E. S. Replogle, and J. A. Pople, Gaussian, Inc. , Pittsburgh PA , 2002. )を用いた。
[0032] 計算は B3LYP法を用いて構造最適化したのち、 TD— DFT計算を用いてりん光波 長計算を行な 、発光波長を求めた。
[0033] また、前記白金錯体の素子中の含有層としては、発光層及び Zまたは正孔阻止層 が好ましぐまた、発光層に含有される場合は、前記発光層中の発光ドーパントとして 用いられることにより、本発明に記載の効果である、有機 EL素子の発光寿命の長寿 命化を達成することが出来た。
[0034] 本発明の有機 EL素子材料に係る白金錯体について説明する。
[0035] 本発明にお 、て、「電子供与性の置換基」とは、下記に記載のノ、メットの σ ρ値が負 の値を示す置換基のことであり、そのような置換基は、水素原子と比べて、結合原子 側に電子を与えやす 、特性を有する。
[0036] 電子供与性を示す置換基の具体例としては、ヒドロキシル基、アルコキシ基 (例えば 、メトキシ基、 )、ァセチルォキシ基、アミノ基、ジメチルァミノ基、ァセチルァミノ基、ァ ルキル基(例えば、メチル基、ェチル基、プロピル基、 tert -ブチル基等)、ァリール基 (例えば、フエニル基、メシチル基等)が挙げられる。また、ハメットの σ ρ値について は、例えば、下記文献等が参照出来る。
[0037] 《ハメットの σ ρ値》
本発明に係るハメットの σ ρ値とは、ハメットの置換基定数 σ ρを指す。ノ、メットの σ ρ の値は、 Hammett等によって安息香酸ェチルの加水分解に及ぼす置換基の電子 的効果力も求められた置換基定数であり、「薬物の構造活性相関」(南江堂:1979年 )、「SuDstituent Constants for Correlation Analysis m し hemistry an d BiologyJ (C. Hansch and A. Leo, John Wiley & Sons, New York, 1 979年)等に記載の基を引用することが出来る。
[0038] 《一般式 (1)で表される金属錯体》
本発明に係る、一般式(1)で表される白金錯体について説明する。
[0039] 本発明の一般式(1)において、 R 、 R 、 R 、 R 、 R 、 R 、 Rは水素原子または置
1 2 3 4 5 6 7
換基で表されるが、その少なくとも一つは必ず置換基を表す。 R 、 R 、 R 、 R 、 R 、 R
1 2 3 4 5
、 Rの二つ以上が置換基で表される場合でも、それらは互いに結合して環を形成す
6 7
ることはない。また、 Raは置換基を表し、 Xaは酸素原子または硫黄原子を表す。
[0040] 一般式(1)において、前記 Raで表される置換基としては、特に制限はないが、アル キル基 (例えば、メチル基、ェチル基、イソプロピル基、 tert ブチル基等)、シクロア ルキル基(例えば、シクロへキシル基、シクロペンチル基、シクロプロピル基等)、アル ケニル基 (例えば、ビニル基、ァリル基、 2 -ブテニル基等)、アルキ-ル基 (例えば、 ェチニル基、プロピ-ル基等)、ァリール基 (例えば、フエニル基、 2—ナフチル基、 2— ピリジル基、 2 チェ-ル基、 3 フリル基等)、ヘテロ環基 (N モルホリル基、 2—テトラ ヒドロフラ-ル基等)等が挙げられる。
[0041] これらの中、 Raは炭素数 1一 30のアルキル基であることが好ましぐ Ra— Xa—はァ ルコキシ基、アルキルチオ基であることが好まし 、。
[0042] また、前記 R— Rで表される置換基としては、アルキル基 (例えば、メチル基、イソ プロピル基、 tert ブチル基等)、シクロアルキル基 (例えば、シクロへキシル基、シク 口ペンチル基、シクロプロピル基等)、ァルケ-ル基 (例えば、ビュル基、ァリル基、 2— ブテニル基等)、アルキ-ル基 (例えば、ェチュル基、プロピニル基等)、ァリール基( 例えば、フエニル基、 2 ナフチル基、 9 フエナンスリル基、 2 ピリジル基、メシチル 基、カルバゾリル基、フルォレニル基、 2 チェ-ル基、 3 フリル基等)、ヘテロ環基( N モルホリル基、 2—テトラヒドロフラニル基等)、アミノ基、アルキルアミノ基 (例えば、 ジメチルァミノ基、ジフヱ-ルァミノ基等)、ハロゲン原子 (例えば、フッ素原子、塩素 原子、臭素原子、沃素原子等)、アルコキシ基 (例えば、メトキシ基、エトキシ基、イソ プロポキシ基等)、ァリールォキシ基 (例えば、フエノキシ基、パーフルオロフエノキシ 基等)、ァシルァミノ基 (例えば、ァセトアミド基、ベンゾィルアミド基等)、スルホンアミ ド基(例えば、メタンスルホンアミド基、ブタンスルホンアミド基、ベンゼンスルホンアミド 基等)、カルボアルコキシ基 (例えば、カルボエトキシ基等)、ァリールォキシカルボ- ル基 (例えば、フエノキシカルボ-ル基等)、ァシルォキシ基 (例えば、ァセトキシ基、 ベンゾィルォキシ基等)、アルキルチオ基 (例えば、メチルチオ基等)、ァリールチオ 基 (例えば、フ 二ルチオ基等)、シァノ基、フッ化炭化水素基 (例えば、トリフルォロメ チル基、ペンタフルオロフヱ-ル基等)等があげられる。
[0043] 本発明では、 R、 R、 R、 Rで表される基の少なくとも一つは電子供与性基である
1 2 3 4
ことが好ましぐ更に好ましくは、前記 R される基の少なくとも二つが
1、 R
2、 R
3、 Rで表
4
電子供与性基であり、また、前記電子供与性基の少なくとも一つの σ ρが、 0. 20以 下のものが用いられることであるが、最も好ましいのは、前記電子供与性基が、一般 式(1)の Rまたは Rに導入されることであり、 Rおよび Rがともに前記電子供与性基
2 4 2 4
である場合は一層好ましい。
[0044] 《 σ ρがー 0. 20以下の電子供与性基》
ここで、 び カー0. 20以下の電子供与性基としては、例えば、シクロプロビル基 (一 0 . 21)、シクロへキシル基 (—0. 22)、 tert—ブチル基 (― 0. 20)、—CH Si (CH ) (-
2 3 3
0. 21)、アミノ基 (一0. 66)、ヒドロキシルアミノ基 (一0. 34)、一 NHNH (—0. 55)、一
2
NHCONH (-0. 24)、— NHCH (—0. 84)、— NHC H (—0. 61)、— NHCONH
2 3 2 5
C H (-0. 26)、一 NHC H (—0. 51)、一 NHC H (—0. 40)、一 N = CHC H (—0
2 5 4 9 6 5 6 5
. 55)、— OH (— 0. 37)、— OCH (—0. 27)、— OCH COOH (— 0. 33)、— OC H (
3 2 2 5
— 0. 24)、— OC H (-0. 25)、—OCH (CH ) (—0. 45)、— OC H (—0. 34)、— O
3 7 3 2 5 11
CH C H (一 0. 42)等が挙げられる力 本発明はこれらに限定されない。
2 6 5
[0045] 一般式(1)において、 Y L Yは 2座の配位子を表し、 Y、 Yは、各々独立に酸
1 2 2 1 2
素原子、窒素原子、炭素原子、または、硫黄原子を表し、 Lは、 Y、 Yと共に 2座の
2
配位子の形成するのに必要な原子群を表す。
[0046] Y L Yで表される 2座の配位子の具体例としては、特に制限はないが、置換基
1 2 2
を有しても良いフエ-ルビリジン、酢酸、ァセチルアセトン、チォカルバミン酸誘導体、 2—ァシルフェノール、ピコリン酸等の誘導体であることが好まし!/、。
[0047] また、前記アルコキシ基、アルキルチオ基等と共に、前記構造における 3p— 6p位 に導入され、かつ、互いに結合して環を形成しないことが好ましい少なくとも一つの置 換基としては、前記一般式(1)におけるそれぞれ R、 R、 R、 Rで表される基であり
1 2 3 4
、これらの R -Rで表される置換基の少なくとも 1つ力 前記の置換基の中、電子供
1 4
与性の置換基であることが好ましい。また、さらに好ましいのは、 R、 R、 R、 Rで表
1 2 3 4 される基の中、少なくとも二つが電子供与性の置換基である場合である。
[0048] また、最も好ましいのは、一般式(1)において Rと Rが電子供与性の置換基である
2 4
場合である。
[0049] 電子供与性の置換基としては、前記の基の中、最も好ましくはアルキル基、アルコ キシ基、アルキルアミノ基が挙げられる。 [0050] 本発明に係る、一般式 (2)で表される白金錯体について説明する。
[0051] 一般式(2)において、 R 、R 、R 、R 、R 、R 、R は、各々表される置換基
11 12 13 14 15 16 17
は、一般式(1)において、 R 、 R 、 R 、 R 、 R 、 R 、 Rで、各々表される置換基と同
1 2 3 4 5 6 7
義である。但し、 R 、R の少なくとも一つは電子吸引性基であり、 R 、R が共に電
11 13 11 13 子吸引性基であることが好ましぐ更に好ましくは、前記電子吸引性基の σ ρが 0. 10 以上である。
[0052] 《σ ρが 0. 10以上の電子吸引性基》
ここで、 σ ρ力^). 10以上の電子吸引性基としては、例えば、 Β (ΟΗ) (0. 12)、
2
臭素原子 (0. 23)、塩素原子 (0. 23)、沃素原子 (0. 18)、一 CBr (— 0. 29)、一 CC1
3
(0. 33)、 -CF (0. 54)、 -CN (0. 66)、 一 CHO (0. 42)、— COOH (0. 45)、 CO
3 3
NH (0. 36)、— CH SO CF (0· 31)、— COCH (0· 45)、 3—バレニル基(0. 19)
2 2 2 3 3
、— CF (CF ) (0· 53)、 -CO C H (0. 45)、—CF CF CF CF (0. 52)、 一 C F (
3 2 2 2 5 2 2 2 3 6 5
0. 41)、 2—べンゾォキサゾリル基(0. 33)、 2—ベンゾチアサゾリル基(0. 29)、一 C = 0 (C H ) (0. 43)、 -OCF (0. 35)、— OSO CH (0· 36)、 一 SO (NH ) (0· 5
6 5 3 2 3 2 2
7)、 -SO CH (0. 72)、 -COCH CH (0. 48)、 -COCH (CH ) (0. 47)、—CO
2 3 2 3 3 2
C (CH ) (0. 32)等が挙げられる力 本発明はこれらに限定されない。
3 3
以下に、本発明に用いられる前記一般式(1)で表される白金錯体について、具体的 化合物例を挙げるが、本発明は、これらに限定されるものではない。
41
13
PCT/JP2005/004681
Figure imgf000014_0001
Figure imgf000015_0001
Figure imgf000016_0001
Figure imgf000017_0001
一 HC s §
Figure imgf000018_0001
Figure imgf000018_0002
2
Figure imgf000019_0001
Figure imgf000019_0002
Figure imgf000020_0001
Figure imgf000021_0001
00
Figure imgf000022_0001
Figure imgf000022_0002
600092
Figure imgf000023_0001
Figure imgf000023_0002
[0062] 本発明の有機 EL素子材料に係る前記白金錯体は、例えば Organic Letter誌、 v ol3、No. 16、 p2579— 2581 (2001)、 Helvetica Chemica Acta,第 69卷、 18 55ページ(1986年), Inorganic Chemistry,第 41卷、第 12号、 3055— 3066ぺ ージ(2002年)、 New Journal of Chemistry,第 26卷、 1171ページ(2002年) 、さらにこれらの文献中に記載の参考文献等の方法を適用することにより合成できる
[0063] 本発明にお 、て、上記化合物を含有する有機エレクト口ルミネッセンス素子とは、有 機 EL素子を構成する ヽずれかの有機層を形成するかまたは有機層に含有されるこ とを表すが、好ましくは、発光層に発光ドーパントとして、または正孔阻止層に含有さ れるときである。
[0064] (発光ドーパント) 次いで、有機 EL素子に含有される、発光ドーパント (単にドーパントともいう)と発光 ホスト(単にホストとも 、う)につ 、て説明する
有機 EL素子を構成する層において、その層が 2種以上の有機化合物で構成され るとき、主成分をホスト、その他の成分をドーパントという。その場合、主成分であるホ ストィ匕合物に対する発光ドーパントの混合比は好ましくは質量で 0. 1質量%— 30質 量%未満である。
[0065] 本発明に係る、前記一般式(1)で表される白金錯体は、リン光性の発光ドーパント として用いられる。ただし、発光ドーパントとして、前記白金錯体は複数種の化合物を 混合して用いても良ぐ混合する相手は構造を異にするオルトメタルイ匕金属錯体でも 、その他のリン光性ドーパントでも、蛍光性ドーパントでもよい。
[0066] これら本発明の化合物と併用しても良 、ドーパントにつ 、て述べる。
[0067] 発光ドーパントは、大きくわけて、蛍光を発光する蛍光性ドーパントとリン光を発光 するリン光性ドーパントの 2種類がある。
[0068] 前者 (蛍光性ドーパント)の代表例としては、クマリン系色素、ピラン系色素、シ了ニ ン系色素、クロコニゥム系色素、スクァリウム系色素、ォキソベンツアントラセン系色素 、フルォレセイン系色素、ローダミン系色素、ピリリウム系色素、ペリレン系色素、スチ ルベン系色素、ポリチオフ ン系色素、又は希土類錯体系蛍光体、その他公知の蛍 光性ィヒ合物等が挙げられる。
[0069] 後者 (リン光性ドーパント)の代表例としては、好ましくは元素の周期律表で VIII属の 金属を含有する錯体系化合物であり、更に好ましくは、イリジウム化合物、オスミウム 化合物、パラジウム化合物又は他の白金化合物(白金錯体系化合物)であり、中でも 最も好ま U、のはイリジウム化合物である。
[0070] 具体的には以下の特許公報に記載されている化合物である。
WOOO/70655,特開 2002— 280178、特開 2001— 181616、特開 2002— 2801 79、特開 2001— 181617、特開 2002— 280180、特開 2001— 247859、特開 200 2—299060、特開 2001— 313178、特開 2002— 302671、特開 2001— 345183、 特開 2002— 324679、 WO02/15645,特開 2002— 332291、特開 2002— 5048 4、特開 2002—332292、特開 2002— 83684、特表 2002— 540572、特開 2002— 117978、特開 2002— 338588、特開 2002— 170684、特開 2002—352960、特 開 WO0lZ93642、特開 2002— 50483、特開 2002— 100476、特開 2002— 1736 74、特開 2002—359082、特開 2002— 175884、特開 2002—363552、特開 200 2—184582、特開 2003— 7469、特表 2002— 525808、特開 2003— 7471、特表 2 002-525833,特開 2003— 31366、特開 2002— 226495、特開 2002—234894、 特開 2002— 235076、特開 2002— 241751、特開 2001— 319779、特開 2001— 3 19780、特開 2002—62824、特開 2002—100474、特開 2002— 203679、特開 2 002-343572,特開 2002— 203678等。
その具体例の一部を下記に示す。
Figure imgf000025_0001
lr-3 [r-4
Figure imgf000025_0002
Figure imgf000025_0003
Figure imgf000026_0001
Figure imgf000026_0002
Figure imgf000026_0003
Figure imgf000026_0004
Ϊ89簡 SOOZdf/ェ:) d 93 6_60/S00Z OAV
Figure imgf000027_0001
[0074] (発光ホスト)
発光ホスト(単にホストとも!、う)とは、 2種以上の化合物で構成される発光層中にて 混合比 (質量)の最も多い化合物のことを意味し、それ以外の化合物については「ド 一パント化合物(単に、ドーパントともいう)」という。例えば、発光層をィ匕合物 A、化合 物 Bという 2種で構成し、その混合比が A: B= 10 : 90であれば化合物 Aがドーパント 化合物であり、化合物 Bがホストイ匕合物である。更に、発光層をィ匕合物 A、化合物 B、 化合物 Cの 3種力 構成し、その混合比が八^:じ= 5 : 10 : 85でぁれば、化合物 A、 化合物 Bがドーパント化合物であり、化合物 Cがホストイ匕合物である。
[0075] 本発明に用いられる発光ホストとしては、併用される発光ドーパントのリン光 0— 0バ ンドよりも短波長なそれをもつ化合物が好ましぐ発光ドーパントにそのリン光 0— 0バ ンドが 480nm以下である青色の発光成分を含む化合物を用いる場合には、発光ホ ストとしてはリン光 0—0バンド力 50nm以下であることが好ましい。
[0076] 本発明の発光ホストとしては、構造的には特に制限はないが、代表的にはカルバゾ ール誘導体、トリアリールァミン誘導体、芳香族ボラン誘導体、含窒素複素環化合物 、チォフェン誘導体、フラン誘導体、オリゴァリーレン化合物等の基本骨格を有し、か つ前記 0— 0バンドが 450nm以下の化合物が好ましい化合物として挙げられる。
[0077] また、本発明の発光ホストは低分子化合物でも、繰り返し単位をもつ高分子化合物 でもよぐビニル基やエポキシ基のような重合性基を有する低分子化合物 (蒸着重合 性発光ホスト)でもいい。
[0078] 発光ホストとしては、正孔輸送能、電子輸送能を有しつつ、かつ、発光の長波長化 を防ぎ、なおかつ高 Tg (ガラス転移温度)である化合物が好ま U、。
[0079] 発光ホストの具体例としては、以下の文献に記載されている化合物が好適である。
特開 2001— 257076、特開 2002— 308855、特開 2001— 313179、特開 2002— 3 19491、特開 2001— 357977、特開 2002— 334786、特開 2002—8860、特開 20 02—334787、特開 2002— 15871、特開 2002— 334788、特開 2002— 43056、特 開 2002— 334789、特開 2002— 75645、特開 2002— 338579、特開 2002— 1054 45、特開 2002— 343568、特開 2002— 141173、特開 2002—352957、特開 200 2—203683、特開 2002—363227、特開 2002— 231453、特開 2003— 3165、特 開 2002— 234888、特開 2003— 27048、特開 2002— 255934、特開 2002— 2608 61、特開 2002— 280183、特開 2002—299060、特開 2002— 302516、特開 200 2—305083、特開 2002—305084、特開 2002— 308837等。
[0080] 本発明にお 、て、ホストイ匕合物としては、カルボリン誘導体、または該カルボリン誘 導体のカルボリン環を構成する炭化水素環の炭素原子の少なくとも一つが窒素原子 で置換されて 、る環構造を有する誘導体であることが好まし 、。
[0081] 本発明のホストイ匕合物として好ましいものの具体例を挙げる。
Figure imgf000029_0001
Ϊ89簡 SOOZdf/ェ:) d 83 6_60/S00Z OAV
Figure imgf000030_0001
Figure imgf000030_0002
Figure imgf000030_0003
Figure imgf000031_0001
l89l700/S00Zdf/13d OS 6·60/£00Ζ ΟΛΧ
Figure imgf000032_0001
[0085] また、本発明に係わる有機 EL素子材料である前記白金錯体は、正孔阻止層に含 有されることが好ましい態様の 1つである。
[0086] 正孔阻止層とは後述するように広い意味では電子輸送層であり、電子を輸送する 機能を有しつつ正孔を輸送する能力が著しく小さい材料力 なり、電子を輸送しつつ 正孔を阻止することで電子と正孔の再結合確率を向上させることができる。本発明に おける正孔阻止層とは電子輸送層を含むものとする。
[0087] 本発明に係わる有機 EL素子材料である前記白金錯体は、電子阻止層に含まれて いてもよい。
電子阻止層とは後述するように広い意味では正孔輸送層の機能を有し、正孔を輸送 する機能を有しつつ電子を輸送する能力が著しく小さい材料力 なり、正孔を輸送し つつ電子を阻止することで電子と正孔の再結合確率を向上させることができる。
[0088] 次に、代表的な有機 EL素子の構成について述べる。
[0089] 《有機 EL素子の構成層》
本発明の有機 EL素子の構成層につ 、て説明する。
[0090] 本発明において、有機 EL素子の層構成の好ましい具体例を以下に示す力 本発 明はこれらに限定されない。
(i)陽極 Z発光層 Z電子輸送層 Z陰極
(ii)陽極 Z正孔輸送層 Z発光層 Z電子輸送層 Z陰極 (iii)陽極 Z正孔輸送層 Z発光層 Z正孔阻止層 Z電子輸送層 Z陰極
(iv)陽極 Z正孔輸送層 Z発光層 Z正孔阻止層 Z電子輸送層 Z陰極バッファ一層 Z陰極
(v)陽極 Z陽極バッファ一層 Z正孔輸送層 Z発光層 Z正孔阻止層 Z電子輸送層 Z 陰極バッファ一層 Z陰極
(vi)陽極 Z陽極バッファ一層 Z正孔輸送層 Z電子阻止層 Z発光層 Z正孔阻止層 Z電子輸送層 Z陰極バッファ一層 Z陰極
(vii)陽極 Z陽極バッファ一層 Z正孔輸送層 Z電子阻止層 Z発光層 Z正孔阻止層 Z電子輸送層 Z陰極バッファ一層 Z陰極
《陽極》
有機 EL素子における陽極としては、仕事関数の大きい (4eV以上)金属、合金、電 気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。こ のような電極物質の具体例としては Au等の金属、 Cul、インジウムチンォキシド (ITO ) , SnO、 ZnO等の導電性透明材料が挙げられる。また、 IDIXO (In O ZnO)等
2 2 3 非晶質で透明導電膜を作製可能な材料を用いてもよい。陽極は、これらの電極物質 を蒸着やスパッタリング等の方法により、薄膜を形成させ、フォトリソグラフィ一法で所 望の形状のパターンを形成してもよぐあるいはパターン精度をあまり必要としない場 合は(100 μ m以上程度)、上記電極物質の蒸着やスパッタリング時に所望の形状の マスクを介してパターンを形成してもよい。この陽極より発光を取り出す場合には、透 過率を 10%より大きくすることが望ましぐまた、陽極としてのシート抵抗は数百 ΩΖ 口以下が好ましい。さらに膜厚は材料にもよる力 通常 10— 1000nm、好ましくは 10 一 200nmの範囲で選ばれる。
《陰極》
一方、陰極としては、仕事関数の小さい (4eV以下)金属 (電子注入性金属と称する )、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる 。このような電極物質の具体例としては、ナトリウム、ナトリウム カリウム合金、マグネ シゥム、リチウム、マグネシウム Z銅混合物、マグネシウム Z銀混合物、マグネシウム Zアルミニウム混合物、マグネシウム Zインジウム混合物、アルミニウム Z酸ィ匕アルミ -ゥム (Al O )
2 3混合物、インジウム、リチウム Zアルミニウム混合物、希土類金属等が 挙げられる。これらの中で、電子注入性及び酸ィ匕等に対する耐久性の点から、電子 注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物 、例えばマグネシウム Z銀混合物、マグネシウム Zアルミニウム混合物、マグネシウム Zインジウム混合物、アルミニウム Z酸ィ匕アルミニウム (Ai o )混合物、リチウム
2 3 Zァ ルミ-ゥム混合物、アルミニウム等が好適である。陰極は、これらの電極物質を蒸着 やスパッタリング等の方法により、薄膜を形成させることにより作製することができる。 また、陰極としてのシート抵抗は数百 ΩΖ口以下が好ましぐ膜厚は通常 10nm— 1 OOOnm、好ましくは 50nm— 200nmの範囲で選ばれる。なお、発光を透過させるた め、有機 EL素子の陽極または陰極のいずれか一方力 透明または半透明であれば 発光輝度が向上し好都合である。
[0092] 次に、本発明の有機 EL素子の構成層として用いられる、注入層、正孔輸送層、電 子輸送層等について説明する。
[0093] 《注入層》:電子注入層、正孔注入層
注入層は必要に応じて設け、電子注入層と正孔注入層があり、上記のごとく陽極と 発光層または正孔輸送層の間、及び、陰極と発光層または電子輸送層との間に存 在させてもよい。
[0094] 注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる 層のことで、「有機 EL素子とその工業ィ匕最前線(1998年 11月 30日 ェヌ'ティー'ェ ス社発行)」の第 2編第 2章「電極材料」(123— 166頁)に詳細に記載されており、正 孔注入層(陽極バッファ一層)と電子注入層(陰極バッファ一層)とがある。
[0095] 陽極バッファ一層(正孔注入層)は、特開平 9 45479号公報、同 9— 260062号公 報、同 8— 288069号公報等にもその詳細が記載されており、具体例として、銅フタ口 シァニンに代表されるフタロシアニンバッファ一層、酸ィ匕バナジウムに代表される酸 化物バッファ一層、アモルファスカーボンバッファ一層、ポリア-リン(ェメラルディン) やポリチォフェン等の導電性高分子を用いた高分子バッファ一層等が挙げられる。
[0096] 陰極バッファ一層(電子注入層)は、特開平 6— 325871号公報、同 9— 17574号公 報、同 10— 74586号公報等にもその詳細が記載されており、具体的にはストロンチウ ムゃアルミニウム等に代表される金属バッファ一層、フッ化リチウムに代表されるアル カリ金属化合物バッファ一層、フッ化マグネシウムに代表されるアルカリ土類金属化 合物バッファ一層、酸ィ匕アルミニウムに代表される酸ィ匕物バッファ一層等が挙げられ る。
[0097] 上記バッファ一層(注入層)はごく薄い膜であることが望ましぐ素材にもよるが、そ の膜厚は 0. lnm— lOOnmの範囲が好ましい。
[0098] 阻止層は、上記のごとぐ有機化合物薄膜の基本構成層の他に必要に応じて設け られるものである。例えば特開平 11— 204258号、同 11— 204359号、及び「有機 EL 素子とその工業ィ匕最前線(1998年 11月 30日 ェヌ 'ティー ·エス社発行)」の 237頁 等に記載されて 、る正孔阻止(ホールブロック)層がある。
[0099] 前記のように、正孔阻止層とは広い意味では電子輸送層であり、電子を輸送する機 能を有しつつ正孔を輸送する能力が著しく小さい材料力 なり、電子を輸送しつつ正 孔を阻止することで電子と正孔の再結合確率を向上させることができる。
[0100] 一方、電子阻止層とは広い意味では正孔輸送層であり、正孔を輸送する機能を有 しつつ電子を輸送する能力が著しく小さい材料力 なり、正孔を輸送しつつ電子を阻 止することで電子と正孔の再結合確率を向上させることができる。
[0101] 正孔輸送層とは正孔を輸送する機能を有する材料からなり、広い意味で正孔注入 層、電子阻止層も正孔輸送層に含まれる。
[0102] この注入層は、上記材料を、例えば真空蒸着法、スピンコート法、キャスト法、インク ジェット法、 LB法等の公知の方法により、薄膜ィ匕することにより形成することができる 。注入層の膜厚については特に制限はないが、通常は 5— 5000nm程度である。こ の注入層は、上記材料の一種または二種以上力もなる一層構造であってもよい。
[0103] 《発光層》
本発明にお ヽては、前記本発明に係わる前記一般式(1)で表される白金錯体を発 光ドーパントに用いることが必須条件である力 これら以外にも公知の発光ホストや発 光ドーパントを併用してもよ 、。
[0104] 併用してもよい公知の発光ホストとしては、後述の電子輸送材料および正孔輸送材 料もその相応しい一例として挙げられ、青色または白色の発光素子、表示装置およ び照明装置に適用する場合には、蛍光極大波長が 415nm以下であることが好ましく 、リン光の 0— 0バンドが 450nm以下であることがさらに好ましい。
[0105] この発光層は、上記化合物を、例えば真空蒸着法、スピンコート法、キャスト法、 LB 法などの公知の薄膜ィ匕法により製膜して形成することができる。発光層としての膜厚 は、特に制限はないが、通常は 5nm— 5 μ mの範囲で選ばれる。この発光層は、こ れらの発光材料一種又は二種以上力もなる一層構造であってもよいし、あるいは、同 一組成又は異種組成の複数層からなる積層構造であってもよい。
[0106] また、この発光層は、特開昭 57-51781号公報に記載されているように、榭脂など の結着材と共に上記発光材料を溶剤に溶力して溶液としたのち、これをスピンコート 法などにより薄膜ィ匕して形成することができる。このようにして形成された発光層の膜 厚については、前記の通り通常は 5nm— 5 μ mの範囲である。
[0107] 《正孔輸送層》
正孔輸送層とは正孔を輸送する機能を有する材料からなり、広い意味で正孔注入 層、電子阻止層も正孔輸送層に含まれる。正孔輸送層は単層もしくは複数層設ける ことができる。
[0108] 正孔輸送材料としては、特に制限はなぐ従来、光導伝材料において、正孔の電荷 注入輸送材料として慣用されて 、るものや EL素子の正孔注入層、正孔輸送層に使 用される公知のものの中から任意のものを選択して用いることができる。
[0109] 正孔輸送材料は、正孔の注入もしくは輸送、電子の障壁性の!/、ずれかを有するも のであり、有機物、無機物のいずれであってもよい。例えばトリァゾール誘導体、ォキ サジァゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン 誘導体及びピラゾロン誘導体、フ 二レンジァミン誘導体、ァリールァミン誘導体、アミ ノ置換カルコン誘導体、ォキサゾール誘導体、スチリルアントラセン誘導体、フルォレ ノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、ァニリン系共重 合体、また、導電性高分子オリゴマー、特にチォフェンオリゴマー等が挙げられる。
[0110] 正孔輸送材料としては、上記のものを使用することができる力 ポルフィリン化合物 、芳香族第三級ァミン化合物及びスチリルァミン化合物、特に芳香族第三級ァミン化 合物を用いることが好まし 、。 [0111] 芳香族第三級アミンィ匕合物及びスチリルアミンィ匕合物の代表例としては、 N, N, N ' , N' —テトラフエ-ルー 4, 4' —ジァミノフエ-ル; N, N' —ジフエ-ルー N, N' - ビス(3 メチルフエ-ル)—〔1, 1' ービフエ-ル〕 4, 4' ージァミン(TPD) ; 2, 2—ビ ス(4ージー p—トリルァミノフエ-ル)プロパン; 1 , 1—ビス(4—ジー p—トリルァミノフエ-ル )シクロへキサン; N, N, N' , N' —テトラー p—トリル 4, 4' ージアミノビフエニル; 1 , 1 ビス(4ージー p—トリルァミノフエ-ル) 4—フエ-ルシクロへキサン;ビス(4 ジメチ ルァミノ— 2 メチルフエ-ル)フエニルメタン;ビス(4ージー p—トリルァミノフエ-ル)フエ -ルメタン; N, N' —ジフエ-ルー N, N' —ジ(4ーメトキシフエ-ル) 4, 4' ージァミノ ビフエ-ル; N, N, N' , N' —テトラフエ-ルー 4, 4' ージアミノジフエ-ルエーテル; 4, 4' ビス(ジフエ-ルァミノ)クオードリフエ-ル; N, N, N—トリ(p—トリル)ァミン; 4 —(ジ p—トリルァミノ) 4' —〔4— (ジー p—トリルァミノ)スチリル〕スチルベン; 4 N, N —ジフエ-ルァミノ—(2—ジフエ-ルビ-ル)ベンゼン; 3—メトキシー 4' N, N—ジフエ -ルアミノスチルベンゼン; N フエ-ルカルバゾール、さらには、米国特許第 5, 061 , 569号明細書に記載されている 2個の縮合芳香族環を分子内に有するもの、例え ば 4, 4' ビス〔N— ( 1 ナフチル) N フエ-ルァミノ〕ビフエ-ル (NPD)、特開平 4 —308688号公報に記載されているトリフエ-ルァミンユニットが 3つスターバースト型 に連結された 4, 4' , A"—トリス〔?^— (3—メチルフエ-ル)— N—フエ-ルァミノ〕トリフ ェ-ルァミン(MTDATA)等が挙げられる。
[0112] さらにこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖と した高分子材料を用いることもできる。
[0113] また、 p型 Si、 p型 SiC等の無機化合物も正孔注入材料、正孔輸送材料として使 用することができる。
[0114] また、本発明においては正孔輸送層の正孔輸送材料は、青色または白色の発光 素子、表示装置および照明装置に適用する場合には、 415nm以下に蛍光極大波 長を有することが好ましぐリン光の 0— 0バンド力 50nm以下であることがさらに好ま しい。
[0115] 正孔輸送材料は、高 Tgである化合物が好ましい。
[0116] この正孔輸送層は、上記正孔輸送材料を、例えば真空蒸着法、スピンコート法、キ ヤスト法、インクジェット法、 LB法等の公知の方法により、薄膜化することにより形成す ることができる。正孔輸送層の膜厚については特に制限はないが、通常は 5— 5000 nm程度である。この正孔輸送層は、上記材料の一種または二種以上からなる一層 構造であってもよい。
[0117] 《電子輸送層》
電子輸送層とは電子を輸送する機能を有する材料力 なり、広い意味で電子注入 層、正孔阻止層も電子輸送層に含まれる。電子輸送層は、陰極より注入された電子 を発光層に伝達する機能を有して!/ヽればよぐ電子輸送層は単層もしくは複数層設 けることができる。
[0118] 本発明に係わる前記一般式(1)で表される白金錯体は、正孔阻止材料 (電子輸送 材料)として用いることができる。従って、正孔阻止層を構成層として有する有機 EL 素子において、正孔阻止材料として用いてもよぐまた、電子輸送層中に正孔阻止材 料として、含有されていてもよい。この場合電子輸送層が正孔阻止層を兼ねることに なる。
[0119] 電子輸送材料としては、その他、従来公知の化合物の中から任意のものを選択し て用いることができる。
[0120] 従来、単層の電子輸送層、及び複数層とする場合は発光層に対して陰極側に隣 接する電子輸送層に用いられる電子輸送材料 (正孔阻止材料を兼ねる)としては、下 記の材料が知られている。即ち、ニトロ置換フルオレン誘導体、ジフエ二ルキノン誘導 体、チォピランジオキシド誘導体、ナフタレンペリレンなどの複素環テトラカルボン酸 無水物、カルポジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン及びアン トロン誘導体、ォキサジァゾール誘導体などが挙げられる。さらに、上記ォキサジァゾ ール誘導体にお 、て、ォキサジァゾール環の酸素原子を硫黄原子に置換したチア ジァゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリ ン誘導体も、電子輸送材料として用いることができる。
[0121] さらにこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖と した高分子材料を用いることもできる。
[0122] また、 8—キノリノール誘導体の金属錯体、例えばトリス(8—キノリノール)アルミ-ゥ ム(Alq)、トリス(5, 7—ジクロ口— 8—キノリノール)アルミニウム、トリス(5, 7—ジブ口モ— 8—キノリノール)アルミニウム、トリス(2—メチルー 8 キノリノール)アルミニウム、トリス( 5—メチルー 8—キノリノール)アルミニウム、ビス(8—キノリノール)亜鉛(Znq)など、及 びこれらの金属錯体の中心金属が In、 Mg、 Cu、 Ca、 Sn、 Ga又は Pbに置き替わつ た金属錯体も、電子輸送材料として用いることができる。その他、メタルフリー若しくは メタルフタロシアニン、又はそれらの末端がアルキル基ゃスルホン酸基などで置換さ れているものも、電子輸送材料として好ましく用いることができる。また、発光層の材 料として例示したジスチリルビラジン誘導体も、電子輸送材料として用いることができ るし、正孔注入層、正孔輸送層と同様に、 n型 Si、 n型 SiCなどの無機半導体も電 子輸送材料として用いることができる。
[0123] 電子輸送層に用いられる好ましい化合物は、青色または白色の発光素子、表示装 置および照明装置に適用する場合には、蛍光極大波長が 415nm以下であることが 好ましぐリン光の 0— 0バンド力 50nm以下であることがさらに好ましい。
[0124] 電子輸送層に用いられる化合物は、高 Tgである化合物が好ましい。
[0125] この電子輸送層は、上記電子輸送材料を、例えば真空蒸着法、スピンコート法、キ ヤスト法、インクジェット法、 LB法等の公知の方法により、薄膜化することにより形成す ることができる。電子輸送層の膜厚については特に制限はないが、通常は 5— 5000 nm程度である。この電子輸送層は、上記材料の一種または二種以上からなる一層 構造であってもよい。
[0126] 《基体 (基板、基材、支持体等とも!ヽぅ)》
本発明の有機 EL素子に係る基体としては、ガラス、プラスチック等の種類には特に 限定はなぐまた、透明のものであれば特に制限はないが、好ましく用いられる基板と しては例えばガラス、石英、光透過性榭脂フィルムを挙げることができる。特に好まし V、基体は、有機 EL素子にフレキシブル性を与えることが可能な榭脂フィルムである。
[0127] 榭脂フィルムとしては、特に限定はなぐ具体的には、ポリエチレンテレフタレート、 ポリエチレンナフタレート等のポリエステル、ポリエチレン、ポリプロピレン、セロファン 、セノレロースジアセテート、セノレローストリアセテート、セノレロースアセテートブチレート 、セノレロースアセテートプロピオネート、セノレロースアセテートフタレート、セノレロース ナイトレート等のセルロースエステル類又はそれらの誘導体、ポリ塩ィ匕ビユリデン、ポ リビニルアルコール、ポリエチレンビニルアルコール、シンジォタクティックポリスチレ ン、ポリカーボネート、ノルボルネン榭脂、ポリメチルペンテン、ポリエーテルケトン、ポ リイミド、ポリエーテルスルホン、ポリスルホン類、ポリエーテルケトンイミド、ポリアミド、 フッ素榭脂、ナイロン、ポリメチルメタタリレート、アクリル或いはポリアリレート類、ァー トン (商品名: JSR (株)製)或 、はアベル (商品名:三井化学 (株)製)と!、つたノルボ ルネン系(またはシクロォレフイン系)榭脂、有機無機ハイブリッド榭脂等をあげること が出来る。有機無機ハイブリッド榭脂としては、有機榭脂どノルゲル反応によって得ら れる無機高分子 (例えばシリカ、アルミナ、チタ-ァ、ジルコユア等)を組み合わせて 得られるものが挙げられる。
[0128] 榭脂フィルムの表面には無機物もしくは有機物の被膜またはその両者のノヽイブリツ ド被膜が形成されて 、てもよ 、。
[0129] 被膜の具体例としてはゾルーゲル法により形成されたシリカ層、ポリマーの塗布等に より形成された有機層 (たとえば重合性基を有する有機材料膜に紫外線照射や加熱 等の手段で後処理を施した膜を含む)、 DLC膜、金属酸化物膜または金属窒化物 膜などが挙げられる。金属酸化物膜、金属窒化物膜を構成する金属酸化物、金属窒 化物としては、酸化珪素、酸化チタン、酸化アルミニウムなどの金属酸化物、窒化珪 素などの金属窒化物、酸窒化珪素、酸窒化チタンなどの金属酸窒化物が挙げられる
[0130] 前記、表面に無機物もしくは有機物の被膜またはその両者のハイブリッド被膜が形 成された榭脂フィルムの水蒸気透過率は、 0. 01gZm2'dayatm以下の高ノ リア性 フィルムであることが好まし 、。
[0131] 本発明の有機エレクト口ルミネッセンス素子の発光の室温における外部取り出し効 率は 1%以上であることが好ましぐより好ましくは 2%以上である。ここに、外部取り出 し量子効率 (%) =有機 EL素子外部に発光した光子数 Z有機 EL素子に流した電子 数 X 100である。
[0132] また、カラーフィルタ一等の色相改良フィルタ一等を併用してもよい。
[0133] 照明用途で用いる場合には、発光ムラを低減させるために粗面加工したフィルム( アンチグレアフィルム等)を併用することもできる。
[0134] 多色表示装置として用いる場合は少なくとも 2種類の異なる発光極大波長を有する 有機 EL素子カゝらなるが、有機 EL素子を作製する好適な例を説明する。
[0135] 《有機 EL素子の作製方法》
本発明の有機 EL素子の作製方法の一例として、陽極/正孔注入層/正孔輸送層 Z発光層 Z電子輸送層 Z電子注入層 Z陰極からなる有機 EL素子の作製法につい て説明する。
[0136] まず適当な基体上に、所望の電極物質、例えば陽極用物質力 なる薄膜を、 1 μ m 以下、好ましくは lOnm— 200nmの膜厚になるように、蒸着やスパッタリング等の方 法により形成させ、陽極を作製する。次に、この上に素子材料である正孔注入層、正 孔輸送層、発光層、電子輸送層、電子注入層の有機化合物薄膜を形成させる。
[0137] この有機化合物薄膜の薄膜ィ匕の方法としては、前記の如くスピンコート法、キャスト 法、インクジェット法、蒸着法、印刷法等があるが、均質な膜が得られやすぐかつピ ンホールが生成しにくい等の点から、真空蒸着法またはスピンコート法が特に好まし い。さらに層ごとに異なる製膜法を適用してもよい。製膜に蒸着法を採用する場合、 その蒸着条件は、使用する化合物の種類等により異なるが、一般にボート加熱温度 50— 450°C、真空度 10— 6Pa— 10— 2Pa、蒸着速度 0. Olnm— 50nmZ秒、基板温 度 50°C— 300°C、膜厚 0. lnm— 5 μ mの範囲で適宜選ぶことが望ましい。
[0138] これらの層の形成後、その上に陰極用物質力もなる薄膜を、 1 μ m以下好ましくは 5 Onm— 200nmの範囲の膜厚になるように、例えば蒸着やスパッタリング等の方法に より形成させ、陰極を設けることにより、所望の有機 EL素子が得られる。この有機 EL 素子の作製は、一回の真空引きで一貫して正孔注入層から陰極まで作製するのが 好ましいが、途中で取り出して異なる製膜法を施しても力まわない。その際、作業を 乾燥不活性ガス雰囲気下で行う等の配慮が必要となる。
[0139] 本発明の多色表示装置は、発光層形成時のみシャドーマスクを設け、一面に蒸着 法、キャスト法、スピンコート法、インクジェット法、印刷法等で膜を形成できる。
[0140] 発光層のみパターユングを行う場合、その方法に限定はないが、好ましくは蒸着法 、インクジェット法、印刷法である。蒸着法を用いる場合においてはシャドーマスクを 用いたパターユングが好まし 、。
[0141] また作製順序を逆にして、陰極、電子注入層、電子輸送層、発光層、正孔輸送層、 正孔注入層、陽極の順に作製することも可能である。
[0142] このようにして得られた多色表示装置に、直流電圧を印加する場合には、陽極を + 、陰極を一の極性として電圧 2— 40V程度を印加すると、発光が観測できる。また、逆 の極性で電圧を印加しても電流は流れずに発光は全く生じない。さらに、交流電圧 を印加する場合には、陽極が +、陰極が一の状態になったときのみ発光する。なお、 印加する交流の波形は任意でょ 、。
[0143] 本発明の多色表示装置は、表示デバイス、ディスプレイ、各種発光光源として用い ることができる。表示デバイス、ディスプレイにおいて、青、赤、緑発光の 3種の有機 E L素子を用いることにより、フルカラーの表示が可能となる。
[0144] 表示デバイス、ディスプレイとしてはテレビ、ノ ソコン、モパイル機器、 AV機器、文 字放送表示、自動車内の情報表示等が挙げられる。特に静止画像や動画像を再生 する表示装置として使用してもよぐ動画再生用の表示装置として使用する場合の駆 動方式は単純マトリックス (パッシブマトリックス)方式でもアクティブマトリックス方式で もどちらでもよい。
[0145] (発明の実施の態様)
本発明の有機 EL素子力 構成される表示装置の一例を図面に基づいて以下に説 明する。
[0146] 図 1は、有機 EL素子力 構成される表示装置の一例を示した模式図である。有機 EL素子の発光により画像情報の表示を行う、例えば、携帯電話等のディスプレイの 模式図である。
[0147] ディスプレイ 1は、複数の画素を有する表示部 A、画像情報に基づいて表示部 Aの 画像走査を行う制御部 B等力もなる。
[0148] 制御部 Bは、表示部 Aと電気的に接続され、複数の画素それぞれに外部からの画 像情報に基づいて走査信号と画像データ信号を送り、走査信号により走査線毎の画 素が画像データ信号に応じて順次発光して画像走査を行って画像情報を表示部 A に表示する。 [0149] 図 2は、表示部 Aの模式図である。
[0150] 表示部 Aは基板上に、複数の走査線 5及びデータ線 6を含む配線部と、複数の画 素 3等とを有する。表示部 Aの主要な部材の説明を以下に行う。
[0151] 図においては、画素 3の発光した光力 白矢印方向(下方向)へ取り出される場合 を示している。
[0152] 配線部の走査線 5及び複数のデータ線 6は、それぞれ導電材料からなり、走査線 5 とデータ線 6は格子状に直交して、直交する位置で画素 3に接続している(詳細は図 示せず)。
[0153] 画素 3は、走査線 5から走査信号が印加されると、データ線 6から画像データ信号を 受け取り、受け取った画像データに応じて発光する。発光の色が赤領域の画素、緑 領域の画素、青領域の画素を、適宜、同一基板上に並置することによって、フルカラ 一表示が可能となる。
[0154] 次に、画素の発光プロセスを説明する。
[0155] 図 3は、画素の模式図である。
[0156] 画素は、有機 EL素子 10、スイッチングトランジスタ 11、駆動トランジスタ 12、コンデ ンサ 13等を備えている。複数の画素に有機 EL素子 10として、赤色、緑色、青色発 光の有機 EL素子を用い、これらを同一基板上に並置することでフルカラー表示を行 うことができる。
[0157] 図 3において、制御部 B力もデータ線 6を介してスイッチングトランジスタ 11のドレイ ンに画像データ信号が印加される。そして、制御部 B力 走査線 5を介してスィッチン グトランジスタ 11のゲートに走査信号が印加されると、スイッチングトランジスタ 11の 駆動がオンし、ドレインに印加された画像データ信号がコンデンサ 13と駆動トランジ スタ 12のゲートに伝達される。
[0158] 画像データ信号の伝達により、コンデンサ 13が画像データ信号の電位に応じて充 電されるとともに、駆動トランジスタ 12の駆動がオンする。駆動トランジスタ 12は、ドレ インが電源ライン 7に接続され、ソースが有機 EL素子 10の電極に接続されており、ゲ 一トに印加された画像データ信号の電位に応じて電源ライン 7から有機 EL素子 10に 電流が供給される。 [0159] 制御部 Bの順次走査により走査信号が次の走査線 5に移ると、スイッチングトランジ スタ 11の駆動がオフする。しかし、スイッチングトランジスタ 11の駆動がオフしてもコン デンサ 13は充電された画像データ信号の電位を保持するので、駆動トランジスタ 12 の駆動はオン状態が保たれて、次の走査信号の印加が行われるまで有機 EL素子 1 0の発光が継続する。順次走査により次に走査信号が印加されたとき、走査信号に 同期した次の画像データ信号の電位に応じて駆動トランジスタ 12が駆動して有機 E L素子 10が発光する。
[0160] すなわち、有機 EL素子 10の発光は、複数の画素それぞれの有機 EL素子 10に対 して、アクティブ素子であるスイッチングトランジスタ 11と駆動トランジスタ 12を設けて 、複数の画素 3それぞれの有機 EL素子 10の発光を行っている。このような発光方法 をアクティブマトリクス方式と呼んで 、る。
[0161] ここで、有機 EL素子 10の発光は、複数の階調電位を持つ多値の画像データ信号 による複数の階調の発光でもよ 、し、 2値の画像データ信号による所定の発光量の オン、才フでもよ!/、。
[0162] また、コンデンサ 13の電位の保持は、次の走査信号の印加まで継続して保持して もよ 、し、次の走査信号が印加される直前に放電させてもょ 、。
[0163] 本発明においては、上述したアクティブマトリクス方式に限らず、走査信号が走査さ れたときのみデータ信号に応じて有機 EL素子を発光させるパッシブマトリクス方式の 発光駆動でもよい。
[0164] 図 4は、ノ ッシブマトリクス方式による表示装置の模式図である。図 4において、複 数の走査線 5と複数の画像データ線 6が画素 3を挟んで対向して格子状に設けられ ている。
[0165] 順次走査により走査線 5の走査信号が印加されたとき、印加された走査線 5に接続 して ヽる画素 3が画像データ信号に応じて発光する。
[0166] ノ¾ /シブマトリクス方式では画素 3にアクティブ素子が無ぐ製造コストの低減が計れ る。
[0167] 本発明に係わる有機 EL材料は、また、照明装置として、実質白色の発光を生じる 有機 EL素子に適用できる。複数の発光材料により複数の発光色を同時に発光させ て混色により白色発光を得る。複数の発光色の組み合わせとしては、青色、緑色、青 色の 3原色の 3つの発光極大波長を含有させたものでも良いし、青色と黄色、青緑と 橙色等の補色の関係を利用した 2つの発光極大波長を含有したものでも良い。
[0168] また、複数の発光色を得るための発光材料の組み合わせは、複数のリン光または 蛍光で発光する材料を、複数組み合わせたもの、蛍光またはリン光で発光する発光 材料と、発光材料力 の光を励起光として発光する色素材料との組み合わせたもの のいずれでも良いが、本発明に係わる白色有機エレクト口ルミネッセンス素子におい ては、発光ドーパントを複数組み合わせ混合するだけでよい。発光層もしくは正孔輸 送層或いは電子輸送層等の形成時のみマスクを設け、マスクにより塗り分けるなど単 純に配置するだけでよぐ他層は共通であるのでマスク等のパターニングは不要であ り、一面に蒸着法、キャスト法、スピンコート法、インクジェット法、印刷法等で例えば 電極膜を形成でき、生産性も向上する。この方法によれば、複数色の発光素子をァ レー状に並列配置した白色有機 EL装置と異なり、素子自体が発光白色である。
[0169] 発光層に用いる発光材料としては特に制限はなぐ例えば液晶表示素子における ノ ックライトであれば、 CF (カラーフィルター)特性に対応した波長範囲に適合するよ うに、本発明に係わる白金錯体、また公知の発光材料の中から任意のものを選択し て組み合わせて白色化すれば良 、。
[0170] このように、本発明の白色発光有機 EL素子は、前記表示デバイス、ディスプレイに カロえて、各種発光光源、照明装置として、家庭用照明、車内照明、また露光光源の ような一種のランプとして、また液晶表示装置のバックライト等、表示装置にも有用に 用いられる。
[0171] その他、時計等のバックライト、看板広告、信号機、光記憶媒体等の光源、電子写 真複写機の光源、光通信処理機の光源、光センサーの光源等、更には表示装置を 必要とする一般の家庭用電気器具等広い範囲の用途が挙げられる。
実施例
[0172] 以下、実施例により本発明を説明するが、本発明はこれらに限定されない。
[0173] ここで、実施例 1一 4のいずれかにおいて用いられる発光ホスト材料、発光ドーパン ト、正孔阻止層の形成等に用いられる素材を示す。 CBP BCP
Figure imgf000046_0001
実施例 1
《有機 EL素子 OLEDl— 1の作製》
陽極としてガラス上に ITOを 150nm成膜した基板 (NHテクノグラス社製: NA-45) にパター-ングを行った後、この ITO透明電極を設けた透明支持基板を iso プロピ ルアルコールで超音波洗净し、乾燥窒素ガスで乾燥し、 UVオゾン洗浄を 5分間行つ た。
[0176] この透明支持基板を、市販の真空蒸着装置の基板ホルダーに固定し、一方、 5つ のタンタル製抵抗力卩熱ボートに、 α— NPD、 CBP、 Ir—12、 BCP、 Alqをそれぞれ入
3
れ、真空蒸着装置 (第 1真空槽)に取付けた。
[0177] 更に、タンタル製抵抗加熱ボートにフッ化リチウムを、タングステン製抵抗加熱ボー トにアルミニウムをそれぞれ入れ、真空蒸着装置の第 2真空槽に取り付けた。
[0178] まず、第 1の真空槽を 4 X 10— 4Paまで減圧した後、 a NPDの入った前記加熱ボ ートに通電して加熱し、蒸着速度 0. InmZ秒一 0. 2nmZ秒で透明支持基板に膜 厚 25nmの厚さになるように蒸着し、正孔注入 Z輸送層を設けた。
[0179] さらに、 CBPの入った前記加熱ボートと Ir 12の入ったボートをそれぞれ独立に通 電して発光ホストである CBPと発光ドーパントである Ir~12の蒸着速度が 100 : 7にな るように調節し膜厚 30nmの厚さになるように蒸着し、発光層を設けた。
[0180] ついで、 BCPの入った前記加熱ボートに通電して加熱し、蒸着速度 0. InmZ秒 一 0. 2nmZ秒で厚さ 10nmの正孔阻止層を設けた。更に、 Alqの入った前記加熱
3
ボートを通電して加熱し、蒸着速度 0. 1-0. 2nmZ秒で膜厚 40nmの電子輸送層 を設けた。
[0181] 次に、前記の如く電子輸送層まで製膜した素子を真空のまま第 2真空槽に移した 後、電子輸送層の上にステンレス鋼製の長方形穴あきマスクが配置されるように装置 外部からリモートコントロールして設置した。
[0182] 第 2真空槽を 2 X 10— 4Paまで減圧した後、フッ化リチウム入りのボートに通電して蒸 着速度 0. 01-0. 02nmZ秒で膜厚 0. 5nmの陰極バッファ一層を設け、次いでァ ルミ-ゥムの入つたボートに通電して蒸着速度 1一 2nmZ秒で膜厚 150nmの陰極を つけた。さらにこの有機 EL素子を大気に接触させることなく窒素雰囲気下のグローブ ボックス(純度 99. 999%以上の高純度窒素ガスで置換したグローブボックス)へ移し 、図 5に示したような内部を窒素で置換した封止構造にして、 OLED1— 1を作製した 。なお、捕水剤である酸化バリウム 105は、アルドリッチ社製の高純度酸化バリウム粉 末を、粘着剤付きのフッ素榭脂系半透過膜 (ミクロテックス S— NTF8031Q 日東電 工製)でガラス製封止缶 104に貼り付けたものを予め準備して使用した。封止缶と有 機 EL素子の接着には紫外線硬化型接着剤 107を用い、紫外線ランプを照射するこ とで両者を接着し封止素子を作製した。図 5において 101は透明電極を設けたガラス 基板、 102が前記正孔注入 Z輸送層、発光層、正孔阻止層、電子輸送層等からなる 有機 EL層、 103は陰極を示す。
《有機 EL素子 OLED1—2— 1—30の作製》
上記の有機 EL素子 OLED1— 1の作製において、表 1に記載のように、発光ドーパ ントを、比較化合物 1一 5、また、本発明に係わる白金錯体 (表中に化合物 No.で示 した)に変更した以外は同様にして、有機 EL素子 OLED1— 2— 1— 30を各々作製し た。
[0183] 得られた有機 EL素子 OLED1—1— 1—30の各々について下記のような評価を行つ た。
《有機 EL素子 OLED1— 31— 1— 33の作製》
OLED1— 1の作製において、発光ホストを CBPから AZ1に変更し、発光ドーパント を本発明の白金錯体 (表中に化合物番号で示した)を使用した以外は、 OLED1— 1と同様にして、有機 EL素子 OLED 1-31一 1—33を作製した。
《外部取り出し量子効率》
有機 EL素子 OLED1—1— 1—33の各々の素子を室温(約 23°C— 25°C)、 2. 5m AZcm2の定電流条件下による点灯を行い、点灯開始直後の発光輝度 (L) [cd/m 2]を測定することにより、外部取り出し量子効率( r? )を算出した。ここで、発光輝度の 測定は、 CS— 1000 (ミノルタ製)を用いた。
[0184] また、外部取り出し量子効率は、各々有機 EL素子 OLED1—1を 100とした時の相 対値で表した。
[0185] 《発光寿命》
有機 EL素子 OLED1—1— 1—33の各々の素子を室温下、 2. 5mAZcm2の定電 流条件下による連続点灯を行い、初期輝度の半分の輝度になるのに要する時間( τ )を測定した。また、発光寿命は、各々有機 EL素子 OLED1— 1を 100とした時の 相対値で表した。
[0186] 《色度差》
有機 EL素子 OLED1—1— 1—33の各々の素子を室温(約 23°C— 25°C)、 2. 5m AZcm2の定電流条件下による点灯を行い、点灯開始直後の素子の発光色の CIE 色度((X, y) = (a, b) )を測定し、 NTSC (modern)の青((x, y) = (0. 155, 0. 07 ) )との差を色度差( Δ )として算出した。
Δは、以下の式にしたがって求めた。
[0187] Δ = ( I 0. 155— a | 2+ | 0. 07— b | 2) 1/2
ここで、 CIE色度の測定は、 CS— 1000 (ミノルタ製)を用いた。
[0188] また、外部取り出し量子効率は、各々有機 EL素子 OLED1—1を 100とした時の相 対値で表した。
[0189] 得られた結果を表 1に示す。
[0190] [表 1]
色度差
素子 No. 発光ドーパント 外部取リ出し量子勃率 発先 叩
(Δ) 備 考
OLED 1 - 1 l r- 12 100 100 0. 29 比 較
OLED 1 - 2 l r- 13 97 85 0. 26 比 較
OLED 1 - 3 比較 1 99 79 0. 25 比 較
OLED 1 - 4 比較 2 102 75 0. 28 比 較
OLED 1 - 5 比較 3 109 104 0. 24 比 較
OLED 1 - 6 比較 4 108 98 0. 30 比 較
OLED 1 - 7 比較 5 98 65 0. 36 比 較
OLED 1 - 10 1 130 250 0. 21 本発明
OLED 1 - 11 2 129 248 0. 2 本発明
OLED 1 - 12 3 115 229 0. 23 本発明
OLED 1 - 13 7 117 233 0. 22 本発明
OLED 1—14 10 113 223 0. 23 本発明
OLED 1 - 15 18 115 231 0. 23 本発明
OLED 1 - 16 31 117 232 0. 25 本発明
OLED 1 - 17 35 123 240 0. 22 本発明
OLED 1 - 18 36 130 249 0. 21 本発明
OLED 1 - 19 40 118 235 0. 23 本発明
OLED 1 -24 73 128 245 0. 22 本発明
OLED 1 -25 79 114 228 0. 23 本発明
OLED 1 -26 80 115 227 0. 24 本発明
82 113 220 0. 24 本発明
OLED 1 -30 96 106 188 0. 25 本発明
OLED 1 -31 59 121 238 0. 22 本発明
OLED 1 -32 64 125 220 0. 21 本発明
OLED 1 -33 1 132 260 0. 21 本発明
[0191] 表 1から、有機 EL素子材料として、本発明に係る白金錯体を用いて作製した有機 E L素子は比較素子に比べ、高い発光効率と、発光寿命の長寿命化が達成できている ことが明らかである。また、色純度も従来の素子に比べて向上していることが分力つた
[0192] 実施例 2
《有機 EL素子 OLED2— 1— 2— 26の作製》
実施例 1の有機 EL素子 OLED1— 1の作製において、発光ドーパントを Ir 12から I r 1に変更し、正孔阻止材料 BCPを、表 2に記載のように本発明に係わる白金錯体( 表中に化合物 No.で示した)に変更した以外は同様にして、有機 EL素子 OLED2— 1一 2— 26を作製した。
[0193] 得られた有機 EL素子 OLED2— 1一 2— 26について、外部取り出し量子効率、発光 寿命の測定を実施例 1に記載の方法を用いて行った。 [0194] 評価結果を示すに当たり、有機 EL素子 OLED2— 1の値を 100としたときの有機 EL 素子各試料の各々の相対値で表した。得られた結果を表 2に示す。
[0195] [表 2]
Figure imgf000051_0001
[0196] 表 2より、比較の素子に比べて、本発明の素子は、高い発光効率と、発光寿命が得 られることがゎカゝつた。なお、本発明の有機 EL素子の発光色は全て緑色だった。
[0197] 実施例 3
《フルカラー表示装置の作製》
(青色発光素子の作製)
実施例 1の有機 EL素子 OLED 1— 10を青色発光素子として用 、た。
[0198] (緑色発光素子の作製)
実施例 2の有機 EL素子 OLED2— 2を緑色発光素子として用いた。
[0199] (赤色発光素子の作製)
また、実施例 1の有機 EL素子 OLED1— 10において、発光ドーパントを 1から Ir~9 に変更した以外は OLED1— 10と同様にして赤色発光素子を作成した。
[0200] 上記で作製した、各々赤色、緑色、青色発光有機 EL素子を同一基板上に並置し、 図 1に記載のような形態を有するアクティブマトリクス方式フルカラー表示装置を作製 した。
[0201] 図 2には、作製した前記表示装置の表示部 Aの模式図のみを示した。即ち、同一 基板上に、複数の走査線 5及びデータ線 6を含む配線部と、並置した複数の画素 3 ( 発光の色が赤領域の画素、緑領域の画素、青領域の画素等)とを有し、配線部の走 查線 5及び複数のデータ線 6はそれぞれ導電材料からなり、走査線 5とデータ線 6は 格子状に直交して、直交する位置で画素 3に接続している(詳細は図示せず)。前記 複数画素 3は、それぞれの発光色に対応した有機 EL素子、アクティブ素子であるス イッチングトランジスタと駆動トランジスタそれぞれが設けられたアクティブマトリクス方 式で駆動されており、走査線 5から走査信号が印加されると、データ線 6から画像デ ータ信号を受け取り、受け取った画像データに応じて発光する。この様に各赤、緑、 青の画素を適宜、並置することによって、フルカラー表示装置を作製した。
[0202] 該フルカラー表示装置を駆動することにより、輝度が高ぐ高耐久性を有し、且つ、 鮮明なフルカラー動画表示が得られることが判った。
[0203] 実施例 4
《白色発光素子および白色照明装置の作製》
実施例 1の透明電極基板の電極を 20mm X 20mmにパターユングし、その上に実 施例 1と同様に正孔注入/輸送層として α— NPDを 25nmの厚さで製膜し、さらに、 CBPの入った前記加熱ボートと本発明化合物 6の入ったボートおよび Ir 9の入った ボートをそれぞれ独立に通電して発光ホストである CBPと発光ドーパントである本発 明化合物 6および Ir~9の蒸着速度が 100 : 5 : 0. 6になるように調節し膜厚 30nmの 厚さになるように蒸着し、発光層を設けた。
[0204] ついで、 BCPを lOnm製膜して正孔阻止層を設けた。更に、 Alqを 40nmで製膜し
3
電子輸送層を設けた。
[0205] 次に、実施例 1と同様に、電子注入層の上にステンレス鋼製の透明電極とほぼ同じ 形状の正方形穴あきマスクを設置し、陰極バッファ一層としてフッ化リチウム 0. 5nm 及び陰極としてアルミニウム 150nmを蒸着製膜した。
[0206] この素子を実施例 1と同様な方法および同様な構造の封止缶を具備させ平面ラン プを作製した。図 6に平面ランプの模式図を示した。図 6 (a)に平面模式を図 6 (b)に 断面模式図を示す。
[0207] この平面ランプに通電したところほぼ白色の光が得られ、照明装置として使用でき ることがわかった。
産業上の利用可能性
本発明により、フエ-ルビリジンの特定の箇所に、ある電子的性質をもった置換基を 導入した金属錯体である有機 EL素子材料と該素子材料を用いて、高 ヽ発光効率を 示し、かつ、発光寿命の長い有機 EL素子、照明装置及び表示装置を提供すること が出来る。

Claims

請求の範囲
下記一般式 (1)で表される白金錯体を含有することを特徴とする有機エレクトロルミネ ッセンス素子材料。
Figure imgf000054_0001
〔式中、 R、R、R、R、R、R、Rは水素原子または置換基を表すが、 R、 R、 R
1 2 3 4 5 6 7 1 2 3
、 R、 R、 R、 Rの少なくとも一つは電子供与性の置換基である。 Raは置換基を表
4 5 6 7
し、 Xaは酸素原子または硫黄原子を表す。 Y L Yは 2座の配位子を表し、 Y、 Y
1 1 2 1 は各々独立に酸素原子、窒素原子、炭素原子または硫黄原子を表し、 Lは Y、 Y
2 1 1 2 と共に 2座の配位子を形成するのに必要な原子群を表す。〕
[2] 前記一般式(1)において、 R、 R、 R、 Rの少なくとも二つが電子供与性の置換基
1 2 3 4
であることを特徴とする請求の範囲第 1項に記載の有機エレクト口ルミネッセンス素子 材料。
[3] 前記電子供与性基の少なくとも一つのノ、メットの置換基定数 σ ρがー 0. 20以下であ ることを特徴とする請求の範囲第 1項に記載の有機エレクト口ルミネッセンス素子材料
[4] 前記電子供与性基の置換基が、前記一般式(1)の Rまたは Rに導入されることを特
2 4
徴とする請求の範囲第 1項に記載の有機エレクト口ルミネッセンス素子材料
[5] 前記一般式(1)において、 Raはアルキル基をあらわすことを特徴とする請求の範囲 第 1項に記載の有機エレクト口ルミネッセンス素子材料。
[6] 前記一般式(1)において、 Raはアルキル基をあらわすことを特徴とする請求の範囲 第 2項に記載の有機エレクト口ルミネッセンス素子材料。
[7] 前記電子供与性の置換基がアルキル基であることを特徴とする請求の範囲第 1項に 記載の有機エレクト口ルミネッセンス素子材料。
[8] 前記電子供与性の置換基がアルキル基であることを特徴とする請求の範囲第 2項に 記載の有機エレクト口ルミネッセンス素子材料。
[9] 前記電子供与性の置換基がアルコキシ基であることを特徴とする請求の範囲第 1項 に記載の有機エレクト口ルミネッセンス素子材料。
[10] 前記電子供与性の置換基がアルコキシ基であることを特徴とする請求の範囲第 2項 に記載の有機エレクト口ルミネッセンス素子材料。
[11] 前記電子供与性の置換基がアルキルアミノ基であることを特徴とする請求の範囲第 1 項に記載の有機エレクト口ルミネッセンス素子材料。
[12] 前記電子供与性の置換基がアルキルアミノ基であることを特徴とする請求の範囲第 2 項に記載の有機エレクト口ルミネッセンス素子材料。
[13] 下記一般式 (2)で表される白金錯体を含有することを特徴とする有機エレクトロルミネ ッセンス素子材料。
Figure imgf000055_0001
〔式中、 R 、R 、R 、R 、R 、R 、R R R
11 12 13 14 15 16 17は水素原子または置換基を表す力 、
11 1
、の少なくとも一つは電子吸引性である。 Rbは置換基を表し、 Xbは酸素原子または
3
硫黄原子を表す。 Y - L - Yは 2座の配位子を表し、 Y、 Yは各々独立に酸素原子
3 2 4 3 4
、窒素原子、炭素原子または硫黄原子を表し、 L
2は Y、 Y
3 4と共に 2座の配位子を形 成するのに必要な原子群を表す。〕
[14] R 、R 、が共に電子吸引性であることを特徴とする請求の範囲第 13項に記載の有
11 13
機エレクト口ルミネッセンス素子材料。
[15] 前記電子吸引性のノ、メットの置換基定数 σ ρが 0. 10以上であることを特徴とする請 求の範囲第 13項に記載の有機エレクト口ルミネッセンス素子材料。
[16] 請求の範囲第 1項に記載の有機エレクト口ルミネッセンス素子材料を含有することを 特徴とする有機エレクト口ルミネッセンス素子。
[17] 請求の範囲第 3項に記載の有機エレクト口ルミネッセンス素子材料を含有することを 特徴とする有機エレクト口ルミネッセンス素子。
[18] 構成層として発光層を有する有機エレクト口ルミネッセンス素子において、該発光層 が請求の範囲第 1項に記載の有機エレクト口ルミネッセンス素子材料を含有すること を特徴とする有機エレクト口ルミネッセンス素子。
[19] 構成層として発光層を有する有機エレクト口ルミネッセンス素子において、該発光層 が請求の範囲第 3項に記載の有機エレクト口ルミネッセンス素子材料を含有すること を特徴とする有機エレクト口ルミネッセンス素子。
[20] 構成層として正孔阻止層を有する有機エレクト口ルミネッセンス素子において、該正 孔阻止層が請求の範囲第 1項に記載の有機エレクト口ルミネッセンス素子材料を含 有することを特徴とする有機エレクト口ルミネッセンス素子。
[21] 構成層として正孔阻止層を有する有機エレクト口ルミネッセンス素子において、該正 孔阻止層が請求の範囲第 3項に記載の有機エレクト口ルミネッセンス素子材料を含 有することを特徴とする有機エレクト口ルミネッセンス素子。
[22] 請求の範囲第 16項に記載の有機エレクト口ルミネッセンス素子を有することを特徴と する表示装置。
[23] 請求の範囲第 17項に記載の有機エレクト口ルミネッセンス素子を有することを特徴と する表示装置。
[24] 請求の範囲第 18項に記載の有機エレクト口ルミネッセンス素子を有することを特徴と する表示装置。
[25] 請求の範囲第 19項に記載の有機エレクト口ルミネッセンス素子を有することを特徴と する表示装置。
[26] 請求の範囲第 20項に記載の有機エレクト口ルミネッセンス素子を有することを特徴と する表示装置。
[27] 請求の範囲第 21項に記載の有機エレクト口ルミネッセンス素子を有することを特徴と する表示装置。
[28] 請求の範囲第 16項に記載の有機エレクト口ルミネッセンス素子を有することを特徴と する照明装置。
[29] 請求の範囲第 17項に記載の有機エレクト口ルミネッセンス素子を有することを特徴と する照明装置。
[30] 請求の範囲第 18項に記載の有機エレクト口ルミネッセンス素子を有することを特徴と する照明装置。
[31] 請求の範囲第 19項に記載の有機エレクト口ルミネッセンス素子を有することを特徴と する照明装置。
[32] 請求の範囲第 20項に記載の有機エレクト口ルミネッセンス素子を有することを特徴と する照明装置。
[33] 請求の範囲第 21項に記載の有機エレクト口ルミネッセンス素子を有することを特徴と する照明装置。
PCT/JP2005/004681 2004-03-31 2005-03-16 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置 WO2005097941A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006511954A JPWO2005097941A1 (ja) 2004-03-31 2005-03-16 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-103250 2004-03-31
JP2004103250 2004-03-31

Publications (1)

Publication Number Publication Date
WO2005097941A1 true WO2005097941A1 (ja) 2005-10-20

Family

ID=35125051

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/004681 WO2005097941A1 (ja) 2004-03-31 2005-03-16 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置

Country Status (2)

Country Link
JP (1) JPWO2005097941A1 (ja)
WO (1) WO2005097941A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000034908A (ja) * 1998-07-16 2000-02-02 Yamaha Motor Co Ltd 多気筒エンジンの動弁機構
JP2011256116A (ja) * 2010-06-07 2011-12-22 Ube Industries Ltd イリジウム錯体及びそれを用いた有機エレクトロルミネッセンス素子
JP5045100B2 (ja) * 2004-03-31 2012-10-10 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子材料及び有機エレクトロルミネッセンス素子
WO2013042626A1 (ja) * 2011-09-21 2013-03-28 シャープ株式会社 アルコキシ基を有する遷移金属錯体、及びこれを用いた有機発光素子、色変換発光素子、光変換発光素子、有機レーザーダイオード発光素子、色素レーザー、表示装置、照明装置並びに電子機器
CN103145763A (zh) * 2013-03-02 2013-06-12 大连理工大学 新型环金属配体-铂配合物及其制备方法与应用
US8859110B2 (en) 2008-06-20 2014-10-14 Basf Se Cyclic phosphazene compounds and use thereof in organic light emitting diodes
JP2014239248A (ja) * 2006-07-04 2014-12-18 株式会社半導体エネルギー研究所 発光素子
US9812657B2 (en) 2014-01-07 2017-11-07 Samsung Electronics Co., Ltd. Organometallic compound and organic light-emitting device including the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003146996A (ja) * 2000-09-26 2003-05-21 Canon Inc 発光素子、表示装置及び発光素子用金属配位化合物

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003146996A (ja) * 2000-09-26 2003-05-21 Canon Inc 発光素子、表示装置及び発光素子用金属配位化合物

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000034908A (ja) * 1998-07-16 2000-02-02 Yamaha Motor Co Ltd 多気筒エンジンの動弁機構
JP5045100B2 (ja) * 2004-03-31 2012-10-10 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子材料及び有機エレクトロルミネッセンス素子
JP2014239248A (ja) * 2006-07-04 2014-12-18 株式会社半導体エネルギー研究所 発光素子
JP2016197748A (ja) * 2006-07-04 2016-11-24 株式会社半導体エネルギー研究所 発光素子
US8859110B2 (en) 2008-06-20 2014-10-14 Basf Se Cyclic phosphazene compounds and use thereof in organic light emitting diodes
JP2011256116A (ja) * 2010-06-07 2011-12-22 Ube Industries Ltd イリジウム錯体及びそれを用いた有機エレクトロルミネッセンス素子
WO2013042626A1 (ja) * 2011-09-21 2013-03-28 シャープ株式会社 アルコキシ基を有する遷移金属錯体、及びこれを用いた有機発光素子、色変換発光素子、光変換発光素子、有機レーザーダイオード発光素子、色素レーザー、表示装置、照明装置並びに電子機器
CN103814039A (zh) * 2011-09-21 2014-05-21 夏普株式会社 具有烷氧基的过渡金属配位化合物和使用其的有机发光元件、色变换发光元件、光变换发光元件、有机激光二极管发光元件、色素激光器、显示装置、照明装置以及电子设备
CN103814039B (zh) * 2011-09-21 2017-03-15 夏普株式会社 具有烷氧基的过渡金属配位化合物和使用其的有机发光元件、色变换发光元件、光变换发光元件、有机激光二极管发光元件、色素激光器、显示装置、照明装置以及电子设备
CN103145763A (zh) * 2013-03-02 2013-06-12 大连理工大学 新型环金属配体-铂配合物及其制备方法与应用
CN103145763B (zh) * 2013-03-02 2016-06-15 大连理工大学 基于吡啶的环金属配体-铂配合物及其制备方法与应用
US9812657B2 (en) 2014-01-07 2017-11-07 Samsung Electronics Co., Ltd. Organometallic compound and organic light-emitting device including the same

Also Published As

Publication number Publication date
JPWO2005097941A1 (ja) 2008-02-28

Similar Documents

Publication Publication Date Title
JP5045100B2 (ja) 有機エレクトロルミネッセンス素子材料及び有機エレクトロルミネッセンス素子
JP5076900B2 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5011908B2 (ja) 有機エレクトロルミネッセンス素子、表示装置および照明装置
JP5151481B2 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP4962613B2 (ja) 有機エレクトロルミネッセンス素子、表示装置および照明装置
JP5076501B2 (ja) 白色有機エレクトロルミネッセンス素子、画像表示素子および照明装置
JP5076888B2 (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
EP2271183A2 (en) Organic electroluminescent element, display and illuminator
JP5130913B2 (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
EP2463930A2 (en) Organic electroluminescent device, display and illuminating device
WO2005097942A1 (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP4935001B2 (ja) 有機エレクトロルミネッセンス素子材料
JP4904727B2 (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
US9437833B2 (en) Organic electroluminescence element
KR101751150B1 (ko) 유기 일렉트로루미네센스 소자, 조명 장치 및 표시 장치
WO2005097941A1 (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JPWO2006129471A1 (ja) 有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子の製造方法、照明装置及び表示装置
JP2014197607A (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2007081014A (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
KR20170131537A (ko) 유기 일렉트로루미네센스 소자용 재료, 유기 일렉트로루미네센스 소자, 표시 장치 및 조명 장치
JP5104981B2 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
KR101788943B1 (ko) 유기 일렉트로루미네센스 소자, 조명 장치 및 표시 장치
JP2016100501A (ja) 有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンス素子用材料

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006511954

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase