WO2005097679A1 - Un material amorfo microporoso, procedimiento de preparación y su uso en la conversión catalítica de compuestos orgánicos - Google Patents

Un material amorfo microporoso, procedimiento de preparación y su uso en la conversión catalítica de compuestos orgánicos Download PDF

Info

Publication number
WO2005097679A1
WO2005097679A1 PCT/ES2005/070039 ES2005070039W WO2005097679A1 WO 2005097679 A1 WO2005097679 A1 WO 2005097679A1 ES 2005070039 W ES2005070039 W ES 2005070039W WO 2005097679 A1 WO2005097679 A1 WO 2005097679A1
Authority
WO
WIPO (PCT)
Prior art keywords
amorphous material
material according
elements
mixture
organic compounds
Prior art date
Application number
PCT/ES2005/070039
Other languages
English (en)
French (fr)
Inventor
Avelino Corma Canos
María José DÍAZ CABAÑAS
Original Assignee
Consejo Superior De Investigaciones Científicas
Universidad Politecnica De Valencia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas, Universidad Politecnica De Valencia filed Critical Consejo Superior De Investigaciones Científicas
Priority to US11/547,805 priority Critical patent/US20080035524A1/en
Priority to EP05735153A priority patent/EP1783099A1/en
Priority to JP2007506792A priority patent/JP2007532451A/ja
Publication of WO2005097679A1 publication Critical patent/WO2005097679A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B37/00Compounds having molecular sieve properties but not having base-exchange properties
    • C01B37/005Silicates, i.e. so-called metallosilicalites or metallozeosilites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/12Silica and alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/14Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of germanium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/033Using Hydrolysis
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/36Silicates having base-exchange properties but not having molecular sieve properties
    • C01B33/46Amorphous silicates, e.g. so-called "amorphous zeolites"
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B37/00Compounds having molecular sieve properties but not having base-exchange properties
    • C01B37/02Crystalline silica-polymorphs, e.g. silicalites dealuminated aluminosilicate zeolites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/46Other types characterised by their X-ray diffraction pattern and their defined composition
    • C01B39/48Other types characterised by their X-ray diffraction pattern and their defined composition using at least one organic template directing agent
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/54Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition of unsaturated hydrocarbons to saturated hydrocarbons or to hydrocarbons containing a six-membered aromatic ring with no unsaturation outside the aromatic ring
    • C07C2/64Addition to a carbon atom of a six-membered aromatic ring
    • C07C2/66Catalytic processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
    • C10G11/04Oxides
    • C10G11/05Crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G29/00Refining of hydrocarbon oils, in the absence of hydrogen, with other chemicals
    • C10G29/20Organic compounds not containing metal atoms
    • C10G29/205Organic compounds not containing metal atoms by reaction with hydrocarbons added to the hydrocarbon oil
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/58Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
    • C10G45/60Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used
    • C10G45/64Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • C10G47/10Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used with catalysts deposited on a carrier
    • C10G47/12Inorganic carriers
    • C10G47/16Crystalline alumino-silicate carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/03Catalysts comprising molecular sieves not having base-exchange properties
    • B01J29/0308Mesoporous materials not having base exchange properties, e.g. Si-MCM-41
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/041Mesoporous materials having base exchange properties, e.g. Si/Al-MCM-41
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/643Pore diameter less than 2 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/66Pore distribution

Definitions

  • zeolites are microporous crystalline materials formed by a crystalline network of T0 4 tetrahedra that share all their vertices giving rise to a three-dimensional structure that contains channels and / or cavities of molecular dimensions. They are of variable composition, and T generally represents atoms with a formal oxidation state +3 or +4, such as Si, Ge, Ti, Al, B or Ga, among others.
  • T generally represents atoms with a formal oxidation state +3 or +4, such as Si, Ge, Ti, Al, B or Ga, among others.
  • the existence of channels and cavities of regular dimensions inside the zeolites originates a high specific area. The fact that the pore size is uniform and with a narrow distribution, in these crystalline materials, allows selectively adsorbing molecules of different sizes depending on the dimensions of the channels.
  • the crystalline structure of each zeolite results in a characteristic X-ray diffraction pattern. Therefore, the zeolites differ from each other by their range of chemical composition and their X-ray diffraction pattern. Both characteristics (crystalline structure and chemical composition) also determine the physicochemical properties of each zeolite and its possible application in different industrial processes. Micro and mesoporous amorphous materials such as silicates, silicoaluminatos and silicotitates have been developed, among others, trying to achieve molecular sieve properties, that is, very narrow pore distributions.
  • the present invention relates to a microporous amorphous material characterized in that it has a chemical composition in the calcined and anhydrous state that is represented by the following empirical formula: x (M 1 / n X0 2 ): and Y0 2 : Si0 2 in which: x has a value less than 0.2; preferably less than 0.1, it can be equal to zero, - and has a value less than 0.2; preferably less than 0.1, being equal to zero, M is selected from H + , one or several inorganic cations of charge + n; and a mixture of them,
  • - X is one or more chemical elements of oxidation state +3, and
  • X is preferably selected from Al, Ga, B, Fe, Cr and a mixture thereof
  • Y is preferably selected from Ti, Ge, Sn, V and a mixture thereof.
  • said microporous amorphous material is characterized in that it has a chemical composition in the calcined and anhydrous state that can be represented by the following empirical formula: x (M 1 / n X0 2 ): and Y0 2 : Si0 2 in which: - x has a value of less than 0.1, and can be equal to zero;
  • M is selected from H + , one or more inorganic charge cations + n; and a mixture thereof, - X is one or more chemical elements of oxidation state +3, and
  • the element, or elements, trivalent X is preferably selected from Al, Ga, B, Fe, Cr and a mixture thereof
  • Y is preferably selected from Ti, Ge, Sn, V and a mixture thereof, and among the inorganic cations which may represent M, there may be mentioned, for example, one or more alkali metals, alkaline earth metals or mixtures thereof.
  • the microporous amorphous material has a composition corresponding to the formula: x (M ⁇ n X0 2 ): Si0 2 in which: x has a value of less than 0.2, and can be equal to zero, M is selected from H + , one or several inorganic cations of charge + n; and a mixture thereof, and
  • the microporous amorphous material has a composition in the calcined and anhydrous state corresponding to the formula: and Y0 2 : Si0 2 in which: and has a value of less than 0.2, preferably less than 0.1, and may be equal to zero; and
  • the microporous amorphous material has a composition in the calcined and anhydrous state corresponding to the formula x (HX0 2 ): Si0 2 in which: - x has a value less than 0.2, preferably less than 0.1, being able to be equal to zero, and
  • microporous amorphous material has a composition in the calcined and anhydrous state corresponding to the formula Si0 2 .
  • the microporous non-crystalline material of the present invention which we will generically call MAS, has a narrow and uniform pore distribution in the micropore range.
  • Said microporous non-crystalline material is characterized in that its X-ray diffraction pattern does not exhibit diffraction peaks, and its IR spectrum does not show bands developed in the area between 400 and 600 cm_1 , bands that are characteristic of crystalline silicates, such as example the zeolites.
  • the present invention also relates to a method for synthesizing a microporous amorphous material defined above, comprising at least: preparing a reaction mixture comprising at least: - a source of Si0 2 , - one or more organic compounds, and - water, - subjecting said mixture to heating with or without stirring at a temperature between 80 and 200 ° C, preferably between 100 and 200 ° C, until formation of the amorphous material is achieved, and in which the reaction mixture has a composition, in terms of molar ratios of oxides, between the intervals:
  • reaction mixture may contain a source of fluoride ions, in which case as a source of fluoride ions, for example, fluorhydric acid or ammonium fluoride can be used.
  • the method of synthesizing the microporous amorphous material comprises: - preparing a reaction mixture comprising at least: - a source of SIO2, - a source of one or more tetravalent elements Y, - one or more organic compounds, - water, - subjecting said mixture to heating with or without stirring at a temperature between 80 and 200 ° C, preferably between 100 and 200 ° C, until formation of the amorphous material is achieved, and in which the reaction mixture has a composition, in terms of molar ratios of oxides, between the intervals:
  • reaction mixture may contain a source of fluoride ions.
  • the method of synthesizing the microporous amorphous material comprises: - preparing a reaction mixture comprising at least: - a source of SIO2, - a source of one or more trivalent elements X - one or more organic compounds, and - water, - subjecting said mixture to heating with or without stirring at a temperature between 80 and 200 ° C, preferably between 100 and 200 ° C, until amorphous material is formed, and in which the reaction mixture has a composition, in terms of molar ratios of oxides, between the intervals:
  • X is one or more elements in oxidation state +3, preferably selected from Al, Ga, B, Fe, Cr and a mix them
  • R is one or more organic compounds.
  • the addition of this or these trivalent elements can be carried out prior to heating the reaction mixture or at an intermediate time during said heating.
  • the reaction mixture may contain a source of fluoride ions.
  • the method for synthesizing said microporous amorphous material comprises: - preparing a reaction mixture comprising at least: - a source of SIO2, - a source of one or more trivalent elements X, - one or more M elements of loading + n, - one or more organic compounds, and - water, - subjecting said mixture to heating with or without stirring at a temperature between 80 and 200 ° C, preferably between 100 and 200 ° C, until amorphous material is formed, and wherein the reaction mixture has a composition, in terms of molar ratios of oxides, between the ranges
  • X is one or more elements in the oxidation state +3, M is selected from H + , one or more inorganic charge + cations and mixtures thereof; and R is one or more organic compounds.
  • X is one or more elements in the oxidation state +3, M is selected from H + , one or more inorganic charge + cations and mixtures thereof; and R is one or more organic compounds.
  • R is one or more organic compounds. The addition of this or these trivalent elements X, can be done prior to heating the mixture of reaction or at an intermediate time during said heating.
  • the reaction mixture may contain a source of fluoride ions.
  • the method for synthesizing said microporous amorphous material comprises: - preparing a reaction mixture comprising at least: - a source of SIO2, - a source of one or more trivalent elements X, - a source of one or more tetravalent elements Y, - one or more loading elements M + n, - one or more organic compounds, and - water, - subjecting said mixture to heating with or without stirring at a temperature between 80 and 200 ° C, preferably between 100 and 200 ° C, until formation of the amorphous material is achieved, and in which the reaction mixture has a composition, in terms of molar ratios of oxides, between the intervals:
  • X and Y can be performed prior to heating the reaction mixture or at an intermediate time during said heating.
  • the reaction mixture may contain a source of fluoride ions.
  • the reaction mixture has a composition, in terms of molar ratios of oxides, between the ranges:
  • X is one or several trivalent elements selected from Al, B, Ga, Fe and Cr
  • Y is one or several tetravalent elements selected from Ti, Ge, Sn and V.
  • sources of YES2 may be mentioned, for example, tetraethylorthosilicate, colloidal silica and amorphous silica.
  • Al can be used, which can be used as an aluminum source, for example, aluminum alkoxides, aluminum oxides or aluminum salts, in any of the embodiments of the method of preparing the amorphous material described above, the organic compound R is preferably in the form of hydroxide.
  • the organic cation in salt form (for example, a halide, preferably chloride, bromide or iodide).
  • the organic compound comprises one or more amino groups.
  • Said organic compound may also comprise one or more ammonium groups.
  • the organic compound is selected from N (16) -methylparteinium, 1 ⁇ 4- biscyclohexyl pyrrolidiniobutane hydroxide, 1 ⁇ 8-bisquinuclidiniooctane hydroxide, 1 ⁇ 4- biscyclohexylpyrrolidiniobutane hydroxide, hexamethonium hydroxide e tetraethylammonium hydroxide.
  • the heat treatment of the reaction mixture can be carried out in static or with stirring of the mixture.
  • the solid product is separated and dried. Subsequent calcination at temperatures between 400 and 700 ° C, preferably between 450 and 600 ° C, shows that the materials are thermally stable, and the decomposition of the occluded organic debris and their exit, leaving the pores free.
  • the reaction mixture has a composition that responds to the empirical formula a ROH: b M 1 n F: x X 2 0 3 : y Y0 2 : Si0 2 : w H 2 0
  • X is one or more elements in oxidation state +3, Y is one or more elements in oxidation state +4, M is selected from H + , one or more inorganic cations of charge + n, and a mixture thereof
  • R is one or more organic compounds
  • the present invention also relates to a method of using the microporous amorphous material defined above as a catalyst in a process of converting organic compounds comprising contacting a feed with an amount of said catalyst.
  • Said process may be a catalytic cracking process of organic compounds, preferably hydrocarbons.
  • the process is selected from a hydrocracking process, mild hydrocracking of hydrocarbons, soft hydrocracking of functionalized hydrocarbons, mild hydrocracking of hydrocarbons and functionalized hydrocarbons, hydroisomerization of olefins, a process of isomerization of light paraffins, dewaxing, isodeparaffinization and a process of alkylation.
  • said alkylation may be selected from alkylation of isoparaffins with olefins, alkylation of olefins with isoparaffins, alkylation of aromatics with olefins or alcohols, alkylation of aromatics substituted with olefins or alcohols, alkylation of thiogenic compounds with olefins or alcohols, alkylation of alkylthiophene compounds with olefins or alcohols and alkylation of alkylbenzothiophene compounds with olefins or alcohols.
  • said alkylation is the alkylation of benzene with propylene.
  • the method of using the microporous amorphous material can act as a catalyst in a process that is an acylation reaction of substituted aromatic compounds using acids, acid chlorides or anhydrides of organic acids as acylating agents.
  • the process is a selective oxidation of organic compounds using an oxidant selected from H2O2, organic peroxides and organic hydroperoxides.
  • the process is selected between an oxidation reaction of the Meerwein-Pondorf-Verley type and an oxidation reaction of the Baeyer-Villiger type.
  • said microporous amorphous material can be used as a catalyst in a process of epoxidation of olefins, oxidation of alkanes, oxidation of alcohols and oxidation of organic compounds containing sulfur and which can produce sulfoxides and sulfones, using organic hydroperoxide or inorganic, such as H2O2, tertbutylhydroperoxide, eumene hydroperoxide or molecular oxygen as oxidizing agents and in amoximation of ketones, and more specifically from cyclohexanone to cyclohexanone oxime with NH 3 and H 2 0 2 , or NH 3 and 0 2 .
  • organic hydroperoxide or inorganic such as H2O2, tertbutylhydroperoxide, eumene hydroperoxide or molecular oxygen
  • FIGURES show the X-ray diffraction diagram of a sample of the microporous amorphous material of the invention, prepared according to Example 1, using N (16) -methylparteinium, and before calcining.
  • Figure 2 shows the IR spectrum of a sample of the microporous amorphous material of the invention, designated MAS-1, prepared according to example 1, using N (16) -methylparteinium and before calcining.
  • Figure 3 shows the pore distribution of a sample of the microporous amorphous material of the invention, prepared according to example 1, using N (16) -methylparteinium, and calcined.
  • Figure 4 shows the X-ray diffraction diagram of a sample of the microporous amorphous material of the invention, prepared according to example 2, using N (16) -methylparteinium, and before calcining.
  • Figure 5 shows the X-ray diffraction diagram of a sample of the microporous amorphous material of the invention containing Ti, and prepared according to example 3, using N (16) -methylparteinium, and without calcining.
  • Figure 6 shows the X-ray diffraction diagram of a sample of the microporous amorphous material of the invention pure pure SIL-1, and prepared according to example 4, using N (16) -methylparteinium, and without calcining.
  • Figure 7 shows the X-ray diffraction diagram of a sample of the microporous amorphous material of the invention prepared according to example 5, designated MAS-2, using 1,8-bisquinuclidiniooctane hydroxide, and without calcining.
  • Figure 8 shows the IR spectrum of a sample of the microporous amorphous material of the invention prepared according to the Example 5, using 1,8-bisquinuclidiniooctane hydroxide, and without calcining.
  • Figure 9 shows the pore distribution of a sample of the microporous amorphous material of the invention, prepared according to example 5, using 1,8-bisquinuclidiniooctane hydroxide, and calcined.
  • Figure 10 shows the X-ray diffraction diagram of a sample of the microporous amorphous material of the invention prepared according to Example 6, using, 8-bisquinuclidiniooctane hydroxide, and without calcining.
  • Figure 11 shows the X-ray diffraction diagram of a sample of the microporous amorphous material of the invention prepared according to example 7, termed MAS-3, using 1,4-bis-cyclohexylpyrrolidiniumbutane hydroxide, and without calcining.
  • Figure 12 shows the IR spectrum of a sample of the microporous amorphous material of the invention prepared according to Example 7, using 1 ⁇ 4- biscyclohexylpyrrolidiniumbutane hydroxide and uncalcined.
  • Figure 13 shows the pore distribution of a sample of the microporous amorphous material of the invention, prepared according to example 7, using 1,4-biscyclohexylpyrrolidiniumbutane hydroxide, and calcined.
  • Figure 14 shows the X-ray diffraction diagram of a sample of the microporous amorphous material of the invention prepared according to example 8, using 1,4-biscyclohexylpyrrolidiniumbutane hydroxide, and without calcining.
  • Figure 15 shows the X-ray diffraction diagram of a sample of the microporous amorphous material of the invention prepared according to example 9, designated MAS-4, using hexamethonium hydroxide, and without calcining.
  • Figure 16 shows the IR spectrum of a sample of the microporous amorphous material of the invention prepared according to example 9, using hexamethonium hydroxide, and without calcining.
  • Figure 17 shows the pore distribution of a sample of the microporous amorphous material of the invention, prepared according to example 9, using hexamethonium hydroxide, and calcined.
  • Figure 18 shows the X-ray diffraction diagram of a sample of the microporous amorphous material of the invention prepared according to Example 10, designated MAS-5, using tetraethylammonium hydroxide, and without calcining.
  • Figure 19 shows the IR spectrum of a sample of the microporous amorphous material of the invention prepared according to example 10, using tetraethylammonium hydroxide, and without calcining.
  • Figure 20 shows the X-ray diffraction diagram of a sample of the microporous amorphous material of the invention prepared according to example 11, using tetraethylammonium hydroxide, and without calcining.
  • Example 1 0.272 grams of aluminum isopropoxide and 4,167 grams of tetraethylorthosilicate are hydrolyzed in 11.00 grams of N (16) -methylsparteinium hydroxide solution with a concentration of 0.91 moles / Kg. The solution obtained is kept under stirring, allowing all the alcohol formed in the hydrolysis and the remaining water to evaporate. Subsequently, 0.416 g of a solution of hydrofluoric acid (48.1% HF by weight) is added and evaporated until the reaction mixture reaches a final composition: Si0 2 : 0.033 A1 2 0 3 : 0.50 ROH: 0.50 HF: 2 H 2 0 where ROH is N (16) -methylparteinium hydroxide.
  • hydrofluoric acid 48.1% HF by weight
  • the gel is heated at 175 ° C in static for 16 hours in steel autoclaves with an internal Teflon sheath.
  • the solid obtained after filtering, washing with distilled water and drying at 100 ° C is MAS1.
  • the X-ray diffraction pattern of the solid obtained, measured by the powder method using a fixed divergence slit and using the Cu K ⁇ radiation, is shown in Figure 1 and the IR spectrum in Figure 2.
  • the material is calcine at 580 ° C for 3 hours in air flow to remove organic matter and the fluoride ions occluded inside.
  • the solid called MAS-1 has a specific surface area of 738 m 2 / g and a micropore volume of 0.28 cm 3 / g.
  • the pore diameter is 7.5 A, and the pore distribution measured by adsorption of Ar following the Hovartz-Kavazoe formalism is presented in Figure 3.
  • Example 2 In 132.98 g of N (16) -methylparteinium hydroxide solution with a concentration of 0.94 mol / kg 52.08 g of tetraethylorthosilicate and 2.04 g of aluminum isopropoxide are hydrolyzed. The solution obtained is kept under stirring, allowing ethanol and isopropanol formed in the hydrolysis to evaporate. Subsequently, 5.20 g of a solution of hydrofluoric acid (48.1% HF by weight) is added and it is evaporated until the mixture reaches the composition: Si0 2 : 0.02 AI2O3: 0.50 ROH: 0.50 HF: 2 H 2 0 where ROH it is N (16) -methylparteinium hydroxide.
  • hydrofluoric acid 48.1% HF by weight
  • the gel is heated for 16 hours in steel autoclaves with an internal Teflon sheath at 175 ° C in static.
  • Solid obtained after filtering, washing with distilled water and drying at 100 ° C is MAS-1.
  • the X-ray diffraction pattern of the solid obtained is shown in Figure 4.
  • the solid called MAS-1 after calcining at 580 ° C in air flow for 3 hours, has a specific surface area of 643 m 2 / g and a volume of micropore of 0.24 cm 3 / g.
  • Example 3 0.19 g of tetraethylorthotitanate and 8.33 g of tetraethylorthosilicate are hydrolyzed in 24.39 g of hydroxide solution
  • Example 4 34.67 g of tetraethylorthosilicate are hydrolyzed in 73.45 g of N (16) -methylparteinium hydroxide solution with a concentration of 1,133 moles / Kg, keeping under stirring and allowing all the ethanol formed in the hydrolysis to evaporate. Subsequently, 3.55 g of an acid solution is added fluorhydric (46.9% HF by weight) and evaporation is continued until the reaction mixture reaches a final composition: Si0 2 : 0.50 ROH: 0.50 HF: 3 H 2 0 where ROH is N (16) -methylparteinium hydroxide. After 2 days of crystallization at 175 ° C under stirring in steel autoclaves with an internal Teflon sheath, pure SIL-MAS-1 is obtained. The X-ray diffraction pattern of the solid obtained is shown in Figure 6.
  • Example 5 In 18.80 g of 1,8-bisquinuclidiniooctane hydroxide solution with a concentration of 0.81 moles of OH / Kg, 6.34 g of tetraethylorthosilicate and 0.12 g of aluminum isopropoxide are hydrolyzed. The solution obtained is kept under stirring, allowing ethanol and isopropanol formed in the hydrolysis to evaporate.
  • the material is calcined at 580 ° C for 3 hours in air flow to remove organic matter and occluded fluoride ions. inside.
  • the solid called MAS-2 has a specific surface area of 388 m 2 / g and a micropore volume 0.14 cm 3 / g.
  • the pore diameter is 6.0 A, and the pore distribution measured by adsorption of Ar following the Hovartz-Kavazoe formalism is presented in Figure 9.
  • Example 6 In 18.84 g of hydroxide solution of 8-bisquinuclidiniooctane with a concentration of 1.06 mol OH / Kg, 8.32 g of tetraethylorthosilicate and 0.16 g of aluminum isopropoxide are hydrolyzed. The solution obtained is kept under stirring, allowing ethanol and isopropanol formed in the hydrolysis to evaporate.
  • Example 7 1.27 grams of aluminum isopropoxide and 12.93 grams of tetraethylorthosilicate are hydrolyzed in 70.04 grams of 1,4-biscyclohexylpyrrolidiniumbutane hydroxide solution with a concentration of 0.47 moles OH / Kg. The solution obtained is kept under stirring, allowing all the alcohol formed in the hydrolysis and the remaining water to evaporate.
  • the material is calcined at 580 ° C for 3 hours in air flow to remove organic matter and occluded fluoride ions. inside.
  • the solid called MAS-1 has a specific surface area of 418 m 2 / g and a micropore volume of 0.15 cm 3 / g.
  • the pore diameter is 6.2 A and the pore distribution measured by adsorption of Ar following the Hovartz-Kavazoe formalism is presented in Figure 13.
  • Example 8 In 38.75 g of 1,4-biscyclohexyl pyrrolidiniobutane hydroxide solution with a concentration 0.28 mol OH / Kg 8.65 g of tetraethylorthosilicate and 0.34 g of aluminum isopropoxide are hydrolyzed. The solution obtained is kept under stirring, allowing ethanol and isopropanol formed in the hydrolysis to evaporate.
  • Example 9 In 39.01 g of hexamethonium hydroxide solution with a concentration of 0.84 mol OH / Kg 0.24 g of GeÜ2 are dissolved. In the solution obtained, 11.84 g of tetraethylorthosilicate are hydrolyzed, and it is kept under stirring, allowing the ethanol formed to evaporate. Subsequently, 1.37 g of a solution of hydrofluoric acid (48.1% HF by weight) is added and evaporated until the mixture reaches the composition: 0.96 Si0 2 : 0.04 Ge0 2 : 0.28 R (OH) 2 : 0.56 HF: 7 H 2 0 where R (OH) 2 is hexamethonium hydroxide.
  • hydrofluoric acid 48.1% HF by weight
  • the gel is heated for 5 days in steel autoclaves with an internal Teflon sheath at 135 ° C while stirring.
  • the solid obtained after filtering, washing with distilled water and drying at 100 ° C is MAS-4.
  • the X-ray diffraction pattern of the solid obtained is shown in Figure 15 and the IR spectrum in Figure 16.
  • the material is calcined at 580 ° C for 3 hours in air flow to remove organic matter and occluded fluoride ions. inside.
  • the solid called MAS-4 has a specific surface area of 348 m 2 / g and a micropore volume of 0.13 cm 3 / g.
  • the pore diameter is 5.5 A and the pore distribution measured by adsorption of Ar following the Hovartz-Kavazoe formalism is presented in Figure 17.
  • Example 10 19.9 g of tetraethylorthosilicate are added over 14.39 g of an aqueous solution of tetraethylammonium hydroxide (TEAOH) 40% by weight and 3 g of water and the mixture is stirred. A solution containing 0.32 g of metallic aluminum (99.95%) previously dissolved in 9 g of TEAOH (40%) is then added. The mixture is left evaporating under stirring until complete elimination of the ethanol from the hydrolysis of the TEOS plus the amount of water necessary until reaching the final composition indicated. Finally, 2.15 g of an aqueous solution of hydrofluoric acid (48% HF by weight) are added.
  • TEAOH tetraethylammonium hydroxide
  • the gel composition is: Si0 2 : 0.062 A1 2 0 3 : 0.665 ROH: 0.54 HF: 7 H 2 0. where ROH is tetraethylammonium hydroxide.
  • the mixture obtained is placed in an autoclave provided with an internal polytetrafluoroethylene sheath and heated at 140 ° C for 6 days in an oven equipped with a rotation system. After this time, 27.9 g of solid per 100 g of gel are recovered by filtration, washing with water and subsequent drying at 100 ° C.
  • the solid obtained is MAS-5, and its X-ray diffraction pattern is shown in Figure 18 and the IR spectrum in Figure 19.
  • the material is calcined at 580 ° C for 3 hours in air flow to remove matter. Organic and fluoride ions occluded inside.
  • Example 11 15.00 grams of tetraethylorthosilicate are hydrolyzed in 16.36 grams of 40% by weight tetraethylammonium hydroxide (TEAOH) solution and 3 g of water and the mixture is stirred. The solution obtained is kept under stirring, allowing all the alcohol formed in the hydrolysis and the remaining water to evaporate. Subsequently, 1.56 g of an acid solution is added fluorhydric (50% HF by weight) and continue evaporating until the reaction mixture reaches a final composition: Si0 2 : 0.54 ROH: 0.54 HF: 7 H 2 0 where ROH is tetraethylammonium hydroxide.
  • TEAOH tetraethylammonium hydroxide
  • the gel is heated at 175 ° C under stirring for 4 hours in steel autoclaves with an internal Teflon sheath.
  • the solid obtained after filtering, washing with distilled water and drying at 100 ° C is MAS-5, and its diffractogram is shown in Figure 20.
  • Example 12 This example shows the catalytic activity of a bifunctional catalyst formed by an acidic function (MAS, prepared according to example 2) and a hydrogenating-dehydrogenating function (Pt 1.0% by weight), introduced by impregnation from an aqueous solution of platinum hexachloric acid, for the hydrocracking of n-hexadecane.
  • the reaction was carried out, in a continuous fixed bed reactor, at 270 ° C, 40 bar pressure, with a H 2 / hexadecane molar ratio of 95 and a contact time (/ F) of 0.27 hours.
  • Example 13 This example shows the activity of a bifunctional catalyst formed by an acid function (MAS, prepared according to example 2) and a hydrogenating function (Pt, 1% by weight), introduced by impregnation from an aqueous solution of platinum hexachloric acid, for the hydrocracking of a hydrotreated diesel containing 10.6% by weight of hydrocarbons with a boiling point between 250 ° C and 380 ° C, and 89.4% with a boiling point above 380 ° C, and a content of sulfur of 87 ppm.
  • Example 14 This example shows the catalytic activity for catalytic cracking of a MAS material prepared according to example 2, in which n-decane is used as a reagent.
  • the reaction conditions were: atmospheric pressure, catalyst / feed weight ratio of 0.70, temperature of 500 ° C and reaction time of 60 seconds. Under these conditions the conversion was 33%.
  • Example 15 the catalytic activity for cracking a vacuum diesel oil of the MAS material prepared according to example 2 is shown.
  • the reaction conditions were: atmospheric pressure, catalyst / feed ratio 0.65 by weight, reaction temperature of 500 ° C y, reaction time of 60 seconds.
  • the conversion was 60% by weight, with a gas, gasoline, diesel and coke yield of 19.1, 23.2, 14.0 and 3.7%, respectively, the ratio being Propylene / Propane in 4.9 gases, for a 7% propylene yield.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

La presente invención se refiere a un material amorfo microporoso caracterizado porque tiene una composición química en el estado calcinado y anhidro que puede representarse por la fórmula empírica: x (M1/nXO2) : y YO2 : SiO2 en la que: x posee un valor inferior a 0.2; pudiendo ser igual a cero, y tiene un valor menor de 0.2; pudiendo ser igual a cero, M está seleccionado entre H+, uno o varios cationes inorgánicos de carga +n; y una mezcla de los mismos, X es uno o varios elementos químicos de estado de oxidación +3, e Y es una o más elementos en estado de oxidación +4, que tiene una distribución uniforme de poro y un volumen de microporo mayor o igual de 0.05 cm3.g-1 y que tiene una superficie específica superior a 100 m2.g-1; a su procedimiento de preparación y a su uso.

Description

Titulo
UN MATERIAL AMORFO MICROPOROSO, PROCEDIMIENTO DE PREPARACIÓN Y
SU USO EN LA CONVERSIÓN CATALÍTICA DE COMPUESTOS ORGÁNICOS
Campo de la Técnica
Tamices moleculares microporosos .
Antecedentes Las zeolitas son materiales cristalinos microporosos formados por una red cristalina de tetraedros T04 que comparten todos sus vértices dando lugar a una estructura tridimensional que contiene canales y/o cavidades de dimensiones moleculares. Son de composición variable, y T representa generalmente átomos con estado de oxidación formal +3 o +4, como por ejemplo Si, Ge, Ti, Al, B o Ga, entre otros. La existencia de canales y cavidades de dimensiones regulares en el interior de las zeolitas origina una elevada área especifica. El hecho de que el tamaño de poro sea uniforme y con una distribución estrecha, en estos materiales cristalinos, permite adsorber selectivamente moléculas de distinto tamaño en función de las dimensiones de los canales. Por otro lado, la estructura cristalina de cada zeolita, con un sistema de canales y cavidades especifico, da lugar a un patrón de difracción de rayos X caracteristico . Por tanto, las zeolitas se diferencian entre si por su rango de composición quimica y su patrón de difracción de rayos X. Ambas caracteristicas (estructura cristalina y composición quimica) determinan además las propiedades fisicoquimicas de cada zeolita y su posible aplicación en diferentes procesos industriales . Se han desarrollado materiales micro y mesoporosos amorfos tales como silicatos, silicoaluminatos y silicotitanatos, entre otros, intentando conseguir propiedades de tamiz molecular, es decir, distribuciones de poro muy estrechas. En el caso de los materiales microporosos, cuando existia una distribución estrecha de poros, se ha visto que los materiales no podian considerarse completamente amorfos. De hecho, aunque no poseian orden a larga distancia, de acuerdo con los difractogramas de rayos X, si poseian orden a corta distancia, tal y como ponia de manifiesto la espectroscopia de infrarrojo (IR) , por lo que los autores concluian que su material contenia ya núcleos de un material cristalino, como podia ser una zeolita (Kragten, D. D.; Fedeyko, J. M.; Sawant, K. R.; Rimer, J. D.; Vlachos, D. G.; Lobo, R. F.; Tsapatsis, M. Journal of Physical Chemistry B (2003), 107(37), 10006-10016). En el caso de los materiales mesoporosos, la sintesis de los tamices moleculares mesoporosos no cristalinos desarrollada por Kresge y colaboradores utilizando surfactantes ha abierto un nuevo campo de aplicaciones en adsorción, catálisis y electrónica (Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C; Beck, J. S. Nature (1992), 359(6397) , 710-12) . Cabria pues esperar que el desarrollo de nuevos tamices moleculares microporosos no cristalinos podria abrir nuevas aplicaciones en los campos antes citados cuando se requieran poros menores de 2 nm, e incluso menores de 1 nm. Descripción de la invención La presente invención se refiere a un material amorfo microporoso caracterizado porque tiene una composición quimica en el estado calcinado y anhidro que está representado por la siguiente fórmula empirica: x (M1/nX02) : y Y02 : Si02 en la que: x posee un valor inferior a 0.2; preferentemente inferior a 0.1, pudiendo ser igual a cero, - y tiene un valor menor de 0.2; preferentemente menor de 0.1, pudiendo ser igual a cero, M está seleccionado entre H+, uno o varios cationes inorgánicos de carga +n; y una mezcla de los mismos,
- X es uno o varios elementos quimicos de estado de oxidación +3, e
- Y es uno o más elementos en estado de oxidación +4, que tiene una distribución uniforme de poro y un volumen de microporo mayor o igual de 0.05 cm3.g_1 y que tiene una superficie especifica superior a 100 m2.g_1.
En el material amorfo microporoso, X está seleccionado preferentemente entre Al, Ga, B, Fe, Cr y una mezcla de ellos, e Y está seleccionado preferentemente entre Ti, Ge, Sn, V y una mezcla de ellos.
Según una realización preferida dicho material amorfo microporoso está caracterizado porque tiene una composición quimica en el estado calcinado y anhidro que puede representarse por la siguiente fórmula empirica: x (M1/nX02) : y Y02 : Si02 en la que: - x posee un valor inferior a 0.1, pudiendo ser igual a cero;
- y tiene un valor menor de 0.1, pudiendo ser igual a cero; M está seleccionado entre H+, uno o varios cationes inorgánicos de carga +n; y una mezcla de los mismos, - X es uno o varios elementos quimicos de estado de oxidación +3, e
- Y es uno o varios elementos quimicos con estado de oxidación +4. El elemento, o elementos, trivalente X está seleccionado preferentemente entre Al, Ga, B, Fe, Cr y una mezcla de ellos, Y está seleccionado preferentemente entre Ti, Ge, Sn, V y una mezcla de ellos, y entre los cationes inorgánicos que puede representar M, se pueden citar, por ejemplo uno o más metales alcalinos, alcalino tórreos o mezclas de ellos. Según una realización particular de la presente invención el material amorfo microporoso tiene una composición que corresponde a la fórmula: x (MιnX02) : Si02 en la que: x posee un valor inferior a 0.2, pudiendo ser igual a cero, M está seleccionado entre H+, uno o varios cationes inorgánicos de carga +n; y una mezcla de los mismos, y
- X es uno o varios elementos quimicos de estado de oxidación +3. Según una realización particular de la presente invención el material amorfo microporoso tiene una composición en el estado calcinado y anhidro que corresponde a la fórmula: y Y02 : Si02 en la que: y tiene un valor menor de 0.2, preferentemente menor de 0.1, pudiendo ser igual a cero; e
- Y es uno o varios elementos quimicos con estado de oxidación +4 preferentemente Ti, Ge, Sn, V o una mezcla de ellos. Según una realización particular de la presente invención el material amorfo microporoso tiene una composición en el estado calcinado y anhidro que corresponde a la fórmula x (HX02) : Si02 en la que: - x posee un valor inferior a 0.2, preferentemente inferior a 0.1, pudiendo ser igual a cero, y
- X es uno o varios elementos quimicos de estado de oxidación +3, preferentemente Al, Ga, B, Fe, Cr o una mezcla de ellos. Según una realización particular de la presente invención el material amorfo microporoso tiene una composición en el estado calcinado y anhidro que corresponde a la fórmula Si02. El material no cristalino microporoso de la presente invención, que denominaremos genéricamente MAS, tiene una distribución de poro estrecha y uniforme en el rango del microporo.
Dicho material no cristalino microporoso se caracteriza porque su patrón de difracción de rayos X no presenta picos de difracción, y su espectro de IR no muestra bandas desarrolladas en la zona entre 400 y 600 cm_1, bandas que son caracteristicas de silicatos cristalinos, como por ejemplo las zeolitas .
La presente invención se refiere también a un método para sintetizar un material amorfo microporoso definido anteriormente, que comprende al menos: preparar una mezcla de reacción que comprende al menos : - una fuente de Si02, - uno o más compuestos orgánicos, y - agua, - someter dicha mezcla a calentamiento con o sin agitación a temperatura comprendida entre 80 y 200°C, preferentemente entre 100 y 200°C, hasta conseguir formación del material amorfo, y en el que la mezcla de reacción tiene una composición, en términos de relaciones molares de óxidos, comprendida entre los intervalos :
- ROH/Si02 = 0.01-3.0, preferiblemente 0.1-1.0,
- H2O/SÍO2 = 1-100, preferiblemente 1-50, donde R es una o más compuestos orgánicos . Opcionalmente la mezcla de reacción puede contener una fuente de iones fluoruro, en cuyo caso como fuente de iones fluoruro se puede usar, por ejemplo, ácido fluorhidrico o fluoruro amónico . Según una realización particular, el método para sintetizar el material amorfo microporoso comprende: - preparar una mezcla de reacción que comprende al menos: - una fuente de SÍO2, - una fuente de uno o varios elementos tetravalentes Y, - uno o más compuestos orgánicos, - agua, - someter dicha mezcla a calentamiento con o sin agitación a temperatura comprendida entre 80 y 200°C, preferentemente entre 100 y 200°C, hasta conseguir formación del material amorfo, y en el que la mezcla de reacción tiene una composición, en términos de relaciones molares de óxidos, comprendida entre los intervalos :
- R0H/Si02 = 0.01-3.0, preferiblemente 0.1-1.0
- H20/Si02 = 1-100, preferiblemente 1-50, e
Figure imgf000008_0001
donde Y es uno o más elementos en estado de oxidación +4, preferentemente Ti, Ge, Sn, V o una mezcla de ellos, y R es uno o más compuestos orgánicos. La adición de este, o estos elementos Y, puede realizarse anteriormente al calentamiento de la mezcla de reacción o en un tiempo intermedio durante dicho calentamiento. Opcionalmente la mezcla de reacción puede contener una fuente de iones fluoruro.
Según una realización particular adicional el método para sintetizar el material amorfo microporoso comprende: - preparar una mezcla de reacción que comprende al menos: - una fuente de SÍO2, - una fuente de uno o varios elementos trivalentes X - uno o más compuestos orgánicos, y - agua, - someter dicha mezcla a calentamiento con o sin agitación a temperatura comprendida entre 80 y 200°C, preferentemente entre 100 y 200°C, hasta conseguir formación del material amorfo, y en el que la mezcla de reacción tiene una composición, en términos de relaciones molares de óxidos, comprendida entre los intervalos :
- ROH/SÍO2 = 0.01-3.0, preferiblemente 0.1-1.0
- H2O/SÍO2 = 1-100, preferiblemente 1-50 y
- X2O3/SÍO2 = 0.001-0.1, donde X es uno o más elementos en estado de oxidación +3, preferentemente seleccionados entre Al, Ga, B, Fe, Cr y una mezcla de ellos, y R es uno o más compuestos orgánicos. La adición de este o estos elementos trivalentes puede realizarse anteriormente al calentamiento de la mezcla de reacción o en un tiempo intermedio durante dicho calentamiento. Opcionalmente la mezcla de reacción puede contener una fuente de iones fluoruro. En este caso, de manera preferida la proporción de iones fluoruro en la mezcla es HF/SÍO2 = 0.05- 3.0. Según una realización particular adicional el método para sintetizar dicho material amorfo microporoso comprende: - preparar una mezcla de reacción que comprende al menos: - una fuente de SÍO2, - una fuente de uno o varios elementos trivalentes X, - uno o más elementos M de carga +n, - uno o más compuestos orgánicos, y - agua, - someter dicha mezcla a calentamiento con o sin agitación a temperatura comprendida entre 80 y 200°C, preferentemente entre 100 y 200°C, hasta conseguir formación del material amorfo, y en el que la mezcla de reacción tiene una composición, en términos de relaciones molares de óxidos, comprendida entre los intervalos
- ROH/SÍO2 = 0.01-3.0, preferiblemente 0.1-1.0,
Figure imgf000009_0001
- X2O3/SÍO2 = 0.001-0.1, donde X es uno o más elementos en estado de oxidación +3, M está seleccionado entre H+, uno o varios cationes inorgánicos de carga +n y mezclas de ellos; y R es uno o más compuestos orgánicos . La adición de este o estos elementos trivalentes X, puede realizarse anteriormente al calentamiento de la mezcla de reacción o en un tiempo intermedio durante dicho calentamiento .
Opcionalmente la mezcla de reacción puede contener una fuente de iones fluoruro. En este caso, de manera preferida la proporción de iones fluoruro en la mezcla es Mι/nF/Siθ2 = 0.05- 3.0.
Según una realización particular adicional el método para sintetizar dicho material amorfo microporoso comprende: - preparar una mezcla de reacción que comprende al menos: - una fuente de SÍO2, - una fuente de uno o varios elementos trivalentes X, - una fuente de uno o varios elementos tetravalentes Y, - uno o más elementos M de carga +n, - uno o más compuestos orgánicos, y - agua, - someter dicha mezcla a calentamiento con o sin agitación a temperatura comprendida entre 80 y 200°C, preferentemente entre 100 y 200°C, hasta conseguir formación del material amorfo, y en el que la mezcla de reacción tiene una composición, en términos de relaciones molares de óxidos, comprendida entre los intervalos :
- ROH/SÍO2 = 0.01-3.0, preferiblemente 0.1-1,
- H2O/SÍO2 = 1-100, preferiblemente 1-50, - X2O3/SÍO2 = 0.001-0.1, e
Figure imgf000010_0001
donde X es uno o más elementos en estado de oxidación +3, Y es uno o más elementos en estado de oxidación +4, M está seleccionado entre H+, uno o varios cationes inorgánicos de carga +n, y una mezcla de los mismos, y R es uno o más compuestos orgánicos . La adición de este o estos elementos tri- y/o tetravalentes, X e Y, puede realizarse anteriormente al calentamiento de la mezcla de reacción o en un tiempo intermedio durante dicho calentamiento.
Opcionalmente la mezcla de reacción puede contener una fuente de iones fluoruro. En este caso, de manera preferida la proporción de iones fluoruro en la mezcla es Mι/nF/Siθ2 = 0.05- 3.0.
Según una realización particular preferida, la mezcla de reacción tiene una composición, en términos de relaciones molares de óxidos, comprendida entre los intervalos:
ROH/Si02 = 0.1-1.0
M1/nF/Si02 = 0 -1 . 0
Figure imgf000011_0001
donde X es uno o varios elementos trivalentes seleccionado entre Al, B, Ga, Fe y Cr, e Y es uno o varios elementos tetravalentes seleccionado entre Ti, Ge, Sn y V. En el método de la presente invención, entre las fuentes de SÍO2 se pueden citar, por ejemplo, tetraetilortosilicato, silice coloidal y silice amorfa. Entre los elementos en estado de oxidación +3 se puede usar el Al, pudiendo usar como fuente de aluminio, por ejemplo, alcóxidos de aluminio, óxidos de aluminio o sales de aluminio, En cualquiera de las realizaciones del método de preparación del material amorfo descrito anteriormente el compuesto orgánico R está preferentemente en forma de hidróxido. Alternativamente, es posible utilizar el catión orgánico en forma de sal (por ejemplo, un haluro, preferiblemente cloruro, bromuro o ioduro) . Según una realización preferida del método de sintesis, el compuesto orgánico comprende uno o varios grupos amino . Dicho compuesto orgánico puede también comprender uno o varios grupos amonio. Según una realización preferida del método de sintesis, el compuesto orgánico está seleccionado entre N(16)- metilesparteinio, hidróxido de 1^4- bisciclohexilpirrolidiniobutano, hidróxido de 1^8- bisquinuclidiniooctano, hidróxido de 1^4- bisciclohexilpirrolidiniobutano, hidróxido de hexametonio e hidróxido de tetraetilamonio . El tratamiento térmico de la mezcla de reacción puede realizarse en estático o con agitación de la mezcla. Una vez finalizada la preparación del material amorfo microporoso, se separa el producto sólido y se seca. La calcinación posterior a temperaturas entre 400 y 700°C, preferiblemente entre 450 y 600°C, muestra que los materiales son térmicamente estables, y se produce la descomposición de los restos orgánicos ocluidos y la salida de éstos, dejando libres los poros.
De manera general, la mezcla de reacción tiene una composición que responde a la fórmula empirica a ROH : b M1 nF : x X203 : y Y02 : Si02 : w H20 donde X es uno o más elementos en estado de oxidación +3, Y es uno o más elementos en estado de oxidación +4, M está seleccionado entre H+, uno o varios cationes inorgánicos de carga +n, y una mezcla de los mismos, y R es uno o más compuestos orgánicos, y los valores de a, b, x, y, y w están en los rangos a = ROH/Si02 = 0.01-3.0, preferiblemente 0.1-1.0 b = M1/nF/Si02 = 0-3.0, preferiblemente 0.1-1.0 x = X2O3/SÍO2 = 0-0.01, preferiblemente 0-0.05 y = YO2/SÍO2 = 0-0.2, preferiblemente 0-0.1, w= H2O/SÍO2 = 1-100, preferiblemente 1-50, más preferiblemente 1-20.
La presente invención se refiere también a un método de uso del material amorfo microporoso definido anteriormente como catalizador en un proceso de conversión de compuestos orgánicos que comprende poner en contacto una alimentación con una cantidad de dicho catalizador. Dicho proceso puede ser un proceso de craqueo catalitico de compuestos orgánicos, preferentemente hidrocarburos. Según realizaciones preferidas el proceso está seleccionado entre un proceso de hidrocraqueo, hidrocraqueo suave de hidrocarburos, hidrocraqueo suave de hidrocarburos funcionalizados, hidrocraqueo suave de hidrocarburos e hidrocarburos funcionalizados, hidroisomerización de olefinas, un proceso de isomerización de parafinas ligeras, desparafinado, isodesparafinado y un proceso de alquilación. En el caso de un proceso de alquilación, dicha alquilación puede estar seleccionada entre alquilación de isoparafinas con olefinas, alquilación de olefinas con isoparafinas, alquilación de aromáticos con olefinas o alcoholes, alquilación de aromáticos sustituidos con olefinas o alcoholes, alquilación de compuestos tiofénicos con olefinas o alcoholes, alquilación de compuestos alquiltiofénicos con olefinas o alcoholes y alquilación de compuestos alquilbenzotiofenicos con olefinas o alcoholes . De manera especialmente preferida, dicha alquilación es la alquilación de benceno con propileno. Según realizaciones alternativas del método de uso del material amorfo, microporoso, éste puede actuar como catalizador en un proceso que es una reacción de acilación de compuestos aromáticos sustituidos utilizando ácidos, cloruros de ácido o anhidridos de ácidos orgánicos como agentes acilantes . Según una realización alternativa adicional el proceso es una oxidación selectiva de compuestos orgánicos usando un oxidante seleccionado entre H2O2, peróxidos orgánicos e hidroperóxidos orgánicos . Según una realización alternativa adicional el proceso está seleccionado entre una reacción de oxidación de tipo Meerwein- Pondorf-Verley y una reacción de oxidación de tipo Baeyer- Villiger . En el caso de contener Ti, dicho material amorfo microporoso se puede usar como catalizador en un proceso de epoxidación de olefinas, oxidación de alcanos, oxidación de alcoholes y oxidación de compuestos orgánicos que contengan azufre y que puedan producir sulfóxidos y sulfonas, utilizando hidroperóxido orgánicos o inorgánicos, como por ejemplo H2O2, tertbutilhidroperóxido, hidroperóxido de eumeno u oxigeno molecular como agentes oxidantes y en amoximación de cetonas, y más especificamente de ciclohexanona a ciclohexanona oxima con NH3 y H202, o NH3 y 02. En el caso de contener Sn el material amorfo microporoso de la presente invención se puede usar como catalizador en una oxidación de tipo Baeyer-Villiger utilizando H2O2 como agente oxidante . BREVE DESCRIPCIÓN DE LAS FIGURAS La figura 1 muestra el diagrama de difracción de rayos X de una muestra del material amorfo microporoso de la invención, preparado según el ejemplo 1, usando N(16)- metilesparteinio, y antes de calcinar. La figura 2 muestra el espectro IR de una muestra del material amorfo microporoso de la invención, denominado MAS-1, preparado según el ejemplo 1, usando N (16) -metilesparteinio y antes de calcinar. La figura 3 muestra la distribución de poro de una muestra del material amorfo microporoso de la invención, preparado según el ejemplo 1, usando N (16) -metilesparteinio, y calcinado . La figura 4 muestra el diagrama de difracción de rayos X de una muestra del material amorfo microporoso de la invención, preparado según el ejemplo 2, usando N(16)- metilesparteinio, y antes de calcinar. La figura 5 muestra el diagrama de difracción de rayos X de una muestra del material amorfo microporoso de la invención conteniendo Ti, y preparado según el ejemplo 3, usando N(16)- metilesparteinio, y sin calcinar. La figura 6 muestra el diagrama de difracción de rayos X de una muestra del material amorfo microporoso de la invención MAS-1 pura silice, y preparada según el ejemplo 4, usando N (16) -metilesparteinio, y sin calcinar. La figura 7 muestra el diagrama de difracción de rayos X de una muestra del material amorfo microporoso de la invención preparado según el ejemplo 5, denominado MAS-2, usando hidróxido de 1, 8-bisquinuclidiniooctano, y sin calcinar. La figura 8 muestra el espectro IR de una muestra del material amorfo microporoso de la invención preparado según el ejemplo 5, usando hidróxido de 1, 8-bisquinuclidiniooctano, y sin calcinar. La figura 9 muestra la distribución de poro de una muestra del material amorfo microporoso de la invención, preparado según el ejemplo 5, usando hidróxido de 1,8- bisquinuclidiniooctano, y calcinado. La figura 10 muestra el diagrama de difracción de rayos X de una muestra del material amorfo microporoso de la invención preparado según el ejemplo 6, usando hidróxido del, 8- bisquinuclidiniooctano, y sin calcinar. La figura 11 muestra el diagrama de difracción de rayos X de una muestra del material amorfo microporoso de la invención preparado según el ejemplo 7, denominado MAS-3, usando hidróxido de 1, 4-bisciclohexilpirrolidiniobutano, y sin calcinar. La figura 12 muestra el espectro IR de una muestra del material amorfo microporoso de la invención preparado según el ejemplo 7, usando hidróxido de 1^4- bisciclohexilpirrolidiniobutano y sin calcinar. La figura 13 muestra la distribución de poro de una muestra del material amorfo microporoso de la invención, preparado según el ejemplo 7, usando hidróxido de 1,4- bisciclohexilpirrolidiniobutano, y calcinado. La figura 14 muestra el diagrama de difracción de rayos X de una muestra del material amorfo microporoso de la invención preparado según el ejemplo 8, usando hidróxido de 1,4- bisciclohexilpirrolidiniobutano, y sin calcinar. La figura 15 muestra el diagrama de difracción de rayos X de una muestra del material amorfo microporoso de la invención preparado según el ejemplo 9, denominado MAS-4, usando hidróxido de hexametonio, y sin calcinar. La figura 16 muestra el espectro IR de una muestra del material amorfo microporoso de la invención preparado según el ejemplo 9, usando hidróxido de hexametonio, y sin calcinar. La figura 17 muestra la distribución de poro de una muestra del material amorfo microporoso de la invención, preparado según el ejemplo 9, usando hidróxido de hexametonio, y calcinado. La figura 18 muestra el diagrama de difracción de rayos X de una muestra del material amorfo microporoso de la invención preparado según el ejemplo 10, denominado MAS-5, usando hidróxido de tetraetilamonio, y sin calcinar. La figura 19 muestra el espectro IR de una muestra del material amorfo microporoso de la invención preparado según el ejemplo 10 , usando hidróxido de tetraetilamonio, y sin calcinar. La figura 20 muestra el diagrama de difracción de rayos X de una muestra del material amorfo microporoso de la invención preparado según el ejemplo 11, usando hidróxido de tetraetilamonio, y sin calcinar.
EJEMPLOS Ejemplo 1 Se hidrolizan 0.272 gramos de isopropóxido de aluminio y 4.167 gramos de tetraetilortosilicato en 11.00 gramos de disolución de hidróxido de N (16) -metilesparteinio con una concentración de 0.91 moles/Kg. La disolución obtenida se mantiene en agitación dejando evaporar todo el alcohol formado en la hidrólisis y el agua sobrante. Posteriormente, se añade 0.416 g de una disolución de ácido fluorhidrico (48.1 % de HF en peso) y se sigue evaporando hasta que la mezcla de reacción alcanza una composición final: Si02 : 0.033 A1203 : 0.50 ROH : 0.50 HF : 2 H20 donde ROH es hidróxido de N (16) -metilesparteinio . El gel se calienta a 175°C en estático durante 16 horas en autoclaves de acero con una funda interna de teflón. El sólido obtenido tras filtrar, lavar con agua destilada y secar a 100 °C es MAS1. El patrón de difracción de rayos X del sólido obtenido, medido por el método de polvo utilizando una rendija de divergencia fija y empleando la radiación Kα del Cu, se muestra en la figura 1 y el espectro IR en la figura 2. El material se calcina a 580°C durante 3 horas en flujo de aire para eliminar la materia orgánica y los iones fluoruro ocluidos en su interior. El sólido denominado MAS-1 presenta un superficie especifica de 738 m2/g y un volumen de microporo de 0.28 cm3/g. El diámetro de poro es de 7.5 A, y la distribución de poro medida por adsorción de Ar siguiendo el formalismo de Hovartz-Kavazoe se presenta en la figura 3.
Ejemplo 2 En 132.98 g de disolución de hidróxido de N(16)- metilesparteinio con una concentración de 0.94 moles/Kg se hidrolizan 52.08 g de tetraetilortosilicato y 2.04 g de isopropóxido de aluminio. La disolución obtenida se mantiene en agitación dejando evaporar el etanol y el isopropanol formados en la hidrólisis. Posteriormente, se añade 5.20 g de una disolución de ácido fluorhidrico (48.1 % de HF en peso) y se sigue evaporando hasta que la mezcla alcanza la composición: Si02 : 0.02 AI2O3 : 0.50 ROH : 0.50 HF : 2 H20 donde ROH es hidróxido de N (16) -metilesparteinio . El gel se calienta durante 16 horas en autoclaves de acero con una funda interna de teflón a 175°C en estático. El sólido obtenido tras filtrar, lavar con agua destilada y secar a 100 °C es MAS-1. El patrón de difracción de rayos X del sólido obtenido se muestra en la figura 4. El sólido denominado MAS-1, tras calcinar a 580 °C en flujo de aire durante 3 horas presenta un superficie especifica de 643 m2/g y un volumen de microporo de 0.24 cm3/g.
Ejemplo 3 Se hidrolizan 0.19 g de tetraetilortotitanato y 8.33 g de tetraetilortosilicato en 24.39 g de disolución de hidróxido de
N (16) -metilesparteinio con una concentración de 0.86 moles/Kg.
En la disolución obtenida se deja evaporar todo el alcohol formado en la hidrólisis y parte del agua sobrante.
Posteriormente, se añade 0.80 g de una disolución de ácido fluorhidrico (50 % de HF en peso) . La composición final del gel de sintesis es: Si02 : 0.02 Ti02 : 0.50 ROH : 0.50 HF : 2 H20 donde ROH es hidróxido de N (16) -metilesparteinio . El gel se calienta a 175°C en estático durante 3 dias en autoclaves de acero con una funda interna de teflón. El sólido obtenido tras filtrar, lavar con agua destilada y secar a
100 °C es Ti-MAS-1. El patrón de difracción de rayos X del sólido obtenido se muestra en la figura 5.
Ejemplo 4 Se hidrolizan 34.67 g de tetraetilortosilicato en 73.45 g de disolución de hidróxido de N (16) -metilesparteinio con una concentración de 1.133 moles/Kg, manteniendo en agitación y dejando evaporar todo el etanol formado en la hidrólisis. Posteriormente, se añade 3.55 g de una disolución de ácido fluorhidrico (46.9 % de HF en peso) y se continúa evaporando hasta que la mezcla de reacción alcanza una composición final: Si02 : 0.50 ROH : 0.50 HF : 3 H20 donde ROH es hidróxido de N (16) -metilesparteinio . Tras 2 dias de cristalización a 175°C en agitación en autoclaves de acero con una funda interna de teflón, se obtiene MAS-1 pura silice. El patrón de difracción de rayos X del sólido obtenido se muestra en la figura 6.
Ejemplo 5 En 18.80 g de disolución de hidróxido de 1,8- bisquinuclidiniooctano con una concentración de 0.81 moles de OH/Kg se hidrolizan 6.34 g de tetraetilortosilicato y 0.12 g de isopropóxido de aluminio. La disolución obtenida se mantiene en agitación dejando evaporar el etanol y el isopropanol formados en la hidrólisis. Posteriormente, se añade 0.61 g de una disolución de ácido fluorhidrico (49.8 % de HF en peso) y se sigue evaporando hasta que la mezcla alcanza la composición: Si02 : 0.01 A1203 : 0.25 R(OH)2 : 0.50 HF : 15 H20 donde R(OH)2 es hidróxido de 1, 8-bisquinuclidiniooctano . El gel se calienta durante 7 dias en autoclaves de acero con una funda interna de teflón a 175°C en agitación. El sólido obtenido tras filtrar, lavar con agua destilada y secar a 100°C es MAS-2. El patrón de difracción de rayos X del sólido obtenido se muestra en la figura 7 y el espectro IR en la figura 8. El material se calcina a 580°C durante 3 horas en flujo de aire para eliminar la materia orgánica y los iones fluoruro ocluidos en su interior. El sólido denominado MAS-2 presenta un superficie especifica de 388 m2/g y un volumen de microporo de 0.14 cm3/g. El diámetro de poro es de 6.0 A, y la distribución de poro medida por adsorción de Ar siguiendo el formalismo de Hovartz-Kavazoe se presenta en la figura 9.
Ejemplo 6 En 18.84 g de disolución de hidróxido del, 8- bisquinuclidiniooctano con una concentración de 1.06 moles OH/Kg se hidrolizan 8.32 g de tetraetilortosilicato y 0.16 g de isopropóxido de aluminio. La disolución obtenida se mantiene en agitación dejando evaporar el etanol y el isopropanol formados en la hidrólisis. Posteriormente, se añade 0.85 g de una disolución de ácido fluorhidrico (46.9 % de HF en peso) y se sigue evaporando hasta que la mezcla alcanza la composición: Si02 : 0.01 A1203 : 0.50 R(OH)2 : 0.50 HF : 15 H20 donde R(OH)2 es hidróxido de 1, 8-bisquinuclidiniooctano . El gel se calienta durante 3 dias en autoclaves de acero con una funda interna de teflón a 150 °C en agitación. El sólido obtenido tras filtrar, lavar con agua destilada y secar a 100°C es MAS-2. El patrón de difracción de rayos X del sólido obtenido se muestra en la figura 10.
Ejemplo 7 Se hidrolizan 1.27 gramos de isopropóxido de aluminio y 12.93 gramos de tetraetilortosilicato en 70.04 gramos de disolución de hidróxido de 1, 4-bisciclohexilpirrolidiniobutano con una concentración de 0.47 moles OH/Kg. La disolución obtenida se mantiene en agitación dejando evaporar todo el alcohol formado en la hidrólisis y el agua sobrante. Posteriormente, se añade 1.33 g de una disolución de ácido fluorhidrico (50 % de HF en peso) y se sigue evaporando hasta que la mezcla de reacción alcanza una composición final: Si02 : 0.05 A1203 : 0.27 R(OH)2 : 0.54 HF : 7.25 H20 donde ROH es hidróxido de 1, 4-bisciclohexilpirrolidiniobutano . El gel se calienta a 175°C en agitación durante 5 dias en autoclaves de acero con una funda interna de teflón. El sólido obtenido tras filtrar, lavar con agua destilada y secar a 100 °C es MAS-3. El patrón de difracción de rayos X del sólido obtenido se muestra en la figura 11 y el espectro IR en la figura 12. El material se calcina a 580°C durante 3 horas en flujo de aire para eliminar la materia orgánica y los iones fluoruro ocluidos en su interior. El sólido denominado MAS-1 presenta un superficie especifica de 418 m2/g y un volumen de microporo de 0.15 cm3/g. El diámetro de poro es de 6.2 A y la distribución de poro medida por adsorción de Ar siguiendo el formalismo de Hovartz-Kavazoe se presenta en la figura 13. Ejemplo 8 En 38.75 g de disolución de hidróxido de 1,4- bisciclohexilpirrolidiniobutano con una concentración de 0.28 moles OH/Kg se hidrolizan 8.65 g de tetraetilortosilicato y 0.34 g de isopropóxido de aluminio. La disolución obtenida se mantiene en agitación dejando evaporar el etanol y el isopropanol formados en la hidrólisis. Posteriormente, se añade 0.88 g de una disolución de ácido fluorhidrico (50 % de HF en peso) y se sigue evaporando hasta que la mezcla alcanza la composición: Si02 : 0.02 AI2O3 : 0.27 R(OH)2 : 0.54 HF : 7.25 H20 donde ROH es hidróxido del, 4-bisciclohexilpirrolidiniobutano . El gel se calienta durante 4 dias en autoclaves de acero con una funda interna de teflón a 175°C en agitación. El sólido obtenido tras filtrar, lavar con agua destilada y secar a 100 °C es MAS-3. El patrón de difracción de rayos X del sólido obtenido se muestra en la figura 14.
Ejemplo 9 En 39.01 g de disolución de hidróxido de hexametonio con una concentración de 0.84 moles OH/Kg se disuelven 0.24 g de GeÜ2. En la disolución obtenida se hidrolizan 11.84 g de tetraetilortosilicato, y se mantiene en agitación dejando evaporar el etanol formado. Posteriormente, se añade 1.37 g de una disolución de ácido fluorhidrico (48.1 % de HF en peso) y se sigue evaporando hasta que la mezcla alcanza la composición: 0.96 Si02 : 0.04 Ge02 : 0.28 R(OH)2 : 0.56 HF : 7 H20 donde R(OH)2 es hidróxido de hexametonio. El gel se calienta durante 5 dias en autoclaves de acero con una funda interna de teflón a 135°C en agitación. El sólido obtenido tras filtrar, lavar con agua destilada y secar a 100°C es MAS-4. El patrón de difracción de rayos X del sólido obtenido se muestra en la figura 15 y el espectro IR en la figura 16. El material se calcina a 580°C durante 3 horas en flujo de aire para eliminar la materia orgánica y los iones fluoruro ocluidos en su interior. El sólido denominado MAS-4 presenta una superficie especifica de 348 m2/g y un volumen de microporo de 0.13 cm3/g. El diámetro de poro es de 5.5 A y la distribución de poro medida por adsorción de Ar siguiendo el formalismo de Hovartz-Kavazoe se presenta en la figura 17.
Ejemplo 10 Se añaden 19.9 g de tetraetilortosilicato sobre 14.39 g de una disolución acuosa de hidróxido de tetraetilamonio (TEAOH) al 40% en peso y 3 g de agua y se agita la mezcla. A continuación se adiciona una solución que contiene 0.32 g de aluminio metálico (99.95%) previamente disuelto en 9 g de TEAOH (40%) . Se deja la mezcla evaporando en agitación hasta completa eliminación del etanol procedente de la hidrólisis del TEOS más la cantidad de agua necesaria hasta alcanzar la composición final que se indica. Finalmente, se añaden 2.15 g de una disolución acuosa de ácido fluorhidrico (48 % de HF en peso) . La composición del gel es: Si02 : 0.062 A1203 : 0.665 ROH : 0.54 HF : 7 H20. donde ROH es hidróxido de tetraetilamonio. La mezcla obtenida se introduce en un autoclave provisto de una funda interna de politetrafluoretileno y se calienta a 140° C durante 6 dias en una estufa provista de un sistema de rotación. Transcurrido este tiempo se recuperan, mediante filtración, lavado con agua y posterior secado a 100°C, 27.9 g de sólido por 100 g de gel. El sólido obtenido es MAS-5, y su patrón de difracción de rayos X se muestra en la figura 18 y el espectro IR en la figura 19. El material se calcina a 580°C durante 3 horas en flujo de aire para eliminar la materia orgánica y los iones fluoruro ocluidos en su interior.
Ejemplo 11 Se hidrolizan 15.00 gramos de tetraetilortosilicato en 16.36 gramos de disolución de hidróxido de tetraetilamonio (TEAOH) al 40% en peso y 3 g de agua y se agita la mezcla. La disolución obtenida se mantiene en agitación dejando evaporar todo el alcohol formado en la hidrólisis y el agua sobrante. Posteriormente, se añade 1.56 g de una disolución de ácido fluorhidrico (50 % de HF en peso) y se sigue evaporando hasta que la mezcla de reacción alcanza una composición final: Si02 : 0.54 ROH : 0.54 HF : 7 H20 donde ROH es hidróxido de tetraetilamonio. El gel se calienta a 175°C en agitación durante 4 horas en autoclaves de acero con una funda interna de teflón. El sólido obtenido tras filtrar, lavar con agua destilada y secar a 100 °C es MAS-5, y su difractograma se muestra en la figura 20.
Ejemplo 12 En este ejemplo se muestra la actividad catalitica de un catalizador bifuncional formado por una función acida (MAS, preparado según ejemplo 2) y una función hidrogenante- deshidrogenante (Pt 1.0% en peso), introducido por impregnación a partir de una solución acuosa de ácido hexacloro platinico, para el hidrocraqueo de n-hexadecano. La reacción se llevó a cabo, en un reactor continuo de lecho fijo, a 270°C, 40 bares de presión, con una relación molar H2/hexadecano de 95 y un tiempo de contacto ( /F) de 0.27 horas. En estas condiciones la conversión de n-hexadecano fue de 84.6% con una selectividad a isómeros Cι6 del 2.3% y una selectividad a productos de hidrocraqueo del 97.7%. Entre los productos de hidrocraqueo no se detectaron productos con uno o dos átomos de carbono. El rendimiento a productos C5-C7 fue del 35.8"3.
Ejemplo 13 En este ejemplo se muestra la actividad de un catalizador bifuncional formado por una función acida (MAS, preparado según ejemplo 2) y una función hidrogenante (Pt, 1% en peso), introducido por impregnación a partir de una solución acuosa de ácido hexacloro platinico, para el hidrocraqueo de un gasoil hidrotratado conteniendo 10.6% en peso de hidrocarburos con un punto de ebullición entre 250°C y 380°C, y 89.4% con punto de ebullición por encima de 380 °C, y un contenido de azufre de 87 ppm. Las condiciones de reacción fueron: 370°C, 0.2 horas tiempo de contacto ( /F) , 50 bares de presión y relación en volumen en condiciones normales de H2/gasoil = 988. Después de ocho horas en estas condiciones de reacción, la conversión (380°C) fue de 56.4% con rendimientos a gases del 0.7%, a nafta (65°-150°C) del 12.5%, a keroseno (150°-250°C) del 20.1%, y a destilados medios (250°-380°C) del 23.0%.
Ejemplo 14 En este ejemplo se muestra la actividad catalitica para craqueo catalitico de un material MAS preparado según ejemplo 2, en el que se utiliza n-decano como reactivo. Las condiciones de reacción fueron: presión atmosférica, relación en peso catalizador/alimentación de 0.70, temperatura de 500°C y tiempo de reacción de 60 segundos. En estas condiciones la conversión fue del 33%.
Ejemplo 15 En este ejemplo se muestra la actividad catalitica para el craqueo de un gasoil de vacio, del material MAS preparado según ejemplo 2. Las condiciones de reacción fueron: presión atmosférica, relación catalizador/alimentación 0.65 en peso, temperatura de reacción de 500 °C y, tiempo de reacción de 60 segundos. La conversión fue del 60% en peso, con un rendimiento a gases, gasolina, diesel y coque del 19.1, 23.2, 14.0 y 3.7%, respectivamente, siendo la relación propileno/propano en los gases del 4.9, para un rendimiento en propileno del 7%.

Claims

REIVINDICACIONES 1. Un material amorfo microporoso caracterizado porque tiene una composición quimica en el estado calcinado y anhidro que puede representarse por la fórmula empirica: x (M1/nX02) : y Y02 : Si02 en la que: x posee un valor inferior a 0.2; pudiendo ser igual a cero,
- y tiene un valor menor de 0.2; pudiendo ser igual a cero, M está seleccionado entre H+, uno o varios cationes inorgánicos de carga +n, y una mezcla de los mismos,
- X es uno o varios elementos quimicos de estado de oxidación +3, e
- Y es uno o más elementos en estado de oxidación +4, que tiene una distribución uniforme de poro y un volumen de microporo mayor o igual de 0.05 cm3.g_1 y que tiene una superficie especifica superior a 100 m2.g_1.
2. Un material amorfo microporoso, según la reivindicación 1, caracterizado porque tiene una composición quimica en el estado calcinado y anhidro que puede representarse por la fórmula empirica: x (M1/nX02) : y Y02 : Si02 en la que:
- x posee un valor inferior a 0.1, pudiendo ser igual a cero; - y tiene un valor menor de 0.1, pudiendo ser igual a cero; M está seleccionado entre H+, uno o varios cationes inorgánicos de carga +n; y una mezcla de los mismos,
- X es uno o varios elementos quimicos de estado de oxidación +3, e - Y es uno o varios elementos quimicos con estado de oxidación +4.
3. Un material amorfo microporoso según la reivindicación 1 ó 2, caracterizado porque X está seleccionado entre Al, Ga, B, Fe, Cr y una mezcla de ellos.
4. Un material amorfo microporoso según la reivindicación 1 ó 2, caracterizado porque Y está seleccionado entre Ti, Ge, Sn, V y una mezcla de ellos.
5. Un material amorfo microporoso según una de las reivindicaciones 1, 2 ó 3, caracterizado porque su composición corresponde a la fórmula: x (MιnX02) : Si02 en la que: x posee un valor inferior a 0.2, pudiendo ser igual a cero, - M está seleccionado entre H+, uno o varios cationes inorgánicos de carga +n; y una mezcla de los mismos, y
- X es uno o varios elementos quimicos de estado de oxidación +3.
6. Un material amorfo microporoso según una de las reivindicaciones 1, 2 ó 3, caracterizado porque su composición en el estado calcinado y anhidro puede representarse por la fórmula empirica y Y02 : Si02 en la que :
- y tiene un valor menor de 0.2, pudiendo ser igual a cero; e
- Y es uno o varios elementos quimicos con estado de oxidación +4.
7. Un material amorfo microporoso según una de las reivindicaciones 1, 2 ó 3, caracterizado porque su composición quimica en el estado calcinado y anhidro se representar por la fórmula empirica x (HX02) : Si02 en la que: - x posee un valor inferior a 0.2, pudiendo ser igual a cero,
Y
- X es uno o varios elementos quimicos de estado de oxidación +3.
8. Un material amorfo microporoso según una de las reivindicaciones 1, 2 ó 3, caracterizado porque su composición quimica en el estado calcinado y anhidro se representa por la fórmula empirica SÍO2.
9. Un método para sintetizar un material amorfo microporoso definido en una de las reivindicaciones 1 a 8, caracterizado porque comprende : - preparar una mezcla de reacción que comprende al menos: - una fuente de SÍO2, - uno o más compuestos orgánicos, y - agua, - someter dicha mezcla a calentamiento con o sin agitación a temperatura comprendida entre 80 y 200°C, hasta conseguir formación del material amorfo, y en el que la mezcla de reacción tiene una composición, en términos de relaciones molares de óxidos, comprendida entre los intervalos
Figure imgf000030_0001
donde R es una o más compuestos orgánicos .
10. Un método para sintetizar un material amorfo según la reivindicación 9, caracterizado porque la mezcla de reacción comprende además una fuente de iones fluoruro.
11. Un método para sintetizar un material amorfo según una de las reivindicaciones 9 ó 10, caracterizado porque comprende : - preparar una mezcla de reacción que comprende al menos: - una fuente de SÍO2, - una fuente de uno o varios elementos tetravalentes Y, - uno o más compuestos orgánicos, - agua, - someter dicha mezcla a calentamiento con o sin agitación a temperatura comprendida entre 80 y 200°C, hasta conseguir formación del material amorfo, y en el que la mezcla de reacción tiene una composición, en términos de relaciones molares de óxidos, comprendida entre los intervalos:
Figure imgf000031_0001
donde Y es uno o más elementos en estado de oxidación +4, y R es uno o más compuestos orgánicos .
12. Un método para sintetizar un material amorfo según la reivindicación 9 ó 10, caracterizado porque comprende: - preparar una mezcla de reacción que comprende: - una fuente de SÍO2, - una fuente de uno o varios elementos trivalentes X, - uno o más compuestos orgánicos, y - agua, someter dicha mezcla a calentamiento con o sin agitación a temperatura comprendida entre 80 y 200°C, hasta conseguir formación del material amorfo, y en el que la mezcla de reacción tiene una composición, en términos de relaciones molares de óxidos, comprendida entre los intervalos
- ROH/Si02 = 0.01-3.0,
Figure imgf000032_0001
- X2O3/SÍO2 = 0.001-0.1, donde X es uno o más elementos en estado de oxidación +3 y R es uno o más compuestos orgánicos .
13. Un método para sintetizar un material amorfo según una de las reivindicaciones 9 ó 10, caracterizado porque comprende : - preparar una mezcla de reacción que comprende: - una fuente de SÍO2, - una fuente de uno o varios elementos trivalentes X, - uno o más elementos M de carga +n, - uno o más compuestos orgánicos, y - agua, - someter dicha mezcla a calentamiento con o sin agitación a temperatura comprendida entre 80 y 200°C, hasta conseguir formación del material amorfo, y en el que la mezcla de reacción tiene una composición, en términos de relaciones molares de óxidos, comprendida entre los intervalos
Figure imgf000032_0002
- X2O3/SÍO2 = 0.001-0.1, donde X es uno o más elementos en estado de oxidación +3, M está seleccionado entre H+, uno o varios cationes inorgánicos de carga +n, y mezclas de ellos, y R es uno o más compuestos orgánicos .
14. Un método para sintetizar un material amorfo según una de las reivindicaciones 9 ó 10, caracterizado porque comprende : - preparar una mezcla de reacción que comprende: - una fuente de SÍO2, - una fuente de uno o varios elementos trivalentes X, - una fuente de uno o varios elementos tetravalentes Y, - uno o más elementos M de carga +n, - uno o más compuestos orgánicos, y - agua, - someter dicha mezcla a calentamiento con o sin agitación a temperatura comprendida entre 80 y 200°C, hasta conseguir formación del material amorfo, y en el que la mezcla de reacción tiene una composición, en términos de relaciones molares de óxidos, comprendida entre los intervalos:
Figure imgf000033_0001
- X2O3/SÍO2 = 0.001-0.1,
Figure imgf000033_0002
donde X es uno o más elementos en estado de oxidación +3, Y es uno o más elementos en estado de oxidación +4, M está seleccionado entre H+, uno o varios cationes inorgánicos de carga +n; y una mezcla de los mismos, y R es uno o más compuestos orgánicos .
15. Un método para sintetizar un material amorfo según la reivindicación 14, en el que la mezcla de reacción tiene una composición, en términos de relaciones molares de óxidos, comprendida entre los rangos
R0H/Si02 = 0.1-1.0
X2O3/SÍO2 = 0.001-0.05,
Figure imgf000034_0001
donde X es uno o varios elementos trivalentes seleccionado entre Al, B, Ga, Fe y Cr, e Y es uno o varios elementos tetravalentes seleccionado entre Ti, Ge, Sn y V.
16. Un método para sintetizar un material amorfo según la reivindicación 14, en el que la mezcla de reacción tiene una composición que responde a la fórmula empirica a ROH : b M1 nF : x X203 : y Y02 : Si02 : w H20 donde X es uno o más elementos en estado de oxidación +3, Y es uno o más elementos en estado de oxidación +4, M está seleccionado entre H+, uno o varios cationes inorgánicos de carga +n, y una mezcla de los mismos, y R es uno o más compuestos orgánicos, y los valores de a, b, x, y, y w están en los intervalos:
Figure imgf000034_0002
b = M1/nF/Si02 = 0 . 1 -3 . 0 ,
Figure imgf000034_0003
17. Un método para sintetizar un material amorfo según una de las reivindicaciones 9 a 16, en el que la mezcla se somete a calentamiento con o sin agitación a temperatura comprendida entre 100 y 200°C.
18. Un método para sintetizar un material amorfo según una de las reivindicaciones 9 a 17, en el que el compuesto orgánico R está en forma de hidróxido.
19. Un método para sintetizar un material amorfo según una de las reivindicaciones 9 a 17 en el que el compuesto orgánico comprende uno o varios grupos amino .
20. Un método para sintetizar un material amorfo según una de las reivindicaciones 9 a 17 en el que el compuesto orgánico comprende uno o varios grupos amonio.
21. Un método para sintetizar un material amorfo según una de las reivindicaciones 9 a 17 en el que el compuesto orgánico está seleccionado entre N (16) -metilesparteinio, hidróxido de 1, 4-bisciclohexilpirrolidiniobutano, hidróxido de 1^8- bisquinuclidiniooctano, hidróxido de 1^4- bisciclohexilpirrolidiniobutano, hidróxido de hexametonio e hidróxido de tetraetilamonio.
22. Método de uso de un material amorfo de una cualquiera de las reivindicaciones 1 a 14 como catalizador en un proceso de conversión de compuestos orgánicos que comprende poner en contacto una alimentación con una cantidad de dicho catalizador.
23. Método de uso según la reivindicación 22 caracterizado porque el proceso es un proceso de craqueo catalitico de compuestos orgánicos .
24. Método de uso de un material amorfo según la reivindicación 23 caracterizado porque dichos compuestos orgánicos son hidrocarburos .
25. Método de uso de un material amorfo según la reivindicación 22, caracterizado porque el proceso está seleccionado entre un proceso de hidrocraqueo, hidrocraqueo suave de hidrocarburos, hidrocraqueo suave de hidrocarburos funcionalizados, hidrocraqueo suave de hidrocarburos e hidrocarburos funcionalizados, hidroisomerización de olefinas, un proceso de isomerización de parafinas ligeras, desparafinado, isodesparafinado y un proceso de alquilación.
26. Método de uso de un material amorfo, según la reivindicación 25, caracterizado porque el proceso de alquilación está seleccionado entre alquilación de isoparafinas con olefinas, alquilación de olefinas con isoparafinas, alquilación de aromáticos con olefinas o alcoholes, alquilación de aromáticos sustituidos con olefinas o alcoholes, alquilación de compuestos tiofénicos con olefinas o alcoholes, alquilación de compuestos alquiltiofénicos con olefinas o alcoholes, alquilación de compuestos alquilbenzotiofenicos con olefinas o alcoholes,
27. Método de uso de un material amorfo, según la reivindicación 25, caracterizado porque el proceso de alquilación es la alquilación de benceno con propileno.
28. Método de uso de un material amorfo según la reivindicación 22, caracterizado porque el proceso es una reacción de acilación de compuestos aromáticos sustituidos utilizando ácidos, cloruros de ácido o anhidridos de ácidos orgánicos como agentes acilantes .
29. Método de uso de un material amorfo según la reivindicación 22, caracterizado porque el proceso es una oxidación selectiva de compuestos orgánicos usando un oxidante seleccionado entre H2O2, peróxidos orgánicos e hidroperóxidos orgánicos .
30. Método de uso de un material amorfo según la reivindicación 22, caracterizado porque el proceso está seleccionado entre una reacción de oxidación de tipo Meerwein- Pondorf-Verley y una reacción de oxidación de tipo Baeyer- Villiger .
31. Método de uso de un material amorfo según la reivindicación 22 caracterizado porque dicho material amorfo comprende Ti y el proceso está seleccionado entre: - un proceso de epoxidación de olefinas, - oxidación de alcanos, oxidación de alcoholes, - oxidación de compuestos orgánicos que contengan azufre y que puedan producir sulfóxidos y sulfonas, utilizando hidroperóxido orgánicos o inorgánicos, u oxigeno molecular como agentes oxidantes y - amoximación de cetonas .
32. Método de uso de un material amorfo según la reivindicación 22 caracterizado porque dicho material amorfo comprende Sn y el proceso es una oxidación en reacciones Baeyer-Villiger utilizando H2O2 como agente oxidante.
PCT/ES2005/070039 2004-04-07 2005-04-05 Un material amorfo microporoso, procedimiento de preparación y su uso en la conversión catalítica de compuestos orgánicos WO2005097679A1 (es)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/547,805 US20080035524A1 (en) 2004-04-07 2005-04-05 Microporous Amorphous Material, Preparation Method Thereof and Use of Same in the Catalytic Conversion of Organic Compounds
EP05735153A EP1783099A1 (en) 2004-04-07 2005-04-05 Microporous amorphous material, preparation method thereof and use of same in the catalytic conversion of organic compounds
JP2007506792A JP2007532451A (ja) 2004-04-07 2005-04-05 微孔性非晶質物質、該物質の製造法及び有機化合物の接触変換における該物質の使用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200400968A ES2247921B1 (es) 2004-04-07 2004-04-07 Un material amorfo microporoso, procedimiento de preparacion y su uso en la conversion catalitica de compuestos organicos.
ESP200400968 2004-04-07

Publications (1)

Publication Number Publication Date
WO2005097679A1 true WO2005097679A1 (es) 2005-10-20

Family

ID=35124968

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2005/070039 WO2005097679A1 (es) 2004-04-07 2005-04-05 Un material amorfo microporoso, procedimiento de preparación y su uso en la conversión catalítica de compuestos orgánicos

Country Status (5)

Country Link
US (1) US20080035524A1 (es)
EP (1) EP1783099A1 (es)
JP (1) JP2007532451A (es)
ES (1) ES2247921B1 (es)
WO (1) WO2005097679A1 (es)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7648694B2 (en) * 2008-10-10 2010-01-19 Chevron U.S.A. Inc. Method for preparing SSZ-26/33 zeolites using novel structure directing agents
US7682599B2 (en) * 2008-10-10 2010-03-23 Chevron U.S.A. Inc. Method for preparing NES-type zeolites using novel structure directing agents
US7820141B2 (en) * 2008-10-10 2010-10-26 Chevron U.S.A. Inc. Molecular sieve SSZ-82 composition of matter and synthesis thereof
EP2314657A2 (en) 2007-07-09 2011-04-27 Katholieke Universiteit Leuven Emissive lamps comprising metal clusters confined in molecular sieves

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2263369B1 (es) * 2005-02-02 2007-12-16 Universidad Politecnica De Valencia Material cristalino microporoso de naturaleza zeolitica, zeolita itq-32, procedimiento de preparacion y uso.
US8395008B2 (en) 2008-01-14 2013-03-12 Catalytic Distillation Technologies Process and catalyst for cracking of ethers and alcohols
EP2282973A2 (en) * 2008-04-28 2011-02-16 Formac Pharmaceuticals N.v. Ordered mesoporous silica material
US8367028B2 (en) 2008-12-05 2013-02-05 Exxonmobil Research And Engineering Company Amorphous acidic materials, their synthesis and use
WO2012025624A1 (en) * 2010-08-27 2012-03-01 Formac Pharmaceuticals N.V. Processes for producing microporous silica materials
CA2849923C (en) 2011-10-12 2019-04-30 Exxonmobil Research And Engineering Company Synthesis of mse-framework type molecular sieves
WO2013055879A1 (en) 2011-10-12 2013-04-18 Exxonmobil Research And Engineering Company Synthesis of mse-framework type molecular sieves
JP7023871B2 (ja) * 2016-09-01 2022-02-22 シェブロン ユー.エス.エー. インコーポレイテッド ゼオライト転換を介するアルミノケイ酸塩ゼオライトssz-26の合成

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0340862A1 (en) * 1988-05-06 1989-11-08 ENICHEM SYNTHESIS S.p.A. Method for preparing cumene
EP0340868A1 (en) * 1988-05-06 1989-11-08 ENIRICERCHE S.p.A. Catalytically active silica and alumina gel and process for preparing it
EP0463673A1 (en) * 1990-06-22 1992-01-02 ENIRICERCHE S.p.A. Process for oligomerizing light olefins
EP0987220A1 (en) * 1998-09-17 2000-03-22 Technische Universiteit Delft Mesoporous amorphous silicate materials and process for the preparation thereof
US6121187A (en) * 1995-12-02 2000-09-19 Studiengesellschaft Kohle Mbh Amorphous, microporous mixed oxide catalysts with controlled surface polarity for selective heterogeneous catalysis, adsorption and material separation

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2733860B2 (ja) * 1989-10-19 1998-03-30 日東化学工業株式会社 耐摩耗性シリカメディアの製造法
JPH0742097B2 (ja) * 1992-05-15 1995-05-10 工業技術院長 合成多孔体
JP3471514B2 (ja) * 1996-02-01 2003-12-02 水澤化学工業株式会社 半導体封止用樹脂組成物及びそれに用いる吸湿性充填剤
JP3647959B2 (ja) * 1996-02-01 2005-05-18 水澤化学工業株式会社 非晶質シリカ系定形粒子の製造方法
JPH09295811A (ja) * 1996-04-30 1997-11-18 Lion Corp 無定形多孔体及びその製造方法
AU2002222968A1 (en) * 2000-07-13 2002-01-30 The Regents Of The Universty Of California Silica zeolite low-k dielectric thin films
JP4099360B2 (ja) * 2002-07-17 2008-06-11 財団法人ファインセラミックスセンター 非晶質シリカ多孔質材料の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0340862A1 (en) * 1988-05-06 1989-11-08 ENICHEM SYNTHESIS S.p.A. Method for preparing cumene
EP0340868A1 (en) * 1988-05-06 1989-11-08 ENIRICERCHE S.p.A. Catalytically active silica and alumina gel and process for preparing it
EP0463673A1 (en) * 1990-06-22 1992-01-02 ENIRICERCHE S.p.A. Process for oligomerizing light olefins
US6121187A (en) * 1995-12-02 2000-09-19 Studiengesellschaft Kohle Mbh Amorphous, microporous mixed oxide catalysts with controlled surface polarity for selective heterogeneous catalysis, adsorption and material separation
EP0987220A1 (en) * 1998-09-17 2000-03-22 Technische Universiteit Delft Mesoporous amorphous silicate materials and process for the preparation thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2314657A2 (en) 2007-07-09 2011-04-27 Katholieke Universiteit Leuven Emissive lamps comprising metal clusters confined in molecular sieves
US8115374B2 (en) 2007-07-09 2012-02-14 Katholieke Universiteit Leuven Emissive lamps comprising metal clusters confined in molecular sieves
US7648694B2 (en) * 2008-10-10 2010-01-19 Chevron U.S.A. Inc. Method for preparing SSZ-26/33 zeolites using novel structure directing agents
US7682599B2 (en) * 2008-10-10 2010-03-23 Chevron U.S.A. Inc. Method for preparing NES-type zeolites using novel structure directing agents
US7820141B2 (en) * 2008-10-10 2010-10-26 Chevron U.S.A. Inc. Molecular sieve SSZ-82 composition of matter and synthesis thereof
CN102216216A (zh) * 2008-10-10 2011-10-12 雪佛龙美国公司 分子筛ssz-82组合物及其合成

Also Published As

Publication number Publication date
ES2247921A1 (es) 2006-03-01
US20080035524A1 (en) 2008-02-14
EP1783099A1 (en) 2007-05-09
JP2007532451A (ja) 2007-11-15
ES2247921B1 (es) 2007-06-16

Similar Documents

Publication Publication Date Title
WO2005097679A1 (es) Un material amorfo microporoso, procedimiento de preparación y su uso en la conversión catalítica de compuestos orgánicos
ES2252454T3 (es) Material cristalino poroso sintetico itq-13, su sintesis y su uso.
ES2209347T3 (es) Tamices moleculares de estañosilicato que tienen la estructura de la zeolita beta.
Carreon et al. Ordered meso‐and macroporous binary and mixed metal oxides
ES2539231T3 (es) Óxidos inorgánicos con mesoporosidad o mesoporosidad y microporosidad combinadas y proceso para la preparación de los mismos
WO2018227849A1 (zh) 分子筛scm-14、其合成方法及其用途
ES2291848T3 (es) Material de metalosilicato en capas modificado y procedimiento para s u produccion.
WO2018227850A1 (zh) 分子筛scm-15、其合成方法及其用途
JP4626845B2 (ja) 結晶固体im−12及びその調製方法
CA2516046C (en) Porous crystalline material (zeolite itq-24), preparation method thereof and use of same in the catalytic conversion of organic compounds
Chen et al. Synthesis and catalytic properties of multilayered MEL-type titanosilicate nanosheets
JP2012512800A (ja) 結晶固体im−20およびその調製方法
Shylesh et al. Periodic mesoporous silicas and organosilicas: An overview towards catalysis
ES2241877T3 (es) Zeolita itq-16.
JP2010534185A (ja) Im−16結晶固体およびその調製方法
ES2327395T3 (es) Material cristalino poroso (zeolita itq-21), el metodo de preparacion del mismo y el uso del mismo en la conservacion catalitica de compuestos organicos.
JP2010508233A (ja) 結晶化固体im−15およびその調製方法
JP2011502939A (ja) Im−18結晶固体およびその調製方法
EP1338560B1 (en) Microporous crystalline material (itq-17), method for the preparation thereof and its use in processes for separating and transforming organic compounds
ES2249035T3 (es) Oxido acido que presenta caracteristicas micro y mesoporosas: itq-36.
Prates et al. Hollow structures by controlled desilication of beta zeolite nanocrystals
ES2748650B2 (es) Material cristalino de naturaleza zeolítica IDM-1
RU2422361C1 (ru) Способ получения мезопористых элементосиликатов
EP1043274B1 (en) Zeolithe itq-5
ES2204257A1 (es) Sintesis de itq-21 en ausencia de iones fluoruro.

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007506792

Country of ref document: JP

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2005735153

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005735153

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11547805

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 11547805

Country of ref document: US