WO2005095080A1 - Durch epoxidharz imprägniertes garn und seine verwendung zur herstellung eines vorformlings - Google Patents

Durch epoxidharz imprägniertes garn und seine verwendung zur herstellung eines vorformlings Download PDF

Info

Publication number
WO2005095080A1
WO2005095080A1 PCT/EP2005/003281 EP2005003281W WO2005095080A1 WO 2005095080 A1 WO2005095080 A1 WO 2005095080A1 EP 2005003281 W EP2005003281 W EP 2005003281W WO 2005095080 A1 WO2005095080 A1 WO 2005095080A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
yarn
filaments
preform
infiltrated
Prior art date
Application number
PCT/EP2005/003281
Other languages
English (en)
French (fr)
Inventor
Markus Schneider
Bernd Wohlmann
Original Assignee
Toho Tenax Europe Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to ES05732347T priority Critical patent/ES2391401T3/es
Priority to KR1020067020391A priority patent/KR101180753B1/ko
Priority to JP2007505485A priority patent/JP5158778B2/ja
Priority to EP20050732347 priority patent/EP1737633B1/de
Priority to AU2005229547A priority patent/AU2005229547B2/en
Priority to BRPI0509351-1A priority patent/BRPI0509351B1/pt
Application filed by Toho Tenax Europe Gmbh filed Critical Toho Tenax Europe Gmbh
Priority to CN2005800106734A priority patent/CN1976787B/zh
Priority to PL05732347T priority patent/PL1737633T3/pl
Priority to CA 2562141 priority patent/CA2562141C/en
Priority to US11/547,008 priority patent/US8273454B2/en
Publication of WO2005095080A1 publication Critical patent/WO2005095080A1/de
Priority to NO20064984A priority patent/NO338721B1/no

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/55Epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B11/00Making preforms
    • B29B11/14Making preforms characterised by structure or composition
    • B29B11/16Making preforms characterised by structure or composition comprising fillers or reinforcement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B15/00Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00
    • B29B15/08Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00 of reinforcements or fillers
    • B29B15/10Coating or impregnating independently of the moulding or shaping step
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B15/00Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00
    • B29B15/08Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00 of reinforcements or fillers
    • B29B15/10Coating or impregnating independently of the moulding or shaping step
    • B29B15/12Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/22Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
    • D02G3/40Yarns in which fibres are united by adhesives; Impregnated yarns or threads
    • D02G3/404Yarns or threads coated with polymeric solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2063/00Use of EP, i.e. epoxy resins or derivatives thereof, as moulding material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249924Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity
    • Y10T428/24994Fiber embedded in or on the surface of a polymeric matrix
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249924Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity
    • Y10T428/24994Fiber embedded in or on the surface of a polymeric matrix
    • Y10T428/249942Fibers are aligned substantially parallel
    • Y10T428/249945Carbon or carbonaceous fiber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249924Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity
    • Y10T428/24994Fiber embedded in or on the surface of a polymeric matrix
    • Y10T428/249948Fiber is precoated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2918Rod, strand, filament or fiber including free carbon or carbide or therewith [not as steel]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2938Coating on discrete and individual rods, strands or filaments

Definitions

  • the present invention relates to a yarn, the use of the yarn for producing a preform, a preform comprising the yarn, a method for producing the preform and its use for producing a composite.
  • prepregs In contrast to preforms, so-called prepregs (English abbreviation for pre-impregnated fibers) already have both components (fiber and matrix resin) in the final mixing ratio and are therefore already resistant to bending as a semi-finished product. To prevent premature, unwanted reactions, this material must also be stored refrigerated and yet has only a limited shelf life. Due to the flexural stiffness and the production as a wide roll goods, the applications of prepregs are limited to large-scale and almost flat components. The already existing matrix resin does not allow textile processing and wrinkle-free deposition of the prepregs, for example along narrow radii or on strongly contoured geometries. If flexible yarns are used to produce preforms, much more curved surfaces can be produced. In addition, the maximum shelf life of the preform is significantly improved compared to prepregs since the matrix resin is not added until the composite is made.
  • JP 2003 003376 A describes a carbon fiber bundle for producing a prepreg.
  • the bundle comprises 20,000 to 100,000 filaments and is held together by a sizing agent containing polyoxyalkylene groups and epoxide groups.
  • the carbon fiber bundle has based on its total weight 0.5 to 3 wt .-% sizing agent.
  • DE 27 46 640 A describes a material which is reinforced with carbon fibers, to which a resin mixture is applied, which contains an epoxy resin, a condensation product of an acid component with a hydroxyl component and an oxyalkylene derivatives of a phenol.
  • the carbon fibers have from 0.01 to 10 wt .-% of resin composition based on their total weight.
  • DE 39 42 858 A describes a sizing agent for carbon fibers comprising an epoxy resin and a nonionic emulsifier containing tertiary amino groups, at least one reactive with the epoxy resin functional radical and at least one emulsifying radical.
  • On the fiber should be 0.3 to 10 wt .-% of the sizing agent.
  • DE 20 33 626 A describes a process for producing a prepreg from mechanically high-quality fiber materials, in particular glass, boron, and carbon fibers.
  • the fibers are impregnated with a solution containing a still free glycidyl-containing curable polyadduct of triglycidyl isocyanurate, a curing agent and an organic solvent.
  • DE 201 20 447 U1 describes a preform made of a textile fabric, for example of a woven fabric or of a fiber-laid fabric layer, with a thermoplastic, non-crosslinked binder adhering to the surface of the textile fabric, which can be, for example, an epoxide.
  • the binder is applied, for example, by spraying a binder solution onto the surface of the textile fabric, wherein the binder solution contains powder particles which are uniformly dispersed in a solvent, and wherein the powder particles can consist exclusively of epoxy resin.
  • the present invention has the object to at least reduce the disadvantages mentioned.
  • This object is achieved by a yarn consisting of reinforcing fiber filaments and a resin infiltrated into the yarn, which can be melted several times and converted into the solid state by cooling to room temperature, wherein the filaments of the yarn are at least partially connected to one another via the resin the yarn is 2.5 to 25% by weight infiltrated resin based on its total weight, and wherein the infiltrated resin is a mixture of at least two epoxy resins E1 and E2, wherein E1 has an epoxy value in the range of 2000 to 2300 mmol / kg resin , and E2 has an epoxy value in the range of 500 to 650 mmol / kg resin, and the weight ratio E1: E2 of the epoxy resins E1 and E2 in the mixture is selected so that the infiltrated resin mixture has an epoxy value between 550 and 2100 mmol / kg resin ,
  • the yarn of the invention exhibits a very good combination.
  • the resin should be selected so that the yarn coated therewith is not tacky at room temperature. Therefore, such a yarn is then usually not only wound up, but stored in the wound state while preserving its textile properties and even after a long storage time unwindable again.
  • the yarn according to the invention can be unwound easily after 12 months storage time and shows at most marginally changed values of the properties, strength, modulus of elasticity and elongation at break measured according to DIN 65 382.
  • the yarn according to the invention it is possible to produce a preform without binder material having to be additionally added in a complex manner, while nevertheless resulting in a better bond between the yarns than in the case of a preform of the prior art. Furthermore, in contrast to the production of the preform described above with breakthroughs from the prior art, no yarn waste occurs. Consequently, no yarn waste needs to be eliminated.
  • the yarn of the invention based on its total weight on 3 to 10 wt .-% of infiltrated resin.
  • the reinforcing fiber filaments of the yarn of the invention are carbon fiber filaments obtained from pitch, polyacrylonitrile or viscose precursors or aramid filaments, glass filaments, ceramic filaments, boron filaments, synthetic fiber filaments or natural fiber filaments or a combination of one or more of these filaments.
  • the object is further achieved by a yarn consisting of reinforcing fiber filaments and a resin infiltrated into the yarn, which can be melted several times and converted into the solid state by cooling to room temperature, wherein the filaments of the yarn are at least partially connected to one another via the resin, the yarn having 2.5 to 25% by weight of infiltrated resin, which are reinforcing fiber filaments electrochemically pretreated carbon filaments, the infiltrated resin comprising at least two bisphenol A epichlorohydrin resins H1 and H2 in a weight ratio H1: H2 of 1, 1 to 1, 4, wherein H1 has an epoxy value of 1850 to 2400 mmol / kg and a molecular weight of 800 to 1000 g / mol and is solid at room temperature, and H2 has an epoxide value of 5000 to 5600 mmol / kg and a molecular weight of ⁇ 700 g / mol and is liquid at room temperature, and wherein the infiltrated resin in addition a third H3 is
  • the reinforcing fiber filaments of the yarn of the invention are carbon fiber filaments obtained from pitch, polyacrylonitrile or viscose precursors or aramid filaments, glass filaments, ceramic filaments, boron filaments, synthetic fiber filaments or natural fiber filaments or a combination of one or more of these filaments.
  • the reinforcing fiber filaments are carbon fiber filaments.
  • the yarns of carbon fiber filaments in particular, a yarn pretreated by electrochemical oxidation is suitable.
  • the yarn may consist of several thousand, preferably from about 3,000 to 24,000, and in particular from 3,000 to 12,000 filaments.
  • any technique which promotes rapid and complete wetting of the reinforcing fiber filaments of the yarn with the resin is suitable for infiltrating the resin into the yarn.
  • Such methods are described, for example, in EP 1 281 498 A.
  • the yarn is passed through a bath containing the resin dispersion.
  • any liquid mixture which forms a stable dispersion with the resins used according to the invention is suitable as liquid phase.
  • liquid mixtures for emission protection reasons, those which are aqueous and have a low VOC (volatile organic content) are particularly suitable.
  • VOC volatile organic content
  • a mixture of water and an alcohol such as 2-propoxyethanol for the preferred in the process according to the invention bisphenol A epichlorohydrin - epoxy resin has proven to be advantageous.
  • the yarn according to the invention has a total of 0.5 to 1.7% by weight, based on its total weight of H1 and H2, and 2.0 to 4.3% by weight of H3.
  • the preparation of the yarn of the present invention may be incorporated into the manufacturing process of the yarn to be infiltrated with the resin after it has been dried and before it is wound up, wherein the dried yarn may be individually or yarn-infiltrated with the at least one resin, if, for infiltration, a resin Dispersion is used, a yarn tension of 0.25 to 1, 3 cN / tex allows good wetting of the reinforcing fiber filaments.
  • the speed at which the yarn is passed for example, through a bath containing the dispersion of one or more of the resins described above, the immersion length and the resin concentration in the bath, the order required amount of 2.5 to 25 wt. % of infiltrated resin based on the total weight of the yarn.
  • the speed at which the yarn is passed through the bath is preferably in the range from 120 to 550 m / h, particularly preferably in the range from 150 to 250 m / h.
  • the immersion length is preferably in the range of 0.2 to 1 m.
  • the resin concentration in the dispersion based on its weight is preferably in the range of 2 to 35 wt .-%, particularly preferably in the range of 2 to 7 wt .-%.
  • a drying temperature in the range of 140 to 330 ° C has been found to be particularly suitable.
  • the yarns according to the invention can advantageously be used to produce a preform.
  • the object underlying the present invention is further solved by a preform comprising the previously described yarns according to the invention, wherein the yarns are joined together at points of mutual contact via the infiltrated resin.
  • the yarns are arranged unidirectionally, whereby the preform can be further processed into a composite, in the use of which the maximum mechanical load is to be expected in just this one direction of the yarns.
  • the yarns are bi-, tri- or multidirectionally arranged, whereby the preform can be further processed into a composite, the maximum mechanical stress in these two or more directions of the yarns is to be expected.
  • the uni-, bi-, tri- or multidirectionally arranged yarns can be wound around a body which, for example, has a cylindrical shape, resulting in a three-dimensional preform.
  • an embodiment of the preform according to the invention is preferred in which the yarns are present as short yarns, which may be oriented in all spatial directions.
  • this preform is particularly suitable for the production of a composite, in the use of mechanical stress in all directions can occur.
  • the object underlying the present invention is further achieved by a method for producing a preform comprising the steps of a) presenting one of the yarns according to the invention, b) arranging the yarn in a configuration which corresponds to the configuration of the desired preform, c) heating the in Step b) resulting configuration at a temperature above the melting point of the resin infiltrated into the yarn; and d) cooling the configuration resulting in step c) at least below the melting point of the resin.
  • step c) the configuration resulting in step b) is pressed simultaneously with the heating.
  • the preform according to the invention or the preform produced by the process according to the invention shows a high slip resistance, because the yarns of the preform according to the invention are interconnected via the infiltrated resin. Therefore, the preform according to the invention can be handled well, which is particularly advantageous in its further processing into a composite.
  • the preform according to the invention or the preform produced by the method according to the invention is to have openings, these can be realized by appropriate arrangement of the yarns and thus without any loss of cut. Thus eliminates the cost and labor consuming cropping described in the prior art. Consequently, there is no waste. As a result, the production of a composite with breakthroughs is facilitated and cheapened.
  • the yarn can be positioned in the direction in which the highest mechanical stresses in the use of the subsequently produced composite are expected.
  • step b) yarns according to the invention are arranged unidirectionally, so that after step d) results in a preform according to the invention, in which the yarns are arranged unidirectionally.
  • step b) the yarns according to the invention can be placed in bi-, tri- or multidirectional layers in a configuration which corresponds to the configuration of the desired preform. Only yarns according to the invention can be used. Likewise, within one layer of yarns, only one part can consist of yarns according to the invention and the remainder of yarns whose filaments have no resin coating.
  • the configured in the manner mentioned Game are heated in step c) of the process according to the invention at a temperature above the melting point of the resin with which the yarns are infiltrated, wherein the yarns are optionally pressed. This makes the yarns sticky.
  • a preform according to the invention is formed, in which the yarns are arranged bidirectionally, bi- or trioder.
  • the yarns according to the invention are cut into short pieces, e.g. have a length of 1 to 1000 mm, preferably 1 to 40 mm, and placed in step a) the short pieces of yarn in a mold. Thereafter, in step b) of the method according to the invention, the short pieces of yarn are heated at a temperature above the melting point of the resin with which the yarns have been infiltrated, whereby the short yarn pieces become sticky, possibly compressed. After cooling, at least below the melting point of the resin in step d), a preform according to the invention is formed in which the yarns according to the invention are present as short yarns with isotropic orientation.
  • the preform according to the invention, or the preform produced by the process according to the invention, or the preform resulting from the use according to the invention can be used for the reasons already mentioned advantageous for the production of a composite comprising a matrix which is selected from one of the groups Polymers, metals, ceramics, hydraulically setting materials and carbon, wherein as polymer matrix thermoplastics such as polyethyleneimine, polyether ketone, polyetheretherketone, polyphenylene sulfide, polyethersulfone, polyether, sulfone or polysulfone Duromer such as epoxides, as a metal matrix such as steel (alloys) or titanium, as Ceramic matrix eg silicon carbide and boron nitride, as hydraulically setting materials mortar or concrete and as carbon matrix eg graphite are suitable.
  • polymer matrix thermoplastics such as polyethyleneimine, polyether ketone, polyetheretherketone, polyphenylene sulfide, polyethersulfone, polyether,
  • the yarns according to the invention are arranged in the direction in which the greatest mechanical stresses are to be expected when using the composite.
  • the use according to the invention of the yarns according to the invention and of the preform produced therefrom leads to composites in which the orientation of the yarns is tailor-made to the expected mechanical loads.
  • the epoxide value of the epoxy resins used according to the invention is determined according to DIN 53188 of October 1975.
  • Tensile strength and tensile modulus of the composite reinforced with a preform according to the invention are measured according to EN 2561-B.
  • Example 1 Preparation of a coated yarn
  • a yarn of carbon fiber filaments with a Gamtiter of 400 tex is run dry at a speed of 240 m / h at a yarn tension of 340 cN through a first bath, which has a temperature of about 20 ° C.
  • the bath contains an aqueous dispersion containing two bisphenol A epichlorohydrin epoxy resins H1 and H2.
  • the weight ratio of H1 to H2 is 1.2.
  • H1 has an epoxide value of about 2200 mmol / kg and a molecular weight of 900 g / mol and is solid at room temperature.
  • H2 has an epoxide value of 5400 mmol / kg and a molecular weight of ⁇ 700 g / mol and is liquid at room temperature.
  • the concentration of H1 in the dispersion is 8.4% by weight.
  • the concentration of H2 in the dispersion is 6.9% by weight.
  • the length of stay of the Yarns in the dispersion is 12 seconds.
  • the yarn infiltrated with H1 and H2 is dried at a temperature falling from 250 to 140 ° C and after drying, based on its total weight on 1, 2 to 1, 4 wt .-% H1 + H2.
  • the yarn infiltrated with H1 and H2 is passed through a second bath comprising a dispersion of a bisphenol A epichlorohydrin epoxy resin having a melting range of 120 to 130 ° C, a number average molecular weight of 2870 g / mole and an epoxide value of 515 mmol / kg.
  • the dispersing medium consists of a mixture of 76% by weight of water and 24% by weight of 2-propoxyethanol.
  • the epoxy resin concentration in the bath is 4% by weight.
  • the residence time of the yarn in the second bath is a few seconds.
  • the yarn now also infiltrated with H3, is dried by first passing through a vertically arranged dryer at 300 ° C and then through a horizontally arranged dryer at 330 ° C.
  • the result is a yarn with 4.3 wt.% Infiltrated resin H1 + H2 + H3, the infiltrated resin having an epoxy value of 1300 mmol / kg.
  • Example 1 The yarn coated in Example 1 is applied to a metal plate whose two base surfaces (dimensions 280 ⁇ 300 mm 2 ) are each covered with a release film, with a laboratory winding machine (yarn speed 23.1 mm / s, yarn tension 400 cN) in each case up to the edge of Wrapped metal plate.
  • a wound layer fiber area weight 267 g / m 2 ) with a 90 ° orientation to the winding axis is generated on both sides of the metal plate.
  • the metal plate is rotated 90 ° so that the already existing winding layer is parallel to the winding axis
  • another winding layer with a 90 ° orientation is applied to the winding axis with identical winding conditions on the already existing winding layer
  • Both sides of the metal plate each have a layered structure with a 0 ° thread layer and a 90 ° thread layer
  • the above-described winding process is repeated until four winding layers lie on each other on both sides of the metal plate, which alternately have a 0 ° and a 90 ° thread layer.
  • the winding layers are covered on both sides of the metal plate, each with a release film.
  • the metal plate is then completely tempered with both four-layer windings and the release films in a press for 1 h at a surface pressure of 2 bar and a temperature of 125 ° C.
  • Example 2 The preform produced in Example 2 is cut to a size of 200 ⁇ 200 mm and coated with Hexcel RTM6 resin previously heated to 80 ° C and applied in such an amount that a composite having 60% fiber volume fraction can be formed , processed in the usual way to a composite with a four-layer, alternating 0 ° and 90 ° yarn structure.
  • the composite is identical in shape to the preform used.
  • Example 4 Preparation of a preform with biaxial arrangement of the yarns
  • the yarn produced in Example 1 is fed to a biaxial laying process together with a standard carbon fiber filament available under the name Tenax HTA 5131 400tex f6000 tO from Tenax Fibers GmbH, DE, with each fourth yarn lying parallel being a yarn from Example 1.
  • the biaxial arrangement has the following configuration: In the first layer, the standard carbon fiber filament yarns and the yarns of Example 1 are at an angle of plus 45 ° to the direction of production. In the second layer, which is located directly on the first layer, the standard carbon fiber filament yarns and the yarns of Example 1 have an angle of minus 45 ° to the direction of production.
  • a composite with 60% fiber volume fraction produced therefrom as in Example 3 shows in each case in the main fiber direction a tensile strength of 1100 MPa and a tensile modulus of 70.5 GPa.
  • Example 5 Production of a preform with a three-dimensional arrangement of the yarns
  • the preform in state A produced in example 4 is molded with a spherically shaped tool in hemispherical form with a diameter of 150 mm consisting of die and male in a press for one hour at a surface pressure of 2 bar and a mold temperature of 125 ° C according to the geometry of the tool reshaped. After cooling to room temperature, the resulting preform has a hemispherical shape.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Reinforced Plastic Materials (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Abstract

Ein Garn bestehend aus Verstärkungsfaserfilamenten und einem in das Garn infilt­rierten Harz, das mehrfach aufschmelzbar und durch Abkühlen auf Raumtempera­tur in den festen Zustand überführbar ist, wobei die Filamente des Garns über das Harz zumindest teilweise miteinander verbunden sind, wobei das Garn bezogen auf sein Gesamtgewicht 2,5 bis 25 Gew.-% infiltriertes Harz aufweist, und wobei das infiltrierte Harz aus einer Mischung von zumindest zwei Epoxidharzen E1 und E2 besteht, wobei E1 einen Epoxidwert im Bereich von 2000 bis 2300 mmol/kg Harz, und E2 einen Epoxidwert im Bereich von 500 bis 650 mmol/kg Harz aufweist, und das Gewichtsverhältnis E1:E2 der Epoxidharze E1 und E2 in der Mischung so gewählt ist, dass das infiltrierte Harzgemisch einen Epoxidwert zwischen 550 und 2100 mmol/kg Harz aufweist, ein das Garn umfassender Vorform­ling, ein Verfahren zur Herstellung des Vorformlings und dessen Verwendung zur Herstellung eines Composites werden beschrieben.

Description

DURCH EPOXIDHARZ IMPRÄGNIERTES GARN UND SEINE VERWENDUNG ZUR HERSTELLUNG EINES VORFORMLINGS
Beschreibung:
Die vorliegende Erfindung betrifft ein Garn, die Verwendung des Garns zur Herstellung eines Vorformlings, einen das Garn umfassenden Vorformling, ein Verfahren zur Herstellung des Vorformlings und dessen Verwendung zur Herstellung eines Composites.
Zur Herstellung von Bauteilen aus faserverstärkten Kunststoffen ist es bekannt, zuerst einen Vorformling anzufertigen, der dem Bauteil in seiner Form ähnlich ist, anschließend den Vorformling in ein Werkzeug zu überführen, das der Form des Bauteils entspricht und schließlich unter Zugabe eines Matrixharzes das gewünschte Bauteil herzustellen.
Im Gegensatz zu Vorformlingen weisen sog. Prepregs (englische Abkürzung für pre-impregnated fibers) bereits beide Komponenten (Faser und Matrixharz) im endgültigen Mischungsverhältnis auf und sind daher bereits als Halbfertigprodukt biegesteif. Um vorzeitige, ungewollte Reaktionen zu verhindern, muss dieses Material zudem gekühlt gelagert werden und verfügt dennoch nur über eine begrenzte Lagerzeit. Aufgrund der Biegesteifigkeit und der Herstellung als breite Rollenware sind die Anwendungsfälle von Prepregs auf großflächige und nahzu ebene Bauteile beschränkt. Das bereits vorhandene Matrixharz erlaubt keine textile Verarbeitung und keine faltenfreie Ablage der Prepregs beispielsweise entlang von engen Radien oder auf stark konturierten Geometrien. Werden zur Herstellung von Vorformlingen biegeweiche Garne verwendet, können sehr viel gekrümmtere Oberflächen erzeugt werden. Darüber hinaus ist die maximale Lagerzeit des Vorformlings deutlich verbessert im Vergleich zu Prepregs, da das Matrixharz erst bei der Herstellung des Verbundwerkstoffs hinzugefügt wird.
JP 2003 003376 A beschreibt ein Kohlenstofffaserbündel zur Herstellung eines Prepregs. Das Bündel umfasst 20000 bis 100000 Filamente und wird durch ein Schlichtmittel zusammengehalten, das Polyoxyalkylengruppen und Epoxidgruppen enthält. Das Kohlenstofffaserbündel weist bezogen auf sein Gesamtgewicht 0,5 bis 3 Gew.-% Schlichtmittel auf.
DE 27 46 640 A beschreibt ein Material, das mit Kohlenstofffasern verstärkt ist, auf die eine Harzmischung aufgetragen ist, die ein Epoxidharz, ein Kondensationsprodukt einer Säurekomponente mit einer Hydroxylkomponente und ein Oxyalky- len-Derivat eines Phenols enthält. Die Kohlenstofffasern weisen bezogen auf ihr Gesamtgewicht 0,01 bis 10 Gew.-% Harzmischung auf.
DE 39 42 858 A beschreibt ein Schlichtmittel für Kohlenstofffasern enthaltend ein Epoxidharz und einen nichtionischen Emulgator, der tertiäre Aminogruppen, mindestens einen mit dem Epoxidharz umsetzungsfähigen funktioneilen Rest und mindestens einen emulgierend wirkenden Rest enthält. Auf der Faser sollen sich 0,3 bis 10 Gew.-% des Schlichtmittels befinden.
DE 20 33 626 A beschreibt ein Verfahren zur Herstellung eines Prepregs aus mechanisch hochwertigen Fasermaterialien, wie insbesondere Glas,- Bor,- und Kohlenstofffasern. Die Fasern werden mit einer Lösung imprägniert, die ein noch freie Glycidylgruppen enthaltendes, härtbares Polyaddukt aus Triglycidylisocyanurat, ein Härtungsmittel und ein organisches Lösungsmittel enthält. DE 201 20 447 U1 beschreibt einen Vorformling aus einem textilen Flächengebilde, z.B. aus einem Gewebe oder aus einer Fasergelegeschicht, mit einem auf der Oberfläche des textilen Flächengebildes haftenden thermoplastischen, nicht vernetzten Binder, der z.B. ein Epoxid sein kann. Gemäß DE 201 20 447 U1 wird der Binder z.B. durch Aufsprühen einer Binderlösung auf die Oberfläche des textilen Flächengebildes aufgebracht, wobei die Binderlösung Pulverpartikel enthält, welche in einem Lösungsmittel gleichmäßig dispergiert sind, und wobei die Pulverpartikel ausschließlich aus Epoxidharz bestehen können.
Jedoch ist, wenn man bei der Herstellung eines Vorformlings von einem textilen Flächengebilde ausgeht, die Beschichtung mit dem Binder ungleichmäßig über die Dicke des textilen Flächengebildes verteilt und insbesondere dort, wo sich die Garne berühren, praktisch gar nicht vorhanden. Dadurch weist ein solcher Vorformling oftmals eine geringe Schiebefestigkeit auf, wodurch das weitere Handling des Vorformlings erschwert oder sogar unmöglich gemacht wird.
Zusätzliche Nachteile ergeben sich, wenn der Vorformling Durchbrüche aufweisen soll, die, wenn man den Vorformling ausgehend von textilen Flächengebilden herstellt, in vielen Fällen durch Ausschneiden erzeugt werden müssen. Dies kostet nicht nur Arbeitszeit, sondern ist wegen des anfallenden Verschnitts auch mit einem beträchtliche Materialverlust verbunden und generiert entsprechende Abfallmengen. Somit ist dieses Verfahren zur Herstellung eines Vorformlings kosten- und arbeitsaufwendig, was sich folglich auch in den Kosten des daraus hergestellten Composites niederschlägt.
Daher stellt sich die vorliegende Erfindung die Aufgabe, die genannten Nachteile zumindest zu verringern. Diese Aufgabe wird gelöst durch ein Garn bestehend aus Verstärkungsfaserfila- menten und einem in das Garn infiltrierten Harz, das mehrfach aufschmelzbar und durch Abkühlen auf Raumtemperatur in den festen Zustand überführbar ist, wobei die Filamente des Garns über das Harz zumindest teilweise miteinander verbunden sind, wobei das Garn bezogen auf sein Gesamtgewicht 2,5 bis 25 Gew.-% infiltriertes Harz aufweist, und wobei das infiltrierte Harz aus einer Mischung von zumindest zwei Epoxidharzen E1 und E2 besteht, wobei E1 einen Epoxidwert im Bereich von 2000 bis 2300 mmol/kg Harz, und E2 einen Epoxidwert im Bereich von 500 bis 650 mmol/kg Harz aufweist, und das Gewichtsverhältnis E1 :E2 der Epoxidharze E1 und E2 in der Mischung so gewählt ist, dass das infiltrierte Harzgemisch einen Epoxidwert zwischen 550 und 2100 mmol/kg Harz aufweist.
Weil die Filamente des Garns über das Harz zumindest teilweise verbunden sind, zeigt das erfindungsgemäße Garn einen sehr guten Zusammenschluß.
Bei den erfindungsgemäßen Garnen soll das Harz so ausgewählt werden, dass das damit beschichtete Garn bei Raumtemperatur nicht klebrig ist. Deshalb ist ein solches Garn dann in der Regel nicht nur aufwickelbar, sondern im aufgewickelten Zustand unter Erhalt seiner textilen Eigenschaften lagerbar und selbst nach langer Lagerzeit wieder abwickelbar. Beispielsweise läßt sich das erfindungsgemäße Garn nach 12 Monaten Lagerzeit problemlos abwickeln und zeigt höchstens unwesentlich veränderte Werte der nach DIN 65 382 gemessenen Eigenschaften Festigkeit, E-Modul und Bruchdehnung.
Schließlich läßt sich mit Hilfe des erfindungsgemäßen Garns ein Vorformling herstellen, ohne dass in aufwendiger Weise Bindermaterial noch zusätzlich hinzugefügt werden muß, wobei dennoch eine bessere Bindung zwischen den Garnen resultiert als bei einem Vorformling des Standes der Technik. Ferner fällt im Gegensatz zur Herstellung des eingangs beschriebenen Vorformlings mit Durchbrüchen aus dem Stand der Technik keinerlei Garnabfall an. Demzufolge muß kein Garnabfall beseitigt werden. In einer bevorzugten Ausführungsform weist das erfindungsgemäße Garn bezogen auf sein Gesamtgewicht 3 bis 10 Gew.-% infiltriertes Harz auf.
In einer weiteren bevorzugten Ausführungsform sind die Verstärkungsfaserfilamente des erfindungsgemäßen Garns Kohlenstofffaserfilamente, die aus Pech-, Polyacrylnitril- oder Viskosevorprodukten gewonnen wurden, oder Aramidfilamen- te, Glasfilamente, Keramikfilamente, Borfilamente, Synthesefaserfilamente oder Naturfaserfilamente oder eine Kombination aus einem oder mehreren dieser Filamente.
Die Aufgabe wird ferner gelöst durch ein Garn bestehend aus Verstärkungsfaserfi- lamenten und einem in das Garn infiltrierten Harz, das mehrfach aufschmelzbar und durch Abkühlen auf Raumtemperatur in den festen Zustand überführbar ist, wobei die Filamente des Garns über das Harz zumindest teilweise miteinander verbunden sind, wobei das Garn bezogen auf sein Gesamtgewicht 2,5 bis 25 Gew.-% infiltriertes Harz aufweist, die Verstärkungsfaserfilamente elektrochemisch vorbehandelte Kohlenstofffilamente sind, wobei das infiltrierte Harz mindestens zwei Bisphenol A Epichlorhydrin - Harze H1 und H2 in einem Gewichtsverhältnis H1 :H2 von 1 ,1 bis 1 ,4 enthält, wobei H1 einen Epoxidwert von 1850 bis 2400 mmol/kg und ein Molekulargewicht von 800 bis 1000 g/Mol aufweist und bei Raumtemperatur fest ist, und H2 einen Epoxidwert von 5000 bis 5600 mmol/kg und ein Molekulargewicht von < 700 g/Mol aufweist und bei Raumtemperatur flüssig ist, und wobei das infiltrierte Harz zusätzlich ein drittes Harz H3 enthält, wobei H3 ein Bisphenol A Epichlorhydrin - Epoxidharz mit einen Epoxidwert von 450 bis 650 mmol/kg, einem Zahlenmittel des Molekulargewichts von 2800 bis 3000 g/Mol und mit einem Schmelzbereich von 110 bis 130 °C ist. In einer bevorzugten Ausführungsform weist das erfindungsgemäße Garn bezogen auf sein Gesamtgewicht 3 bis 10 Gew.-% infiltriertes Harz auf.
In einer weiteren bevorzugten Ausführungsform sind die Verstärkungsfaserfilamente des erfindungsgemäßen Garns Kohlenstofffaserfilamente, die aus Pech-, Polyacrylnitril- oder Viskosevorprodukten gewonnen wurden, oder Aramidfilamen- te, Glasfilamente, Keramikfilamente, Borfilamente, Synthesefaserfilamente oder Naturfaserfilamente oder eine Kombination aus einem oder mehreren dieser Filamente.
Bevorzugt sind die Verstärkungsfaserfilamente Kohlenstofffaserfilamente.
Unter den Garnen aus Kohlenstofffaserfilamenten ist insbesondere ein durch elektrochemische Oxidation vorbehandeltes Garn geeignet. Dabei kann das Garn aus mehreren tausend, vorzugsweise aus etwa 3 000 bis 24 000, und insbesondere aus 3 000 bis 12 000 Filamenten bestehen.
Für das Infiltrieren des Harzes in das Garn ist im Prinzip jede Technik geeignet, welche eine schnelle und vollständige Benetzung der Verstärkungsfaserfilamente des Garns mit dem Harz unterstützt. Derartige Verfahren sind beispielsweise in EP 1 281 498 A beschrieben. Beispielsweise kann man das Garn mit einer Harz- Dispersion besprühen. Auch kann man einen Film der Harz-Dispersion auf eine glatte Walze oder in die Rillen einer Walze auftragen und das Garn über die glatte Walze bzw. durch die Rillen der Walze ziehen. Bevorzugt wird das Garn durch ein Bad geführt, welches die Harz-Dispersion enthält. Für die vorstehend genannte Harz-Dispersion ist als Flüssigphase im Prinzip jedes Flüssigkeitsgemisch geeignet, welches mit den erfindungsgemäß eingesetzten Harzen eine stabile Dispersion bildet. Unter diesen Flüssigkeitsgemischen sind aus Emissionsschutzgründen insbesondere solche geeignet, welche wässrig sind und einen geringen VOC (Volatile Organic Content) aufweisen. Z.B. hat sich ein Gemisch aus Wasser und einem Alkohohl wie etwa 2-Propoxyethanol für das im erfindungsgemäßen Verfahren bevorzugte Bisphenol A Epichlorhydrin - Epoxidharz als vorteilhaft erwiesen.
In einer besonders bevorzugten Ausführungsform weist das erfindungsgemäße Garn bezogen auf sein Gesamtgewicht an H1 und H2 insgesamt 0,5 bis 1 ,7 Gew.-% und an H3 2,0 bis 4,3 Gew.-% auf.
Die Herstellung des erfindungsgemäßen Garns kann in den Herstellungsprozess des mit dem Harz zu infiltrierenden Garns nach dessen Trocknen und vor dessen Aufwickeln integriert werden, wobei das getrocknete Garn einzeln oder als Garnschar mit dem mindestens einen Harz infiltriert werden kann, wobei, falls zur Infiltrierung eine Harz-Dispersion eingesetzt wird, eine Garnspannung von 0,25 bis 1 ,3 cN/tex eine gute Benetzung der Verstärkungsfaserfilamente ermöglicht.
Selbstverständlich kann über die Geschwindigkeit, mit der das Garn z.B. durch ein Bad geführt wird, das die Dispersion eines oder mehrerer der zuvor beschriebenen Harze enthält, über die Eintauchlänge und über die Harzkonzentration im Bad die erfindungsgemäß erforderliche Auftragsmenge von 2,5 bis 25 Gew.-% an infiltriertem Harz bezogen auf das Gesamtgewicht des Garns erreicht werden. Dabei liegt die Geschwindigkeit, mit der das Garn durch das Bad geführt wird, bevorzugt im Bereich von 120 bis 550 m/h, besonders bevorzugt im Bereich von 150 bis 250 m/h. Die Eintauchlänge liegt vorzugsweise im Bereich von 0,2 bis 1 m. Die Harzkonzentration in der Dispersion bezogen auf deren Gewicht liegt vorzugsweise im Bereich von 2 bis 35 Gew.-%, besonders bevorzugt im Bereich von 2 bis 7 Gew.-%. Zum Trocknen des mit der vorstehend beschriebenen Harz-Dispersion beschichteten Garns hat sich eine Trocknungstemperatur im Bereich von 140 bis 330 °C als besonders geeignet erwiesen.
Die erfindungsgemäßen Garne lassen sich vorteilhafterweise zur Herstellung eines Vorformlings verwenden.
Die der vorliegenden Erfindung zugrunde liegende Aufgabe wird des weiteren gelöst durch einen Vorformling, welcher die zuvor beschriebenen erfindungsgemäßen Garne umfasst, wobei die Garne an Stellen gegenseitiger Berührung über das infiltrierte Harz miteinander verbunden sind.
Obwohl aus den erfindungsgemäßen Garnen auch Gewebe hergestellt werden können, welche nach Aufschmelzen und Wiederverfestigen des infiltrierten Harzes einen in besonders hohem Maße schiebefesten Vorformling ergeben, ist es vorteilhaft, den erfindungsgemäßen Vorformling aus den erfindungsgemäßen Garnen aufzubauen, weil dabei die Garne in der Richtung positioniert werden können, in der beim Einsatz eines mit dem erfindungsgemäßen Vorformling hergestellten Composites die höchsten mechanischen Belastungen zu erwarten sind.
So sind in einer bevorzugten Ausführungsform des erfindungsgemäßen Vorformlings die Garne unidirektional angeordnet, wodurch der Vorformling zu einem Composite weiterverarbeitet werden kann, bei dessen Einsatz die maximale mechanische Belastung in eben dieser einen Richtung der Garne zu erwarten ist.
In einer weiteren bevorzugten Ausführungsform des erfindungsgemäßen Vorformlings sind die Garne bi-, tri- oder multidirektional angeordnet, wodurch der Vorformling zu einem Composite weiterverarbeitet werden kann, bei dessen Einsatz die maximale mechanische Belastung in eben diesen beiden oder mehreren Richtungen der Garne zu erwarten ist. Zusätzlich zu den vorstehend genannten flächigen Ausführungsformen des erfindungsgemäßen Vorformlings können die uni-, bi-, tri- oder multidirektional angeordneten Garne um einen Körper gewickelt werden, der z.B. Zylinderform hat, so dass ein dreidimensionaler Vorformling resultiert.
Ferner ist eine Ausführungsform des erfindungsgemäßen Vorformlings bevorzugt, in welcher die Garne als Kurzgarne vorliegen, die in alle Raumrichtungen orientiert sein können. Damit eignet sich dieser Vorformling insbesondere zur Herstellung eines Composites, bei dessen Einsatz mechanische Belastungen in allen Raumrichtungen auftreten können.
Die der vorliegenden Erfindung zugrunde liegende Aufgabe wird ferner gelöst durch ein Verfahren zur Herstellung eines Vorformlings umfassend die Schritte a) Vorlegen eines der erfindungsgemäßen Garne, b) Anordnen des Garns in einer Konfiguration, welche der Konfiguration des gewünschten Vorformlings entspricht, c) Erwärmen der in Schritt b) resultierenden Konfiguration bei einer Temperatur oberhalb des Schmelzpunktes des in das Garn infiltrierten Harzes, und d) Abkühlen der in Schritt c) resultierenden Konfiguration zumindest unter den Schmelzpunkt des Harzes.
In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird in Schritt c) die in Schritt b) resultierende Konfiguration gleichzeitig mit dem Erwärmen verpresst.
Der erfindungsgemäße Vorformling, bzw. der nach dem erfindungsgemäßen Verfahren hergestellte Vorformling zeigt eine hohe Schiebefestigkeit, weil die Garne des erfindungsgemäßen Vorformlings über das infiltrierte Harz miteinander verbunden sind. Daher läßt sich der erfindungsgemäße Vorformling gut handhaben, was insbesondere bei seiner Weiterverarbeitung zu einem Composite vorteilhaft ist.
Wenn der erfindungsgemäße Vorformling, bzw. der nach dem erfindungsgemäßen Verfahren hergestellte Vorformling Durchbrüche aufweisen soll, können diese durch entsprechendes Anordnen der Garne und somit ohne jeglichen Schnittverlust realisiert werden. Somit entfällt das eingangs im Stand der Technik beschriebene kosten- und arbeitsaufwendige Zuschneiden. Folglich entsteht keinerlei Abfall. Dadurch wird die Herstellung eines Composites mit Durchbrüchen erleichtert und verbilligt.
Ferner kann bei der Herstellung des erfindungsgemäßen Vorformlings, bzw. des nach dem erfindungsgemäßen Verfahren hergestellten Vorformlings durch den Einsatz eines der erfindungsgemäßen Garne anstatt eines textilen Flächengebildes das Garn in der Richtung positioniert werden, in der beim Einsatz des nachfolgend hergestellten Composites die höchsten mechanischen Belastungen zu erwarten sind.
Beispielsweise werden in einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens zur Herstellung eines Vorformlings in Schritt b) erfindungsgemäße Garne unidirektional angeordnet, so dass nach Schritt d) ein erfindungsgemäßer Vorformling resultiert, in dem die Garne unidirektional angeordnet sind.
In einer weiteren bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens zur Herstellung des erfindungsgemäßen Vorformlings kann man in Schritt b) die erfindungsgemäßen Garne entweder in bi-, tri- oder multidirektionalen Lagen in eine Konfiguration legen, welche der Konfiguration des gewünschten Vorformlings entspricht. Dabei können ausschließlich erfindungsgemäße Garne verwendet werden. Ebenso kann innerhalb einer Lage von Garnen nur ein Teil aus erfindungsgemäßen Garnen bestehen und der Rest aus Garnen, deren Filamente keinerlei Harzbeschichtung aufweisen. Die in der genannten Weise konfigurierten Game werden in Schritt c) des erfindungsgemäßen Verfahrens bei einer Temperatur oberhalb des Schmelzpunkts des Harzes, mit dem die Garne infiltriert sind, erwärmt, wobei die Garne gegebenenfalls verpresst werden. Dadurch werden die Garne klebrig. Nach Abkühlung zumindest unter den Schmelzpunkt des Harzes in Schritt d) entsteht ein erfindungsgemäßer Vorformling, in dem die Garne bi-, trioder multidirektional angeordnet sind.
In einer weiteren Ausführungsform des Verfahrens zur Herstellung des erfindungsgemäßen Vorformlings schneidet man die erfindungsgemäßen Garne in kurze Stücke, die z.B. eine Länge von 1 bis 1000 mm, bevorzugt von 1 bis 40 mm, haben, und platziert in Schritt a) die kurzen Garnstücke in eine Form. Danach werden in Schritt b) des erfindungsgemäßen Verfahrens die kurzen Garnstücke bei einer Temperatur oberhalb des Schmelzpunktes des Harzes, mit dem die Garne infiltriert sind, erwärmt, wodurch die Kurzgarnstücke klebrig werden, und dabei gegebenenfalls verpresst. Nach Abkühlung zumindest unter den Schmelzpunkt des Harzes in Schritt d) entsteht ein erfindungsgemäßer Vorformling, worin die erfindungsgemäßen Garne als Kurzgarne mit isotroper Ausrichtung vorliegen.
Der erfindungsgemäße Vorformling, bzw. der nach dem erfindungsgemäßen Verfahren hergestellte Vorformling, bzw. der aus der erfindungsgemäßen Verwendung resultierende Vorformling läßt sich aus den bereits genannten Gründen vorteilhaft zur Herstellung eines Composites verwenden, der eine Matrix umfasst, die ausgewählt ist aus einer der Gruppen der Polymere, Metalle, Keramiken, hydraulisch abbindenden Werkstoffe und Kohlenstoff, wobei als Polymermatrix Thermoplaste wie z.B. Polyethylenimin, Polyetherketon, Polyetheretherketon, Polypheny- lensulfid, Polyethersulfon, Polyetherethersulfon, Polysulfon oder Duromere wie z.B. Epoxide, als Metallmatrix z.B. Stahl(legierungen) oder Titan, als Keramikmatrix z.B. Siliziumcarbid und Bornitrid, als hydraulisch abbindende Werkstoffe Mörtel oder Beton und als Kohlenstoffmatrix z.B. Graphit geeignet sind. Im den aus den erfindungsgemäßen Verwendungen resultierenden Composites sind die erfindungsgemäßen Garne in der Richtung angeordnet, in der beim Einsatz der Composite die größten mechanischen Belastungen zu erwarten sind. Somit führt die erfindungsgemäße Verwendung der erfindungsgemäßen Garne und des daraus hergestellten Vorformlings zu Composites, in denen die Ausrichtung der Garne an die zu erwartenden mechanischen Belastungen maßgeschneidert angepasst ist.
Analyseverfahren
Der Epoxidwert der erfindungsgemäß eingesetzten Epoxidharze wird gemäß der DIN 53188 vom Oktober 1975 bestimmt.
Zugfestigkeit und Zugmodul des Composites, der mit einem erfindungsgemäßen Vorformling verstärkt ist, werden nach EN 2561 -B gemessen.
Die Erfindung wird anhand der folgenden Beispiele näher erläutert.
Beispiel 1 : Herstellung eines beschichteten Garns
Ein Garn aus Kohlenstofffaserfilamenten mit einem Gamtiter von 400 tex wird trocken mit einer Geschwindigkeit von 240 m/h bei einer Fadenspannung von 340 cN durch ein erstes Bad geführt, das eine Temperatur von etwa 20 °C hat. Das Bad enthält eine wässrige Dispersion, in der zwei Bisphenol A Epichlorhydrin Epoxidharze H1 und H2 enthalten sind. Das Gewichtsverhältnis von H1 zu H2 beträgt 1 ,2. H1 hat einen Epoxidwert von etwa 2200 mmol/kg und ein Molekulargewicht von 900 g/Mol und ist bei Raumtemperatur fest. H2 hat eine Epoxidwert von 5400 mmol/kg und ein Molekulargewicht von < 700 g/Mol und ist bei Raumtemperatur flüssig. Die Konzentration von H1 in der Dispersion beträgt 8,4 Gew.-%. Die Konzentration von H2 in der Dispersion beträgt 6,9 Gew.-%. Die Verweildauer des Garns in der Dispersion beträgt 12 Sekunden. Das mit H1 und H2 infiltrierte Garn wird bei von 250 bis 140 °C abfallender Temperatur getrocknet und weist nach der Trocknung bezogen auf sein Gesamtgewicht 1 ,2 bis 1 ,4 Gew.-% H1+H2 auf.
Unmittelbar anschließend wird das mit H1 und H2 infiltrierte Garn durch ein zweites Bad geführt, das eine Dispersion eines Bisphenol A Epichlorhydrin - Epoxidharzes mit einem Schmelzbereich von 120 bis 130 °C, einem Zahlenmittel des Molekulargewichts von 2870 g/Mol und mit einem Epoxidwert von 515 mmol/kg enthält. Das Dispergiermedium besteht aus einem Gemisch von 76 Gew.-% Wasser und 24 Gew.-% 2-Propoxyethanol. Die Epoxidharzkonzentration im Bad beträgt 4 Gew.-%. Die Verweilzeit des Garns im zweiten Bad beträgt wenige Sekunden. Nach dem Verlassen des Bades wird das nunmehr auch mit H3 infiltrierte Garn getrocknet, indem es zuerst durch einen vertikal angeordneten Trockner mit 300 °C und anschließend durch einen horizontal angeordneten Trockner mit 330 C° geführt wird. Es resultiert ein Garn mit 4,3 Gew.% infiltriertem Harz H1+H2+H3, wobei das infiltrierte Harz einen Epoxidwert von 1300 mmol/kg aufweist.
Beispiel 2: Herstellung eines Vorformlings
Das in Beispiel 1 beschichtete Garn wird auf eine Metallplatte, deren beide Grundflächen (Abmessungen 280 x 300 mm2) mit je einer Trennfolie belegt sind, mit einer Laborwickelanlage (Fadengeschwindigkeit 23,1 mm/s, Fadenzugkraft 400 cN) jeweils bis zum Rand der Metallplatte gewickelt. Zuerst wird auf beiden Seiten der Metallplatte eine Wickellage (Faserflächengewicht 267 g/m2) mit einer 90° Orientierung zur Wickelachse erzeugt. Dann wird die Metallplatte so um 90 "gedreht, dass die bereits vorhandene Wickellage parallel zur Wickelachse liegt. Im nächsten Schritt wird mit identischen Wickelbedingungen auf die bereits vorhandene Wickellage eine weitere Wickellage mit einer 90°-Orientierung zur Wickelachse aufgebracht. Auf diese Weise resultiert auf beiden Seiten der Metallplatte jeweils ein geschichteter Aufbau mit einer 0°-Fadenlage und einer 90°-Fadenlage. Der vorstehend beschriebene Wickelvorgang wird so oft wiederholt, bis auf beiden Grundseiten der Metallplatte jeweils vier Wickellagen aufeinander liegen, die abwechselnd eine 0°- und eine 90°-Fadenlage aufweisen.
Anschließend werden die Wickellagen auf beiden Grundseiten der Metallplatte mit je einer Trennfolie belegt. Die Metallplatte wird danach komplett mit beiden jeweils vierlagigen Wicklungen und den Trennfolien in einer Presse 1 h lang bei einem Flächendruck von 2 bar und einer Temperatur von 125 °C getempert.
Den resultierenden Pressung lässt man unter den Schmelzpunkt des Harzes abkühlen. Danach werden die beiden Wickelpakete an den Stirnflächen der Metallplatte auseinander geschnitten, und die vier Trennfolien entfernt. Auf diese Weise resultieren zwei formstabile Vorformlinge mit jeweils einem vierlagigen, abwechselnden 0°- und 90°-Aufbau, d.h. mit einer bidirektionalen Anordnung der Garne.
Beispiel 3: Herstellung eines Composites
Der in Beispiel 2 hergestellte Vorformling wird auf eine Größe von 200 x 200 mm zugeschnitten und mit RTM6-Harz der Fa. Hexcel, das zuvor auf 80 °C erwärmt und in solch einer Menge aufgebracht wurde, dass ein Composite mit 60 % Faservolumenanteil entstehen kann, in üblicher weise zu einem Composite mit einem vierlagigen, abwechselnden 0°- und 90°-Garnaufbau verarbeitet. Der Composite ist formidentisch zum eingesetzten Vorformling. Beispiel 4: Herstellung eines Vorformlings mit biaxialer Anordnung der Garne
Das in Beispiel 1 hergestellte Garn wird gemeinsam mit einem unter der Bezeichnung Tenax HTA 5131 400tex f6000 tO der Firma Tenax Fibers GmbH, DE erhältlichen Standardkohlenstofffaserfilamentgam einem biaxialen Legeprozess zugeführt, wobei jedes vierte parallel liegende Garn ein Garn aus Beispiel 1 ist. Die biaxiale Anordnung weist folgende Konfiguration auf: In der ersten Lage weisen die Standardkohlenstofffaserfilamentgarne und die Garne aus Beispiel 1 einen Winkel von plus 45 ° zur Produktionsrichtung auf. - In der zweiten Lage, die sich unmittelbar auf der ersten Lage befindet, weisen die Standardkohlenstofffaserfilamentgarne und die Garne aus Beispiel 1 einen Winkel von minus 45 ° zur Produktionsrichtung auf. Die resultierende Konfiguration wird durch Kontakt mit einem auf 145 °C erwärmten Heizkalander auf 125 °C 2 Minuten lang erwärmt und anschließend auf Raumtemperatur abgekühlt, wodurch ein verfestigtes textiles Flächengebilde resultiert (Vorformling im Zustand A). Ein daraus wie in Beispiel 3 hergestellter Composite mit 60 % Faservolumenanteil zeigt jeweils in Faserhauptrichtung eine Zugfestigkeit von 1100 MPa und einen Zugmodul von 70,5 GPa.
Beispiel 5: Herstellung eines Vorformlings mit dreidimensionaler Anordnung der Garne
Der in Beispiel 4 hergestellte Vorformling im Zustand A wird mit einem sphärisch geformten Werkzeug in Halbkugelform mit einem Durchmesser von 150 mm bestehend aus Matrize und Patrize in einer Presse eine Stunde lang bei einem Flächendruck von 2 bar und einer Werkzeugtemperatur von 125 °C entsprechend der Geometrie des Werkzeugs umgeformt. Nach Abkühlen auf Raumtemperatur weist der resultierende Vorformling eine Halbkugelform auf.

Claims

Patentansprüche:
1. Garn bestehend aus Verstärkungsfaserfilamenten und einem in das Garn infiltrierten Harz, das mehrfach aufschmelzbar und durch Abkühlen auf Raumtemperatur in den festen Zustand überführbar ist, wobei die Filamente des Garns über das Harz zumindest teilweise verbunden sind, wobei das Garn bezogen auf sein Gesamtgewicht 2,5 bis 25 Gew.-% infiltriertes Harz aufweist, und wobei das infiltrierte Harz aus einer Mischung von zumindest zwei Epoxidharzen E1 und E2 besteht, wobei E1 einen Epoxidwert im Bereich von 2000 bis 2300 mmol/kg Harz, und E2 einen Epoxidwert im Bereich von 500 bis 650 mmol/kg Harz aufweist, und das Gewichtsverhältnis E1 :E2 der Epoxidharze E1 und E2 in der Mischung so gewählt ist, dass das infiltrierte Harzgemisch einen Epoxidwert zwischen 550 und 2100 mmol/kg Harz aufweist.
2. Garn nach Anspruch 1 , wobei das Garn bezogen auf sein Gesamtgewicht 3 bis 10 Gew.-% infiltriertes Harz aufweist.
3. Garn nach Anspruch 1 oder 2, dessen Verstärkungsfaserfilamente Kohlenstoff- filamente sind, die aus Pech-, Polyacrylnitril- oder Viskosevorprodukten gewonnen wurden, oder Aramidfilamente, Glasfilamente, Keramikfilamente, Borfi- lamente, Synthesefaserfilamente oder Naturfaserfilamente oder eine Kombination aus einem oder mehreren dieser Filamente.
4. Garn bestehend aus Verstärkungsfaserfilamenten und einem in das Garn infiltrierten Harz, das mehrfach aufschmelzbar und durch Abkühlen auf Raumtemperatur in den festen Zustand überführbar ist, wobei die Filamente des Garns über das Harz zumindest teilweise verbunden sind, wobei das Garn bezogen auf sein Gesamtgewicht 2,5 bis 25 Gew.-% infiltriertes Harz aufweist, die Verstärkungsfaserfilamente elektrochemisch vorbehandelte Kohlenstofffila- mente sind, wobei das infiltrierte Harz mindestens zwei Bisphenol A Epichlorhydrin - Harze H1 und H2 in einem Gewichtsverhältnis H1 :H2 von 1 ,1 bis 1 ,4 enthält, wobei H1 einen Epoxidwert von 1850 bis 2400 mmol/kg und ein Molekulargewicht von 800 bis 1000 g/Mol aufweist und bei Raumtemperatur fest ist, und H2 einen Epoxidwert von 5000 bis 5600 mmol/kg und ein Molekulargewicht von < 700 g/Mol aufweist und bei Raumtemperatur flüssig ist, und wobei das infiltrierte Harz zusätzlich ein drittes Harz H3 enthält, wobei H3 ein Bisphenol A Epichlorhydrin - Epoxidharz mit einem Epoxidwert von 450 bis 650 mmol/kg, einem Zahlenmittel des Molekulargewichts von 2800 bis 3000 g/Mol und mit einem Schmelzbereich von 110 bis 130 °C ist.
5. Garn nach Anspruch 4, wobei das Garn bezogen auf sein Gesamtgewicht 3 bis 10 Gew.-% infiltriertes Harz aufweist.
6. Garn nach Anspruch 4 oder 5, dessen Verstärkungsfaserfilamente Kohlenstoff- filamente sind, die aus Pech-, Polyacrylnitril- oder Viskosevorprodukten gewonnen wurden, oder Aramidfilamente, Glasfilamente, Keramikfilamente, Borfi- lamente, Synthesefaserfilamente oder Naturfaserfüamente oder eine Kombination aus einem oder mehreren dieser Filamente.
7. Garn nach einem oder mehreren der Ansprüche 4 bis 6, dadurch gekennzeichnet, dass das Garn bezogen auf sein Gesamtgewicht an H1 und H2 insgesamt 0,5 bis 1 ,7 Gew.-% und an H3 2,3 bis 5,5 Gew.-% aufweist.
8. Verwendung des Garns nach einem oder mehreren der Ansprüche 1 bis 3 oder eines Garns nach einem oder mehreren der Ansprüche 4 bis 7 zur Herstellung eines Vorformlings.
9. Vorformling umfassend Garne nach einem oder mehreren der Ansprüche 1 bis 3 oder Garne nach einem oder mehreren der Ansprüche 4 bis 7, wobei die Garne an Stellen gegenseitiger Berührung über das infiltrierte Harz miteinander verbunden sind.
10. Vorformling nach Anspruch 9, dadurch gekennzeichnet, dass die Garne unidirektional angeordnet sind.
11. Vorformling nach Anspruch 9, dadurch gekennzeichnet, dass die Garne bi-, trioder multidirektional angeordnet sind.
12. Vorformling nach Anspruch 9, dadurch gekennzeichnet, dass die Garne als Kurzgarne vorliegen.
13. Verfahren zur Herstellung eines Vorformlings nach einem oder mehreren der Ansprüche 9 bis 12 umfassend die Schritte a) Vorlegen eines Garnes nach einem oder mehreren der Ansprüche 1 bis 3 oder eines Garnes nach einem oder mehreren der Ansprüche 4 bis 7, b) Anordnen des Garns in einer Konfiguration, welche der Konfiguration des gewünschten Vorformlings entspricht, c) Erwärmen der in Schritt b) resultierenden Konfiguration bei einer Temperatur oberhalb des Schmelzpunktes des in das Garn infiltrierten Harzes, und d) Abkühlen der in Schritt c) resultierenden Konfiguration zumindest unter den Schmelzpunkt des Harzes.
14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass in Schritt c) die in Schritt b) resultierende Konfiguration gleichzeitig mit dem Erwärmen verpresst wird.
15. Verwendung des Vorformlings nach einem oder mehreren der Ansprüche 9 bis 12 zur Herstellung eines Composites umfassend eine Matrix, die ausgewählt ist aus einer der Gruppen der Polymere, Metalle, Keramiken, hydraulisch abbindenden Werkstoffen und Kohlenstoff.
16. Verwendung des nach dem Verfahren von Anspruch 13 oder 14 hergestellten Vorformlings bzw. des aus der Verwendung von Anspruch 8 resultierenden Vorformlings zur Herstellung eines Composites umfassend eine Matrix, die ausgewählt ist aus einer der Gruppen der Polymere, Metalle, Keramiken, hydraulisch abbindenden Werkstoffe und Kohlenstoff.
PCT/EP2005/003281 2004-03-31 2005-03-29 Durch epoxidharz imprägniertes garn und seine verwendung zur herstellung eines vorformlings WO2005095080A1 (de)

Priority Applications (11)

Application Number Priority Date Filing Date Title
KR1020067020391A KR101180753B1 (ko) 2004-03-31 2005-03-29 에폭시 수지 함침 사 및 프리폼을 제조하기 위한 이의 용도
JP2007505485A JP5158778B2 (ja) 2004-03-31 2005-03-29 エポキシ樹脂含浸ヤーンおよび予備成形物を製造するためのその使用
EP20050732347 EP1737633B1 (de) 2004-03-31 2005-03-29 Durch epoxidharz imprägniertes garn und seine verwendung zur herstellung eines vorformlings
AU2005229547A AU2005229547B2 (en) 2004-03-31 2005-03-29 Epoxy resin impregnated yarn and the use thereof for producing a preform
BRPI0509351-1A BRPI0509351B1 (pt) 2004-03-31 2005-03-29 Fio, uso do mesmo, pré-forma, método para produzir a mesma, e, uso da pré-forma
ES05732347T ES2391401T3 (es) 2004-03-31 2005-03-29 Hilo impregnado con una resina epoxídica y su utilización para la producción de una preforma
CN2005800106734A CN1976787B (zh) 2004-03-31 2005-03-29 环氧树脂浸渍纱线以及其在制作预成型物中的应用
PL05732347T PL1737633T3 (pl) 2004-03-31 2005-03-29 Przędza impregnowana żywicą epoksydową i jej zastosowanie do wytwarzania preformy
CA 2562141 CA2562141C (en) 2004-03-31 2005-03-29 Epoxy resin impregnated yarn and the use thereof for producing a preform
US11/547,008 US8273454B2 (en) 2004-03-31 2005-03-29 Epoxy resin impregnated yarn and the use thereof for producing a preform
NO20064984A NO338721B1 (no) 2004-03-31 2006-10-31 Epoksyharpiks impregnert garn og dets anvendelse for fremstilling av en forform

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP04007749.7 2004-03-31
EP04007749 2004-03-31

Publications (1)

Publication Number Publication Date
WO2005095080A1 true WO2005095080A1 (de) 2005-10-13

Family

ID=34924540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/003281 WO2005095080A1 (de) 2004-03-31 2005-03-29 Durch epoxidharz imprägniertes garn und seine verwendung zur herstellung eines vorformlings

Country Status (14)

Country Link
US (1) US8273454B2 (de)
EP (1) EP1737633B1 (de)
JP (1) JP5158778B2 (de)
KR (1) KR101180753B1 (de)
CN (1) CN1976787B (de)
AU (1) AU2005229547B2 (de)
BR (1) BRPI0509351B1 (de)
CA (1) CA2562141C (de)
ES (1) ES2391401T3 (de)
NO (1) NO338721B1 (de)
PL (1) PL1737633T3 (de)
PT (1) PT1737633E (de)
WO (1) WO2005095080A1 (de)
ZA (1) ZA200607647B (de)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007101578A2 (de) * 2006-03-03 2007-09-13 Toho Tenax Europe Gmbh Verfahren zum herstellen von verfestigten gelegten strukturen
US20090092831A1 (en) * 2006-04-28 2009-04-09 Toho Tenax Europe Gmbh Carbon Fiber
CN101395316B (zh) * 2006-03-03 2012-01-18 东邦泰纳克丝欧洲有限公司 粘合型无纬结构的制造方法
WO2012072405A1 (de) 2010-12-02 2012-06-07 Toho Tenax Europe Gmbh Unidirektionale faserbänder aufweisender faservorformling aus verstärkungsfaserbündeln und verbundwerkstoff-bauteil
WO2013017434A1 (de) 2011-07-29 2013-02-07 Toho Tenax Europe Gmbh Flexibles, mit harz vorimprägniertes verstärkungsfasergarn
TWI422476B (zh) * 2006-12-01 2014-01-11 Toho Tenax Europe Gmbh 黏合敷襯結構物之製法
EP2727693A1 (de) 2012-11-05 2014-05-07 Toho Tenax Europe GmbH Verfahren zum Herstellen von Faservorformlingen
EP2727694A1 (de) 2012-11-05 2014-05-07 Toho Tenax Europe GmbH Ablegevorrichtung zum gesteuerten Ablegen von Verstärkungsfaserbündeln
WO2014108140A1 (de) * 2013-01-10 2014-07-17 Heinrich Kuper Gmbh & Co. Kg Schmelzklebefaden, vorformling, faserverbundbauteil und verfahren zur herstellung eines vorformlings
US9540509B2 (en) 2013-01-28 2017-01-10 Toho Tenax Europe Gmbh Impregnated reinforcing fiber yarn and its use in producing composite materials
US9920197B2 (en) 2012-12-20 2018-03-20 Cytec Technology Corp. Liquid binder composition for binding fibrous materials
WO2019086348A1 (de) 2017-10-30 2019-05-09 Teijin Carbon Europe Gmbh BAUTEIL ZUR ABSORPTION VON STOßENERGIE
WO2020212087A1 (en) 2019-04-18 2020-10-22 Teijin Carbon Europe Gmbh Wedge filler preform

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007060833A1 (ja) * 2005-11-25 2007-05-31 Toray Industries, Inc. 炭素繊維束、プリプレグおよび炭素繊維強化複合材料
BRPI1013976A2 (pt) * 2009-05-04 2016-04-05 Faisal H-J Knappe composto de fibras e método para sua produção.
CA2821246A1 (en) * 2010-12-13 2012-06-21 Toray Industries, Inc. Carbon-fiber-reinforced plastic molded article
US20140205831A1 (en) * 2011-07-29 2014-07-24 Toho Tenax Europe Gmbh Flexible reinforcing fiber yarn pre-impregnated with resin
KR101188025B1 (ko) * 2012-02-20 2012-10-08 조연호 일방향 탄소섬유 프리프레그 직물을 이용한 복합재료 및 그를 이용한 동박적층판
JP6654632B2 (ja) 2014-06-30 2020-02-26 サイテック インダストリーズ インコーポレイテッド プリフォーム製造用乾燥繊維テープ
CA3136651A1 (en) * 2019-04-18 2020-10-22 Teijin Carbon Europe Gmbh Braided preform radius filler

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998030374A1 (en) * 1997-01-08 1998-07-16 The Dow Chemical Company Process for preparing preforms and molded articles
DE19933741A1 (de) * 1999-07-19 2001-01-25 Basf Ag Verfahren zur Haftungsverbesserung von Acrylatharzen
US6228474B1 (en) 1996-02-21 2001-05-08 Toray Industries, Inc. Epoxy resin composition for a fiber-reinforced composite material, yarn prepreg, and process and apparatus for preparing the same
DE20120447U1 (de) 2001-12-18 2002-04-11 C. Cramer, Weberei, Heek-Nienborg, GmbH & Co. KG, 48619 Heek Vorverfestigtes textiles Flächengebilde
EP1281498A2 (de) 1995-03-15 2003-02-05 Hexcel Composites GmbH Flexibles, leichtes vorimpregniertes Tau

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1933741A1 (de) * 1969-07-03 1971-01-14 Robert Steger Einen selbstklebenden Heizstreifen zum Beheizen bzw. Erwaermen von Platten aller Art,insbesondere fuer Autoscheiben,mit dem besonderen Merkmal,dass dieser Heizstreifen aus einem drahtlosen Heizleiter besteht
CH512626A (de) 1969-07-07 1971-09-15 Ciba Geigy Ag Verfahren zur Herstellung von Prepregs
JPS557369B2 (de) * 1972-07-14 1980-02-25
JPS5352796A (en) 1976-10-19 1978-05-13 Sanyo Chemical Ind Ltd Surface treating resin composition for carbon fiber and composite carbon fiber material containing said treated fiber
JPS5841973A (ja) * 1981-09-07 1983-03-11 東邦レーヨン株式会社 炭素繊維用エマルジヨン型サイジング剤
US5178706A (en) * 1987-01-23 1993-01-12 Sumitomo Chemical Co., Ltd. Method of producing thin fiber-reinforced resin sheet
US5227238A (en) * 1988-11-10 1993-07-13 Toho Rayon Co., Ltd. Carbon fiber chopped strands and method of production thereof
DE3942858A1 (de) 1989-12-23 1991-06-27 Basf Ag Reaktiv-emulgatoren enthaltende waessrige reaktionsharzdispersionen als schlichtemittel fuer kohlenstoff-fasern
JP3008481B2 (ja) * 1990-11-02 2000-02-14 三菱化学株式会社 炭素短繊維集合体及びそれを強化材とする繊維強化熱可塑性樹脂組成物
US5877229A (en) * 1995-07-26 1999-03-02 Lockheed Martin Energy Systems, Inc. High energy electron beam curing of epoxy resin systems incorporating cationic photoinitiators
JPH09227693A (ja) * 1996-02-21 1997-09-02 Toray Ind Inc エポキシ樹脂組成物、プリプレグ、複合材料およびコンクリート部材
JP2957467B2 (ja) * 1996-03-11 1999-10-04 東邦レーヨン株式会社 炭素繊維ストランド用サイジング剤、サイズ処理された炭素繊維ストランド、及びその炭素繊維ストランドを強化繊維としたプリプレグ
JP4161409B2 (ja) * 1997-05-23 2008-10-08 東レ株式会社 チョップド炭素繊維およびその製造方法
US6399199B1 (en) * 1999-12-28 2002-06-04 Toray Industries Inc. Prepeg and carbon fiber reinforced composite materials
JP2002173873A (ja) * 2000-09-19 2002-06-21 Toray Ind Inc 炭素繊維糸条、そのパッケージ状物及び炭素繊維シートの製造方法
GB0028341D0 (en) * 2000-11-21 2001-01-03 Cytec Tech Corp Thermally stable resin binder composition and method for binding fibres
JP2002317383A (ja) 2001-04-25 2002-10-31 Toho Tenax Co Ltd フィラメントワインディング用炭素繊維束
JP2003003376A (ja) 2001-06-18 2003-01-08 Toray Ind Inc 炭素繊維束
JP2003002989A (ja) * 2001-06-19 2003-01-08 Toray Ind Inc プリプレグ
JP2004169260A (ja) * 2002-10-31 2004-06-17 Toho Tenax Co Ltd 炭素繊維ストランド
JP2004149721A (ja) * 2002-10-31 2004-05-27 Toho Tenax Co Ltd 炭素繊維ストランド
CN1692199A (zh) * 2002-10-31 2005-11-02 东邦泰纳克丝株式会社 碳纤维辫
JP4437420B2 (ja) * 2004-03-31 2010-03-24 東邦テナックス株式会社 炭素繊維ストランド

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1281498A2 (de) 1995-03-15 2003-02-05 Hexcel Composites GmbH Flexibles, leichtes vorimpregniertes Tau
US6228474B1 (en) 1996-02-21 2001-05-08 Toray Industries, Inc. Epoxy resin composition for a fiber-reinforced composite material, yarn prepreg, and process and apparatus for preparing the same
WO1998030374A1 (en) * 1997-01-08 1998-07-16 The Dow Chemical Company Process for preparing preforms and molded articles
DE19933741A1 (de) * 1999-07-19 2001-01-25 Basf Ag Verfahren zur Haftungsverbesserung von Acrylatharzen
DE20120447U1 (de) 2001-12-18 2002-04-11 C. Cramer, Weberei, Heek-Nienborg, GmbH & Co. KG, 48619 Heek Vorverfestigtes textiles Flächengebilde

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007101578A3 (de) * 2006-03-03 2007-11-15 Toho Tenax Europe Gmbh Verfahren zum herstellen von verfestigten gelegten strukturen
CN101395316B (zh) * 2006-03-03 2012-01-18 东邦泰纳克丝欧洲有限公司 粘合型无纬结构的制造方法
WO2007101578A2 (de) * 2006-03-03 2007-09-13 Toho Tenax Europe Gmbh Verfahren zum herstellen von verfestigten gelegten strukturen
US8834997B2 (en) * 2006-04-28 2014-09-16 Toho Tenax Europe Gmbh Carbon fiber
US20090092831A1 (en) * 2006-04-28 2009-04-09 Toho Tenax Europe Gmbh Carbon Fiber
CN101454502B (zh) * 2006-04-28 2012-12-12 东邦泰纳克丝欧洲有限公司 碳纤维
TWI422476B (zh) * 2006-12-01 2014-01-11 Toho Tenax Europe Gmbh 黏合敷襯結構物之製法
WO2012072405A1 (de) 2010-12-02 2012-06-07 Toho Tenax Europe Gmbh Unidirektionale faserbänder aufweisender faservorformling aus verstärkungsfaserbündeln und verbundwerkstoff-bauteil
US8840988B2 (en) 2010-12-02 2014-09-23 Toho Tenax Europe Gmbh Fiber preform made from reinforcing fiber bundles and comprising unidirectional fiber tapes, and composite component
WO2013017434A1 (de) 2011-07-29 2013-02-07 Toho Tenax Europe Gmbh Flexibles, mit harz vorimprägniertes verstärkungsfasergarn
TWI565844B (zh) * 2011-07-29 2017-01-11 東邦特耐克絲歐洲股份有限公司 預浸漬樹脂之撓性增強纖維紗線
WO2014067762A1 (de) 2012-11-05 2014-05-08 Toho Tenax Europe Gmbh Ablegevorrichtung zum gesteuerten ablegen von verstärkungsfaserbündeln
WO2014067763A1 (de) 2012-11-05 2014-05-08 Toho Tenax Europe Gmbh Verfahren zum herstellen von faservorformlingen
EP2727694A1 (de) 2012-11-05 2014-05-07 Toho Tenax Europe GmbH Ablegevorrichtung zum gesteuerten Ablegen von Verstärkungsfaserbündeln
EP2727693A1 (de) 2012-11-05 2014-05-07 Toho Tenax Europe GmbH Verfahren zum Herstellen von Faservorformlingen
US10052654B2 (en) 2012-11-05 2018-08-21 Teijin Carbon Europe Gmbh Deposition device for controlled deposition of reinforcing fiber bundles
US10059042B2 (en) 2012-11-05 2018-08-28 Teijin Carbon Europe Gmbh Method for producing fiber preforms
US9920197B2 (en) 2012-12-20 2018-03-20 Cytec Technology Corp. Liquid binder composition for binding fibrous materials
US10655006B2 (en) 2012-12-20 2020-05-19 Cytec Technology Corp. Binder-treated fibrous materials
WO2014108140A1 (de) * 2013-01-10 2014-07-17 Heinrich Kuper Gmbh & Co. Kg Schmelzklebefaden, vorformling, faserverbundbauteil und verfahren zur herstellung eines vorformlings
US9540509B2 (en) 2013-01-28 2017-01-10 Toho Tenax Europe Gmbh Impregnated reinforcing fiber yarn and its use in producing composite materials
WO2019086348A1 (de) 2017-10-30 2019-05-09 Teijin Carbon Europe Gmbh BAUTEIL ZUR ABSORPTION VON STOßENERGIE
WO2020212087A1 (en) 2019-04-18 2020-10-22 Teijin Carbon Europe Gmbh Wedge filler preform

Also Published As

Publication number Publication date
NO338721B1 (no) 2016-10-10
ZA200607647B (en) 2008-05-28
PT1737633E (pt) 2012-09-12
US20070196636A1 (en) 2007-08-23
AU2005229547A1 (en) 2005-10-13
CA2562141A1 (en) 2005-10-13
EP1737633B1 (de) 2012-07-25
CN1976787B (zh) 2012-03-21
BRPI0509351A (pt) 2007-09-11
BRPI0509351B1 (pt) 2015-03-03
CA2562141C (en) 2012-05-29
PL1737633T3 (pl) 2012-12-31
US8273454B2 (en) 2012-09-25
ES2391401T3 (es) 2012-11-26
KR101180753B1 (ko) 2012-09-10
CN1976787A (zh) 2007-06-06
EP1737633A1 (de) 2007-01-03
AU2005229547B2 (en) 2010-06-10
KR20070031287A (ko) 2007-03-19
JP2007530756A (ja) 2007-11-01
NO20064984L (no) 2006-12-28
JP5158778B2 (ja) 2013-03-06

Similar Documents

Publication Publication Date Title
EP1737633B1 (de) Durch epoxidharz imprägniertes garn und seine verwendung zur herstellung eines vorformlings
DE602005005714T2 (de) Kontinuierliches pultrusionsverfahren zur herstellung von hochleistungs-strukturprofilen
DE60024099T2 (de) Gewebe und Verbundwirkstoff mit verbessertem Widerstand gegen das Zusammendrücken des Kerns für faserverstärkte Verbundwirkstoffe
DE69733387T2 (de) Verbundfaden und daraus hergestellte faserverstärkte verbundwerkstoffe
EP1923420B1 (de) Faserverbund-Werkstoff und Verfahren zu dessen Herstellung
DE602004004371T2 (de) Prepregs zum Gebrauch im Aufbau von Schichten von Verbundwerkstoffen und Verfahren zu deren Aufbereitung
DE69416957T2 (de) Prepregs, und Verfahren zu ihrer Herstellung
DE69814129T2 (de) Vorformling aus unidirektionalen fasern und regellosen matten
EP1492666B1 (de) Verbundwerkstoff, verfahren zu seiner herstellung und seine verwendung
EP2736691B1 (de) Flexibles, mit harz vorimprägniertes verstärkungsfasergarn
EP2646226B1 (de) Unidirektionale faserbänder aufweisender faservorformling aus verstärkungsfaserbündeln und verbundwerkstoff-bauteil
DE69723965T2 (de) Kohlefaserprepregs und verfahren zu seiner herstellung
DE69002071T2 (de) Gittergewebe, Verfahren zu seiner Herstellung und mit ihm bewehrter, geformter anorganischer Gegenstand.
DE3132859A1 (de) Drapierbares und formbares gewebtes graphitgewebe mit einer hohen elektrischen leitfaehigkeit
DE112015005173T5 (de) Schwingungsdämpfendes Formprodukt aus faserverstärktem Harz und Kraftfahrzeugbauteil, bei dem dieses eingesetzt wird
EP2670581B1 (de) Verfahren, halbzeug für die herstellung eines faserverstärkten bauteils einer windenergieanlage und verwendung des halbzeuges
EP2606079A1 (de) Faserverbundbauteil und ein verfahren zu dessen herstellung
DE102010042349B4 (de) Textiles Halbzeug, insbesondere Prepreg, auf Basis von aus Recyclingfasern zusammengesetztem Carbonfaservlies, Verfahren zur Herstellung und Verwendung des textilen Halbzeugs sowie Carbonfaserverstärkter Verbundwerkstoff
DE69918566T2 (de) Schaberklinge
DE69020554T2 (de) Verschleissfeste mehrschichtige gegenstände.
DE3852687T2 (de) Phenolmodifizierter Epoxydharzklebstoff.
DE69130111T2 (de) Verfahren zur herstellung eines verbundwerkstoffes sowie verbundwerkstoff
DE69515556T2 (de) Gegenstand aus faserverstärktem Verbundwerkstoff in Form eines Zylinders
EP3679081B1 (de) Harzzusammensetzung, prepregmaterial, verbundbauteil, und verfahren zur herstellung des verbundbauteils einer harzzusammensetzung
DE69415431T2 (de) Faserverstärkte Verbundwerkstoffe

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006/07647

Country of ref document: ZA

Ref document number: 200607647

Country of ref document: ZA

WWE Wipo information: entry into national phase

Ref document number: 3560/CHENP/2006

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2007505485

Country of ref document: JP

Ref document number: 2562141

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1020067020391

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580010673.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 11547008

Country of ref document: US

Ref document number: 2007196636

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 2005229547

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2005732347

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2005229547

Country of ref document: AU

Date of ref document: 20050329

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005229547

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2005732347

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067020391

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 11547008

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0509351

Country of ref document: BR