WO2005087970A1 - Vacuum deposition apparatus - Google Patents

Vacuum deposition apparatus Download PDF

Info

Publication number
WO2005087970A1
WO2005087970A1 PCT/JP2005/003174 JP2005003174W WO2005087970A1 WO 2005087970 A1 WO2005087970 A1 WO 2005087970A1 JP 2005003174 W JP2005003174 W JP 2005003174W WO 2005087970 A1 WO2005087970 A1 WO 2005087970A1
Authority
WO
WIPO (PCT)
Prior art keywords
hollow shaft
evaporation source
vacuum chamber
evaporation
vacuum
Prior art date
Application number
PCT/JP2005/003174
Other languages
French (fr)
Japanese (ja)
Inventor
Hisato Tanaka
Original Assignee
Ulvac, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac, Inc. filed Critical Ulvac, Inc.
Publication of WO2005087970A1 publication Critical patent/WO2005087970A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/564Means for minimising impurities in the coating chamber such as dust, moisture, residual gases

Definitions

  • the present invention relates to a vacuum evaporation apparatus having a structure in which an evaporation source can move in a vacuum chamber.
  • a substrate to be processed and an evaporation source are arranged inside a vacuum chamber so as to face each other, and a substance evaporated from the evaporation source is evaporated on the substrate to form a film.
  • deposition was performed with the evaporation source fixed in a vacuum chamber.In recent years, however, the evaporation source has been moved relative to the substrate for reasons such as a larger substrate area and uniform film quality.
  • a method of forming a film is also employed (for example, see Patent Document 1 below).
  • a vacuum evaporation apparatus having a structure in which an evaporation source can be moved in a vacuum chamber has a mechanism for driving the evaporation source, such as a chain sprocket, which is disposed in the vacuum chamber, and a power supply cable for the evaporation source.
  • the connection of the cooling water circulation hose and the like was made directly to the evaporation source inside the chamber via the partition of the vacuum chamber.
  • Patent Document 1 discloses a vacuum evaporation apparatus having a structure including a plurality of evaporation sources moving from one end of a substrate to the other end, and continuously forming a multilayer film of different evaporation materials.
  • Patent Document 2 discloses a configuration in which an evaporation source of an electron beam evaporation apparatus is formed in a cylindrical shape, the cylindrical evaporation source is movable in a longitudinal direction, and cooling water is circulated inside.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-257644
  • Patent Document 2 JP-A-10-259474
  • a driving mechanism required to move the evaporation source is a vacuum chamber. Since it is disposed inside the chamber, there is a problem that the inside of the chamber is contaminated by particles generated from the driving mechanism. In addition, since the driving mechanism is arranged in the chamber, the volume of the chamber increases, and it becomes difficult to arrange a plurality of evaporation sources.
  • the present invention has been made in view of the above-described problems, and provides a vacuum evaporation apparatus including an evaporation source driving mechanism that can reduce generation of particles in a chamber and can cope with a plurality of arrangements of evaporation sources. That is the task.
  • a vacuum deposition apparatus provided with an evaporation source of a deposition material in a vacuum chamber, wherein a hollow shaft having one end closed and the other end opened is provided.
  • the drive mechanism of the evaporation source is arranged outside the vacuum chamber, it is possible to avoid the generation of particles due to the drive mechanism, to reduce the volume of the vacuum chamber, or to reduce the volume of the vacuum chamber. It is possible to easily cope with multiple arrangements of evaporation sources in the interior.
  • the drive mechanism of the evaporation source is disposed outside the vacuum chamber, and the necessary power and cooling water supply to the evaporation source are reduced. Since the process is performed through the interior of the hollow shaft supporting the evaporation source, it is possible to reduce the particle generation factor inside the vacuum chamber and easily cope with a plurality of evaporation sources.
  • FIG. 1 is a side sectional view showing a configuration of an evaporation source driving mechanism of a vacuum chamber according to an embodiment of the present invention.
  • FIG. 2 is a side sectional view showing one operation of the evaporation source driving mechanism of FIG. 1.
  • FIG. 3 is a plan view showing an example in which a plurality of evaporation sources are arranged.
  • FIG. 1 shows a configuration of an evaporation source driving mechanism 1 of a vacuum evaporation apparatus according to an embodiment of the present invention.
  • the evaporation source drive mechanism 1 includes a hollow shaft 5 that passes through a partition 3 of a vacuum chamber that partitions the film formation chamber 2 and supports the evaporation source 4 in the film formation chamber 2.
  • the hollow shaft 5 has one end 5a on the film forming chamber 2 side closed and the other end 5b on the outside of the vacuum chamber open. Steaming The source 4 is supported near one end 5a of the hollow shaft 5.
  • one end 5a of the hollow shaft 5 is referred to as a “closed end”, and the other end 5b is referred to as an “open end”.
  • the hollow shaft 5 is penetrated through a through hole 3a of the partition wall 3, and the hollow shaft 5 is movable in the axial direction through the penetrating portion.
  • Bellows 6 is provided between 5b. That is, in the present embodiment, airtightness between the partition wall 3 and the hollow shaft 5 is ensured by the bellows 6, and the bellows 6 allows communication between the inside and outside of the vacuum chamber in the through portion of the hollow shaft 5. I try to cut off.
  • the inside of the hollow shaft 5 is at atmospheric pressure because its closed end 5a is located inside the vacuum chamber and its open end 5b is located outside the vacuum chamber.
  • the evaporation source 4 has a resistance heating source for evaporating the evaporation material and a jacket for circulating cooling water. 7 is connected to the evaporation source 4 via the inside of the hollow shaft 5.
  • the evaporation source 4 is not limited to the above-described resistance heating method, and another type of evaporation source such as an electron beam evaporation source can be used.
  • the inside of the hollow shaft 5 communicates with an open end 5b that opens to the outside (atmosphere side) of the vacuum chamber, and a supply system 7 such as the power cable and the cooling water circulation hose opens the hollow shaft 5. It is inserted from end 5b.
  • the supply system 7 is connected to an external power source and a cooling water circulation system through the inside of a flexible outlet pipe 9 fixed to a support plate 8 attached to the upper end of the hollow shaft 5 on the open end 5b side. Te ru.
  • the evaporation source 4 is movable inside the film forming chamber 2 along a guide rail 10 extending in the axial direction of the hollow shaft 5.
  • a guide roller 11 that runs on the guide rail 10 is attached to the closed end 5a side of the hollow shaft 5.
  • a drive source for moving the hollow shaft 5 in the axial direction is provided outside the vacuum chamber.
  • the partition 3 of the vacuum chamber is provided with a bracket 13 that supports a slide guide 12 along the extending direction of the hollow shaft 5 at a position directly below the hollow shaft 5 on the outer surface side.
  • a guide block 14 that runs on the slide guide 12 is provided on the open end 5b side of the hollow shaft 5, and is driven by a drive unit 15 attached to the lower surface side of the bracket 13 as shown in FIG. As shown in FIG. 2, the hollow shaft 5 is movable along a slide guide 12.
  • the drive unit 15 is formed of a precision feed mechanism such as a servo cylinder, an electric servomotor, or a ball screw unit including a pulse motor, so that the movement amount and the movement position of the hollow shaft 5 can be controlled with high precision.
  • the “moving mechanism” of the present invention is configured by the slide guide 12, the bracket 13, the guide block 14, the driving unit 15, and the like.
  • the vacuum evaporation apparatus provided with the evaporation source driving mechanism 1 configured as described above is provided inside the film formation chamber 2 on the film formation surface of the substrate to be processed, which is disposed at a position facing the evaporation source 4.
  • a predetermined vapor deposition material is formed.
  • a mask on which an opening pattern of a predetermined shape is formed may be overlaid on the film formation surface of the substrate to be processed.
  • the evaporation source driving mechanism 1 drives the driving unit 15 from the standby position of the evaporation source 4 shown in FIG. 1 to move the hollow shaft 5 to the film forming chamber 2 side, and the evaporation source 4 is shown in FIG. In the process of moving to the end position, a film forming operation is performed on the substrate to be processed.
  • the drive mechanism of the evaporation source 4 is disposed outside the partition 3 of the vacuum chamber, the generation of dust or particles caused by the drive mechanism is avoided. As a result, a high-quality film formation process can be performed while maintaining the cleanness of the film formation chamber 2.
  • the evaporation source driving mechanism 1 is disposed outside the vacuum chamber, it is possible to avoid an increase in the volume of the film forming chamber 2, and thereby to reduce the size of the vacuum chamber.
  • the evaporation source driving mechanism 1 outside the vacuum chamber, it is possible to dispose a plurality of evaporation sources 4 inside the film forming chamber 2, and to form a multilayer film on the substrate to be processed. Will be able to respond sufficiently.
  • FIG. 3 is a plan view showing an example of the arrangement of a plurality of evaporation sources 4 in the film forming chamber 2.
  • Each evaporation source 4 A and 4B are movable in the film forming chamber 2 by evaporation source driving mechanisms 1A and IB having the same configuration as described above.
  • Each of the evaporation sources 4A and 4B is configured to share the same moving area so as to cover the same area on the film formation surface of the substrate to be processed.
  • the mode of movement of each of the evaporation sources 4 is not particularly limited, and can be moved synchronously or alternately.
  • the supply of necessary power and cooling water to the evaporation source 4 in the film forming chamber 2 is performed via the inside of the hollow shaft 5 that supports the evaporation source 4. Therefore, there is no need for an insertion mechanism for the power cable, cooling water circulation hose, and the like for the vacuum chamber bulkhead 3.
  • the supply system 7 for supplying necessary power and cooling water to the evaporation source 4 is inserted and arranged inside the hollow shaft 5, the supply system 7 accompanying the movement of the evaporation source 4 can be held stably. Thereby, generation of particles can be prevented, and durability of the supply system 7 can be improved.
  • the evaporation source driving mechanisms shown in FIG. 1 are arranged side by side on the same surface of the partition wall 3 of the vacuum chamber.
  • the present invention is not limited to this, and for example, a configuration example in which the above-described evaporation source driving mechanism is disposed on a pair of opposed partition walls of a vacuum chamber can be applied.
  • the number of evaporation sources 4 is not limited to two, and the number can be further increased.

Abstract

A vacuum deposition apparatus having an evaporation source drive mechanism capable of reducing the occurrence of particles in a vacuum chamber and coping with the arrangement of multiple evaporation sources. The vacuum deposition apparatus comprises a hollow shaft (5) closed at one end (5a) and opening at the other end (5b) and a moving mechanism inserting the closed end (5a) of the hollow shaft (5) to the inside (2) of the vacuum chamber and moving the hollow shaft (5) in the axial direction. The evaporation source (4) is fitted to the closed end (5a) side of the hollow shaft (5) and allows a supply system (7) for power and cooling water led into the evaporation source (4) to be provided through the inside of the hollow shaft (5), and the moving mechanism is installed on the outside of the vacuum chamber.

Description

真空蒸着装置  Vacuum deposition equipment
技術分野  Technical field
[0001] 本発明は、真空チャンバ内において蒸発源が移動できる構造の真空蒸着装置に 関する。  The present invention relates to a vacuum evaporation apparatus having a structure in which an evaporation source can move in a vacuum chamber.
背景技術  Background art
[0002] 真空蒸着装置は、真空チャンバの内部に被処理基板と蒸発源とを対向配置し、蒸 発源からの蒸発物質を基板上に蒸着させ成膜している。従来では、蒸発源を真空チ ヤンバ内に固定して成膜していたが、近年では、基板の大面積化、膜質の均質化等 を理由として、蒸発源を基板に対して相対移動させながら成膜する方法も採用されて いる(例えば下記特許文献 1参照)。  In a vacuum evaporation apparatus, a substrate to be processed and an evaporation source are arranged inside a vacuum chamber so as to face each other, and a substance evaporated from the evaporation source is evaporated on the substrate to form a film. Conventionally, deposition was performed with the evaporation source fixed in a vacuum chamber.In recent years, however, the evaporation source has been moved relative to the substrate for reasons such as a larger substrate area and uniform film quality. A method of forming a film is also employed (for example, see Patent Document 1 below).
[0003] 真空チャンバ内において蒸発源が移動できる構造の真空蒸着装置は、従来、例え ばチェーンゃスプロケット等、蒸発源の駆動に必要な機構を真空チャンバ内に配置 し、蒸発源に対する電力供給ケーブル及び冷却水循環ホース等の接続は、真空チ ヤンバの隔壁を介してチャンバ内部の蒸発源へ直接行うようにして ヽた。  Conventionally, a vacuum evaporation apparatus having a structure in which an evaporation source can be moved in a vacuum chamber has a mechanism for driving the evaporation source, such as a chain sprocket, which is disposed in the vacuum chamber, and a power supply cable for the evaporation source. The connection of the cooling water circulation hose and the like was made directly to the evaporation source inside the chamber via the partition of the vacuum chamber.
[0004] なお、この出願の発明に関連する先行技術文献を以下に示す。特許文献 1には、 基板の一端から他方の一端まで移動する蒸発源を複数備え、異種蒸着材料の多層 膜を連続して形成する構造の真空蒸着装置が開示されている。また、特許文献 2〖こ は、電子ビーム蒸着装置の蒸発源を円筒形状に形成し、当該円筒形状の蒸発源を 長手方向に移動自在とすると共に、内部に冷却水を循環させる構成が開示されて 、 る。  [0004] Prior art documents related to the invention of this application are shown below. Patent Document 1 discloses a vacuum evaporation apparatus having a structure including a plurality of evaporation sources moving from one end of a substrate to the other end, and continuously forming a multilayer film of different evaporation materials. Further, Patent Document 2 discloses a configuration in which an evaporation source of an electron beam evaporation apparatus is formed in a cylindrical shape, the cylindrical evaporation source is movable in a longitudinal direction, and cooling water is circulated inside. T
[0005] 特許文献 1:特開 2003— 257644号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 2003-257644
特許文献 2:特開平 10- 259474号公報  Patent Document 2: JP-A-10-259474
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] し力しながら、真空チャンバ内において蒸発源が移動できる構造の従来の真空蒸 着装置は、上述のように、蒸発源を移動させるのに必要な駆動機構が真空チャンバ 内に配置されているので、当該駆動機構から生じるパーティクルでチャンバ内が汚染 されるという問題がある。また、駆動機構をチャンバ内に配置しているので、チャンバ 容積が増大し、複数の蒸発源を配置することも困難となる。 [0006] In a conventional vacuum evaporation apparatus having a structure in which an evaporation source can be moved in a vacuum chamber while pressing, as described above, a driving mechanism required to move the evaporation source is a vacuum chamber. Since it is disposed inside the chamber, there is a problem that the inside of the chamber is contaminated by particles generated from the driving mechanism. In addition, since the driving mechanism is arranged in the chamber, the volume of the chamber increases, and it becomes difficult to arrange a plurality of evaporation sources.
[0007] 更に、蒸発源に接続された電力ケーブルや冷却水導入管等を真空チャンバ内に そのまま入れる構成であったので、蒸発源の移動に伴ってこれらケーブル等を原因と するパーティクルの発生や、耐久性の問題もあった。  [0007] Further, since the power cable, the cooling water introduction pipe, and the like connected to the evaporation source are directly placed in the vacuum chamber, the movement of the evaporation source causes the generation of particles caused by these cables and the like. There was also a problem of durability.
[0008] 本発明は上述の問題に鑑みてなされ、チャンバ内におけるパーティクルの発生を 低減でき、蒸発源の複数配置にも対応することができる蒸発源駆動機構を備えた真 空蒸着装置を提供することを課題とする。 [0008] The present invention has been made in view of the above-described problems, and provides a vacuum evaporation apparatus including an evaporation source driving mechanism that can reduce generation of particles in a chamber and can cope with a plurality of arrangements of evaporation sources. That is the task.
課題を解決するための手段  Means for solving the problem
[0009] 以上の課題は、真空チャンバ内に、蒸着材料の蒸発源を備えた真空蒸着装置に おいて、一端が閉塞し他端が開放された中空軸と、この中空軸の一端側を前記真空 チャンバの内部に挿通し前記中空軸を軸方向に移動させる移動機構とを有し、前記 蒸発源は、前記中空軸の一端側に取り付けられ、前記蒸発源に導入される電力及 び冷却水が前記中空軸の内部を介して供給されると共に、前記移動機構は、前記真 空チャンバの外部に設けられていることを特徴とする真空蒸着装置、によって解決さ れる。 [0009] The above-described problem is to be solved in a vacuum deposition apparatus provided with an evaporation source of a deposition material in a vacuum chamber, wherein a hollow shaft having one end closed and the other end opened is provided. A moving mechanism for inserting the inside of the vacuum chamber to move the hollow shaft in the axial direction, wherein the evaporation source is attached to one end of the hollow shaft, and power and cooling water introduced into the evaporation source are provided. Is supplied through the interior of the hollow shaft, and the moving mechanism is provided outside the vacuum chamber.
[0010] 本発明では、蒸発源の駆動機構が真空チャンバの外部に配置されているので、当 該駆動機構を原因とするパーティクルの発生を回避できると共に、真空チャンバの容 積の低減あるいは真空チャンバ内における蒸発源の複数配置にも容易に対応するこ とが可能である。  In the present invention, since the drive mechanism of the evaporation source is arranged outside the vacuum chamber, it is possible to avoid the generation of particles due to the drive mechanism, to reduce the volume of the vacuum chamber, or to reduce the volume of the vacuum chamber. It is possible to easily cope with multiple arrangements of evaporation sources in the interior.
[0011] 更に、蒸発源に対する必要な電力及び冷却水の供給を、蒸発源を支持する中空 軸の内部を介して行うようにして 、るので、これら電力及び冷却水の各供給系統から のパーティクル発生を抑えて、真空チャンバの汚染を効果的に低減することができる 発明の効果  [0011] Furthermore, since necessary power and cooling water are supplied to the evaporation source via the inside of the hollow shaft supporting the evaporation source, particles from each of the power and cooling water supply systems are provided. Advantageous Effects of the Invention The generation can be suppressed and the contamination of the vacuum chamber can be effectively reduced.
[0012] 以上述べたように、本発明の真空蒸着装置によれば、蒸発源の駆動機構を真空チ ヤンバの外部に配置すると共に、蒸発源に対する必要な電力及び冷却水の供給を、 蒸発源を支持する中空軸の内部を介して行うようにして ヽるので、真空チャンバ内部 におけるパーティクル発生要因を低減できると共に、蒸発源の複数配置にも容易に 対応することが可能である。 As described above, according to the vacuum evaporation apparatus of the present invention, the drive mechanism of the evaporation source is disposed outside the vacuum chamber, and the necessary power and cooling water supply to the evaporation source are reduced. Since the process is performed through the interior of the hollow shaft supporting the evaporation source, it is possible to reduce the particle generation factor inside the vacuum chamber and easily cope with a plurality of evaporation sources.
図面の簡単な説明  Brief Description of Drawings
[0013] [図 1]本発明の実施の形態による真空チャンバの蒸発源駆動機構の構成を示す側断 面図である。  FIG. 1 is a side sectional view showing a configuration of an evaporation source driving mechanism of a vacuum chamber according to an embodiment of the present invention.
[図 2]図 1の蒸発源駆動機構の一作用を示す側断面図である。  FIG. 2 is a side sectional view showing one operation of the evaporation source driving mechanism of FIG. 1.
[図 3]蒸発源を複数配置する例を示す平面図である。  FIG. 3 is a plan view showing an example in which a plurality of evaporation sources are arranged.
符号の説明  Explanation of symbols
1 蒸発源駆動機構  1 Evaporation source drive mechanism
2 成膜室  2 Deposition chamber
3 真空チャンノ の隔壁  3 Vacuum Channo bulkhead
4 蒸発源  4 Evaporation source
5 中空軸  5 Hollow shaft
5a 中空軸の閉塞端  5a Closed end of hollow shaft
5b 中空軸の開放端  5b Open end of hollow shaft
6 ベローズ  6 Bellows
7 供給系統  7 Supply system
10 ガイドレール  10 Guide rail
12 スライドガイド  12 Slide guide
15 駆動部  15 Drive
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0015] 以下、本発明の実施の形態について図面を参照して説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0016] 図 1は、本発明の実施の形態における真空蒸着装置の蒸発源駆動機構 1の構成を 示している。 FIG. 1 shows a configuration of an evaporation source driving mechanism 1 of a vacuum evaporation apparatus according to an embodiment of the present invention.
[0017] この蒸発源駆動機構 1は、成膜室 2を区画する真空チャンバの隔壁 3を貫通し、成 膜室 2内で蒸発源 4を支持する中空軸 5を備えている。この中空軸 5は、成膜室 2側 の一端部 5aが閉塞すると共に、真空チャンバ外方側の他端部 5bが開放している。蒸 発源 4は、この中空軸 5の一端部 5a近傍に支持されている。なお、以下、中空軸 5の 一端部 5aを「閉塞端」、他端部 5bを「開放端」とそれぞれ表現する。 The evaporation source drive mechanism 1 includes a hollow shaft 5 that passes through a partition 3 of a vacuum chamber that partitions the film formation chamber 2 and supports the evaporation source 4 in the film formation chamber 2. The hollow shaft 5 has one end 5a on the film forming chamber 2 side closed and the other end 5b on the outside of the vacuum chamber open. Steaming The source 4 is supported near one end 5a of the hollow shaft 5. Hereinafter, one end 5a of the hollow shaft 5 is referred to as a “closed end”, and the other end 5b is referred to as an “open end”.
[0018] 中空軸 5は隔壁 3の貫通孔 3aに揷通され、この揷通部を介して中空軸 5は軸方向 へ移動自在とされると共に、この揷通部と中空軸 5の開放端 5bとの間にはべローズ 6 が設けられている。つまり、本実施の形態では、隔壁 3と中空軸 5との間の気密をべ口 ーズ 6によって確保し、このべローズ 6によって、中空軸 5の揷通部における真空チヤ ンバの内外の連通を遮断するようにしている。なお、中空軸 5の内部は、その閉塞端 5aが真空チャンバ内部に位置し、開放端 5bが真空チャンバ外部に位置して 、るの で、大気圧状態である。  The hollow shaft 5 is penetrated through a through hole 3a of the partition wall 3, and the hollow shaft 5 is movable in the axial direction through the penetrating portion. Bellows 6 is provided between 5b. That is, in the present embodiment, airtightness between the partition wall 3 and the hollow shaft 5 is ensured by the bellows 6, and the bellows 6 allows communication between the inside and outside of the vacuum chamber in the through portion of the hollow shaft 5. I try to cut off. The inside of the hollow shaft 5 is at atmospheric pressure because its closed end 5a is located inside the vacuum chamber and its open end 5b is located outside the vacuum chamber.
[0019] 蒸発源 4は、蒸着材料を蒸発させる抵抗加熱源と、冷却水が循環するジャケット部 を有しており、これら抵抗加熱源に供給する電力ケーブル及び冷却水の循環ホース 等の供給系統 7は、中空軸 5の内部を介して、蒸発源 4に接続されている。  [0019] The evaporation source 4 has a resistance heating source for evaporating the evaporation material and a jacket for circulating cooling water. 7 is connected to the evaporation source 4 via the inside of the hollow shaft 5.
[0020] なお、蒸発源 4は上述の抵抗加熱方式に限らず、電子ビーム蒸発源等の他の形式 の蒸発源を用いることも可能である。  [0020] The evaporation source 4 is not limited to the above-described resistance heating method, and another type of evaporation source such as an electron beam evaporation source can be used.
[0021] 中空軸 5の内部は、真空チャンバの外部(大気側)に開口する開放端 5bに連通し ており、上記電力ケーブル及び冷却水循環ホース等の供給系統 7は、この中空軸 5 の開放端 5bから挿通されている。上記供給系統 7は、中空軸 5の開放端 5b側上部に 取り付けられた支持板 8に固定されている可撓性導出管 9の内部を介して外部の電 力源及び冷却水循環システムに接続されて 、る。  The inside of the hollow shaft 5 communicates with an open end 5b that opens to the outside (atmosphere side) of the vacuum chamber, and a supply system 7 such as the power cable and the cooling water circulation hose opens the hollow shaft 5. It is inserted from end 5b. The supply system 7 is connected to an external power source and a cooling water circulation system through the inside of a flexible outlet pipe 9 fixed to a support plate 8 attached to the upper end of the hollow shaft 5 on the open end 5b side. Te ru.
[0022] 蒸発源 4は、成膜室 2の内部において、中空軸 5の軸方向に延在するガイドレール 10に沿って移動自在とされている。中空軸 5の閉塞端 5a側には、このガイドレール 1 0上を走行するガイドローラ 11が取り付けられて 、る。  The evaporation source 4 is movable inside the film forming chamber 2 along a guide rail 10 extending in the axial direction of the hollow shaft 5. A guide roller 11 that runs on the guide rail 10 is attached to the closed end 5a side of the hollow shaft 5.
[0023] 中空軸 5をその軸方向に移動させる駆動源は、真空チャンバの外部に設けられて いる。  [0023] A drive source for moving the hollow shaft 5 in the axial direction is provided outside the vacuum chamber.
[0024] 真空チャンバの隔壁 3には、その外面側の中空軸 5の直下方位置に、当該中空軸 5の延在方向に沿ってスライドガイド 12を支持するブラケット 13が取り付けられている 。中空軸 5の開放端 5b側には、このスライドガイド 12上を走行するガイドブロック 14が 設けられており、ブラケット 13の下面側に取り付けられた駆動部 15の駆動により、図 2に示すように、中空軸 5をスライドガイド 12に沿って移動自在としている。 The partition 3 of the vacuum chamber is provided with a bracket 13 that supports a slide guide 12 along the extending direction of the hollow shaft 5 at a position directly below the hollow shaft 5 on the outer surface side. A guide block 14 that runs on the slide guide 12 is provided on the open end 5b side of the hollow shaft 5, and is driven by a drive unit 15 attached to the lower surface side of the bracket 13 as shown in FIG. As shown in FIG. 2, the hollow shaft 5 is movable along a slide guide 12.
[0025] 駆動部 15としては、サーボシリンダや電動サーボモータ、あるいはパルスモータを 含むボールネジユニット等の精密送り機構で構成され、中空軸 5の移動量及び移動 位置が高精度に制御できるようにされて!、る。 [0025] The drive unit 15 is formed of a precision feed mechanism such as a servo cylinder, an electric servomotor, or a ball screw unit including a pulse motor, so that the movement amount and the movement position of the hollow shaft 5 can be controlled with high precision. T!
[0026] なお、これらスライドガイド 12、ブラケット 13、ガイドブロック 14、駆動部 15等により、 本発明の「移動機構」が構成される。 The “moving mechanism” of the present invention is configured by the slide guide 12, the bracket 13, the guide block 14, the driving unit 15, and the like.
[0027] 以上のように構成される蒸発源駆動機構 1を備えた真空蒸着装置は、成膜室 2の 内部において、蒸発源 4と対向する位置に配置された被処理基板の成膜面に対し、 所定の蒸着材料を成膜する。この場合、被処理基板の成膜面には、所定形状の開 口パターンが形成されたマスクが重ね合わされて 、てもよ 、。 The vacuum evaporation apparatus provided with the evaporation source driving mechanism 1 configured as described above is provided inside the film formation chamber 2 on the film formation surface of the substrate to be processed, which is disposed at a position facing the evaporation source 4. On the other hand, a predetermined vapor deposition material is formed. In this case, a mask on which an opening pattern of a predetermined shape is formed may be overlaid on the film formation surface of the substrate to be processed.
[0028] 蒸発源駆動機構 1は、図 1に示す蒸発源 4の待機位置から、駆動部 15を駆動して 中空軸 5を成膜室 2側へ移動させ、蒸発源 4を図 2に示す終端位置までの間を移動さ せる過程で被処理基板に対する成膜作用を行う。 The evaporation source driving mechanism 1 drives the driving unit 15 from the standby position of the evaporation source 4 shown in FIG. 1 to move the hollow shaft 5 to the film forming chamber 2 side, and the evaporation source 4 is shown in FIG. In the process of moving to the end position, a film forming operation is performed on the substrate to be processed.
[0029] ここで、蒸発源 1が図 1に示す待機位置に位置している場合には成膜処理が行えな い、即ち、蒸発材料が成膜面に蒸着しない幾何学的位置に被処理基板を配置して おけば、シャツタ等の蒸着阻害機構を設けることなぐ待機位置において蒸着材料の 蒸発作用を行わせておくことが可能となり、これにより、蒸発源の移動と同時に所期 の成膜処理を迅速に実行でき、生産性及び膜質の向上を図ることができる。 Here, when the evaporation source 1 is located at the standby position shown in FIG. 1, film formation processing cannot be performed, that is, processing is performed at a geometrical position where evaporation material is not deposited on the film formation surface. By disposing the substrate, it is possible to carry out the vaporization of the vapor deposition material at the standby position without providing a vapor deposition inhibiting mechanism such as a shirter, etc. Processing can be performed quickly, and productivity and film quality can be improved.
[0030] さて、本実施の形態においては、蒸発源 4の駆動機構を真空チャンバの隔壁 3の外 方位置に配置して 、るので、当該駆動機構を原因とするダストあるいはパーティクル の発生を回避でき、これにより成膜室 2のクリーン度を維持して高品質の成膜処理を 行うことができる。 In the present embodiment, since the drive mechanism of the evaporation source 4 is disposed outside the partition 3 of the vacuum chamber, the generation of dust or particles caused by the drive mechanism is avoided. As a result, a high-quality film formation process can be performed while maintaining the cleanness of the film formation chamber 2.
[0031] また、蒸発源駆動機構 1が真空チャンバの外部に配置されているので、成膜室 2の 容積の大型化を回避でき、これにより真空チャンバの小型化を図ることができる。  [0031] Further, since the evaporation source driving mechanism 1 is disposed outside the vacuum chamber, it is possible to avoid an increase in the volume of the film forming chamber 2, and thereby to reduce the size of the vacuum chamber.
[0032] また、蒸発源駆動機構 1を真空チャンバの外部に配置することによって、成膜室 2 の内部に複数の蒸発源 4を配置することも可能となり、被処理基板に対する多層膜の 形成にも十分に対応することができるようになる。  [0032] Further, by disposing the evaporation source driving mechanism 1 outside the vacuum chamber, it is possible to dispose a plurality of evaporation sources 4 inside the film forming chamber 2, and to form a multilayer film on the substrate to be processed. Will be able to respond sufficiently.
[0033] 図 3は、成膜室 2内への複数の蒸発源 4の配置例を示す平面図である。各蒸発源 4 A, 4Bは、それぞれ上述と同様な構成を有する蒸発源駆動機構 1A, IBによって、 成膜室 2内を移動自在とされている。各蒸発源 4A, 4Bは、被処理基板の成膜面の 同一領域をカバーできるように、同一の移動領域を共有できる形状に構成されている 。これら各蒸発源 4の移動形態は特に限定されず、同期して移動させたり、交互に移 動させることができる。 FIG. 3 is a plan view showing an example of the arrangement of a plurality of evaporation sources 4 in the film forming chamber 2. Each evaporation source 4 A and 4B are movable in the film forming chamber 2 by evaporation source driving mechanisms 1A and IB having the same configuration as described above. Each of the evaporation sources 4A and 4B is configured to share the same moving area so as to cover the same area on the film formation surface of the substrate to be processed. The mode of movement of each of the evaporation sources 4 is not particularly limited, and can be moved synchronously or alternately.
[0034] また、本実施の形態によれば、成膜室 2内の蒸発源 4に対する必要な電力及び冷 却水の供給を、蒸発源 4を支持する中空軸 5の内部を介して行っているので、真空チ ヤンバの隔壁 3に対して電力ケーブルや冷却水循環ホース等のための挿通機構を必 要とすることはない。  According to the present embodiment, the supply of necessary power and cooling water to the evaporation source 4 in the film forming chamber 2 is performed via the inside of the hollow shaft 5 that supports the evaporation source 4. Therefore, there is no need for an insertion mechanism for the power cable, cooling water circulation hose, and the like for the vacuum chamber bulkhead 3.
[0035] また、蒸発源 4に対する必要な電力及び冷却水の供給系統 7を中空軸 5の内部に 挿入配置しているので、蒸発源 4の移動に伴うこれら供給系統 7を安定に保持でき、 これによりパーティクルの発生を防げると共に、供給系統 7の耐久性向上をも図ること ができる。  Further, since the supply system 7 for supplying necessary power and cooling water to the evaporation source 4 is inserted and arranged inside the hollow shaft 5, the supply system 7 accompanying the movement of the evaporation source 4 can be held stably. Thereby, generation of particles can be prevented, and durability of the supply system 7 can be improved.
[0036] 以上、本発明の実施の形態について説明した力 勿論、本発明はこれに限定され ることなく、本発明の技術的思想に基づいて種々の変形が可能である。  [0036] The power described in the embodiment of the present invention is, of course, not limited to this, and various modifications can be made based on the technical idea of the present invention.
[0037] 例えば以上の実施の形態では、成膜室 2に蒸発源 4を複数配置する例として、真空 チャンバの隔壁 3の同一面にそれぞれ図 1に示した蒸発源駆動機構を並べて配置す る構成を説明したが、これに限らず、例えば真空チャンバの相対向する一対の隔壁 に上記蒸発源駆動機構をそれぞれ配置する構成例も適用可能である。  For example, in the above embodiment, as an example of arranging a plurality of evaporation sources 4 in the film forming chamber 2, the evaporation source driving mechanisms shown in FIG. 1 are arranged side by side on the same surface of the partition wall 3 of the vacuum chamber. Although the configuration has been described, the present invention is not limited to this, and for example, a configuration example in which the above-described evaporation source driving mechanism is disposed on a pair of opposed partition walls of a vacuum chamber can be applied.
[0038] また、蒸発源 4の配置数も 2に限らず、更にその数を増大することも可能である。  [0038] The number of evaporation sources 4 is not limited to two, and the number can be further increased.

Claims

請求の範囲 The scope of the claims
[1] 真空チャンバ内に、蒸着材料の蒸発源を備えた真空蒸着装置において、  [1] In a vacuum evaporation apparatus provided with an evaporation source of an evaporation material in a vacuum chamber,
一端が閉塞し他端が開放された中空軸と、この中空軸の一端側を前記真空チャン バの内部に挿通し前記中空軸を軸方向に移動させる移動機構とを有し、  A hollow shaft having one end closed and the other end opened; and a moving mechanism for inserting one end of the hollow shaft into the inside of the vacuum chamber and moving the hollow shaft in an axial direction,
前記蒸発源は、前記中空軸の一端側に取り付けられ、前記蒸発源に導入される電 力及び冷却水が前記中空軸の内部を介して供給されると共に、前記移動機構は、前 記真空チャンバの外部に設けられていることを特徴とする真空蒸着装置。  The evaporation source is attached to one end of the hollow shaft, power and cooling water introduced into the evaporation source are supplied through the inside of the hollow shaft, and the moving mechanism includes the vacuum chamber. A vacuum evaporation apparatus, which is provided outside of the apparatus.
[2] 前記中空軸が挿通される前記真空チャンバの挿通部と前記中空軸の他端側との 間には、前記真空チャンバの内外の連通を遮断するべローズが設けられている請求 の範囲第 1項に記載の真空蒸着装置。  [2] A bellows is provided between an insertion portion of the vacuum chamber through which the hollow shaft is inserted and the other end of the hollow shaft to shut off communication between the inside and the outside of the vacuum chamber. 2. The vacuum deposition apparatus according to item 1.
[3] 前記移動機構は、前記真空チャンバの外部に突出する前記中空軸の軸方向に沿 つて延在するスライドガイドと、前記中空軸を前記スライドガイドに沿って移動させる 駆動部とを含んでなる請求の範囲第 1項に記載の真空蒸着装置。  [3] The moving mechanism includes a slide guide extending along the axial direction of the hollow shaft protruding outside the vacuum chamber, and a drive unit for moving the hollow shaft along the slide guide. The vacuum evaporation apparatus according to claim 1, wherein
[4] 前記中空軸は複数本配置されており、前記蒸発源は前記複数本の中空軸に対し てそれぞれ取り付けられている請求の範囲第 1項に記載の真空蒸着装置。  4. The vacuum evaporation apparatus according to claim 1, wherein a plurality of the hollow shafts are arranged, and the evaporation source is attached to each of the plurality of hollow shafts.
PCT/JP2005/003174 2004-03-12 2005-02-25 Vacuum deposition apparatus WO2005087970A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-070993 2004-03-12
JP2004070993A JP4563698B2 (en) 2004-03-12 2004-03-12 Vacuum deposition equipment

Publications (1)

Publication Number Publication Date
WO2005087970A1 true WO2005087970A1 (en) 2005-09-22

Family

ID=34975607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/003174 WO2005087970A1 (en) 2004-03-12 2005-02-25 Vacuum deposition apparatus

Country Status (2)

Country Link
JP (1) JP4563698B2 (en)
WO (1) WO2005087970A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011120267A1 (en) * 2010-03-30 2011-10-06 东莞宏威数码机械有限公司 Automatic cooling type power supply device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5277060B2 (en) * 2009-04-16 2013-08-28 株式会社日立ハイテクノロジーズ Vacuum deposition equipment
JP2012169168A (en) * 2011-02-15 2012-09-06 Hitachi High-Technologies Corp Crystal oscillation-type film thickness monitoring device and evaporation source device and thin film deposition system of el material using the same
JP2013122923A (en) * 2013-01-17 2013-06-20 Hitachi High-Technologies Corp Vacuum evaporation apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002348658A (en) * 2001-05-23 2002-12-04 Anelva Corp Evaporation source, thin-film forming method and forming apparatus therewith
JP2003160857A (en) * 2001-11-27 2003-06-06 Matsushita Electric Ind Co Ltd Vapor deposition apparatus, thin-film forming method and display device using them
JP2004323876A (en) * 2003-04-22 2004-11-18 Nippon Hoso Kyokai <Nhk> Electron beam evaporation source

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000286327A (en) * 1999-03-31 2000-10-13 Sumitomo Heavy Ind Ltd Film-forming device
JP3877613B2 (en) * 2002-03-05 2007-02-07 三洋電機株式会社 Method for manufacturing organic electroluminescence display device
JP2004006282A (en) * 2002-03-29 2004-01-08 Sanyo Electric Co Ltd Method for vapor deposition and for manufacturing display device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002348658A (en) * 2001-05-23 2002-12-04 Anelva Corp Evaporation source, thin-film forming method and forming apparatus therewith
JP2003160857A (en) * 2001-11-27 2003-06-06 Matsushita Electric Ind Co Ltd Vapor deposition apparatus, thin-film forming method and display device using them
JP2004323876A (en) * 2003-04-22 2004-11-18 Nippon Hoso Kyokai <Nhk> Electron beam evaporation source

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011120267A1 (en) * 2010-03-30 2011-10-06 东莞宏威数码机械有限公司 Automatic cooling type power supply device

Also Published As

Publication number Publication date
JP4563698B2 (en) 2010-10-13
JP2005256113A (en) 2005-09-22

Similar Documents

Publication Publication Date Title
CN106995911B (en) Evaporation source, deposition apparatus and method for evaporating organic material
US4692233A (en) Vacuum coating apparatus
JP6741594B2 (en) System for depositing one or more layers on a substrate supported by a carrier, and methods of using the system
JP2017500447A5 (en) Processing apparatus for a processing device and method for transferring an evaporation source from a processing vacuum chamber to a maintenance vacuum chamber or from a maintenance vacuum chamber to a processing vacuum chamber
JP6466469B2 (en) Evaporation sources for organic materials
CN106164330A (en) Vacuum flush system and the method being used for assembling processing system
WO2005087970A1 (en) Vacuum deposition apparatus
JP2006299358A (en) Vacuum film deposition apparatus, and vacuum film deposition method
US20170346044A1 (en) Evaporation source for organic material, deposition apparatus for depositing organic materials in a vacuum chamber having an evaporation source for organic material, and method for evaporating organic material
JP4251857B2 (en) Vacuum film forming apparatus and vacuum film forming method
JP4600025B2 (en) Coating equipment
JP6343036B2 (en) Evaporation source for organic material, deposition apparatus for depositing organic material in a vacuum chamber having an evaporation source for organic material, and method for evaporating organic material
JP6605073B2 (en) Evaporation source for organic material, deposition apparatus for depositing organic material in a vacuum chamber having an evaporation source for organic material, and method for evaporating organic material
KR101430657B1 (en) Atomic layer deposition system
JP6833610B2 (en) Evaporative Sources for Organic Materials, Devices with Evaporative Sources for Organic Materials, Systems with Evaporative Accumulation Devices Containing Evaporative Sources for Organic Materials, and Methods for Manipulating Evaporative Sources for Organic Materials
JP4635132B2 (en) Continuous film forming apparatus and method
JP2019039055A (en) Vacuum treatment apparatus
US20050279456A1 (en) Plasma reactor with high productivity
KR20130104285A (en) Lift pin assembly and apparatus for treating substrate having the same
JP2022512764A (en) Radiation devices, depositors for depositing material on the substrate, and methods for depositing material on the substrate.
JPS62174371A (en) Ion plating device
EP3080328A1 (en) A processing apparatus for processing devices, particularly devices including organic materials therein, and method for transferring an evaporation source from a processing vacuum chamber to a maintenance vacuum chamber or from the maintenance vacuum chamber to the processing vacuum chamber

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase