JPS62174371A - Ion plating device - Google Patents

Ion plating device

Info

Publication number
JPS62174371A
JPS62174371A JP61015434A JP1543486A JPS62174371A JP S62174371 A JPS62174371 A JP S62174371A JP 61015434 A JP61015434 A JP 61015434A JP 1543486 A JP1543486 A JP 1543486A JP S62174371 A JPS62174371 A JP S62174371A
Authority
JP
Japan
Prior art keywords
substrate
cylindrical
evaporation source
pedestal
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61015434A
Other languages
Japanese (ja)
Inventor
Takao Mitsui
三井 隆男
Hiroshi Sugimura
寛 杉村
Shinji Houchiyou
伸次 庖丁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soken Inc
Original Assignee
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc filed Critical Nippon Soken Inc
Priority to JP61015434A priority Critical patent/JPS62174371A/en
Publication of JPS62174371A publication Critical patent/JPS62174371A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form a thin film having a uniform film thickness and film quality on a substrate by providing freely movable two stands and maintaining the specified distances between the evaporating sources and high-frequency coils respectively provided to the stands and the substrate provided above the same. CONSTITUTION:The curved substrate 1 for vapor deposition is conveyed in a vacuum chamber 2. The cylindrical stand 3A which is feely axially movable is provided in the chamber 2 through said chamber. The evaporating source 4 is provided to the top end of the stand 3A and a vapor deposition material 5 is supplied toward the substrate 1. A stationary feeder 71 and refrigerant supply pipe 81 are inserted into the stand 3A and are respectively connected to the flexible feeder 73 and frexible refrigerant pipe 82. The distance between the evaporating source 4 and the substrate 1 is always maintained constant. The other cylindrical stand 3B is axially freely movably provided in a vacuum chamber 2 through said chamber. The high-frequency coil 11 is provided to the top end of the stand 3B. The material 5 is ionized and accelerated to be stuck onto the substrate 1.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明はガラス基板等に薄膜を形成するイオンプレーテ
ィング装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application 1] The present invention relates to an ion plating apparatus for forming a thin film on a glass substrate or the like.

[従来技術1 イオンプレーティング装置は真空宇内に蒸発源と被蒸@
基板を対向位置せしめ、上記蒸発源より膜形成物質とし
ての蒸着材を蒸発せしめるとともに、蒸着材を高周波コ
イル等によりイオン化して電界中で加速し、上記基板に
衝突付着せしめるもので、精度良く薄膜を形成すること
ができる。
[Prior art 1: The ion plating device has an evaporation source and an evaporation target inside a vacuum chamber.
The substrates are placed facing each other, and the evaporation material as a film-forming material is evaporated from the evaporation source, and the evaporation material is ionized by a high-frequency coil, accelerated in an electric field, and collided with the substrate to form a thin film with high precision. can be formed.

ところで、車両のウィンドガラスの如き大形基板に光の
選択透過膜等を形成する場合には、上記基板を蒸発源と
直交する方向に移動比しめて、これに順次膜を形成する
方法が取られている。この場合、基板がわん曲している
と、蒸発源とこれの直上を通過する基板部との対向距離
が次第に変化するため、基板に形成される膜厚等が一定
にならない。
By the way, when forming a selectively transmitting light film or the like on a large substrate such as a vehicle window glass, a method is used in which the substrate is moved in a direction perpendicular to the evaporation source and a film is sequentially formed thereon. ing. In this case, if the substrate is curved, the facing distance between the evaporation source and the substrate portion passing directly above it will gradually change, so that the thickness of the film formed on the substrate will not be constant.

そこで、例えば特開昭59−182738号には、上記
対向距離の変化に応じて蒸着材の蒸着速度を変更して、
均一な膜厚を得る薄膜形成装置が提案されている。
Therefore, for example, Japanese Patent Application Laid-Open No. 59-182738 discloses that the evaporation speed of the evaporation material is changed according to the change in the facing distance,
A thin film forming apparatus that obtains a uniform film thickness has been proposed.

[発明か解決しようとする問題点] しかしながら、上記従来装置では膜厚は均一なものが得
られるが、蒸着Hの飛来距離が異なることによって膜質
は相変わらず均一にならないという問題かめる。
[Problems to be Solved by the Invention] However, although a uniform film thickness can be obtained with the conventional apparatus described above, there is still a problem in that the quality of the film is not uniform due to the difference in flying distance of the vapor deposited H.

本発明はかかる従来装置の問題点を解決するもので、わ
ん曲した大形基板に均一な膜厚かつ膜質の薄膜を形成す
ることが可能なイオンプレーティング装置を提供するこ
とを目的とする。
The present invention solves the problems of such conventional devices, and aims to provide an ion plating device capable of forming a thin film of uniform thickness and quality on a large, curved substrate.

[問題点を解決するための手段1 本発明の構成を第1図で説明すると、わん曲した被蒸着
基板1は真空室2内を一方より他方(図中矢印)へ搬送
される。上記真空室2の室壁にはこれに気密的かつ軸方
向移動自在゛に支持せしめて筒状架台3Aが貫設してあ
り、該架台3Aの先端に蒸着材5を基板1に向けて蒸発
供給する蒸発源4が設(プである。上記架台3A内には
、上記蒸発源4に接続される固定の給電線71および上
記蒸発源4を冷却する冷媒を供給する冷媒供給管、例え
ば冷却水給水管81が気密的に挿通せしめてあって、こ
れらは架台3Aの室外端部32でそれぞれ可とう給電線
73および可とう給水管82に接続しである。上記架台
3Aは、駆動手段6Aにより、蒸発源4とこれの直上を
通過する上記基板1の対向部の距離が常に一定となるよ
うに正逆移動比しめられる。
[Means for Solving the Problems 1] The configuration of the present invention will be explained with reference to FIG. 1. A curved substrate 1 to be deposited is conveyed from one side to the other (arrow in the figure) in a vacuum chamber 2. A cylindrical pedestal 3A is installed through the wall of the vacuum chamber 2 and supported airtightly and movably in the axial direction. An evaporation source 4 to be supplied is installed in the mount 3A. A fixed power supply line 71 connected to the evaporation source 4 and a refrigerant supply pipe for supplying refrigerant to cool the evaporation source 4, for example, a cooling A water supply pipe 81 is inserted in an airtight manner, and these are connected to a flexible power supply line 73 and a flexible water supply pipe 82, respectively, at the outdoor end 32 of the pedestal 3A. As a result, the forward and reverse movement ratio is set so that the distance between the evaporation source 4 and the opposing portion of the substrate 1 passing directly above it is always constant.

真空室2の室壁には上記架台3Aに隣接せしめて他の筒
状架台3Bが設けてあり、該架台3Bは室壁に気密的か
つ軸方向移動自在に貫設しである。
Another cylindrical pedestal 3B is provided on the wall of the vacuum chamber 2 adjacent to the pedestal 3A, and the pedestal 3B penetrates the chamber wall airtightly and movably in the axial direction.

架台3Bの先端には、上記蒸発源4と基板1間に位置せ
しめて高周波コイル11が設けてあり、上記先端はこれ
を気密的な箱状となしてこれに大気を導入するとともに
箱内には上記高周波コイル11の整合回路10か収納し
である。架台3Bの筒内には上記整合回路10に接続さ
れる固定の給電線75が挿通せしめてあって、該給電線
75は架台3Bの室外端部37て可とう給電線76に接
続しである。上記架台3Bは駆動手段6Bにより上。
A high frequency coil 11 is provided at the tip of the pedestal 3B, positioned between the evaporation source 4 and the substrate 1.The tip forms an airtight box and introduces the atmosphere into the box. The matching circuit 10 of the high frequency coil 11 is housed therein. A fixed power supply line 75 connected to the matching circuit 10 is inserted through the cylinder of the pedestal 3B, and the power supply line 75 is connected to a flexible power supply line 76 at the outdoor end 37 of the pedestal 3B. . The pedestal 3B is moved upward by the driving means 6B.

架台3Aに追従して移動比しめられる。The movement is shown following the pedestal 3A.

[効果1 軸方向へ移動自在に設けた架台3A、3Bをそれぞれ駆
動手段6A、6Bにより移動比しめて、上記架台3A上
の蒸発源4および上記架台3B上の高周波コイル11と
、これらの上方を通過する基板1の対向部の距離を常に
一定に保つようにしたから、均一な膜厚および膜質の薄
膜を基板1上に形成することができる。
[Effect 1] The mounts 3A and 3B, which are movable in the axial direction, are moved by driving means 6A and 6B, respectively, and the evaporation source 4 on the mount 3A and the high-frequency coil 11 on the mount 3B, and the upper part thereof are moved. Since the distance between the opposing parts of the substrate 1 is always kept constant, a thin film of uniform thickness and quality can be formed on the substrate 1.

また、本発明においては、蒸発源4および高周波コイル
11をそれぞれ支持する架台3A、3Bを筒状となして
、筒内に上記蒸発源4に至る固定の給電線71および給
水管81を挿通し、必るいは上記高周波コイル11に至
る固定の給電線75を挿通して、これらを各架台3A、
3Bの全外端でそれぞれ可とう給電線73.76および
可とう給水管82と接続する構成としたから、真空室2
内の蒸発源4や高周波コイル11に直接可とう給電線7
3.76および可とう給水管82をVfi設する際に生
じ易い短絡や冷媒の漏れ等の事故は完全に防止できる。
Furthermore, in the present invention, the frames 3A and 3B that support the evaporation source 4 and the high-frequency coil 11, respectively, are formed into a cylindrical shape, and the fixed power supply line 71 and water supply pipe 81 leading to the evaporation source 4 are inserted into the cylinder. , or by inserting a fixed power supply line 75 leading to the high frequency coil 11, and connecting these to each mount 3A,
3B is connected to the flexible power supply line 73, 76 and the flexible water supply pipe 82 at all outer ends of the vacuum chamber 2.
Flexible power supply line 7 directly to evaporation source 4 and high frequency coil 11 inside
3.76 and accidents such as short circuits and refrigerant leaks that tend to occur when installing the flexible water supply pipe 82 to Vfi can be completely prevented.

ざらに、上記架台3Bの先端を大気雰囲気の気密的な箱
状に形成してこれに整合回路10を収納したから、高周
波コイル11との距離は充分短くすることかできる。
Roughly speaking, since the tip of the pedestal 3B is formed into an airtight box-like shape in the atmosphere and the matching circuit 10 is housed therein, the distance to the high-frequency coil 11 can be made sufficiently short.

[実施例] 図において、真空室2は上半部が左右に長く形成され、
該上半部を左右方向(図中矢印)へ、回路の搬送装置に
よって被蒸着基板1が搬送される。
[Example] In the figure, the upper half of the vacuum chamber 2 is formed to be long from side to side,
The substrate 1 to be deposited is transported in the upper half in the left-right direction (arrows in the figure) by a circuit transport device.

基板1は搬送方向にわん曲しており、わん曲形状はその
上面に接して設けたリニアポテンション91により基板
1の移動につれて検出される。上記真空室2の底壁には
これを目通して筒状架台3Aが設けており、該架台3A
は貫通部外周の0リング331を介して、上記底壁に気
密的かつ上下動自在に支持されている。
The substrate 1 is curved in the transport direction, and the curved shape is detected as the substrate 1 moves by a linear potentiometer 91 provided in contact with the upper surface thereof. A cylindrical pedestal 3A is provided on the bottom wall of the vacuum chamber 2, and the cylindrical pedestal 3A is provided through the bottom wall of the vacuum chamber 2.
is airtightly and vertically movably supported on the bottom wall via an O-ring 331 on the outer periphery of the penetration part.

上記架台3Aの先端31は閉鎖され、その上面には電子
銃41を布設した蒸発源4が載置して必る。蒸発源4の
るつぼ内には蒸着材5が入れてあり、これは電子銃41
より照射される電子により上方の基板搬送経路に向けて
蒸発せしめられる。
The tip 31 of the pedestal 3A is closed, and the evaporation source 4 on which the electron gun 41 is installed is placed on the top surface. A evaporation material 5 is placed in the crucible of the evaporation source 4, and this is an electron gun 41.
The irradiated electrons evaporate the substrate toward the upper substrate transport path.

架台3△の室外端32は密閉した箱状に形成してあり、
該室外端32には下面にラック61が突設しである。ラ
ック61はキヤボックス62を介して駆動用モータ6△
に連結してあり、モータ6Aを正逆転せしめるとこれに
応じて上記架台3 A /);上下動する。
The outdoor end 32 of the frame 3△ is formed into a closed box shape,
A rack 61 is provided protruding from the lower surface of the outdoor end 32. The rack 61 is connected to a drive motor 6△ via a gear box 62.
When the motor 6A is rotated in the forward and reverse directions, the mount 3A moves up and down accordingly.

上記モータ6Aは回路の制御装置により作動せしめられ
る。すなわち、制御装置は上記ワニャポテンショ91の
検出信号を入力し、これに応じて上記モータ6Aにより
架台3Aを上下動ぜしめて、蒸発源4とその上方を通過
する基板1の対向部との距離を一定に保つ。
The motor 6A is operated by a circuit control device. That is, the control device inputs the detection signal of the alligator potentiometer 91, and in response, moves the pedestal 3A up and down by the motor 6A, thereby adjusting the distance between the evaporation source 4 and the opposing portion of the substrate 1 passing above it. keep constant.

筒状の上記架台3A内には、上記蒸発源4への冷却水を
供給する給水管81、上記電子銃41への給電線71、
および架台3Aの上方に位置する膜厚センサ94に至る
信号線72が挿通しである。
Inside the cylindrical pedestal 3A, there are a water supply pipe 81 that supplies cooling water to the evaporation source 4, a power supply line 71 to the electron gun 41,
A signal line 72 extending to a film thickness sensor 94 located above the pedestal 3A is inserted.

給電線71および信号線72には裸線を使用し、上記給
水管81と共に筒内の適所に設けた絶縁スペーサ341
に固定されている。これら給電線71、信号線72、お
よび給水管81は、架台3Aの先端面に設けた開放性導
入端子351.352.353を経てそれぞれ電子銃4
1、膜厚センサ94、および蒸発源4に至っている。
Bare wires are used for the power supply line 71 and the signal line 72, and an insulating spacer 341 is provided at an appropriate position in the cylinder together with the water supply pipe 81.
Fixed. These power supply lines 71, signal lines 72, and water supply pipes 81 are connected to the electron gun 4 through open introduction terminals 351, 352, and 353 provided on the front end surface of the pedestal 3A.
1, the film thickness sensor 94, and the evaporation source 4.

架台3Aの室外端32の側壁には気密性を有する導入端
子354.355.356が設けておって、上記給電線
71、信号線72、および給水管81の他端がそれぞれ
これらに至っている。そして、給電線71は導入端子3
54にて外部の電子銃電源92より至る通常の絶縁被覆
を有する可とう給電線73に接続され、信号線72は導
入端子355にて外部の膜厚モニタ93より至る可とう
信号線74に接続しておる。また、給水管81は導入端
子356にて外部の給水源(回路)より至る可とう給水
管82に接続しである。
Airtight introduction terminals 354, 355, and 356 are provided on the side wall of the outdoor end 32 of the frame 3A, and the other ends of the power supply line 71, the signal line 72, and the water supply pipe 81 reach these, respectively. The feeder line 71 is connected to the introduction terminal 3.
At 54, the signal line 72 is connected to a flexible power supply line 73 having an ordinary insulating coating, which extends from an external electron gun power source 92, and at an introduction terminal 355, the signal line 72 is connected to a flexible signal line 74, which extends from an external film thickness monitor 93. I'm doing it. Further, the water supply pipe 81 is connected to a flexible water supply pipe 82 which is connected to an external water supply source (circuit) at an introduction terminal 356.

上記真空室2の底壁には、ざらに上記筒状架台3Aに隣
接して筒状架台3Bが置設され、該架台3Bは貫通部外
周のOリング332を介して、上記底壁に気密的かつ上
下動自在に支持されている。
A cylindrical pedestal 3B is installed on the bottom wall of the vacuum chamber 2, roughly adjacent to the cylindrical pedestal 3A. It is supported vertically and vertically.

上記架台3Bの先端36および室外端37は密閉した箱
状に形成され、全外端37下面にはラック63が突δ2
してあって、これはギA7ボツクス64を介して駆動用
モータ6Bに連結しである。しかして、上記モータ6B
により架台3Bは架台3Aに追従して上下動せしめられ
る。− 上記架台3Bの先端36内にはコイルと可変コンデンサ
よりなる整合回路10が収納してあり、架台3Bの筒内
には上記整合回路10に接続される給電線75が挿通し
である。整合回路10からは、架台3Bの先端面に設け
た気密性を有する導入端子357を経て、給電線を兼ね
る支持用ステンレス捧111が上方へ延びており、該ス
テンレス俸111の先端は蒸発源4の直上に至って高周
波コイル11となっている。
The tip 36 and the outdoor end 37 of the pedestal 3B are formed into a closed box shape, and a rack 63 is provided with a protrusion δ2 on the lower surface of the entire outer end 37.
This is connected to the drive motor 6B via a gear A7 box 64. However, the motor 6B
As a result, the pedestal 3B is moved up and down following the pedestal 3A. - A matching circuit 10 consisting of a coil and a variable capacitor is housed in the tip 36 of the pedestal 3B, and a power supply line 75 connected to the matching circuit 10 is inserted through the cylinder of the pedestal 3B. From the matching circuit 10, a supporting stainless steel rod 111 that also serves as a power supply line extends upward through an airtight introduction terminal 357 provided on the top end surface of the pedestal 3B. The high frequency coil 11 is located directly above the coil.

上記架台3B内は大気に導通している。すなわら、給電
線75は架台3Bの室外端37に至り、その側壁に設け
た開放性の導入端子358を介して、外部の高周波電源
94より至る可とう給電線76に接続されている。上記
固定給電線76は適所でスペーサ342ににり固定して
おる。
The interior of the pedestal 3B is connected to the atmosphere. That is, the power supply line 75 reaches the outdoor end 37 of the pedestal 3B, and is connected to the flexible power supply line 76 from the external high-frequency power source 94 via an open introduction terminal 358 provided on the side wall thereof. The fixed power supply line 76 is fixed to the spacer 342 at a proper location.

なお、真空室2内は排気口21より排気され、また蒸発
源4に対向する真空室2の頂壁近くにはこれに沿って電
極95が設けておる。電極95は外部の直流電源96に
接続してあり、これにより、電極95と蒸発源4との間
に電界が生じている。
The inside of the vacuum chamber 2 is exhausted from the exhaust port 21, and an electrode 95 is provided along the top wall of the vacuum chamber 2 near the top wall of the vacuum chamber 2 facing the evaporation source 4. The electrode 95 is connected to an external DC power source 96, thereby creating an electric field between the electrode 95 and the evaporation source 4.

かかる構造のイオンプレーティング装置において、わん
曲する基板1を移動比しめると、移動中の上記基板1の
対向部に対して蒸発源4および高周波コイル11は常に
等距離を保つべく上下動せしめられる。しかして、蒸発
源4より蒸発して上記コイル11でイオン化され電界で
加速される蒸着材5は、常に一定の飛距離で基板1に付
着せしめられ、これに均一の膜厚かっ膜質の薄膜が順次
良好に形成される。
In an ion plating apparatus having such a structure, when the curved substrate 1 is moved, the evaporation source 4 and the high-frequency coil 11 are moved up and down so as to always maintain the same distance from the opposing portion of the substrate 1 during movement. . The evaporation material 5 that is evaporated from the evaporation source 4, ionized by the coil 11, and accelerated by the electric field is always deposited on the substrate 1 at a constant flight distance, and a thin film of uniform thickness and film quality is sequentially formed on the substrate 1. Well formed.

そして、上記蒸発源4を設けた架台3Aの上下動は可と
う給電線73.74および可とう給水管82により保証
されるとともに、真空雰囲気中の配線71.72および
配管81は架台3A内に固定したから、短絡や漏水等の
不具合は生じない。
The vertical movement of the pedestal 3A provided with the evaporation source 4 is guaranteed by the flexible power supply lines 73, 74 and the flexible water supply pipe 82, and the wiring 71, 72 and piping 81 in the vacuum atmosphere are connected to the pedestal 3A. Since it is fixed, problems such as short circuits and water leaks will not occur.

また、高周波コイル11を設けた架台3Bの上下動は可
とう給電線76により保証され、かつ上記架台3Bの真
空室内に位置する先端内部はこれを大気雰囲気として、
ここに上記コイル11の整合回路10を収納したから、
高周波コイル11と整合回路10の接続を固定配線とす
ることができる上に、両者の距離も近いから電力損失は
小さく抑えることができる。
Further, the vertical movement of the pedestal 3B provided with the high-frequency coil 11 is guaranteed by the flexible power supply line 76, and the inside of the tip of the pedestal 3B located in the vacuum chamber is set to an atmospheric atmosphere.
Since the matching circuit 10 of the coil 11 is housed here,
The high-frequency coil 11 and the matching circuit 10 can be connected by fixed wiring, and the distance between them is short, so power loss can be kept small.

蒸発源4と高周波コイル11の相対間隔を変更する必要
かない場合には、これらを、第2図に示す如く、同一の
筒状架台3内に設けることができる。図において、架台
3はラック61およびギヤボックス62を介してモータ
6により上下動せしめられる。上記架台3の先端31内
には整合回路10が設(プられ、該回路10は気密性を
有する導入端子381を介して高周波コイル11に接続
されている。また、架台3内に挿通された給電線71、
信号線72、および給水管81は、それぞれ気密性を有
する導入端子382.383.384を介して電子銃4
1、膜厚センサ94、および蒸発源4に接続されて、上
記架台3内は大気雰囲気としである。
If it is not necessary to change the relative spacing between the evaporation source 4 and the high-frequency coil 11, they can be provided within the same cylindrical pedestal 3, as shown in FIG. In the figure, the pedestal 3 is moved up and down by a motor 6 via a rack 61 and a gear box 62. A matching circuit 10 is provided in the tip 31 of the pedestal 3, and the circuit 10 is connected to the high frequency coil 11 via an airtight introduction terminal 381. power supply line 71,
The signal line 72 and the water supply pipe 81 are connected to the electron gun 4 via airtight introduction terminals 382, 383, and 384, respectively.
1, the film thickness sensor 94, and the evaporation source 4, and the inside of the pedestal 3 is in an atmospheric atmosphere.

なあ、化合物被膜を形成する場合には、蒸発源4の近く
に反応性ガスの供給管を開口せしめる必要があるが、該
ガス供給管は上記給水管81.82と同一構造で布設す
ることができる
Incidentally, when forming a compound film, it is necessary to open a reactive gas supply pipe near the evaporation source 4, but the gas supply pipe can be laid in the same structure as the water supply pipes 81 and 82 described above. can

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図はそれぞれ本発明の第1および第2
の実施例を示すイオンプレーティング装置の概略断面図
でおる。 1・・・・・・被蒸着基板      2・・・・・・
真空室3.3A、3B・・・・・・筒状架台 10・・・・・・整合回路   11・・団・高周波コ
イル31.36・・・・・・先端  32.37・・団
・全外端331.332・旧・・Oリング 341・・・・・・スペーサ 354.355.356.357.381.382.3
83.384・・・・・・気密性を有する導入端子4・
・・・・・蒸発源    41・旧・・電子銃5・・・
・・・蒸着材 6.6A、6B・・・・・・駆動用モータ(駆動手段)
61.63・・・・・・ラック 71.75・・・・・・固定給電線 74.76・・・・・・可とう給電線(固定冷媒管)8
1・・・・・・固定給水管 82・・・・・・可とう給水管(可とう冷媒管)91・
・・・・・リニヤポテンショ 92・・・・・・電子銃電源 93・・・・・・膜厚モニタ 94・・・・・・膜厚センサ 95・・・・・・電極 96・・・・・・直流電源 第1図 ′IJ2図
1 and 2 are the first and second embodiments of the present invention, respectively.
1 is a schematic cross-sectional view of an ion plating apparatus showing an embodiment of the present invention. 1... Substrate to be deposited 2...
Vacuum chamber 3.3A, 3B...Cylindrical mount 10...Matching circuit 11...Group/High frequency coil 31.36...Tip 32.37...Group/Full Outer end 331.332/Old...O-ring 341...Spacer 354.355.356.357.381.382.3
83.384...Introduction terminal 4 with airtightness
...Evaporation source 41. Old...Electron gun 5...
... Vapor deposition material 6.6A, 6B ... Drive motor (drive means)
61.63...Rack 71.75...Fixed power supply line 74.76...Flexible power supply line (fixed refrigerant pipe) 8
1... Fixed water supply pipe 82... Flexible water supply pipe (flexible refrigerant pipe) 91.
...Linear potentiometer 92 ...Electron gun power supply 93 ... Film thickness monitor 94 ... Film thickness sensor 95 ... Electrode 96 ... ...DC power supply Figure 1'IJ2 Figure

Claims (2)

【特許請求の範囲】[Claims] (1)真空室内に蒸着材を蒸発供給する蒸発源を設ける
とともに、蒸発源の直上をわん曲した被蒸着基板を通過
せしめるようになし、かつ上記蒸発源と蒸着基板間に、
蒸発した蒸着材をイオン化する高周波コイルを設けてイ
オン化した蒸着材を電界により上記蒸着基板方向へ加速
するようになしたイオンプレーティング装置において、
真空室壁を貫通してこれに気密的かつ軸方向移動自在に
支持されるとともにその先端に上記蒸発源を設けた筒状
架台と、該筒状架台を、蒸発源とこの上を通過する上記
被蒸着基板の対向部との距離が常に一定となるように対
向方向へ正逆移動せしめる駆動手段とを具備し、上記蒸
発源に接続される固定給電線および上記蒸発源を冷却す
る冷媒を供給する固定冷媒管を上記筒状架台内に気密的
に挿通せしめて、これらを筒状架台の室外端部でそれぞ
れ可とう給電線および可とう冷媒管に接続し、かつ、上
記筒状架台に隣接せしめて設けられ、真空室壁を貫通し
てこれに気密的かつ軸方向移動自在に支持されるととも
にその先端に上記高周波コイルを設けた他の筒状架台と
、他の筒状架台を上記筒状架台に追従して移動比しめる
駆動手段とを具備し、上記他の筒状架台はその先端を気
密的な箱状に形成してこれに大気を導入するとともに箱
内には上記高周波コイルの整合回路を収納し、上記整合
回路に接続される固定給電線を上記他の筒状架台内に挿
通せしめて、これを筒状架台の室外端部で可とう給電線
に接続したことを特徴とするイオンプレーティング装置
(1) An evaporation source is provided in the vacuum chamber to evaporate and supply the evaporation material, and a curved evaporation target substrate is passed directly above the evaporation source, and between the evaporation source and the evaporation substrate,
In an ion plating apparatus that is provided with a high-frequency coil that ionizes evaporated deposition material and accelerates the ionized deposition material toward the deposition substrate using an electric field,
a cylindrical mount penetrating the wall of the vacuum chamber, supported airtightly and movably in the axial direction, and having the evaporation source at its tip; A driving means for moving the evaporation target substrate forward and backward in opposing directions so that the distance from the opposing part is always constant, and supplies a fixed power supply line connected to the evaporation source and a refrigerant for cooling the evaporation source. A fixed refrigerant pipe is hermetically inserted into the cylindrical mount, and these are connected to the flexible power supply line and the flexible refrigerant pipe at the outdoor end of the cylindrical mount, respectively, and the fixed refrigerant pipe is connected adjacent to the cylindrical mount. Another cylindrical pedestal is provided at least one cylindrical pedestal is provided, penetrates through the wall of the vacuum chamber, is supported airtightly and movably in the axial direction, and is provided with the above-mentioned high-frequency coil at its tip; The other cylindrical pedestal is provided with a driving means that moves according to the shape of the cylindrical pedestal, and the tip of the other cylindrical pedestal is formed into an airtight box shape into which air is introduced. A matching circuit is housed therein, a fixed power supply line connected to the matching circuit is inserted into the other cylindrical mount, and this is connected to the flexible power supply line at the outdoor end of the cylindrical mount. Ion plating equipment.
(2)上記筒状架台および上記他の筒状架台を一体の筒
状架台で共用し、該筒状架台に上記蒸発源および高周波
コイルを設けるとともに架台先端内に上記整合回路を収
納した特許請求の範囲第1項記載のイオンプレーティン
グ装置。
(2) A patent claim in which the cylindrical mount and the other cylindrical mount are shared by an integrated cylindrical mount, the evaporation source and the high-frequency coil are provided on the cylindrical mount, and the matching circuit is housed within the tip of the mount. The ion plating apparatus according to item 1.
JP61015434A 1986-01-27 1986-01-27 Ion plating device Pending JPS62174371A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61015434A JPS62174371A (en) 1986-01-27 1986-01-27 Ion plating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61015434A JPS62174371A (en) 1986-01-27 1986-01-27 Ion plating device

Publications (1)

Publication Number Publication Date
JPS62174371A true JPS62174371A (en) 1987-07-31

Family

ID=11888690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61015434A Pending JPS62174371A (en) 1986-01-27 1986-01-27 Ion plating device

Country Status (1)

Country Link
JP (1) JPS62174371A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5474611A (en) * 1992-05-20 1995-12-12 Yoichi Murayama, Shincron Co., Ltd. Plasma vapor deposition apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5474611A (en) * 1992-05-20 1995-12-12 Yoichi Murayama, Shincron Co., Ltd. Plasma vapor deposition apparatus

Similar Documents

Publication Publication Date Title
US4116806A (en) Two-sided planar magnetron sputtering apparatus
US20020074225A1 (en) Sputtering device
US9721769B2 (en) In-vacuum rotational device
US20180374732A1 (en) Apparatus for transportation of a substrate, apparatus for vacuum processing of a substrate, and method for maintenance of a magnetic levitation system
JP2006299358A (en) Vacuum film deposition apparatus, and vacuum film deposition method
WO2019192679A1 (en) Apparatus and vacuum system for carrier alignment in a vacuum chamber, and method of aligning a carrier
US20210335640A1 (en) Holding device for holding a carrier or a component in a vacuum chamber, use of a holding device for holding a carrier or a component in a vacuum chamber, apparatus for handling a carrier in a vacuum chamber, and vacuum deposition system
JPS62174371A (en) Ion plating device
WO1989010430A1 (en) Vacuum coating system
JP4251857B2 (en) Vacuum film forming apparatus and vacuum film forming method
JPS62199767A (en) Ion plating device
DE69105764T2 (en) Process for evaporating a diamond-like film on a low-melting substrate.
US3537973A (en) Sequential sputtering with movable targets
CN102187007A (en) Sputtering apparatus, thin film forming method and method for manufacturing field effect transistor
JPS62170471A (en) Vapor deposition device
WO2005087970A1 (en) Vacuum deposition apparatus
US3487000A (en) Sputtering apparatus
KR102215483B1 (en) Apparatus for handling carrier in vacuum chamber, vacuum deposition system, and method of handling carrier in vacuum chamber
KR20200081184A (en) Film forming apparatus, film forming method and manufacturing method of electronic device
KR20210150512A (en) Apparatus, deposition apparatus and processing system for moving a substrate
KR20200081187A (en) Film forming apparatus, film forming method and manufacturing method of electronic device
CN110557953B (en) Device and vacuum system for alignment of a carrier in a vacuum chamber and method for aligning a carrier
KR20200025982A (en) Film forming apparatus, film forming method and manufacturing method of electronic device
KR19990075436A (en) Ion beam sputtering multilayer thin film manufacturing apparatus
KR20200025988A (en) Film forming apparatus, film forming method and manufacturing method of electronic device