JP4251857B2 - Vacuum film forming apparatus and vacuum film forming method - Google Patents

Vacuum film forming apparatus and vacuum film forming method Download PDF

Info

Publication number
JP4251857B2
JP4251857B2 JP2002343485A JP2002343485A JP4251857B2 JP 4251857 B2 JP4251857 B2 JP 4251857B2 JP 2002343485 A JP2002343485 A JP 2002343485A JP 2002343485 A JP2002343485 A JP 2002343485A JP 4251857 B2 JP4251857 B2 JP 4251857B2
Authority
JP
Japan
Prior art keywords
vapor deposition
substrate
vacuum
forming apparatus
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002343485A
Other languages
Japanese (ja)
Other versions
JP2004176126A (en
Inventor
秀幸 小田木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2002343485A priority Critical patent/JP4251857B2/en
Publication of JP2004176126A publication Critical patent/JP2004176126A/en
Application granted granted Critical
Publication of JP4251857B2 publication Critical patent/JP4251857B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)
  • Electroluminescent Light Sources (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、真空成膜装置に関し、特に、有機LED素子に用いられる有機薄膜を蒸着によって形成する真空成膜装置に関する。
【0002】
【従来の技術】
近年、フルカラーパネルフラットパネルディスプレイ用の素子として、有機LED素子が注目されている。有機LED素子は、蛍光性有機化合物を電気的に励起して発光させる自発光型素子で、高輝度、高視野角、面発光、薄型で多色発光が可能であり、しかも数Vという低電圧の直流印加で発光する全固体素子で、かつ低温においてもその特性の変化が少ないという特徴を有している。
【0003】
図10は、従来の真空成膜装置の概略構成を示す斜視図、図11(a)は、従来の真空成膜装置の要部の概略構成を示す斜視図、図11(b)は、従来の真空成膜装置で成膜した場合における基板支持部近傍の膜厚分布の状態を示すグラフである。
【0004】
図10に示すように、この真空成膜装置101においては、真空槽102内の下部に一対の蒸着源103a、103bが配設されるとともに、これら蒸着源103a、103b内の上部に、基板ホルダー104によって支持された基板110が配置されようになっている。
【0005】
そして、基板110を回転させながら、蒸着源103a、103bによって蒸発された有機材料の蒸気によって、基板110上に所定パターンの有機薄膜を形成するようになっている。
【0006】
【特許文献1】
特開平11−124667号公報
【0007】
【発明が解決しようとする課題】
しかしながら、従来の真空成膜装置では、基板を支持する部分やマスク等の端部の近傍において膜厚が均一にならないという問題がある。
すなわち、図11(b)に示すように、例えば基板ホルダー104の基板支持部104a近傍では、基板支持部104aの影響によって膜の端部120の膜厚が薄くなるという問題がある。
【0008】
本発明は、このような従来の技術の課題を解決するためになされたもので、基板支持部やマスク等の端部による膜厚分布への影響を軽減することが可能な真空成膜装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記目的を達成するためになされた請求項1記載の発明は、所定のパターンが形成された矩形状のマスクを介して真空中で基板上に蒸着によって成膜を行う真空成膜装置において、前記基板を水平面内で90°回転移動させる基板回転手段と、当該蒸着を行うための蒸着源を、前記基板に対して平行に異なる2方向へ相対的に直線移動させる移動手段を有するものである。
請求項2記載の発明は、請求項1記載の発明において、前記蒸発源が、前記異なる2方向に対して直交する方向に間隔をおいて一対配置されているものである。
請求項3記載の発明は、請求項2記載の発明において、前記蒸発源のそれぞれには、シャッターが設けられているものである。
請求項4記載の発明は、請求項1記載の発明において、前記蒸発源には、前記異なる2方向に対して直交する方向に延びる蓋部が設けられているものである。
請求項5記載の発明は、請求項1記載の真空成膜装置を用いて成膜を行う真空成膜方法であって、前記蒸着源を前記基板に対して平行に直線移動させながら蒸着を行う第1の蒸着工程と、前記基板を当該基板を含む平面内において90°回転移動させる基板回転工程とを有するものである。
請求項6記載の発明は、請求項5記載の発明において、前記第1の蒸着工程における蒸着源の移動方向と前記第2の蒸着工程における蒸着源の移動方向のなす角度が180°であるものである。
【0010】
本発明者らは、蒸着の際に基板に対し蒸着源を相対的に平行直線移動させると、蒸発材料の粒子が十分に回り込むようになり、蒸着源の移動方向に対して直交する方向について基板支持部やマスクの端部近傍等の膜厚分布を均一にしうることを見い出した。
【0011】
そして、本発明によれば、基板に対し蒸着源を異なる複数の方向へ相対的に平行直線移動させながら蒸着を行うことによって、基板支持部やマスクの各端部(縁部)近傍等の膜厚分布を均一にすることが可能になる。
【0012】
本発明の真空成膜装置において、基板を回転移動させる基板回転手段と、蒸着源を直線移動させる蒸着源移動手段とを設けるようにすれば、簡素小型の構成で、基板に対し蒸着源を異なる複数の方向へ相対的に平行直線移動させることが可能になる。
【0013】
そして、第1の蒸着工程において蒸着源を前記基板に対して平行に直線移動させながら蒸着を行い、基板回転工程において基板を当該基板を含む平面内において所定の角度回転移動させ、第2の蒸着工程において蒸着源を前記基板に対して平行に直線移動させながら蒸着を行うようにすれば、効率良く成膜を行うことが可能になる。
【0014】
特に、基板回転工程において基板を90°回転させるようにすれば、矩形状のマスクを用いて成膜を行う場合にマスクの各端部(縁部)近傍の膜厚分布を確実に均一化することができる。
【0015】
さらに、第1の蒸着工程における蒸着源の移動方向と第2の蒸着工程における蒸着源の移動方向のなす角度が180°となるようにすれば、第1及び第2の蒸着工程において蒸着源の移動範囲が同一になるため、装置の小型化を図ることが可能になる。
【0016】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して詳細に説明する。
図1は、本発明の実施の形態に係る真空成膜装置を有する真空処理装置の全体斜視図、図2は、同真空成膜装置の概略構成図、図3は、同真空成膜装置に配置される基板ホルダーと蒸着源とを示す概略構成図である。
【0017】
図1に示すように、本発明が適用される真空処理装置1は、マルチチャンバー方式の枚葉式の装置であり、真空ロボット室2の周囲に、基板搬送装置3との間で基板10のやり取りを行うための連結部5と、基板10に有機蒸着膜を形成するための蒸着室5、6及び7とが設けられている。
【0018】
真空ロボット室2、蒸着室5、6及び7は、真空ポンプ等を有する真空排気系(図示せず)に連結され、真空ロボット室2内に設けられた真空ロボット(図示せず)によって基板10を蒸着室5、6及び7間を搬送するように構成されている。
【0019】
図2に示すように、本実施の形態の真空成膜装置20は、上記蒸着室5、6及び7内に設けられるもので、移動可能な基台30上に設けられた真空槽21内に、蒸着源22と基板ホルダー23(基板回転手段)を有し、また真空槽21の外部には蒸着源移動機構24(蒸着源移動手段)が設けられている。
【0020】
基板ホルダー23は、例えば平板矩形状の基板10を水平に支持する基板支持部23aを有し、この基板支持部23aは、図示しないモータの駆動によって水平方向に所定の角度回転させるように構成されている。
【0021】
図3に示すように、基板ホルダー23には、所定のパターン25aを有するマスク25が配設され、このマスク25に形成されたパターン25aを介して、蒸着源22から蒸発する有機材料が基板10の表面に蒸着されるようになっている。
【0022】
なお、本実施の形態の蒸着源22は、リニアソース方式によるもので、ホスト用の蒸着源22aとドーパント用の蒸着源22bとを有している。そして、これらホスト用の蒸着源22aとドーパント用の蒸着源22bは、蒸着源移動機構24の駆動により、一体的に水平方向(矢印X1又はX2方向)に直線移動するように構成されている。
【0023】
そして、本実施の形態においては、基板10の回転と蒸着源22の直線方向への移動によって、基板10に対して蒸着源22が異なる2方向へ相対的に平行移動するようになっている。
【0024】
図4は、本実施の形態の蒸着源及び蒸着源移動機構の構成を示す分解斜視図である。
図4に示すように、本実施の形態の蒸着源22は、移動真空容器22c上に取り付けられるようになっている。
【0025】
蒸着源移動機構24は、真空槽21外部の基台30上に矢印X方向(X1又はX2方向)に沿って平行に配設された直線状の一対のガイド部材24a、24bを有し、これらガイド部材24a、24bに沿って中空筒状のベローズ24cが位置決めされるようになっている。
【0026】
このベローズ24cは、真空槽21内部に矢印X方向に延設されたガイドローラ24eと係合し矢印X方向に移動する伸縮部24dを有している。そして、ベローズ24cの伸縮部24dは、真空導入部24gを介して蒸着源22の移動真空容器24bに取り付けられ、これにより蒸着源22を矢印X1又はX2方向へ移動させるようになっている。
【0027】
なお、ベローズ24bの内部には、図示しない制御部に接続された配線24fが設けられ、この配線24fは、真空導入部24gを介して蒸着源22の各部分に接続されている。
【0028】
図5は、本発明に用いる蒸着源の他の例を示す分解斜視図である。
本例の蒸発源32は、上述した蒸着源移動機構24によって駆動されるものであり、円筒状の蒸発容器32a、32bの中に蒸発物質を収容するように構成されている。
【0029】
なお、本例の蒸着源32には、各蒸発容器32a、32bの近傍に、シャッター32cと、膜厚モニター32dが設けられている。
【0030】
以下、本実施の形態の真空成膜装置1の動作を図5に示す蒸着源を用いて説明する。
図6(a)(b)は、本発明の真空成膜装置の原理を説明するための斜視図である。
図6(a)(b)に示す装置において基板上に蒸着を行う場合には、上述した真空槽21内の圧力、温度などの条件を所定値に設定し、各蒸発容器32a、32b内の蒸着材料の加熱を開始する。
そして、所定の蒸発速度が得られた時点で、シャッター32cを開き、蒸着を開始する。
【0031】
さらに、図6(a)に示すように、ベローズ24cの伸縮部24dを駆動して蒸着源22を基板ホルダー23の直下を通過するようにX1方向に所定の位置まで水平直線移動させる。
【0032】
その後、図6(b)に示すように、蒸着源24をX2方向に水平直線移動させて元の位置まで戻し、これにより一工程の処理が終了する。
【0033】
図7(a)(b)は、基板上に形成された蒸着膜の形状を示す断面図で、図7(a)は、蒸着源の移動方向に垂直な方向であるY方向切断断面図、図7(b)は、蒸着源の移動方向に平行な方向であるX方向切断断面図である。
【0034】
図7(a)において、膜厚カーブAは、従来技術のように基板10を回転させながら蒸着した場合の膜厚分布を示すもので、膜厚カーブBは、図6(a)(b)に示すように、基板10を回転させず蒸着源22を直線移動させながら蒸着した場合の膜厚分布を示すものである。
【0035】
図7(a)の膜厚カーブA、Bから明らかなように、蒸着源22を直線方向に移動させながら蒸着する場合は、基板10を回転させながら蒸着した場合に比べ、膜厚分布を均一にすることができ、より良好な膜を形成することができる。
【0036】
しかし、図7(b)の膜厚カーブCに示すように、蒸着源22の移動方向に関しては、基板支持部23aの近傍の膜の端部が傾斜し、膜厚分布は均一にならない。
【0037】
図8(a)(b)は、本発明の実施の形態の真空成膜装置の動作を説明するための斜視図である。
【0038】
本実施の形態においても、まず、真空槽21の圧力、温度などの条件を所定値に設定し、各蒸発容器32a、32b内の蒸着材料の加熱を開始する。
そして、所定の蒸発速度が得られた時点で、シャッター32cを開き、蒸着を開始する。
【0039】
さらに、図8(a)に示すように、ベローズ24cの伸縮部24dを駆動して蒸着源22を基板ホルダー23の直下を通過するようにX1方向に所定の位置まで水平直線移動させる(第1の蒸着工程)。
【0040】
この時点で、図8(b)に示すように、基板ホルダー23を水平方向に所定角度(本実施の形態では90°)回転移動させる(基板回転工程)。
【0041】
その後、図8(b)に示すように、蒸着源22をX2方向に水平直線移動させて元の位置まで戻し(第2の蒸着工程)、これにより一工程の処理が終了する。
【0042】
図9(a)(b)は、本実施の形態により基板上に形成された蒸着膜の形状を示す断面図で、図9(a)は、蒸着源の移動方向に垂直な方向であるY方向切断断面図、図9(b)は、蒸着源の移動方向に平行な方向であるX方向切断断面図である。
【0043】
図9(a)(b)において、膜厚カーブAは、従来技術のように基板10を回転させながら蒸着した場合の膜厚分布を示すもので、膜厚カーブB、Dは、図8(a)(b)に示すように、蒸着源22を直線移動させながら蒸着した後、基板10を90°回転させ、さらに蒸着源22を直線移動させながら蒸着した場合の膜厚分布を示すものである。
【0044】
図9(b)の膜厚カーブC、Dから明らかなように、基板10を90°回転させた後蒸着源22を直線方向に移動させながら蒸着する場合は、基板10を回転させながら蒸着した場合に比べ、蒸着源22の移動方向に平行な方向についても基板支持部23a近傍の膜厚分布を均一にすることができ、より良好な膜を形成することができる。
【0045】
以上述べたように本実施の形態によれば、基板10に対し直交する方向へ蒸着源22を平行直線移動させながら蒸着を行うことによって、基板支持部23aやマスク25の各端部(縁部)近傍等の膜厚分布を確実に均一にすることができる。
【0046】
特に本実施の形態においては、基板ホルダー23によって基板10を回転移動させるとともに、蒸着源22を直線移動させるようにしたことから、簡素小型の構成で、基板10に対し直交する2方向へ蒸着源22を平行直線移動させることができる。
【0047】
また、本実施によれば、蒸着源22の往復直線移動と基板10の回転を組み合わせるだけであるので、効率良く成膜を行うことができ、また第1及び第2の蒸着工程において蒸着源22の移動範囲は同一であるため、装置が大型化することもない。
【0048】
なお、本発明は上述の実施の形態に限られることなく、種々の変更を行うことができる。
例えば、上述の実施の形態においては基板の回転角度を90°としたが、本発明はこれに限られず、90°以外の角度にすることも可能であり、また蒸着源の直線移動について2往復以上させることも可能である。
【0049】
ただし、効率良く成膜を行う観点からは、上記実施の形態のように蒸着源の1往復と基板の90°回転を組み合わせることが好ましい。
【0050】
また、本発明は有機LED素子の有機薄膜層を形成する真空成膜装置に限られず、種々の真空成膜装置に適用しうるものである。
【0051】
ただし、上記実施の形態のように有機LED素子の有機薄膜層を形成する真空成膜装置に適用した場合の膜厚分布の均一化に最も効果があるものである。
【0052】
【発明の効果】
以上述べたように本発明によれば、基板に対し蒸着源を異なる複数の方向へ相対的に平行直線移動させながら蒸着を行うことによって、マスクの各端部(縁部)近傍等の膜厚分布を均一にすることができる。
本発明の真空成膜装置において、基板を回転移動させる基板回転手段と、蒸着源を直線移動させる蒸着源移動手段とを設けるようにすれば、簡素小型の構成で、基板に対し蒸着源を異なる複数の方向へ相対的に平行直線移動させることができる。
そして、本発明方法の第1の蒸着工程において蒸着源を前記基板に対して平行に直線移動させながら蒸着を行い、基板回転工程において基板を当該基板を含む平面内において所定の角度回転移動させ、第2の蒸着工程において蒸着源を前記基板に対して平行に直線移動させながら蒸着を行うようにすれば、効率良く成膜を行うことができる。
特に、基板回転工程において基板を90°回転させるようにすれば、矩形状のマスクを用いて成膜を行う場合にマスクの各端部(縁部)近傍の膜厚分布を確実に均一化することができる。
さらに、第1の蒸着工程における蒸着源の移動方向と第2の蒸着工程における蒸着源の移動方向のなす角度が180°となるようにすれば、第1及び第2の蒸着工程において蒸着源の移動範囲が同一になるため、装置の小型化を図ることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る真空成膜装置を有する真空処理装置の全体斜視図
【図2】同真空成膜装置の概略構成図
【図3】同真空成膜装置に配置される基板ホルダーと蒸着源とを示す概略構成図
【図4】本実施の形態の蒸着源及び蒸着源移動機構の構成を示す分解斜視図
【図5】本発明に用いる蒸着源の他の例を示す分解斜視図
【図6】(a)(b):本発明の真空成膜装置の原理を説明するための斜視図
【図7】(a)(b):基板上に形成された蒸着膜の形状を示す断面図で、図7(a)は、蒸着源の移動方向に垂直な方向であるY方向切断断面図、図7(b)は、蒸着源の移動方向に平行な方向であるX方向切断断面図
【図8】(a)(b):本発明の実施の形態の真空成膜装置の動作を説明するための斜視図
【図9】(a)(b):同実施の形態により基板上に形成された蒸着膜の形状を示す断面図で、図9(a)は、蒸着源の移動方向に垂直な方向であるY方向切断断面図、図9(b)は、蒸着源の移動方向に平行な方向であるX方向切断断面図
【図10】従来の真空成膜装置の概略構成を示す斜視図
【図11】(a):従来の真空成膜装置の要部の概略構成を示す斜視図 (b):従来の真空成膜装置で成膜した場合における基板支持部近傍の膜圧分布の状態を示すグラフ
【符号の説明】
1…真空処理装置 2…真空ロボット室 5、6、7…蒸着室 20…真空成膜装置 21…真空槽 22…蒸着源 23…基板ホルダー(基板回転手段) 23a…基板支持部 24…蒸着源移動機構(蒸着源移動手段) 25…マスク 30…基台 A、B、C、D…膜厚カーブ 32…蒸着源
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vacuum film forming apparatus, and more particularly to a vacuum film forming apparatus that forms an organic thin film used for an organic LED element by vapor deposition.
[0002]
[Prior art]
In recent years, organic LED elements have attracted attention as elements for full-color panel flat panel displays. An organic LED element is a self-luminous element that emits light by exciting a fluorescent organic compound electrically. It has high brightness, high viewing angle, surface light emission, thin and multicolor emission, and low voltage of several volts. This is an all-solid-state device that emits light when a direct current is applied, and has a feature that its characteristic change is small even at a low temperature.
[0003]
FIG. 10 is a perspective view showing a schematic configuration of a conventional vacuum film forming apparatus, FIG. 11A is a perspective view showing a schematic configuration of a main part of the conventional vacuum film forming apparatus, and FIG. It is a graph which shows the state of the film thickness distribution of the board | substrate support part vicinity at the time of forming into a film with this vacuum film-forming apparatus.
[0004]
As shown in FIG. 10, in this vacuum film forming apparatus 101, a pair of vapor deposition sources 103a and 103b are disposed in the lower part in the vacuum chamber 102, and a substrate holder is disposed in the upper part in the vapor deposition sources 103a and 103b. A substrate 110 supported by 104 is arranged.
[0005]
An organic thin film having a predetermined pattern is formed on the substrate 110 by the vapor of the organic material evaporated by the vapor deposition sources 103a and 103b while rotating the substrate 110.
[0006]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 11-124667
[Problems to be solved by the invention]
However, the conventional vacuum film forming apparatus has a problem that the film thickness does not become uniform in the vicinity of the end portion of the portion supporting the substrate or the mask.
That is, as shown in FIG. 11B, for example, in the vicinity of the substrate support portion 104a of the substrate holder 104, there is a problem that the film thickness of the end portion 120 of the film becomes thin due to the influence of the substrate support portion 104a.
[0008]
The present invention has been made in order to solve the problems of the conventional technique, and a vacuum film forming apparatus capable of reducing the influence on the film thickness distribution by the end portions of the substrate support portion, the mask and the like. The purpose is to provide.
[0009]
[Means for Solving the Problems]
The invention described in claim 1 made to achieve the above object is a vacuum film forming apparatus for forming a film by vapor deposition on a substrate in a vacuum through a rectangular mask on which a predetermined pattern is formed. A substrate rotating means for rotating the substrate by 90 ° in a horizontal plane and a moving means for relatively linearly moving a vapor deposition source for performing the vapor deposition in two different directions parallel to the substrate.
According to a second aspect of the present invention, in the first aspect of the present invention, a pair of the evaporation sources are arranged at intervals in a direction orthogonal to the two different directions.
According to a third aspect of the present invention, in the second aspect of the present invention, each of the evaporation sources is provided with a shutter.
According to a fourth aspect of the present invention, in the first aspect of the present invention, the evaporation source is provided with a lid portion extending in a direction orthogonal to the two different directions.
The invention according to claim 5 is a vacuum film forming method for forming a film using the vacuum film forming apparatus according to claim 1, wherein the evaporation is performed while linearly moving the evaporation source parallel to the substrate. A first vapor deposition step and a substrate rotation step of rotating the substrate by 90 ° in a plane including the substrate.
The invention according to claim 6 is the invention according to claim 5, wherein an angle formed by a moving direction of the vapor deposition source in the first vapor deposition step and a moving direction of the vapor deposition source in the second vapor deposition step is 180 °. It is.
[0010]
The inventors of the present invention, when the deposition source is moved relatively parallel and linearly with respect to the substrate during the deposition, the particles of the evaporation material sufficiently wrap around the substrate in the direction orthogonal to the moving direction of the deposition source. It has been found that the film thickness distribution in the vicinity of the support and the edge of the mask can be made uniform.
[0011]
According to the present invention, the film is deposited near the end portions (edge portions) of the substrate support and the mask by performing the vapor deposition while relatively moving the vapor deposition source in a plurality of different directions relative to the substrate. It becomes possible to make the thickness distribution uniform.
[0012]
In the vacuum film forming apparatus of the present invention, if the substrate rotating means for rotating the substrate and the evaporation source moving means for linearly moving the evaporation source are provided, the evaporation source is different from the substrate with a simple and small configuration. It becomes possible to move relatively linearly in a plurality of directions.
[0013]
Then, in the first vapor deposition step, vapor deposition is performed while linearly moving the vapor deposition source in parallel with the substrate, and in the substrate rotation step, the substrate is rotated by a predetermined angle within a plane including the substrate, and the second vapor deposition is performed. If vapor deposition is performed while linearly moving the vapor deposition source in parallel with the substrate in the process, it is possible to efficiently form a film.
[0014]
In particular, if the substrate is rotated by 90 ° in the substrate rotation process, the film thickness distribution in the vicinity of each end (edge) of the mask is reliably uniformed when the film is formed using a rectangular mask. be able to.
[0015]
Furthermore, if the angle formed by the movement direction of the vapor deposition source in the first vapor deposition process and the movement direction of the vapor deposition source in the second vapor deposition process is 180 °, the vapor deposition source in the first vapor deposition process and the second vapor deposition process. Since the movement range is the same, the apparatus can be downsized.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
1 is an overall perspective view of a vacuum processing apparatus having a vacuum film forming apparatus according to an embodiment of the present invention, FIG. 2 is a schematic configuration diagram of the vacuum film forming apparatus, and FIG. It is a schematic block diagram which shows the substrate holder and vapor deposition source which are arrange | positioned.
[0017]
As shown in FIG. 1, a vacuum processing apparatus 1 to which the present invention is applied is a multi-chamber type single wafer type apparatus, and a substrate 10 is placed around a vacuum robot chamber 2 with a substrate transfer apparatus 3. A connecting portion 5 for performing exchanges and vapor deposition chambers 5, 6 and 7 for forming an organic vapor deposition film on the substrate 10 are provided.
[0018]
The vacuum robot chamber 2 and the vapor deposition chambers 5, 6 and 7 are connected to an evacuation system (not shown) having a vacuum pump and the like, and the substrate 10 is formed by a vacuum robot (not shown) provided in the vacuum robot chamber 2. Is configured to be conveyed between the vapor deposition chambers 5, 6 and 7.
[0019]
As shown in FIG. 2, the vacuum film forming apparatus 20 of the present embodiment is provided in the vapor deposition chambers 5, 6 and 7, and is placed in a vacuum chamber 21 provided on a movable base 30. The evaporation source 22 and the substrate holder 23 (substrate rotating means) are provided, and an evaporation source moving mechanism 24 (deposition source moving means) is provided outside the vacuum chamber 21.
[0020]
The substrate holder 23 has a substrate support portion 23a that horizontally supports, for example, the flat rectangular substrate 10, and the substrate support portion 23a is configured to rotate by a predetermined angle in the horizontal direction by driving a motor (not shown). ing.
[0021]
As shown in FIG. 3, a mask 25 having a predetermined pattern 25 a is disposed on the substrate holder 23, and an organic material that evaporates from the vapor deposition source 22 through the pattern 25 a formed on the mask 25 is the substrate 10. It is designed to be deposited on the surface.
[0022]
The vapor deposition source 22 of the present embodiment is of a linear source type, and has a host vapor deposition source 22a and a dopant vapor deposition source 22b. Then, the deposition source 22b for deposition source 22a and a dopant for these hosts, by driving the evaporation source moving mechanism 24, and is configured to linearly move integrally horizontally (arrow X 1 or X 2 direction) Yes.
[0023]
In the present embodiment, the evaporation source 22 is relatively translated in two different directions with respect to the substrate 10 by the rotation of the substrate 10 and the movement of the evaporation source 22 in the linear direction.
[0024]
FIG. 4 is an exploded perspective view showing the configuration of the vapor deposition source and the vapor deposition source moving mechanism of the present embodiment.
As shown in FIG. 4, the vapor deposition source 22 of this Embodiment is attached on the moving vacuum vessel 22c.
[0025]
Deposition source moving mechanism 24 includes a pair of guide members 24a of the vacuum chamber 21 outside of the base 30 direction of arrow X on (X 1 or X 2 direction) are arranged in parallel along the the straight and 24b The hollow cylindrical bellows 24c is positioned along the guide members 24a and 24b.
[0026]
The bellows 24c has an expandable portion 24d that engages with a guide roller 24e extending in the arrow X direction inside the vacuum chamber 21 and moves in the arrow X direction. The stretchable portion 24d of the bellows 24c is attached to the moving vacuum vessel 24b of the deposition source 22 through the vacuum inlet portion 24 g, thereby adapted to move the deposition source 22 in the arrow X 1 or X 2 direction .
[0027]
A wiring 24f connected to a control unit (not shown) is provided inside the bellows 24b, and the wiring 24f is connected to each part of the vapor deposition source 22 through a vacuum introduction unit 24g.
[0028]
FIG. 5 is an exploded perspective view showing another example of the vapor deposition source used in the present invention.
The evaporation source 32 of this example is driven by the above-described evaporation source moving mechanism 24, and is configured to store the evaporation substance in cylindrical evaporation containers 32a and 32b.
[0029]
In the vapor deposition source 32 of this example, a shutter 32c and a film thickness monitor 32d are provided in the vicinity of each of the evaporation containers 32a and 32b.
[0030]
Hereinafter, the operation of the vacuum film forming apparatus 1 according to the present embodiment will be described using the vapor deposition source shown in FIG.
6A and 6B are perspective views for explaining the principle of the vacuum film forming apparatus of the present invention.
When vapor deposition is performed on a substrate in the apparatus shown in FIGS. 6A and 6B, conditions such as the pressure and temperature in the vacuum chamber 21 described above are set to predetermined values, and the evaporation containers 32a and 32b Start heating the vapor deposition material.
Then, when a predetermined evaporation rate is obtained, the shutter 32c is opened and vapor deposition is started.
[0031]
Furthermore, as shown in FIG. 6 (a), it is horizontally linearly moved to a predetermined position in the X 1 direction to the evaporation source 22 by driving the extensible portion 24d of the bellows 24c passes directly under the substrate holder 23.
[0032]
Thereafter, as shown in FIG. 6 (b), the deposition source 24 by the horizontal linear movement in the X 2 direction back to the original position, thereby the processing of one step is completed.
[0033]
7A and 7B are cross-sectional views showing the shape of the vapor deposition film formed on the substrate, and FIG. 7A is a cross-sectional view taken along the Y direction, which is a direction perpendicular to the moving direction of the vapor deposition source. FIG. 7B is a cross-sectional view taken along the X direction, which is a direction parallel to the moving direction of the vapor deposition source.
[0034]
In FIG. 7A, a film thickness curve A shows the film thickness distribution when the substrate 10 is deposited while rotating as in the prior art, and the film thickness curve B is shown in FIGS. 6A and 6B. As shown in FIG. 2, the film thickness distribution is shown when the deposition is performed while the deposition source 22 is linearly moved without rotating the substrate 10.
[0035]
As is clear from the film thickness curves A and B in FIG. 7A, the film thickness distribution is more uniform when the vapor deposition is performed while the vapor deposition source 22 is moved in the linear direction than when the vapor deposition is performed while the substrate 10 is rotated. And a better film can be formed.
[0036]
However, as shown in the film thickness curve C in FIG. 7B, with respect to the moving direction of the vapor deposition source 22, the end of the film in the vicinity of the substrate support 23a is inclined and the film thickness distribution is not uniform.
[0037]
FIGS. 8A and 8B are perspective views for explaining the operation of the vacuum film forming apparatus according to the embodiment of the present invention.
[0038]
Also in the present embodiment, first, conditions such as the pressure and temperature of the vacuum chamber 21 are set to predetermined values, and heating of the vapor deposition material in each of the evaporation containers 32a and 32b is started.
Then, when a predetermined evaporation rate is obtained, the shutter 32c is opened and vapor deposition is started.
[0039]
Furthermore, as shown in FIG. 8 (a), it is horizontally linearly moved to a predetermined position in the X 1 direction to the evaporation source 22 by driving the extensible portion 24d of the bellows 24c passes directly under the substrate holder 23 (second 1 vapor deposition step).
[0040]
At this time, as shown in FIG. 8B, the substrate holder 23 is rotated and moved in the horizontal direction by a predetermined angle (90 ° in the present embodiment) (substrate rotation process).
[0041]
Thereafter, as shown in FIG. 8 (b), the deposition source 22 by the horizontal linear movement in the X 2 direction back to the original position (second deposition step), thereby the processing of one step is completed.
[0042]
9A and 9B are cross-sectional views showing the shape of the vapor deposition film formed on the substrate according to the present embodiment, and FIG. 9A is a direction perpendicular to the moving direction of the vapor deposition source. FIG. 9B is a sectional view taken in the X direction, which is a direction parallel to the moving direction of the vapor deposition source.
[0043]
9A and 9B, the film thickness curve A shows the film thickness distribution when the substrate 10 is vapor-deposited as in the prior art, and the film thickness curves B and D are shown in FIG. a) As shown in (b), the film thickness distribution is shown when the deposition source 22 is vapor-deposited while moving linearly, the substrate 10 is rotated by 90 °, and the vapor deposition source 22 is vapor-deposited while linearly moving. is there.
[0044]
As is apparent from the film thickness curves C and D of FIG. 9B, when the deposition is performed while the deposition source 22 is moved in the linear direction after the substrate 10 is rotated by 90 °, the deposition is performed while the substrate 10 is rotated. Compared to the case, the film thickness distribution in the vicinity of the substrate support 23a can be made uniform in the direction parallel to the moving direction of the vapor deposition source 22, and a better film can be formed.
[0045]
As described above, according to the present embodiment, by performing vapor deposition while moving the vapor deposition source 22 in the direction orthogonal to the substrate 10, each end (edge portion) of the substrate support portion 23 a and the mask 25. ) The film thickness distribution in the vicinity can be made uniform.
[0046]
In particular, in the present embodiment, the substrate 10 is rotated and moved by the substrate holder 23 and the evaporation source 22 is linearly moved. Therefore, the evaporation source is directed in two directions orthogonal to the substrate 10 with a simple and small configuration. 22 can be moved in parallel straight lines.
[0047]
In addition, according to the present embodiment, since only the reciprocating linear movement of the vapor deposition source 22 and the rotation of the substrate 10 are combined, film formation can be performed efficiently, and the vapor deposition source 22 in the first and second vapor deposition steps. Since the movement range is the same, the apparatus does not increase in size.
[0048]
The present invention is not limited to the above-described embodiment, and various changes can be made.
For example, in the above-described embodiment, the rotation angle of the substrate is 90 °. However, the present invention is not limited to this, and can be an angle other than 90 °. It is also possible to do the above.
[0049]
However, from the viewpoint of efficient film formation, it is preferable to combine one reciprocation of the evaporation source and 90 ° rotation of the substrate as in the above embodiment.
[0050]
The present invention is not limited to a vacuum film forming apparatus for forming an organic thin film layer of an organic LED element, but can be applied to various vacuum film forming apparatuses.
[0051]
However, it is most effective in making the film thickness distribution uniform when applied to a vacuum film forming apparatus for forming an organic thin film layer of an organic LED element as in the above embodiment.
[0052]
【The invention's effect】
As described above, according to the present invention, the film thickness in the vicinity of each end (edge) of the mask is obtained by performing the vapor deposition while relatively linearly moving the vapor deposition source in different directions with respect to the substrate. The distribution can be made uniform.
In the vacuum film forming apparatus of the present invention, if the substrate rotating means for rotating the substrate and the evaporation source moving means for linearly moving the evaporation source are provided, the evaporation source is different from the substrate with a simple and small configuration. It is possible to move relatively linearly in a plurality of directions.
In the first vapor deposition step of the method of the present invention, vapor deposition is performed while linearly moving the vapor deposition source in parallel with the substrate, and in the substrate rotation step, the substrate is rotated by a predetermined angle in a plane including the substrate, If the vapor deposition is performed while linearly moving the vapor deposition source in parallel with the substrate in the second vapor deposition step, the film can be formed efficiently.
In particular, if the substrate is rotated by 90 ° in the substrate rotation process, the film thickness distribution in the vicinity of each end (edge) of the mask is reliably uniformed when the film is formed using a rectangular mask. be able to.
Furthermore, if the angle formed by the movement direction of the vapor deposition source in the first vapor deposition process and the movement direction of the vapor deposition source in the second vapor deposition process is 180 °, the vapor deposition source in the first vapor deposition process and the second vapor deposition process. Since the movement range is the same, the apparatus can be reduced in size.
[Brief description of the drawings]
FIG. 1 is an overall perspective view of a vacuum processing apparatus having a vacuum film forming apparatus according to an embodiment of the present invention. FIG. 2 is a schematic configuration diagram of the vacuum film forming apparatus. FIG. 4 is an exploded perspective view showing the configuration of the evaporation source and the evaporation source moving mechanism of the present embodiment. FIG. 5 is another example of the evaporation source used in the present invention. FIGS. 6A and 6B are perspective views for explaining the principle of the vacuum film forming apparatus of the present invention. FIGS. 7A and 7B are vapor deposition films formed on a substrate. 7A is a cross-sectional view in the Y direction, which is a direction perpendicular to the moving direction of the vapor deposition source, and FIG. 7B is a direction parallel to the moving direction of the vapor deposition source. Cross-sectional view in the X direction [FIG. 8] (a) (b): Perspective view for explaining the operation of the vacuum film forming apparatus according to the embodiment of the present invention [FIG. 9] (a). b): A cross-sectional view showing the shape of the vapor deposition film formed on the substrate according to the embodiment, and FIG. 9A is a cross-sectional view taken along the Y direction, which is a direction perpendicular to the moving direction of the vapor deposition source. (B) is a cross-sectional view in the X direction, which is a direction parallel to the moving direction of the vapor deposition source. FIG. 10 is a perspective view showing a schematic configuration of a conventional vacuum film forming apparatus. (B): graph showing the state of film pressure distribution in the vicinity of the substrate support when a film is formed by a conventional vacuum film forming apparatus.
DESCRIPTION OF SYMBOLS 1 ... Vacuum processing apparatus 2 ... Vacuum robot chamber 5, 6, 7 ... Deposition chamber 20 ... Vacuum film-forming apparatus 21 ... Vacuum tank 22 ... Deposition source 23 ... Substrate holder (substrate rotation means) 23a ... Substrate support part 24 ... Deposition source Moving mechanism (deposition source moving means) 25 ... Mask 30 ... Base A, B, C, D ... Film thickness curve 32 ... Deposition source

Claims (6)

所定のパターンが形成された矩形状のマスクを介して真空中で基板上に蒸着によって成膜を行う真空成膜装置において、
前記基板を水平面内で90°回転移動させる基板回転手段と、
当該蒸着を行うための蒸着源を、前記基板に対して平行に異なる2方向へ相対的に直線移動させる移動手段を有する真空成膜装置。
In a vacuum film forming apparatus that forms a film by vapor deposition on a substrate in a vacuum through a rectangular mask on which a predetermined pattern is formed,
Substrate rotating means for rotating the substrate by 90 ° in a horizontal plane;
A vacuum film forming apparatus having moving means for linearly moving a vapor deposition source for performing the vapor deposition in two different directions parallel to the substrate.
前記蒸発源が、前記異なる2方向に対して直交する方向に間隔をおいて一対配置されている請求項1記載の真空成膜装置。The vacuum film-forming apparatus according to claim 1, wherein a pair of the evaporation sources are arranged at intervals in a direction orthogonal to the two different directions. 前記蒸発源のそれぞれには、シャッターが設けられている請求項2記載の真空成膜装置。  The vacuum film-forming apparatus according to claim 2, wherein each of the evaporation sources is provided with a shutter. 前記蒸発源には、前記異なる2方向に対して直交する方向に延びる蓋部が設けられている請求項1記載の真空成膜装置。  The vacuum deposition apparatus according to claim 1, wherein the evaporation source is provided with a lid portion extending in a direction orthogonal to the two different directions. 請求項1記載の真空成膜装置を用いて成膜を行う真空成膜方法であって、
前記蒸着源を前記基板に対して平行に直線移動させながら蒸着を行う第1の蒸着工程と、
前記基板を当該基板を含む平面内において90°回転移動させる基板回転工程と、
前記蒸着源を前記基板に対して平行に直線移動させながら蒸着を行う第2の蒸着工程とを有する真空成膜方法。
A vacuum film forming method for forming a film using the vacuum film forming apparatus according to claim 1,
A first vapor deposition step of performing vapor deposition while linearly moving the vapor deposition source parallel to the substrate;
A substrate rotating step of rotating the substrate by 90 ° in a plane including the substrate;
A vacuum deposition method comprising: a second deposition step in which deposition is performed while linearly moving the deposition source parallel to the substrate.
前記第1の蒸着工程における蒸着源の移動方向と前記第2の蒸着工程における蒸着源の移動方向のなす角度が180°である請求項5記載の真空成膜方法。The vacuum film-forming method according to claim 5, wherein an angle formed by a moving direction of the vapor deposition source in the first vapor deposition step and a moving direction of the vapor deposition source in the second vapor deposition step is 180 °.
JP2002343485A 2002-11-27 2002-11-27 Vacuum film forming apparatus and vacuum film forming method Expired - Fee Related JP4251857B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002343485A JP4251857B2 (en) 2002-11-27 2002-11-27 Vacuum film forming apparatus and vacuum film forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002343485A JP4251857B2 (en) 2002-11-27 2002-11-27 Vacuum film forming apparatus and vacuum film forming method

Publications (2)

Publication Number Publication Date
JP2004176126A JP2004176126A (en) 2004-06-24
JP4251857B2 true JP4251857B2 (en) 2009-04-08

Family

ID=32705248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002343485A Expired - Fee Related JP4251857B2 (en) 2002-11-27 2002-11-27 Vacuum film forming apparatus and vacuum film forming method

Country Status (1)

Country Link
JP (1) JP4251857B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4974504B2 (en) * 2005-10-13 2012-07-11 株式会社半導体エネルギー研究所 Film forming apparatus and light emitting apparatus manufacturing method
KR100977971B1 (en) * 2007-06-27 2010-08-24 두산메카텍 주식회사 Evaporation equipment
KR101097737B1 (en) * 2009-03-31 2011-12-22 에스엔유 프리시젼 주식회사 Apparatus for depositing film and method for depositing film and system for depositing film
WO2011122018A1 (en) * 2010-03-30 2011-10-06 国立大学法人神戸大学 Thin film formation device and thin film formation method
JP2012169128A (en) * 2011-02-14 2012-09-06 Ulvac Japan Ltd Thin film manufacturing apparatus
KR101462595B1 (en) * 2012-11-22 2014-11-18 주식회사 에스에프에이 Vaccum deposition apparatus
CN106256925B (en) * 2015-06-18 2020-10-02 佳能特机株式会社 Vacuum evaporation apparatus, method for manufacturing evaporated film, and method for manufacturing organic electronic device
JP6262811B2 (en) * 2016-07-08 2018-01-17 キヤノントッキ株式会社 Vacuum deposition system
JP7301578B2 (en) * 2019-03-29 2023-07-03 キヤノントッキ株式会社 Film forming apparatus and film forming method
JP7434261B2 (en) * 2021-12-02 2024-02-20 長州産業株式会社 Vapor deposition equipment and vapor deposition method

Also Published As

Publication number Publication date
JP2004176126A (en) 2004-06-24

Similar Documents

Publication Publication Date Title
US8951349B2 (en) Thin film deposition apparatus and method of manufacturing organic light-emitting display device by using the same
US8951610B2 (en) Organic layer deposition apparatus
US8961692B2 (en) Evaporating apparatus
US9450140B2 (en) Thin film deposition apparatus and method of manufacturing organic light-emitting display apparatus using the same
JP4463492B2 (en) Manufacturing equipment
KR101254335B1 (en) In-line equipment using metal-plate belt source for OLED manufacturing
US8883259B2 (en) Thin film deposition apparatus
US20030168013A1 (en) Elongated thermal physical vapor deposition source with plural apertures for making an organic light-emitting device
US20110033621A1 (en) Thin film deposition apparatus including deposition blade
US20120009328A1 (en) Thin film deposition apparatus and method of manufacturing organic light-emitting display device by using the same
US20130217164A1 (en) Organic layer deposition apparatus, and method of manufacturing organic light emitting display apparatus using the same
JP2007227086A (en) Deposition apparatus and method of manufacturing light emitting element
JP4251857B2 (en) Vacuum film forming apparatus and vacuum film forming method
JP2010077487A (en) Apparatus for manufacturing organic el device and method for manufacturing the same, and film deposition apparatus and film deposition method
TW201250024A (en) Vapor-deposition device, vapor-deposition method
JP2004100002A (en) Evaporation source and thin-film deposition system using the same
KR101925064B1 (en) Manufacturing equipment using vertical type plane source evaporation for high definition AMOLED devices
CN111293067A (en) Electrostatic chuck, electrostatic chuck system, film forming apparatus and method, adsorption method, and method for manufacturing electronic device
JP2013204152A (en) Organic matter vapor deposition system
JP4216522B2 (en) Evaporation source and thin film forming apparatus using the same
JP2015002175A (en) Organic layer deposition apparatus and method of manufacturing organic light-emitting display device using the same
JP2020506283A (en) Cluster type mass production equipment of high resolution AMOLED device using vertical surface evaporation source
JP2010121215A (en) Deposition apparatus and deposition method
JP2004010989A (en) Thin-film forming apparatus
KR100581852B1 (en) Apparatus of vacuum evaporat ion and method vacuum evaporation using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080425

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081120

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090120

R150 Certificate of patent or registration of utility model

Ref document number: 4251857

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150130

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees