WO2005085921A1 - フォトニック結晶結合欠陥導波路及びフォトニック結晶デバイス - Google Patents

フォトニック結晶結合欠陥導波路及びフォトニック結晶デバイス Download PDF

Info

Publication number
WO2005085921A1
WO2005085921A1 PCT/JP2005/003366 JP2005003366W WO2005085921A1 WO 2005085921 A1 WO2005085921 A1 WO 2005085921A1 JP 2005003366 W JP2005003366 W JP 2005003366W WO 2005085921 A1 WO2005085921 A1 WO 2005085921A1
Authority
WO
WIPO (PCT)
Prior art keywords
photonic crystal
waveguide
coupling
defect
waveguides
Prior art date
Application number
PCT/JP2005/003366
Other languages
English (en)
French (fr)
Inventor
Katsumi Furuya
Kazuhiro Komori
Noritsugu Yamamoto
Yoshinori Watanabe
Original Assignee
Japan Science And Technology Agency
National Institute Of Advanced Industrial Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Agency, National Institute Of Advanced Industrial Science And Technology filed Critical Japan Science And Technology Agency
Priority to US10/591,471 priority Critical patent/US7440658B2/en
Priority to JP2006510670A priority patent/JP4093281B2/ja
Publication of WO2005085921A1 publication Critical patent/WO2005085921A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1225Basic optical elements, e.g. light-guiding paths comprising photonic band-gap structures or photonic lattices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/31Digital deflection, i.e. optical switching
    • G02F1/313Digital deflection, i.e. optical switching in an optical waveguide structure
    • G02F1/3132Digital deflection, i.e. optical switching in an optical waveguide structure of directional coupler type
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/32Photonic crystals

Definitions

  • the present invention relates to a photonic crystal coupling defect waveguide and a photonic crystal device, and more particularly, to the coupling of electromagnetic waves propagating through a plurality of defects in a two-dimensional or three-dimensional photonic crystal to a small spatial extent.
  • Photonic crystal coupling to reduce the coupling length by realizing the defect waveguide, and using it, directional coupler (branch, coupler), multiplexing multiplexer, demultiplexer, resonator,
  • the present invention relates to a photonic crystal device for transmitting light and electromagnetic waves, such as a modulator, a filter, and a switch.
  • Non-Patent Document 1 summarizes trends in photonic crystal research in Japan and overseas. The results of various research institutes (companies, universities, national laboratories, etc.) are based on theoretical background, Relatively detailed introduction to specific manufacturing methods and material strength
  • switches, resonators, and filters using mode coupling of a plurality of waveguides that have been designed and manufactured are described below.
  • Non-Patent Document 2 describes a typical branched interferometer (Mach-Zehnder type) optical switch device using a photonic crystal structure. Although there are many prototypes in other documents, the operating principle of this device is not the directional coupler type used in the present invention.
  • Non-Patent Document 3 describes a directional coupler type using mode coupling between two line-defect waveguides formed in a hexagonal lattice photonic crystal, and an optical switch that operates by applying an external electric field. Is described. However, this is only a comparison with conventional optical switches using structures other than photonic crystals, and specific improvement plans and design guidelines for shortening the coupling length of optical switches using photonic crystal structures are not seen. I can't. Also mention the use of nonlinearity due to quantum dots and ion doping. No prototype is found in other documents.
  • Non-Patent Document 4 shows that an optical resonator based on a directional coupler-type operation principle can be realized. The force does not use a photonic crystal in its structure.
  • Non-Patent Document 5 describes a simulation of a directional coupler-type filter and a demultiplexer using mode coupling between two line-defect waveguides formed in a hexagonal lattice photonic crystal. However, there is no mention of measures for reducing the bond length.
  • Patent Documents 1 to 14 below describe an optical device using a photonic crystal.
  • Patent Document 1 describes an optical switch device having a branching interferometer configuration having a photonic crystal structure as described in Non-Patent Document 2.
  • Patent Document 2 describes an optical modulator device that can output an optical signal faithful to the waveform of an electric signal with a simple structure.
  • Patent Document 3 describes an optical circuit in which three photonic crystals are arranged with their crystal orientations selected so as to obtain a parallel light beam, branching, and bending, respectively, to obtain a parallel light beam with high parallelism in a self-guided manner. Have been.
  • Patent Document 4 describes a photonic crystal optical waveguide and a directional coupler device as described in Non-Patent Document 3.
  • Patent Document 5 discloses a method of forming a two-dimensional or three-dimensional defect structure in a photonic crystal.
  • Nick crystals are described.
  • Patent Document 6 describes a photonic crystal made of ceramic
  • Patent Document 7 describes a method of filling another functional material having an amplification effect or the like in a hole.
  • various methods for forming a three-dimensional photonic crystal such as a self-closing method and a pile stacking method, are known. In this regard, see, for example, Patent Documents 8 and 9 below.
  • Patent Document 1 JP-A-2002-303836
  • Patent Document 2 JP-A-2002-196296
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2002-169048
  • Patent Document 4 JP 2001-281480 A
  • Patent Document 5 JP-A-2003-43273
  • Patent Document 6 JP-A-2001-72414
  • Patent Document 7 Japanese Patent Application Laid-Open No. 2002-277659
  • Patent Document 8 JP 2001-249235 A
  • Patent Document 9 JP 2001-518707 A
  • Non-Patent Document 1 "Current Status and Future Prospects of Photonic Crystal Research-One Revised Version-One Technology One-bit Map”-, Optoelectronic Industry and Technology Promotion Association (Photonic Crystal Breakthrough Technology Forum), 2002 ( March 2002, 14-013-1.
  • Tokubi Reference 2 Kazuhito Tinima, All— optical switch with switch— off time ime unrestricted by carrier lifetime, Japanese Journal of Applied
  • Non-Patent Document 3 Hirohito Yamada, "Theoretical Analysis of Photonic Crystal Directional Coupler-Type Optical Switch"
  • Non-Patent Document 4 Kiyoshi Kishioka, ⁇ Characteristics of Optical Resonator Consisting of Nonlinear Directional Coupler '', Transactions of the Institute of Electrical Engineers of Japan, Vol. 123, No. 12, 2003, p. 1166-1173.
  • Non-Patent Document 5 J. Zimmermann, M. Kamp, A. Forchel, R. Marz, "Photonic crystal waveguide directional couplers as wavelength selective optical filters", Optics communications 230, 2004, pp. 38 7-392.
  • the coupling length which is the spatial distance required for the energy of the electromagnetic field to be transferred to one waveguide force and the other waveguide, is also determined, and the coupling length changes shorter during propagation. I can't do it anymore. Therefore, there is no other way than to adjust the degree of coupling depending on the distance between the waveguides.However, if a sharp bend occurs in the dielectric waveguide, the propagating electromagnetic wave leaks to the outside. In order to move closer or farther away, a longer distance is required in the direction of propagation.
  • the present invention considers the coupling length when a plurality of waveguides are mode-coupled to the coupling using a conventional waveguide or the coupling using only a photonic crystal defect waveguide. It is intended to be shorter in comparison with the case. It is an object of the present invention, in particular, to further reduce the coupling length by utilizing changes in the photonic crystal bond defect waveguide and the aforementioned photonic crystal elements and the like.
  • the present invention relates to a photonic crystal including a directional coupler (branch, coupler) and a multiplexing multiplexer, demultiplexer, resonator, modulator, filter, switch, etc. based on the directional coupler. It is an object of the present invention to reduce the size and size of a nick crystal coupling defect device. Further, the present invention makes it possible to monolithically realize a photonic crystal coupling defect device in a higher-order device structure that requires them as components by forming a plurality of defect structures in one photonic crystal structure. It is intended to be.
  • the photonic crystal structure is modified in order to shorten the coupling length of the photonic crystal coupling waveguide and the photonic crystal device.
  • the photonic crystal defect waveguide is within the range where the periodic structural elements are uniformly distributed.
  • the properties of electromagnetic waves propagating in a defective waveguide by changing the distribution interval (lattice constant), size, and shape of the elements that exist and changing them independently or globally at the same rate Can be changed relatively easily. Therefore, even after bringing a pair of waveguides to be coupled as close as possible, if such a change in the photonic crystal element is realized along the propagation direction of the waveguide, the coupling length can be further reduced. is there.
  • the material of the photonic crystal is changed along the propagation direction of the waveguide, or the position of the photonic crystal element is locally changed, or in the case of a two-dimensional photonic crystal slab, the thickness of the slab It can also be obtained by changing the length.
  • a photonic crystal including a photonic crystal element constituting a periodic structure, for suppressing propagation of an electromagnetic field including light or radio waves in a specific wavelength or frequency range;
  • a coupling waveguide composed of at least two waveguides.
  • the photonic crystal coupling for increasing the difference in the propagation constant between the even mode and the odd mode at a certain standard frequency and shortening the coupling length of the mode-coupled electromagnetic wave propagating in the coupling waveguide is reduced.
  • a defective waveguide is provided.
  • Waveguide force For outputting electromagnetic field to function as any one of directional coupler, splitter, coupler, multiplexing multiplexer, demultiplexer, resonator, filter, and switch in electromagnetic wave transmission
  • a photonic crystal device is provided.
  • the coupling length when a plurality of waveguides are mode-coupled is shorter than the coupling using a conventional waveguide or the coupling using only a photonic crystal defect waveguide.
  • the present invention can further reduce the coupling length by using the photonic crystal coupling defect waveguide and the above-mentioned changes in the photonic crystal element and the like.
  • the present invention also provides a directional coupler (branch, coupler) and a multiplexing multiplexer, demultiplexer, resonator, modulator, filter, Photonic crystal bond defect devices such as switches can be made shorter and smaller. Further, the present invention makes it possible to monolithically realize a photonic crystal coupling defect device in a higher-order device structure that requires them as components by forming a plurality of defect structures in one photonic crystal structure. It can be.
  • FIG. 1 shows a schematic diagram of a photonic crystal coupling defect waveguide and a band structure diagram thereof.
  • FIG. 2 is a schematic diagram showing a change in bond length.
  • FIG. 3 is a schematic diagram showing a photonic crystal coupling defect waveguide in which a medium is locally modified in order to shorten the coupling length.
  • FIG. 4 is a schematic diagram showing a photonic crystal coupling defect waveguide in which the lattice constant, the size, and the shape of a photonic crystal element are locally modified in order to shorten the coupling length.
  • FIG. 5 is a schematic view showing a two-dimensional photonic crystal on-slab photonic crystal coupling defect waveguide in which the slab thickness is locally modified to reduce the coupling length.
  • FIG. 9 is a schematic diagram showing a photonic crystal bonding defect waveguide in which a photonic crystal structure near a waveguide is modified in a region.
  • FIG. 7 is a schematic diagram showing another example of a photonic crystal coupling defect waveguide in which the photonic crystal structure near the coupling waveguide is regionally modified.
  • FIG. 8 is a schematic diagram showing a state in which a photonic crystal structure is modified so as to be different from each other in order to shorten the coupling length, and further modification is performed so that the width of the coupling waveguide is the same at the boundary between the regions.
  • FIG. 11 is a schematic view of a two-dimensional photonic crystal coupling defect waveguide.
  • FIG. 12 shows a schematic diagram of a three-dimensional photonic crystal coupling defect waveguide.
  • FIG. 13 is a schematic diagram showing a coupling defect waveguide formed on a two-dimensional photonic crystal.
  • FIG. 14 is a schematic diagram showing a directional coupler using a coupling defect waveguide formed on a photonic crystal.
  • FIG. 15 This is a schematic diagram showing the principle of operation of a switch using a directional coupler using a photonic crystal coupling defect waveguide and the state of a switch device made smaller by shortening the coupling length.
  • FIG. 16 is a schematic diagram showing an example of a discontinuous defect row mainly used for obtaining a delay line effect.
  • FIG. 17 is a diagram showing an example in which a high-refractive-index difference waveguide, which is an example of an input / output port, is provided in a coupling waveguide formed on a two-dimensional photonic crystal slab.
  • FIG. 18 is a structural example of a photonic crystal coupling defect waveguide composed of two single-line defect waveguides formed in an air-clad hexagonal lattice two-dimensional photonic crystal slab structure.
  • FIG. 19 is a schematic diagram of an electromagnetic field distribution in a direction perpendicular to the waveguide direction of each mode propagating in the coupling waveguide.
  • FIG. 21 is an explanatory diagram of a shift in the frequency direction of the band structure due to a substantial change in the refractive index of the medium.
  • FIG. 22 is a view showing an example (1) of a region in which the photonic crystal structure is modified.
  • FIG. 23 is a view showing an example (2) of a region where the photonic crystal structure is modified.
  • a “photonic crystal” is an artificial material in which a medium having a different dielectric constant and conductivity is periodically arranged in a certain medium, and has a specific frequency range called a photonic band gap. Has the property of suppressing propagation of electromagnetic fields. For example, if a semiconductor plate (slab) is provided with, for example, air holes of a fixed size at regular intervals as “elements” (photonic crystal elements) of the periodic structure, it is necessary to use It becomes a photonic crystal that realizes a photonic band gap in the plane direction (“two-dimensional photonic crystal slab”). Photonic crystals can be considered as periodic structures designed to prevent electromagnetic waves from penetrating into them. The periodic intervals are called "lattice constants".
  • the above-mentioned periodic structure is realized in only one direction, it is a “one-dimensional photonic crystal”, and if it is only in the plane direction, it is a “two-dimensional photonic crystal”. If it has a three-dimensional periodic structure, it is called a “three-dimensional photonic crystal”.
  • the one-dimensional photonic crystal is also called a multilayer film. Generally, the square root of the dielectric constant indicates the refractive index.
  • a two-dimensional photonic crystal for example, a two-dimensional hexagonal lattice crystal, a two-dimensional triangular lattice crystal, or a two-dimensional square lattice crystal is often used.
  • a three-dimensional photonic crystal for example, a three-dimensional face-centered cubic lattice crystal, a three-dimensional body-centered cubic lattice crystal, or a rectangular laminated structure is often used.
  • a material for manufacturing these photonic crystals for example, a metal conductor, a semiconductor, a synthetic resin, a polymer, and a glass are often used.
  • the electromagnetic field oscillating at a frequency within the range of the photonic band gap in the photonic crystal is localized at the defect. The light cannot propagate to the surrounding photonic crystal.
  • Photonic crystal defect waveguides are devices for controlling the propagation direction of electromagnetic waves, just like waveguides such as “waveguides”, “coaxial cables”, “high index difference waveguides”, and “optical fibers”. It can be said that. These waveguides localize the electromagnetic field only inside and do not leak or hardly leak electromagnetic waves outside.
  • the “high refractive index difference waveguide” is a device that functions as a waveguide by providing a region of a medium having a relatively different refractive index from that of a medium and confining an electromagnetic wave therein. For light, a silicon wire waveguide has been realized.
  • the ratio of the lattice constant to the wavelength of the electromagnetic wave propagating through the defect waveguide in vacuum is referred to as "normalized frequency".
  • the standard frequency Nf can be represented by the following equation.
  • a "point defect” is a portion of a photonic crystal that is missing when only one element of the periodic structure constituting the photonic crystal is not continuous with other defects. Is a phrase that indicates The term “line defect” is a phrase indicating a portion where a plurality of point defects are continuous or intermittent. Generally, a defect waveguide in a photonic crystal is realized by this line defect (“line defect waveguide”). These terms are generally used in the field of photonic crystals.
  • FIG. 9 is an explanatory diagram of a point defect and a line defect.
  • This example shows a case where a photonic crystal 6 such as a Si slab (mouth) or the like is provided with air circular holes ( ⁇ , an element realizing a periodic structure) periodically in a dimensional square lattice.
  • FIG. 9 (A) shows a periodic structure without defects
  • FIG. 9 (B) shows one having one “point defect” at the lower right.
  • FIGS. 9C and 9D show examples of line defects.
  • FIG. 10 shows another explanatory view of the point defect and the line defect.
  • FIG. 10A shows a line defect including a bend and a point defect
  • FIG. 10B shows two continuous point defects or a line defect having a length of two elements.
  • Electromagnetic waves are phenomena that are spatial and temporal vibrations (especially often periodic vibrations) of an electromagnetic field. Generally speaking, when electromagnetic waves are propagated, energy is transferred to space Move. When a change in the value of an electromagnetic field (electric and magnetic fields) occurs at a certain location, the change necessarily propagates to the surrounding electromagnetic field over time.
  • Electromagnetic waves have different modes of propagation, depending on the transmission line or propagation path, a form of guided wave propagation characterized by a particular shape of the electromagnetic field.
  • Coupled In a certain propagation path, power transfer to a specific mode in another propagation path is referred to as "coupling".
  • the “coupling length” is a spatial distance required for the energy of one electromagnetic wave to transfer to the other waveguide force. Note that one force may represent the distance required for 100% energy to transfer to the other waveguide.
  • the change in phase per unit length along the propagation direction of an electromagnetic wave oscillating at a certain frequency is called a "phase constant" or "wave number” . If there is no loss in the propagation path, these are called “propagation constants”. equal.
  • FIG. 11 is a schematic diagram of a photonic crystal coupling defect waveguide having a two-dimensional periodic structure.
  • FIG. 12 shows a schematic diagram of a photonic crystal coupling defect waveguide having a three-dimensional periodic structure.
  • These figures are schematic diagrams of a coupling waveguide having a plurality of two-dimensional or three-dimensional point defects 1 or line defects 2 or line defects 3 including a bend in the photonic crystal 6, respectively. This is because the point defects 1 for localizing the electromagnetic waves within them and the line defects 2 and 3 as waveguides for guiding the electromagnetic waves are arranged and coupled in various combinations nearby.
  • the combination of defects may be three or more. Further, the thickness of the line defect may be various.
  • FIG. 13 shows a schematic diagram of a photonic crystal coupling defect waveguide composed of two single line defects on a two-dimensional hexagonal lattice crystal structure having a circle as an element.
  • single line defects Are arranged with one row of photonic crystal elements separated therefrom, and the coupling defect waveguides are described.
  • the present invention is not limited to this, and they may be arranged with a plurality of rows separated.
  • the line defect may be a stepped shape that includes a line defect including curl.
  • the photonic crystal coupling waveguide in the present embodiment is a coupling having a photonic crystal 6 having a photonic crystal element 7, a line defect 2 forming a waveguide, and an input terminal or an output terminal 8.
  • the coupling defect waveguide 4 is composed of at least two waveguides.
  • the photonic crystal 6 includes a photonic crystal element 7 constituting a periodic structure, and suppresses propagation of an electromagnetic field including light or radio waves in a specific wavelength or frequency range.
  • the line defect 2 is a defect in which the photonic crystal element 7 constituting the periodic structure of the photonic crystal 6 is locally removed and a plurality of defects are connected as lines in the photonic crystal to form a waveguide. is there.
  • the input end or output end 8 is for inputting, outputting, or outputting an electromagnetic field.
  • a plurality of continuous, intermittent, or single defect structures can be created within one range.
  • two defect waveguides are placed at an appropriate distance from each other, and one When an electromagnetic field including light is incident, coupling occurs in those waveguides, and an electromagnetic field is also induced in the other waveguide.
  • FIG. 14 shows a configuration diagram of a general example of a branching device, a coupler, and a directional coupler.
  • This device uses a coupling defect waveguide composed of two line defects formed on a photonic crystal with a two-dimensional periodic structure. This phenomenon is used to obtain two or more outputs from an electromagnetic field input from one place.
  • a coupler that can obtain an output from a certain point is a coupler (the middle part of Fig. 14), and a directional coupler (the lower part of Fig. 14) that combines these two structures.
  • a coupler or a branching device functions and does not have power, it may be called a directional coupler.
  • various photonic crystal defect devices such as a multiplexer and a demultiplexer can be formed using a photonic crystal defect waveguide.
  • FIG. 15 shows a switch using a directional coupler based on a photonic crystal coupling defect waveguide.
  • FIG. 3 is a schematic diagram illustrating the operation principle of the device.
  • FIG. 15 (A) is a schematic diagram illustrating the operation principle of a switch device using a directional coupler using a photonic crystal coupling defect waveguide.
  • FIG. 15B shows a state in which the size of a similar switch device is reduced by shortening the coupling length based on the present embodiment. Note that the shortening of the coupling length in the present embodiment will be described later.
  • the medium constant of the photonic crystal is changed, the coupling length changes with time, so that the output position also changes.
  • the Pockels effect primary electro-optic effect
  • the Kerr effect secondary electro-optic effect
  • a non-linear medium region is realized by embedding quantum dots, doping with certain ions, or the like, around or inside the defect.
  • This means that the effective dielectric constant and conductivity of the non-linear medium are controlled by an external force control signal (if the amplification effect is observed in that region, this is equivalent to the fact that the effective conductivity is negative).
  • an external force control signal if the amplification effect is observed in that region, this is equivalent to the fact that the effective conductivity is negative.
  • a defect waveguide for control signal realized by another two-dimensional photonic crystal is laminated on a two-dimensional photonic crystal provided with a waveguide through which the electromagnetic wave to be processed propagates, with a certain medium in between. Then, a method of electromagnetically coupling the two by removing the medium sandwiched only at the position of the medium (see Japanese Patent Application Laid-Open No. 2001-242329)
  • ion doping is performed in the same manner as in the case of an optical fiber amplifier such as erbium 'ion' doping or the like. You may dope ions.
  • the coupling length of an electromagnetic wave propagating through a plurality of mode-coupled waveguides depends on the magnitude of the propagation constant (or wave number) of each mode constituting the mode coupling along the waveguide direction.
  • a coupled waveguide composed of two waveguides it is regarded as a directional coupler in which the even mode and the odd mode of the electromagnetic wave propagating in the waveguide interfere, and the coupling length at that time is the even mode and the odd mode.
  • the electric field or magnetic field in the waveguide is represented as the sum of the even mode and the odd mode.
  • E (z) the electric field E (z)
  • j8 e, j8 o propagation constants of even and odd modes
  • z distance in the propagation direction
  • Ee, Eo electric field amplitudes of even mode and odd mode.
  • FIG. 19 is a schematic diagram of an electromagnetic field distribution in a direction perpendicular to the waveguide direction of each mode propagating in the coupling waveguide.
  • the electromagnetic field input from the left end (input end) of the waveguide I the sum of the even mode and the odd mode is output at the right end (output end) of the waveguide II.
  • the right end of waveguide I and the left end of waveguide ⁇ are offset by the sum of the even or odd mode electric or magnetic fields. And no electromagnetic field is output.
  • the bond length Lc is represented by the following equation.
  • the coupling length is a function of (depends on) the propagation constant (or wave number) along the waveguide direction of each mode (even or odd) constituting the mode coupling. It is inversely proportional to the difference between the propagation constants of the even mode and the odd mode.
  • the equation (3) for the coupling length Lc also relates to the distance between the waveguides. Generally, the longer the distance between the waveguides, the longer the coupling length. Therefore, it is better to bring both waveguides as close as possible. If the distance between the waveguides changes, the structure of the coupling waveguide also changes, and the propagation constant of the even or odd mode that propagates across the two waveguides that make up the coupling waveguide also changes. . Therefore, the bond length, which is a function of them, also changes as shown in equation (3).
  • the coupling length Lc can also be expressed as follows as a function of a mode coupling constant indicating the degree of coupling between the two waveguides.
  • the mode coupling constant is the mode coupling constant
  • is the difference between the propagation constants of the modes propagating in each waveguide when the two waveguides constituting the coupling waveguide exist independently. This is based on a concept different from that described above in which the mode coupling phenomenon is interpreted as even-odd mode interference propagating through the coupling waveguide.
  • the mode here refers to a propagation mode in each of the waveguides when two waveguides constituting the coupled waveguide that do not relate to the above even and odd modes exist independently. Since it is appropriate to consider that the mode coupling constant (degree of coupling) is smaller as the distance between the waveguides is larger, it can be said from Equation (4) that the larger the distance between the waveguides, the longer the coupling length. .
  • the number of waveguides constituting the coupling waveguide is not two but three or more, basically the same is applied to every two waveguides. The tendency is that the bond length of every two strands is shorter when they are placed in the same position.
  • the coupling length can be shortened.
  • the size of various devices using a directional coupler can also be reduced.
  • the number of the waveguides constituting the coupling waveguide is three or more instead of only two, there is a high possibility that a higher-order mode is generated even if only two of the even and odd modes are generated.
  • the mode coupling phenomenon in that case can also be regarded as interference of those modes, and the differential coupling length of the propagation constants of those modes can be considered, so that it is basically the same as above.
  • FIG. 1 is a schematic diagram of a photonic crystal coupling defect waveguide and its band structure diagram.
  • Figure 1 shows an example of a photonic crystal coupling defect waveguide (upper part in Fig. 1) composed of two identical photonic crystal single-line defect waveguides constructed on a two-dimensional photonic crystal slab.
  • the structure diagram that is, the relationship between the propagation constant (wave number) and the normalized frequency is shown.
  • the photonic crystal coupling defect waveguide shown in the upper part of Fig. 1 is an example in which two rows of photonic crystal elements are arranged between two coupling defect waveguides.
  • the diagram of the coupling defect waveguide as a directional coupler is not an accurate one but a schematic diagram.
  • the design parameters of the photonic crystal structure conform to, for example, the document “A. Chutinan, et al .: Appl. Phys. Letters, Vol. 80, 2002, pp. 1698-1700”.
  • the difference between the propagation constants of the even mode and the odd mode at a certain standard frequency affects the coupling length. From FIG. 1, it can be seen that the difference in the magnitude of the propagation constant of the mode in the waveguide direction increases as the normalized frequency decreases. Also, if the difference between the propagation constants increases, the coupling length decreases as shown in equation (3). For example, the difference between the propagation constants of the two modes when the normalized frequency is about 0.274 is shown in the figure. As the normalized frequency approaches about 0.268, the difference between the propagation constants of the two modes increases. Bond length is reduced (see thick arrow).
  • FIG. 2 is a schematic diagram showing how the bond length changes.
  • the upper part of FIG. 2 schematically shows the coupling length when the normalized frequency is 0.274 [cZa].
  • the perfect bond length is 64a (a is the lattice constant).
  • the lower part of Fig. 2 schematically shows the coupling length when the normalized frequency is 0.270 [cZa].
  • the complete coupling length is 19a (a is a lattice constant), and the coupling length is shorter than that at the time of the standard frequency in the upper part of FIG.
  • FIG. 3 is a schematic diagram of a photonic crystal coupling defect waveguide in which the medium is locally modified to reduce the coupling length.
  • One of the photonic crystal coupling defect waveguides according to the present embodiment substantially changes the standardization frequency in order to increase the difference between the propagation constants of each mode propagating in the coupling waveguide.
  • the medium constant such as the dielectric constant or refractive index, conductivity, and magnetic permeability of the material constituting the photonic crystal differs over part or all of a predetermined range including or near the defect waveguide of the photonic crystal. It is what it was.
  • a material B different from the material A can be partially used.
  • the band structure of the photonic crystal changes with respect to the standardized frequency, and the fact that the medium constant differs regionally means that the standardized frequency differs in different regions.
  • FIG. 4 shows the region constant and the size of the photonic crystal element in order to shorten the coupling length.
  • FIG. 4 is a schematic diagram of a photonic crystal coupling defect waveguide whose shape has been modified.
  • One of the photonic crystal coupling defect waveguides according to the present embodiment is a photonic crystal coupling defect waveguide
  • the normalized frequency is substantially changed.
  • One or more of the height and the shape are different in area.
  • the standardization frequency is proportional to the lattice constant.
  • the normalized frequency Nf depends only on the lattice constant a. Therefore, if only the lattice constant is reduced, the normalized frequency becomes smaller. In other words, if the wavelength of the input signal does not change and the entire photonic crystal structure decreases in a similar manner, this is caused by increasing the wavelength of the input signal without changing the photonic crystal structure itself (decreasing the frequency ). As a result, the difference between the propagation constants of the even mode and the odd mode becomes large, so that the coupling length becomes short.
  • the shape of the photonic crystal element does not change, and the size of the photonic crystal element also changes at the same ratio as the change in the lattice constant of the photonic crystal element (for example, from a to a ′ in the figure).
  • the change in the lattice constant and the change in the standard frequency become equivalent (middle left in FIG. 4).
  • the same effect can be obtained even if only the lattice constant is changed and the photonic crystal element remains the same size (lower right in FIG. 4).
  • the photonic crystal element is, for example, an air hole and has a dielectric constant (refractive index) smaller than that of the material of the photonic crystal such as a semiconductor, a modification that does not change the hole radius by reducing only the lattice constant. Then, the ratio (filling rate) of the holes closed in the photonic crystal structure increases compared to before the modification, so that the average refractive index of the entire photonic crystal decreases. In other words, since the holes are not small, the imperfect but simultaneous reduction of the lattice constant and the reduction of the average or substantial medium constant occur simultaneously. In this case, both effects work in the direction to shift the band structure upward.
  • the shape of the photonic crystal element may be changed in a region (the lower left in FIG. 4).
  • the shape of a photonic crystal element can be changed to a circular force ellipse.
  • the shape to be changed can be an appropriate shape.
  • the size of the photonic crystal element may be changed and the lattice constant may be kept the same. ( Figure 4, middle right). This also substantially changes the medium constant of the entire photonic crystal. Note that the size of the photonic crystal element can be set as appropriate. The effect of the substantial change of the medium constant is also used in the following example.
  • FIG. 20 is an explanatory diagram of a change in the band structure with respect to the normalized frequency due to a substantial change in the refractive index of the medium.
  • a photonic crystal is realized as a structure in which air holes are periodically arranged in a certain material
  • the entire structure becomes The (average) refractive index decreases.
  • the band structure shifts in a positive direction with respect to frequency as shown. This is substantially equivalent to a lower normalized frequency.
  • FIG. 5 is a schematic diagram showing a two-dimensional photonic crystal slab-shaped photonic crystal coupling defect waveguide in which the slab thickness is locally modified to reduce the coupling length.
  • One of the photonic crystal coupling defect waveguides of the present embodiment substantially changes the standard frequency in order to increase the difference between the propagation constants of each mode propagating in the coupling waveguide.
  • the equivalent refractive index is different in area. For example, by changing the thickness of the slab, the equivalent refractive index is changed.
  • the modulus is generally smaller as the slab thickness is smaller (see, for example, the document "Kono, Kito: Basics of Optical Waveguide Analysis, Modern Engineers"). Therefore, in a photonic crystal in which the slab thickness is different from one region to another, this is equivalent to a difference in the medium constant (particularly, the refractive index) depending on the region.
  • the slab is thinned instead of making larger holes (drilling).
  • Most of the electromagnetic field distribution of electromagnetic waves propagating in a photonic crystal line defect waveguide concentrates on the defect part, but also slightly exudes to the part where the photonic crystal elements are arranged beside the waveguide. . This changes the state by changing the size or shape of the element.
  • the effective (average) refractive index of the structure appears to have changed (change in effective refractive index).
  • the above situation can be applied to the vertical direction. As the slab thickness becomes smaller, the effective refractive index also becomes smaller.
  • the relational expression between the slab thickness and the effective refractive index is omitted (see, for example, “Basics of Optical Waveguide”, Modern Engineering Co., Ltd.).
  • the difference in the medium constant is almost equivalent to the difference in the standard frequency, as described above (for example, FIG. 20 and its description).
  • FIG. 6 is a schematic diagram showing a photonic crystal coupling defect waveguide in which the photonic crystal structure near the coupling waveguide is regionally modified.
  • the properties (band structure) of each mode propagating through the coupling waveguide are changed at different rates.
  • One of the photonic crystal coupling defect waveguides according to the present embodiment is one of the electromagnetic wave propagating in the coupling waveguide in order to increase the difference in propagation constant between modes propagating in the coupling waveguide.
  • the periodic structure of the photonic crystal is regionally changed near the coupling defect waveguide. If the photonic crystal structure near the coupling defect waveguide changes, the force that changes the propagation constant of each mode of the electromagnetic wave propagating through the coupling waveguide also changes.Electromagnetic field distribution of each mode is not the same. It is expected that this will be different for each mode, and the rate of change of each mode can be varied so that the difference between their propagation constants is not the same as each other. Therefore, if a region having a different photonic crystal structure in the vicinity of the coupling defect waveguide is provided, the coupling length in that region becomes smaller than that of the other regions.
  • the size of only the element between the coupling defect waveguides is changed (left in the middle of FIG. 6), or the size of the element adjacent to the outside between the coupling defect waveguides or in a predetermined range outside is changed ( It can be a combination of these (right in Fig. 6 middle left) and a combination of these (lower left in Fig. 6).
  • the size of the element is made large, it is not limited to this and may be made small.
  • the lattice constant and the shape of the element may be changed as described above.
  • photonic crystal elements of different sizes or shapes are added (Fig. 6, lower right).
  • the change of the above-described elements and the addition of Z or different elements also have the effect that the substantial medium constant of the structure becomes different.
  • FIG. 7 shows another example of a photonic crystal coupling defect waveguide in which the photonic crystal structure near the coupling waveguide is regionally modified.
  • FIG. 7 shows an example in which three or more photonic crystal elements exist between the coupling waveguides.
  • the upper left diagram in the second row of FIG. 7 shows the size of the element near the coupling waveguides (in this example, near the center) changed.
  • the middle part of the second stage in FIG. 7 shows a change in the size of the element adjacent to the waveguide among the elements between the coupling waveguides.
  • the size of the elements in the predetermined range may be changed.
  • the diagram on the right side of the second stage in FIG. 7 shows the case where all the sizes of the elements between the coupling waveguides are changed.
  • the diagram on the left of the third row in Fig. 7 changes the size of the element adjacent to the waveguide among the elements outside of each waveguide constituting the coupling waveguide.
  • the middle diagram in the third row of FIG. 7 shows that among the elements outside each waveguide constituting the coupling waveguide, the size of the element adjacent to the waveguide is changed, and the element between the coupling waveguides is changed. The size of the element adjacent to the waveguide is changed.
  • the diagram on the right side of the third stage in Fig. 7 shows that among the elements outside the waveguides constituting the coupled waveguide, the size of the element adjacent to the waveguide is changed, and the elements between the coupled waveguides are changed. The size is changed.
  • the sizes of the elements in a predetermined range may be changed.
  • the force whose element size is increased is not limited to this, and may be reduced.
  • the lattice constant, the shape of the element, and the like may be changed as described above.
  • the lower left part of FIG. 7 shows the addition of photonic crystal elements of different sizes or shapes.
  • FIG. 21 is an explanatory diagram of a change in the band structure due to a change in the photonic crystal structure near the waveguide.
  • the example shown in FIG. 21 is intended to modify the band structure itself.
  • the structure changes, and the difference between the propagation constants of the even mode and the odd mode at the normalized frequency increases. This reduces the coupling length.
  • the size of the element between the waveguides the same applies to the case where the size of the element, the Z or the shape, and the lattice constant are changed in the range as shown in FIGS.
  • FIG. 8 shows a state in which the photonic crystal structures are modified so as to be different from each other in order to shorten the coupling length, and further modification is performed so that the width of the coupling waveguide becomes the same.
  • FIG. The broken line in FIG. 8 corresponds to the photonic crystal coupling defect waveguide shown in FIGS.
  • the positions of the photonic crystal elements e.g., This is a photonic crystal defect coupling waveguide in which the shape (center position) and shape are further changed.
  • the width of the defect waveguide is different, which causes reflection of the propagated electromagnetic wave. This further modification has the effect of preventing this.
  • the electromagnetic field distribution of the electromagnetic wave propagating in the photonic crystal line defect waveguide is mostly concentrated on the defect portion, but slightly exudes to the portion where the photonic crystal elements are arranged beside the waveguide. ing. Since the extent of this seepage generally depends on the magnitude of the mode propagation constant, the extent of this seepage on the other side and on the other side of the boundary between regions where the photonic crystal structures have been modified so as to be different from each other. different.
  • the waveguide width may be adjusted by further changing the position (for example, the center position) and the shape of the photonic crystal element so that the range of the seepage is substantially the same. In this case, the waveguide width is not always constant at the boundary.
  • each of the plurality of waveguides forming the coupling defect waveguide has a different degree of leakage of the electromagnetic field distribution from each other. There may be cases. In consideration of this case, each of the plurality of waveguides may be adjusted to have a different waveguide width.
  • the photonic crystal element in a photonic crystal coupling defect waveguide having a line-defect waveguide width W and a hole diameter d of a photonic crystal element, the photonic crystal element is positioned adjacent to the waveguide without changing the center position of the element. If the size of the contacting element is doubled, the line defect waveguide after changing the element size The width of the road is reduced by ad-d. Therefore, the width of the line-defect waveguide can be kept constant at W by moving the center position of the element adjacent to the waveguide in the direction in which the waveguide force also moves away by an amount corresponding to the decrease in the width. In this figure, the case where the hole becomes larger> 1) is shown.
  • the width of the line-defect waveguide can be reduced by changing the direction in which the center position of the element is moved. It can be kept constant.
  • the width of the line-defect waveguide is constant at the boundary between the regions.
  • the width of the waveguide is not limited to a constant value. The center position of an adjacent element may be moved.
  • FIG. 16 is an explanatory diagram of a discontinuous defect row.
  • an intermittent point defect or a line defect waveguide used to cause a group velocity delay of a propagated electromagnetic wave in the field of a photonic crystal is a part of the line defect waveguide or
  • a photonic crystal coupling defect waveguide including a discontinuous defect row employed as a whole may be used.
  • the line defect may be formed by discretely arranging some defects at a certain distance.
  • a waveguide consisting of such discontinuous defect rows can have a very low group velocity and has a delay line effect, so that a smaller structure can be expected compared to a simple line defect structure.
  • FIG. 16 shows some examples of a waveguide including discontinuous defect rows in a two-dimensional hexagonal lattice, but is not limited thereto.
  • a photonic crystal element or the like is arranged in a region of a defect range (here, in the case of a single line defect), and a defect row or a point defect is periodically present.
  • the medium constant of the photonic crystal medium is changed mainly by a DC electric control signal from the outside, and the coupling length depends on the intensity of the control signal.
  • This is the principle of operation of the directional coupler switch device. This embodiment can be applied to a photonic crystal device.
  • photonic crystal coupling defect waveguide light or electromagnetic wave control signal
  • a photonic crystal coupling defect waveguide may be used in which the medium constant of the photonic crystal medium is changed to change the coupling length with time depending on the intensity and phase of the control signal. This can also be applied to directional coupler type switch devices.
  • the two photonic crystal coupling defects are arranged at positions close to or adjacent to each other so that the waveguide directions are parallel or almost parallel. It can be used as a basic photonic crystal coupling defect waveguide, such as one composed of a single line defect waveguide! / ⁇ .
  • FIG. 17 shows an example in which a two-dimensional photonic crystal is taken as an example, and an input / output port 9 using a high refractive index difference waveguide is provided in a photonic crystal coupling defect waveguide as a directional coupler.
  • the input / output port 9 is composed of an appropriate waveguide or cable, such as a waveguide, a coaxial cable, an optical fiber, and a photonic crystal defect waveguide, in addition to the high refractive index difference waveguide. Is also good.
  • the input / output port 9 can be provided at, for example, the input end or the output end 8.
  • the photonic crystal coupling defect waveguide shown in Fig. 17 is a device used for communication, measurement, calculation, and the like, and an input signal for performing input / output for application as an electromagnetic field transmission line.
  • This is a photonic crystal coupling defect waveguide provided with a coupling portion with an external system composed of an excitation source that generates a signal and a receiver for an output signal via the photonic crystal coupling defect waveguide.
  • the coupling portion include direct connection with the same photonic crystal defect waveguide or high refractive index difference waveguide, and connection with an optical fiber by the end face coupling method.
  • polymer waveguides with functions of coupling with a tapered (tapered) fiber and spot size conversion for example, see the literature “Natomi:“ SOI photonic crystal slab ”applied physics, No. 72, No. 7, 2003, pp 914-918. ").
  • FIG. 22 is a diagram showing an example (1) of a region in which the photonic crystal structure is modified.
  • a to h are examples showing ranges in which, for example, the material, lattice constant, element size or shape, slab thickness, and the like are changed as described above.
  • ah indicate (a) the whole including the photonic crystal defect waveguide, b) the part including the photonic crystal defect waveguide, and (c) the photonic crystal defect waveguide.
  • D Part of the vicinity between the waveguides, not including the photonic crystal defect waveguide,
  • e All of the vicinity of the waveguide, including the photonic crystal defect waveguide
  • F photonic conclusion
  • G A part near the waveguide including the crystal defect waveguide,
  • g) A part near the coupling waveguide (outside) without the photonic crystal defect waveguide, and
  • a photonic crystal defect waveguide Excluded indicates a part near the coupling waveguide (outside).
  • the photonic crystal coupling defect waveguide as shown in Fig. 3-5 is intended, for example, to shift the band structure with respect to the normalized frequency, which is the whole of the photonic crystal or the waveguide. It is not effective unless some structure including is changed. Therefore, the photonic crystal structure is modified by changing the material, the lattice constant, the size or shape of the element, the thickness of the slab, etc. within the range of a or b in FIG. The range of c-h in Fig. 22 may be used.
  • the photonic crystal coupling defect waveguides as shown in Figs. 6 and 7 have an even mode and an odd mode band structure by modifying the structure near the waveguide where the electromagnetic field distribution of the propagating electromagnetic wave is concentrated. Are changed at different degrees, and as a result, the difference between the propagation constants of the two modes in the waveguide direction is intended to be larger than before the modification. Therefore, the photonic crystal structure is modified within the range of c-h in FIG. Note that the range may be a or b in FIG.
  • FIG. 23 is a diagram showing an example (2) of a region in which the photonic crystal structure is modified.
  • the photonic crystal coupling defect waveguide as shown in Fig. 3-5 is for the case where the slab thickness is reduced and the lattice constant is uniformly shortened over the entire photonic crystal structure. This can be done regardless of the type (for example, the range in Figure 23b).
  • the photonic crystal structure is locally modified as shown in FIGS. 6 and 7, the modification can be performed, for example, in a range near a waveguide (or a defect) (for example, a range in FIG. 23C).
  • various devices can be configured such that the above-described photonic crystal coupling defect waveguide is included therein.
  • Any of the above-described photonic crystal coupling defect waveguides can operate as a directional coupler.
  • the directional coupler is used as a basic element for realizing various devices such as a multiplexer / demultiplexer, a demultiplexer, a resonator, a filter, and a switch.
  • a multiplexing multiplexer is a coupler that multiplexes a plurality of signals in wavelength division multiplexing, which is a transmission method in which a plurality of different frequency signals are propagated through one waveguide. Yes, it is also a filter.
  • FIG. 18 shows an example of a photonic crystal coupling defect waveguide formed of two single-line defect waveguides formed in an air-clad two-dimensional photonic crystal slab structure as an example of an actual photonic crystal.
  • a hexagonal lattice crystal is cited as an example of the crystal structure.
  • a layer for selective etching and a layer for a core are formed on a medium serving as a base.
  • the core must be made of a material through which an electromagnetic field of a corresponding wavelength can propagate. Therefore, for example, GaAs or the like is used in the 1.55 / zm band of optical communication.
  • a material having a high selectivity to the core and a material such as AlGaAs for GaAs is used.
  • a photonic crystal is formed by providing periodic holes in the core portion, but a part of the photonic crystal is arranged without forming holes and defects are formed.
  • the shape, size, and arrangement of the vacancy / defects can be relatively freely designed by microfabrication techniques in general semiconductor processes using EB (electron beam exposure) technology and dry etching. Thereafter, an air cladding region is provided below the core by performing selective etching through the holes. Further, by using a medium having a lower refractive index than that of the core instead of using air as the clad portion, a more robust device can be realized as compared with the case of air clad. If a non-linear medium part is to be used partially between two line defects or the like, it is realized by forming InAs quantum dots or the like locally by selective growth.
  • a single-line defect waveguide (A-A ') and a similar waveguide ( ⁇ - ⁇ ') are arranged close to and parallel to each other so as to realize coupling.
  • Non-Patent Document 1 describes a method for forming a defect of a two-dimensional or three-dimensional photonic crystal. As described above, an appropriate method can be adopted. As a method for forming a two-dimensional or three-dimensional defect structure in a photonic crystal, an appropriate method can be adopted (for example, see Patent Documents 5 to 9).
  • a part of the material in the slab plane is locally different, a material of the slab in the thickness direction is partially different, or both of these configurations are provided. Is also good.
  • Ph—C photonic crystal
  • portions having different materials or medium constants are connected by portions where the material or medium constant changes gradually or continuously.
  • the portion in which the slab thickness is changed is equivalent to the fact that the medium constant changes “substantially”.
  • a thinner slab means, for example, that the scraped-out part is replaced by air, which reduces (decreases) the overall medium constant.
  • parts having different slab thicknesses may be connected by a part where the slab thickness changes gradually or continuously.
  • a part or all of the periphery of or inside the defect of the photonic crystal further includes a nonlinear medium region realized by formation of quantum dots or ion doping, and the nonlinear medium region includes light or radio waves.
  • the effective dielectric constant, conductivity, and magnetic permeability of the medium may be varied by more than one or two or more.
  • a quantum dot can be added as one of the means for changing the medium constant.
  • the control signal from the outside may be, for example, a steady (non-time-varying, direct-current) electric or magnetic field, or a time-varying electromagnetic field (a so-called electromagnetic wave; light is a kind of electromagnetic wave).
  • the control signal of the external force may be heat.
  • outside The heat applied from the part further includes a region for changing one or more of the effective dielectric constant, conductivity, and magnetic permeability of the photonic crystal, the propagation constant of electromagnetic waves and
  • Z or the degree of coupling may be controlled.
  • the following is an example.
  • Example 1 When heat is applied to a polymer medium by a heater or laser irradiation, the medium constant changes due to a temperature change. Quartz-based and polymer-based materials are examples of those having a thermo-optic effect.
  • Example 2 When a DC electric field is applied to a LiNbO medium, the medium constant changes. LiNbO is
  • Example 3 When a DC electric field is applied to a structure composed of a plurality of compound semiconductors having different compositions and a current is injected, the medium constant changes. For example, when a compound semiconductor such as GaAs or InP is gradually changed in composition to form a laminated structure, and a DC electric field is applied to the laminated structure, the medium constant of the structure changes. This is due to, for example, the carrier effect.
  • Example 4 When excitation light is applied to a GaAs medium, the medium constant changes.
  • Example 5 When an optical pulse is applied to a GaAs medium containing quantum dots, the average medium constant changes.
  • the size of the photonic crystal element and the lattice constant can be changed at the same ratio.
  • an element having a size and Z or shape different from the photonic crystal element is added to a part of the photonic crystal including a part or all of the coupling waveguide. It may be different from other parts.
  • the lattice constant, the size of the photonic crystal element, one or more of the shapes of the photonic crystal element may be different from other portions, and the line defect or the width of the waveguide may be locally changed.
  • the lattice constant, the size of the photonic crystal element, the lattice defect, or the line defect of the coupling waveguide or the photonic crystal adjacent to or near the waveguide or between the waveguides are different from the other parts, and the position of the photonic crystal elements can be locally shifted such that the line defects or the width of the waveguide does not change or does not change at all.
  • the thickness of the slab can be changed in a step shape or a step shape.
  • the present invention is, for example, a device that uses an electromagnetic field including light for communication, measurement, calculation, and the like, and
  • the present invention can be applied to all circuits realized using an electromagnetic transmission line.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nonlinear Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Integrated Circuits (AREA)

Description

明 細 書
フォトニック結晶結合欠陥導波路及びフォトニック結晶デバイス 技術分野
[0001] 本発明は、フォトニック結晶結合欠陥導波路及びフォトニック結晶デバイスに係り、 特に、二次元もしくは三次元フォトニック結晶中で複数の欠陥中を伝搬する電磁波の 結合を空間的に小さな範囲で実現して結合長を短くするためのフォトニック結晶結合 欠陥導波路、及び、それを用いた、方向性結合器 (分岐器、結合器)、多重化合波器 、多重分離器、共振器、変調器、フィルタ、スィッチ等の光 ·電磁波伝送のためのフォ トニック結晶デバイスに関する。 背景技術
[0002] 背景技術について、以下に文献を挙げて説明する。
下記非特許文献 1には、国内外のフォトニック結晶研究の動向をまとめたもので、様 々な研究機関 (企業,大学,国研等)の成果を、理論的背景に始まって設計技術,具 体的な製造法と材料力 デバイス等の応用に至るまで比較的詳細に紹介されている
[0003] また、従来、複数の導波路のモード結合を用いたスィッチ、共振器、フィルタにつ ヽ て設計'製作がなされたものを以下に例示する。
[0004] 下記非特許文献 2は、フォトニック結晶構造を利用した代表的な分岐型干渉計構 成(マッハツェンダー型)光スィッチ ·デバイスにつ 、て述べて 、る。これは他の文献 に試作例も多いが、このデバイスの動作原理は本発明が利用している方向性結合器 型ではない。
[0005] 下記非特許文献 3には、六方格子フォトニック結晶中に構成された二つの線欠陥 導波路間のモード結合を用いた方向性結合器型であり、外部電界印加によって動作 する光スィッチについてのシミュレーションが記載されている。しかし、フォトニック結 晶以外の構造を用いた従来の光スィッチとの比較のみであり、フォトニック結晶構造 を利用した光スィッチの結合長短小化についての具体的な改善案や設計指針等は 見られない。また、量子ドットやイオンドープによる非線形性の利用には言及しておら ず、他の文献にも試作例は見当たらない。
[0006] 下記非特許文献 4は、方向性結合器型動作原理に基づく光共振器が実現可能で あることを示している力 その構造にはフォトニック結晶を利用していない。非特許文 献 5は、六方格子フォトニック結晶中に構成された二つの線欠陥導波路間のモード 結合を用いた方向性結合器型フィルタや多重分離器についてのシミュレーションが 記載されている。しかし、結合長短小化のための対策には触れられていない。
[0007] さらに、下記特許文献 1一 4には、フォトニック結晶を用いた光デバイスが記載され ている。例えば、特許文献 1には、非特許文献 2で述べたようなフォトニック結晶構造 を有する分岐型干渉計構成の光スィッチ ·デバイスが記載されて ヽる。 また、特許 文献 2には、簡明な構造により、電気信号の波形に忠実な光信号を出力することがで きる光変調器デバイスが記載されている。特許文献 3には、 3つのフォトニック結晶は それぞれ平行光線束、分岐、屈曲を得るように結晶方位を選んで配置され、自己導 波的に平行度の高い平行光線束を得る光回路が記載されている。特許文献 4には、 非特許文献 3で述べたようなフォトニック結晶光導波路と方向性結合器デバイスが記 載されている。
[0008] また、フォトニック結晶中に二次元又は三次元の欠陥構造を作成する方法につ 、 て、下記特許文献 5には、半導体だけでなぐ加工の比較的容易なポリマーを材料に したフォトニック結晶が記載されている。また、下記特許文献 6には、セラミックで作成 したフォトニック結晶が記載されており、下記特許文献 7には、孔の中に増幅効果な どを持たせた別の機能性材料を詰める方法が記載されている。さら〖こ、 3次元のフォ トニック結晶の作成方法として、自己クローユング法、パイル積み上げ (角材積層)法 等の各種作成方法が知られている。この点、例えば下記特許文献 8、 9等を参照。 特許文献 1:特開 2002-303836号公報
特許文献 2 :特開 2002— 196296号公報
特許文献 3:特開 2002— 169048号公報
特許文献 4:特開 2001—281480号公報
特許文献 5:特開 2003-43273号公報
特許文献 6:特開 2001—72414号公報 特許文献 7:特開 2002 - 277659号公報
特許文献 8:特開 2001— 249235号公報
特許文献 9:特表 2001—518707号公報
非特許文献 1 :「フォトニック結晶研究の現状と将来展望 一改訂版一 一テクノロジ一口 ードマップを目指して一」、(財)光産業技術振興協会 (フォトニック結晶ブレークスル 一技術フォーラム)、 2002 (平成 14)年 3月、 14-013-1.
特干文献 2 :Kazuhito Tajima, All— optical switch with switch— off t ime unrestricted by carrier lifetime , Japanese Journal of Applied
Physics, Vol. 32, Part2, No. 12, 1993, pp. L1746— 1749.
非特許文献 3 :山田博仁、「フォトニック結晶方向性結合器型光スィッチの理論解析」
、 2002年電子情報通信学会エレクトロニクスソサイエティ大会、 C 4— 7.
非特許文献 4 :岸岡清、「非線形方向性結合器で構成された光共振器の特性」、電気 学会論文誌 A、 123卷 12号、 2003年、 p. 1166-1173.
非特許文献 5 :J. Zimmermann, M. Kamp, A. Forchel, R. Marz, "Photonic crystal waveguide directional couplers as wavelength sel ective optical filters", Optics communications 230, 2004, pp. 38 7-392.
発明の開示
発明が解決しょうとする課題
[0009] し力しながら、従来の光誘電体導波路では、導波路とその近傍構造に大きな変化 をカ卩えられな 、ため、モード結合する例えば二つで一組の導波路の間の距離が決ま れば、一方の導波路力 他方の導波路への電磁界のエネルギーが移行するのに要 する空間的な距離である結合長も同時に決まり、伝搬途中でその結合長をより短く変 更出来ない。従って、その導波路間の距離によって結合の度合いを調整する以外に 無いが、誘電体導波路で急激な曲がりを行うと伝搬電磁波が外部に漏洩してしまうた め、一組の導波路の間を次第に近付ける又は遠ざける為には、伝搬方向に長い距 離を必要とする。
[0010] 導波管で構成された方向性結合器でも、その構造に柔軟な変更を加える事は困難 なため、伝搬途中での結合長の変更は困難である。同軸ケーブルでは、そもそも方 向性結合器を構成する事自体が困難である。その結果として、光スィッチその他有用 な素子 (デバイス)に応用し得る方向性結合器を従来の導波路で実現すれば、比較 的長い距離が必要となり、出来るだけ小さい事が望まれるデバイス設計及び製作〖こ おける障害となる。
[0011] 従来より、群速度異常 (バンド構造図におけるプロットの傾き)を生じせしめる性質こ そがフォトニック結晶の持つ最も大きな利点であると言われている。しかし、大抵は導 波路が一つの場合であり、まして、群速度異常ではなぐ複数導波路の場合のモード 結合時に干渉する各モードの伝搬定数の差 (結合長)に着目してその改善策を講じ たものではない。また、スラブ厚自体を異ならせた 2次元フォトニック結晶導波路を用 いる案も、具体的に言及したものは存在しない。
[0012] 本発明は、以上の点に鑑み、複数の導波路がモード結合する場合の結合長を、従 来の導波路を用いた結合又は単なるフォトニック結晶欠陥導波路を用いたのみの結 合に比べて、より短小化することを目的とする。本発明は、特に、フォトニック結晶結 合欠陥導波路と上述のフォトニック結晶要素その他に関する変更を利用することによ り、結合長をより短小化することを目的とする。
[0013] 本発明は、フォトニック結晶上における、方向性結合器 (分岐器、結合器)とそれに 基づぐ多重化合波器、多重分離器、共振器、変調器、フィルタ、スィッチ等のフォト ニック結晶結合欠陥デバイスを短小化'小型化することを目的とする。また、本発明は 、複数の欠陥構造を一つのフォトニック結晶構造中に形成することにより、フォトニック 結晶結合欠陥デバイスを、それらを部品として必要とする上位のデバイス構造中にモ ノリシックに実現可能とすることを目的とする。
課題を解決するための手段
[0014] フォトニック結晶結合導波路及びフォトニック結晶デバイスの結合長短小化のため に、フォトニック結晶構造を改変する。
[0015] フォトニック結晶欠陥導波路を用いた結合器又は分岐器では、線欠陥の急激曲が りが可能であるので、誘電体導波路における上述の様な課題の解決が期待されてい る。また、フォトニック結晶欠陥導波路は、周期構造要素が一様に分布する範囲内に 存在し、その要素の一定の分布間隔 (格子定数)、大きさ,形状をそれぞれ独立に又 は同じ割合で全体的又は局所的に変化させることで、欠陥導波路内を伝搬する電磁 波の性質を変化させることが比較的容易に行える。従って、結合する一組の導波路 を出来る限り近づけた後も、導波路の伝搬方向に沿ってその様なフォトニック結晶要 素に対する変化を実現すれば、更に結合長を短くする事が可能である。同様な効果 力 導波路の伝搬方向に沿って、フォトニック結晶の材質を変更、又は、フォトニック 結晶要素の位置を局所的に変更、又は、 2次元フォトニック結晶スラブの場合ならス ラブの厚さを変更する事でも得られる。
[0016] 本発明の第 1の解決手段によると、
周期構造を構成するフォトニック結晶要素を含み、特定の波長又は周波数範囲の 光又は電波を含む電磁界の伝搬を抑制するためのフォトニック結晶と、
前記フォトニック結晶の周期構造を構成するフォトニック結晶要素を局所的に除去 した部分である欠陥を、前記フォトニック結晶中に線として複数連結して導波路を形 成した線欠陥と、電磁界を入力及び Z又は出力するための入力端又は出力端とをそ れぞれ有し、モード結合して、ひとつの導波路に入力された電磁界により他の導波路 に電磁界が伝搬される、少なくとも 2本の導波路で構成された結合導波路と を含み、
(1)前記フォトニック結晶の誘電率、屈折率、導電率及び透磁率のいずれか若しく は複数を含む媒質定数を実質的に変化させること、(2)フォトニック結晶要素の大き さ若しくは形状を実質的に変化させること、(3)フォトニック結晶要素の周期的間隔を 示す格子定数を変化させることのいずれか又は複数により、
(a)前記結合導波路の偶モードと奇モードのバンド構造を規格化周波数に対しシ フトさせ、又は、(b)前記結合導波路の偶モードと奇モードのバンド構造をそれぞれ 異なった度合 、で変化させ、
これによりある規格ィ匕周波数における偶モードと奇モードとの伝搬定数の差を大き くして、前記結合導波路中を伝搬するモード結合した伝搬電磁波の結合長を短くす るためのフォトニック結晶結合欠陥導波路が提供される。
[0017] 本発明の第 2の解決手段によると、 前記フォトニック結晶結合欠陥導波路を含み、
前記結合導波路のひとつの導波路に電磁界が入力されると前記結合導波路を構 成する導波路間で結合が生じ、他の導波路にも電磁界が伝搬され、いずれか又は 複数の導波路力 電磁界が出力されるようにした、電磁波伝送における方向性結合 器、分岐器、結合器、多重化合波器、多重分離器、共振器、フィルタ及びスィッチの いずれかとして機能するためのフォトニック結晶デバイスが提供される。
発明の効果
[0018] 本発明は、複数の導波路がモード結合する場合の結合長を、従来の導波路を用い た結合又は単なるフォトニック結晶欠陥導波路を用いたのみの結合に比べて、より短 小化することができる。本発明は、特に、フォトニック結晶結合欠陥導波路と上述のフ オトニック結晶要素その他に関する変更を利用することにより、結合長をより短小化で きる。
[0019] また、本発明は、フォトニック結晶上における、方向性結合器 (分岐器、結合器)とそ れに基づぐ多重化合波器、多重分離器、共振器、変調器、フィルタ、スィッチ等のフ オトニック結晶結合欠陥デバイスを短小化'小型化することができる。また、本発明は 、複数の欠陥構造を一つのフォトニック結晶構造中に形成することにより、フォトニック 結晶結合欠陥デバイスを、それらを部品として必要とする上位のデバイス構造中にモ ノリシックに実現可能とすることができる。
図面の簡単な説明
[0020] [図 1]フォトニック結晶結合欠陥導波路の模式図とそのバンド構造図を示す。
[図 2]結合長の変化の様子を表す模式図を示す。
[図 3]結合長短縮ィ匕のために領域的に媒質を改変されたフォトニック結晶結合欠陥 導波路を示す模式図である。
[図 4]結合長短縮ィ匕のために領域的に格子定数、フォトニック結晶要素の大きさ、形 状を改変されたフォトニック結晶結合欠陥導波路を示す模式図である。
[図 5]結合長短縮ィ匕のために領域的にスラブ厚さを改変された 2次元フォトニック結晶 スラブ上フォトニック結晶結合欠陥導波路を示す模式図である。
[図 6]結合導波路を伝搬する各モードの性質を異なる割合で変化させるために、結合 導波路近傍のフォトニック結晶構造に、領域的に改変を施されたフォトニック結晶結 合欠陥導波路を示す模式図である。
圆 7]結合導波路近傍のフォトニック結晶構造に、領域的に改変を施されたフォトニッ ク結晶結合欠陥導波路の他の例を示す模式図である。
[図 8]結合長短縮ィ匕のためにフォトニック結晶構造が互いに異なる様に改変された領 域同士の境界で、結合導波路の幅が同じくなる様に更に改変を加える様子を示した 模式図である。
圆 9]点欠陥及び線欠陥の説明図を示す。
圆 10]点欠陥と線欠陥のほかの説明図を示す。
[図 11]二次元フォトニック結晶結合欠陥導波路の模式図を示す。
[図 12]三次元フォトニック結晶結合欠陥導波路の模式図を示す。
[図 13]2次元フォトニック結晶上に構成された結合欠陥導波路を示す模式図である。 圆 14]フォトニック結晶上に構成された結合欠陥導波路を用いた方向性結合器を示 す模式図である。
圆 15]フォトニック結晶結合欠陥導波路による方向性結合器を用いたスィッチ 'デバ イスの動作原理及び結合長の短小化によりスィッチ ·デバイスを小さくした様子を示し た模式図である。
[図 16]主として遅延線効果を得るために用いられる、不連続な欠陥列の例を示す模 式図を示す。
[図 17]2次元フォトニック結晶スラブ上に構成された結合導波路に入出力ポートの一 例である高屈折率差導波路を設けた例を示す図である。
[図 18]空気クラッド六方格子 2次元フォトニック結晶スラブ構造中に形成した、二つの 単一線欠陥導波路で構成されるフォトニック結晶結合欠陥導波路の構造例である。
[図 19]結合導波路を伝搬する各モードの導波路方向に垂直な方向での電磁界分布 の模式図である。
圆 20]媒質の実質的な屈折率変化に伴うバンド構造の周波数方向へのシフトの説明 図である。
圆 21]導波路近傍のフォトニック結晶構造改変に伴うバンド構造の変化の説明図で ある。
[図 22]フォトニック結晶構造を改変する領域の例(1)を示す図。
[図 23]フォトニック結晶構造を改変する領域の例(2)を示す図。
発明を実施するための最良の形態
[0021] 1.フォトニック結晶に関する用語説明
「フォトニック結晶」とは、ある媒質中に、その媒質とは誘電率や導電率の異なる媒 質を周期的に並べた人工材料のことであり、フォトニックバンドギャップと呼ばれる特 定の周波数範囲において電磁界の伝搬を抑制するという性質を持つ。例えば、半導 体の板 (スラブ)に、周期構造の「要素」(フォトニック結晶要素)として例えば決まった 大きさの空気孔を、決まった間隔でその板全体に設けるなら、それはその板の面方 向についてフォトニックバンドギャップを実現するフォトニック結晶となる(「2次元フォト ニック結晶スラブ」)。フォトニック結晶は、その中に電磁波を浸透させないように設計 された周期的構造物とみなせる。その周期的な間隔は「格子定数」と呼ばれる。上述 の周期構造の方向が一つの方向のみに実現されているなら「1次元フォトニック結晶 」、面方向のみなら「2次元フォトニック結晶」である。立体的な周期構造ならならば「3 次元フォトニック結晶」と呼ばれる。この内一次元フォトニック結晶は、多層膜とも呼ば れる。また、一般に誘電率の平方根は屈折率を表す。
[0022] フォトニック結晶を実現する形態には、周期構造要素の形状、または、配置の仕方 により様々なものが存在し得る。配置については、 2次元フォトニック結晶では、例え ば、 2次元六方格子結晶、 2次元三角格子結晶、又は、二次元正方格子結晶がよく 用いられる。 3次元フォトニック結晶では、例えば、三次元面心立方格子結晶、三次 元体心立方格子結晶、又は、角材積層構造がよく用いられる。また、これらフォト-ッ ク結晶を製作するための材料としては、例えば、金属導体,半導体,合成樹脂,ポリ マー、ガラスがよく用いられる力 これには限定されない。
フォトニック結晶中の周期構造を一部除去する(「欠陥」)ことにより、フォトニック結 晶中のフォトニックバンドギャップの範囲内の周波数で振動する電磁界はその欠陥 部分に局在し、その周囲のフォトニック結晶には伝搬できなくなる。
[0023] 更に、欠陥を連続して形成すると、その欠陥の範囲に沿ってのみ電磁波が伝搬し、 その周囲には電磁界が漏れなくなり、「欠陥導波路」として機能する。フォトニック結晶 の欠陥導波路は、「導波管」、「同軸ケーブル」、「高屈折率差導波路」や「光ファイバ 」等の導波路と同じぐ電磁波の伝搬方向を制御するためのデバイスといえる。これら の導波路は、その内部にのみ電磁界を局在させ、その外部に電磁波を漏らさない、 もしくは、ほとんど漏らさない。ここで「高屈折率差導波路」とは、ある媒質中に、その 媒質とは屈折率が比較的大きく異なる媒質による領域を設け、そこに電磁波を閉じ 込めることで導波路として機能させるもので、光に対しては、シリコン細線導波路が実 現されている。
[0024] 格子定数の、欠陥導波路を伝搬する電磁波の真空中の波長に対する比を、「規格 化周波数」と呼ぶ。規格ィ匕周波数 Nfは、次式で表すことができる。
Nf= a/ λ (1)
ここで、 a:格子定数 [m] , λ:入力信号の自由空間中の波長 [m]
[0025] 「点欠陥」とは、フォトニック結晶において、そのフォトニック結晶を構成する周期構 造の要素が、他の欠陥と連続せずに一つだけ欠けている場合、その欠けている部分 を指す語句である。また、「線欠陥」とは、複数の点欠陥が連続もしくは断続する部分 を指す語句である。一般には、フォトニック結晶中の欠陥導波路は、この線欠陥によ つて実現される(「線欠陥導波路」)。なお、これらの用語はフォトニック結晶の分野で は一般に用いられる。
[0026] 図 9に、点欠陥及び線欠陥の説明図を示す。この例は、 Siスラブ(口)等のフォト- ック結晶 6に空気円孔 (〇、周期構造を実現する要素)が周期的に次元正方格子) に設けられている場合を示す。図 9 (A)は、欠陥の無い周期構造を示し、図 9 (B)は 、右下に「点欠陥」を一つ有するものを示す。また、図 9 (C)、(D)は、線欠陥の例を 示す。
[0027] 図 10は、点欠陥と線欠陥のほかの説明図を示す。図 10 (A)は、曲がりを含む線欠 陥と点欠陥を示し、図 10 (B)は、連続する二つの点欠陥、又は、要素二つ分の長さ の短い線欠陥を示す。
[0028] 「電磁波」とは、現象としては電磁界の空間的、時間的な振動 (特に周期的な振動 を指す事が多い)である。一般に電磁波といえば、その伝搬と共にエネルギーを空間 的に移動させる。ある場所において電磁界 (電界と磁界)の値の変化が生じると、そ の変化が、時間と共に必然的にその周辺の電磁界に伝わっていく。
[0029] これが電磁波(いわゆる電波)の伝搬であり、最初の電磁界の変化が周期的なもの
(例えば一秒間に 50回の正弦振動)であるなら、その際その周辺に生じるのはその 周波数 (例えば、 50Hz)の電磁波である。尚、光は電磁波の一種である。ちなみに、 電波法では"「電波」とは 300万メガヘルツ以下の周波数の電磁波を 、う"ので、 300 0000MHz (3THz)を超える周波数の電磁波が光 (赤外線等)や放射線 (X線等)と いうことになる。電磁波は、伝送線路又は伝搬路に依存して様々な伝搬モードを持 つ。これは、電磁界の特定の形状によって特徴付けられる導波の伝搬の形態である
[0030] ある伝搬路カも他の伝搬路内の特定のモードへの電力移動を「結合」と呼ぶ。また 、「結合長」とは、一方の導波路力も他方の導波路への電磁界のエネルギーが移行 するのに要する空間的な距離である。なお、一方力も他方の導波路へ 100%ェネル ギ一が乗り移るのに要する距離を表すこともある。また、ある周波数で振動する電磁 波の伝搬方向に沿った単位長あたりの位相の変化は「位相定数」又は「波数」と呼ば れ、伝搬路に損失が無い場合、これらは「伝搬定数」と等しい。
[0031] 2.フォトニック結晶内の結合欠陥導波路
図 11に、二次元周期構造によるフォトニック結晶結合欠陥導波路の模式図を示す 。また、図 12に、三次元周期構造によるフォトニック結晶結合欠陥導波路の模式図を 示す。これらの図は、フォトニック結晶 6内にそれぞれ 2次元又は 3次元の複数の点欠 陥 1又は線欠陥 2又は曲がりを含む線欠陥 3を有する結合導波路の模式図である。こ れは、それらの内に電磁波を局在させるための点欠陥 1や、電磁波を導くための導 波路としての線欠陥 2、 3が、様々な組み合わせで近くに配置され、結合している一 つのフォトニック結晶結合欠陥導波路として用いられる。ここで、結合する一組の欠 陥は 3つ以上であっても良い。また、線欠陥の太さは様々であって良い。
[0032] 図 13に、円を要素とする二次元六方格子結晶構造上の二つの単一線欠陥からな るフォトニック結晶結合欠陥導波路の模式図を示す。この例では、単一線欠陥同士 は、フォトニック結晶要素一列分を隔てて配置され、結合欠陥導波路が掲載されてい るが、これに限らず複数列分隔てて配置されてもよい。また、線欠陥は、まがりを含む 線欠陥でもよぐ階段状になっていてもよい。
[0033] 本実施の形態におけるフォトニック結晶結合導波路は、フォトニック結晶要素 7を有 するフォトニック結晶 6と、導波路を形成する線欠陥 2、及び、入力端又は出力端 8を 有する結合欠陥導波路 4とを含む。また、結合欠陥導波路 4は、少なくとも 2本の導波 路で構成される。
[0034] フォトニック結晶 6は、周期構造を構成するフォトニック結晶要素 7を含み、特定の波 長又は周波数範囲の光又は電波を含む電磁界の伝搬を抑制する。線欠陥 2は、フォ トニック結晶 6の周期構造を構成するフォトニック結晶要素 7を局所的に除去した部分 である欠陥を、フォトニック結晶中に線として複数連結して導波路を形成したものであ る。入力端又は出力端 8は、電磁界を入力及び Z又は出力するためのものである。
[0035] 3.フォトニック結晶内の結合欠陥導波路によるフォトニック結晶デバイス
フォトニック結晶では、複数の連続的又は断続的もしくは単一の欠陥構造を一つの 範囲内に作成できることから、例えば、二つの欠陥導波路を適当な距離だけ離して 配置し、片方の導波路に光を含む電磁界を入射すれば、それら導波路において結 合が生じ、もう片方の導波路にも電磁界が誘起される。
[0036] 図 14に、分岐器、結合器、方向性結合器の一般的な例の構成図を示す。このデバ イスは、二次元周期構造によるフォトニック結晶上に構成された二つの線欠陥による 結合欠陥導波路を用いる。この現象を利用して、一つ箇所からの電磁界の入力から 二つ箇所以上の出力を得ようとするものが分岐器 (図 14上段)、二つ箇所以上のど れカも入力してもある一つ箇所から出力が得られるようにしたものが結合器(図 14中 段)、それら二つの構造を併せ持つものが方向性結合器(図 14下段)である。なお、 結合器又は分岐器のみの機能し力持たなくても方向性結合器と呼ぶこともある。その 他にも、フォトニック結晶欠陥導波路を用いて、多重化器、多重分離器等の各種フォ トニック結晶欠陥デバイスを形成することができる。
[0037] 図 15は、フォトニック結晶結合欠陥導波路による方向性結合器を用いたスィッチ · デバイスの動作原理を示した模式図である。
[0038] 図 15 (A)は、フォトニック結晶結合欠陥導波路による方向性結合器を用いたスイツ チ-デバイスの動作原理を示した模式図である。また、図 15 (B)は、本実施の形態に 基づいて結合長を短小化することにより、同様のスィッチ ·デバイスの大きさを小さくし た様子を示す。なお、本実施の形態における結合長の短小化については後述する。
[0039] フォトニック結晶の媒質定数を変化させれば、結合長が時間的に変化するので、出 力位置も同時に変化する。一般に光伝搬路に用いられる媒質の媒質定数 (屈折率) に変化を起こすために利用される物理現象としては、ポッケルス効果 (一次電気光学 効果)やカー効果 (二次電気光学効果)が有名である。また、外部からの直流電気又 は電磁波 ·光信号による媒質定数制御の具体的な実施の形態にっ 、て以下に述べ る。
[0040] 先ず、外部電界又は磁界を印加する方法が挙げられる。フォトニック結晶に付加さ れた電極による電圧印加や、電流注入がこれに相当する。結合導波路を構成する媒 質が例えば GaAs等の場合に有効である。
[0041] 次に、一つの例として、欠陥の周辺及び内部の一部もしくは全部に、量子ドットの埋 め込みやある種のイオンのドープ等により非線形媒質領域を実現する。これは、外部 力もの制御信号等により非線形媒質の実効的な誘電率、導電率 (その領域中で増幅 効果が見られる場合、実効的な導電率が負であるのと等価である。)を可変とする領 域を介在させることで、光'電磁波の伝搬や結合の程度を制御する。つまり、先刻ま でフォトニック結晶要素 (例:空気と同じ誘電率を持つ媒質)だった部分が、外部制御 によって、いきなり欠陥 (例:半導体と同じ誘電率を持つ媒質)に変化するなら、先刻 まで光 ·電磁波にとって入り込めない壁だった部分にいきなり通路が開かれることに なり、電磁波の伝搬方向を所定のように制御することができる(例えば、特開 2001— 9 1912号公報参照)。
[0042] 外部力 の制御信号を所望の非線形領域に到達させる方法については、例えば、 次のようなものが考えられる。
(1)同じフォトニック結晶中に、既に作成された処理対象光 ·電磁波が伝搬する欠陥 導波路とは別に、制御信号としての光 ·電磁波が伝搬し当該媒質に至るための欠陥 導波路を設ける方法
(2)既にフォトニック結晶中に作成された処理対象光 ·電磁波が伝搬する欠陥導波 路中をその光 ·電磁波とは異なる周波数の光 ·電磁波信号として伝搬させて、当該媒 質に到達させる方法
(3)制御信号用欠陥導波路を別の二次元フォトニック結晶で実現したものを、処理対 象電磁波が伝搬する導波路が設けられている二次元フォトニック結晶に、ある媒質を 挟んで積層し、当該媒質の位置でのみ挟まれて ヽる媒質を除く等して両者を電磁気 学的に結合し得るようにする方法 (特開 2001— 242329号公報参照)
[0043] 尚、同じ非線型媒質でも、イオンのドープについては、エルビウム'イオン'ドープ等 の光ファイバ増幅器と同様に、フォトニック結晶の欠陥部分及び Z又は要素部分に エルビウム 'イオン等の所望のイオンをドープするようにしてもよ 、。
[0044] 4.結合長を短小化するためのフォトニック結晶結合導波路
一般に、モード結合している複数の導波路を伝搬する電磁波の結合長は、モード 結合を構成する各モードの導波路方向に沿った伝搬定数 (又は波数)の大きさに依 存する。二つの導波路で構成される結合導波路を考えた場合、その内を伝搬する電 磁波の偶モードと奇モードが干渉する方向性結合器とみなされ、その時の結合長は 偶モードと奇モードの伝搬定数の差に反比例する (例えば、文献「岡本勝就:光導波 路の基礎,コロナ社」の第四章 (モード結合理論)を参照)。
[0045] この様な場合、導波路中の電界又は磁界は、偶モードと奇モードの和として表され る。電界 E (z)を例にとれば、
E (z) = Ee ' exp (― j j8 c z) + Eo ' exp (— j β o . z) (2)
ここで、 j8 e、 j8 o :偶(even)、奇 (odd)モードの伝搬定数、 z :伝搬方向の距離、 Ee、 Eo :偶モード、奇モードの電界振幅である。
[0046] 図 19は、結合導波路を伝搬する各モードの導波路方向に垂直な方向での電磁界 分布の模式図である。導波路 Iの左端 (入力端)から入力された電磁界は、導波路 II の右端(出力端)にて偶モードと奇モードの和が出力される。この図では、導波路 Iの 右端及び導波路 Πの左端は、偶モードと奇モードの電界又は磁界の和が相殺されて おり、電磁界は出力されない。
[0047] また、この時、結合長 Lcは、次式で表される。
Lc= π / ( |8 Θ- |8 ο) (3)
上式の通り、結合長は、モード結合を構成する各モード (偶,奇)の導波路方向に 沿った伝搬定数 (又は波数)の関数であり (依存しており)、具体的には、偶モードと 奇モードの伝搬定数の差に反比例して 、る。
[0048] なお、結合長 Lcの式 (3)は、導波路間の距離にも関係する。一般には、導波路間 の距離が大きい程、結合長は長い距離を要する。従って、両導波路は出来るだけ近 付けた方が良いことになる。導波路間の距離が変われば結合導波路の構造も変わつ たという事になり、その結合導波路を構成する二つの導波路を跨いで伝搬する、偶 又は奇モードの伝搬定数もそれぞれ変化する。従って、式 (3)が示すようにそれらの 関数である結合長も変化する。
[0049] なお、結合長 Lcは、二つの導波路の結合の度合いを示すモード結合定数の関数 として、以下のように表すこともできる。
Figure imgf000016_0001
ここで、 はモード結合定数, δは結合導波路を構成する二つの導波路がそれぞれ 単独で存在した場合に、各々の導波路を伝搬するモードの伝搬定数の差を取ったも のである。これは上述のような、モード結合現象を、結合導波路を伝搬する偶'奇モ ードの干渉として解釈するものとは異なる考え方に依るものである。また、ここでのモ ードは、上述の偶,奇モードの事ではなぐ結合導波路を構成する二つの導波路が それぞれ単独で存在した場合の各々の導波路における伝搬モードを指す。モード結 合定数 (結合の度合い)は、導波路間の距離が大きい程小さいと考えるのが妥当で あるため、上式 (4)より、導波路間の距離が大きいほど結合長が長くなるといえる。結 合導波路を構成する導波路が、二本ではなく三本以上の場合も、基本的には、二本 毎に上記と同様であり、それら導波路が互いに遠くに配置されるより、近くに配置され た方が、二本毎の結合長は短くなる傾向を示す。
[0050] 従って、この様な各モードの伝搬定数の差が大きくなるような変化を結合導波路の 構造に局所的又は全体的に加えてやれば、結合長を短く出来、結果として、その様 な方向性結合器を利用する各種のデバイスの大きさも小さく出来る。
[0051] なお、結合導波路を構成する導波路が二本だけではなぐ三本以上の場合は、偶 ,奇モードの二つだけではなぐより高次のモードも生じる可能性が高くなるが、その 場合のモード結合現象も、それらのモードの干渉とみなせ、それらのモードの伝搬定 数の差力 結合長を考慮できるので、基本的には、上記と同様である。
[0052] 図 1は、フォトニック結晶結合欠陥導波路の模式図とそのバンド構造図である。図 1 には、例として、 2次元フォトニック結晶スラブ上に構成された二つの同じフォトニック 結晶単一線欠陥導波路で構成されるフォトニック結晶結合欠陥導波路(図 1上段)に ついて、バンド構造図即ち伝搬定数 (波数)と規格化周波数の関係を示す。図 1上段 に示すフォトニック結晶結合欠陥導波路は、結合する二つの欠陥導波路の間に、フ オトニック結晶要素が二列並んだ例である。方向性結合器としての結合欠陥導波路 の図は正確なものではなく模式図である。なお、フォトニック結晶構造の設計パラメ一 タは、一例として、文献「A. Chutinan, et al. : Appl. Phys. Letters, Vol. 80, 2 002, pp. 1698— 1700」等に従う。
[0053] グラフ中央のライト'ラインより左側では、スラブの上下より電磁界が漏洩する。また、 フォトニックバンドギャップ中に存在し、導波モードとして有効に機能すると思われる モードのみ太線で示してある力 図中白丸を結んだ線が上述の偶モードに相当し、 図中黒丸を結んだ線が奇モードに相当する。なお、この様なバンド構造図中の各モ ードに関するプロットの傾き (微係数)は、そのモードの群速度 (エネルギー伝搬速度 )を表す。傾きが横軸に平行に近くなる程光の伝搬速度は遅くなり、プロットが完全に 寝てしまえば、光の伝搬はそこで停止する。
[0054] ある規格ィ匕周波数における偶モードと奇モードの伝搬定数の差が結合長に影響す る。図 1より、モードの導波路方向の伝搬定数の大きさの差は、規格化周波数を小さ くする程大きくなることが分かる。また、伝搬定数の差が大きくなれば、式 (3)が示す ように結合長は小さくなる。例えば、規格化周波数が約 0. 274のときの両モードの伝 搬定数の差が図示されているが、規格化周波数が約 0. 268に近付くほど両モード の伝搬定数の差は大きくなり、結合長は小さくなる (太矢印参照)。
[0055] 規格ィ匕周波数を小さくするには、例えば、以下の方法などが考えられる。 a)入力信号の励振周波数自体を低くする (波長を長くする)。
b)フォト-ック結晶要素の周期的間隔 (格子定数)を小さくする。なお、この場合、厳 密には、格子定数だけでなくフォトニック結晶要素の大きさも同じ割合で、フォトニック 結晶構造を相似的に小さくしなくてはならない。格子定数だけ小さくして、要素の大き さを変えないと、改変前より要素が密に存在することによる実質的な媒質定数の変化 の効果 (後述する)の方が支配的となり、所望の結果が得られない可能性がある。
c)実質的な媒質定数 (実効屈折率)の変化 (減少)を利用する。
[0056] 図 2に、結合長の変化の様子の模式図を示す。
図 2上段は、規格化周波数が 0. 274 [cZa]の時の結合長を模式的に示す。この 例では、完全結合長は 64a (aは格子定数)である。また、図 2下段に、規格化周波数 が 0. 270 [cZa]の時の結合長を模式的に示す。この例では、完全結合長は 19a (a は格子定数)であり、図 2上段の規格ィ匕周波数の時よりも結合長が短くなる。
[0057] 図 3は、結合長短縮ィ匕のために領域的に媒質を改変されたフォトニック結晶結合欠 陥導波路の模式図である。
[0058] 本実施の形態に係る、フォトニック結晶結合欠陥導波路のひとつは、結合導波路中 を伝搬する各モードの伝搬定数の差を大きくするため、実質的に規格ィ匕周波数を変 化させるものとして、フォトニック結晶を構成する材料の誘電率又は屈折率、導電率、 透磁率等の媒質定数を、フォトニック結晶の欠陥導波路を含む所定範囲又は近傍の 一部又は全部にわたり異なるものとしたものである。例えば、材料 Aと異なる材料 Bを 一部に用いることができる。
[0059] 媒質定数、特に誘電率を変化させると、そのフォトニック結晶のバンド構造が規格 化周波数に対して変化し、媒質定数が領域的に異なることは、領域が異なれば規格 化周波数も異なる事とほぼ等価である(例えば、文献「J. D. Joannopoulos, R. D.
Meade, J. N. Winn著,藤井,井上訳:フォトニック結晶—光の流れを型にはめ込む 一,コロナ社」の 5. 6節参照)。
[0060] 図 4は、結合長短縮ィ匕のために領域的に格子定数、フォトニック結晶要素の大きさ
、形状を改変されたフォトニック結晶結合欠陥導波路の模式図である。
[0061] 本実施の形態に係るフォトニック結晶結合欠陥導波路のひとつは、結合導波路中 を伝搬する各モードの伝搬定数の差を大きくするために、実質的に規格化周波数を 変化させるものとして、フォトニック結晶要素の周期的分布間隔即ち格子定数、フォト ニック結晶要素 (欠陥)の大きさ及び形状のいずれか又は複数を、領域的に異なるよ うにしたものである。
[0062] 入力される電磁界の周波数が同じならば、規格ィ匕周波数は格子定数に比例する。
上述の式 (3)において、入力信号の励振周波数が変わらないなら波長も不変である から、規格化周波数 Nfは、格子定数 aのみに依存することになる。したがって、格子 定数のみを小さくすれば、規格化周波数気が小さくなる。換言して説明すると、入力 信号の波長が変わらずに、フォトニック結晶構造全体が相似的に小さくなると、これは 、フォトニック結晶構造自体は変えずに入力信号の波長を大きくした (周波数を小さく した)のと等価になる。これにより、偶モードと奇モードの伝搬定数の差が大きくなるの で結合長は短くなる。
[0063] 厳密には、要素の形状は変化させず、かつ、フォトニック結晶要素の格子定数の変 ィ匕 (例えば、図中 aから a' )と同じ割合でフォトニック結晶要素の大きさも変化 (例えば 、図中円孔半径 rから )させれば、格子定数の変化と規格ィ匕周波数の変化が等価と なる(図 4中段左)。しかし、実際には、格子定数のみを変化させ、フォトニック結晶要 素は同じ大きさのままであっても(図 4下段右)、同様の効果が得られる。
[0064] フォトニック結晶要素が例えば空気円孔などであり、半導体などのフォトニック結晶 の材料より小さい誘電率 (屈折率)を持つ場合、格子定数のみ小さくして円孔半径は 変えない改変を行うと、改変を行う前に比べてフォトニック結晶構造に閉める円孔の 割合 (充填率)が増えるので、フォトニック結晶全体の平均的屈折率は小さくなる。即 ち、円孔は小さくなつていないので不完全ながらも上記の「格子定数の縮小」, 「平均 的つまり実質的な媒質定数の低下」の二つが同時に起こっている事になる。この場合 、どちらの効果もバンド構造を上にシフトする方向に働く。
[0065] また、例えばフォトニック結晶要素の形状のみを領域的に変化させても良い(図 4下 段左)。例えば、フォトニック結晶要素の形状を円状力 楕円状へ変化させることがで きる。なお、変化させる形状は、適宜の形状とすることができる。
[0066] また、フォトニック結晶要素の大きさのみを変化させ、格子定数は同じままとしてもよ い(図 4中段右)。これは、フォトニック結晶全体の媒質定数を実質的に変化させるこ とにもなる。なお、フォトニック結晶要素の大きさは適宜のものとすることができる。媒 質定数の実質的変化の効果については、次に示す例でも利用される。
[0067] 図 20は、媒質の実質的な屈折率変化に伴うバンド構造の規格化周波数に対する 変化の説明図である。例えば、フォトニック結晶を、ある材料中に周期的に空気孔を 並べた構造として実現すると、空気孔の半径を大きくする等してその材料の内の一部 を更に取り除いた時、構造全体の(平均的な)屈折率は減少する。その結果、バンド 構造は、図示のように周波数について正の方向にシフトする。これは実質的に規格 化周波数が低くなつた事と等価である。
[0068] これは、屈折率の小さな部分 (空孔)を増やすのでは無ぐ空孔の形状を変化させ る場合、又は、構造は変えずに材料の屈折率自体を小さい物に変える場合も同様で ある。媒質定数又は格子定数を小さくすると、バンド構造は規格ィ匕周波数に対し上に シフトし、入力信号の周波数 (波長)は変えずに、実質的に規格化周波数を小さくす る効果が得られる。一方、媒質定数又は格子定数を大きくすると、バンド構造は下に シフトする。
[0069] これにより、規格化周波数での、偶モードと奇モードの伝搬定数の差が大きくなり、 結合長が小さくなる。
[0070] 図 5は、結合長短縮ィ匕のために領域的にスラブ厚さを改変された 2次元フォトニック 結晶スラブ状のフォトニック結晶結合欠陥導波路を示す模式図である。
[0071] 本実施の形態のフォトニック結晶結合欠陥導波路のひとつは、結合導波路中を伝 搬する各モードの伝搬定数の差を大きくするため、実質的に規格ィ匕周波数を変化さ せるものとして、等価屈折率を領域的に異なるものとしたものである。例えば、スラブ の厚さを異なるものとすることで、等価屈折率を変化させる。
[0072] スラブ導波路を伝搬する電磁波にとっての導波路媒質の実質的な媒質定数、特に 屈折率は、スラブの形状や厚さに依存して変化し、これを考慮して導き出された等価 屈折率は、一般にスラブ厚が薄いほど小さい (例えば、文献「河野,鬼頭:光導波路 解析の基礎,現代工学者」を参照)。従って、スラブ厚を領域的に異なるものとしたフ オトニック結晶では、領域によって媒質定数 (特に屈折率)が異なる事と等価である。 [0073] 材料の内の一部を更に取り除いてフォトニック結晶構造全体の平均的な屈折率を 下げる手段として、空孔をより大きく穿つ(孔をあける)のではなぐスラブを薄くしたも のである。フォトニック結晶線欠陥導波路中を伝搬する電磁波の、電磁界分布は、そ の殆どが欠陥部分に集中するが、多少は導波路脇のフォトニック結晶要素が並ぶ部 分にも染み出している。これにより、要素の大きさや形状を変えることで状態が変化す る。導波路中を伝搬している電磁波にとって、構造の実質的 (平均的)屈折率が変化 したように感じられる訳である(実効屈折率の変化)。 2次元フォトニック結晶スラブの 場合は、上記の事情が上下方向にも適用でき、スラブ厚が薄くなれば、やはり実効屈 折率が小さくなる。
[0074] スラブ厚と実効屈折率の関係式については省略する(例えば「光導波路の基礎」現 代工学社参照)。媒質定数が異なることは規格ィ匕周波数が異なる事とほぼ等価であ るのは、上述(例えば図 20及びその説明)の通りである。
[0075] 図 6は、結合導波路近傍のフォトニック結晶構造に、領域的に改変を施されたフォト ニック結晶結合欠陥導波路を示す模式図である。結合長短縮化のために、結合導波 路を伝搬する各モードの性質 (バンド構造)を異なる割合で変化させる。
[0076] 本実施の形態に係るフォトニック結晶結合欠陥導波路のひとつは、結合導波路中 を伝搬する各モードの伝搬定数の差を大きくするため、結合導波路中を伝搬する電 磁波の各モードの伝搬定数を、互いに異なって変化させるためのものとして、フォト- ック結晶の周期構造を結合欠陥導波路近傍で領域的に変化させたものである。結合 欠陥導波路近傍のフォトニック結晶構造が変化すれば、その結合導波路を伝搬する 電磁波の各モードの伝搬定数も変化する力 各モードの電磁界分布は同じでは無い ので、変化による影響もモード毎に異なる事が予想され、各モードのそれぞれ変化の 割合は互いに同じではなぐそれら伝搬定数の差がより大きくなるように変化させ得る 。従って、結合欠陥導波路近傍でのフォトニック結晶構造が異なる領域を設ければ、 その領域内では他の領域より結合長が小さくなる。
[0077] 例えば、結合欠陥導波路間の要素のみ大きさを変化させたり(図 6中段左)、結合 欠陥導波路間の外側に隣接する又は外側所定範囲の要素の大きさを変化させたり( 図 6中段右)、これらを組み合わせたもの(図 6下段左)とすることができる。図 6では、 要素の大きさが大きくされているが、これに限らず、小さくしても良い。なお、要素の大 きさに限らず、上述のように格子定数、要素の形状等を変化させてもよい。また、異な る大きさ又は形状のフォトニック結晶要素が付加したものである(図 6下段右)。上記 の要素の変化及び Z又は異なる要素が加わることで、その構造の実質的な媒質定 数が異なったものとなる効果もある。
[0078] 図 7に、結合導波路近傍のフォトニック結晶構造に、領域的に改変を施されたフォト ニック結晶結合欠陥導波路の他の例を示す。図 7は、結合導波路間にフォトニック結 晶要素が 3つ以上ある場合の例である。
[0079] 例えば、図 7の第 2段左上の図は、結合導波路間の近傍 (この例では中央付近)の 要素の大きさを変化させたものである。図 7の第 2段中央の図は、結合導波路間の要 素のうち、導波路に隣接する要素の大きさを変化させたものである。なお、隣接する 要素以外に、所定範囲の要素の大きさを変化させてもよい。図 7の第 2段右の図は、 結合導波路間の要素の大きさを全て変化させたものである。
[0080] また、図 7の第 3段左の図は、結合導波路を構成する各導波路の外側の要素のうち 、導波路に隣接する要素の大きさを変化させたものである。図 7の第 3段中央の図は 、結合導波路を構成する各導波路の外側の要素のうち、導波路に隣接する要素の 大きさを変化させ、及び、結合導波路間の要素のうち、導波路に隣接する要素の大 きさを変化させたものである。図 7の第 3段右の図は、結合導波路を構成する各導波 路の外側の要素のうち、導波路に隣接する要素の大きさを変化させ、及び、結合導 波路間の要素の大きさを変化させたものである。
[0081] なお、導波路に隣接する要素以外に、所定範囲の要素の大きさを変化させてもよ い。図 7では、要素の大きさが大きくされている力 これに限らず、小さくしても良い。 また、要素の大きさに限らず、上述のように格子定数、要素の形状等を変化させても よい。図 7下段左は、異なる大きさ又は形状のフォトニック結晶要素を付加したもので ある。
[0082] 図 21は、導波路近傍のフォトニック結晶構造改変に伴うバンド構造の変化の説明 図である。図 21に示す例は、バンド構造自体の改変を意図したものである。導波路 近傍 (例えば導波路間)のフォトニック結晶要素の大きさを変化させることによりバンド 構造が変化し、規格化周波数での、偶モードと奇モードの伝搬定数の差が大きくなる 。これにより、結合長が小さくなる。なお、導波路間の要素の大きさ以外にも、例えば 上述の図 6、 7のような範囲で要素の大きさ及び Z又は形状、格子定数を変化させた 場合も同様である。
[0083] 図 8は、結合長短縮ィ匕のためにフォトニック結晶構造が互いに異なる様に改変され た領域同士の境界で、結合導波路の幅が同じくなる様に更に改変を加える様子を示 した模式図である。図 8の破線内が図 6及び図 7に示したフォトニック結晶結合欠陥 導波路に相当する。上述のフォトニック結晶結合欠陥導波路のいずれかにおいて、 領域の境界で、線欠陥導波路の幅が互いに異なる又は著しく異なる場合、これをほ ぼ同じくするために、フォトニック結晶要素の位置 (例えば中心位置)や形状を更に変 化させたフォトニック結晶欠陥結合導波路である。フォトニック結晶構造が互いに異な る領域同士の境界では、欠陥導波路の幅が異なるため、それが伝搬電磁波の反射 が生じる原因となる。この更なる改変は、これを防ぐ効果がある。
[0084] フォトニック結晶線欠陥導波路中を伝搬する電磁波の、電磁界分布は、その殆どが 欠陥部分に集中するが、多少は導波路脇のフォトニック結晶要素が並ぶ部分にも染 み出している。この染み出しの程度は、一般にモードの伝搬定数の大きさによって異 なるので、フォトニック結晶構造が互いに異なる様に改変された領域同士の境界の向 こう側とこちら側でこの染み出しの程度も異なる。この染み出しの範囲がほぼ同じくな るように、フォトニック結晶要素の位置 (例えば中心位置)や形状を更に変化させて、 導波路幅を調整しても良い。この場合、前記境界で導波路幅が一定になるとは限ら ない。
[0085] 伝搬定数の大きさは偶モードと奇モードでも異なるので、前記境界において、結合 欠陥導波路を構成する複数の導波路のそれぞれが、互いに異なる電磁界分布の染 み出しの程度を持つ場合が有り得る。この場合を考慮して、前記複数の導波路のそ れぞれが、互いに異なる導波路幅に調整されてもよい。
[0086] 例えば図 8のように、線欠陥導波路の幅 W、フォトニック結晶要素の円孔直径 dのフ オトニック結晶結合欠陥導波路において、要素の中心位置を変えずに、導波路に隣 接する要素の大きさを a倍にした場合、要素の大きさを変化させた後の線欠陥導波 路の幅は a d— dだけ小さくなる。よって、幅が小さくなる分だけ導波路に隣接する要 素の中心位置を、導波路力も離れる方向に移動させることで、線欠陥導波路の幅を Wのまま一定にすることができる。この図では、円孔が大きくなる場合 > 1)を示し たが、円孔が小さくなる場合(aく 1)も、要素の中心位置を移動させる方向を変える ことで、線欠陥導波路幅をそのまま一定にすることができる。図 8は、前記領域同士 の境界で線欠陥導波路の幅を一定にしているが、前記染み出しの範囲を考慮して、 一定に限らず、異なる導波路幅となるように、導波路に隣接する要素の中心位置を 移動させても良い。
[0087] 図 16に、不連続な欠陥列についての説明図を示す。上述のフォトニック結晶結合 欠陥導波路において、フォトニック結晶の分野で伝搬電磁波の群速度の遅延を生じ させるために用いられる断続的な点欠陥又は線欠陥導波路を線欠陥導波路の一部 又は全部として採用した、不連続な欠陥列を含むフォトニック結晶結合欠陥導波路と してちよい。
[0088] 図示のように、線欠陥は、幾つかの欠陥をある程度距離を離して離散的に配置する ことにより形成されても良い。このような不連続な欠陥列からなる導波路は、非常に群 速度を遅く出来、遅延線効果があるため、単なる線欠陥構造と比較してより小さな構 造の実現が期待できる。図 16には、二次元六方格子における、不連続な欠陥列から なる導波路の例の幾つかが示されるがこれに限られない。この例は、欠陥範囲(ここ では、単一線欠陥の場合)の領域にフォトニック結晶の要素等を配置し、欠陥列若し くは点欠陥が周期的に存在するようにしたものである。
[0089] また、上述のフォトニック結晶結合欠陥導波路にぉ 、て、外部から主として直流の 電気的制御信号によってフォトニック結晶媒質の媒質定数を変化させ、制御信号の 強度に依存して結合長を時間的に変化させるフォトニック結晶結合欠陥導波路とし てもよい。結合長が変わる事は結合導波路中での強い電磁界の所在が変わる事な ので、結合導波路長の調整により、結合長の変化以前と以後とで異なる導波路から の電磁波出力を得る事も可能である。これは方向性結合器型スィッチ ·デバイスの動 作原理である。本実施の形態は、フォトニック結晶デバイスに応用しうる。
[0090] 上述のフォトニック結晶結合欠陥導波路において、光又は電磁波制御信号によつ てフォトニック結晶媒質の媒質定数を変化させ、制御信号の強度,位相に依存して 結合長を時間的に変化させるフォトニック結晶結合欠陥導波路としてもよい。これも 方向性結合器型スィッチ .デバイスに応用し得る。
[0091] また、上述のフォトニック結晶結合欠陥導波路力 2次元フォトニック結晶スラブ中 の、導波路方向が平行又はほぼ平行となる様に互 、に近い又は隣接する位置に配 置された二本の単一線欠陥導波路で構成されて ヽるような、基本的なフォトニック結 晶結合欠陥導波路としてもよ!/ヽ。
[0092] 図 17に、 2次元フォトニック結晶を例に取り、方向性結合器としてのフォトニック結晶 結合欠陥導波路に、高屈折率差導波路による入出力ポート 9を設けた例を示す。な お、入出力ポート 9は、高屈折率差導波路以外にも、導波管、同軸ケーブル、光ファ ィバ、フォトニック結晶欠陥導波路等、適宜の導波路又はケーブル等により構成され てもよい。入出力ポート 9は、例えば入力端又は出力端 8に設けることができる。
[0093] 図 17に示すフォト ック結晶結合欠陥導波路は、通信、計測、演算等へ利用する 装置、及び、電磁界の伝送線路として応用されるための入出力を行うために、入力信 号を生じせしめる励振源やフォトニック結晶結合欠陥導波路を経た出力信号の受信 器等で構成される外部系との結合部分を備えたフォトニック結晶結合欠陥導波路で ある。結合部分の例としては、同じフォトニック結晶欠陥導波路や高屈折率差導波路 との直接接続、端面結合法による光ファイバとの接続がある。また、テーパー (先細) 型ファイバとの結合やスポットサイズ変換機能を備えたポリマー導波路 (例えば、文献 「納富:「SOIフォトニック結晶スラブ」応用物理、第 72号、第 7号、 2003、 pp. 914- 918.」参照)との接続も可能と考えられる。
[0094] 図 22は、フォトニック結晶構造を改変する領域の例(1)を示す図である。図中 a— h は、上述のように例えば材料、格子定数、要素の大きさ又は形状、スラブの厚さ等を 改変する範囲を示す例である。
[0095] 図中 a— hは、それぞれ、 (a)フォトニック結晶欠陥導波路を含む全部、 b)フォト-ッ ク結晶欠陥導波路を含む一部、(c)フォトニック結晶欠陥導波路を含まない、導波路 間の近傍の全部、(d)フォトニック結晶欠陥導波路を含まない、導波路間の近傍の一 部、(e)フォトニック結晶欠陥導波路を含む、導波路近傍の全部、(f)フォトニック結 晶欠陥導波路を含む、導波路近傍の一部、(g)フォトニック結晶欠陥導波路を含まな い、結合導波路脇 (外側)の近傍の全部、(h)フォトニック結晶欠陥導波路を含まない 、結合導波路脇 (外側)の近傍の一部を示す。
[0096] 図 3— 5に示すようなフォトニック結晶結合欠陥導波路は、例えばそのバンド構造を 規格化周波数に対しシフトさせる事を意図しており、これは、フォトニック結晶の全体 又は導波路を含む一部の構造を変化させなければ有効にならない。従って、図 22の a又は bの範囲で材料、格子定数、要素の大きさ又は形状、スラブの厚さ等を変化さ せてフォトニック結晶構造を改変するものである。なお、図 22の c一 hの範囲でもよい
[0097] 図 6及び 7に示すようなフォトニック結晶結合欠陥導波路は、例えば伝搬電磁波の 電磁界分布が集中する導波路近傍の構造を改変させることにより、偶モードと奇モー ドのバンド構造をそれぞれ異なった度合 、で変化させ、結果として改変前に比べて 両モードの導波路方向の伝搬定数の差を大きくすることを意図したものである。従つ て、図 22の c一 hの範囲でフォトニック結晶構造を改変するものである。なお、図 22の a又は bの範囲でもよい。
[0098] なお、実際には、同図の e、 fの範囲で改変してもバンド構造をシフトさせることを意 図した効果が生じるのに充分広い領域であるとみなせる場合もあり得る。逆に、 c一 h の範囲で改変すれば必ずしも偶モードと奇モードのバンド構造を異なった度合いで 変化させることを意図した効果が生じるとは限らず、バンド構造をシフトさせることを意 図した効果が生じる場合もあり得る。
[0099] 図 23は、フォトニック結晶構造を改変する領域の例(2)を示す図である。
階段状の結合導波路の場合には、結合導波路を構成する導波路が互いに平行と なっている一部については、図 22で示した様な領域の選択が可能である(例えば図 23aの範囲)。また、図 3— 5に示すようなフォトニック結晶結合欠陥導波路は、フォト ニック結晶構造全域に渡ってスラブ厚を薄くしたり格子定数を一様に短くしたりする 場合であり、特に欠陥の種類に依らず実施できる(例えば、図 23bの範囲)。また、図 6、 7に示すような、局所的にフォトニック結晶構造を改変する場合は、例えば導波路 (又は欠陥)近傍の範囲で実施できる(例えば、図 23cの範囲)。 [0100] また、上述のフォトニック結晶結合欠陥導波路が内部に含まれるような各種デバィ スを構成することができる。上述のフォトニック結晶結合欠陥導波路は、いずれも方 向性結合器として動作し得る。方向性結合器は、多重化合波器、多重分離器、共振 器、フィルタ、スィッチの各種デバイスを実現する際の基本素子として利用される。多 重化合波器は、一つの導波路に複数の異なる周波数信号を伝搬させる伝送方式で ある波長多重において、その複数の信号を合波する結合器であり、多重分離器は、 同分岐器であり、フィルタでもある。
[0101] 5.フォトニック結晶欠陥導波路の作製
図 18に、実際のフォトニック結晶の例として、空気クラッド 2次元フォトニック結晶スラ ブ構造中に形成した、二つの単一線欠陥導波路によりなるフォトニック結晶結合欠陥 導波路の構造例を示す。ここでは、一例として、結晶構造の例として六方格子結晶を 挙げてある。
[0102] まずは基盤となる媒質上に、選択エッチング用の層とコアとなる層を形成する。コア 部は対応する波長の電磁界がその内を伝搬し得る材料でなければならな 、ので、た とえば光通信の 1. 55 /z m帯では GaAsなどを用いる。選択エッチング用の層はコア と選択比の高 、材料 (GaAsに対しては AlGaAsなど)を用いる。コア部に周期的な 空孔を設けてフォトニック結晶を形成するが、その一部を空孔とせずに配列して欠陥 を形成する。空孔ゃ欠陥の形状、大きさ、配置については、 EB (電子ビーム露光)技 術やドライエッチング等を用いる一般的な半導体プロセスにおける微細加工の手法 により、比較的自由な設計が可能である。その後、空孔を通して選択エッチングを行 うことにより、コアの下部に空気クラッド領域を設ける。また、クラッド部を空気とせずに コアよりも低い屈折率の媒質とすることにより、空気クラッドの場合よりもより強固なデ バイスが実現できる。もし二つの線欠陥の間等に部分的に非線形媒質部を用いようと するなら、選択成長により局所的に InAs量子ドットなどを形成することにより実現する 。ここでは、単一線欠陥導波路 (A— Α' )と、これと同様の導波路 (Β— Β' )を、結合を 実現するように互いに近く平行に配置して 、る。
[0103] 二次元又は三次元のフォトニック結晶の欠陥の作成方法は、非特許文献 1に記載 されているように、適宜の方法を採用することができる。フォトニック結晶中に二次元 又は三次元の欠陥構造を作成する方法については、適宜の方法を採用することがで きる(例えば、特許文献 5— 9参照)。
[0104] 6.フォトニック結晶結合欠陥導波路の変形例
なお、上述のフォトニック結晶結合欠陥導波路において、スラブ面内の一部の材料 が局所的に異なること、スラブの厚み方向の材料が一部異なること、又は、これらの 双方の構成有してもよい。例えば、二次元 Ph— C (フォトニック結晶)スラブにおいて、 「面内」の一部の材料が局所的に異なる場合のみならず、スラブの「厚み方向」につ Vヽても材料が一部異なる(一例として、違う材料による板の貼り合わせをイメージ)よう にしてもよい。
[0105] また、上述のフォトニック結晶結合欠陥導波路において、互いに異なる材料又は媒 質定数である部分同士が、材料又は媒質定数が漸次変化する又は連続的に変化す る部分によって繋がって 、てもよ 、。
なお、上述のスラブの厚さを他の部分と異なるものにしたフォトニック結晶結合欠陥 導波路において、スラブ厚を変えた部分は、その媒質定数が「実質的に」変化するの と等価である。スラブが薄くなるという事は、例えば削ぎ落とされた部分が空気で置き 換わるという事であり、その分だけ全体の媒質定数は薄められる (小さくなる)。また、 特に、異なるスラブ厚を有する部分同士が、スラブ厚が漸次変化する又は連続的に 変化する部分によって繋がって 、てもよ 、。
[0106] また、フォトニック結晶の欠陥の周辺又は内部の一部又は全部に、量子ドットの形 成又はイオンのドープにより実現された非線形媒質領域をさらに含み、非線形媒質 領域に光又は電波を含む電磁界及び Z又は電界及び Z又は磁界を印加する事で 媒質の実効的な誘電率、導電率及び透磁率の!/ヽずれか又は複数を可変とし得るよう にしてもよい。このように、媒質定数変化の手段のひとつとして、例えば量子ドットを添 加することができる。また、外部からの制御信号は、例えば、定常(時間変化しない、 直流な)電界若しくは磁界、又は、時間変化する電磁界 (いわゆる電磁波。光は電磁 波の一種)とすることができる。外部力もの制御信号は熱であっても良い。例えば、外 部から印加される熱により、フォトニック結晶の実効的な誘電率、導電率及び透磁率 のいずれか又は複数を可変とするための領域をさらに含み、電磁波の伝搬定数及び
Z又は結合の程度を制御し得るようにしてもよい。以下に、例をあげる。
[0107] 例 1:ポリマー媒質に、ヒータやレーザ照射によって熱を加えると、温度変化により媒 質定数が変化する。石英系やポリマー系の材料は熱光学効果を有するものの例であ る。
例 2 :LiNbO媒質に直流電界を印加すると、媒質定数が変化する。 LiNbOは、電
3 3 気光学効果を有する代表的な媒質の一つである。
例 3 :組成を変えた複数の化合物半導体から成る構造に直流電界を印加して電流 を注入すると、媒質定数が変化する。例えば、 GaAsや InPなどの化合物半導体を少 しずつ組成を変えて積層構造にし、その構造に、積層面に垂直に直流電界を印加 すると、構造の媒質定数が変化する。これは、例えばキャリア効果によるものである。 例 4 : GaAs媒質に励起光を当てると、媒質定数が変化する。
例 5:量子ドットを含む GaAs媒質に光パルスを流すと、平均的な媒質定数が変化 する。
[0108] また、上述のフォトニック結晶結合欠陥導波路において、フォトニック結晶要素の大 きさと格子定数とを同じ割合で変化させることができる。
上述のフォトニック結晶結合欠陥導波路において、結合導波路の一部又は全部を 含むフォトニック結晶の一部に、そのフォトニック結晶要素とは異なる大きさ及び Z又 は形状の要素を付加して他の部分と異なるものとしてもよい。
[0109] 上述のフォトニック結晶結合欠陥導波路において、結合導波路の線欠陥又は導波 路に隣接する又は近傍若しくは導波路間のフォトニック結晶において、格子定数、フ オトニック結晶要素の大きさ、及び、フォトニック結晶要素の形状のいずれか又は複 数を他の部分と異なるものとし、線欠陥又は導波路の幅を局所的に変化させてもよい
[0110] 上述のフォトニック結晶結合欠陥導波路において、結合導波路の線欠陥又は導波 路に隣接する又は近傍若しくは導波路間のフォトニック結晶において、格子定数、フ オトニック結晶要素の大きさ、及び、フォトニック結晶要素の形状のいずれか又は複 数を他の部分と異なるものとし、かつ、線欠陥又は導波路の幅が変化しない又は殆 ど変化しない様にフォトニック結晶要素の位置を局所的にずらすことができる。 また、上述のフォトニック結晶結合欠陥導波路において、スラブの厚さを、ステップ 状又は階段状に変えることができる。
産業上の利用可能性
本発明は、例えば、光を含む電磁界を通信、計測、演算等へ利用する装置、及び
、電磁界の伝送線路を用いて実現される回路全般に適用することができる。

Claims

請求の範囲 [1] 周期構造を構成するフォトニック結晶要素を含み、特定の波長又は周波数範囲の 光又は電波を含む電磁界の伝搬を抑制するためのフォトニック結晶と、 前記フォトニック結晶の周期構造を構成するフォトニック結晶要素を局所的に除去 した部分である欠陥を、前記フォトニック結晶中に線として複数連結して導波路を形 成した線欠陥と、電磁界を入力及び Z又は出力するための入力端又は出力端とをそ れぞれ有し、モード結合して、ひとつの導波路に入力された電磁界により他の導波路 に電磁界が伝搬される、少なくとも 2本の導波路で構成された結合導波路と を含み、
(1)前記フォトニック結晶の誘電率、屈折率、導電率及び透磁率のいずれか若しく は複数を含む媒質定数を実質的に変化させること、(2)フォトニック結晶要素の大き さ若しくは形状を実質的に変化させること、(3)フォトニック結晶要素の周期的間隔を 示す格子定数を変化させることのいずれか又は複数により、
(a)前記結合導波路の偶モードと奇モードのバンド構造を規格化周波数に対しシ フトさせ、又は、(b)前記結合導波路の偶モードと奇モードのバンド構造をそれぞれ 異なった度合 、で変化させ、
これによりある規格ィ匕周波数における偶モードと奇モードとの伝搬定数の差を大き くして、前記結合導波路中を伝搬するモード結合した伝搬電磁波の結合長を短くす るためのフォトニック結晶結合欠陥導波路。
[2] 前記結合導波路の一部又は全部を含む前記フォトニック結晶の一部は、材料が他 の部分の材料とは異なるものとした請求項 1に記載のフォトニック結晶結合欠陥導波 路。
[3] 前記結合導波路の一部又は全部を含む前記フォトニック結晶の一部は、格子定数 、フォトニック結晶要素の大きさ、及び、フォトニック結晶要素の形状のいずれか又は 複数を他の部分と異なるものとした請求項 1に記載のフォトニック結晶結合欠陥導波 路。
[4] 前記結合導波路の一部又は全部を含む前記フォトニック結晶の一部は、他の部分 に対してフォトニック結晶要素の形状は変化させず、かつ、格子定数及びフォトニック 結晶要素の大きさを他の部分に比べて相似的に同じ割合で変化させた請求項 3に 記載のフォトニック結晶結合欠陥導波路。
[5] 前記フォトニック結晶は、スラブの面方向にフォトニック結晶要素を含む 2次元フォト ニック結晶であり、
前記結合導波路の一部又は全部を含む前記 2次元フォトニック結晶の一部は、スラ ブの厚さを他の部分と異なるものとした請求項 1に記載のフォトニック結晶結合欠陥 導波路。
[6] 前記結合導波路に隣接するフォトニック結晶要素及び Z又は前記結合導波路の近 傍若しくは導波路間のフォトニック結晶要素について、格子定数、フォトニック結晶要 素の大きさ、及び、フォトニック結晶要素の形状のいずれか又は複数を局所的に他の 部分と異なるものとした請求項 1に記載のフォトニック結晶結合欠陥導波路。
[7] 前記結合導波路に隣接するフォトニック結晶要素及び Z又は前記結合導波路の近 傍若しくは導波路間のフォトニック結晶要素に、そのフォトニック結晶要素とは異なる 大きさ及び Z又は形状の要素を付加した請求項 1に記載のフォトニック結晶結合欠 陥導波路。
[8] 前記結合導波路の前記線欠陥又は導波路に隣接するフォトニック結晶要素の位置 を、前記線欠陥又は導波路の幅が変化しない又は殆ど変化しないようにずらし、か つ、前記線欠陥又は導波路に隣接する又は近傍若しくは導波路間の格子定数、フ オトニック結晶要素の大きさ、及び、フォトニック結晶要素の形状のいずれか又は複 数を他の部分と異なるものとした請求項 3又は 4又は 6に記載のフォトニック結晶結合 欠陥導波路。
[9] 前記結合導波路を構成する導波路の!/、ずれか又は複数は不連続な欠陥列を含み 、遅延線として機能する請求項 1乃至 8のいずれかに記載のフォトニック結晶結合欠 陥導波路。
[10] 外部から印加される光若しくは電波を含む電磁界及び Z又は電界及び Z又は磁 界による制御信号により、前記フォトニック結晶の実効的な誘電率、導電率及び透磁 率のいずれか又は複数を可変とするための領域をさらに含み、
電磁波の伝搬定数及び Z又は結合の程度を制御し得るようにした請求項 1に記載 のフォトニック結晶結合欠陥導波路。
[11] 前記フォトニック結晶の欠陥の周辺又は内部の一部又は全部に、量子ドットの形成 又はイオンのドープにより実現された非線形媒質領域をさらに含み、
前記非線形媒質領域に光若しくは電波を含む電磁界及び Z又は電界及び Z又は 磁界を印加する事で媒質の実効的な誘電率、導電率及び透磁率の!、ずれか又は複 数を可変とし得るようにした請求項 1に記載のフォトニック結晶結合欠陥導波路。
[12] 前記フォトニック結晶は、 2次元フォトニック結晶スラブ構造を有し、
前記結合導波路は、互いに近い位置に又は所定距離離れて、かつ、平行に配置さ れたニ本の単一線欠陥で実現された請求項 1乃至 11のいずれかに記載のフォト-ッ ク結晶結合欠陥導波路。
[13] 前記入力端及び Z又は前記出力端には、導波管、同軸ケーブル、光ファイバ、高 屈折率差導波路及びフォトニック結晶欠陥導波路のいずれかによつて構成された、 電磁波を入力及び Z又は出力するための入力ポート及び Z又は出力ポートが設け られ、外部系との結合を可能にされた請求項 1乃至 12のいずれかに記載のフォト- ック結晶結合欠陥導波路。
[14] 請求項 1に記載のフォトニック結晶結合欠陥導波路において、
(1)前記フォトニック結晶の誘電率、屈折率、導電率及び透磁率のいずれか若しく は複数を含む媒質定数を実質的に変化させることにより、
(a)前記結合導波路の偶モードと奇モードのバンド構造を規格化周波数に対しシ フトさせること
を特徴とするフォトニック結晶結合欠陥導波路。
[15] 請求項 1に記載のフォトニック結晶結合欠陥導波路において、
(2)フォトニック結晶要素の大きさ若しくは形状を実質的に変化させることにより、 (a)前記結合導波路の偶モードと奇モードのバンド構造を規格化周波数に対しシ フトさせること
を特徴とするフォトニック結晶結合欠陥導波路。
[16] 請求項 1に記載のフォトニック結晶結合欠陥導波路において、
(3)フォトニック結晶要素の周期的間隔を示す格子定数を変化させることにより、 (a)前記結合導波路の偶モードと奇モードのバンド構造を規格化周波数に対しシ フトさせること
を特徴とするフォトニック結晶結合欠陥導波路。
[17] 請求項 1に記載のフォトニック結晶結合欠陥導波路において、
(1)前記フォトニック結晶の誘電率、屈折率、導電率及び透磁率のいずれか若しく は複数を含む媒質定数を実質的に変化させることにより、
(b)前記結合導波路の偶モードと奇モードのバンド構造をそれぞれ異なった度合 いで変化させること
を特徴とするフォトニック結晶結合欠陥導波路。
[18] 請求項 1に記載のフォトニック結晶結合欠陥導波路において、
(2)フォトニック結晶要素の大きさ若しくは形状を実質的に変化させることにより、 (b)前記結合導波路の偶モードと奇モードのバンド構造をそれぞれ異なった度合 いで変化させること
を特徴とするフォトニック結晶結合欠陥導波路。
[19] 請求項 1に記載のフォトニック結晶結合欠陥導波路において、
(3)フォトニック結晶要素の周期的間隔を示す格子定数を変化させることにより、 (b)前記結合導波路の偶モードと奇モードのバンド構造をそれぞれ異なった度合 いで変化させること
を特徴とするフォトニック結晶結合欠陥導波路。
[20] 請求項 1に記載のフォトニック結晶結合欠陥導波路において、
スラブ面内の一部の材料が局所的に異なること、及び、スラブの厚み方向の材料が 一部異なることのいずれか又は双方を特徴とするフォトニック結晶結合欠陥導波路。
[21] 請求項 1に記載のフォトニック結晶結合欠陥導波路において、
互いに異なる材料又は媒質定数である部分同士が、材料又は媒質定数が漸次変 化する又は連続的に変化する部分によって繋がっていることを特徴とするフォトニック 結晶結合欠陥導波路。
[22] 請求項 1に記載のフォトニック結晶結合欠陥導波路において、
異なるスラブ厚を有する部分同士が、スラブ厚が漸次変化する又は連続的に変化 する部分によって繋がっていることを特徴とするフォトニック結晶結合欠陥導波路。
[23] 請求項 1に記載のフォトニック結晶結合欠陥導波路において、
フォトニック結晶要素の大きさと格子定数とを同じ割合で変化させることを特徴とす るフォトニック結晶結合欠陥導波路。
[24] 前記結合導波路の一部又は全部を含む前記フォトニック結晶の一部に、そのフォト ニック結晶要素とは異なる大きさ及び Z又は形状の要素を付加して他の部分と異な るものとした請求項 1に記載のフォトニック結晶結合欠陥導波路。
[25] 前記結合導波路の前記線欠陥又は導波路に隣接する又は近傍若しくは導波路間 のフォトニック結晶において、格子定数、フォトニック結晶要素の大きさ、及び、フォト ニック結晶要素の形状の 、ずれか又は複数を他の部分と異なるものとし、前記線欠 陥又は導波路の幅を局所的に変化させた請求項 3又は 4又は 6に記載のフォトニック 結晶結合欠陥導波路。
[26] 前記結合導波路の前記線欠陥又は導波路に隣接する又は近傍若しくは導波路間 のフォトニック結晶において、格子定数、フォトニック結晶要素の大きさ、及び、フォト ニック結晶要素の形状のいずれか又は複数を他の部分と異なるものとし、かつ、前記 線欠陥又は導波路の幅が変化しな 、又は殆ど変化しな 、様にフォトニック結晶要素 の位置を局所的にずらした請求項 3又は 4又は 6に記載のフォトニック結晶結合欠陥 導波路。
[27] スラブの厚さを、ステップ状又は階段状に変えることを特徴とする請求項 5に記載の フォトニック結晶結合欠陥導波路。
[28] 外部から印加される熱により、前記フォトニック結晶の実効的な誘電率、導電率及 び透磁率のいずれか又は複数を可変とするための領域をさらに含み、
電磁波の伝搬定数及び Z又は結合の程度を制御し得るようにした請求項 1に記載 のフォトニック結晶結合欠陥導波路。
[29] 前記請求項 1乃至 28のいずれかに記載のフォト ック結晶結合欠陥導波路を含み 前記結合導波路のひとつの導波路に電磁界が入力されると前記結合導波路を構 成する導波路間で結合が生じ、他の導波路にも電磁界が伝搬され、いずれか又は 複数の導波路力 電磁界が出力されるようにした、電磁波伝送における方向性結合 器、分岐器、結合器、多重化合波器、多重分離器、共振器、フィルタ及びスィッチの いずれかとして機能するためのフォトニック結晶デバイス。
PCT/JP2005/003366 2004-03-03 2005-03-01 フォトニック結晶結合欠陥導波路及びフォトニック結晶デバイス WO2005085921A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/591,471 US7440658B2 (en) 2004-03-03 2005-03-01 Photonic crystal coupling defect waveguide
JP2006510670A JP4093281B2 (ja) 2004-03-03 2005-03-01 フォトニック結晶結合欠陥導波路

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004058536 2004-03-03
JP2004-058536 2004-03-03

Publications (1)

Publication Number Publication Date
WO2005085921A1 true WO2005085921A1 (ja) 2005-09-15

Family

ID=34917939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/003366 WO2005085921A1 (ja) 2004-03-03 2005-03-01 フォトニック結晶結合欠陥導波路及びフォトニック結晶デバイス

Country Status (3)

Country Link
US (1) US7440658B2 (ja)
JP (1) JP4093281B2 (ja)
WO (1) WO2005085921A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008530605A (ja) * 2005-02-11 2008-08-07 コミサリヤ・ア・レネルジ・アトミク 導波路型変調器および関連する変調方法
WO2009128480A1 (ja) 2008-04-15 2009-10-22 住友電気工業株式会社 光導波路用母材の製造方法
US8478088B2 (en) 2008-03-07 2013-07-02 Nec Corporation Optical switch and manufacturing method thereof
JP2015162787A (ja) * 2014-02-27 2015-09-07 国立大学法人大阪大学 方向性結合器および合分波器デバイス
KR20170069253A (ko) * 2014-10-07 2017-06-20 테크니셰 유니베르시테트 드레스덴 방향-선택적 간섭계형 광필터
CN108307658A (zh) * 2013-09-12 2018-07-20 江伟 高密度光子集成的波导超晶格

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4923234B2 (ja) * 2004-12-28 2012-04-25 国立大学法人京都大学 2次元フォトニック結晶及びそれを用いた光デバイス
US7486849B2 (en) * 2005-06-30 2009-02-03 International Business Machines Corporation Optical switch
US8369670B2 (en) * 2007-05-02 2013-02-05 Massachusetts Institute Of Technology Optical devices having controlled nonlinearity
CN101458210B (zh) * 2007-12-12 2012-09-19 清华大学 折射率传感器
JP5173876B2 (ja) * 2008-02-14 2013-04-03 キヤノン株式会社 3次元構造及び発光デバイス
EP3567416A1 (en) 2009-10-12 2019-11-13 The Trustees of Columbia University in the City of New York Photonic crystal spectrometer
US9459404B2 (en) * 2009-10-23 2016-10-04 Lumilant, Inc. Optical router using interconnected photonic crystal elements with specific lattice-hole geometry
US20120154168A1 (en) * 2010-12-16 2012-06-21 Baker Hughes Incorporated Photonic crystal waveguide downhole communication system and method
CN102790253B (zh) * 2011-05-18 2015-08-19 中国科学院上海微系统与信息技术研究所 定向耦合器
CN102299483B (zh) * 2011-06-02 2012-08-15 中国科学院半导体研究所 集成光子晶体相位调制器的耦合波导激光器的制备方法
US9170374B2 (en) 2011-06-13 2015-10-27 Board Of Regents, The University Of Texas System Broadband, group index independent, and ultra-low loss coupling into slow light slotted photonic crystal waveguides
US9110316B2 (en) 2011-12-01 2015-08-18 Samsung Electronics Co., Ltd. Method of amplifying magneto-optical kerr effect by using photon crystal structures, and photon crystal having amplified magneto-optical kerr effect, method of fabricating photon crystal
WO2013158842A1 (en) * 2012-04-20 2013-10-24 Dirk Englund Photonic crystal cavity array
US9494734B1 (en) * 2012-07-27 2016-11-15 Faquir Chand Jain Article and method for implementing electronic devices on a substrate using quantum dot layers
CN104459989B (zh) * 2014-12-10 2017-03-08 深圳市浩源光电技术有限公司 基于平板光子晶体的高消光比te光开关
WO2020076387A2 (en) * 2018-07-25 2020-04-16 Corning Incorporated Communications systems comprising waveguide arrays for realizing localized quantum walks
US10627697B2 (en) 2018-09-25 2020-04-21 United States Of America As Represented By The Secretary Of The Air Force Optical switch
EP4022387A4 (en) * 2019-09-20 2023-09-20 Photonic Inc. SYSTEMS, DEVICES, ARTICLES AND METHODS FOR DIRECTING OPTICAL SIGNALS USING LUMINESCENT DEFECTS IN SEMICONDUCTOR MATERIAL
US11137539B2 (en) 2019-10-08 2021-10-05 Corning Incorporated Multicore ring fibers for quantum systems, and such systems
KR20230018363A (ko) * 2020-04-03 2023-02-07 스냅 인코포레이티드 증강 현실 또는 가상 현실 디스플레이를 위한 도파관

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001281480A (ja) * 2000-03-29 2001-10-10 Nec Corp フォトニック結晶光導波路と方向性結合器

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19743296C1 (de) 1997-09-30 1998-11-12 Siemens Ag Verfahren zur Herstellung einer offenen Form
US5999308A (en) * 1998-04-01 1999-12-07 Massachusetts Institute Of Technology Methods and systems for introducing electromagnetic radiation into photonic crystals
JP2001072414A (ja) 1999-09-01 2001-03-21 Japan Science & Technology Corp フォトニック結晶とその製造方法
JP3449698B2 (ja) 2000-03-06 2003-09-22 日本電信電話株式会社 フォトニック結晶構造及び作製法
JP3925769B2 (ja) * 2000-03-24 2007-06-06 関西ティー・エル・オー株式会社 2次元フォトニック結晶及び合分波器
JP2002196296A (ja) 2000-12-25 2002-07-12 Mitsubishi Electric Corp 光変調器
DE60127729T2 (de) * 2000-12-27 2007-12-27 Nippon Telegraph And Telephone Corp. Photonenkristall-Wellenleiter
JP3781407B2 (ja) 2001-03-22 2006-05-31 日本電信電話株式会社 フォトニック結晶光学素子とその作製方法
JP2002303836A (ja) * 2001-04-04 2002-10-18 Nec Corp フォトニック結晶構造を有する光スイッチ
JP2003043273A (ja) 2001-07-27 2003-02-13 Hitachi Cable Ltd フォトニック結晶導波路及びその製造方法
JP3867848B2 (ja) 2001-09-07 2007-01-17 日本電信電話株式会社 光導波路
JP3555888B2 (ja) 2001-12-03 2004-08-18 日本電気株式会社 自己導波光回路
JP2003215367A (ja) 2002-01-25 2003-07-30 Mitsubishi Electric Corp 光デバイス
JP3648498B2 (ja) 2002-03-26 2005-05-18 独立行政法人科学技術振興機構 導波路を備えた3次元フォトニック結晶光共振器
JP2003295143A (ja) 2002-03-29 2003-10-15 Hitachi Ltd 光機能素子及びその製造方法
JP4491188B2 (ja) 2002-07-11 2010-06-30 日本電気株式会社 結合光導波路

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001281480A (ja) * 2000-03-29 2001-10-10 Nec Corp フォトニック結晶光導波路と方向性結合器

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
BOSCOLO S. ET AL, IEEE JOURNAL OF QUANTUM ELECTRONICS., vol. 38, no. 1, January 2002 (2002-01-01), pages 47 - 53, XP001076447 *
FURUYA K. ET AL, NEN SHUNKI DAI 51 KAI OYO BUTSURIGAKU KANKEI RENGO KOENKAI KOEN YOKOSHU., vol. 3, 28 March 2004 (2004-03-28), pages 1165, XP002992897 *
FURUYA K. ET AL, TECHNICAL DIGEST OF INTERNATIONAL SYMPOSIUM ON PHOTONIC AND ELECTROMAGNETIC CRYSTAL STRUCTURES V (PECS-V)., 7 March 2004 (2004-03-07) - 11 March 2004 (2004-03-11), pages 203, XP002992896 *
MARTINEZ A. ET AL, IEEE PHOTONICS TECHNOLOGY LETTERS., vol. 15, no. 5, May 2003 (2003-05-01), pages 694 - 696, XP001175482 *
MORI D. ET AL: "Nen Shunki Dai 65 Kai Extended abstracts.", THE JAPAN SOCIETY OF APPLIED PHYSICS., vol. 3, 28 March 2004 (2004-03-28), pages 1147, XP002994201 *
OGAWA T. ET AL: "Nen Shiki Dai 65 Kai Extended abstracts.", THE JAPAN SOCIETY OF APPLIED PHYSICS., vol. 3, 1 September 2004 (2004-09-01), pages 936, XP002992900 *
THORHAUGE M. ET AL, OPTIC LETTERS., vol. 28, no. 17, 1 September 2003 (2003-09-01), pages 1525 - 1527, XP002992895 *
TOKUSHIMA M. ET AL, ELECTRONICS LETTERS., vol. 37, no. 24, 22 November 2001 (2001-11-22), pages 1454 - 1455, XP006017576 *
YAMAMOTO M. ET AL, THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS., vol. 104, no. 162, 25 June 2004 (2004-06-25), pages 67 - 70, XP002992898 *
YAMAMOTO M. ET AL: "Nen Shunki Dai 65 Extended abstracs.", THE JAPAN SOCIETY OF APPLIED PHYSICS., vol. 3, 1 September 2004 (2004-09-01), pages 936, XP002992899 *
ZIMMERMANN J. ET AL, OPTICS COMMUNICATIONS., vol. 30, no. 4-6, 1 February 2004 (2004-02-01), pages 387 - 392, XP004484405 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008530605A (ja) * 2005-02-11 2008-08-07 コミサリヤ・ア・レネルジ・アトミク 導波路型変調器および関連する変調方法
US8478088B2 (en) 2008-03-07 2013-07-02 Nec Corporation Optical switch and manufacturing method thereof
WO2009128480A1 (ja) 2008-04-15 2009-10-22 住友電気工業株式会社 光導波路用母材の製造方法
CN108307658A (zh) * 2013-09-12 2018-07-20 江伟 高密度光子集成的波导超晶格
JP2015162787A (ja) * 2014-02-27 2015-09-07 国立大学法人大阪大学 方向性結合器および合分波器デバイス
KR20170069253A (ko) * 2014-10-07 2017-06-20 테크니셰 유니베르시테트 드레스덴 방향-선택적 간섭계형 광필터
KR102211661B1 (ko) 2014-10-07 2021-02-03 세노릭스 게엠베하 방향-선택적 간섭계형 광필터

Also Published As

Publication number Publication date
JP4093281B2 (ja) 2008-06-04
JPWO2005085921A1 (ja) 2008-01-24
US20070280592A1 (en) 2007-12-06
US7440658B2 (en) 2008-10-21

Similar Documents

Publication Publication Date Title
WO2005085921A1 (ja) フォトニック結晶結合欠陥導波路及びフォトニック結晶デバイス
Niemi et al. Wavelength-division demultiplexing using photonic crystal waveguides
US6947632B2 (en) Method of implementing the kerr effect in an integrated ring resonator (the kerr integrated optical ring filter) to achieve all-optical wavelength switching, as well as all-optical tunable filtering, add-and -drop multiplexing, space switching and optical intensity modulation
Gupta et al. Dense wavelength division demultiplexing using photonic crystal waveguides based on cavity resonance
Tanaka et al. Coupling properties in a 2-D photonic crystal slab directional coupler with a triangular lattice of air holes
Mao et al. Topological slow light rainbow trapping and releasing based on gradient valley photonic crystal
Badaoui et al. Double bends and Y-shaped splitter design for integrated optics
JP4971045B2 (ja) 光制御素子
JP2004279800A (ja) 2次元フォトニック結晶中の共振器と波長分合波器
Haxha et al. Analysis of wavelength demultiplexer based on photonic crystals
He et al. On-chip silicon three-mode (de) multiplexer employing subwavelength grating structure
Kok et al. Reduction of propagation loss in pillar-based photonic crystal waveguides
Modotto et al. Imaging properties of multimode photonic crystal waveguides and waveguide arrays
JP3727628B2 (ja) フォトニック結晶欠陥デバイス
JP4244174B2 (ja) 2次元フォトニック結晶トンネル素子及びスイッチング素子
Sugimoto et al. Fabrication and characterization of photonic crystal-based symmetric Mach-Zehnder (PC-SMZ) structures based on GaAs membrane slab waveguides
JPWO2004081627A1 (ja) フォトニック結晶光導波路への光入射方法およびその構造
Brosi Slow-light photonic crystal devices for high-speed optical signal processing
SUGIMOTO et al. Two dimensional semiconductor-based photonic crystal slab waveguides for ultra-fast optical signal processing devices
Theocharidis et al. Linear and nonlinear optical pulse propagation in photonic crystal waveguides near the band edge
Zain et al. Modelling of photonic crystal (PhC) cavities: theory and applications
Kakihara et al. Generalized simple theory for estimating lateral leakage loss behavior in silicon-on-insulator ridge waveguides
Labbani et al. A T-branch diplexer based on directional couplers and resonant cavities in photonic crystal
Chen et al. Active transmission control based on photonic-crystal MOS capacitor
Tetsumoto et al. Design, Fabrication, and Characterization of a High Q Silica Nanobeam Cavity With Orthogonal Resonant Modes

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006510670

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase
WWE Wipo information: entry into national phase

Ref document number: 10591471

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10591471

Country of ref document: US