WO2005083759A1 - 露光装置、及び微細パターンを有するデバイスの製造方法 - Google Patents

露光装置、及び微細パターンを有するデバイスの製造方法 Download PDF

Info

Publication number
WO2005083759A1
WO2005083759A1 PCT/JP2005/003803 JP2005003803W WO2005083759A1 WO 2005083759 A1 WO2005083759 A1 WO 2005083759A1 JP 2005003803 W JP2005003803 W JP 2005003803W WO 2005083759 A1 WO2005083759 A1 WO 2005083759A1
Authority
WO
WIPO (PCT)
Prior art keywords
exposure apparatus
gas
optical system
opening
projection optical
Prior art date
Application number
PCT/JP2005/003803
Other languages
English (en)
French (fr)
Inventor
Takashi Aoki
Tohru Isogami
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to JP2006510548A priority Critical patent/JPWO2005083759A1/ja
Publication of WO2005083759A1 publication Critical patent/WO2005083759A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34

Definitions

  • Exposure device 1 uses a thread that can be described as an exposure light source.
  • the present invention relates to a device and a method for manufacturing a device having a fine pattern document using the same.
  • a pattern image formed on a mask is projected through a projection optical system.
  • a reduced projection exposure apparatus is used to reduce and project each projection (shot) area on a wafer coated with a photosensitive material (resist).
  • Circuits such as semiconductor elements and liquid crystal display elements are transferred by exposing a circuit pattern on a wafer or glass by the above-mentioned projection exposure apparatus, and are formed by post-processing.
  • EUV lithography In order to improve the resolution of an optical system limited by the diffraction limit of light, projection lithography using EUV light of a shorter wavelength (ll to 14 nm) instead of conventional ultraviolet light has been developed. I have. This technology is called EUV lithography, and is expected to provide a resolution of 45 nm or less, which cannot be achieved with conventional optical lithography.
  • FIG. 1 An outline of the projection optical system of such an exposure apparatus using EUV light (EUV exposure apparatus) is shown in FIG.
  • the EUV light 32 emitted from the light source 31 becomes almost parallel light via the concave reflecting mirror 34 acting as a collimator mirror, and becomes an optical integrator 35 composed of a pair of fly-eye mirrors 35a and 35b. Incident on.
  • a substantial surface light source having a predetermined shape is formed near the reflection surface of the fly-eye mirror 35b, that is, near the exit surface of the optical integrator 35.
  • an elongated arc-shaped illumination area is formed on the mask M.
  • an aperture plate for forming an arc-shaped illumination area is not shown.
  • the light reflected on the surface of the mask M is subsequently reflected by the mirrors Ml, M2, M3, M4, M5, and M6 of the projection optical system 37 in order, and formed on the surface of the mask M.
  • An image of the pattern thus formed is formed on a resist 39 applied on the wafer 38.
  • These optical systems are housed in a chamber 40, and the chamber 40 is kept in a high vacuum state.
  • the projection optical system chamber 37 has a further vacuum state. It is kept high. For this reason, the vacuum chamber 40 is evacuated by the vacuum pump 43, and the projection optical system chamber 37 is evacuated by the vacuum pump 42 to achieve a high vacuum state.
  • EUV light is absorbed by all — ' ⁇
  • an exposure apparatus that uses EUV light in order for the exposure light to reach the wafer surface with sufficient illuminance, light absorbing substances on the exposure optical path are reduced or eliminated, and the optical path space is maintained at a high vacuum.
  • an exposure apparatus using EUV light can transfer a finer light-shielding pattern, but it is necessary to eliminate light-absorbing substances (use of materials that emit light-absorbing substances is limited). Is not easy. Disclosure of the invention
  • the resist is composed of a photosensitizer, a solvent, an acid generator, and the like, all of which contain an organic substance as a main component. Further, when the resist is irradiated with high-intensity exposure light, the components are emitted to the exposure space.
  • the resist substance for example, a solvent substance contained in the resist
  • a substance with a high vapor pressure is generated in the registry.
  • This substance reaches the resist surface by thermal diffusion in the resist, and is then released as a gas into the exposure optical path space in a process similar to evaporation.
  • the optical element reflection mirror
  • the space of the parentheses is kept in a high vacuum, this emission gas emits within a certain solid angle.
  • the projection optics are unobstructed It adheres to the reflecting mirror surface in the system and causes contamination. Even gas released outside a certain solid angle once adheres to the mirror surface, for example, once it adheres to the inner wall of the lens barrel and then desorbs.
  • the gas released from the resist is released to the projection optical system 37 in FIG. 11, enters the chamber of the projection optical system 37, and adheres to the mirror surface as a contamination substance.
  • the adhered contaminants form a dense carbon (C) film by exposure light or photochemical reaction with photons, which causes light absorption (reduction of the mirror's reflectance).
  • non-uniform adhesion of contaminants may cause uneven illuminance.
  • the contaminants here include hydrocarbons such as methane, ethane, propane, and butane; linear organic substances such as isopropyl alcohol and polymethyl methacrylate; cyclic organic substances such as phthalic esters having a benzene ring; Refers to Si-containing organic substances such as silane and siloxane.
  • FIG. 12 is a schematic diagram showing the configuration near the wafer of the EUV light exposure apparatus shown in FIG.
  • the configuration of the part not shown is the same as that of the EUV light exposure apparatus shown in FIG.
  • the EUV light is reflected by the mirrors M5 and M6, and forms an image of a pattern formed on a mask (not shown) on a resist 39 applied to the wafer 38. Since EUV light is absorbed by almost all substances, the exposure space is maintained at a high vacuum, for example, 10 to 15 Pa. The exposure light is irradiated onto the resist 39, and at this time, a large amount of the resist release gas 41 is released from the resist 39.
  • this C film increases as the exposure time increases, and as the exposure time increases, the reflectivity of the mirror multi-layer (Si / Mo multi-layer) decreases (when a lnm carbon layer is deposited on the mirror surface). (Reflectance decreases by about 1%), which causes aberrations and optical characteristics such as uneven illuminance. Furthermore, a decrease in reflectivity leads to a decrease in throughput, which significantly reduces the productivity of the apparatus.
  • the target of the reflectivity reduction is about 1% / surface.
  • the EUV light exposure apparatus does not easily fill the optical path space with gas, so it is not easy to remove the released gas by controlling the airflow. From the above, it is necessary to reduce the partial pressure of the contamination substance in the optical path space.
  • the present invention has been made in order to solve such a problem, and the purging gas can be introduced into the projection optical system while minimizing the deterioration of the optical characteristics by minimizing the adhesion of the contamination substance to the optical element of the projection optical system. It is an object of the present invention to provide an EUV light exposure apparatus having a longer lifetime until overhaul by reducing the amount of penetration of light, and a method of manufacturing a device having a fine pattern using this exposure method.
  • a first invention for achieving the above object is an exposure apparatus for exposing and transferring a pattern formed on a mask onto a sensitive substrate such as a wafer using extreme ultraviolet light.
  • a projection optical system for projecting the projected pattern onto the sensitive substrate; a vacuum chamber surrounding the projection optical system; an opening disposed in the vacuum chamber, for passing extreme ultraviolet light toward the sensitive substrate;
  • An extreme ultraviolet exposure apparatus comprising: an air supply port for supplying a gas for purging a resist release gas generated from a coated resist; and an exhaust port for exhausting the purge gas. is there.
  • the gas discharged from the air supply port and the gas exhausted from the exhaust port draw the resist discharge gas into the gas flow, and the resist discharge gas is supplied to the optical system in the chamber of the projection optical system.
  • an “exhaust port” is an exhaust port for evacuation generally used for maintaining a high degree of vacuum in a chamber or between a chamber and a wafer. May be used or provided separately. In particular, it is effective to provide a special exhaust port facing the air supply port.
  • a second invention for achieving the above object is the first invention, wherein a degree of vacuum of a space in a vacuum chamber of the projection optical system is relatively larger than a space on the sensitive substrate side from the opening. It is characterized by being expensive.
  • the degree of vacuum in the space in the vacuum chamber of the projection optical system is relatively higher than the space on the sensitive substrate side of the opening, so that it is possible to reduce contamination of the reflector. Become.
  • a third invention for achieving the above object is the first invention or the second invention, wherein the opening has substantially the same shape as a light beam shape of ultra-short ultraviolet light passing through the opening. It is characterized by being.
  • a fourth invention for solving the above-mentioned problem is any one of the first invention to the third invention, wherein the air supply port and the exhaust port are arranged between the vacuum chamber and the sensitive substrate. It is characterized by having been done. In this means, since the air supply port and the exhaust port are arranged between the vacuum chamber and the sensitive substrate, the amount of gas discharged from the air inlet into the vacuum chamber can be reduced. .
  • a fifth invention for solving the above-mentioned problem is the fourth invention, wherein an opening for passing ultra-short ultraviolet light required for exposure is provided between the flow path of the purge gas and the vacuum chamber. It is characterized in that a shielding plate is provided.
  • the location where the resist release gas enters the chamber of the projection optical system is limited to the opening of the shielding plate. Therefore, this can reduce the amount of the resist-released gas containing contaminants entering the chamber of the projection optical system, as well as the gas flow force S flowing from the air supply port to the exhaust port, which covers this opening. Since the resist discharge gas can be sufficiently drawn into the gas flow just by flowing the gas, the flow of the gas flow flowing from the air supply port to the exhaust port can be narrowed.
  • the opening is preferably as narrow as possible, as long as it satisfies the condition that extremely short ultraviolet light required for exposure can be passed.
  • a sixth invention for achieving the above object is the first invention, wherein the flow rate of the purge gas supplied from the air supply port is supersonic.
  • a seventh invention for achieving the above object is the sixth invention, which Any one of the inventions, wherein the pressure of the purge gas is 0.1 to 1 O Pa.
  • the pressure of the purge gas is too low, the molecules of the purge gas and the molecules of the resist discharge gas do not collide, and the effect of the purge is lost.
  • the pressure of the purge gas is 0.1 lPa or more, the expected value is at least once when the purge gas moves over the distance of about 1 Omm, which is the normal purge space, while the register discharge gas moves. Since it is calculated by calculation that the molecules of the resist release gas collide, the lower limit of the pressure of the purge gas is set to 0.1 lPa in the present invention.
  • the pressure of the purge gas is too high, the purge gas may enter the chamber of the projection optical system, and the degree of vacuum may be reduced. When the pressure of the purge gas is 1 OPa or less, the purge gas flowing into the chamber can be sufficiently reduced. Therefore, in the present invention, the upper limit of the pressure of the purge gas is set to 1 OPa.
  • An eighth invention for achieving the above object is any one of the first invention to the seventh invention, wherein a direction of a gas flow for purging the resist discharge gas is alternately changed.
  • the feature is that the exposure is performed in the reverse direction.
  • the resist release gas that is not captured by the flow of the purge gas enters the projection optical system, but its entry position is downstream of the purge gas under the influence of the flow of the purge gas. Therefore, by switching the direction of the flow of the purge gas, it is possible to change the entry position of the resist release gas into the projection optical system, and to alleviate the non-uniform decrease in the reflectance of the mirror of the projection optical system. Can be.
  • a ninth invention for achieving the above object is any one of the first invention to the eighth invention, wherein the gas for purging the resist release gas is Ar, Kr, Xe, N 2 , He, Ne, or a mixture of two or more of these It is characterized by being.
  • a tenth invention for achieving the above object is the first invention, wherein the most sensitive substrate among the plurality of reflecting mirrors in the projection optical system is arranged along an optical path of the ultra-short ultraviolet light.
  • the gas that does not go to the optical system is shielded by the first shielding plate (the wall of the vacuum chamber), and the resist passing through the first shielding plate.
  • the direction of only the discharge gas is changed by the purge gas and shielded, so as described above, the flow of the purge gas can reduce the adverse effect that the release gas that should not go to the projection optical system goes to the projection optical system. It becomes.
  • An eleventh invention for solving the above-mentioned problem is the tenth invention, wherein the opening through which the extreme ultraviolet light can pass is provided between the air supply port and the reflector closest to the sensitive substrate.
  • a shielding plate having the following.
  • the action of the shielding plate can more effectively prevent the resist discharge gas and the purge gas from reaching the reflector closest to the sensitive substrate along the optical path.
  • a twenty-second invention for solving the above-mentioned problem is the eleventh invention, wherein a space surrounded by the shielding plate and a wall of the vacuum chamber is a space closed except for the opening. It is characterized by the following.
  • the space surrounded by the shield plate and the wall of the vacuum chamber is substantially different from the space outside the space and the space formed by the vacuum chamber surrounding the projection optical system. The amount of purge gas leaking into the space surrounding the projection optical system can be reduced, and the degree of vacuum in the space can be easily controlled.
  • a thirteenth invention for solving the above-mentioned problem is the eleventh invention or the twenty-first invention, wherein an exhaust port is provided between the shielding plate and the vacuum chamber. Things.
  • a fourteenth invention for solving the above-mentioned problem is any one of the above-mentioned first invention to the thirteenth invention, wherein at least one of the shielding plate and the vacuum chamber has at least one opening. Has substantially the same shape as the light beam shape of the ultra-short ultraviolet light passing through the opening.
  • the opening be substantially as large as the area through which EUV light required for exposure passes (determined by the exposure area and the numerical aperture of the exposure light). It is possible to more effectively reduce the emission gas.
  • a fifteenth invention for solving the above-mentioned problem is the tenth invention, wherein the space in the vacuum chamber of the projection optical system is relatively compared with the space on the sensitive substrate side from the opening. Is characterized by a high degree of vacuum. According to the present invention, the degree of vacuum in the space in the vacuum chamber of the projection optical system is relatively higher than the space on the sensitive substrate side of the opening, so that it is possible to reduce contamination of the reflector. Become.
  • a sixteenth invention for solving the above-mentioned problems is the first invention, wherein the space is closer to the sensitive substrate side than the opening of the vacuum chamber.
  • the degree of vacuum in the space on the side of the reflecting mirror is higher than the opening of the vacuum chamber.
  • the degree of vacuum in a space closer to the reflecting mirror can be increased, so that it is possible to reduce contamination of the reflecting mirror constituting the projection optical system.
  • a seventeenth invention for solving the above-mentioned problem is the eleventh invention, wherein the opening of the shielding plate is relatively closer to the sensitive substrate side than the opening of the shielding plate. It is characterized by a high degree of vacuum in the space on the side of the reflector. '
  • An eighteenth invention for achieving the above object is any one of the first to tenth inventions, wherein the purge gas supplied from the air supply port is passed through an opening of the vacuum chamber.
  • the air supply port is arranged so as to be supplied in the direction of the sensitive substrate.
  • the gas going from the opening of the shielding plate to the projection optical system is pushed back by the purge gas supplied from the air supply port toward the wafer. Further, since the purge gas itself is supplied in the direction of the sensitive substrate (eg, a wafer coated with a resist), it hardly enters the projection optical system.
  • a nineteenth invention for achieving the above object is the eighteenth invention, wherein the exhaust port is disposed closer to the sensitive substrate than an opening of the vacuum chamber. Things.
  • a twenty-second invention for achieving the above object is the eighteenth invention or the nineteenth invention, wherein a size of an opening for supplying gas at the air supply port is determined by a Reynolds of the purge gas flow.
  • the feature is that the number is set to be 2000 or less.
  • a twenty-first invention for achieving the above object is any one of the eighteenth invention to the twenty-second invention, wherein a direction in which gas is supplied to the sensitive substrate is 3 with respect to the sensitive substrate.
  • the angle is 0 to 60 degrees.
  • the angle between the gas ejection direction from the nozzle and the wafer (sensitive substrate) surface is between 30 and 60 °, and the projection optics of the resist emission gas is used.
  • the inflow rate in the system becomes minimal.
  • the inflow rate of the purge gas into the projection optical system monotonically decreases in this angle range.
  • a twenty-second invention for achieving the above object is any one of the eighteenth invention to the twenty-first invention, wherein the flow rate of the gas supplied from the air supply port is 600 to 1000 cc / min ( is characterized in that 1 ⁇ 00 x 10- 5 ⁇ 1. determined so that the 67 x 10- 5 M 3 / s ec).
  • the flow rate of the purge gas is about 600 cc / min (se em) or more, it is possible to reduce the inflow rate into the resist emission gas projection optical system to 1% or less. Also, the pressure in the purge gas projection optical system can be reduced to 0.4 Pa or less at a flow rate of the purge gas of l OOOcc / min or less.
  • the pattern formed on the mask is exposed and transferred to a sensitive substrate by using the exposure apparatus according to any one of the first invention to the twenty-first invention.
  • a method for manufacturing a device having a fine pattern comprising the steps of: In the present invention, the deterioration of the optical characteristics is suppressed, or the exposure apparatus can be continuously operated for a long period of time, so that a device having a fine pattern can be manufactured with good throughput.
  • FIG. 1 is a diagram showing an outline of an EUV exposure apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a diagram showing an outline of an EUV exposure apparatus according to a second embodiment of the present invention.
  • FIG. 3 is a diagram showing an outline of an EUV exposure apparatus according to a third embodiment of the present invention.
  • FIG. 4 is an enlarged view of the lower part of the projection optical system in FIG.
  • FIG. 5 is a diagram showing an outline of an EUV exposure apparatus according to a fourth embodiment of the present invention, and is a schematic diagram showing a configuration near a wafer, showing a portion corresponding to FIG. .
  • FIG. 6 is a diagram illustrating an example of an optimized nozzle shape.
  • FIG. 7 is a diagram showing the relationship between the projection optical system chamber 5 shown in FIGS. 5 and 6, the air supply port 21, the exhaust port 23, and the like.
  • FIG. 8 is a diagram showing numerical analysis results of the relationship between the purge gas ejection angle and the inflow rate into the resist discharge gas projection optical system and the inflow rate into the purge gas projection optical system.
  • FIG. 9 is a diagram showing a configuration of an EUV exposure apparatus according to a fifth embodiment of the present invention, and corresponds to FIG.
  • FIG. 10 is a flowchart showing an example of the embodiment of the semiconductor device manufacturing method of the present invention.
  • FIG. 11 is a diagram showing an outline of a projection optical system of an exposure apparatus using EUV light (E / V exposure apparatus).
  • FIG. 12 is a diagram showing a state of gas released from the registry. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a diagram showing an outline of an EUV exposure apparatus according to a first embodiment of the present invention.
  • FIG. 1 is the same as the EUV exposure apparatus shown in FIG. 11, but shows only a portion centered on the projection optical system.
  • the EUV light from the light source is deflected by the plane reflecting mirror 1, an elongated arc-shaped illumination area is formed on the mask M.
  • an aperture plate for forming an arc-shaped illumination region is not shown.
  • the light reflected by the surface of the mask M is then reflected by the mirrors M1, M2, M3, M4, M5, and M6 of the projection optical system 2 in that order, and is formed on the surface of the mask M.
  • An image of the pattern is formed on the resist 4 applied on the wafer 3.
  • the mirrors M1 to M6 of the projection optical system are housed in the projection optical system chamber 5, and the interior of the projection optical system chamber 5 is maintained at a high degree of vacuum.
  • the outside of the projection optical system chamber 5 is also kept at a high degree of vacuum, but the degree of vacuum in the projection optical system chamber 5 is set higher than the outside.
  • the arrangement of the vacuum pump and the configuration of the vacuum chamber in FIG. 11 are one example, and other forms may be used.
  • the vacuum chamber 40 is a chamber surrounding the entire apparatus, but the reticle stage, wafer stage, illumination optical system, and projection optical system are each independently evacuated in separate vacuum chambers. It is also possible to arrange a vacuum pump in the room. In this case, the projection optical system should maintain the highest degree of vacuum.
  • Openings 5a and 5b are provided at the entrance position and the exit position of EUV light in the projection optical system chamber 5, respectively.
  • the EUV light is applied to the register 4, and at this time, a large amount of the resist release gas 6 is released from the register 4.
  • the air supply pipe 7 and the air supply port 8 at the tip of the air supply pipe 7 and the exhaust port are provided in the king distance (the space between the projection optical system chamber 5 and the wafer 3).
  • a pipe 9 and an exhaust port 10 at the end of the pipe 9 are installed.
  • Ar is used as the gas type.
  • the resist emission gas 6 generated by EUV irradiation moves upward, it is carried away by the purging gas flow so as to be trapped, so that almost all of the resist emission gas 6 is projected into the projection optical system chamber. 5 No more intrusion.
  • the purge gas supplied from the air supply port 8 is ejected at a high speed. If the resist release gas 6 from the register 4 is at a high velocity, the purge gas may need to be supersonic in order to cope with it.
  • the opening 5b By making the opening 5b as small as possible, it is possible to prevent a large amount of purge gas from entering the projection optical system.
  • the size and shape of the opening 5b are adjusted to the area (determined by the exposure area and the numerical aperture of the exposure light) through which the EUV light passes through the opening 5b and contributes to the imaging of the reticle pattern. Most preferably, it is limited.
  • a purge gas flows into the projection optical system, which may cause a decrease in transmittance of exposure light.
  • an exposure layer with an outer peripheral length of 33 mm or less and a width of 4 mm or less It is preferable to have a partial annular shape similar to that of the rear. An example of such a shape of the opening 5b will be described later.
  • EUV light absorption by the purge gas can be suppressed to a negligible level or less.
  • setting the size of the opening through which the resist discharge gas and the purge gas pass to the minimum size required for exposure is the same for all embodiments, unless otherwise specified.
  • the air supply port 8 and the gas exhaust port 10 are provided at the lower part of the chamber of the projection optical system and directly above the wafer 3, but a required amount of purge gas is supplied and discharged. If so, one or both of the air supply port 8 and the exhaust port 10 may be arranged at other positions. That is, the supply port 8 and the exhaust port 10 are located in the height direction, between the projection optical system chamber 5 and the wafer 3, and in the horizontal direction, necessarily below the portion where the projection optical system chamber is located. And need not be located on wafer 3. Therefore, the gas may be supplied from a space farther from the upper part of the wafer stage, and may be discharged farther than the upper part of the wafer stage.
  • the exhaust port of the purge gas may be evacuated by the vacuum pump 43 in common with the exhaust port that exhausts the gas inside the chamber 40 in FIG. 11 in order to keep the inside of the chamber 40 at a high vacuum. This can be applied not only in this embodiment but also in other embodiments as appropriate.
  • the pressure in the working distance section be 0.1 to 10 Pa or less.
  • the pressure in the working distance section is about 1 Pa, the number of collisions between the resist release gas 6 and the purge gas in the working distance section (about 10 mm in height) becomes 10 or more, and the resistance in the anti-gravity direction increases. Even if the discharge gas 6 is discharged at a high speed, it is preferable because it is reliably trapped by the purge gas and guided to the exhaust port 10.
  • the intake port 8 and the exhaust port 10 are not provided separately, and both are used as intake and exhaust ports. Alternately, one can be used as the air supply port and the other as the exhaust port.
  • the penetration of the resist discharge gas 6 into the projection optical system can be reduced as much as possible, but it cannot be completely eliminated.
  • the resist discharge gas 6 that cannot be completely eliminated enters the projection optical system, but due to the collision with the purge gas, a relatively large amount adheres to the mirror M6 on the downstream side of the purge gas flow. If such a situation continues for a long time, the reflectivity of the mirror M6 will decrease unevenly, and the optical performance will deteriorate.
  • the non-uniformity of the decrease in the mirror reflectivity can be reduced, and the deterioration of the non-uniformity of the pattern line width can be reduced. This can be applied not only in this embodiment but also in other embodiments as appropriate.
  • Ar is used as the purge gas.
  • the purge gas is inert, does not cause carbon film because it is not an organic substance, and has a large momentum (mass is large).
  • Other gases can be used as long as they satisfy the conditions such as a large size and a small EUV light absorption coefficient.
  • Kr, Xe, etc. can be used, and N 2 , Ne, etc. can also be used. Since N 2 has a cheap gas prices, there is a benefit for the door which can reduce an increase in running costs. Molecules with larger mass have higher momentum, so the resist outgassing can be eliminated more efficiently.
  • the present invention is mainly for minimizing the outgassing of the resist from becoming a contaminant and adhering to the surface of the mirror as much as possible. It is not used solely to reduce the deposition of contaminants from resist-released gases. Contaminants generated from other members can be similarly reduced from adhering to the mirror surface. For example, it is needless to say that the contaminants such as organic substances emitted from the apparatus constituent members near the wafer stage can be similarly reduced from adhering to the mirror surface. This applies not only to the present embodiment but also to all other embodiments.
  • FIG. 2 is a diagram showing an outline of an EUV exposure apparatus according to a second embodiment of the present invention.
  • the overall outline of this EUV exposure apparatus is the same as that shown in Fig. 11, and Fig. 2 shows an outline around the projection optical system.
  • Fig. 2 shows an outline around the projection optical system.
  • a shielding plate 11 is provided below the projection optical system chamber 5 in addition to the configuration of the embodiment shown in FIG.
  • the shielding plate 11 prevents most of the resist emission gas from entering the projection optical system. Also in this case, it is preferable that the opening of the shielding plate 11 be made as small as possible to prevent a large amount of purge gas from entering the projection optical system, as described above.
  • FIG. 3 is a diagram showing an outline of an EUV exposure apparatus according to a third embodiment of the present invention
  • FIG. 4 is an enlarged view of a lower portion of the projection optical system in FIG.
  • the overall outline of this EUV exposure apparatus is the same as that shown in FIG. 11, and FIG. 3 shows an outline around the projection optical system.
  • a shielding plate 12 is provided below the air supply pipe 7, the air supply port 8, the exhaust pipe 9, and the exhaust port 10.
  • an exhaust pipe 9, an exhaust pipe 13 different from the exhaust port 10, and an exhaust port 14 connected to the exhaust pipe 14 are provided below the exhaust pipe 9.
  • the release gas indicated by the arrow passing through the shielding plate 12 is turned to the left by the purge gas 16 from the air supply port 8.
  • Ar is used as the purge gas 16
  • any of the other gases described above can be used as appropriate.
  • the direction in which the purge gas flows is not necessarily horizontal, but may be any other direction. For example, it is also effective to flow in a diagonally downward direction.
  • the position, number, opening diameter, shape, etc. of the air supply ports are determined so as not to generate vibration to the apparatus as much as possible and to allow the purge gas to flow effectively. This is the same for the embodiment shown in FIGS.
  • the lower wall 5c may be eliminated and the shield plate 12 itself may be used as the lower wall of the vacuum chamber 5. It is possible. However, if both the lower wall 5C and the shielding plate 12 are provided, the efficiency of removing the released gas is higher. If the resist release gas 6 colliding with the shielding plate 12 floats in the vacuum apparatus, it may absorb the exposure light beam or cause contamination of other components, which may cause a problem. Therefore, in the present embodiment, as described above, the exhaust port 14 and the exhaust pipe 13 are arranged below the shield plate 12, and the resist release gas 6 that collides with and floats on the shield plate 12. They are exhausting. Note that the number of the exhaust ports does not need to be particularly one, and many may be arranged. Although only one exhaust pump 15 is shown for convenience of illustration, it is preferable that each of the exhaust pipes 9 and 13 is connected to another exhaust pump and exhausts independently.
  • the left and right sides of the shield plate 12 are connected to the projection optical system chamber 5 to create a separated space. That is, a space A in which the reflecting mirrors M 1 to M 6 constituting the projection optical system are arranged, a space B surrounded by the lower wall 5 c of the chamber and the shielding plate 12, a shielding plate 12 and a wafer stage The space C between
  • the degree of vacuum in the space B is higher than that in the space C
  • the degree of vacuum in the space A is higher than that in the space B.
  • a shielding plate 12 is provided below the lower surface of the projection optical system chamber 5, and the space formed therebetween (except for an opening for securing an optical path of EUV light) is sealed.
  • the air supply port 8 and the exhaust port 10 are provided in the projection optical system chamber 5 up to the portion (spaces A and B) corresponding to the shielding plate 12 in FIG. Even if the lower wall 5c indicated by hatching in FIG. 3 is used as a shielding plate and the shielding plate is provided inside the projection optical system chamber 5, only the name is changed, and the actual configuration is the same. It has the same effect.
  • FIG. 5 is a view schematically showing an EUV exposure apparatus according to a fourth embodiment of the present invention, and is a schematic view showing a configuration near a wafer, showing a portion corresponding to FIG. .
  • the overall outline of this EUV exposure apparatus is the same as that shown in Fig. 11.
  • the opening 5b at the lower part of the projection optical system chamber 5 is set to a region through which EUV light necessary for exposure is transmitted (determined by the exposure area and the numerical aperture of the exposure light). Do not increase. This is to prevent the discharge gas and the purge gas from flowing into the projection optical system as much as possible.
  • a nozzle-shaped air supply port 21 is provided inside the projection optical system chamber 5, and a purge gas is blown out from the opening 22.
  • the direction in which the air supply port 21 supplies the purge gas has a predetermined angle 0 with respect to the surface of the sensitive substrate including the wafer 3 and the resist 4. This angle will be described later in detail.
  • the exhaust port 23 is provided near the flow of the purge gas between the lower part of the projection optical system chamber 5 having the function of the shielding plate and the resist 4 and the wafer 3. Since the resist discharge gas and the purge gas are more efficiently exhausted, the amount of gas entering the projection system can be reduced.
  • the opening 5b of the projection optical system chamber 5 has a partial annular shape (arc), it is necessary to devise the shape of the nozzle-shaped air supply port 21.
  • Fig. 6 shows an example of the optimized nozzle shape.
  • Nozzle-shaped air supply port 2 It is preferable that the first opening 2 2 (purge gas outlet) has an arc shape that conforms to the shape of the opening 5 b of the projection optical system champer 5. The reason is that by matching the flow of the gas with the direction in which the width of the opening is shorter, it is possible to prevent the purge gas from flowing back into the projection optical system chamber 5. It is preferable that the opening 5b of the projection optical system chamber 5 or the opening of the shielding plate provided as needed is formed in an arc shape as shown in FIG. 6 in the other embodiments. is there.
  • the height d of the opening 22 of the nozzle-shaped air supply port 21 for jetting the purge gas is set to about 0.5 mm, and the nozzle-shaped air supply port 2 1
  • the width of the opening 22 is approximately equal to or slightly smaller than the opening 5 b of the projection optical system chamber 5.
  • the Reynolds number of the purge gas flow becomes 2000 or less, so that the vibration of the projection optical system due to the vibration of the nozzle due to the turbulent flow can be suppressed. As a result, deterioration of the imaging performance can be suppressed.
  • FIG. 7 is a diagram showing the relationship between the projection optical system chamber 5 shown in FIGS. 5 and 6, the air supply port 21, the exhaust port 23, and the like.
  • the mirrors M1 to M6 constituting the projection optical system are arranged in the projection optical system chamber 5. You. In some cases, the plane reflecting mirror 1 and other optical elements may be arranged in the projection optical system chamber 5.
  • the lower opening 5b of the projection optical system chamber 5 serves as an opening of the shielding plate. Then, the purge gas introduced from the gas introduction device 24 passes through the pipe 25 and passes through the nozzle-shaped air supply port 21. W
  • the shielding plate and the nozzle can be arranged without any problem even in a place where the working distance is small. Note that, even when a shielding plate is separately provided below the projection optical system chamber 5, it is preferable to increase the degree of vacuum above the shielding plate below the shielding plate. This is because it is possible to prevent a resist discharge gas or a purge gas from being mixed into the projection optical system.
  • the purge gas ejected from the nozzle reduces the amount of resist gas released into the projection optical system.
  • the pressure of the purge gas in the projection optical system increases, causing the exposure light to be absorbed as described above, resulting in a decrease in throughput. Therefore, the ratio of the number of the molecules of the resist discharge gas flowing into the projection optical system to the total number of the resist discharge gas molecules, which is the ratio of the inflow into the resist discharge gas projection optical system, and the ratio of the total number of the purge gas molecules It is necessary to reduce both the ratio of the number of molecules of the purge gas flowing into the projection optical system and the inflow rate into the purge gas projection optical system.
  • the flow rate of the purge gas is about 600 CC / nii n (sccm) or more, and the inflow rate into the resist emission gas projection optical system can be 1% or less.
  • the optical path length of the exposure light in the projection system is about 3600 mm. Assuming that the absorption of the purge gas in the projection optical system by this optical system can be allowed up to 5%, the pressure of the purge gas flowing into the projection optical system is required to be 0.4 Pa or less.
  • the pressure inside the purge gas projection optical system can be reduced to 0.4 Pa or less when the flow rate of the purge gas is about 100 cc / min or less.
  • the purge gas may cause a change in the refractive index, which may cause a position measurement error in the Z direction of the wafer's auto force (in the direction of the optical axis of the projection optical system).
  • the Ar flow rate is 600 to 1000 cc / min, it can be suppressed to almost negligible level, and there is no problem.
  • the purge gas ejection angle is the angle between the gas ejection direction from the nozzle and the wafer (sensitive substrate) surface.
  • Figure 8 shows the results of numerical analysis of the relationship between the purge gas ejection angle and the inflow rate into the projection gas projection optical system and the inflow rate into the purge gas projection optical system.
  • the purge gas ejection angle is preferably 30 to 60. And more preferably .35 to 55 °.
  • FIG. 9 is a diagram showing a configuration of an EUV exposure apparatus according to a fifth embodiment of the present invention, and corresponds to FIG.
  • the configuration of the fifth embodiment is different from that of the fourth embodiment in that a plurality of nozzle-shaped air supply ports 21 are provided around the opening 5b of the projection optical system chamber 5.
  • the fifth embodiment is preferable because the amounts of the resist discharge gas and the purge gas that enter the projection system can be reduced.
  • the disadvantage is that the mechanism becomes more complicated.
  • the nozzles are installed over the entire periphery of the opening 5b of the projection optical system chamber 5, the resist discharge gas and the par- It is possible to reduce the amount of digas.
  • FIG. 10 is a flowchart showing an example of an embodiment of the semiconductor device manufacturing method of the present invention.
  • the manufacturing process of this example includes the following steps.
  • Wafer manufacturing process for manufacturing wafers or wafer preparation process for preparing wafers
  • a mask manufacturing process for manufacturing a mask used for exposure (or a mask preparation process for preparing a mask)
  • Chip assembling process in which chips formed on a wafer are cut out one by one and made operable.
  • Chip inspection process to inspect the resulting chips
  • each step is further composed of several sub-steps.
  • the main process that has a decisive effect on the performance of semiconductor devices is the wafer processing process.
  • the designed circuit patterns are sequentially stacked on a wafer to form a large number of chips that operate as memories and MPUs.
  • This wafer processing step includes the following steps.
  • a thin film forming process for forming a dielectric thin film or wiring portion serving as an insulating layer, or a metal thin film forming an electrode portion using CVD, sputtering, etc.
  • a lithography process that forms a resist pattern using a mask (reticle) to selectively process thin film layers and wafer substrates.
  • the wafer processing process is repeated as many times as necessary to manufacture semiconductor devices that operate as designed.
  • the above EUV light exposure apparatus is used in the above lithographic process. Therefore, the exposure apparatus can be continuously operated for a long period of time, so that a device having a fine pattern can be manufactured with good throughput. In addition, since the reflection characteristics and the like of the optical element constituting the projection optical system are less likely to change depending on the part of the optical element, it is possible to suppress the deterioration of the exposure performance.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

 投影光学系チャンバ5の下部によって、レジスト放出ガスの大半が、投影光学系内に侵入するのを防止する。また、ワーキングディスタンス(投影光学系のチャンバの下部でかつウエハ3の上部の空間)に、給気管7とその先端部の給気口8、及び排気管9とその先端部の排気口10が設置されている。給気口8からはEUV光と光化学反応を引き起こさない高純度パージガスが供給され、パージガスの大半は排気口10から排出される。EUV照射によって生じるレジスト放出ガス6は、上方に向かって移動するが、このパージガス流に乗って、からめとられるように運び去られるため、レジスト放出ガス6のほとんどすべては投影光学系内に侵入することがなくなる。

Description

露光装置、 及ぴ微細パターンを有するデバイスの製造方法 i 技術分野
本発明は、 極端紫外線または軟 X線 (本明細書及び特許請求の範囲に おレヽては、 波長力 S 150nm 以明下の光を意味し、 「 E U V ( Extreme Ul travi ol et) 光」 と言うことがある糸) を露光光源として用いる、 露光装 田 1
置、 及びこれらを使用した微細パターン書を有するデバイスの製造方法に 関するものである。 背景技術
半導体素子又は液晶表示素子等をフォ トリ ソグラフィ工程で製造する 際に、 マスク(本明細書おょぴ特許請求の範囲においてはレチクルを含 む)に形成されたパターン像を、 投影光学系を介して感光材 (レジス ト) が塗布されたウェハ上の各投影 (ショ ッ ト) 領域に縮小して投影する縮 小投影露光装置が使用されている。 半導体素子、 液晶表示素子等の回路 は、 上記投影露光装置でウェハやガラス上に回路パターンを露光するこ とにより転写され、 後処理によって形成される。
近年、 集積回路の高密度集積化、 すなわち、 回路パターンの微細化が 進められてきた。 これに対応するため、 投影露光装置における投影光も 短波長化される傾向にある。 すなわち、 これまで主流だった水銀ランプ の輝線に代わって、 KrFエキシマレーザー (248nm) が用いられるように なり、 さらに短波長の ArFエキシマレーザー (193nm) を用いた投影露光 装置が実用化されている。 また、 更なる高密度集積化をめざして F 2 レ 一ザ一 (157nm) を使用する露光装置や液浸機構を有する光露光装置の開 発も進められている。
さらに、 光の回折限界によって制限される光学系の解像力を向上させ るために、 従来の紫外線に代えてこれより短い波長 (l l〜14 nm) の E U V光を使用した投影リ ソグラフィが開発されている。 この技術は、 E U Vリ ソグラフィと呼ばれており、 従来の光リ ソグラフィでは実現不可能 な 45nm以下の解像力を得られる技術として期待されている。
このような、 E U V光を使用した露光装置 (E U V露光装置) の投影 光学系の概要を図 1 1に示す。光源 3 1から放出された E U V光 3 2は、 コリメータミラーとして作用する凹面反射鏡 3 4を介してほぼ平行光束 となり、 一対のフライアイミラー 3 5 aおよび 3 5 bからなるォプティ カルインテグレータ 3 5に入射する。
こう して、 フライアイミラー 3 5 bの反射面の近傍、 すなわちォプテ イカルインテグレータ 3 5の射出面の近傍には、 所定の形状を有する実 質的な面光源が形成される。 実質的な面光源からの光は平面反射鏡 3 6 により偏向された後、マスク M上に細長い円弧状の照明領域を形成する。 ここで、円弧状の照明領域を形成するための開口板は、図示していない。 マスク Mの表面で反射された光は、 その後、 投影光学系 3 7のミラー M l 、 M 2、 M 3、 M 4、 M 5、 M 6で順に反射されて、 マスク Mの表 面に形成されたパターンの像を、 ウェハ 3 8上に塗布されたレジス ト 3 9上に形成する。 これらの光学系は、 チャンバ 4 0中に収納され、 チヤ ンバ 4 0中は、 真空度の高い状態に保たれているが、 その中でも、 とく に投影光学系チャンバ 3 7は、さらに真空度の高い状態に保たれている。 このために、真空チヤンバ 4 0は真空ポンプ 4 3により排気され、更に、 投影光学系チャンバ 3 7は真空ポンプ 4 2により排気され真空度の高い 状態が達成される。
' 一般に、 E U V光はあらゆる物質で吸光されるので空気中を透過しな —'■ い。 このため、 E U V光を用いた露光装置では、 露光光をウェハ面上に 十分な照度で到達させるためには、 露光光路上の吸光物質を低減もしく は排除し、 光路空間を高真空に保つ必要がある。 このためには、 放出ガ スが極力少ない物質を用いて露光装置光路空間を構成する必要がある。 このように、 E U V光を用いた露光装置では、 より微細な遮光パターン の転写が可能な一方で、 吸光物質を排除する必要がある (吸光物質の放 出する部材の利用が限られる) など設計が容易でない。 発明の開示
半導体回路などのパターンの露光転写では、 ウェハ面上にレジス トと 呼ばれる感光剤を塗布する必要がある。 従来型光露光装置でも問題が顕 在化しているように、 露光中にレジス トから大量に放出される物質は吸 光の大きな物質であり、 ミラーなどの光学素子表面に吸着して、 露光光 の光量を減じる、 照度ムラを増大させる等、 光学性能を著しく劣化させ る。
レジス トは感光剤、 溶剤、 酸発生剤などから構成され、 いずれも有機 物をその主成分とする。 さらに、 このレジス トに高強度の露光光が照射 されることによって、 その成分は露光空間に放出される。
特に、 E U V光を用いた露光装置では、 露光光のエネルギーが高いの で、 容易にレジス ト物質(たとえば、 レジス ト中に含まれる溶剤物質)を 断鎖し、 比較的分子数の小さい、 すなわち蒸気圧の高い物質がレジス ト 内に生成される。 この物質はレジス ト内の熱拡散によってレジス ト表面 に到達し、 やがて蒸発に似たプロセスで露光光路空間にガスとして放出 される。 投影光学系内の光学素子 (反射ミラー) とレジス トとの間に遮 るものが無く、 かっこの空間は高真空に保たれているので、 この放出ガ スのうち、 ある立体角内に放出されたものは遮られることなく投影光学 系内の反射ミラー表面に付着して汚染を生じる。 ある立体角外に放出さ れたガスであっても、 いったん鏡筒内壁に付着した後に脱離するなどし て、 ミラー表面に付着するものもある。
すなわち、 レジス トからの放出ガスは、 図 1 1における投影光学系 3 7に放出され、 投影光学系 3 7のチャンバ内に入り、 コンタミ物質とし てミラー面に付着する。 付着したコンタミ物質は、 露光光もしくは光電 子との光化学反応によって、 緻密な炭素 (C ) 膜を形成し、 吸光 (ミラ 一の反射率の低下) の原因となる。 また、 コンタミ物質の付着が不均一 であれば、 照度ムラの原因ともなり得る。 なお、 ここでいぅ コンタミ物 質とは、 メタン、 ェタン、 プロパン、 ブタンなどの炭化水素、 イソプロ ピルアルコール、 ポリメチルメタタ リ レートなどの直鎖有機物、 ベンゼ ン環を有するフタル酸エステルなどの環状有機物、 シラン、 シロキサン などの S i含有有機物、 などを指す。
レジス トから放出されるガスの様子を図 1 2により説明する。 図 1 2 は、 図 1 1に示す E U V光露光装置の、 ウェハ近傍の構成を示す概要図 である。 図示していない部分の構成は、 図 1 1に示した E U V光露光装 置と同じである。
E U V光は、 ミラー M 5、 M 6で反射され、 図示しないマスクに形成 されたパターンの像を、 ウェハ 3 8に塗布されたレジス ト 3 9上に形成 する。 E U V光は、ほとんど全ての物質で吸光されるので、露光空間は、 たとえば 10一5 P a といった高真空度に保たれている。 露光光は、 レジ ス ト 3 9上に照射されるが、 このとき、 レジス ト 3 9から大量のレジス ト放出ガス 4 1が放出される。
このレジス ト放出ガス 4 1のうち、 ある立体角内に放出されたものは 遮られることなく ミラー M 6の表面に付着する。 ある立体角外に放出さ れたガスであっても、 いったん鏡筒内壁に付着した後に脱離するなどし て、 ミラー M 5や M 6の表面に付着するものもある。 ミラ一表面に付着 した放出ガス物質は、 露光光や光電子との反応により緻密な C膜に変化 する。
この C膜の厚みは露光時間が増大すると ともに増大し、 増大とともに ミ ラー多膜層(S i / M o多膜層)の反射率が低下する(ミ ラー表面に lnmのカーボン層が堆積すると反射率が約 1 %低下する)ので、 収差が発 生し、 照度ムラが発生するなど光学特性劣化をもたらす。 さらに、 反射 率低下はスループッ トの低下となり、装置の生産性を著しくおと しめる。 反射率低下量の目標は、 1 % /面程度である。 また、 E U V光露光装置 では、 従来型露光装置と異なり、 光路空間にガスが充填されていないの で、 気流制御による放出ガス排除が容易でない。 以上のことから、 コン タミ物質の光路空間中分圧の低減が必要となる。
本発明はこのような問題点を解決するためにされたもので、 投影光学 系の光学素子へのコンタミ物質の付着をできるだけ少なく して光学特性 の劣化を抑えつつ、 パージガスの投影光学系内への侵入量を低減するこ とで、 オーバホールまでの寿命を長く した E U V光露光装置、 及びこの 露光方法を使用した微細パターンを有するデバイスの製造方法を提供す ることを目的とする。
前記目的を達成するための第 1の発明は、 極端紫外光を用いて、 マス クに形成されたパターンをウェハ等の感応基板上に露光転写する露光装 置であって、 前記マスクに形成されたパターンを感応基板上に投影する 投影光学系と、 前記投影光学系を囲う真空チャンバと、 前記真空チャン バに配置され、 前記感応基板に向かう極端紫外光を通過させる開口と、 前記感応基板に塗布されたレジス トから発生するレジス ト放出ガスをパ 一ジするガスを給気する給気口と、 前記パージガスを排気する排気口と が設けられていることを特徴とする極端紫外線露光装置である。 本発明においては、 ガスを給気口から流すと共に、 そのガスを排気口 で排気することにより、 レジス ト放出ガスをこのガス流中に引き込み、 レジス ト放出ガスが投影光学系のチャンバ内の光学系に達する前に系外 に排出する。 これにより、 投影光学系のチャンバ内に入るコンタミ物質 を含んだレジス ト放出ガスを低減させることができるので、 コンタミ物 質のミラーへの付着を低減でき、 ミラーの反射率の低下を緩和できる。 よって、 光学特性の劣化を抑え、 又はオーバホールまでの寿命の長い E U V露光装置とすることができる。
なお、 本発明をはじめとする以下の発明において、 「排気口」 は、 一般 にチャンバ内や、 チャンバとウェハの間の空間を高真空度に保っために 使用されている真空引き用の排気口を使用してもよいし、 これとは別に 設けてもよい。 特に、 給気口に対面させて特別の排気口を設けると効果 が大きい。
前記目的を達成するための第 2の発明は、 前記第 1の発明であって、 前記開口より感応基板側の空間に比べて相対的に前記投影光学系の真空 チャンバ内の空間の真空度が高いことを特徴とするものである。
本発明によれば、 開口より感応基板側の空間に比べて相対的に投影光 学系の真空チャンバ内の空間の真空度が高いので、 反射鏡が汚染される ことを低減することが可能となる。
前記目的を達成するための第 3の発.明は、 前記第 1の発明又は第 2の 発明であって、 前記開口が前記開口を通過する極短紫外光の光束形状と 実質的に同一形状であることを特徴とするものである。
開口は実質的に露光に必要な E U V光の透過する領域 (露光エリァと 露光光の開口数によって決まる) 程度の開口とすることが好ましく、 こ のようにすることによって、 真空チャンバ内に入るレジス ト放出ガスの 低減をより効果的に行うことが可能である。 前記課題を解決するための第 4の発明は、 前記第 1の発明から第 3の 発明のいずれかであって、 前記給気口と前記排気口は前記真空チャンバ と前記感応基板の間に配置されていることを特徴とするものである。 本手段においては、 給気口と前記排気口は、 真空チャンバと感応基板 の間に配置されているので、 吸気口から放出されるガスが、 真空チャン バ内に入り込む量を少なくすることができる。
前記課題を解決するための第 5の発明は、 前記第 4の発明であって、 前記パージガスの流通路と前記真空チャンバとの間に、 露光に必要な極 短紫外光を通過させる開口を有する遮蔽板が設けられていることを特徴 とするものである。
本発明においては、 レジス ト放出ガスが投影光学系のチャンバ内に入 る場所が、 遮蔽板の開口部に限定される。 よって、 このことによって、 投影光学系のチャンバ内に入るコンタミ物質を含むレジス ト放出ガスを 低減させることができるほか、 給気口から排気口に向かって流すガス流 力 S、 この開口部を覆って流れるよ うにするだけで十分にレジス ト放出ガ スを前記ガス流中に引き込むことができるので、 給気口から排気口に向 かって流すガス流の流れを狭くすることができる。 なお、 開口は、 露光 に必要な極短紫外光を通過させることができるという条件を満たす限り、 できるだけ狭い方が好ましい。
前記目的を達成するための第 6の発明は、 前記第 1の発明であって、 前記給気口から給気されるパージガスの流速は超音速であることを特徴 とするものである。
本発明においては、 レジス ト放出ガスが高速に放出される場合でも、 その大部分が投影光学系のチャンバ内に入らないようにすることができ る。
前記目的を達成するための第 7の発明は、 前記第 1の発明から第 6の 発明のいずれかであって、 前記パージガスの圧力を 0. 1〜 1 O Pa と した ことを特徴とするものである。
パージガスの圧力が低すぎると、 パージガスの分子と レジス ト放出ガ スの分子が衝突しなく なり、 パージの効果が失われる。 パージガスの圧 力が 0. lPa以上であると、 通常のパージ空間である約 1 O mmの距離をレ ジス ト放出ガスが移動する間に、 期待値と して 1回以上パージガスの分 子と レジス ト放出ガスの分子が衝突することが計算上求められるので、 本発明においては、パージガスの圧力の下限値を 0. lPaに規定している。 一方、 パージガスの圧力が大きすぎると、 パージガスが投影光学系のチ ヤンバ内に入り込み、 真空度が低下する恐れがある。 パージガスの圧力 を 1 O Pa以下とすると、 チャンバ内に流入するパージガスが十分低減で きるので、 本発明においては、 パージガスの圧力の上限値を 1 O Pa と し ている。
前記目的を達成するための第 8 の発明は、 前記第 1 の発明から第 7の 発明のいずれかであって、 前記レジス ト放出ガスをパージするためのガ スの流れの方向を、 交互に逆向きにしながら露光を行う ことを特徴とす るものである。
パージガスの流れによって捕捉されなかったレジス ト放出ガスは、 投 影光学系内に侵入するが、 その侵入位置は、 パージガスの流れの影響を 受けてパージガスの下流側になる。 よって、 パージガスの流れの方向を 切り換えることにより、 レジス ト放出ガスの投影光学系内への侵入位置 を変えることができ、 投影光学系のミラーの反射率が不均一に低下する のを緩和することができる。
前記目的を達成するための第 9の発明は、 前記第 1 の発明から第 8の 発明のうちいずれかであって、 前記レジス ト放出ガスをパージするため のガスが、 Ar、 Kr、 Xe、 N 2 、 He、 Ne、 又はこれらの 2種以上の混合体 であることを特徴とするものである。
パージ用のガスとしては、 E U V光が吸収されにく く、 E U V光もし くは光電子によって光化学反応が発生しにく く、 それ自身が、 光学素子 面に付着してカーボン膜を生成せず、 分子の質量が大きくてレジス ト放 出ガスを効率良く排出することができるものである必要がある。 そのた めには、パージ用のガスとしてこれらの気体を使用することが好ましい。 前記目的を達成するための第 1 0の発明は、前記第 1の発明であって、 前記投影光学系中の前記複数の反射鏡のうち、 前記極短紫外光の光路に 沿って最も感応基板に近い反射鏡と前記開口との間に前記給気口が配置 されていることを特徴とする露光装置である。
本発明によれば、 E U V照射によって生じるレジス ト放出ガス 6のう ち、 光学系へ向かわないガスは第 1 の遮蔽板 (真空チャンバの壁) で遮 蔽し、 第 1遮蔽板を通過したレジス ト放出ガスのみの方向をパージガス によって変更し、 遮蔽するため、 前述のように、 パージガスを流すこと によって投影光学系に向かわないはずの放出ガスが投影光学系へ向かう という悪影響を低減することが可能となる。
前記課題を解決するための第 1 1の発明は、 前記第 1 0の発明であつ て、 前記給気口と前記最も感応基板に近い反射鏡との間に前記極端紫外 線が通過可能な開口を有する遮蔽板が配置されることを特徴とするもの である。
本発明においては、 遮蔽板の作用により、 光路に沿って最も感応基板 に近い反射鏡に、 レジス ト放出ガスとパージガスが到達することをより 効果的に防止することができる。
前記課題を解決するための第 1 2の発明は、 前記第 1 1の発明であつ て、 前記遮蔽板と前記真空チャンバの壁によって囲まれる空間が前記開 口部以外で閉じられた空間であることを特徴とするものである。 本手段においては、 遮蔽板と前記真空チャンバの壁によって囲まれる 空間を、 その外側にある空間、 及び投影光学系を囲う真空チャンバによ つて形成される空間と実質的に別空間とすることができるので、 パージ ガスが、 投影光学系を囲う空間に漏れる量を少なくでき、 また、 この空 間の真空度を制御しやすくなる。
前記課題を解決するための第 1 3の発明は、 前記第 1 1の発明又は第 1 2の発明であって、 前記遮蔽板と前記真空チャンバの間に排気口を有 することを特徴とするものである。
遮蔽板と真空チャンバの間に排気口を設けることにより、 真空チャン バ内へのパージガスの浸入をより効果的に防止することができる。
前記課題を解決するための第 1 4の発明は、 前記第 1 1の発明から第 1 3の発明のいずれかであって、 前記遮蔽板及ぴ前記真空チャンバのう ち、 少なく とも一方の開口が前記開口を通過する極短紫外光の光束形状 と実質的に同一形状であることを特徴とするものである。
開口は実質的に露光に必要な E U V光の透過する領域 (露光エリアと 露光光の開口数によって決まる) 程度の開口とすることが好ましく、 こ のよ うにすることによって、 真空チャンバ内に入るレジス ト放出ガスの 低減をより効果的に行うことが可能である。
前記課題を解決するための第 1 5の発明は、 前記第 1 0の発明であつ て、 前記開口より感応基板側の空間に比べて、 相対的に、 前記投影光学 系の真空チャンバ内の空間の真空度が高いことを特徴とするものである。 本発明によれば、 開口より感応基板側の空間に比べて相対的に投影光 学系の真空チャンバ内の空間の真空度が高いので、 反射鏡が汚染される ことを低減することが可能となる。
前記課題を解決するための第 1 6の発明は、 前記第 1 1の発明であつ て、前記真空チャンバの開口より感応基板側の空間に比べて、相対的に、 前記真空チヤンバの開口より前記反射鏡側の空間の真空度が高いことを 特徴とするものである。
本発明によれば、 より反射鏡に近い空間の真空度を高くすることがで きるので、 投影光学系を構成する反射鏡が汚染されることを低減するこ とが可能である。
前記課題を解決するための第 1 7の発明は、 前記第 1 1の発明であつ て、 前記遮蔽板の開口より感応基板側の空間に比べて、 相対的に、 前記 遮蔽板の開口より前記反射鏡側の空間の真空度が高いことを特徴とする ものである。 '
本手段においては、 よ り反射鏡に近い空間を段階的に高い真空度とす ることができ、 反射鏡が汚染されることを低減することが可能となる。 前記目的を達成するための第 1 8の発明は、 前記第 1. 0の発明から第 1 7の発明のいずれかであって、 前記給気口から供給されるパージガス が前記真空チヤンバの開口を通して前記感応基板の方向に供給されるよ うに前記給気口が配置されることを特徴とするものである。
本発明によれば、 E U V照射によって生じるレジス ト放出ガスのうち、 遮蔽板の開口から投影光学系へ向かおう とするガスを、 給気口からゥェ ハの方向に供給されるパージガスによって押し戻す。 また、 パージガス 自体も感応基板 (レジス トを塗布したウェハなど) の方向に供給される ので、 ほとんど投影光学系に進入することがない。
前記目的を達成するための第 1 9の発明は、 前記第 1 8の発明であつ て、 前記排気口は前記真空チャンバの開口より も前記感応基板の側に配 置されることを特徴とするものである。
排気口が、 感応基板 (ウェハおよびレジス ト) の側においてパージガ スの流れの近傍に配置されているので、 効率的にレジス トからの放出ガ スおよびパージガスを回収することができる。 前記目的を達成するための第 2 0の発明は、 前記第 1 8の発明又は第 1 9の発明であって、 前記給気口のガスを供給する開口の寸法を、 前記 パージガス流のレイ ノルズ数が 2000 以下となるように定めたことを特 徴とするものである。
パージガス流のレイノルズ数が 2000 以下となるので乱流による給気 口 (ノズル) の振動による投影光学系の振動を抑えることができる。 こ の結果、 結像性能の劣化を抑えることができる。
前記目的を達成するための第 2 1 の発明は、 前記第 1 8の発明から第 2 0の発明のいずれかであって、 感応基板に向けてガスを供給する方向 が感応基板に対して 3 0〜 6 0度であることを特徴とするものである。 現実的なワーキングディスタンスの高さ(5mm以上 10mm以下)では、 ノ ズルからのガス噴出方向と ウェハ(感応基板)面とがなす角度が、 30〜 60° の間でレジス ト放出ガスの投影光学系内流入率が極小となる。他方、 パージガスの投影光学系内流入率は、この角度の範囲で単調に減少する。 前記目的を達成するための第 2 2の発明は、 前記第 1 8の発明から第 2 1 の発明のいずれかであって、 給気口から供給されるガスの流量が 600〜1000cc/min ( 1 · 00 x 10— 5〜 1. 67 x 10— 5 M 3 /s ec) となるように定め たことを特徴とするものである。
パージガスは流量 600cc/min (se em)程度以上でレジス ト放出ガス投影 光学系内流入率を 1 %以下にすることが可能である。 また、 パージガス は流量 l OOOcc/mi n程度以下でパージガス投影光学系内圧力を 0. 4Pa以下 にすることが可能である。
前記目的を達成するための第 2 3の発明は、 前記第 1 の発明から第 2 1の発明のうちいずれかの露光装置を用いて、 マスクに形成されたパタ ーンを感応基板に露光転写する工程を有することを特徴とする微細パタ ーンを有するデバイスの製造方法である。 本発明においては、 光学特性の劣化を抑え、 又は露光装置を長期間に 亘つて連続運転可能となるので、 微細パターンを有するデバイスをスル ープッ ト良く製造することができる。
図面の簡単な説明
図 1は、 本発明の第 1の実施の形態である E U V露光装置の概要を示す 図である。
図 2は、 本発明の第 2の実施の形態である E U V露光装置の概要を示す 図である。
図 3は、 本発明の第 3の実施の形態である E U V露光装置の概要を示す 図である。
図 4は、 図 3における投影光学系下部の拡大図である。
図 5は、 本発明の第 4の実施の形態である E U V露光装置の概要を示す 図であり、 ウェハ近傍の構成を示す概要図であって、 図 4に対応する部 分を示すものである。
図 6は、 最適化されたノズル形状の一例を示す図である。
図 7は、 図 5、 図 6に示した投影光学系チャンバ 5と、 給気口 2 1、 排 気口 2 3等の関係を示した図である。
図 8は、 パージガス噴出角度とレジス ト放出ガス投影光学系内流入率お よびパージガス投影光学系内流入率との関係の数値解析結果を示す図で ある。
図 9は、 本発明の第 5の実施の形態である E U V露光装置の構成を示す 図であり、 図 5に対応するものである。
図 1 0は、 本発明の半導体デバイス製造方法の実施形態の一例を示すフ ローチャートである。 図 1 1は、 E U V光を使用した露光装置 (Eひ V露光装置) の投影光学 系の概要を示す図である。
図 1 2は、 レジス トから放出されるガスの様子を示す図である。 発明を実施するための最良の形態
以下、 本発明の実施の形態の例を、 図を用いて説明する。 図 1は、 本 発明の第 1の実施の形態である E U V露光装置の概要を示す図である。 図 1は、 図 1 1に示した E U V露光装置と同じものの、 投影光学系を中 心とした部分のみを示した図である。 光源からの E U V光は平面反射鏡 1により偏向された後、 マスク M上に細長い円弧状の照明領域を形成す る。 ここで、 円弧状の照明領域を形成するための開口板は、 図示してい ない。
マスク Mの表面で反射された光は、 その後、 投影光学系 2のミラー M 1 、 M 2、 M 3、 M 4、 M 5、 M 6で順に反射されて、 マスク Mの表面 に形成されたパターンの像を、 ウェハ 3上に塗布されたレジス ト 4上に 形成する。
投影光学系のミラー M 1〜M 6は、 投影光学系チャンバ 5の中に収納 され、 投影光学系チャンバ 5の中は高い真空度に保たれている。 図 1 1 において説明したように、 投影光学系チャンバ 5の外側も高い真空度に 保たれているが、 投影光学系チャンバ 5中の真空度が、 その外側よりも 高く されている。 なお、 図 1 1の真空ポンプの配置や真空チャンバの構 成は一つの例であり、 他の形態でも構わない。 例えば、 図 1 1では真空 チャンバ 4 0は装置全体を囲うチャンバであるが、 レチクルステージ、 ウェハステージ、照明光学系、投影光学系が各々別の真空チャンバで各々 独立して真空排気が行われるように真空ポンプを配置することも可能で ある。 この場合においても投影光学系が最も高い真空度を保つようにす ることが好ましい。 投影光学系チャンバ 5における E U V光の入射位置 と出射位置とには、 それぞれ開口部 5 a、 5 bが設けられている。
E U V光はレジス ト 4に照射されるが、 このとき、 レジス ト 4から大 量のレジス ト放出ガス 6が放出される。
本実施の形態においては、 図 1に示されるように、 ヮ一キングデイス タンス (投影光学系チャンバ 5 とウェハ 3の間の空間) に、 給気管 7 と その先端部の給気口 8、 及び排気管 9 とその先端部の排気口 1 0が設置 されている。 給気口 8からは E U V光もしくは光電子と光化学反応を引 き起こさない高純度 (ミラーの反射率低下の原因となる有機物 =コンタ ミ物質を極力低減した) パージガスが供給され、 パージガスの大半は排 気口 1 ◦から排出される。 ここでは、 ガス種と して Arを使用している。 E U V照射によって生じるレジス ト放出ガス 6は、 上方に向かって移動 するが、 このパージガス流に乗って、 からめとられるよ うに運び去られ るため、 レジス ト放出ガス 6のほとんどすべては投影光学系チヤンバ 5 内に侵入することがなくなる。
ただし、 パージガスが大量に投影光学系チャンバ 5內に侵入する可能 性がある。 このため、 給気口 8から供給されるパージガスは高速に噴出 されていることが望ましい。 レジス ト 4からのレジス ト放出ガス 6が高 速である場合には、 その対処のために、 パージガスは超音速にする必要 性があることもある。 開口部 5 bを極力小さくすることにより、 パージ ガスが大量に投影光学系内に侵入するのを防止することができる。 すな わち、 開口部 5 bの大きさと形状を、 開口部 5 bを通過しレチクルパタ 一ンの結像に寄与する E U V光の通過する領域 (露光ェリアと露光光の 開口数によって決まる) に限ることが最も好ましい。 不必要に大きくす ると、 投影光学系内にパージガスが流入し、 露光光の透過率低下を招く 恐れがある。 具体的には、 外周部長さが 33mm以下、 幅 4mm以下の露光ェ リァと同様である部分輪体状形状であることが好ましい。 このよ うな開 口部 5 bの形状の例は、 後に説明する。 これによつて、 パージガスによ る E U V光の吸収を、 無視できる程度以下に抑えることができる。 この よ うに、 レジス ト放出ガスやパージガスが通過する開口の大きさを露光 に必要な最小限の大きさとすることは、 特に断らなくても、 全ての実施 の形態について同様である。
又、 本実施の形態では、 投影光学系のチャンバの下部でかつウェハ 3 の真上に給気口 8、 排気口 1 0を設置しているが、 必要な量のパージガ スが供給 · 排出されれば給気口 8、 排気口 1 0の一方あるいは両方を他 の位置に配置しても良い。 すなわち、 給気口 8 , 排気口 1 0は高さ方向 、 投影光学系チャンバ 5 とウェハ 3の間にあれば、 水平方向では、 必 ずしも、 投影光学系のチャンバがある部分の下で、 かつウェハ 3の上に 位置する必要はない。 そこで、 ウェハステージ上部より遠方の空間から ガスを供給し、 ウェハステージ上部より遠方で排出してもよい。 又、 パ ージガスの排出口は、 図 1 1においてチャンバ 4 0内を高真空に保った めに内部の気体を排気している排気口と共用して真空ポンプ 4 3で排気 してもよい。 このことは、 本実施の形態のみならず、 他の実施の形態に 置いても適宜適用することができる。
なお、 前述のような理由によ り、 ワーキングディスタンス部の圧力を 0. 1〜 1 0 Pa 以下とすることが好ましい。 特に、 ワーキングディスタン ス部の圧力が 1 Pa程度であれば、 ワーキングディスタンス部 (高さ 1 0 mm程度) における レジス ト放出ガス 6 とパージガスの衝突回数が 1 0回 以上となり、 反重力方向にレジス ト放出ガス 6が高速で放出されたとし ても、 確実にパージガスにからめと られて排気口 1 0へと導かれるので 好ましレ、。
又、 給気口 8 と排気口 1 0を別々に設けず、 双方を吸排気口と して、 交互に、 一方を給気口、 他方を排気口と して用いることも可能である。 パージガスの流速を高速にすることで、 レジス ト放出ガス 6の投影光学 系内への侵入を極力低減することができるが、 完全に排除できる訳では ない。 排除し切れなかったレジス ト放出ガス 6は投影光学系内に侵入す るが、 パージガスとの衝突の影響で、 ミラー M 6の、 パージガス流下流 側に比較的多く付着することになる。 このよ うな状況が長時間続く と、 ミラー M 6の反射率が不均一に低下し、 光学性能が劣化する。 そこで、 給気と排気の方向を入れ替えることで、 ミラー反射率の低下の不均一性 を低減し、 パターン線幅の不均一性の劣化を低減することができる。 こ のことは、 本実施の形態のみならず、 他の実施の形態においても適宜適 用することができる。
以上の実施の形態では、 パージガスと して、 Arを使用しているが、 パ ージガスと しては、 不活性であること、 有機物でなくカーボン膜の原因 とならないこと、 運動量が大きい (質量が大きレ、) こと、 E U V光吸収 係数が小さいことといった条件を満たしているものであれば他のガスを 使用することができる。 例えば、 Kr、 Xe等を使用することができ、 この 他にも、 N 2、 Ne 等を使用することができる。 N 2はガス価格が安価な ので、 ランニングコス トの上昇を低減できるメ リ ッ トがある。 質量の大 きい分子の方が、 運動量が大きく なるので、 レジス ト放出ガスを効率よ く排除することができ、 大きすぎると、 分子の熱運動の速度が小さくな り (温度が同じ場合)、 相殺する (レジス ト放出ガスとパージガスの衝突 による吹き飛ばし効果と衝突回数の積が大きく変わらない) ので、 十分 な効果が得られない場合がある。このよ うな好ましいガス種については、 以下の全ての実施形態について同じである。
また、本発明は、主にレジス トからの放出ガスがコンタミ物質となり、 ミラ一表面に付着するのをできるだけ少なくするためのものであるが、 レジス ト放出ガスからのコンタミ物質の付着を少なくするためだけに使 用されるものではなレ、。他の部材から発生するコンタミ物質に対しても、 同様に、 ミラー表面に付着するのを少なくすることができる。 例えば、 ウェハステージ近傍の装置構成部材から放出される有機物等のコンタミ 物質に対しても、 同様にミラー表面に付着するのを少なくすることがで きるのは言うまでもない。 このことは、 本実施の形態のみならず、 他の 全ての実施の形態について同様である。
図 2は、 本発明の第 2の実施の形態である E U V露光装置の概要を示 す図である。 この E U V露光装置も、 全体の概要は図 1 1に示したもの と同じであり、 図 2には、 投影光学系周りの概要を示す。 なお、 以下の 図において、 本欄における前出の図に示された構成要素と同じ構成要素 には、 同じ符号を付してその説明を省略する。
この実施の形態においては、 図 1に示した実施の形態の構成に加え、 投影光学系チャンバ 5より下に、 遮蔽板 1 1が設置されている。 この遮 蔽板 1 1によって、 レジス ト放出ガスの大半が、 投影光学系内に侵入す るのを防止する。 この場合も、 遮蔽板 1 1の開口部を極力小さくするこ とにより、 パージガスが大量に投影光学系内に侵入するのを防止するこ とが好ましいのは前述のとおりである。
図 3は、 本発明の第 3の実施の形態である E U V露光装置の概要を示 す図であり、 図 4は、 図 3における投影光学系下部の拡大図である。 こ の E U V露光装置も、 全体の概要は図 1 1に示したものと同じであり、 図 3には、 投影光学系周りの概要を示す。
この実施の形態においては、 図 1に示した実施の形態の構成に加え、 給気管 7、 給気口 8、 排気管 9、 排気口 1 0の下部に遮蔽板 1 2が設け られ、 遮蔽板 1 2の下部に排気管 9、 排気口 1 0とは別の排気管 1 3と それにつながる排気口 1 4が設けられていることが異なっている。 遮蔽板 1 2を配置することによって、 レジス ト 4から放出した、 図 4 に矢印で示す放出ガスのうち、 遮蔽板 1 2の開口 1 2 aを通過しないガ スは遮蔽板 1 2によって遮蔽され、 排気口 1 4で排気されて系外に排出 される。 開口 1 2 aの大きさは投影露光に必要な光束の形状とほぼ同じ 形状としておく。 この有効光束 1 7の形状を図 4に例示的に破線で示し た。 このようにすることによって、 遮蔽板 1 2より上流 (投影光学系方 向) に向かうガスは、 有効光束 1 7の範囲に限定される。
遮蔽板 1 2を通過した矢印で示す放出ガスは、 給気口 8からのパージ ガス 1 6によつて紙面左方向へ向きを変えられる。 パージガス 1 6 とし て、 Arを使用しているが、 その他、 前述のようなガスを適宜使用するこ とができる。 また、 パージガスを流す方向は必ずしも水平方向に流す必 要はなく、 他の方向でも良く、 例えば、 斜め下方向に向かって流すこと も効果的である。 また、 給気口の位置、 個数、 開口径、 形状等は装置に 対して振動を極力発生させないよう、 また、 効果的にパージガスを流せ るように決定される。 このことは、 図 1、 図 2に示した実施の形態につ いても同様である。
パージガス 1 6によって向きを変えられたレジス ト放出ガス 6の一部 もしくは大部分は投影光学系チャンバ 5の下壁 5 cによって遮蔽される。 このようにすることによって、 パージガス 1 6を流すことによつて本来 投影光学系に向かわない放出ガスが投影光学系に向かってしまう という ような問題が解決され、 より効果的にレジス ト放出ガス 6のミラーへの 侵入を低減させることが可能となる。
遮蔽板 1 2を通過してきた放出ガスをパージガスによって効果的に遮 蔽することが可能であれば、 下壁 5 cを無く して遮蔽板 1 2そのものを 真空チャンバ 5の下壁とすることも可能である。 但し、 下壁 5 C と遮蔽 板 1 2の両方を設けておく方が放出ガスの除去効率がより高くなる。 なお、 遮蔽板 1 2に衝突したレジス ト放出ガス 6が真空装置内で浮遊 すると、 露光光束を吸収したり、 他の部品に対するコンタミネーシヨン の発生原因となり、問題となることがある。従って、本実施の形態では、 前述のように、 遮蔽板 1 2の下側に排気口 1 4、 排気管 1 3を配置し、 遮蔽板 1 2に衝突して浮遊するレジス ト放出ガス 6を排気するようにし ている。 なお、 この排気口の数は特に一つである必要はなく、 多数配置 してもよい。 また、 図の便宜上、 排気ポンプ 1 5を 1つだけ図示してい るが、 排気管 9, 1 3の各々が別の排気ポンプに接続され、 独立に排気 する方が好ましい。
また、 本実施の形態では、 遮蔽板 1 2の左右を、 投影光学系チャンバ 5に接続することで、 分離された空間を作り出している。 つまり、 投影 光学系を構成する反射鏡 M 1— M 6が配置される空間 Aと、 チャンバの 下壁 5 c と遮蔽板 1 2 とで囲まれる空間 Bと、 遮蔽板 1 2 と ウェハステ ージとの間の空間 Cである。 このことにより、 空間 Cに比べて空間 Bの 真空度が高くなり、 更に、 空間 Bに比べて空間 Aの真空度を高くするこ とが可能となる。 このようにすることによって、 投影光学系を構成する 反射鏡の汚染をよ り効果的に低減させることが可能となる。 但し、 遮蔽 板 1 2を単なる遮蔽板と して、 上述のよ うな分離された空間を作り出さ なくても、 遮蔽板と しての効果を奏することは言うまでもない。
なお、 図 3においては、 投影光学系チャンバ 5の下面の下に遮蔽板 1 2を設け、 これらの間に形成された空間 (E U V光の光路を確保するた めの開口部を除いて密閉されている) に給気口 8 と排気口 1 0 とを設け ているが、 図 3における遮蔽板 1 2に相当する部分 (空間 Aと Bの部分) までを投影光学系チャンバ 5 と し、 図 3においてハツチングで示される 下壁 5 cを遮蔽板と して投影光学系チャンバ 5の内部に遮蔽板を設ける よ うにしても名称が変更するだけであり、 実質的な構成は同じであり、 同じ作用効果を有する。
図 5は、 本発明の第 4の実施の形態である E U V露光装置の概要を示 す図であり、 ウェハ近傍の構成を示す概要図であって、 図 4に対応する 部分を示すものである。 この E U V露光装置も、 全体の概要は図 1 1に 示したものと同じである。
本実施の形態においては、 投影光学系チャンバ 5の下部の開口部 5 b は、露光に必要な E U V光の透過する領域(露光ェリァと露光光の開口数 によって決まる)程度と し、必要以上に大きく しない。放出ガスやパージ ガスの投影光学系内への流入をできるだけ防止するためである。 具体的 には、 外周部長さが 3 3 m m以下、 幅 4 m m以下の露光エリアと同様で ある部分輪帯状形状であることが好ましい。 このことは前述の実施形態 においても同様である。
本実施の形態においては、 投影光学系チャンバ 5の内側にノズル形状 の給気口 2 1が設けられており、 その開口部 2 2から、 パージガスが吹 き出されている。
給気口 2 1がパージガスを供給する方向は、 ウェハ 3およびレジス ト 4からなる感応基板の面に対して所定の角度 0を有する。 この角度につ いては後で詳細に説明する。
さらに、 本実施の形態においては、 遮蔽板の機能を有する投影光学系 チヤンバ 5の下部とレジス ト 4およびウェハ 3との間においてパージガ スの流れの近傍に排気口 2 3を設置することで、 レジス ト放出ガスとパ ージガスがより効率よく排出されるので、 投影系内に侵入する量を低減 することができる。
投影光学系チャンバ 5の開口部 5 bは上述のように、 部分輪帯(円弧) 状形状となるので、ノズル形状の給気口 2 1の形状に工夫が必要である。 図 6に、 最適化されたノズル形状の一例を示す。 ノズル形状の給気口 2 1 の開口部 2 2 (パージガス噴出口) は投影光学系チャンパ 5の開口部 5 bの形状に添う ような円弧形状とするのが好ましい。 その理由は、 ガ スの流れを開口の幅がよ り短い方向に一致させることにより、 パージガ スが投影光学系チャンバ 5内に逆流しないようにすることができるから である。 投影光学系チャンバ 5の開口部 5 b、 又は必要に応じて設けら れる遮蔽板の開口部を図 6に示すような円弧形状とするのが好ましいこ とは他の実施の形態においても同じである。
また、 ガスの噴出効率を高めるために、 パージガスを噴出させるノズ ル形状の給気口 2 1の開口部 2 2の高さ dを 0. 5mm程度と し、 ノズル形 状の給気口 2 1の開口部 2 2の幅は投影光学系チャンバ 5の開口部 5 b と同程度かそれよ りやや小さい程度とする。 ノズルの開口高さ d を 0. 5mm 程度とすることで、 パージガスの噴出方向を揃えることができ効 率よく レジス ト放出ガスの投影光学系内流入を低減できる。 また、 流量 を後で説明するように 600〜1000cc/mi n と仮定するとパージガス流のレ イノルズ数が 2000 以下となるので乱流によるノズルの振動による投影 光学系の振動を抑えることができる。 この結果、 結像性能の劣化を抑え ることができる。
図 7は、 図 5、 図 6に示した投影光学系チャンバ 5 と、 給気口 2 1、 排気口 2 3等の関係を示した図である。 投影光学系内は光学素子の劣化 を防ぐため、 より真空度の高い環境とされる必要があり、 投影光学系チ ャンバ 5内に投影光学系を構成する各ミラー M 1〜M 6が配置される。 なお、 場合によっては、 平面反射鏡 1や他の光学素子がこの投影光学系 チャンバ 5内に配置されることもある。
本実施の形態ではこの投影光学系チャンバ 5の下側の開口部 5 bが遮 蔽板の開口部と しての役割を果たしている。 そして、 ガス導入機 2 4か ら導入されたパージガスが配管 2 5を通ってノズル状の給気口 2 1 より W
23 上述のように射出するものである。 投影光学系チャンバ 5の隔壁を遮蔽 板と して使用しているため、 ワーキングディスタンスの小さい場所であ つても、問題なく、遮蔽板とノズルを配置することが可能である。 なお、 投影光学系チャンバ 5の下側に遮蔽板を別に設ける場合であっても、 遮 蔽板の下側より も上側の真空度を高くすることが好ましい。何故ならば、 投影光学系内にレジス ト放出ガスやパージガスの混入を防ぐことができ るからである。
ノズルから噴出させるパージガスにより、 投影光学系内に侵入するレ ジス ト放出ガス量を低減する。 しかし、 パージガス量が多すぎると、 投 影光学系内のパージガス圧が高く なり、 上述のよ うに、 露光光の吸収の 原因となり、 スループッ トの低下をもたらす。 したがって、 すべてのレ ジス ト放出ガス分子数に対する投影光学系内に流入するレジス ト放出ガ スの分子数の割合であるレジス ト放出ガス投影光学系内流入率と、 すべ てのパージガス分子数に対する投影光学系内に流入するパージガスの分 子数の割合であるパージガス投影光学系内流入率とをともに低減する必 要がある。
パージガスの流量について以下に説明する。本実施の形態においては、 パージガスは流量 600C C/nii n (sccm)程度以上でレジス ト放出ガス投影光 学系内流入率を 1 %以下にすることが可能である。 一方、 パージガス投 影光学系内流入率の低減も重要である。 現在最も現実的と考えられてい る 6 枚反射鏡による投影光学系の場合、 露光光の投影系内光路長は 3600mm程度である。 この光学系で、 投影光学系内パージガスにおける吸 収を 5 %まで許容できるとすると、投影光学系内に流入したパージガスの 圧力は 0. 4Pa以下であることが求められる。 本実施の形態のよ うな構成 の場合、パージガスは流量 lOOOcc/min程度以下でパージガス投影光学系 内圧力を 0. 4Pa以下にすることが可能である。 また、 パージガスは、 屈折率の変化を生じ、 ウェハ ' オートフォー力 スの Z方向 (投影光学系の光軸方向) 位置測定誤差の要因となることも 考えられる。 しかし、 Ar流量が 600〜1000 cc/minの領域ではほぼ無視 できるレベルまで抑えることができ、 問題はない。
つぎに、 パージガス噴出角度について説明する。 パージガス噴出角度 とは、 ズルからのガス噴出方向とウェハ(感応基板)面とがなす角度で ある。 図 8に、 パージガス噴出角度とレジス ト放出ガス投影光学系内流 入率およびパージガス投影光学系内流入率との関係の数値解析結果を示 す。 図 8に示すように、 現実的なワーキングディスタンスの高さ(5mm以 上 10mm 以下)では、 30〜60° の間でレジス ト放出ガス(CO 2 )の投影光学 系内流入率が極小となる。 他方、 パージガス(Ar)の投影光学系内流入率 は、 このパージガス噴出角度の範囲で単調に減少する。 したがって、 パ ージガス噴出角度は、好ましくは、 30〜60。 であり、 さらに好ましくは、 . 35〜55° である。
数値解析の結果では、 ガスの流れは 0. 1秒程度で定常状態に達するの で、 パージガスの流れを開始するのは、 露光開始直前であっても問題は ない。
図 9は、 本発明の第 5の実施の形態である E U V露光装置の構成を示 す図であり、 図 5に対応するものである。 第 5の実施の形態の構成は、 投影光学系チャンバ 5の開口部 5 bの周囲に、 複数のノズル状の給気口 2 1が設置されている点が、 第 4の実施の形態と異なる。 第 5の実施の 形態の方が、 投影系内に侵入するレジス ト放出ガスとパージガスの量を 低減することが可能であるので好ましい。 ただし、 機構がより複雑にな るという短所がある。
投影光学系チャンバ 5の開口部 5 bの周囲全面にわたってノズルを設 置すれば、 より効率のよく投影系内に侵入するレジス ト放出ガスとパー ジガスの量を低減することが可能である。
以下、 本発明に係わる半導体デバイスの製造方法の実施の形態の例を 説明する。 図 1 0は、 本発明の半導体デバイス製造方法の実施形態の一 例を示すフローチヤ一卜である。 この例の製造工程は以下の各工程を含 む。
( 1 )ウェハを製造するウェハ製造工程(またはウェハを準備するウェハ 準備工程)
( 2)露光に使用するマスクを製作するマスク製造工程(またはマスクを 準備するマスク準備工程)
( 3 ) ウェハに必要な加工処理を行う ウェハプロセッシング工程
(4) ウェハ上に形成されたチップを 1個ずつ切り出し、 動作可能にな らしめるチップ組立工程 .
( 5) できたチップを検査するチップ検査工程
なお、 それぞれの工程はさらにいくつかのサブ工程からなっている。 これらの主工程の中で、 半導体デバイスの性能に決定的な影響を及ぼす 主工程がウェハプロセッシング工程である。 この工程では、 設計された 回路パターンをウェハ上に順次積層し、 メモリや MP Uとして動作する チップを多数形成する。 このウェハプロセッシング工程は、 以下の各ェ 程を含む。
( 1 ) 絶縁層となる誘電体膜や配線部、 あるいは電極部を形成する金属 薄膜などを形成する薄膜形成工程 (CVDやスパッタ リ ングなどを用い る)
( 2) この薄膜層やウェハ基板を酸化する酸化工程
( 3) 薄膜層やウェハ基板などを選択的に加工するためにマスク (レク チル) を用いてレジス トのバターンを形成するリ ソグラフィ工程
(4) レジス トパターンにしたがって薄膜層や基板を加工するエツチン グ工程 (たとえばドライエツチング技術を用いる)
( 5 ) イオン · 不純物注入拡散工程
( 6 ) レジス ト剥離工程
( 7 ) さらに加工されたウェハを検査する検査工程
なお、 ウェハプロセッシング工程は必要な層数だけ繰り返し行い、 設 計通り動作する半導体デバイスを製造する。
本実施形態においては、 上記リ ソグラフイエ程において、 上述の E U V光露光装置を使用している。 よって、 露光装置を長期間にわたって連 続運転可能となるので、 微細パターンを有するデバイスをスループッ ト よく製造することができる。 また、 投影光学系を構成する光学素子の反 射特性などが光学素子の部分によって変わることが少なくなるので、 露 光性能が劣化するのを抑えることができる。

Claims

請 求 の 範 囲
1 . 極端紫外光を用いて、 マスクに形成されたパターンをウェハ等の 感応基板上に露光転写する露光装置であって、 前記マスクに形成された パターンを感応基板上に投影する投影光学系と、 前記投影光学系を囲う 真空チャンバと、 前記真空チャンバに配置され、 前記感応基板に向かう 極端紫外光を通過させる開口と、 前記感応基板に塗布されたレジス トか ら発生するレジス ト放出ガスをパージするガスを給気する給気口と、 前 記パージガスを排気する排気口とが設けられていることを特徴とする極 端紫外線露光装置。
2 . 請求の範囲第 1項に記載の露光装置であって、 前記開口より感応 基板側の空間に比べて相対的に前記投影光学系の真空チャンバ内の空間 の真空度が髙いことを特徴とする露光装置。
3 . 請求の範囲第 1項に記載の露光装置であって、 前記開口が前記開 口を通過する極短紫外光の光束形状と実質的に同一形状であることを特 徴とする露光装置。
4 . 請求の範囲第 1項に記載の露光装置であって、 前記給気口と前記 排気口は前記真空チャンバと前記感応基板の間に配置されていることを 特徴とする露光装置。
5 . 請求の範囲第 4項に記載の露光装置であって、 前記パージガスの 流通路と前記真空チャンバとの間に、 露光に必要な極短紫外光を通過さ せる開口を有する遮蔽板が設けられていることを特徴とする露光装置。
6 . 請求の範囲第 1項に記載の露光装置であって、 前記給気口から給 気されるパージガスの流速は超音速であることを特徴とする露光装置。
7 . 請求の範囲第 1項に記載の露光装置であって、 前記パージガスの 圧力を 0. 1〜 1 0 Paとしたことを特徴とする露光装置。
8 . 請求の範囲第 1項に記載の露光装置であって、 前記レジス ト放出 ガスをパージするためのガスの流れの方向を、 交互に逆向きにしながら 露光を行うことを特徴とする露光装置。
9 . 請求の範囲第 1項に記載の露光装置であって、 前記レジス ト放出 ガスをパージするためのガス力 Ar、 Kr、 Xe、 N 2 、 He , Ne、 又はこれ らの 2種以上の混合体であることを特徴とする露光装置。
1 0 . 請求の範囲第 1項に記載の露光装置であって、 前記投影光学系 中の前記複数の反射鏡のうち、 前記極短紫外光の光路に沿って最も感応 基板に近い反射鏡と前記開口との間に前記給気口が配置されていること を特徴とする露光装置。
1 1 . 請求の範囲第 1 0項に記載の露光装置であって、 前記給気口と 前記最も感応基板に近い反射鏡との間に前記極端紫外線が通過可能な開 口を有する遮蔽板が配置されることを特徴とする露光装置。
1 2 . 請求の範囲第 1 1項に記載の露光装置であって、 前記遮蔽板と 前記真空チャンバの壁によって囲まれる空間が前記開口部以外で閉じら れた空間であることを特徴とする露 '光装置。
1 3 . 請求の範囲第 1 2項に記載の露光装置であって、 前記遮蔽板と 前記真空チャンバの間に排気口を有することを特徴とする露光装置。
1 4 . 請求の範囲第 1 0項に記載の露光装置であって、 前記遮蔽板及 び前記真空チャンバのうち、 少なく とも一方の開口が前記開口を通過す る極短紫外光の光束形状と実質的に同一形状であることを特徴とする露 光装置。
1 5 . 請求の範囲第 1 1項に記載の露光装置であって、 前記真空チヤ ンバの開口より感応基板側の空間に比べて、 相対的に、 前記真空チャン バの開口より前記反射鏡側の空間の真空度が高いことを特徴とする露光 装置。
1 6 . 請求の範囲第 1 1項に記載の露光装置であって、 前記真空チヤ ンバの開口より感応基板側の空間に比べて、 相対的に、 前記真空チャン バの開口より前記反射鏡側の空間の真空度が高いことを特徴とする露光 装置。 .
1 7 . 請求の範囲第 1 1項に記載の露光装置であって、 前記遮蔽板の 開口より感応基板側の空間に比べて、 相対的に、 前記遮蔽板の開口より 前記反射鏡側の空間の真空度が高いことを特徴とする露光装置。
1 8 . 請求の範囲第 1 0項に記載の露光装置であって、 前記給気口か ら供給されるパージガスが前記真空チャンバの開口を通して前記感応基 板の方向に供給されるように前記給気口が配置されることを特徴とする 露光装置。
1 9 . 請求の範囲第 1 8項に記載の露光装置であって、 前記排気口は 前記真空チャンバの開口よりも前記感応基板の側に配置されることを特 徴とする露光装置。
2 0 . 請求の範囲第 1 8項に記載の露光装置であって、 前記給気口の ガスを供給する開口の寸法を、前記パージガス流のレイノルズ数が 2000 以下となるように定めたことを特徴とする露光装置。
2 1 . 請求の範囲第 1 8項に記載の露光装置であって、 感応基板に向 けてガスを供給する方向が感応基板に対して 3 0〜 6 0度であることを 特徴とする露光装置。
2 2 . 請求の範囲第 1 8項に記載の露光装置であって、 給気口から供 給されるガスの流量が 600〜1000cc/rain ( 1. 00 x 10— 5〜 1. 67 x 10— 5 M 3 /s ec) となるように定めたことを特徴とする露光装置。
2 3 . 請求の範囲第 1項に記載の露光装置を用いて、 マスクに形成さ れたパターンを感応基板に露光転写する工程を有することを特徴とする 微細パターンを有するデバイスの製造方法。
PCT/JP2005/003803 2004-02-27 2005-02-28 露光装置、及び微細パターンを有するデバイスの製造方法 WO2005083759A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006510548A JPWO2005083759A1 (ja) 2004-02-27 2005-02-28 露光装置、及び微細パターンを有するデバイスの製造方法

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2004-053265 2004-02-27
JP2004053265 2004-02-27
JP2004-325843 2004-11-10
JP2004325843 2004-11-10
JP2004378441 2004-12-28
JP2004-378441 2004-12-28

Publications (1)

Publication Number Publication Date
WO2005083759A1 true WO2005083759A1 (ja) 2005-09-09

Family

ID=34916087

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/003803 WO2005083759A1 (ja) 2004-02-27 2005-02-28 露光装置、及び微細パターンを有するデバイスの製造方法

Country Status (2)

Country Link
JP (1) JPWO2005083759A1 (ja)
WO (1) WO2005083759A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007264636A (ja) * 2006-03-27 2007-10-11 Carl Zeiss Smt Ag 入射瞳のバック・フォーカスが負である投影対物レンズおよび投影露光装置
WO2008147175A1 (en) * 2007-05-25 2008-12-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
WO2009069815A1 (en) * 2007-11-27 2009-06-04 Nikon Corporation Illumination optical apparatus, exposure apparatus, and method for producing device
US8289498B2 (en) 2008-06-13 2012-10-16 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8730448B2 (en) 2011-03-08 2014-05-20 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61179046A (ja) * 1984-11-08 1986-08-11 ハンプシヤ− インスツルメンツ,インコ−ポレ−テツド X線リソグラフ装置
JP2000058443A (ja) * 1998-05-15 2000-02-25 Asm Lithography Bv リトグラフ投影装置およびディバイス製造方法
JP2001057328A (ja) * 1999-08-18 2001-02-27 Nikon Corp 反射マスク、露光装置および集積回路の製造方法
JP2001237181A (ja) * 1999-12-27 2001-08-31 Svg Lithography Syst Inc Euvレチクルサーマルマネージメントシステム
JP2002124464A (ja) * 2000-09-04 2002-04-26 Asm Lithography Bv リソグラフィ投影装置、デバイス製造方法、及びそれにより製造されたデバイス
JP2002529927A (ja) * 1998-11-06 2002-09-10 イーユーヴィー リミテッド リアビリティ コーポレーション 極短波長紫外光リソグラフィー用気体幕を有するウエハー容器
WO2002084406A1 (en) * 2001-04-17 2002-10-24 Koninklijke Philips Electronics N.V. Euv-transparent interface structure
JP2003209053A (ja) * 2001-12-28 2003-07-25 Asml Netherlands Bv リソグラフィ装置およびデバイス製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61179046A (ja) * 1984-11-08 1986-08-11 ハンプシヤ− インスツルメンツ,インコ−ポレ−テツド X線リソグラフ装置
JP2000058443A (ja) * 1998-05-15 2000-02-25 Asm Lithography Bv リトグラフ投影装置およびディバイス製造方法
JP2002529927A (ja) * 1998-11-06 2002-09-10 イーユーヴィー リミテッド リアビリティ コーポレーション 極短波長紫外光リソグラフィー用気体幕を有するウエハー容器
JP2001057328A (ja) * 1999-08-18 2001-02-27 Nikon Corp 反射マスク、露光装置および集積回路の製造方法
JP2001237181A (ja) * 1999-12-27 2001-08-31 Svg Lithography Syst Inc Euvレチクルサーマルマネージメントシステム
JP2002124464A (ja) * 2000-09-04 2002-04-26 Asm Lithography Bv リソグラフィ投影装置、デバイス製造方法、及びそれにより製造されたデバイス
WO2002084406A1 (en) * 2001-04-17 2002-10-24 Koninklijke Philips Electronics N.V. Euv-transparent interface structure
JP2003209053A (ja) * 2001-12-28 2003-07-25 Asml Netherlands Bv リソグラフィ装置およびデバイス製造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007264636A (ja) * 2006-03-27 2007-10-11 Carl Zeiss Smt Ag 入射瞳のバック・フォーカスが負である投影対物レンズおよび投影露光装置
JP2013065051A (ja) * 2006-03-27 2013-04-11 Carl Zeiss Smt Gmbh 入射瞳のバック・フォーカスが負である投影対物系および投影露光装置
WO2008147175A1 (en) * 2007-05-25 2008-12-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
WO2009069815A1 (en) * 2007-11-27 2009-06-04 Nikon Corporation Illumination optical apparatus, exposure apparatus, and method for producing device
US7719661B2 (en) 2007-11-27 2010-05-18 Nikon Corporation Illumination optical apparatus, exposure apparatus, and method for producing device
US8289498B2 (en) 2008-06-13 2012-10-16 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8730448B2 (en) 2011-03-08 2014-05-20 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8797504B2 (en) 2011-03-08 2014-08-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method

Also Published As

Publication number Publication date
JPWO2005083759A1 (ja) 2007-08-09

Similar Documents

Publication Publication Date Title
JP5055310B2 (ja) リソグラフィ機器、放射システム、汚染物質トラップ、デバイスの製造方法、及び汚染物質トラップ内で汚染物質を捕らえる方法
US7423724B2 (en) Exposure apparatus and device manufacturing method
JP3626627B2 (ja) リトグラフ投影装置およびディバイス製造方法
US7050149B2 (en) Exposure apparatus and exposure method
JPH1114876A (ja) 光学構造体、その光学構造体を組み込んだ投影露光用光学系及び投影露光装置
US7518132B2 (en) Light source apparatus, exposure apparatus and device fabrication method
JP2005101537A (ja) 露光装置及びそれを用いたデバイスの製造方法
TWI267705B (en) Lithographic apparatus and device manufacturing method
JP2008252117A (ja) リソグラフィ装置
JP2004247733A (ja) ガス洗浄システムを含むリソグラフィ装置
TWI519903B (zh) 紫外光微影裝置及圖案化的方法
WO2005083759A1 (ja) 露光装置、及び微細パターンを有するデバイスの製造方法
JP2005244015A (ja) 露光装置、露光装置の光学素子の光洗浄方法、及び微細パターンを有するデバイスの製造方法
US7030960B2 (en) Exposure apparatus and purging method for the same
JP2005064210A (ja) 露光方法、該露光方法を利用した電子デバイスの製造方法及び露光装置
JP2004006690A (ja) リソグラフ装置およびデバイス製造方法
WO2003105203A1 (ja) 露光装置及び露光方法
JP2005332972A (ja) 光学素子、光学装置、及び半導体デバイスの製造方法
US7692762B2 (en) Exposure apparatus
JPH11238669A (ja) 露光装置
JP2003234281A (ja) 露光装置、デバイス製造方法
WO2002065183A1 (fr) Barillet de lentille, dispositif d'exposition et procede de fabrication de ce dispositif
JP2006208694A (ja) 光学素子、露光装置、露光方法、および微細パターンを有するデバイスの製造方法
JP2006173245A (ja) 露光装置及びデバイスの製造方法
JP2005183624A (ja) 鏡筒及び露光装置並びにデバイスの製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006510548

Country of ref document: JP

122 Ep: pct application non-entry in european phase