JP2004247733A - ガス洗浄システムを含むリソグラフィ装置 - Google Patents

ガス洗浄システムを含むリソグラフィ装置 Download PDF

Info

Publication number
JP2004247733A
JP2004247733A JP2004033279A JP2004033279A JP2004247733A JP 2004247733 A JP2004247733 A JP 2004247733A JP 2004033279 A JP2004033279 A JP 2004033279A JP 2004033279 A JP2004033279 A JP 2004033279A JP 2004247733 A JP2004247733 A JP 2004247733A
Authority
JP
Japan
Prior art keywords
gas
substrate
projection
radiation
radial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004033279A
Other languages
English (en)
Other versions
JP4035510B2 (ja
Inventor
Bokx Pieter Klaas De
クラース デ ボックス ピエテル
Empel Tjarko Adriaan Rudolf Van
アドリアーン ルドルフ ファン エムペル ティヤルコ
Ronald Johannes Hultermans
ヨハンネス フルテルマンス ロナルド
Adrianus Cornelius Antonius Jonkers
コルネリウス アントニウス ヨンケルス アドリアヌス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASML Netherlands BV
Original Assignee
ASML Netherlands BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASML Netherlands BV filed Critical ASML Netherlands BV
Publication of JP2004247733A publication Critical patent/JP2004247733A/ja
Application granted granted Critical
Publication of JP4035510B2 publication Critical patent/JP4035510B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70908Hygiene, e.g. preventing apparatus pollution, mitigating effect of pollution or removing pollutants from apparatus
    • G03F7/70933Purge, e.g. exchanging fluid or gas to remove pollutants

Landscapes

  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

【課題】リソグラフィ投影装置であって、投影放射線の周囲雰囲気による吸収を低減するために、投影ビーム光が通る空間にその光に透明且つ非吸収性ガスの層流を創るためのガス洗浄システムを備える装置に於いて、このガスの消耗および外部雰囲気による汚染を少なくすると共に、レジスト上の水分を除去して投影ビーム光の吸収を減少し且つレジストの透過率を向上するシステムを提供すること。
【解決手段】このガス洗浄システム200は、出口17から入口18への投影ビームPBを横切る層流ガス流の外に、出口202からこのシステムと基板Wの間のスペースを放射状に外方に流れるガス流203を発生する。上記放射状ガス流203は、上記スペース内で外方に向いて上記スペース内のあらゆる場所でゼロより大きい大きさの半径方向速度を有するので、基板上のレジストが投影ビームPBに達する前にその水分が除去され、外部からのガス混入も実質的にない。
【選択図】図3

Description

本発明は、リソグラフィ投影装置に関し、該装置が:
− 放射線の投影ビームを供給するための放射線システム;
− 所望のパターンに従ってこの投影ビームをパターン化するのに役立つパターニング手段を支持するための支持構造体;
− 基板を保持するための基板テーブル;
− このパターン化したビームをこの基板の目標部分上に投影するための投影システム;および
− ガス洗浄システム、を含む。
リソグラフィ投影装置で結像できる形態のサイズを減少すためには、照明放射線の波長を低下することが望ましい。そのような目的で、約200nm未満、例えば、157nmまたは126nmの波長を使うことが提案されている。しかし、そのような波長は、通常の大気によって強く吸収され、ビームがこの装置を横切るとき強度の容認できない損失に繋がる。この装置全体を囲い込み且つ真空中で作動させることは、ウエハおよびレチクルの交換に容認できない遅延を持込み、一方装置全体を、超高純度の窒素(N)のような、この照明波長を吸収しないガスで洗浄することは、不完全に密閉した機械の中でのガスの消費のために、過剰な運転コストを生じるだろう。
EP1098226は、供給および真空ポンプを含む洗浄システムによって層流をもたらし、これらの層流が、例えば、マスクステージで薄いシートおよびマスクと平行であるか、またはウエハステージで最後のレンズおよび基板と平行であるシステムを記載する。EP1098226では、一種の“パージ・フード”が投影システムPLの基板に面した側に取付けてあり、この投影システムの最後の素子を囲み、洗浄ガス用の入口および出口を有する壁で、この投影システムと基板の間にある容積を創り出す。しかし、この流れは、この“フード”の外部からの空気/ガスの導入を防ぐためにかなり速くなければならない。また、出口では、“フード”の外部からのガスを引出すかも知れない。更に、フードの内部に導入したガスが外部に漏れて、フードの外部のガス成分を変えるかも知れない。センサ、例えば、このガスの透過率または屈折率に基づいて、ウエハの位置または高さ等を決めるためのセンサがこの様にして攪乱され、それは再現困難な結果に繋がるだろう。
それに次いで、ホトレジスト・ポリマーが周囲空気からかなり大量の水分(数体積%)を吸収することが知られ、この水分が入射光、特に157または126nmのような短波長の光の一部を吸収する。照明中に残る水分の量は、蒸気相の水分が生ずるより遥かに大きな透過損失に十分繋がるだろう。22℃で50%RH(相対湿度)ガス雰囲気と平衡状態にあるホトレジスト・ポリマーが吸収する水分の総量は、例示的に約1.0体積%と2.5体積%の間であることが分った。EP1098226は、ウエハ上のレジストを乾燥してこのウエハ上のレジストが投影ビームに達する前に水分を除去する方法を開示しなければ、これが必要であることも示唆せず;層流が脱気体相で存在する水分を除去するだけかも知れない。
従って、本発明の目的は、例えばレジスト上の、水分による投影ビーム光の吸収を減少するシステムを提供することである。この発明のもう一つの目的は、投影ビームが基板上のレジストの表面に達する前にこのレジストから水分の一部を除去し、それでこのレジストの透過率を上昇することである。
本発明によれば、冒頭の段落によるリソグラフィ投影装置であって、
− 上記ガス洗浄システムおよび上記基板が上記ガス洗浄システムと上記基板の間に放射状のガス流のための中間スペースを形成すること、
− 上記ガス洗浄システムが上記放射状ガス流を発生するための出口も含むこと、そして
− 上記ガス洗浄システムは、使用中、上記放射状ガス流が上記スペース内で外方に向いて上記スペース内のあらゆる場所でゼロより大きい大きさの半径方向速度を有するように、上記放射状ガス流を発生するように構成してあることを特徴とする装置が提供される。
この放射状ガス流は、投影ビームがレジストに達する前に、このレジストが吸収してその中にある水分の一部を乾燥または除去する。これは、水分による投影ビームの吸収を都合よく減少する。この様にして、透過損失が最小になり、透過率の差も最小になる。投影システムの最後のレンズと基板の間、およびガス洗浄システムと基板の間の雰囲気の制御が今度は一層良くなるだろう。この放射状ガス流は、少なくともこの基板テーブルの移動方向に、この基板テーブルの瞬間速度に等しいか、それより高い速度を有するのが望ましい。
一実施例で、このガス洗浄システムは、更に、この投影システムの最後のレンズと上記基板の間で少なくとも上記投影ビームの一部を横切る実質的に層流のガス流を発生するための出口および入口を含む。この様にして、そのようなリソグラフィ装置を使うとき、高価な消耗品を使うことを減ずることは勿論、この装置のスループットおよび保守費用への悪影響を避けながら、投影ビームの吸収を最小にする。この投影システムの最後のレンズを横切る層流は、この最後のレンズの表面へ、例えばレジストから、有機化合物が堆積する可能性も減ずる。
この投影システムの最後のレンズと基板の間で少なくとも投影ビームの一部を横切る、出口と入口の間に発生した層流ガス流は、上記投影システムの上記放射線を実質的に吸収しない洗浄ガス、例えば、(超高純度)N、He、Ar、Kr、およびNeから成るグループから選択した一つ以上のガスを含むのが望ましい。この基板とガス洗浄システムの間の容積に発生する放射状ガス流のために使うガスは、層流ガス流の上記ガスと違う成分のガスを含んでもよい。それは、これらのガスに対する要件が違うからである。この放射状ガス流は、水分汚染1ppm未満、更に好ましくは0.01ppm未満、更に一層好ましくは約0.001ppm未満のガスを含むのが望ましい。
この発明の更なる実施例によれば、このガス洗浄システムが、更に、上記ガス洗浄システムの、上記スペースで外方に向いた放射状ガス流をもたらす出口に関して、外部に位置し、上記放射状ガス流のかなりの部分を排出するように構成された排気入口を含む。これも、この投影システムの最後のレンズと基板の間の領域の外部の雰囲気の一層よい制御、従って透過率および屈折率の一層よい制御に繋がる。これは、例えば基板の高さまたは位置を決めるセンサが透過率および/または屈折率のわずかな差に非常に敏感なことがあるので、有利である。
この発明によるもう一つの実施例では、この投影システムの最後のレンズがこの放射線に実質的に透明な材料で作った下部レンズ素子に含まれてもよく、そこでカバー部材が実質的に平面で且つ上記層流の方向と実質的に平行に設けてある。そのような部品は、上記ビーム経路の上記部分内またはそれに隣接するこのリソグラフィ装置の部品、例えば最後のレンズ、の非平面表面を覆うために設けることができる。
この発明の更なる態様によれば、リソグラフィ投影装置で:
− 放射線の投影ビームを供給するための放射線システム;
− 所望のパターンに従ってこの投影ビームをパターン化するのに役立つパターニング手段を支持するための支持構造体;
− 基板を保持するるための基板テーブル;
− このパターン化したビームをこの基板の目標部分上に投影するための投影システム;および
− ガス洗浄システムを含む装置を使うデバイス製造方法であって、
上記ガス洗浄システムと上記基板の間の中間スペースに放射状のガス流を設け、上記放射状ガス流が上記スペース内で外方に向いて上記スペース内のあらゆる場所でゼロより大きい大きさの半径方向速度を有するようにすることに特徴がある方法が提供される。
従って、この発明は、特に、レジストを放射線に露出する前に、このレジスト上および内の水分を減少するための方法および装置、並びにレジスト内および上に存在する水分の結果としての透過損失を減少するための方法も提供する。
この発明の更なる態様では、外方に向いた、この放射状ガス流の一部を、このリソグラフィ投影装置のガス洗浄システムの出口に関して、外部に位置する排気入口によって排出する方法が提供される。
もう一つの実施例では、この方法に使用するリソグラフィ装置が、更に、この投影システムの最後のレンズと上記基板の間で少なくとも上記投影ビームの一部を横切る実質的に層流のガス流を発生するための出口および入口を含む。
この発明のもう一つの態様によれば、この発明の方法によりまたはこの発明による装置で製造したデバイスが提供される。
この本文では、ICの製造に於けるこの発明による装置の使用を具体的に参照するかも知れないが、そのような装置は、他の多くの可能な用途があることを明確に理解すべきである。例えば、それを集積光学システム、磁区メモリ用誘導検出パターン、液晶ディスプレイパネル、薄膜磁気ヘッド等の製造に使ってもよい。当業者は、そのような代替用途の関係で、この本文で使う“レチクル”、“ウエハ”または“ダイ”という用語のどれも、それぞれ、より一般的な用語“マスク”、“基板”および“目標部分”で置換えられると考えるべきであることが分るだろう。
本文書では、“放射線”および“ビーム”という用語を紫外(UV)放射線(例えば、波長365、248、193、157または126nmまたは、該当する場合は、更に短い波長のもの)を含むが、特に200nm未満の波長、更に好ましくは約157+/−5nmまたは約126+/−5nmの波長の放射線を含むあらゆる種類の電磁放射線を包含するために使用する。“層流ガス流”とは、実質的に層流であるガス流を意味する。
次にこの発明の実施例を、例としてだけ、添付の概略図を参照して説明し、それらの図面で対応する参照記号は対応する部品を指す。
ここで使う“パターニング手段”という用語は、入射放射線ビームに、この基板の目標部分に創成すべきパターンに対応する、パターン化した断面を与えるために使うことができる手段を指すと広く解釈すべきであり;“光バルブ”という用語もこのような関係で使うことができる。一般的に、上記パターンは、集積回路またはその他のデバイス(以下参照)のような、この目標部分に創るデバイスの特定の機能層に対応するだろう。そのようなパターニング手段の例には次のようなものがある。
− マスク。マスクの概念は、リソグラフィでよく知られ、それには、二値、交互位相シフト、および減衰位相シフトのようなマスク型、並びに種々のハイブリッドマスク型がある。そのようなマスクを放射線ビーム中に置くと、このマスク上のパターンに従って、このマスクに入射する放射線の選択透過(透過性マスクの場合)または選択反射(反射性マスクの場合)を生ずる。マスクの場合、この支持構造体は、一般的にマスクテーブルであり、それがこのマスクを入射放射線ビームの中の所望の位置に保持できること、およびもし望むなら、それをこのビームに対して動かせることを保証する。
− プログラム可能ミラーアレイ。そのような装置の一例は、粘弾性制御層および反射面を有するマトリックスアドレス可能面である。そのような装置の背後の基本原理は、(例えば)この反射面のアドレス指定された領域が入射光を回折光として反射し、一方アドレス指定されない領域が入射光を未回折光として反射するということである。適当なフィルタを使って、上記未回折光を反射ビームから濾過して取除き、回折光だけを後に残すことができ、この様にして、このビームがマトリックスアドレス可能面のアドレス指定パターンに従ってパターン化されるようになる。プログラム可能ミラーアレイの代替実施例は、極小ミラーのマトリックス配置を使用し、適当な局部電界を印加することにより、または圧電作動手段を使うことにより、それらの各々を軸線周りに個々に傾斜することができる。やはり、これらのミラーは、マトリックスアドレス可能で、アドレス指定したミラーが入射放射線ビームをアドレス指定されないミラーと異なる方向に反射し、この様にして、反射ビームをこれらのマトリックスアドレス可能ミラーのアドレス指定パターンに従ってパターン化する。必要なアドレス指定は、適当な電子手段を使って行える。上に説明した両方の場合に、パターニング手段は、一つ以上のプログラム可能ミラーアレイを含むことができる。ここで言及したようなミラーアレイについての更なる情報は、例えば、米国特許US5,296,891およびUS5,523,193、並びにPCT特許出願WO98/38597およびWO98/33096から集めることができ、それらを参考までにここに援用する。プログラム可能ミラーアレイの場合、上記支持構造体は、例えば、必要に応じて固定または可動でもよい、フレームまたはテーブルとして具体化してもよい。
− プログラム可能LCDアレイ。そのような構成の例は、米国特許US5,229,872で与えられ、それを参考までにここに援用する。上記同様、この場合の支持構造体は、例えば、必要に応じて固定または可動でもよい、フレームまたはテーブルとして具体化してもよい。
簡単のために、この本文の残りは、或る場所で、マスクおよびマスクテーブルを伴う例を具体的に指向するかも知れないが、しかし、そのような場合に議論する一般原理は、上に示すようなパターニング手段の広い文脈で見るべきである。
リソグラフィ装置は、例えば、集積回路(IC)の製造に使うことができる。そのような場合、パターニング手段がこのICの個々の層に対応する回路パターンを創成してもよく、このパターンを、放射線感応性材料(レジスト)の層で塗被した基板(シリコンウエハ)の目標部分(例えば、一つ以上のダイを含む)上に結像することができる。一般的に、単一ウエハが隣接する目標部分の全ネットワークを含み、それらをこの投影システムを介して、一度に一つずつ、順次照射する。マスクテーブル上のマスクによるパターニングを使う現在の装置では、機械の二つの異なる種類を区別することができる。一つの種類のリソグラフィ装置では、全マスクパターンをこの目標部分上に一度に露出することによって各目標部分を照射し;そのような装置を普通ウエハステッパまたはステップアンドリピート装置と呼ぶ。代替装置 ― 普通ステップアンドスキャン装置と呼ぶ ― では、マスクパターンを投影ビームの下で与えられた基準方向(“走査”方向)に順次走査することによって各目標部分を照射し、一方、一般的に、この投影システムが倍率M(一般的に<1)であり、この基板テーブルを走査する速度Vが、倍率M掛けるマスクテーブルを走査する速度であるので、この基板テーブルをこの方向に平行または逆平行に同期して走査する。ここに説明したようなリソグラフィ装置に関する更なる情報は、例えば、US6,046,792から収集することができ、それを参考までにここに援用する。
リソグラフィ投影装置を使う製造プロセスでは、(例えば、マスクの中の)パターンを、少なくとも部分的に放射線感応材料(レジスト)の層で覆われた基板上に結像する。この結像工程の前に、基板は、例えば、下塗り、レジスト塗布およびソフトベークのような、種々の処理を受けるかも知れない。露出後、基板は、例えば、露出後ベーク(PEB)、現像、ハードベークおよび結像形態の測定/検査のような、他の処理を受けるかも知れない。この一連の処理は、デバイス、例えばICの個々の層をパターン化するための基礎として使用する。そのようにパターン化した層は、次に、エッチング、イオン注入(ドーピング)、金属化処理、酸化処理、化学・機械的研磨等のような、全て個々の層の仕上げを意図した種々の処理を受けるかも知れない。もし、幾つかの層が必要ならば、全処理またはその変形を各新しい層に反復しなければならないだろう。結局、デバイスのアレイが基板(ウエハ)上にできる。次に、これらのデバイスをダイシングまたは鋸引のような手法によって互いから分離し、そこから個々のデバイスをキャリヤに取付け、ピンに接続する等できる。そのようなプロセスに関する更なる情報は、例えば、ピータ・バン・ザントの“マイクロチップの製作:半導体加工の実用ガイド”、第3版、マグロウヒル出版社、1997年、ISBN0-07-067250-4という本から得ることができ、それを参考までにここに援用する。
簡単のために、この投影システムを、以後“レンズ”と呼ぶかも知れないが;この用語は、例えば、屈折性光学素子、反射性光学素子、および反射屈折性光学素子を含む、種々の型式の投影システムを包含するように広く解釈すべきである。この放射線システムも放射線の投影ビームを指向し、成形しまたは制御するためにこれらの設計形式の何れかに従って作用する部品を含んでもよく、そのような部品も以下で集合的または単独に“レンズ”と呼ぶかも知れない。更に、このリソグラフィ装置は、二つ以上の基板テーブル(および/または二つ以上のマスクテーブル)を有する型式でもよい。そのような“多段”装置では、追加のテーブルを並列に使ってもよく、または準備工程を一つ以上のテーブルで行い、一方他の一つ以上のテーブルを露出に使ってもよい。二段階リソグラフィ装置は、例えば、US5,969,441およびWO98/40791に記載してあり、その両方を参考までにここに援用する。
ガス組成物という用語は、ここでは純ガスまたはガス組成物を指す。下部レンズ素子という用語は、ここでは投影ビームが基板に達する前の投影システムの最後のレンズを指し、それは通常、例えば鋼製の、レンズマウントに取付けてある。
図1は、この発明の特定の実施例によるリソグラフィ投影装置1を概略的に描く。この装置は、
− 放射線(例えば、157nm放射線)の投影ビームPBを供給するための、放射線源LA、ビーム拡大器Ex、および照明システムILも含む放射線システム、
− マスクMA(例えば、レチクル)を保持するためのマスクホルダを備え、且つこのマスクを部材PLに関して正確に位置決めするために第1位置決め手段PMに結合された第1物体テーブル(マスクテーブル)MT、
− 基板W(例えば、レジストを塗被したシリコンウエハ)を保持するための基板ホルダを備え、且つこの基板を部材PLに関して正確に位置決めするために第2位置決め手段PWに結合された第2物体テーブル(基板テーブル)WT、および
− マスクMAの被照射部分を基板Wの目標部分C(例えば、一つ以上のダイを含む)上に結像するための投影システム(“レンズ”)PL(例えば、屈折性、反射屈折または反射性光学素子、を含む。
ここに描くように、この装置は、反射型である(即ち、反射性のマスクを有する)。しかし、一般的に、それは、例えば、(透過型マスクを備える)透過型でもよい。その代りに、この装置は、上に言及した種類のプログラム可能ミラーアレイのような、他の種類のパターニング手段を使ってもよい。
この線源LA(例えば、157または126nmレーザ源)は、放射線のビームを作る。このビームを直接か、または、例えば、ビーム拡大器Exのような、状態調節手段を通してから、照明システム(照明器)ILの中へ送る。この照明器ILは、このビームの強度分布の外側および/または内側半径方向範囲(普通、それぞれ、σ外側および/またはσ内側と呼ぶ)を設定するための調整手段AMを含む。その上、それは、一般的に、積分器INおよびコンデンサCOのような、種々の他の部品を含む。この様にして、マスクMAに入射するビームPBは、その断面に所望の均一性および強度分布を有する。
図1に関して、線源LAは、(この線源LAが、例えば、水銀灯である場合によくあることだが)このリソグラフィ投影装置のハウジング内にあってもよいが、このリソグラフィ投影装置から遠く離れていて、それが作った放射線ビームをこの装置に(例えば、適当な指向ミラーを使って)導いてもよいことに注目すべきで、この後者のシナリオは、線源LAがレーザである場合によくあることである。本発明および請求項には、これらのシナリオの両方を包含する。
ビームPBは、次に、マスクテーブルMT上に保持されたマスクMAで反射される。マスクMAで反射されてから、ビームPBは、レンズPLを通過し、それがこのビームPBを基板Wの目標部分C上に集束する。第2位置決め手段PW(および干渉計測定手段IF)を使って、基板テーブルWTを、例えば、異なる目標部分CをビームPBの経路に配置するように、正確に動かすことができる。同様に、例えば、マスクMAをマスクライブラリから機械的に検索してから、または走査中に、第1位置決め手段PMを使ってマスクMAをビームPBの経路に関して正確に配置することができる。一般的に、物体テーブルMT、WTの移動は、図1にはっきりは示さないが、長ストロークモジュール(粗位置決め)および短ストロークモジュール(精密位置決め)を使って実現する。しかし、ウエハステッパの場合は(ステップアンドスキャン装置と違って)、マスクテーブルMTを短ストロークアクチュエータに結合するだけでもよく、または固定してもよい。マスクMAおよび基板Wは、マスク整列マークM1、M2および基板整列マークP1、P2を使って整列してもよい。
図示する装置は、二つの異なるモードで使うことができる。
1.ステップモードでは、マスクテーブルMTを本質的に固定して保持し、全マスク像を目標部分C上に一度に(即ち、単一“フラッシュ”で)投影する。次に基板テーブルWTをxおよび/またはy方向に移動して異なる目標部分CをビームPBで照射できるようにする。そして、
2.走査モードでは、与えられた目標部分Cを単一“フラッシュ”では露出しないことを除いて、本質的に同じシナリオを適用する。その代りに、マスクテーブルMTが与えられた方向(所謂“走査方向”、例えば、y方向)に速度νで動き得て、それで投影ビームPBがマスク像の上を走査させられ、同時に、基板テーブルWTがそれと共に同じまたは反対方向に速度V=Mνで動かされ、このMはレンズPLの倍率(典型的には、M=1/4または1/5)である。この様にして、比較的大きい目標部分Cを、解像度について妥協する必要なく、露出することができる。
図2は、現状技術(例えば、EP1098226)により投影ビームの一部を横切る流れを創るための洗浄システム200を含む、図1のリソグラフィ投影装置のウエハステージを示す。このウエハステージには、投影レンズシステムPLの最後の(レンズ)素子とウエハまたは基板Wとの間に洗浄すべきスペースが一つしかない。このウエハステージの移動の全範囲に亘る洗浄ガス経路を設けねばならないことを避けるために、この洗浄システム200は、投影レンズシステムPLの最後の(レンズ)素子に、この最後の素子の両側で取付けた、洗浄ガス供給出口17および排出入口18を含む。それらは、この最後のレンズ素子の隣りまたは周りに配置することもできる。出口17および排出入口18を設けることによって、層流または実質的に層流のガス流を設け且つ維持することができる。
出口17および入口18は、それぞれ、流量調整器117および真空ポンプ127を介して洗浄ガス供給源11および貯留槽12に接続してある。出口17は特にであるが、入口18も洗浄ガスの流れを案内するための羽根を備えてもよい。出口17および入口18は、上述の“フード”と解釈することができ、またはレンズおよび基板Wと共にある容積を形成する“パージ・フード”と呼ぶこともできる。
もし、既に平坦でなければ、投影レンズシステムPLの最後素子を薄いシートで覆ってもよい、以下参照。
上述の流量調整器117は、特定の実施例および利用できるガス供給源に対して必要なガス流量を与えるために必要に応じて静的若しくは制御可能圧力または流量減少装置および/またはブロワを含んでもよい。これは、ここで述べる他の流量調整器(以下の137参照)にも当てはまる。真空ポンプ127、または以下に述べる他の真空ポンプもガスの一部を排出するための他の手段を含んでよい。
図3に、この発明の一実施例によるガス洗浄システムの概略図を示す。図2同様、それは、リソグラフィ装置のウエハステージを示し、この投影レンズシステムPLの最後の(レンズ)素子21に、この最後の素子の両側で取付けた、洗浄ガス供給出口17および排出入口18を備える洗浄システム200を含む。
投影ビームPBが横切るスペースを、(超高純度)窒素(N)、または使用する照明放射線に透明なその他のガス(例えば、ヘリウム、アルゴンまたはキセノン)で洗浄する。17と18の間に層流を保証しおよび乱流を最少にするために、全ての部品を出来る限り平滑にしてもよい。それによってこのシステムの有効レイノルズ数が減少する。乱流渦の最少化によって、洗浄ガスの汚染が最少化され、このガスを回収して再使用することができる(例えば、ユニット12によって)。ガスの再使用は、それを回収したのと同じ領域でもよく、または他の場所、例えば、カスケード式でもよい。そのような構成では、新鮮な洗浄ガスを最も重要な領域に供給し、次に順次それ程重要でない領域で再使用してもよい。洗浄ガスは、勿論、再使用前に汚れを落しまたは浄化して、汚染レベルを制御するために望み通りに新鮮なガスと混合してもよい。
参考までにここに援用する、EP1098226は、超高純度窒素(N)が、洗浄ガスとして、1標準大気圧で移動1cm当り約46の吸光係数kの空気に比べて、1標準大気圧で移動1cm当り約0.0001未満のkを有することを記載する。このビーム経路内の実際のガス圧は大気圧以上かも知れない。洗浄窒素、または他の適切な洗浄ガスを高純度で、即ち、1ppm未満、好ましくは0.1ppm未満、更に好ましくは0.01ppm未満、および更に一層好ましくは0.001ppm未満の空気および/または水分汚染で用意してもよい。空気による汚染は、5ppm未満、更に好ましくは1ppm未満、および更に一層好ましくは0.1ppm未満であるのが望ましい。
層流を保証するために、最後のレンズ素子21は、例えば、CaF、MgF、BaF、溶融SiOのような、使用する放射線に実質的に透過性の材料、またはこのリソグラフィ装置で使用する放射線の波長に対して高い透過率を有するシートまたはペリクルを作れるその他の材料のシートまたはペリクルを含んでもよい。ポリマーペリクルは、それらを横切る拡散を避けるために避けるのが好ましい。この発明のある実施例では、ペリクルを全く省略してもよく、その場合この洗浄ガス供給が単純化される。最後のレンズマウント21に、またはその周りに取付けた洗浄ガス供給システム200も“パージ・フード”と呼ぶ。
この実施例では、ここに概略的に描くように、このパージ・フードは、下面がウエハとほぼ平行であるが、しかし、この面は曲げてもよくおよび/またはウエハに関して角度を成してもよい。しかし通常、この実施例のガス供給システムは、下面がウエハとほぼ平行である。
ガス洗浄システム200は、更に、この発明のこの実施例によれば、流量調整器137を介して洗浄ガス供給源11に接続した余分な出口202を含む。理解を容易にするために、出口202および流量調整器137を投影ビームの両側に描くが、この図はこの点で対称であり、出口202がこのビームの全周にあって、一つの流量調整器137だけあればよいかも知れないことを考慮に入れるべきである。それにも拘らず、この実施例は、出口202が各々独自の流量調整器137を持つ別々の隔室に属するという選択肢も含む。この様にして、更によく制御した外向きの放射状ガス流203を発生することができる。
このパージ・フードとウエハの間を、出口202から来るガスが創ったガス流203がある長さ201に沿って移動し、その長さは、投影ビームの側での出口202とガス洗浄システム200の外側との間の長さ(図3も参照)として定義され、言換えればそれはパージ・フードと基板Wの間のスペースの幅である。
この外向きのガス流203の速度は、流量調整器137によって調整することができるが、流量調整器117および真空ポンプ127によって調整できる、17と18の間のガス流の速度および圧力の関数でもある。この層流で放射状のガス流は、使用する基板テーブル速度で、放射状のガス流203の速度が、このガス洗浄システムと基板との間のスペースのあらゆる場所でゼロより高く且つ外向きであるように調節する。この放射状ガス流速度は、出口202および基板テーブル速度で創ったガス流速度のベクトル和である。基板テーブル速度という用語は、例えば、ステップアンドスキャン型リソグラフィ投影装置の基板テーブル走査速度、並びに、ステップアンドリピート型リソグラフィ投影装置の場合の、続いて起る露出の間のウエハテーブルの速度を含む。速度がゼロより高く且つ外向きであるという放射状ガス流の要件を満たすとき、乾燥ガスがレジストの上に与えられ、このレジスト上および内の水分の量を減少する。これは、透過損失同様、上述の利点に繋がる。この放射状ガス流は、速度がスペース内のあらゆる場所でゼロよりかなり高く、例えば、好ましくは少なくとも基板テーブルの移動方向に、この基板テーブル速度に等しいか、好ましくはそれより高いのが望ましい。
周囲からのガスは、パージ・フードの下の領域は実質的にどこへも入らないだろう。勿論、幾らかの拡散および乱流が常にあって、周囲から幾らかのガスをパージ・フードの下の容積に入らせるだろうが、このガス速度が十分高いとき、このガスは、17、18と基板Wの間の投影ビームの容積に実質的に入らないだろう。
レジスト内の水分の量は、このレジスト層の厚さに依るだろう。157nmリソグラフィ波長およびレジスト層厚さ約200nm以下を仮定すると、驚いたことに、パージガスN、He、Xe等の放射状ガス流203によるレジストの乾燥が約0.01s未満の時間で約10%の透過損失を約1%へ減少させることに繋がることが判る。残る透過損失(約1%)は、レジストにより強く結合した、残留水分による。供給するガスは、水分汚染が1ppm未満、好ましくは0.01ppm未満、更に好ましくは0.001ppm未満であるのが望ましい。
これは、長さ201が約0.01s掛ける(平均)基板テーブル速度であるべきであることを意味する。例えば、基板テーブル速度を約0.3m/sとすると、これは、既に長さ201は約3mmで十分であることを意味する。長さ201は、少なくとも約5mm、更に好ましくは少なくとも約10mm、最も好ましくは少なくとも約20mmであるのが望ましい。勿論、この計算した長さ201(即ち、実質的にパージ・フードと基板W(即ち、基板W上のレジスト)の間のスペースの幅)は、レジスト中の水分量に依り、次にそれはレジスト厚さの関数であり、およびその計算長さは基板テーブル速度にも依る。ここで与えた値は、レジスト厚さ約200nmで、これらの用途に関してこの技術で知られるレジストに対して特に適用可能である。当業者は、波長、レジスト、レジスト厚さ、基板テーブル速度を最適結果が得られるような方法で選択するだろう。ここで与えた長さは、157nmの放射線、および上述のレジスト厚さを使うリソグラフィ装置に特に当てはまる。
そのような長さ201、即ち、そのような乾燥長さを使うことによって、レジスト内および上に存在する水分、主としてゆるく結合した水分のかなりの部分を除去し、パージ・フード(ガス洗浄システム200)の外部の領域へ移送する。それで、透過率差が最小になる。この発明のガス洗浄システムのないリソグラフィ装置では、透過損失が約10%であった。今や、この発明の装置を使うとき、透過損失は、約1%以下、好ましくは0.1%未満である。この様にして、より再現性の良い結果、即ち、良いICが得られ、および例えば、基板高さを決めるためのセンサが透過率または屈折率の差によって妨害されることが少ない。
図3では、出口202が洗浄ガス供給源11に接続してある。しかし、この実施例は、ガス供給源11が異なるガス供給源を含む可能性も含む。この様に、出口202からの放射状のガス流203は、上記層流ガス流のガスと違う成分のガスを含んでもよい。ガス流203の要件(例えば、レジストを乾燥し得るガス)、および17と18の間の層流の要件(少なくとも投影ビームPBに透明)は違ってもよいので、これらのガス成分は異なってもよい。それで、別々のガス供給源11が必要である。
基板Wの隣に、投影ビームと“パージ・フード”の下の面を(より)平坦にするために隆起210があってもよい。これらの隆起210は、高さが基板Wと同じで、考えられる高さの差が好ましくは0.5mm未満、更に好ましくは0.1mm未満、更に一層好ましくは0.01mm以下であるのが望ましい。同じことは、特に基板Wと隆起210の間の割れ目または裂け目に当てはまる。この割れ目の幅は、好ましくは0.5mm未満、更に好ましくは0.1mm未満、更に一層好ましくは0.01mm以下であるのが望ましい。隆起210もやはり一つの隆起または、例えば、基板W全周に亘る、多数の隆起でもよい。それは、センサ、例えば、速度、高さ等を決めるためのセンサを含むこともできる。この様に、基板テーブルWTは、基板の格納域を備える正方形または矩形であり、この基板を隆起210または多数の隆起210によって囲むことができる。これらの隆起210に、隆起と同じ高さのセンサがあってもよい(これらのセンサは、必要なら、隆起210と実質的に同じ高さの平坦面を得るために覆ってもよい)。割れ目の幅および高さの差を減らすことによって、平坦面が得られ、それは放射状のガス流203におよび起り得る乱流を減らすために有利である。
図4は、この発明による第2実施例を描く。この実施例は、実質的に先の実施例と同じであるが、今度はガス洗浄システム200が、更に、出口202に関して、上記ガス洗浄システム200のパージ・フードの外部にある、放射状のガス流203の一部を排出するように構成した、排気入口19を含む。この様にして、放射状のガス流203の一部またはかなりの部分が排気入口19によって排出される。
排気入口19は、この概略図に別の排気入口として示すが、それらは出口202の全周に亘る一連の排気入口であることを意味し、次にそれらの出口は、投影システムPLのレンズまたは最後のレンズ素子21の全周または周囲のかなりの部分にある。排気入口19は、真空ポンプ147に接続してあり、それもやはり多数の真空ポンプ(または排気手段)でもよい。真空ポンプ147は、貯留槽12に接続してもよく、および投影ビームPBがある容積におよびガス洗浄システム200の下の容積に異なるガス成分を使う場合、それらは多数の貯留槽12に接続してもよい。排気入口19は、必ずしもパージ・フードに接続する、即ちガス洗浄システム200の一部である必要はない。
今度は、長さ201は、投影ビーム側での出口202と入口19の間の長さ(または幅)と定義される。この長さ201は、少なくとも5mm、より好ましくは少なくとも約10mm、および最も好ましくは少なくとも約20mmであるのが望ましい。
この様に、パージ・フードの外部のガスまたはガス混合体と異なる特性、例えば屈折率を有するかも知れないパージガスが実質的に外部へ逃げない。それで、最後のレンズ素子と基板の間の容積に位置し、例えば、基板高さ、速度または位置を決めるためのセンサがガスの透過率または屈折率の差によって妨害されることが少ないので、より再現性の良い結果、即ち、良いICが得られる。
任意のスペースに、洗浄ガス流を平滑化または案内し且つ渦生成を除去または制御するために必要に応じた、小さなストリップまたはフィンのような空力的形態を設けてもよい。
更に、この発明のガス洗浄システムおよび調整器、真空ポンプ、貯留槽等のような関連部品は、更に、例えば、上記層流を導き且つその中の乱流を減らすために上記ビーム経路の上記部分に設けた、流れ絞り弁、ブロワ、流れ制御部材等を含んでもよい。それは、例えば、ガス流速またはガス成分を測定するためのセンサも含んでよい。
この発明の特定の実施例を上に説明したが、この発明を説明したのと別の方法で実施してもよいことが分るだろう。こ実施例の説明および図面は、この発明を制限することを意図しない。例えば、これらの実施例および図面は、層流を創るためのガス洗浄システムを含むが、この発明によれば、そのような層流は好ましい特徴ではあるが、その存在はこの発明の利益を得るために必要ではない。
本発明の実施例によるリソグラフィ投影装置を示す。 現状技術によるガス洗浄システムを備える、図1の実施例のウエハステージの拡大図である。 この発明の一実施例によるガス洗浄システムの概略図である。 この発明のガス洗浄システムのもう一つの実施例の概略図である。
符号の説明
17 出口
18 入口
19 入口
21 下部レンズ素子
200 ガス洗浄システム
201 長さ
202 出口
203 放射状ガス流
MA パターニング手段
MT 支持構造体
PB 投影ビーム
PL 投影システム
W 基板
WT 基板テーブル

Claims (21)

  1. リソグラフィ投影装置であって、
    放射線の投影ビーム(PB)を供給するための放射線システム、
    所望のパターンに従ってこの投影ビーム(PB)をパターン化するのに役立つパターニング手段(MA)を支持するための支持構造体(MT)、
    基板(W)を保持するるための基板テーブル(WT)、
    このパターン化したビームをこの基板(W)の目標部分(C)上に投影するための投影システム(PL)、および
    ガス洗浄システム(200)を含む装置に於いて、
    前記ガス洗浄システム(200)および前記基板(W)が前記ガス洗浄システム(200)と前記基板(W)との間に放射状のガス流(203)のための中間スペースを形成し、
    前記ガス洗浄システム(200)が前記放射状ガス流(203)を発生するための出口(202)も含み、そして
    前記ガス洗浄システム(200)は、使用中、前記放射状ガス流(203)が前記スペース内で外方に向いて前記スペース内のあらゆる場所でゼロより大きい大きさの半径方向速度を有するように、前記放射状ガス流(203)を発生するように構成されていることを特徴とするリソグラフィ投影装置。
  2. 投影システム(PL)の最後のレンズと前記基板(W)との間で少なくとも前記投影ビーム(PB)の一部を横切る実質的に層流のガス流を発生するための出口(17)および入口(18)をさらに含む請求項1に記載されたリソグラフィ装置。
  3. 投影ビーム側の前記出口(202)と前記洗浄システム(200)の外側の間にある長さ(201)を形成し、前記長さ(201)が少なくとも約5mmである請求項1または請求項2に記載されたリソグラフィ投影装置。
  4. 前記ガス洗浄システム(200)が、更に、前記ガス洗浄システム(200)の、これらの出口(202)に関して、外部に位置し、前記放射状ガス流(203)の一部を排出するように構成された排気入口(19)を含む請求項1または請求項2に記載されたリソグラフィ投影装置。
  5. 投影ビーム側の前記出口(202)と前記洗浄システム(200)の入口(19)との間に、前記基板(W)と平行で前記ガス洗浄システム(200)のすぐ下にある長さ(201)を形成し、前記長さ(201)が少なくとも約5mmである請求項4に記載されたリソグラフィ投影装置。
  6. 前記長さ(201)が少なくとも約10mmである請求項3または請求項5に記載されたリソグラフィ投影装置。
  7. 前記長さ(201)が少なくとも約20mmである請求項3または請求項5に記載されたリソグラフィ投影装置。
  8. 投影システム(PL)の最後のレンズと前記基板(W)との間で少なくとも前記投影ビーム(PB)の一部を横切る、出口(17)と入口(18)との間に発生した前記層流ガス流が、前記投影システムの前記放射線を実質的に吸収しない洗浄ガスを含む請求項2ないし請求項7のいずれか1項に記載されたリソグラフィ投影装置。
  9. 前記洗浄ガスがN2、He、Ar、Kr、およびNeから成るグループから選択した一つ以上のガスを含む請求項8に記載されたリソグラフィ投影装置。
  10. 前記ビーム経路の前記部分で前記洗浄ガスの空気汚染が5ppm未満、好ましくは1ppm未満、更に好ましくは0.1ppm未満である請求項8または請求項9に記載されたリソグラフィ投影装置。
  11. 前記洗浄ガスの吸光係数kが前記放射線に対してcm当り0.005未満、好ましくは0.001未満である請求項8から請求項10までのいずれか1項に記載されたリソグラフィ投影装置。
  12. 前記放射状ガス流(203)が水分汚染1ppm未満、好ましくは0.01ppm未満、更に好ましくは約0.001ppm未満のガスを含む請求項1から請求項11までのいずれか1項に記載されたリソグラフィ投影装置。
  13. 前記放射線に実質的に透明な材料で作った下部レンズ素子(21)、前記ビーム経路の前記部分内またはそれに隣接する前記リソグラフィ装置の部品の非平面表面を覆うために実質的に平面であり且つ前記層流の方向と実質的に平行に設けたカバー部材を含む請求項1から請求項12までのいずれか1項に記載されたリソグラフィ投影装置。
  14. 前記放射線に実質的に透明な前記材料が、CaF2、SiO2、MgF2およびBaF2から成るグループから選択してある請求項13に記載されたリソグラフィ投影装置。
  15. 前記投影ビームの前記放射線の波長が200nm未満、好ましくは157+/−5nmまたは126+/−5nmである請求項1から請求項14までのいずれか1項に記載されたリソグラフィ投影装置。
  16. 出口(202)からの前記放射状ガス流(203)が層流ガス流の前記ガスと違う成分のガスを含む請求項2から請求項15までのいずれか1項に記載されたリソグラフィ投影装置。
  17. リソグラフィ投影装置にして、
    放射線の投影ビーム(PB)を供給するための放射線システム、
    所望のパターンに従ってこの投影ビーム(PB)をパターン化するのに役立つパターニング手段(MA)を支持するための支持構造体(MT)、
    基板(W)を保持するための基板テーブル(WT)、
    このパターン化したビームをこの基板(W)の目標部分上に投影するための投影システム(PL)、および
    ガス洗浄システム(200)、を含む装置を使うデバイス製造方法であって、前記ガス洗浄システム(200)と前記基板(W)の間の中間スペースに放射状のガス流(203)を設け、前記放射状ガス流(203)が前記スペース内で外方に向いて前記スペース内のあらゆる場所でゼロより大きい大きさの半径方向速度を有するようしたことを特徴とするデバイス製造方法。
  18. ガス洗浄システムが、投影システム(PL)の最後のレンズと前記基板(W)との間で少なくとも前記投影ビーム(PB)の一部を横切る実質的に層流のガス流を発生するための出口(17)および入口(18)をさらに含む請求項17に記載されたデバイス製造方法。
  19. 前記放射状ガス流(203)の一部を、前記リソグラフィ投影装置の前記ガス洗浄システム(200)の出口(202)に関して、外部に位置する排気入口(19)によって排出する請求項17または請求項18に記載されたデバイス製造方法。
  20. 前記基板テーブル(WT)が前記基板(W)を前記投影システム(PL)に関して動かすように構成してあり、放射状ガス流(203)が、少なくとも基板テーブル(WT)の移動方向に、基板テーブルの瞬間速度に等しいか、それより高い速度を有する請求項17から請求項19までのいずれか1項に記載されたデバイス製造方法、または請求項1から請求項15までのいずれか1項に記載されたリソグラフィ投影装置。
  21. 請求項17から請求項20までのいずれか1項に記載された製造方法により、または請求項1から請求項16までのいずれか1項に記載された装置で製造したデバイス。
JP2004033279A 2003-02-12 2004-02-10 ガス洗浄システムを含むリソグラフィ装置 Expired - Fee Related JP4035510B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP03075416 2003-02-12

Publications (2)

Publication Number Publication Date
JP2004247733A true JP2004247733A (ja) 2004-09-02
JP4035510B2 JP4035510B2 (ja) 2008-01-23

Family

ID=33016929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004033279A Expired - Fee Related JP4035510B2 (ja) 2003-02-12 2004-02-10 ガス洗浄システムを含むリソグラフィ装置

Country Status (7)

Country Link
US (1) US7106412B2 (ja)
EP (1) EP1447716A3 (ja)
JP (1) JP4035510B2 (ja)
KR (1) KR100748446B1 (ja)
CN (1) CN1530756A (ja)
SG (1) SG115613A1 (ja)
TW (1) TWI243970B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014207484A (ja) * 2004-12-20 2014-10-30 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ装置

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040158878A1 (en) * 2003-02-07 2004-08-12 Viresh Ratnakar Power scalable digital video decoding
US7072021B2 (en) * 2004-05-17 2006-07-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7148951B2 (en) 2004-10-25 2006-12-12 Asml Netherlands B.V. Lithographic apparatus
US20060119811A1 (en) * 2004-12-07 2006-06-08 Asml Netherlands B.V. Radiation exposure apparatus comprising a gas flushing system
US7352440B2 (en) 2004-12-10 2008-04-01 Asml Netherlands B.V. Substrate placement in immersion lithography
JP3977377B2 (ja) * 2005-03-04 2007-09-19 キヤノン株式会社 露光装置およびデバイス製造方法
US7834974B2 (en) * 2005-06-28 2010-11-16 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7522258B2 (en) 2005-06-29 2009-04-21 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method utilizing movement of clean air to reduce contamination
US7253875B1 (en) * 2006-03-03 2007-08-07 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9477158B2 (en) * 2006-04-14 2016-10-25 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8654305B2 (en) * 2007-02-15 2014-02-18 Asml Holding N.V. Systems and methods for insitu lens cleaning in immersion lithography
NL1036181A1 (nl) * 2007-11-30 2009-06-04 Asml Netherlands Bv A lithographic apparatus, a projection system and a device manufacturing method.
EP2423749B1 (en) 2010-08-24 2013-09-11 ASML Netherlands BV A lithographic apparatus and device manufacturing method
DE102011079450A1 (de) * 2011-07-20 2013-01-24 Carl Zeiss Smt Gmbh Optische Anordnung mit Degradationsunterdrückung
JP6496017B2 (ja) 2014-11-13 2019-04-03 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ装置およびデバイス製造方法
CN105842997B (zh) * 2016-06-03 2018-03-06 中国科学院光电研究院 一种动态气体锁的试验装置和试验方法
CN109283797B (zh) * 2017-07-21 2021-04-30 上海微电子装备(集团)股份有限公司 物镜保护装置、物镜系统以及光刻设备
CN111480120A (zh) 2017-12-14 2020-07-31 Asml荷兰有限公司 具有改良的图案化性能的光刻设备
CN108398858B (zh) * 2018-03-20 2019-05-10 李笛 一种气体隔离装置及隔离方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4801352A (en) * 1986-12-30 1989-01-31 Image Micro Systems, Inc. Flowing gas seal enclosure for processing workpiece surface with controlled gas environment and intense laser irradiation
WO2001006548A1 (fr) * 1999-07-16 2001-01-25 Nikon Corporation Procede et systeme d'exposition
TW563002B (en) * 1999-11-05 2003-11-21 Asml Netherlands Bv Lithographic projection apparatus, method of manufacturing a device using a lithographic projection apparatus, and device manufactured by the method
US6933513B2 (en) * 1999-11-05 2005-08-23 Asml Netherlands B.V. Gas flushing system for use in lithographic apparatus
WO2001084241A1 (en) * 2000-05-03 2001-11-08 Silicon Valley Group, Inc. Non-contact seal using purge gas
JP4330291B2 (ja) * 2000-07-14 2009-09-16 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ投影装置、デバイス製造方法、およびガス組成物
US6391090B1 (en) 2001-04-02 2002-05-21 Aeronex, Inc. Method for purification of lens gases used in photolithography
JP2002373852A (ja) * 2001-06-15 2002-12-26 Canon Inc 露光装置
US6954255B2 (en) * 2001-06-15 2005-10-11 Canon Kabushiki Kaisha Exposure apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014207484A (ja) * 2004-12-20 2014-10-30 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ装置
US9116443B2 (en) 2004-12-20 2015-08-25 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9329494B2 (en) 2004-12-20 2016-05-03 Asml Netherlands B.V. Lithographic apparatus
US9417535B2 (en) 2004-12-20 2016-08-16 Asml Netherlands B.V. Lithographic apparatus
US9835960B2 (en) 2004-12-20 2017-12-05 Asml Netherlands B.V. Lithographic apparatus
US10248035B2 (en) 2004-12-20 2019-04-02 Asml Netherlands B.V. Lithographic apparatus

Also Published As

Publication number Publication date
JP4035510B2 (ja) 2008-01-23
SG115613A1 (en) 2005-10-28
KR20040073365A (ko) 2004-08-19
TWI243970B (en) 2005-11-21
TW200428159A (en) 2004-12-16
US7106412B2 (en) 2006-09-12
EP1447716A2 (en) 2004-08-18
EP1447716A3 (en) 2005-01-05
KR100748446B1 (ko) 2007-08-10
CN1530756A (zh) 2004-09-22
US20040212791A1 (en) 2004-10-28

Similar Documents

Publication Publication Date Title
US7315346B2 (en) Lithographic apparatus and device manufacturing method
JP4035510B2 (ja) ガス洗浄システムを含むリソグラフィ装置
US7057702B2 (en) Lithographic apparatus and device manufacturing method
US6987278B2 (en) Gas flushing system with recovery system for use in lithographic apparatus
JP3696201B2 (ja) リソグラフィ装置およびデバイス製造方法
EP1429189B1 (en) Lithographic apparatus and device manufacturing method
JP2006186352A (ja) ガス・フラッシング・システムを備える放射線露光装置
JP2004006784A (ja) マスクまたは基板の移送方法、そのような方法での使用に適合した保管ボックス、デバイスまたは装置、およびそのような方法を含むデバイス製造方法
US7050152B2 (en) Exposure apparatus
JP4429201B2 (ja) リソグラフィック装置及びデバイス製造方法
JP4610545B2 (ja) リソグラフィ装置及び清浄装置
JP4166730B2 (ja) リソグラフィ投影装置およびデバイス製造方法
TWI271601B (en) Lithographic apparatus and device manufacturing method
TWI232356B (en) Lithographic projection apparatus, device manufacturing method and device manufactured thereby
JP4070713B2 (ja) リソグラフ装置及びデバイス製造方法
US7251014B2 (en) Exposing method, exposing apparatus and device manufacturing method utilizing them
US20050002003A1 (en) Lithographic apparatus and device manufacturing method
US7816658B2 (en) Extreme ultra-violet lithographic apparatus and device manufacturing method
JP2004274024A (ja) リソグラフィ装置、デバイス製造方法、およびそれにより製造されたデバイス
EP1186958A2 (en) Lithographic projection apparatus
EP1596421A2 (en) Lithographic apparatus and device manufacturing method

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070309

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20070522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071029

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4035510

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S802 Written request for registration of partial abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311802

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees