WO2005080894A1 - Verfahren und einrichtung zur gefriertrocknung von produkten - Google Patents

Verfahren und einrichtung zur gefriertrocknung von produkten Download PDF

Info

Publication number
WO2005080894A1
WO2005080894A1 PCT/EP2005/000958 EP2005000958W WO2005080894A1 WO 2005080894 A1 WO2005080894 A1 WO 2005080894A1 EP 2005000958 W EP2005000958 W EP 2005000958W WO 2005080894 A1 WO2005080894 A1 WO 2005080894A1
Authority
WO
WIPO (PCT)
Prior art keywords
freeze
water vapor
drying
chamber
temperature
Prior art date
Application number
PCT/EP2005/000958
Other languages
English (en)
French (fr)
Inventor
Georg-Wilhelm Oetjen
Original Assignee
Gea Lyophil Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gea Lyophil Gmbh filed Critical Gea Lyophil Gmbh
Priority to JP2006552500A priority Critical patent/JP2007524066A/ja
Priority to EP05707106A priority patent/EP1716373A1/de
Priority to US10/589,517 priority patent/US20090107000A1/en
Publication of WO2005080894A1 publication Critical patent/WO2005080894A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B5/00Drying solid materials or objects by processes not involving the application of heat
    • F26B5/04Drying solid materials or objects by processes not involving the application of heat by evaporation or sublimation of moisture under reduced pressure, e.g. in a vacuum
    • F26B5/06Drying solid materials or objects by processes not involving the application of heat by evaporation or sublimation of moisture under reduced pressure, e.g. in a vacuum the process involving freezing
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/40Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by drying or kilning; Subsequent reconstitution
    • A23L3/44Freeze-drying
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B25/00Details of general application not covered by group F26B21/00 or F26B23/00
    • F26B25/22Controlling the drying process in dependence on liquid content of solid materials or objects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N7/00Analysing materials by measuring the pressure or volume of a gas or vapour
    • G01N7/14Analysing materials by measuring the pressure or volume of a gas or vapour by allowing the material to emit a gas or vapour, e.g. water vapour, and measuring a pressure or volume difference

Definitions

  • the invention relates to a method for freeze-drying products using a chamber with temperature-adjustable shelves and a condenser, in which water escaping from the product in the form of water vapor precipitates on the surface of the condenser and in which measurements to document the process take place during the course of the freeze-drying process be performed.
  • the invention also relates to a device suitable for carrying out this method.
  • Freeze drying is a process for removing water from a water-containing frozen product, e.g. from pharmaceuticals or food.
  • the process is generally carried out at an air pressure which is small compared to the water vapor pressure at the chosen temperature of the ice.
  • an ice temperature of -20 ° C corresponds to a water vapor pressure (in equilibrium) of 1.03 mbar. So that the water vapor can flow from the ice surface into the drying chamber, the water vapor pressure in the drying chamber must be significantly less than 1.03 mbar, for example 0.5 mbar. It is therefore expedient to choose a pressure which is small compared to this pressure value, for example 0.15 mbar.
  • Freeze-drying usually takes place in a chamber in which there are temperature-adjustable shelves and to which an evacuation device, for example an ice condenser combined with a vacuum pump, is connected via a valve.
  • the drying process is essentially characterized by two drying phases. As long as crystallized (frozen) water is still in the product, this drying section is called the main or sublimation drying.
  • the temperature of the product must not exceed certain values, usually well below 0 ° C, in order to avoid impairing the quality and / or the properties of the product. As the drying progresses, the ice cores present in the product become smaller and smaller.
  • the content of the international publication WO 98/50 744 also belongs to the prior art.
  • the ice temperature is measured in such a way that the valve between the freeze-drying chamber and the evacuation device is shut off for a short time (a few seconds).
  • an equilibrium water vapor pressure is established in the freeze drying chamber, which corresponds to the prevailing ice temperature.
  • the ice temperature can be directly inferred from the pressure increase.
  • This method for measuring the ice temperature is known under the term “barometric temperature measurement” and is disclosed in DE-PS 10 38 988.
  • the described measurement of the ice temperature is technically and time-consuming. It presupposes the presence of a valve between the freeze drying chamber and the evacuation device.
  • the valve closing times not only extend the freeze drying process itself, they are also associated with a risk to the product. There is a danger that inadmissible temperature increases of the ice-containing goods will occur during the shutdown times, which lead to a decrease in the product quality.
  • the known measurement of the ice temperature depends on the correct detection of the saturated steam pressure. This requires a minimum amount of ice per chamber volume, so it is only imprecise or not possible with small amounts of ice in large drying chambers.
  • the object of the present invention is to improve the sequence of a freeze-drying process with regard to its documentation and, at the same time, to achieve a reduction in the technical outlay with a device suitable for carrying out this method.
  • this object is achieved by the characterizing features of the claims. It is achieved in a simple manner by the invention that it is known at all times during the course of the freeze-drying process what amount of water reaches the condenser or what amount of water is still present in the product. The prerequisite is that the amount of water contained in the product is known at the start of the freeze-drying process. This requirement is always fulfilled.
  • the water vapor flow between the product and the condenser is expediently determined from current (e.g. 10 to 100 times / s) measurements of the water vapor partial pressure and the flow resistance for the water vapor between the shelves and the condenser.
  • the water vapor partial pressure can, for example, be measured precisely with the aid of an infrared analyzer. Correct detection of the saturated steam pressure, i.e. Such measurements are independent of a minimum amount of ice per chamber volume.
  • the ice temperature no longer has to be measured.
  • the described time and technical effort associated with measuring the ice temperature is eliminated.
  • the drying process can be documented and controlled by the amount of water that has already been removed or is still available.
  • a valve between the freeze-drying chamber and the evacuation device which have diameters of up to 1 m, can be dispensed with.
  • the product shelves and the evacuation device can be accommodated in one room. Further advantages and details of the invention will be explained with reference to the devices for carrying out the freeze-drying shown schematically in FIGS. 1 and 2. Show it
  • FIG. 1 shows a freeze-drying device with a chamber and a condenser connected to it
  • Figure 2 shows a freeze-drying device with a chamber in which the condenser is located in addition to the shelves.
  • the freeze-drying device shown in FIG. 1 comprises the chamber 1 with its shelves 2 and the condenser 3 connected to it with its chamber 4 and its condensation surfaces 5.
  • the shelves 2 can be tempered. They are part of a temperature control circuit, not shown in detail, with a refrigerator and feed pump. During the heating phase, the chiller is switched off and the cooling / heating medium is electrically heated.
  • An apparatus which serves to close the vials 6 within the chamber 1 and after the drying has been carried out is generally designated by 7. It comprises the pressure plate 8 and the actuating device 9.
  • the opening 10 Between the freeze-drying chamber 1 and the condenser chamber 4 there is the opening 10, which can be closed with a valve 11 arranged on the condenser side. It comprises a valve plate 12 curved in the direction of the freeze-drying chamber 1 and a drive 13. To dry the frozen product located in the vial 6, the required vacuum is first generated in the chamber 1 and the shelves 2 are tempered. When the valve 11 is open, the water vapor emerging from the product flows to the condensation surfaces 5 of the condenser 3. The amount of water still present in the product gradually decreases.
  • a device which continuously measures the water vapor partial pressure in the chamber 1. It is only shown as a block in the figures and is designated by 15. It must be a device that measures water vapor partial pressures precisely and as inertially as possible, between 1 mbar and 10 "3 mbar with a reproducibility of about 1%.
  • a device is preferably used that uses the water vapor absorption bands in the infrared spectral range. Devices of this type are sensitive to temperature fluctuations in the water vapor.Shielding plates 16 surrounding the device 15 are therefore schematically indicated, which can expediently be temperature-controlled in order to set the temperature of the device 15 to a certain value.
  • Infrared spectroscopy allows the wavelengths to be selected in such a way that there is no interference between the water and other bands or if in exceptional cases this is not It should be possible to mathematically analyze the absorption spectra as they would look without interference.
  • a mass spectrometer could also be used. However, the use of mass spectrometers for measuring the water vapor partial pressure in freeze-drying chambers is currently only possible with a high level of technical effort.
  • the measuring device 15 delivers electrical signals as often as possible, preferably 10 to 100 times per second, which correspond to the water vapor partial pressure prevailing within the chamber 1.
  • the computer 17 also requires information about the pressures and / or temperatures prevailing in the chamber 1 (for example, surface temperatures), be it to be able to take the pressure into account during the determination of the water vapor flow or to initiate control processes which require such information. Sensors and lines which serve to transmit the information from the chamber to the computer 17 are not shown in detail.
  • the water vapor partial pressure can be continuously measured very precisely with the help of an infrared measuring device.
  • the steam flow can be continuously determined from the supplied measured values and the known flow resistance for the respective chamber-condenser arrangement (measured several times at different pressures and stored in the computer 17) and the amount of water removed can be calculated over a time integration.
  • D is determined by the length of the transport routes and their cross sections as well as by the coefficient of friction of the gas. If one considers the coefficient of friction at a known pressure to be constant under the above conditions, G can be calculated as a function of p l and p2. If p2 is small compared to p l, as is customary in freeze drying, the precise measurement of p l is sufficient to obtain concrete values for G. The integral over G from the point at which freeze-drying begins to the respective measuring times gives the amount of water removed at that point in time.
  • the freeze-drying process during the main drying (sublimation drying) and also during the post-drying (desorption drying) can be documented by the amount of water that has already been removed or still available.
  • Switching from main to post-drying e.g. is associated with an increase in the shelf temperature and a decrease in the pressure in the chamber if a quantity of water dependent on the product properties is removed, e.g. 98%), or - based on the solid matter - still has a predetermined water content in percent of the solid matter, e.g. 8th%.
  • the end point of post-drying - e.g. specified at 0.8%) - can be measured directly.
  • a control unit 19 Downstream of the computer 17 is a control unit 19.
  • the entire sequence of the freeze-drying process e.g. the pressure in the chamber 1, the shelf temperature, the actuation of the valve 1 1, the switch from main drying to after-drying, etc. can be controlled.
  • the components required for such control processes - valves, sensors, etc. - are not shown in detail.
  • the preconditions given above for the continuous accurate measurement of the water vapor partial pressure with the aid of the device 15 have an influence on the way in which it is arranged within the drying chamber 1.
  • the shielding plates 16 already have the effect that the temperature fluctuations at the location of the device are small.
  • further shields 21 which are located between the shelves and the lateral chamber inner surfaces. Shields of this type are in the international publication WO 03/012355. They are expediently temperature-controllable - also independently of the shelves - and avoid disruptive influences of the chamber wall temperature on the product located in the vial 6 and thus also on the measuring device 15. Since 3 water vapor flows at higher speeds are to be expected in the area of the opening 10 to the condenser, the device 15 is expediently located in the upper region of the chamber 1.
  • the condenser 3 is connected to the opening 10 of the freeze-drying chamber 1.
  • This with the valve 1 1 closable opening 10 should be the narrowest point for the water vapor transport to the condenser 3. It is therefore expedient to select the position of the valve plate 12 in its open position such that the area of the annular gap released by the valve is larger than the opening 10.
  • the drive 13 of the valve 11 is located on the side of the condenser 3 facing away from the opening 10.
  • the connecting member 22 between the drive 13 and the valve plate 12 passes through the concentrically wound and axially arranged pipe coil which forms the condenser surface 5. It can carry a conical displacement body 23, the diameter of which increases in the steam flow direction. Its increasing diameter corresponds to the decrease in the volume of steam.
  • a water outlet 24 is provided in the lower side of the condenser 3. It is opened during the defrosting of the deposited ice.
  • the vacuum connection is labeled 25.
  • a line 26 arranged inside the condenser chamber 4 ensures that the gas inlet opening is located in the lower region of the condenser 3.
  • the cold surfaces 5 of the condenser consisting of a tube bundle 28, are also in the chamber 1.
  • a water outlet 24 and a vacuum connection 25, 26 are provided.
  • the shield 16 is missing in the water vapor analysis device 15. Instead, not only side shields 21 of the shelves 2 but also further shields 29 are provided above the shelf 2 and below the tube bundle 28. In addition to avoiding uneven temperature distributions in the area of the product, they also ensure a constant temperature of the device 15.
  • the lower opening, determined by the side shields 21, is decisive for the water vapor flow. It can be made large enough. Take e.g. a drying room within the shields of 1.5 m wide, 2 m high and 1.5 m deep, with approx. 25 cm free passage approx. 5 qm transport area for the water vapor can be reached. With a valve with a free diameter of 1.2 m, which is technically the largest valve that can be made, approx.
  • the arrangement according to FIG. 2 has particular advantages for freeze drying at low pressures. As described in the book "Freeze-Drying", pages 288, 289, already mentioned several times, in a drying room of approx. 4.5 m e.g. about 20,000 bottles can be accommodated. If an ice temperature of less than minus 42 ° C has to be maintained during the main drying, the pressure required for this is approx. 0.06 mbar. Then a valve with a diameter of approx. 1 m would be required.
  • valve size just over 1 m - no longer limits steam transport, especially at low pressures (e.g. less than 0.08 mbar).
  • Chamber and condenser can be arranged in one room.
  • valve between the chamber and the condenser can be omitted. This is a significant cost factor for production systems and large valves, also with regard to operational safety (the valve that is not used cannot lead to a malfunction).

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Food Science & Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Nutrition Science (AREA)
  • Molecular Biology (AREA)
  • Drying Of Solid Materials (AREA)
  • Freezing, Cooling And Drying Of Foods (AREA)
  • Medicinal Preparation (AREA)
  • Measuring Volume Flow (AREA)

Abstract

Die Erfindung bezieht sich auf ein Verfahren und eine Einrichtung zur Gefriertrocknung von Produkten unter Verwendung einer Kammer (1) mit temperierbaren Stellflächen (2) und Kondensationsflächen (5), bei dem aus dem Produkt in Form von Wasserdampf austretendes Wasser an der Oberfläche der Kondensationsflächen niederschlägt und bei dem während des Ablaufs des Gefriertrocknungsprozesses Messungen zur Dokumentation des Prozesses durchgeführt werden; um den Ablauf eines Gefriertrocknungsprozesses in Bezug auf seine Dokumentation zu verbessern und gleichzeitig eine Reduzierung des technischen Aufwandes bei einer für die Durchführung dieses Verfahrens geeigneten Einrichtung zu erreichen, wird vorgeschlagen, dass laufend die Wasserdampfströmung zwischen dem Produkt und den Kondensationsflächen (5) ermittelt wird und dass die in Form von Wasserdampf aus dem Produkt ausgetretene Wassermenge über eine zeitliche Integration errechnet wird.

Description

Verfahren und Einrichtung zur Gefriertrocknung von Produkten
Die Erfindung betrifft ein Verfahren zur Gefriertrocknung von Produkten unter Verwendung einer Kammer mit temperierbaren Stellflächen und eines Kondensators, bei welchem aus dem Produkt in Form von Wasserdampf austretendes Wasser an der Oberfläche des Kondensators niederschlägt und bei welchem während des Ablaufs des Gefriertrocknungsprozesses Messungen zur Dokumentation des Prozesses durchgeführt werden. Außerdem bezieht sich die Erfindung auf eine für die Durchführung dieses Verfahrens geeignete Einrichtung.
Die Gefriertrocknung ist ein Verfahren zur Entfernung des Wassers aus einem wasserhaltigen eingefrorenen Produkt, z.B. aus Pharmaka oder Lebensmitteln. Das Verfahren wird im allgemeinen bei einem Luftdruck ausgeführt, der klein ist gegen den Wasserdampfdruck bei der gewählten Temperatur des Eises. Z.B. entspricht eine Eistemperatur von -20° C einem Wasserdampfdruck (im Gleichgewicht) von 1 ,03 mbar. Damit der Wasserdampf von der Eisoberfläche in die Trockenkammer strömen kann, muss der Wasserdampfdruck in der Trockenkammer deutlich kleiner sein als 1,03 mbar, also z.B. 0,5 mbar. Zweckmäßig ist es deshalb, einen gegenüber diesem Druckwert kleinen Druck, z.B. 0, 15 mbar, zu wählen. Die Gefriertrocknung findet üblicherweise in einer Kammer statt, in der sich temperierbare Stellflächen befinden und an die eine Evakuierungseinrichtung, z.B. ein mit einer Vakuumpumpe kombinierter Eiskondensator, über ein Ventil angeschlossen ist. Kennzeichnend für den Ablauf des Trocknungsprozesses sind im wesentlichen zwei Trocknungsphasen. Solange sich noch kristallisiertes (gefrorenes) Wasser in dem Produkt befindet, nennt man diesen Trocknungsabschnitt die Haupt- oder Sublimationstrocknung. Während der Haupttrocknung darf die Temperatur des Produktes bestimmte, meist weit unter 0° C gelegene Werte nicht überschreiten, um eine Beeinträchtigung der Qualität und/oder der Eigenschaften des Produktes zu vermeiden. Mit fortschreitender Trocknung werden die im Produkt vorhandenen Eiskerne immer kleiner. Liegt kein Wasser in Form von Eis mehr vor, ist das restliche Wasser am Trockenprodukt absorbiert oder auch mehr oder weniger fest gebunden. Die Entfernung dieses Wassers findet während einer Nach- oder Desorptionstrocknung statt. Die in dieser Phase desorbierbare Wassermenge hängt von der Temperatur des Produkts, der Art der Wasserbindung und der jeweils noch vorhandenen Wassermenge ab. Die Nachtrocknung wird durch eine weitere Änderung der den Ablauf des Trocknungsprozesses bestimmenden physikalischen Bedingungen eingeleitet.
Es ist bekannt, den Verlauf eines Gefriertrocknungsprozesses über thermody- namische Daten, die während des Trockenverlauf gemessen werden, zu dokumentieren und zu steuern (vgl. Georg-Wilhelm Oetjen, Peter Haseley „Freeze- Drying", Seiten 273 ff., Wiley-Verlag, Weinheim, 2004).
Zum Stand der Technik gehört auch noch der Inhalt der internationalen Veröffentlichung WO 98/50 744. In diesem Dokument ist offenbart, wie die Temperatur an der Sublimationsfront, bzw. die Temperatur des im zu trocknenden Gutes eingeschlossenen Eises, zur Steuerung der Haupttrocknung und des Ü- bergangs von der Haupttrocknung zur Nachtrocknung benutzt werden kann. Während der Haupttrocknung erfolgt die Messung der Eistemperatur in der Weise, dass das Ventil zwischen der Gefriertrocknungskammer und der Evakuierungseinrichtung für eine kurze Zeit (wenige Sekunden) abgesperrt wird. In dieser Zeit stellt sich in der Gefriertrocknungskammer ein Gleichgewichtswasserdampfdruck ein, der der herrschenden Eistemperatur entspricht. Aus dem Druckanstieg kann direkt auf die Eistemperatur geschlossen werden. Dieses Verfahren zur Messung der Eistemperatur ist unter dem Begriff „barometrische Temperaturmessung" bekannt und in der DE-PS 10 38 988 offenbart.
Die beschriebene Messung der Eistemperatur ist technisch und zeitlich aufwendig. Sie setzt das Vorhandensein eines Ventils zwischen Gefriertrocknungskammer und Evakuierungseinrichtung voraus. Die Ventilschließzeiten verlängern nicht nur den Gefriertrocknungsprozess selbst, sie sind darüber hinaus mit einer Gefährdung des Produkts verbunden. Es besteht die Gefahr, dass während der Absperrzeiten unzulässige Temperaturerhöhungen des eis- haltigen Gutes eintreten, die zu einer Minderung der Produktqualität führen. Die vorbekannte Messung der Eistemperatur ist von der richtigen Erkennung des Sattdampfdruckes abhängig. Das setzt eine Mindestmenge an Eis pro Kammervolumen voraus, ist also bei kleinen Eismengen in großen Trockenkammern nur ungenau oder nicht möglich.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, den Ablauf eines Gefriertrocknungsprozesses in Bezug auf seine Dokumentation zu verbessern und gleichzeitig eine Reduzierung des technischen Aufwandes bei einer für die Durchführung dieses Verfahrens geeigneten Einrichtung zu erreichen.
Erfindungsgemäß wird diese Aufgabe durch die kennzeichnenden Merkmale der Patentansprüche gelöst. Durch die Erfindung wird in einfacher Weise erreicht, dass zu jedem Zeitpunkt während des Ablaufs des Gefriertrocknungsprozesses bekannt ist, welche Wassermenge zum Kondensator gelangt bzw. welche Wassermenge noch im Produkt vorhanden ist. Voraussetzung ist, dass die im Produkt enthaltene Wassermenge bei Beginn des Gefriertrocknungsprozesses bekannt ist. Diese Voraussetzung ist stets erfüllt.
Zweckmäßig wird die Wasserdampfströmung zwischen dem Produkt und dem Kondensator aus laufenden (z.B. 10 bis 100 mal/s) Messungen des Wasser- dampfpartialdruckes und dem Strömungswiderstand für den Wasserdampf zwischen den Stellflächen und dem Kondensator ermittelt. Der Wasserdampf- partialdruck kann zum Beispiel mit Hilfe eines Infrarotanalysegerätes exakt gemessen werden. Von einer richtigen Erkennung des Sattdampfdruckes, d.h. von einer Mindestmenge an Eis pro Kammervolumen, sind solche Messungen unabhängig.
Besonders vorteilhaft ist weiterhin, dass die Eistemperatur nicht mehr gemessen werden muss. Der beschriebene, mit der Messung der Eistemperatur verbundene zeitliche und technische Aufwand entfällt. Der Trocknungsvorgang kann durch die schon abtransportierte oder noch vorhandene Wassermenge dokumentiert und gesteuert werden. Bei einer Einrichtung zur Durchführung des erfindungsgemäßen Verfahrens kann auf ein Ventil zwischen Gefriertrocknungskammer und Evakuierungseinrichtung, welche Durchmesser bis zu 1 m haben, verzichtet werden. Es besteht darüber hinaus der Vorteil, dass die Produkt-Stellflächen und die Evakuierungseinrichtung in einem Raum untergebracht sein können. Weitere Vorteile und Einzelheiten der Erfindung sollen anhand von in den Figuren 1 und 2 schematisch dargestellten Einrichtungen zur Durchführung der Gefriertrocknung erläutert werden. Es zeigen
Figur 1 eine Gefriertrocknungseinrichtung mit einer Kammer und einem daran angeschlossenen Kondensator und
Figur 2 eine Gefriertrocknungseinrichtung mit einer Kammer, in der sich neben den Stellflächen auch der Kondensator befindet.
Die in Figur 1 dargestellte Gefriertrocknungseinrichtung umfasst die Kammer 1 mit ihren Stellflächen 2 und den daran angeschlossenen Kondensator 3 mit seiner Kammer 4 und seinen Kondensationsflächen 5. Auf den Stellflächen 2 befinden sich Behälter (Fläschchen 6) mit gefrierzutrocknendem Produkt. Die Stellflächen 2 sind temperierbar. Sie sind Bestandteil eines im einzelnen nicht dargestellten Temperierkreislaufs mit Kältemaschine und Förderpumpe. Während der Heizphase wird die Kältemaschine abgeschaltet und das Kühl- /Heizmedium elektrisch geheizt. Eine dem Verschluss der Fläschchen 6 innerhalb der Kammer 1 und nach der Durchführung der Trocknung dienende Apparatur ist generell mit 7 bezeichnet. Sie umfasst die Druckplatte 8 und die Betätigungseinrichtung 9.
Zwischen der Gefriertrocknungskammer 1 und der Kondensatorkammer 4 befindet sich die Öffnung 10, die mit einem kondensatorseitig angeordneten Ventil 1 1 verschließbar ist. Es umfasst einen in Richtung Gefriertrocknungskammer 1 gewölbten Ventilteller 12 und einen Antrieb 13. Zur Trocknung des in den Fläschchen 6 befindlichen eingefrorenen Produkts werden zunächst in der Kammer 1 der erforderliche Unterdruck erzeugt und die Stellflächen 2 temperiert. Bei offenem Ventil 1 1 strömt der aus dem Produkt austretende Wasserdampf zu den Kondensationsflächen 5 des Kondensators 3. Nach und nach nimmt die noch im Produkt vorhandene Wassermenge ab.
Um zu dokumentieren, welche Wassermenge noch im Produkt vorhanden ist bzw. welche Wassermenge bereits abtransportiert wurde, wird erfindungsgemäß ein Gerät eingesetzt, das laufend den Wasserdampfpartialdruck in der Kammer 1 misst. Es ist in den Figuren lediglich als Block dargestellt und mit 15 bezeichnet. Es muss sich um ein Gerät handeln, das Wasserdampfpartial- drücke genau und möglichst trägheitslos misst, und zwar zwischen 1 mbar und 10"3 mbar mit einer Reproduzierbarkeit von etwa 1 %. Vorzugsweise wird ein Gerät verwendet, das die Wasserdampfabsorptionsbanden im infraroten Spektralbereich benutzt. Geräte dieser Art sind empfindlich gegen Temperaturschwankungen im Wasserdampf. Schematisch angedeutet sind deshalb das Gerät 15 umgebende Abschirmbleche 16, die zweckmäßig temperierbar sind, um die Temperatur des Gerätes 15 auf einen bestimmten Wert einzustellen. Ferner sind in einer Gefriertrocknungsanlage Restmengen Luft (z.B. 5- 10%) vorhanden und eventuell Spuren von Lösungsmitteln aus der Herstellung der Medikamente oder Gase aus der Herstellung von Lebensmitteln (z.B. CO2 in Kaffeegranulaten). Die Infrarot -Spektroskopie erlaubt die Wellenlängen so auszusuchen, dass keine Interferenzen zwischen den Wasser- und anderen Banden auftreten oder, wenn das in Ausnahmefällen nicht möglich sein sollte, die Absorptionsspektren mathematisch so zu analysieren, wie sie ohne Interferenz aussehen würden. Auch ein Massenspektrometer könnte eingesetzt werden. Der Einsatz von Massenspektrometern zur Messung des Wasserdampfpartial- druckes in Gefriertrocknungskammern ist j edoch zur Zeit nur mit einem hohen technischen Aufwand möglich. Das Messgerät 15 liefert möglichst häufig, vorzugsweise 10 bis 100 mal pro Sekunde, elektrische Signale, die dem jeweils innerhalb der Kammer 1 herrschenden Wasserdampfpartialdruck entsprechen. Diese Signale werden einem Rechner 17 zugeführt, mit dessen Hilfe die bereits abtransportierte Wassermenge berechnet und z.B . im Display 1 8 angezeigt werden kann. Der Rechner 17 benötigt darüber hinaus Informationen über in der Kammer 1 herrschende Drücke und/oder Temperaturen (z.B. Stellflächentemperaturen), sei es um während der Ermittlung der Wasserdampfströmung den Druck berücksichtigen zu können oder sei es um Steuerverfahren, die solche Informationen benötigen, zu veranlassen. Sensoren und Leitungen, die der Übertragung der Informationen aus der Kammer zum Rechner 17 dienen, sind im einzelnen nicht dargestellt.
Unter den Voraussetzungen, dass die Temperaturschwankungen im Wasserdampf an der Messstelle nicht von den Temperaturen anderer Bauteile, z.B . von den Türen und Wänden der Trocknungskammer, beeinflusst werden und dass die Strömungsgeschwindigkeit des Wasserdampfs an der Messstelle klein ist gegen die Schallgeschwindigkeit, kann der Wasserdampfpartialdruck mit Hilfe eines Infrarot-Messgerätes laufend sehr genau gemessen werden. Aus den gelieferten Messwerten und dem bekannten (vorab mehrfach bei verschiedenen Drücken gemessenen und im Rechner 17 abgelegten) Strömungswiderstand für die jeweilige Anordnung Kammer-Kondensator kann laufend die Dampfströmung ermittelt und über eine zeitliche Integration die abtransportierte Wassermenge errechnet werden.
Aus dem Buch Diels/Jaeckel, Leybold Vakuum-Taschenbuch, 2. Auflage, Springer-Verlag 1962, Seiten 20/21 gilt für die Durchflussmenge G eines Gases, z.B . Wasserdampf, im Vakuum
G = 103 o/W mit o = Gasdichte W = Strömungswiderstand und für den Strömungswiderstand
W = 12 D /p l + p2
D = Anlagen-Charakteristik p l = Wasserdampfpartialdruck in der Trocknungskammer p2 = Wasserdampfpartialdruck in der Kondensatorkammer
D ist durch die Länge der Transportwege und deren Querschnitte sowie durch den Reibungskoeffizienten des Gases bestimmt. Sieht man den Reibungskoeffizienten bei bekanntem Druck unter den obigen Voraussetzungen als konstant an, lässt sich G in Abhängigkeit von p l und p2 errechnen. Wenn p2 klein ist gegen p l , wie es bei der Gefriertrocknung üblich ist, genügt die genaue Messung von p l , um konkrete Werte für G zu erhalten. Das Integral über G vom Zeitpunkt des Beginns der Gefriertrocknung an bis zu den jeweiligen Mess- Zeitpunkten ergibt die jeweils zu diesem Zeitpunkt abtransportierte Wassermenge.
Die Messung der vom Strömungswiderstand in einer Gefriertrocknungseinrichtung abhängigen Wasserdampfströmung G ist z.B. auf den Seiten 129, 1 30 im oben erwähnten Buch „Freeze-Drying" beschrieben. Sie hängt stark vom Wasserdampfpartialdruck ab und muss daher wegen des Reibungskoeffizienten bei mehreren Drücken gemessen werden.
Mit diesem im Rechner gespeicherten Verfahren lässt sich der Gefriertrock- nungsprozess während der Haupttrocknung (Sublimationstrocknung) und auch während der Nachtrocknung (Desorptionstrocknung) durch die schon abtransportierte bzw. noch vorhandene Wassermenge dokumentieren. Das Umschalten von Haupt- auf Nachtrocknen, das z.B. mit einer Erhöhung der Stellplattentemperatur und einer Erniedrigung des Druckes in der Kammer verbunden ist, erfolgt, wenn eine von den Produkteigenschaften abhängige Wassermenge abtransportiert ist, z.B. 98%), oder - bezogen auf den Feststoff - noch einen vorgegebenen Wassergehalt in Prozent des Feststoffes aufweist, z.B. 8%. Auch der Endpunkt der Nachtrocknung - z.B. vorgegeben bei 0,8%) - ist direkt messbar.
Dem Rechner 17 nachgeordnet ist ein Steuergerät 19. In Abhängigkeit von den vom Rechner gelieferten Ergebnissen kann mit Hilfe des Steuergerätes der gesamte Ablauf des Gefriertrocknungsprozesses, z.B. der Druck in der Kammer 1 , die Stellflächentemperatur, die Betätigung des Ventils 1 1 , die Umschaltung von Haupt- auf Nachtrocknung usw. gesteuert werden. Die für solche Steuerverfahren notwendigen Bauteile - Ventile, Sensoren usw. - sind im einzelnen nicht dargestellt.
Die weiter oben angegebenen Voraussetzungen für die laufende genaue Messung des Wasserdampfpartialdruckes mit Hilfe des Gerätes 1 5 haben Einfluss auf die Art und Weise, wie es innerhalb der Trocknungskammer 1 angeordnet wird. Die Abschirmbleche 16 haben bereits die Wirkung, dass die Temperaturschwankungen am Ort des Gerätes klein sind. Zweckmäßig sind weitere Abschirmungen 21 vorhanden, die sich zwischen den Stellflächen und den seitlichen Kammerinnenflächen befinden. Abschirmungen dieser Art sind in der internationalen Veröffentlichung WO 03/012355 offenbart. Sie sind zweckmäßig temperierbar - auch unabhängig von den Stellflächen - und vermeiden störende Einflüsse der Kammerwandtemperatur auf das in den Fläschchen 6 befindliche Produkt und damit auch auf das Messgerät 15. Da im Bereich der Öffnung 10 zum Kondensator 3 Wasserdampfströmungen mit höheren Geschwindigkeiten zu erwarten sind, befindet sich das Gerät 15 zweckmäßig im oberen Bereich der Kammer 1 .
Beim Ausführungsbeispiel nach Figur 1 ist der Kondensator 3 an die Öffnung 10 der Gefriertrocknungskammer 1 angeschlossen. Diese mit dem Ventil 1 1 verschließbare Öffnung 10 sollte die engste Stelle für den Wasserdampftransport zum Kondensator 3 ein. Es ist deshalb zweckmäßig, die Position des Ventiltellers 12 in seiner Offenstellung so zu wählen, dass die Fläche des vom Ventil freigegebenen Ringspaltes größer ist als die Öffnung 10.
Der Antrieb 13 des Ventils 1 1 befindet sich auf der von der Öffnung 10 abgewandten Seite des Kondensators 3. Das Verbindungsglied 22 zwischen Antrieb 13 und Ventilteller 12 durchsetzt die konzentrisch gewickelte und axial angeordnete Rohrschlange, die die Kondensatoroberfläche 5 bildet. Es kann einen konischen Verdrängungskörper 23 tragen, dessen Durchmesser in Dampfströmungsrichtung zunimmt. Sein zunehmender Durchmesser entspricht der Abnahme des Dampfvolumens.
In der unteren Seite des Kondensators 3 ist ein Wasserablauf 24 vorgesehen. Während des Abtauens des niedergeschlagenen Eises wird er geöffnet. Der Vakuumanschluss ist mit 25 bezeichnet. Eine innerhalb der Kondensatorkammer 4 angeordnete Leitung 26 sorgt dafür, dass sich die Gaseintrittsöffnung im unteren Bereich des Kondensators 3 befindet. Bei der Ausführung nach Figur 2 befinden sich die Kaltflächen 5 des Kondensators, bestehend aus einem Rohrbündel 28, ebenfalls in der Kammer 1. Wie beim Kondensator 3 nach der Figur 1 sind ein Wasserablauf 24 und ein Vakuumanschluss 25, 26 vorgesehen.
Beim Wasserdampfanalysegerät 15 fehlt die Abschirmung 16. Stattdessen sind nicht nur seitliche Abschirmungen 21 der Stellflächen 2 sondern auch oberhalb der Stellfläche 2 und unterhalb des Rohrbündels 28 weitere Abschirmungen 29 vorgesehen. Sie sorgen neben der Vermeidung von ungleichmäßigen Temperaturverteilungen im Bereich des Produkts auch für eine gleichbleibende Temperatur des Gerätes 15.
Reichen diese Maßnahmen für die Erzielung einer gleichbleibenden Temperatur des Gerätes 15 nicht aus, besteht noch allgemein die Möglichkeit, die Temperaturabhängigkeit des Gerätes 15 zu erfassen, im Rechner 17 zu speichern und die gelieferten Messwerte jeweils auf eine konstante Temperatur umzurechnen.
Bei der Ausführung nach Figur 2 ist die untere Öffnung, bestimmt durch die seitlichen Abschirmungen 21 , maßgebend für den Wasserdampfstrom. Sie kann ausreichend groß gemacht werden. Nimmt man z.B. einen Trockenraum innerhalb der Abschirmungen von 1 , 5 m Breite, 2 m Höhe und 1 ,5 m Tiefe an, lassen sich bei ca. 25 cm freiem Durchtritt ca. 5 qm Transportfläche für den Wasserdampf erreichen. Bei einem Ventil von 1 ,2 m freien Durchmesser, das technisch etwa das größte machbare Ventil ist, entstehen ca. 1 , 1 qm Transportfläche.
Die Anordnung nach Figur 2 hat besondere Vorteile für die Gefriertrocknung bei tiefen Drücken. Wie im bereits mehrfach erwähnten Buch „Freeze- Drying", Seiten 288, 289 beschrieben, können in einem Trockenraum von ca. 4,5 m z.B . etwa 20.000 Flaschen untergebracht werden. Muss während der Haupttrocknung eine Eistemperatur kleiner minus 42° C eingehalten werden, beträgt der dazu erforderliche Druck ca. 0,06 mbar. Dann wäre ein Ventil mit ca. 1 m Durchmesser erforderlich.
Für Anlagen bei tiefen Eistemperaturen und eine Vielzahl von Flaschen, z.B. 30 bjs 70.000, sind Lösungen mit Ventilen technisch nicht mehr praktikabel. Stattdessen können nicht nur runde, sondern auch lange, schlitzförmige Öffnungen vorgesehen sein, was die oben erwähnten Rechnungen gezeigt haben.
Zusammengefasst werden durch die Erfindung folgende Vorteile erreicht:
- Umrüstung vorhandener Anlagen mit Ventil sind möglich.
- Die technisch maximale Ventilgröße - etwas über 1 m - begrenzt den Dampftransport insbesondere bei tiefen Drücken (z.B . kleiner 0,08 mbar) nicht mehr. Kammer und Kondensator können in einem Raum angeordnet sein.
- Das Ventil zwischen Kammer und Kondensator kann entfallen. Das ist bei Produktionsanlagen und großen Ventilen ein wesentlicher Kostenfaktor, auch in Bezug auf die Betriebssicherheit (das entfallene Ventil kann zu keiner Störung führen).
- Ohne Druckanstiegsmessungen gibt es kein Argument mehr, dass eine abgeleitete Größe zur Steuerung des Prozesses benutzt wird. Die transportierte Wassermenge wird gemessen.

Claims

P a t e n t a n s p r ü c h e
1) Verfahren zur Gefriertrocknung von Produkten unter Verwendung einer Kammer ( 1 ) mit temperierbaren Stellflächen (2) und Kondensationsflächen (5), bei dem aus dem Produkt in Form von Wasserdampf austretendes Wasser an der Oberfläche der Kondensationsflächen niederschlägt und bei dem während des Ablaufs des Gefriertrocknungsprozesses Messungen zur Dokumentation des Prozesses durchgeführt werden, dadurch gekennzeichnet, dass laufend die Wasserdampfströmung zwischen dem Produkt und den Kondensationsflächen (5) ermittelt wird und dass die in Form von Wasserdampf aus dem Produkt ausgetretene Wassermenge über eine zeitliche Integration errechnet wird.
2) Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Wasserdampfströmung aus laufenden Messungen des Wasserdampfpartialdru- ckes und dem Strömungswiderstand für den Wasserdampf zwischen den Stellflächen und den Kondensationsflächen (5) ermittelt wird.
3) Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass der Strömungswiderstand in einer Gefriertrocknungseinrichtung je einmal für verschiedene Drucke gemessen wird und diese Werte im Rechner abgespeichert werden und dass die Ermittlung der Wasserdampfströmung durckabhängig erfolgt.
4) Verfahren nach Anspruch 2 oder 3 , dadurch gekennzeichnet, dass der Wasserdampfpartialdruck häufig, vorzugsweise 10 bis 100 mal, pro Sekunde, gemessen wird. 5) Verfahren nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass ein Gerät (15) verwendet wird, das die Wasserstoffabsorptionsbanden im infraroten Spektralbereich benutzt.
6) Verfahren nach Anspruch 2 bis 5, dadurch gekennzeichnet, dass die Temperatur des Messgerätes (15) auf eine bestimmte, vorgewählte Temperatur eingestellt wird.
7) Verfahren nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass eine Temperaturabhängigkeit des Messgerätes ( 15) erfasst und im Rechner (17) abgelegt wird und dass die gelieferten Messwerte jeweils auf eine konstante Temperatur umgerechnet werden.
8) Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass dem Rechner ( 17) ein Steuergerät (19) zugeordnet ist und dass auf der Basis von vom Rechner (17) ermittelten Werten das Gefriertrocknungsverfahren gesteuert wird.
9) Einrichtung zur Gefriertrocknung von Produkten unter Verwendung einer Kammer ( 1 ) mit temperierbaren Stellflächen (2) und Kondensationsflächen (5), bei dem aus dem Produkt in Form von Wasserdampf austretendes Wasser an der Oberfläche der Kondensationsflächen niederschlägt und bei dem während des Ablaufs des Gefriertrocknungsprozesses Messungen zur Dokumentation des Prozesses durchgeführt werden, dadurch gekennzeichnet, dass sie mit einem Messgerät (15) zur laufenden Messung des Wasserdampfpartialdruckes ausgerüstet ist.
10) Einrichtung nach Anspruch 9, dadurch gekennzeichnet, dass ein Rechner ( 17) vorgesehen ist, mit dessen Hilfe aus den laufenden Messungen des Wasserdampfpartialdruckes und dem Strömungswiderstand für den Wasserdampf zwischen den Stellflächen (2) und den Kondensationsflächen (5) die Wasserdampfströmung und daraus über eine zeitliche Integration die aus dem Produkt ausgetretene Wassermenge errechnet wird.
1 1 ) Einrichtung nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass das Messgerät ( 15) innerhalb der Gefriertrocknungskammer (1 ) angeordnet ist, und zwar an einer Stelle, an der die Strömungsgeschwindigkeit des Wasserdampfs klein ist gegenüber der Schallgeschwindigkeit.
12) Einrichtung nach einem der Ansprüche 9 bis 1 1 , dadurch gekennzeichnet, dass dem Messgerät ( 15) vorzugsweise temperierbare Abschirmbleche ( 16) zugeordnet sind.
13) Einrichtung nach einem der Ansprüche 9 bis 12, dadurch gekennzeichnet, dass sich zwischen den Stellflächen (2) und zumindest einem Teil der Kammerinnenflächen Abschirmungen (21 ) befinden.
14) Einrichtung nach einem der Ansprüche 9 bis 13, dadurch gekennzeichnet, dass sich die Stellflächen (2) und die Kondensationsflächen (5) in jeweils einer Kammer ( 1 ) bzw. (4) befinden, wobei die beiden Kammern (1 , 4) über eine Öffnung (10) miteinander verbunden sind
15) Einrichtung nach Anspruch 14, dadurch gekennzeichnet, dass der Öffnung ( 10) ein kondensatorseitig betätigbares Ventil ( 1 1 ) mit einem vorzugsweise in Richtung Gefriertrocknungskammer ( 1 ) gewölbtem Ventilteller (12) zugeordnet ist.
16) Einrichtung nach einem der Ansprüche 9 bis 15, dadurch gekennzeichnet, dass sich im Bereich der Kondensationsflächen (5) ein Verdrän- gungskörper befindet, dessen Durchmesser entsprechend der Abnahme des Dampfvolumens in Strömungsrichtung zunimmt.
17) Einrichtung nach einem der Ansprüche 14 bis 16, dadurch gekennzeichnet, dass die Öffnung ( 10) langgestreckt, beispielsweise schlitzförmig, ausgebildet ist.
18) Einrichtung nach einem der Ansprüche 9 bis 13 , dadurch gekennzeichnet, dass sich die Kondensationsflächen (5) in der Gefriertrocknungskammer (1 ) befinden.
19) Einrichtung nach Anspruch 18 und Anspruch 12, dadurch gekennzeichnet, dass sich die Kondensationsflächen (5) innerhalb der Abschirmungen (21 , 29) befinden.
20) Einrichtung nach einem der Ansprüche 9 bis 19, dadurch gekennzeichnet, dass ein Steuergerät ( 19) vorgesehen ist, das auf der Basis von vom Rechner ( 17) gelieferten Signalen den in der Kammer ( 1 ) ablaufenden Gefriertrocknungsprozess zumindest teilweise steuert.
PCT/EP2005/000958 2004-02-17 2005-02-01 Verfahren und einrichtung zur gefriertrocknung von produkten WO2005080894A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006552500A JP2007524066A (ja) 2004-02-17 2005-02-01 生産物をフリーズドライする方法と装置
EP05707106A EP1716373A1 (de) 2004-02-17 2005-02-01 Verfahren und einrichtung zur gefriertrocknung von produkten
US10/589,517 US20090107000A1 (en) 2004-02-17 2005-02-01 Method and Device for Freeze-Drying Products

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004007526.3 2004-02-17
DE102004007526A DE102004007526A1 (de) 2004-02-17 2004-02-17 Verfahren und Einrichtung zur Gefriertrocknung von Produkten

Publications (1)

Publication Number Publication Date
WO2005080894A1 true WO2005080894A1 (de) 2005-09-01

Family

ID=34813421

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/000958 WO2005080894A1 (de) 2004-02-17 2005-02-01 Verfahren und einrichtung zur gefriertrocknung von produkten

Country Status (5)

Country Link
US (1) US20090107000A1 (de)
EP (1) EP1716373A1 (de)
JP (1) JP2007524066A (de)
DE (1) DE102004007526A1 (de)
WO (1) WO2005080894A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016215844A1 (de) 2016-08-23 2018-03-01 OPTIMA pharma GmbH Verfahren und Vorrichtung zur Gefriertrocknung

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0505849D0 (en) * 2005-03-22 2005-04-27 Boc Group Plc Method of monitoring a freeze drying process
JPWO2007063840A1 (ja) * 2005-11-30 2009-05-07 エーザイ・アール・アンド・ディー・マネジメント株式会社 乾燥対象物の水分含量の測定方法
EP2034263A1 (de) * 2007-09-06 2009-03-11 BOC Edwards Pharmaceutical Systems Gefriertrocknungskammer mit externer Antenne
US8206488B2 (en) * 2008-10-31 2012-06-26 General Electric Company Fluoride ion cleaning method
US20100108107A1 (en) * 2008-10-31 2010-05-06 General Electric Company System and apparatus for fluoride ion cleaning
DE102010050281A1 (de) * 2010-11-02 2012-05-03 Hof Sonderanlagenbau Gmbh Verfahren zur Überwachung eines Gefriertrocknungsprozesses und Gefriertrocknungsanlage hierfür
JP5876424B2 (ja) * 2011-02-08 2016-03-02 共和真空技術株式会社 凍結乾燥装置に適用される被乾燥材料の昇華面温度、底部品温及び昇華速度の算出方法及び算出装置
CN102989530B (zh) * 2011-09-14 2014-09-24 广州市思诺兰迪科技有限公司 一种步入式样品稳定性试验箱
ITVA20120049A1 (it) * 2012-12-11 2014-06-12 Marco Alberio Sistema per il monitoraggio della quantita' di solvente estratto in fase di liofilizzazione di sostanze.
CN103123206A (zh) * 2013-03-21 2013-05-29 楚天科技股份有限公司 一种冻干机
WO2015189655A1 (en) * 2014-06-10 2015-12-17 Alberio Marco System for monitoring the quantity of solvent extracted during the step of lyophilizing of substances
CN105318674A (zh) * 2015-11-20 2016-02-10 李晓勤 一种制药烘烤装置
US20180120026A1 (en) * 2016-11-01 2018-05-03 Steven Finley Methods for measuring pressure in freeze drying systems
SI3392584T1 (sl) * 2017-04-21 2020-09-30 Gea Lyophil Gmbh Zamrzovalni sušilnik in postopek za induciranje nukleacije v proizvodih
CN107166884A (zh) * 2017-07-19 2017-09-15 唐晓磊 真空冷冻干燥仪
US11287185B1 (en) 2020-09-09 2022-03-29 Stay Fresh Technology, LLC Freeze drying with constant-pressure and constant-temperature phases
CN112212616A (zh) * 2020-10-14 2021-01-12 芜湖森爱驰生物科技有限公司 一种血凝试剂生产设备流水线及其工艺
RU2761141C2 (ru) * 2021-02-24 2021-12-06 Сергей Анатольевич Ермаков Криосушка
CN113357879B (zh) * 2021-04-30 2023-10-10 杭州富睿捷科技有限公司 一种冻干设备
WO2023286137A1 (ja) * 2021-07-12 2023-01-19 株式会社アルバック 凍結乾燥装置及び凍結乾燥方法
WO2024003424A1 (es) * 2022-06-28 2024-01-04 Compliance Consulting And Engineering Services, S.L. Sistema para el control del proceso de liofilización en un liofilizador con sistema de castillo de placas y método para la generación de un espacio de diseño

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1024866A (en) * 1962-02-27 1966-04-06 Leybold Hochvakuum Anlagen Improvements relating to freeze drying
US3382585A (en) * 1965-12-28 1968-05-14 Fmc Corp Internal sublimation condenser apparatus
GB1247177A (en) * 1967-09-26 1971-09-22 Deggendorfer Werft Eisenbau Improvements in and relating to tubular heat-exchangers
US4185466A (en) * 1978-05-22 1980-01-29 Grumman Aerospace Corporation Partial pressure condensation pump
GB1587409A (en) * 1976-10-04 1981-04-01 Boc Ltd Freeze drying
SU954752A1 (ru) * 1980-10-29 1982-08-30 Предприятие П/Я А-3734 Способ автоматического управлени процессом сублимационной сушки
US5033284A (en) * 1988-11-02 1991-07-23 Vaisala Oy Calibration method for gas or vapor relative concentration sensor
US5398426A (en) * 1993-12-29 1995-03-21 Societe' De Gestion Et De Diffusion North America, Inc. Process and apparatus for desiccation
US5428905A (en) * 1991-12-12 1995-07-04 Beurel; Guy Process for the regulation of lyophilization
FR2719656A1 (fr) * 1994-05-03 1995-11-10 Agronomique Inst Nat Rech Procédé et dispositif de contrôle de la lyophilisation sous vide.
WO1998050744A1 (de) * 1997-05-07 1998-11-12 Steris Gmbh Verfahren zur steuerung eines gefriertrocknungsprozesses
WO2003012355A1 (de) * 2001-07-27 2003-02-13 Steris Gmbh Kammer für eine gefriertrocknungseinrichtung
US20030116027A1 (en) * 2000-04-19 2003-06-26 Brulls Mikael Johan Alvin Method of monitoring a freeze drying process

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3228838A (en) * 1959-04-23 1966-01-11 Union Carbide Corp Preservation of biological substances
US3048928A (en) * 1959-04-27 1962-08-14 Raytheon Co Freeze-drying apparatus
US3159498A (en) * 1960-12-28 1964-12-01 American Cyanamid Co Dispersible pigments
US3311991A (en) * 1965-04-20 1967-04-04 Pillsbury Co Drying apparatus and method
US3655838A (en) * 1969-03-20 1972-04-11 Organon Method of pelletizing analytical or immunological reagents
US4501719A (en) * 1981-05-04 1985-02-26 Marquest Medical Products, Inc. Tray apparatus for freeze-drying biologicals having a predetermined unit dosage
US4521975A (en) * 1981-05-04 1985-06-11 Marquest Medical Products, Inc. Lyophilizing and forming biologicals having a predetermined unit dosage
JPH0720483B2 (ja) * 1987-05-29 1995-03-08 住友製薬株式会社 高粘度糊状組成物成形体の乾燥法
US4780964A (en) * 1987-11-30 1988-11-01 Fts Systems, Inc. Process and device for determining the end of a primary stage of freeze drying
FR2634376B1 (fr) * 1988-07-21 1992-04-17 Farmalyoc Nouvelle forme unitaire, solide et poreuse comprenant des microparticules et/ou des nanoparticules, ainsi que sa preparation
US5367786A (en) * 1990-11-06 1994-11-29 Jennings; Thomas A. Method and apparatus for monitoring the processing of a material
FI933979A0 (fi) * 1992-09-10 1993-09-10 Mcneil Ppc Inc Bioeroderbar anordning foer dosering av aktiva ingredienser
US6068874A (en) * 1993-02-16 2000-05-30 Dehydration Technologies, Inc. Process of dehydrating biological products
WO1996022496A1 (en) * 1995-01-20 1996-07-25 Freezedry Specialties, Inc. Freeze dryer
GB9505523D0 (en) * 1995-03-18 1995-05-03 Wellcome Found Lyophilization process
US6194079B1 (en) * 1995-04-19 2001-02-27 Capitol Specialty Plastics, Inc. Monolithic polymer composition having an absorbing material
AUPP808499A0 (en) * 1999-01-11 1999-02-04 Microwave Processing Technologies Pty Limited A method and apparatus for microwave processing of planar materials
US6560897B2 (en) * 1999-05-03 2003-05-13 Acusphere, Inc. Spray drying apparatus and methods of use
US6223455B1 (en) * 1999-05-03 2001-05-01 Acusphere, Inc. Spray drying apparatus and methods of use
US7442388B2 (en) * 2000-05-10 2008-10-28 Weers Jeffry G Phospholipid-based powders for drug delivery
US6555157B1 (en) * 2000-07-25 2003-04-29 Advanced Cardiovascular Systems, Inc. Method for coating an implantable device and system for performing the method
WO2002077555A1 (en) * 2000-12-06 2002-10-03 Eisai Co., Ltd. System and method for measuring freeze dried cake resistance
ES2180416B1 (es) * 2001-03-12 2004-06-01 BIOTOOLS BIOTECHNOLOGICAL & MEDICAL LABORATORIES, S.A. Procedimiento para la preparacion de mezclas de reaccion estabilizadas, total o parcialmente desecadas, que comprenden, al menos, una enzima, mezclas de reaccion y kits que las contienen.
US7008644B2 (en) * 2002-03-20 2006-03-07 Advanced Inhalation Research, Inc. Method and apparatus for producing dry particles
US6971187B1 (en) * 2002-07-18 2005-12-06 University Of Connecticut Automated process control using manometric temperature measurement
EP1563237A2 (de) * 2002-11-21 2005-08-17 Transform Pharmaceuticals, Inc. Gefriertrocknungsmikroskopstufenvorrichtung undverwendungsverfahren daf r
US6962006B2 (en) * 2002-12-19 2005-11-08 Acusphere, Inc. Methods and apparatus for making particles using spray dryer and in-line jet mill
US20050086830A1 (en) * 2003-10-24 2005-04-28 Zukor Kenneth S. Processing cap assembly for isolating contents of a container
CA2554018A1 (en) * 2004-03-04 2005-09-29 Wyeth Lyophilization method to improve excipient crystallization
CA2569276C (en) * 2004-06-02 2018-01-23 Victor Bronshtein Preservation by vaporization
WO2006008006A1 (en) * 2004-07-23 2006-01-26 Bayer Technology Services Gmbh Sterile freezing, drying, storing, assaying and filling process (sfd-saf process) (pellet freeze-drying process for parenteral biopharmaceuticals)
FR2880105B1 (fr) * 2004-12-23 2007-04-20 Cie Financiere Alcatel Sa Dispositif et procede de pilotage de l'operation de deshydratation durant un traitement de lyophilisation
US20090090022A1 (en) * 2007-10-09 2009-04-09 Hememics Biotechnologies, Inc. Desiccation Chamber and Methods for Drying Biological Materials

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1024866A (en) * 1962-02-27 1966-04-06 Leybold Hochvakuum Anlagen Improvements relating to freeze drying
US3382585A (en) * 1965-12-28 1968-05-14 Fmc Corp Internal sublimation condenser apparatus
GB1247177A (en) * 1967-09-26 1971-09-22 Deggendorfer Werft Eisenbau Improvements in and relating to tubular heat-exchangers
GB1587409A (en) * 1976-10-04 1981-04-01 Boc Ltd Freeze drying
US4185466A (en) * 1978-05-22 1980-01-29 Grumman Aerospace Corporation Partial pressure condensation pump
SU954752A1 (ru) * 1980-10-29 1982-08-30 Предприятие П/Я А-3734 Способ автоматического управлени процессом сублимационной сушки
US5033284A (en) * 1988-11-02 1991-07-23 Vaisala Oy Calibration method for gas or vapor relative concentration sensor
US5428905A (en) * 1991-12-12 1995-07-04 Beurel; Guy Process for the regulation of lyophilization
US5398426A (en) * 1993-12-29 1995-03-21 Societe' De Gestion Et De Diffusion North America, Inc. Process and apparatus for desiccation
FR2719656A1 (fr) * 1994-05-03 1995-11-10 Agronomique Inst Nat Rech Procédé et dispositif de contrôle de la lyophilisation sous vide.
WO1998050744A1 (de) * 1997-05-07 1998-11-12 Steris Gmbh Verfahren zur steuerung eines gefriertrocknungsprozesses
US20030116027A1 (en) * 2000-04-19 2003-06-26 Brulls Mikael Johan Alvin Method of monitoring a freeze drying process
WO2003012355A1 (de) * 2001-07-27 2003-02-13 Steris Gmbh Kammer für eine gefriertrocknungseinrichtung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Week 198327, Derwent World Patents Index; AN 1983-704836, XP002331567 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016215844A1 (de) 2016-08-23 2018-03-01 OPTIMA pharma GmbH Verfahren und Vorrichtung zur Gefriertrocknung
DE102016215844B4 (de) 2016-08-23 2018-03-29 OPTIMA pharma GmbH Verfahren und Vorrichtung zur Gefriertrocknung

Also Published As

Publication number Publication date
JP2007524066A (ja) 2007-08-23
DE102004007526A1 (de) 2005-09-01
US20090107000A1 (en) 2009-04-30
EP1716373A1 (de) 2006-11-02

Similar Documents

Publication Publication Date Title
EP1716373A1 (de) Verfahren und einrichtung zur gefriertrocknung von produkten
EP0980503B1 (de) Verfahren und vorrichtung zur steuerung eines gefriertrocknungsprozesses
EP1926400B1 (de) Verfahren und vorrichtung zur herstellung einer konditionierten atmosphäre
CH657999A5 (de) Verfahren und anlage zur wiedergewinnung von loesungsmitteln.
DE2446918A1 (de) Vorrichtung zum nachweis von spuren eines spezifischen dampfes in einer luftprobe
EP2546645B1 (de) Gaschromatograph mit Ofen und Kühlvorrichtung
DE60017884T2 (de) Verdampfung von flüssigkeiten und rückzirkulation gereinigten gases
EP1125177A1 (de) Verfahren und vorrichtung zum trocknen von materialien
DE19737717C2 (de) Verfahren zum Steuern des Siededrucks in einem Rotationsverdampfer sowie Rotationsverdampfer zur Durchführung dieses Verfahrens
DE4128881C2 (de) Vorrichtung und Verfahren zum Herabsetzen der Temperatur
DE3226502A1 (de) Trocknungsverfahren und -einrichtung
DE19533510A1 (de) Vorrichtung und Verfahren zur Bestimmung flüchtiger und/oder gelöster Komponenten in Flüssigkeiten oder Gasen
DE102006023161A1 (de) Trocknung von Druckluft unter Nutzung externer Wärme mit geschlossenem Regenerationskreislauf
DE29500781U1 (de) Vorrichtung zum Kühlen von Gasen
DE102014116672B4 (de) Zwischenkühlerbypass
WO2007098840A1 (de) Verfahren zur trocknung eines luftentfeuchters
DE19627641C1 (de) Verfahren und Vorrichtung zum Steuern des Drucks in einer Vakuumkammer einer Destillations- oder Sublimations-Vorrichtung
DE69911669T2 (de) Verfahren und Vorrichtung für die Kontrolle des Wassergehalts von in einem geschlossenen Raum gelagerten Produkten
DE3111415A1 (de) Messgas-kuehleinrichtung
DE1954914A1 (de) Einrichtung zur Konservierung verderblicher Waren in der kontrollierten Atmosphaere einer Kaeltekammer
EP0801405B1 (de) Verfahren zur Vortrocknung eines mindestens eine Wicklung und Feststoffisolationen enthaltenden Spulenblocks und Vorrichtungen zur Durchführung dieses Verfahrens
WO2010054846A1 (de) Vorrichtung und verfahren zum adsorptiven trennen eines gasstroms
EP0330890A2 (de) Anlage zur Sublimationstrocknung von Stoffen
WO2021032671A1 (de) Entfeuchtungsvorrichtung für einen transformator
EP1248061A1 (de) Verfahren zum Trocknen von Feststoffisolationen eines elektrischen Gerätes

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006552500

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10589517

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2005707106

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005707106

Country of ref document: EP