WO2005080666A1 - Utilisation d'une formulation silicone pour la fonctionnalisation durable des textiles pour les vetements de sport - Google Patents

Utilisation d'une formulation silicone pour la fonctionnalisation durable des textiles pour les vetements de sport Download PDF

Info

Publication number
WO2005080666A1
WO2005080666A1 PCT/FR2005/000147 FR2005000147W WO2005080666A1 WO 2005080666 A1 WO2005080666 A1 WO 2005080666A1 FR 2005000147 W FR2005000147 W FR 2005000147W WO 2005080666 A1 WO2005080666 A1 WO 2005080666A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
textile
units
use according
water
Prior art date
Application number
PCT/FR2005/000147
Other languages
English (en)
Inventor
Martial Deruelle
Yves Giraud
Original Assignee
Rhodia Chimie
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhodia Chimie filed Critical Rhodia Chimie
Priority to JP2006550239A priority Critical patent/JP4594330B2/ja
Priority to KR1020067016771A priority patent/KR101149452B1/ko
Priority to US10/586,740 priority patent/US7851023B2/en
Priority to EP05717473A priority patent/EP1709236A1/fr
Priority to CN200580006290XA priority patent/CN1926281B/zh
Publication of WO2005080666A1 publication Critical patent/WO2005080666A1/fr

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/12Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/12Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins
    • D06N3/128Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins with silicon polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • C08K5/5419Silicon-containing compounds containing oxygen containing at least one Si—O bond containing at least one Si—C bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/56Organo-metallic compounds, i.e. organic compounds containing a metal-to-carbon bond
    • C08K5/57Organo-tin compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/643Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain

Definitions

  • the field of the present invention is that of crosslinkable liquid silicone formulations which can be used to form a coating which makes it possible to provide long-lasting functionalities to a large number of sportswear.
  • number of textile materials in particular those used in the field of sportswear (in English "sportwear”).
  • Many treatments are applied to textile materials, they provide them with additional functionalities such as softness, hydrophilicity, hydrophobia, oleophobia.
  • These treatments often consist of depositing on the textile surface polymers mainly of silicone type. For softness, these are long polydimethylsiloxane oils (or even polyorganosiloxane gums).
  • hydrophilicity they are amino silicone oils or polyether groups.
  • Organosilicon or purely organic fluorinated compounds are incorporated when seeking to provide oleophobia.
  • one of the characteristics sought is the permanence of the treatment. It is observed in practice that the many current formulations do not allow satisfactory durability to be achieved.
  • the main characteristics required are as follows: comfort, breathability, water repellency and a certain level of waterproofing: • • Comfort is provided mainly by the nature and type of textile used. In addition, these textiles may have elasticity properties. • Breathability is mainly ensured by the structure of the textile, in particular its open porosity.
  • waterproof-breathable membrane significantly reduces the intrinsic breathability of the textile and no longer allows the evacuation of heat and water in the event of moderate activity, strong to very strong (this which is the case during a sporting practice).
  • Water repellency is a feature of the textile surface. It corresponds to the fact that under moderate sprinkling (representative of a light rain) the water does not catch on the textile which thus emerges more or less dry.
  • Impermeability to liquid water is a rather mass characteristic of textiles in the sense that water must invade and pass through the porosity of the textile surface. The number and the size of the pores are to be taken into consideration, but also the treatment of the surface of these pores (surface of the woven or knitted fibers).
  • Impermeability is measured by the pressure that must be applied to force water to pass through the fabric. It is customary to speak of a raincoat as soon as the critical water pressure is equivalent to that of a meter of water. In practice, such protection is only useful in 10% of situations (very heavy rain, sustained contact with wet surfaces, etc.). It is instructive to keep in mind that a pressure of the order of 10 cm of water is equivalent to that exerted by a wind of 140 km / h. Bringing all of these functions to a textile material is already in itself a technical feat. In particular, combining water repellency and impermeability with breathability is notoriously difficult. Bringing durable functions to the textile material is an additional technical difficulty. It is known (cf.
  • the present invention therefore aims to provide a treatment which allows to provide lasting functionality to textile materials and in particular functionality suitable for the field of sportswear. Its objective is in particular to provide a treatment which makes it possible to impart a very good breathability and / or a high water repellency and / or a high impermeability to the textile material in a lasting manner, preferably an impermeability corresponding to at least 10 cm of water, better still several tens of centimeters of water.
  • a treatment which makes it possible to impart a durable water repellency and a high impermeability to the textile material (preferably a impermeability corresponding to at least 10 cm of water, better still several tens of centimeters of water), without substantially calling into question the intrinsic breathability properties of the textile material.
  • Another objective of the invention is to provide a treatment which additionally gives the textile, in a sustainable manner, rapid drying capacities and / or reduced water uptake.
  • Yet another object of the invention is to provide a treatment which gives the textile such properties which persist under conditions of wet abrasion and very particularly in the washing.
  • An object of the invention is therefore to provide a method for producing textile materials and articles including them, eg clothing, having durable breathable properties and in particular having a certain resistance to washing and more generally to the constraints of use. .
  • the present invention which relates to the use of at least one crosslinkable liquid silicone formulation as a base for coating a textile material intended preferably for the production of a sportswear : to allow, by crosslinking around the yarns, fibers and / or filaments constituting the textile material, to provide a broad protective cover for the textile material, protection little dependent on the nature of the said material because it requires little or no anchor points; to allow, by making a chemically crosslinking silicone sheath, to ensure lasting protection of the textile material by giving it excellent resistance to the aggressions encountered during use; by the term “durable protection” is meant to define protection on the one hand against the constraints imposed by textile processes such as in particular heat-setting treatments, dyeing treatments, and on the other hand -with respect to aggressions undergone during the life of the textile material (for example a garment) such as in particular abrasion when worn, washing in an aqueous detergent medium, dry cleaning in a solvent medium; to allow, by providing one or more hydrophobicity functionalities
  • the present invention also relates to the use of a crosslinkable liquid silicone formulation comprising one or more hydrophobicity functionalities, for (i) coating a textile material capable of being used in the production of a sports garment and / or yarns, fibers and / or filaments constituting the textile material, the silicone formulation crosslinking around the yarns, fibers and / or filaments constituting the textile material and forming around them a crosslinked silicone sheath, and (ii) lastingly impart water repellency and impermeability to this textile material, preferably without substantially affecting the intrinsic breathability of the textile material.
  • the durability of the above treatment and properties is paramount. Durability can be appreciated in a context including washing the textile material.
  • Tests conducted by the applicant under drastic washing conditions have made it possible to show the remarkable resistance of the silicone treatment, correlated with a persistence of the properties.
  • This durability can be measured by comparing the performance of the treated textile material, before and after having subjected this material to an intensive washing protocol, for example that described in Example 4 (continuous washing with water at 50 ° C., for 8 hours), the material being wrung and dried before undergoing the property testing protocol (s).
  • the beading effect can be measured by the “Spray-Test” method AATC Test Method 22-1996; this method is described in the examples and can consist of a visual evaluation of the wet appearance of the sample: the test consists in spraying the sample of the textile article with a given volume of water; the appearance of the sample is then assessed visually and possibly compared to a standard; a score of 0 to 100% is assigned depending on the amount of water retained; for 0%, the sample is completely wet, for 100%, the sample is completely dry. The sample can also be weighed to measure the weight of water absorbed.
  • the beading effect preferably corresponds to a score of at least 80%, more preferably of at least 90, better still of 100% (range 80-100%>).
  • durability of the beading effect it is meant that, preferably, after the washing treatment, the note remains between 70 and 100%, preferably between 80 and 100%.
  • Impermeability to liquid water can be measured by the Schmerber test (ISO Test Method 811-1981), which consists of applying water pressure to the textile through a water column and measuring the height limit that must be reached for water to pass through the fabric.
  • the targeted waterproofing is preferably greater than or equal to 10 cm of water column according to this test, and so more preferred greater than or equal to 15 cm, better still 20 cm.
  • this impermeability property is meant that, after the washing treatment described, the impermeability is not significantly affected and remains greater than or equal to 10, 15 or 20 cm of water column. Measuring the durability of the water repellency and impermeability properties makes it possible to assess the durability of the silicone treatment according to the invention. The other properties provided by the combination of the textile, these constituent yarns, fibers or filaments, and the silicone treatment also benefit from this durability.
  • intrinsic breathability is meant the breathability of the textile material in the absence of treatment. The present invention makes it possible to produce a textile material having the above-mentioned water repellency and impermeability properties, without substantially calling into question the intrinsic breathability.
  • the treatment makes it possible to limit the uptake of water (weight of water absorbed) of the treated textile and / or to provide it with a rapid drying capacity, and this in a sustainable way.
  • the water uptake of a textile material and its drying speed can be measured by weighing a coupon of this textile material before and after dynamic humidification, and the values obtained expressed as a percentage by weight relative to the weight of the dry coupon. .
  • the low level of water uptake observed makes it possible to limit the “freezing effect”, namely the feeling of cold resulting from heat exchanges in contact with wet clothing.
  • tissue coupons to be tested are subjected to a dynamic humidification phase (placed in a bottle filled with water and subjected to strong stirring for a period of one hour; more precise conditions are indicated in Example 5), then the coupons are weighed (the comparison of the weights before and after humidification provides information on the water intake), put to dry on the scale , in a room conditioned at a temperature of 23 ° C and a relative humidity of 50%, and the change in their weight makes it possible to assess their drying capacity.
  • the values observed will depend on the nature of the textile material.
  • the treatment aims to limit the uptake of water so that the weight of the treated textile material coupon remains at least 50% o, preferably at least 60 or 70% less than the weight of the untreated control coupon.
  • the uses according to the invention preferably aim to provide the textile material in a lasting manner with the three properties of breathability, water repellency and impermeability, preferably associated in addition with a low water recovery capacity. (thus conferring comfort to wear by limiting the heat losses due to the evaporation of water) and rapid drying lasting.
  • the expression "textile material” means: on the one hand, yarns, fibers and / or filaments made of synthetic and / or natural materials which are used for the manufacture of textile articles; and on the other hand the textile articles made from said yarns, fibers and / or filaments, comprising at least one textile surface and consisting for example of woven, non-woven and / or knitted articles, said "made-up textile articles” also encompassing much fabric than clothing, such as jackets and pants.
  • a functional siloxane network is permanently fixed on the textile surface and the treatment thus carried out makes it possible to successfully obtain the various advantageous properties mentioned above.
  • the crosslinkable liquid silicone formulation used as a base for coating textile material comprises: A - a system for generating a film-forming silicone network comprising at least one polyorganosiloxane resin (POS) having, per molecule, on the one hand at least two different siloxyl units chosen from those of types M, D, T, Q, one of the units being a unit T or a unit Q and on the other hand at least three hydrolysable / condensable groups of types OH and / or OR 1 where R 1 is a linear or branched C- alkyl radical
  • D optionally a non-reactive additive system consisting of: (i) at least one organic solvent / diluent and / or a non-reactive organosilicon compound; (2i) and / or in water in the case of the use of a liquid silicone formulation in emulsion or in aqueous dispersion; and E - optionally at least one auxiliary agent other than D known to those skilled in the art, which is chosen, when necessary, depending in particular on the applications in which the textile materials treated in accordance with the invention are used; with the condition according to which one commits (the parts are given by weight): - per 100 parts of component A, - from 0.5 to 200, preferably from 0.5 to 100 and more preferably from 1 to 70 parts of component B, - 1 to 1000, preferably from 1 to 300 parts of component C, - from 0 to 10,000, preferably from 0 to 5,000 parts of component D and - from 0 to 100 parts of component E.
  • the components A which can be used, separately or as a mixture, are conventional film-forming resins among which may be mentioned: A-1: at least one organosilicon resin prepared by co-hydrolysis and co-condensation of chlorosilanes chosen from the group consisting of those of formulas (R 3 ) 3 SiCI, (R 3 ) 2 Si (CI) 2 , R 3 Si (CI) 3 , Si (CI) 4 . These resins are well known and commercially available branched organopolysiloxane oligomers or polymers.
  • these resins are not completely condensed and they still have approximately from 0.001 to 1.5 OH group and / or alkoxyl OR 1 per silicon atom;
  • the radicals R 3 are identical or different and are chosen from linear or branched alkyl radicals C-] - CQ, alkenyl radicals C2 - C4, phenyl, trifluoro-3,3,3 propyl.
  • alkyl radicals R 3 examples include methyl, ethyl, isopropyl, tert-butyl and n-hexyl radicals; as examples of branched organopolysiloxane oligomers or polymers, mention may be made of MQ resins, MDQ resins, TD resins and MDT resins, OH and / or OR 1 groups which may be carried by the units M, D and / or T , the content by weight of OH and / or OR 1 groups being between 0.2 and 10% by weight;
  • A-2 at least one mixed resin prepared by co-condensation of the organosilicon resins A-1 mentioned above with usual organic polymers such as: polyester and alkyd resins modified or not by fatty acids such as oleic acid, linoleic acid, ricinoleic or esters of fatty acids and aliphatic polyols such as castor oil, tallow; epoxy resins modified or not by fatty acids; phenol
  • the mixtures A-3 may be cited: g - at least one resin of type A-1 (resin A-1/1) having, in its structure, at least two different siloxy units chosen from those of formula (R 3 ) 3 SiO Q 5 (unit M) , (R 3 ) 2 SiO (unit D) and R 3 SiO 1 5 (unit T), at least one of these units being a unit T, the groups OH and / or OR 1 being able to be carried by the units M , D and / or T and the content by weight of OH and / or OR 1 groups being between 0.2 and 10% by weight, and
  • mixtures A-3 the respective proportions of the constituents are not critical and can vary within wide limits. These mixtures contain, for example, from 60 to 90% by weight of resin (s) A-1/1 and from 40 to 10%> by weight of resin (s) A-1/2.
  • constituents B-1 there may be mentioned, as examples of symbols R 2 in the organic derivatives of metal M of formula (I), the radicals: methyl, ethyl, propyl, isopropyl, butyl, isobutyl , hexyl, 2-ethyl hexyl, octyl, decyl and dodecyl.
  • alkyl titanates such as ethyl titanate, propyl titanate, isopropyl titanate, butyl titanate, ethyl titanate, 2 hexyl, octyl titanate, decyl titanate, dodecyl titanate, ⁇ -methoxyethyl titanate, ⁇ -ethoxyethyl titanate, ⁇ -propoxyethyl titanate, titanate of formula Ti [(OCH 2 CH 2 ) 2 OCH 3 ] 4 or mixture of at least two of them; alkyl zirconates such as propyl zirconate, butyl zirconate or a mixture of at least two of them; alkyl silicates such as methyl silicate, ethyl silicate, isopropyl silicate, n-propyl silicate or a mixture of at least two of them; and mixtures of at least two of these products.
  • alkyl titanates such as ethyl titanate, prop
  • polyalkoxides B-2 which are preferred, originating from the partial hydrolysis of titanates, zirconates and silicate monomers, can be cited: polytitanates B-2 from the partial hydrolysis of isopropyl, butyl or 2-ethylhexyl titanates; polyzirconates B-2 originating from the partial hydrolysis of propyl and butyl zirconates; polysilicates B-2 from the partial hydrolysis of ethyl and isopropyl silicates; and mixtures of at least two of these products.
  • constituents B-3/1 which are preferred, there may be mentioned the organosilanes optionally alkoxylated chosen from the products of the following general formula:
  • R 4 , R 5 , R 6 are hydrogenated or hydrocarbon radicals identical or different from each other and preferably represent hydrogen, a linear or branched C-1-C4 alkyl or a phenyl optionally substituted by at least one CJ-C3 alkyl,
  • - U is a linear or branched C-i-C alkylene or a divide grouping of formula -CO-O-alkylene- where the alkylene residue has the definition given above and the free valence on the right (in bold) is linked to Si via W,
  • R 7 and R 8 are identical or different radicals and represent a linear or branched C 1 -C 4 alkyl
  • vinyltrimethoxysilane or ⁇ - (meth) acryloxypropyltrimethoxysilane is a particularly suitable compound B-3/1 .
  • constituents B-3/2 which are preferred, there may be mentioned the tris [(trialkoxysilyl) alkyl] isocyanurates where the alkyl groups contain from 1 to 4 carbon atoms and the organosilicon compounds are chosen:
  • R 9 is a linear or branched C-1-C4 alkyl radical
  • + R 10 is a linear or branched alkyl radical
  • + y is equal to 0, 1, 2 or 3, preferably to 0 or 1 and, more preferably still to 0, + where X has the meaning:
  • R 11 , R 12 , R 13 which are identical or different radicals representing hydrogen or a linear or branched C 1 -C 4 alkyl, hydrogen being more particularly preferred
  • R 11 and R 12 or R 13 can alternately constitute together and with the two carbons carrying the epoxy, an alkyl ring having from 5 to 7 members,
  • + X is the radical as defined above for the formula (B-3/2-a)
  • the compounds B-3/2 are preferably tris [3- (trimethoxysilyl) propyl] isocyanurates and epoxyalkoxymonosilanes B
  • GLYMO + 3-glycidoxypropyltrimethoxysilane
  • the following titanates, zirconates and silicates B-1 are used more preferably, taken alone or as a mixture between them: ethyl titanate, propyl titanate, isopropyl titanate, butyl titanate (n-butyl), propyl zirconate, butyl zirconate, ethyl silicate, propyl silicate and isopropyl silicate.
  • B-1 + B-3/1 or B-1 + B-3/2 the weight proportions of B-1 relative to the total B-1 + B3 / 1 or B-3/2 are notably from 5 to 100%, preferably from 8 to 80%.
  • B-1 + B-3/1 + B-3/2 the weight proportions between B-1, B-3/1 and B-3/2, expressed in percentages by weight relative to the total of the three, are the following: B-1> 1, preferably between 5 and 25, B-3/1> 10, preferably between 15 and 70, B-3/2 ⁇ 90, preferably between 70 and 15, it being understood that the sum of these proportions in B-1, B-3/1, B-3/2 is equal to 100%.
  • Component C has functions allowing it to cling to the silicone sheath and FH functions which confer hydrophobic properties on the textile material treated.
  • the constituents C-1 which can be used, separately or as a mixture, are silanes,
  • the FA functions are more precisely condensable / hydrolyzable functions corresponding to OH and / or OR 1 or functions capable of generating in situ functions
  • the FH functions can comprise any known hydrophobic group or any combination of known hydrophobic groups.
  • these groups are chosen from the following methods: alkyl groups, silicone groups, fluorinated groups and their various combinations. These groups can also develop softness properties.
  • these groups are siloxane sequences comprising M, D and / or T units, preferably those defined above with regard to the constituents A-1.
  • these groups are linear or branched C1 to C50 alkyl sequences, in particular from C1 to C30.
  • these groups are fluorinated groups of general formula: -Z - (- R F ) k in which: + Z represents a divalent or trivalent ball joint of a hydrocarbon nature, which can be linear or branched, a cyclic residue or not, saturated or unsaturated aliphatic, aromatic, mixed aliphatic / aromatic, and which may contain one or more oxygenated heteroatoms containing from 1 to 30 carbon atoms, + k is 1 or 2, + R F represents the group -C 3 F 2s -CF 3 with s equal to or different from zero or the group C s F 2s H with s equal to or greater than 1.
  • organosilicon compounds listed below can be cited: (i) the essentially linear diorganopolysiloxane comprising a hydroxyl group at each chain end, of formula:
  • + the substituents R 18 identical or different, each represent a monovalent hydrocarbon radical saturated or not with C ⁇
  • constituents C-1 which are very suitable, mention may be made of hydroxylated MDT resins having a content by weight of OH group of between 0.2 and 10%> by weight, taken alone or as a mixture with hydroxylated silicone oils of formula (III).
  • proportions of use of the constituents C-1 they are, as explained above, in the range going from 1 to 1000 parts by weight of constituent C-1 according to the desired FH, per 100 parts in weight of component A. For example, in the case where FH provides hydrophobicity, then generally 2 to 30 parts by weight of component C-1 are used.
  • the constituent A is a POS resin equipped with pattern (s) T and possibly M and / or possibly D
  • this resin can then also play the role of water-repellent functional additive C-1, provided that it is used in sufficient proportions equal to the sum of the proportions corresponding to the set A + C-1.
  • the constituents C-2 which can be used, separately or as a mixture, are hydrocarbon compounds carrying in their molecule, attached to carbon atoms, the two functionalities FA and FH.
  • FA functions are more specifically functions condensable / hydrolyzable corresponding to OH and / or OR 1 or functions capable of generating in situ OH functions and / or OR 1.
  • constituents C-2 which are preferred, mention may be made of fluorinated alcohols, preferably perfluorinated, of formula: R 19 - OH (IV) where R 19 represents an aliphatic radical, linear or branched, having from 2 to 20 atoms of carbon, said carbon atoms being substituted by at least one fluorine atom and optionally by at least one or hydrogen atom.
  • R 19 represents an aliphatic radical, linear or branched, having from 2 to 20 atoms of carbon, said carbon atoms being substituted by at least one fluorine atom and optionally by at least one or hydrogen atom.
  • R F perfluorinated alcohols of formula R F - (CH 2 ) m -OH where R F is as defined above and m is a number ranging from 0 to 10.
  • constituents C-2 are, as explained above, in the range going from 1 to 1000 parts by weight of constituent C-2, per 100 parts by weight of constituent A.
  • optional components D which are preferred, the following compounds can be cited, in addition to water:
  • + the substituents R 21 identical or different, have the same meanings as those given above for the reactive diorganopolysiloxane of formula (III); + j 'has a sufficient value to give the polymers of formula (VI) a dynamic viscosity at 25 ° C ranging from 10 to 200,000 mPa.s;
  • POS resins having the same meanings as those given above for component A, but which this time are free from any functional group of types OH and / or OR 1 .
  • resins which can be used mention may be made of MQ, MDQ, TD and MDT resins.
  • optional auxiliary components E which are preferred, the following compounds may be cited:
  • polycondensation catalysts which are compounds of a metal generally chosen from tin, titanium and zirconium; it is thus possible to use monocarboxylates and tin dicarboxylates such as 2-ethylhexanoate of tin, dibutyltin dilaurate, dibutyltin diacetate, hexacoordinated valence IV tin chelates, etc., such as those described in EP-A-0 367 696;
  • + metallic powders such as zinc, aluminum, magnesium powder
  • + oxides such as silica, ground quartz, alumina, zirconium oxide, titanium, zinc, magnesium, iron, cerium, lanthanum, praseodymium, neodymium oxides
  • + silicates such as mica, talc, vermiculite, kaolin, feldspar, zeolites
  • + pigments such as phthalocyanines, chromium oxides, sulfide and cadmium sulfoselenides
  • liquid silicone formulations used, in the context of the present invention, as textile coating bases are prepared by simple mixing at room temperature, and in any order of introduction, of the constituents A, B, C, D (optional ) and E (optional). The quantities committed are clearly defined as indicated above.
  • the order of incorporation of the constituents can be arbitrary, but it is however preferable, to avoid any risk of precipitation of solid products or of gel formation, to add the constituent A in the form of a solution in the constituent D solvent / diluent or in the form of an aqueous emulsion / dispersion when component D comprises water.
  • the introduction and intimate mixing of the optional fillers E, when used, with the constituents A, B, C and optionally D are carried out using the conventional methods used by the manufacturers of textile formulations. It is possible to use, for example, roller mills or turbine mills.
  • the textile coating base formulations thus prepared have the advantage of hardening by simple air drying for a time interval which can range from a few tens of minutes to several hours or, if necessary, several tens of hours. This time can be shortened by heating to a temperature in the range of 50 ° C to 180 ° C.
  • the textile coating bases thus prepared have excellent storage stability and can be used in all textile applications requiring the presence, after curing, of durable coatings with very high physical characteristics.
  • the crosslinkable liquid silicone formulations used as a textile coating base can be prepared in concentrated form (for example, for 100 parts by weight of component A, from 0 to 100 parts of component D), then be then diluted at the time of their use with an organic diluent, an organic solvent or water in a proportion of 1 to 30 parts by weight of formulation per 100 parts by weight of solvent, diluent or water.
  • the use in accordance with the present invention can be implemented directly on textile articles made from yarns, fibers and / or filaments, comprising at least one textile surface and consisting, for example, of woven, non-woven and / or knitted articles, by operating production processes at any time (for fabrics) and / or renovation and / or maintenance (for clothing) of the textile material.
  • textile surface is meant a surface obtained by assembling yarns, fibers and / or filaments by any process such as, for example, gluing, felting, weaving, braiding, flocking, or knitting.
  • the yarns, fibers and / or filaments used in the manufacture of these textile articles can be obtained from the transformation of a synthetic thermoplastic matrix consisting of at least one thermoplastic polymer chosen from the group consisting of: polyamides, polyolefins, polyvinylidene chlorides, polyesters, polyurethanes, acrylonitriles, (meth) acrylate-butadiene-styrene copolymers, their copolymers and mixtures.
  • the thermoplastic matrix can include additives, such as pigments, delustrants, matifiers, catalysts, heat and / or light stabilizers, anti-bacterial, anti-fungal, and / or anti-mite agents.
  • (I can for example be a mattifying agent, for example chosen from titanium dioxide and / or zinc sulfide particles.
  • the threads, fibers and / or filaments can also be derived from natural materials such as in particular cotton, linen, wool, according to the transformation methods known to those skilled in the art. Of course, mixtures of synthetic and natural materials can be used.
  • conventional techniques are used in the textile industry, in particular by using the so-called "padding" impregnation technique.
  • the textile article is treated by a formulation comprising an organic diluent or solvent
  • it is desirable then to remove the diluent or solvent for example to subject this article to a heat treatment to remove the diluent or the solvent in the form of vapor.
  • the amount of base textile coating deposited on the textile article corresponds to an amount between 0.1 and 10% by weight based on the weight of dry treated textile article.
  • the yarns, fibers and / or filaments can also be brought into contact with the textile coating base at any time during the textile material preparation processes.
  • thread is meant, for example, a continuous multifilament object, a continuous thread obtained by assembling several threads or a continuous fiber yarn, obtained from a single type of fiber, or a mixture of fibers.
  • fiber is meant, for example, a short or long fiber, a fiber intended to be worked in spinning or for the manufacture of nonwoven articles or a cable intended to be cut to form short fibers.
  • the process for manufacturing yarns, fibers and / or filaments generally begins with the passing through the die of the thermoplastic matrix, and ends before the textile surface manufacturing step.
  • the process for manufacturing threads, fibers and / or filaments notably comprises a spinning step.
  • the term “spinning step” means a specific operation consisting in obtaining yarns, fibers and / or filaments.
  • the spinning stage begins during the passage of the thermoplastic matrix through one or more dies and ends with the transfer of the threads, fibers and / or filaments obtained on a spool (for the threads or filaments) or in a pot (for the fibers), also called reclining.
  • the spinning step can also include steps which are carried out between passing through the die and winding. These steps may for example be steps of sizing, reunification of the filaments (by one or more drive points or convergence guide), drawing, heating of the filaments, relaxation and thermofixation.
  • the deposition on the yarns, fibers and / or filaments of the textile coating base according to the present invention can be carried out for example after the convergence of the yarns, fibers and / or filaments and / or during a stretching step. yarns, fibers and / or filaments. Said deposit can also be made between these two stages.
  • the textile coating base according to the present invention is deposited on the yarns, fibers and / or filaments during the sizing step.
  • a sizing composition comprising at least one textile coating base according to the present invention is deposited on the yarns, fibers and / or filaments.
  • treatment step means treatment steps after recovery of the yarns, fibers and / or filaments, such as for example steps of texturing, stretching, stretching-texturing, sizing, relaxation, heat-fixing. , twisting, fixing, crimping, washing and / or dyeing.
  • a textile coating base in accordance with the present invention it is possible in particular to deposit on the yarns, fibers and / or filaments, a textile coating base in accordance with the present invention during an operation chosen from the group consisting of: relaxation, twisting, fixing, crimping, stretching and / or the texturing of the yarns, fibers and / or filaments. It is also possible to deposit on the yarns, fibers and / or filaments a sizing composition comprising at least one textile coating base in accordance with present invention, in particular during a treatment step during the recovery of son, fibers and / or filaments. The yarns, fibers and / or filaments can also be placed in a washing and / or dyeing composition comprising at least one textile coating base in accordance with the present invention. According to a third general method of processing, the use in accordance with the present invention can be implemented in two stages:
  • a second step by contacting the textile articles made from the treated yarns, fibers and / or filaments by operating at any time the preparation (for fabrics) and / or renovation processes and / or maintenance (for clothing) of the textile material.
  • the treatment with the textile coating base can be applied either partially or completely on the one hand on the yarns, fibers and / or filaments and then on the other hand on the textile articles made from the yarns, fibers and / or treated filaments.
  • partially is meant in particular an application which consists in treating the yarns, fibers and / or filaments with part of the constituent ingredients of the textile coating base and in providing the complement during the treatment of textile articles made from treated yarns, fibers and / or filaments.
  • the attachment promoter system (component B) can be provided during the processing of the yarns, fibers and / or filaments, while the network generator system (component A) and the functional additive (component C) are brought in when articles are processed.
  • “completely” is meant an application in which, on the one hand, the yarns, fibers and / or filaments and, on the other hand, the textile articles made from these yarns, fibers and / or filaments are treated , each time, with a textile coating base comprising all of its constituent ingredients, with the possibility that the latter are not necessarily present in the same proportions at the time of the treatment of the yarns, fibers and / or filaments then at the time of the treatment of the articles.
  • composition C1 It has the following constitution (the parts are given by weight): A: mixture of: • hydroxylated MDT resin having 0.5% of OH by weight and constituted 62% by weight of CH3SÎO3 / 2 units, 24% by weight of units (CH3) 2 Si ⁇ 2 / 2 e 14% by weight of units (CH3) 3 SiO-j / 2: 47 parts; and of “hydroxylated MQ resin having 2% of OH by weight and consisting of 45% by weight of Si ⁇ 4 / 2 units and 55.% by weight of (CH3) 3 SiO- units
  • composition C2 Comparison formulation (composition C2): The performance of composition C1 is compared to that of a conventional composition C2 ("Scotch Guard") which is a commercial product known for its excellent water-repellent properties. It is applied by spray according to the protocol recommended by the supplier.
  • Scotch Guard a commercial product known for its excellent water-repellent properties. It is applied by spray according to the protocol recommended by the supplier.
  • the treated textile article used is a Polyamide 6.6 knit of the interlock knitting type produced on a double needle circular knitting machine with PA6.6 yarns texture 78 dtex 68 strands and 78 dtex 23 strands.
  • the textile article is treated by padding with 5% and 10% (by weight) solutions of composition C1 in heptane. It undergoes drying at room temperature (23 ° C) for 12 hours, then it is optionally heat treated for 3 minutes at
  • the measurement of the beading effect is carried out by the standard water repellency test known as the “Spray-Test” (AATC Test Method 22-1996): -
  • the test consists in spraying the sample of the textile article with a given volume of water. The appearance of the sample is then assessed visually and compared to the standards. A score of 0 to 100%> is assigned depending on the amount of water retained. For 0, the sample is completely wet, for 100%), the sample is completely dry.
  • the samples are also weighed before and after spraying and the amount of water retained by the textile sample is determined by difference. This quantity is then related to the quantity of water initially retained by the unwashed textile sample.
  • a GIROWASH testing machine (usually used for washing color stability studies - described in ISO 105 C06) was used.
  • This system comprises a mechanical device allowing: the rotation at 40 rpm of a wheel mounted on a horizontal axis and at least half of which is immersed in a bath heated to the desired temperature (in this case 50 ° C); fixing on this wheel closed containers, made of stainless steel, having a capacity of 550 ml each, a diameter of 75 mm and a height of 125 mm, the bottom of the containers being 45 mm from the axis of the shaft.
  • EXAMPLE 2 Dural hydrophobia with tincture. It is assumed 'the same composition C1 which is here diluted to 14% (by weight) in heptane.
  • the textile used is a Polyamide 6.6 knitting of the pique knitting type produced on a single needle circular knitting machine with a PA6.6 yarn 140 dtex 102 strands vanized one fall out of two.
  • a dye resistance test is carried out. The treatment protocol is as follows: impregnation, spinning, drying at room temperature (23 ° C), then heat treatment for 10 minutes at 150 ° C).
  • Experimental results • A sample of the textile article treated with composition C1 was dyed in a Mathis Labomat laboratory dyeing machine.
  • the bath ratio was 1/50 and the following auxiliary products were used: sodium acetate 0.5 g / l; Sandogene CN 1%; Sandogene NH 1%.
  • the Nylosan N5GL Blue dye was used at a dose of 1.2%.
  • the temperature rise in the bath was ensured at the speed of 1.5 ° C / min and the maximum temperature reached was 98 ° C.
  • the total duration of the dye was 45 minutes. •
  • the sample is then subjected to a series of machine wash cycles at 50 ° C for a total of 8 hours. At the end of these, it retains water repellency properties with an 80% rating in the Spray Test.
  • EXAMPLE 3 Durable hydrophobia - Resistance to washing in an industrial machine.
  • composition C3 It has the following constitution (the parts are given by weight): - A: mixture of: • hydroxylated MDT resin having 0.5%> of OH by weight and consisting of 62% by weight of CH3SÎO3 / 2 units, 24% by weight of units (CH 3 ) 2 Si ⁇ 2 / 2 and 14% by weight of units (CH3) 3 SiO-j / 2: 47 parts; and • hydroxylated MQ resin having 2% of OH by weight and consisting of 45% by weight of Si ⁇ 4 / 2 units and 55.%> by weight of (CH3) 3 SiO-d / 2 units: 7 parts; B: mixture of: • tris (3- (trimethoxysilyl) propyl) isocyanurate: 7 parts • n-propyl zirconate (Pr) of formula Zr (Opr) 4: 20 parts • n-butyl titanate (Bu) of formula Ti (OBu): 2 parts; and
  • composition C4 It has the following constitution (the parts are given by weight): A: mixture of: • hydroxylated MDT resin having 0.5% of OH by weight and constituted 62% by weight of CH3SJO3 / 2 units, 24% by weight of units (CH 3 ) 2 Si ⁇ 2 / 2 and 14% by weight of units (CH3) 3 SiO-d / 2: 95 parts; and • hydroxylated MQ resin having 2%> OH by weight and consisting of 45% by weight of S1O4 / 2 units and 55% by weight of ( ⁇ 3) 3 SiO-1/2 units: 14 parts; B: mixture of: • tris (3- (trimethoxysilyl) propyl) isocyanurate: 1 1 parts • n-propyl zirconate (Pr) of formula Zr (Opr) 4 : 41 parts • n-butyl titanate (Bu) of formula Ti (OBu) 4 : 4 parts; and of • e
  • composition C5 It has the following constitution (the parts are given by weight): A: mixture of: • hydroxylated MDT resin having 0.5% of OH by weight and constituted 62% by weight of CH3SÎO3 / 2 units, 24% by weight of units (CH3) 2 SÎO2 / 2 and 14% by weight of units (CH3) 3 SiO-
  • Crosslinkable liquid silicone formulation according to the invention (composition C6): It has the following constitution (the parts are given by weight): A: hydroxylated MDT resin having 0.8% of OH by weight and consisting of 23% by weight of CH3Si ⁇ 3 / 2 units, 75% by weight of units (CH3) 2 SiO2 / 2 and 2% by weight of units (CH3 ) 3 SiO-
  • composition C7 It has the following constitution (the parts are given by weight): A: hydroxylated MDT resin having 0.5% of OH by weight and consisting of 62% in weight of units CH3SÎO3 / 2, 24% by weight of units (CH3) 2 Si ⁇ 2 / 2 and 14% by weight of units (CH3) 3 SiO-d / 2: 100 parts B: mixture of: • sorting (3- ( trimethoxysilyl) propyl) isocyanurate: 13 parts; and • n-propyl zirconate (Pr) of formula Zr (Opr): 41 parts C-1: mixture of: • hydroxylated MDT resin having 0.5% OH by weight and consisting of 62%> by weight of CH3Si ⁇ 3 / 2 units, 24% by weight of units (CH3) 2 Si ⁇ 2 / 2 and 14% by weight of units ( ⁇ 3) 3 SiO-j / 2: 41 parts; and • linear hydroxylated silicone
  • composition C8 Comparison formulation (composition C8): The performance of compositions C3 to C7 are compared with those of a conventional composition C8 (treatments known and marketed under the brands "Scotch Guard” or “Teflon”) known for its excellent water-repellent properties. It is applied by a solvent route according to the protocol recommended by the supplier.
  • the treated textile article used is a bi-stretch fabric based on Polyamide 6.6 (80% by weight) and elastane (20%). This textile surface is woven in warp and weft from spun 44 dtex 1-strand elastane yarn and from polyamide 6.6 44 dtex 34 strands. The elasticity of the textile surface obtained is 100% in each direction and the surface weight is of the order of 130 g / m 2 .
  • the textile article is treated by padding with compositions C3 to C8. It is subjected to a heat treatment at 150 ° C for 2 minutes, then it is stored at room temperature for 8 hours before testing.
  • composition A It has the following constitution (the percentages are given by weight of the total composition): A: mixture of: • 1.63% of hydroxylated MDT resin having 0.8%) of OH by weight and consisting of 23% by weight of CH3Si ⁇ 3 / 2 units, 75% by weight of (CH3) SiO2 / 2 units and 2%> by weight of (CH3) 3 SiO ⁇ / 2 units “4.66% of hydroxylated MDT resin having 0.5%> of OH by weight and consisting of 62% by weight of CH3Si ⁇ 3 / 2 units, 24% by weight of (CH3) 2 Si ⁇ 2 / 2 units and 14% by weight of units ( ⁇ 3) 3 SiO-1/2 • 0.57% of hydroxylated MQ resin having 2% OH by weight and consisting of 45% by weight of Si ⁇ 4 / 2 units and 55% by weight of units ( ⁇ 3) 3 SiO-1/2 - B: mixture of: • 0.16%
  • composition B Crosslinkable liquid silicone formulation according to the invention (composition B): It has the following constitution (the percentages are given by weight of the total composition): A: mixture of: • 4.56% of hydroxylated MDT resin having 0, 8% OH by weight and consisting of 23% by weight of CH3SÎO3 / 2 units, 75% by weight of units (CH3) 2 Si ⁇ 2 / 2 and 2% by weight of units ( ⁇ 3) 3 SiO-1/2 2.70% of hydroxylated MDT resin having 0.5% of OH by weight and consisting of 62% by weight of CH3SÎO3 / 2 units, 24% by weight of (CH3) 2 Si ⁇ 2 / 2 units and 14% by weight of patterns ( ⁇ 3) 3 SiO-
  • composition C It has the following constitution (the percentages are given by weight of the total composition): A: mixture of: • 4.0% of hydroxylated MDT resin having 0, 8% of OH by weight and consisting of 23% by weight of CH3SÎO3 / 2 units, 75% by weight of units (CH3) 2 SiO2 / 2 and 2% by weight of units (CH3) 3 SiO ⁇ 2 "2.24 % of hydroxylated MDT resin having 0.5% of OH by weight and consisting of 62% by weight of CH3SÎO3 / 2 units, 24%> by weight of units (CH3) 2 Si ⁇ 2 / 2 and 14% by weight of units ( CH3) 3 SiO-
  • composition D Comparative formulation (composition D): The performances of compositions A, B and C in accordance with the invention are compared with those of a conventional composition D ("Scotch Guard") which is a commercial product known for its excellent water-repellent properties. It is a fluorinated acrylate in butyl acetate.
  • Comparative sample (sample E) The performances of compositions A, B and C in accordance with the invention are also compared with those of a commercial textile known for its excellent breathability and impermeability properties.
  • This textile is sold under the name EPIC by the company NEXTEC, and consists of polyamide 6.6 and elastane, having an elasticity of the order of 50% in the weft direction. Its specific weight is around 160 g / m2.
  • This elastic fabric has been treated with a silicone composition as described for example in US-A-5,876,792.
  • the textile is a textile woven from Polyamide 6.6 and elastane (80/20). It is made of elastic warp and weft threads based on a 44 dTex elastane wrapped by a piece of PA 6.6 44 dTex / 34 strands. These textile surfaces have a significant bidirectional elasticity (100% elongation in both directions) and a specific weight of 130 g / m2.
  • the textile is treated by padding with the compositions. It undergoes drying at room temperature for a few minutes and then is heated for 2 min at 180 ° C.
  • Washing protocol To test the durability of the treatment, an industrial washing machine (Wascator - Electrolux) is used. The imposed cycle is as follows: washing in drinking water at 50 ° C continuously for 8 hours. Such treatment is assumed to be representative of the life of the textile in real situations (in a washing cycle in a domestic machine, the washing time is often only 15 min maximum and the level of friction induced is considerably lower than for industrial washing machine).
  • EXAMPLE 5 Quick drying - Resistance to washing in a domestic machine 1 / Crosslinkable liquid silicone formulation according to the invention (composition F): It has the following constitution (the parts are given by weight): A: mixture of: • hydroxylated MDT resin having 0.5% of OH by weight and consisting of 62% by weight of CH3Si ⁇ 3 / 2 units , 24% by weight of units (CH3) Si ⁇ 2 / 2 and 14% by weight of units ( ⁇ 3) 3 SiO ⁇ / 2: 47 games; and • hydroxylated MQ resin having 2% of OH by weight and consisting of 45% by weight of Si ⁇ 4 / 2 units and 55.% by weight of units ( ⁇ 3) 3 SiO-d / 2: 7 parts; - B: mixture of: • tris (3- (trimethoxysilyl) propyl) isocyanurate: 7 parts • n-propyl zirconate (Pr) of formula Zr (Opr): 20 parts • n-butyl
  • the treated textile articles used are: - a bi-stretch fabric based on Polyamide 6.6 (80% or by weight) and elastane (20%). This textile surface is woven in warp and weft from spun 44 dtex 1-strand elastane yarn and from polyamide 6.6 44 dtex 34 strands. The elasticity of the textile surface obtained is 100% in each direction and the surface weight 2 is of the order of 130 g / m. - a knit made from Polyamide 6.6 (100% by weight). It is obtained by interlock knitting made on a double needle circular knitting machine with PA6.6 yarns 78 dtex textures 68 strands.
  • the coupons are placed in a 250 ml bottle containing 125 ml of distilled water, which is mounted on the beater. This is then programmed for a threshing time of 1 hour at a frequency of 5.5 / 10, thus making it possible to simulate dynamic conditions (pressure variations, etc.) for wetting a textile.
  • the moisture uptake is measured by weighing the coupon before and after dynamic humidification, and the values obtained expressed as a percentage by weight relative to the weight of the dry coupon.
  • the measurement and monitoring of drying are carried out on an instrumented Mettler balance (automatic weight acquisition every minute) on which the 8 cm circular coupon of fabric is placed (only one side of the sample being presented to the air ambient thus simulating wearing conditions).
  • This balance is placed in a conditioned room where a temperature of 23 ° C and a relative humidity of 50% prevails.
  • a low level of moisture uptake is essential for improved comfort because, in humidification conditions much milder than that practiced here obviously, the "freezing effect" well known to mountain sports practitioners will be all the more intense. that the amount of water absorbed by the fabric will be high.
  • the 2 textile surfaces fabric and knitted fabric
  • This drying rate remains higher in the case of samples which have been washed for 8 hours at 50 ° C.
  • Dry cleaning tests The performances of Spray-Test (standard AATC 22-1996) were followed over the course of repeated cycles of dry cleaning. The same characteristics have been determined. The tests were carried out in an industrial pressing using a B ⁇ WE P 250 machine running on perchlorethylene. The textile surface subjected to this test is a bistretch fabric of 120 g / m2 having approximately 60%> elongation in warp and weft.

Abstract

Un des objectifs essentiels de la présente invention est de fournir un traitement qui permette (i) d'enduire un matériau textile et/ou des fils, fibres et/ou filaments constitutifs du matériau textile, la formulation silicone réticulant autour des fils, fibres et/ou filaments constitutifs du matériau textile et formant autour d'eux une gaine silicone réticulée, et (ii) de conférer de manière durable à ce matériau textile déperlance et imperméabilité, sans affecter substantiellement la respirabilité intrinsèque du matériau textile. Ces objectifs sont atteints par la présente invention qui concerne l'utilisation d'au moins une formulation silicone liquide réticulable comme base d'enduction d'un matériau textile, notamment d'un matériau textile susceptible d'être employé à la réalisation d'un vêtement de sport.

Description

UTILISATION D'UNE FORMULATION SILICONE POUR LA FONCTIONNALISATION DURABLE DES TEXTILES POUR LES VETEMENTS DE SPORT Le domaine de la présente invention est celui des formulations silicones liquides réticulables susceptibles d'être utilisées pour former un revêtement qui permette d'apporter des fonctionnalités durables à un grand nombre de matériaux textiles, notamment ceux utilisés utilisés dans le domaine des vêtements de sport (en anglais « sportwear »). De nombreux traitements sont appliqués aux matériaux textiles, ils leur apportent des fonctionnalités supplémentaires telles que notamment douceur, hydrophilie, hydrophobie, oléophobie. Ces traitements consistent souvent à déposer sur la surface textile des polymères principalement de type silicone. Pour la douceur, ce sont des huiles polydiméthylsiloxanes longues (voire des gommes polyorganosiloxanes). Pour l'hydrophilie, ce sont des huiles silicones aminées ou à groupes polyéthers. Des composés organosiliciques ou purement organiques fluorés sont incorporés lorsque l'on cherche à apporter de l'oléophobie. Pour certaines applications, comme par exemple l'hydrofugation des vêtements, une des caractéristiques recherchées est la permanence du traitement. On observe dans la pratique que les nombreuses formulations actuelles ne permettent pas d'atteindre des durabilités satisfaisantes. Pour les textiles utilisés pour les vêtements de sport, les principales caractéristiques requises sont les suivantes : confort, respirabilité, déperlance et un certain niveau d'imperméabilité : • Le confort est apporté principalement par la nature et le type de textile utilisé. De plus, ces textiles peuvent être dotés de propriétés d'élasticité. • La respirabilité est essentiellement assurée par la structure du textile, notamment sa porosité ouverte. Il est a noter que l'utilisation de membrane imper-respirante diminue de manière importante la respirabilité intrinsèque du textile et ne permet plus l'évacuation de la chaleur et de l'eau en cas d'activité modérée, forte à très forte (ce qui est le cas lors d'une pratique sportive). • La déperlance est une caractéristique de la surface du textile. Elle correspond au fait que sous aspersion modérée (représentative d'une légère pluie) l'eau ne s'accroche pas sur le textile qui ressort de ce fait plus ou moins sec. • L'imperméabilité à l'eau liquide est une caractéristique plutôt massique du textile en ce sens que l'eau doit envahir et traverser la porosité de la surface textile. Le nombre et la taille des pores sont à prendre en considération mais aussi le traitement de la surface de ces pores (surface des fibres tissées ou tricotées). L'imperméabilité se mesure par la pression qu'il est nécessaire d'appliquer pour forcer l'eau à traverser le textile. Il est de coutume de parler d'imperméable dès que la pression d'eau critique est équivalente à celle d'un mètre d'eau. Dans la pratique, une telle protection n'est utile que dans 10% des situations (très forte pluie, contact soutenu avec des surfaces mouillées, etc.). Il est instructif de garder à l'esprit qu'une pression de l'ordre de 10 cm d'eau est équivalente à celle exercée par un vent de 140 km/h. Apporter l'ensemble de ces fonctions à un matériau textile est déjà en soi une prouesse technique. En particulier combiner déperlance et imperméabilité à respirabilité est notoirement difficile. Apporter des fonctions durables au matériau textile est une difficulté technique supplémentaire. Il est connu (cf. brevet DE-A- 2 822 393) que, pour améliorer l'ancrage, il est souhaitable de réaliser des liaisons chimiques covalentes entre le support et le composé que l'on cherche à déposer sur la surface textile. Néanmoins, étant donné la nature et la diversité des polymères utilisés pour fabriquer les matériaux textiles, cette option n'est pas toujours possible et, lorsqu'elle l'est, elle reste spécifique à un certain type de matériau textile support. L'obtention de textiles présentant de manière durable les propriétés mentionnées supra pour les vêtements de sport, notamment une très bonne respirabilité associée à une forte déperlance et une imperméabilité correspondant à plusieurs dizaines de centimètres d'eau, peut s'avérer très intéressante pour le marché du « sportwear ». L'obtention de tels vêtements capables de sécher rapidement serait encore un plus. On insistera en outre sur le fait que pour ce type d'application, la persistance des propriétés dans des conditions d'abrasion humide et tout particulièrement au lavage est primordiale.
La présente invention a donc pour objectif de fournir un traitement qui permette d'apporter des fonctionnalités durables aux matériaux textiles et en particulier des fonctionnalités adaptées au domaine des vêtements de sport. Elle a notamment pour objectif de fournir un traitement permettant de conférer de manière durable au matériau textile une très bonne respirabilité et/ou une forte déperlance et/ou une forte imperméabilité, de préférence une imperméabilité correspondant à au moins 10 cm d'eau, mieux encore à plusieurs dizaines de centimètres d'eau. Elle a plus particulièrement pour objectif de fournir un traitement permettant de conférer de manière durable au matériau textile une forte déperlance et une forte imperméabilité (de préférence une imperméabilité correspondant à au moins 10 cm d'eau, mieux encore à plusieurs dizaines de centimètres d'eau), sans remettre en cause de manière substantielle les propriétés de respirabilité intrinsèques du matériau textile. Un autre objectif de l'invention est de fournir un traitement conférant en plus au textile, de manière durable, des capacités de séchage rapide et/ou une reprise d'eau réduite. Un autre objectif encore de l'invention est de fournir un traitement conférant au textile de telles propriétés qui persistent dans des conditions d'abrasion humide et tout particulièrement au lavage. Un objectif de l'invention est donc de fournir un procédé permettant de réaliser des matériaux textiles et des articles les incluant, e.g. vêtements, ayant des propriétés imper- respirantes durables et notamment présentant une résistance certaine au lavage et plus généralement aux contraintes d'usage.
Ces objectifs, parmi d'autres, sont atteints par la présente invention qui concerne l'utilisation d'au moins une formulation silicone liquide réticulable comme base d'enduction d'un matériau textile destiné de préférence à la réalisation d'un vêtement de sport: pour permettre, en réticulant autour des fils, fibres et/ou filaments constitutifs du matériau textile, d'assurer une large couverture de protection du matériau textile, protection peu dépendante de la nature dudit matériau du fait qu'elle ne nécessite peu ou pas de points d'ancrage ; pour permettre, en faisant une gaine silicone réticulant chimiquement, d'assurer une protection durable du matériau textile en lui conférant une excellente résistance vis-à-vis des agressions rencontrées lors de l'usage ; par l'expression "protection durable", on entend définir une protection d'une part vis-à-vis des contraintes imposées par les procédés textiles tels que notamment les traitements thermiques de thermofixation, les traitements de teinture, et d'autre part vis-à-vis des agressions subies au cours de la vie du matériau textile (par exemple un vêtement) telles que notamment l'abrasion au porter, les lavages en milieu aqueux détergent, le nettoyage à sec en milieu solvant ; pour permettre, en apportant une ou des fonctionnalités d'hydrophobie, de conférer au matériau textile respirabilité, déperlance, imperméabilité (de préférence imperméabilité correspondant à au moins 10 cm d'eau, mieux encore à plusieurs dizaines de centimètres d'eau), avec en plus éventuellement une avantageuse capacité de séchage rapide; et pour permettre, en raison de la nature spéciale des constituants de la formulation, de réaliser les opérations de dépôt de la formulation liquide ou des ses constituants, et de sa réticulation, à n'importe quel moment des processus d'élaboration et/ou de rénovation et/ou d'entretien du matériau textile.
La présente invention a aussi pour objet l'utilisation d'une formulation silicone liquide réticulable comportant une ou des fonctionnalités d'hydrophobie, pour (i) enduire un matériau textile susceptible d'être employé à la réalisation d'un vêtement de sport et/ou des fils, fibres et/ou filaments constitutifs du matériau textile, la formulation silicone réticulant autour des fils, fibres et/ou filaments constitutifs du matériau textile et formant autour d'eux une gaine silicone réticulée, et (ii) conférer de manière durable à ce matériau textile déperlance et imperméabilité, de préférence sans affecter substantiellement la respirabilité intrinsèque du matériau textile. La durabilité du traitement et des propriétés susmentionnées est primordiale. La durabilité peut être appréciée dans un contexte incluant le lavage du matériau textile. Des essais conduits par le demandeur dans des conditions de lavage drastiques ont permis de montrer la tenue remarquable du traitement silicone, corrélée à une persistance des propriétés. Cette durabilité peut être mesurée en comparant les performances du matériau textile traité, avant et après avoir fait subir à ce matériau un protocole de lavage intensif, par exemple celui décrit à l'exemple 4 (lavage continu à l'eau à 50 °C, pendant 8 heures), le matériau étant essoré et séché avant de subir le ou les protocoles de test des propriétés. L'effet perlant (propriété de déperlance) peut être mesuré par la méthode « Spray- Test » AATC Test Method 22-1996 ; cette méthode est décrite dans les exemples et peut consister en une évaluation visuelle de l'aspect mouillé de l'échantillon : le test consiste a asperger l'échantillon de l'article textile avec un volume d'eau donné ; l'aspect de l'échantillon est ensuite évalué visuellement et éventuellement comparé à un standard ; une note de 0 à 100% est attribuée en fonction de la quantité d'eau retenue ; pour 0%, l'échantillon est totalement mouillé, pour 100%, l'échantillon est complètement sec. On peut également procéder à une pesée de l'échantillon pour mesurer le poids d'eau absorbé. Suivant l'invention, l'effet perlant correspond de préférence à une note d'au moins 80%, de manière plus préférée d'au moins 90, mieux de 100% (intervalle 80- 100%>). Par durabilité de l'effet perlant, on entend que, de préférence, après le traitement de lavage, la note reste comprise entre 70 et 100%, de préférence entre 80 et 100%. L'imperméabilité à l'eau liquide peut être mesurée par le test de Schmerber (ISO Test Method 811-1981), qui consiste a appliquer une pression d'eau sur le textile par le biais d'une colonne d'eau et à mesurer la hauteur limite qu'il est nécessaire d'atteindre pour que l'eau traverse le textile. Suivant l'invention, l'imperméabilité visée est de préférence supérieure ou égale à 10 cm de colonne d'eau selon ce test, et de manière plus préférée supérieure ou égale à 15 cm, mieux encore à 20 cm. Par durabilité de cette propriété d'imperméabilité, on entend que, après le traitement de lavage décrit, l'imperméabilité n'est pas affectée sensiblement et reste supérieure ou égale à 10, 15 ou 20 cm de colonne d'eau. La mesure de la durabilité des propriétés de déperlance et d'imperméabilité permet d'apprécier la durabilité du traitement silicone selon l'invention. Les autres propriétés apportées par la combinaison entre le textile, ces fils, fibres ou filaments constitutifs, et le traitement silicone profitent aussi de cette durabilité. Par respirabilité « intrinsèque », on entend la respirabilité du matériau textile en l'absence de traitement. La présente invention permet de produire un matériau textile ayant les propriétés de déperlance et d'imperméabilité susvisées, sans remise en cause substantielle de la respirabilité intrinsèque. Par « substantiel » on entend que la respirabilité du matériau traité représente au moins 90%> de la respirabilité intrinsèque. (Norme ASTM E 96 B - Diffusion de la vapeur d'eau) Avantageusement aussi, le traitement permet de limiter la reprise d'eau (poids d'eau absorbée) du textile traité et/ou de lui procurer une capacité de séchage rapide, et ce de manière durable. La reprise d'eau d'un matériau textile et sa vitesse de séchage peuvent être mesurées par pesée d'un coupon de ce matériau textile avant et après humidification dynamique, et les valeurs obtenues exprimées en pourcentage en poids par rapport au poids du coupon sec. Le faible niveau de reprise d'eau observé permet de limiter le « freezing effect », à savoir la sensation de froid résultant des échanges thermiques au contact d'un vêtement mouillé. Ces propriétés peuvent être évaluées de la manière suivante : des coupons de tissu à tester, pesés au préalable à l'état sec, sont soumis à une phase d'humidification dynamique (disposés dans un flacon rempli d'eau et soumis à une agitation forte pendant une durée d'une heure ; des conditions plus précises sont indiquées à l'exemple 5), puis les coupons sont pesés (la comparaison des poids avant et après humidification renseigne sur la reprise d'eau), mis à sécher sur la balance, dans une salle conditionnée sous température de 23°C et humidité relative de 50%, et l'évolution de leur poids permet d'évaluer leur capacité de séchage. Les valeurs observées vont dépendre de la nature du matériau textile. On peut cependant préciser que le traitement vise à limiter la reprise d'eau de sorte que le poids du coupon de matériau textile traité reste au moins 50%o, de préférence au moins 60 ou 70% inférieur au poids du coupon témoin non traité. Les utilisations selon l'invention visent de préférence à pourvoir de manière durable le matériau textile des trois propriétés que sont la respirabilité, la déperlance et l'imperméabilité, de préférence associées en plus à une capacité de reprise d'eau faible (conférant ainsi un confort de porter en limitant les pertes thermiques dues à l'évaporation de l'eau) et un séchage rapide durables. Dans le présent mémoire, l'expression « matériau textile » désigne : d'une part les fils, fibres et/ou filaments en matières synthétiques et/ou naturelles qui sont mis en œuvre pour la fabrication d'articles textiles ; et d'autre part les articles textiles confectionnés à partir desdits fils, fibres et/ou filaments, comprenant au moins une surface textile et consistant par exemple dans des articles tissés, non tissés et/ou tricotés, lesdits "articles textiles confectionnés" englobant aussi bien des étoffes que des vêtements, comme par exemple des vestes et des pantalons. Ainsi, grâce à l'utilisation de cette formulation on procède à la fixation durable d'un réseau siloxanique fonctionnel sur la surface textile et le traitement ainsi réalisé permet d'obtenir avec succès les diverses propriétés avantageuses mentionnées ci-avant. Il a été observé encore que dans certains cas le traitement ainsi réalisé non seulement n'empêche absolument pas la mise en teinture ultérieure du matériau textile, mais encore peut créer un effet d'amélioration de la tenue des couleurs aux lavages. Suivant une caractéristique préférée de l'invention, la formulation silicone liquide réticulable utilisée comme base d'enduction de matériau textile comprend : A - un système générateur de réseau silicone filmogène comprenant au moins une résine polyorganosiloxane (POS) présentant, par molécule, d'une part au moins deux motifs siloxyles différents choisis parmi ceux de types M, D, T, Q, l'un des motifs étant un motif T ou un motif Q et d'autre part au moins trois groupements hydrolysables/condensables de types OH et/ou OR1 où R1 est un radical alkyle linéaire ou ramifié en C-| à Cβ, de préférence en C-j à C3 ; B - un système promoteur d'accrochage dudit réseau sur la surface du matériau textile consistant dans : • soit B-1 au moins un alkoxyde métallique de formule générale : M[(OCH2CH2)a OR2]n (I) dans laquelle : - M est un métal choisi dans le groupe formé par : Ti, Zr, Ge, Si, Mn et Al ; - n = valence de M ; - les substituants R2, identiques ou différents, représentent chacun un radical alkyle, linéaire ou ramifié, en C-i à C-12 >' - a représente 0, 1 ou 2 ; - avec les conditions selon lesquelles, quand le symbole a = 0, le radical alkyle R2 possède de 2 à 12 atomes de carbone, et quand le symbole a est 1 ou 2, le radical alkyle R2 possède de 1 à 4 atomes de carbone ; - éventuellement, le métal M est relié à un ou plusieurs ligands, par exemple ceux obtenus à l'aide notamment de β-dicétones, β-cétoesters et esters maloniques (par exemple l'acétylacétone) ou de la triéthanolamine. • soit B-2 au moins un polyalkoxyde métallique découlant de l'hydrolyse partielle des alkoxydes monomères de formule (I) mentionnée supra dans laquelle le symbole R2 a la signification précitée avec a = 0 ; • soit une association de B-1 et B-2 ; • soit B-3 une association de B-1 et/ou B-2 avec : - B-3/1 au moins un organosilane éventuellement alkoxylé contenant, par molécule, au moins un groupe alcényle en C2-C6, - et/ou B-3/2 au moins un composé organosilicié comprenant au moins un radical époxy, a ino, uréido, isocyanato et/ou isocyanurate ; C - un additif fonctionnel consistant dans : • soit C-1 au moins un silane et/ou au moins un POS essentiellement linéaire et/ou au moins une résine POS, chacun de ces composés organosiliciques étant équipé, par molécule, d'une part de fonction(s) d'accrochage (FA) capables de réagir avec A et/ou B ou capable de générer in situ des fonctions aptes à réagir avec A et/ou B et d'autre part de fonction(s) d'hydrophobie (FH),qui peuvent être identiques ou différentes des FA ; • soit C-2 au moins un composé hydrocarboné comprenant au moins un groupe hydrocarboné linéaire ou ramifié, saturé ou insaturé, et éventuellement un ou plusieurs hétéroatome(s) autre que le Si (comme par exemple un atome d'oxygène, de fluor ou d'azote) et se présentant sous forme d'une structure monomère, oligomère (linéaire, cyclique ou ramifiée) ou polymère (linéaire, cyclique ou ramifiée), le dit composé hydrocarboné étant équipé, par molécule, d'une part de fonction(s) d'accrochage (FA) capables de réagir avec A et/ou B ou capable de générer in situ des fonctions aptes à réagir avec A et/ou B et d'autre part de fonction(s) d'hydrophobie (FH) qui peuvent être identiques ou différentes des FA ;
• soit un mélange de C-1 et C-2 ; D - éventuellement un système additif non réactif consistant dans : (i) au moins un solvant/diluant organique et/ou un composé organosilicié non réactif ; (2i) et/ou dans de l'eau dans le cas de la mise en oeuvre d'une formulation silicone liquide en émulsion ou en dispersion aqueuse ; et E - éventuellement au moins un agent auxilliaire autre que D connu de l'homme de métier, qui est choisi, quand on en a besoin, en fonction notamment des applications dans lesquelles les matériaux textiles traités conformément à l'invention sont employés ; avec la condition selon laquelle on engage (les parties sont données en poids) : - pour 100 parties de constituant A, - de 0,5 à 200, de préférence de 0,5 à 100 et de manière plus préférée de 1 à 70 parties de constituant B, - 1 à 1 000, de préférence de 1 à 300 parties de constituant C, - de 0 à 10 000, de préférence de 0 à 5 000 parties de constituant D et - de 0 à 100 parties de constituant E. Les constituants A utilisables, séparément ou en mélange, sont des résines filmogènes classique parmi lesquelles on peut citer : A-1 : au moins une résine organosilicique préparée par co-hydrolyse et co- condensation de chlorosilanes choisis dans le groupe constitué de ceux de formules (R3)3SiCI, (R3)2Si(CI)2, R3Si(CI)3, Si(CI)4. Ces résines sont des oligomères ou polymères organopolysiloxanes ramifiés bien connus et disponibles dans le commerce. Elles présentent, dans leur structure, au moins deux motifs siloxyles différents choisis parmi ceux de formule (R3)3SiO0 5 (motif M), (R3)2SiO (motif D), R3SiO1 - (motif T) et SiO2 (motif Q), l'un au moins de ces motifs étant un motif T ou Q. Les radicaux R3 sont répartis de telle sorte que les résines comportent environ de 0,8 à 1 ,8 radicaux R3 par atome de silicium. De plus ces résines ne sont pas complètement condensées et elles possèdent encore environ de 0,001 à 1 ,5 groupe OH et/ou alkoxyle OR1 par atome de silicium ; les radicaux R3 sont identiques ou différents et sont choisis parmi les radicaux alkyles linéaires ou ramifiés en C-] - CQ, les radicaux alcényles en C2 - C4, phényle, trifluoro-3,3,3 propyle. On peut citer par exemple comme radicaux R3 alkyles, les radicaux méthyle, éthyle, isopropyle, tertiobutyle et n-hexyle ; comme exemples d'oligomères ou de polymères organopolysiloxanes ramifiés on peut citer les résines MQ, les résines MDQ, les résines TD et les résines MDT, les groupes OH et/ou OR1 pouvant être portés par les motifs M, D et/ou T, la teneur pondérale en groupes OH et/ou OR1 étant comprise entre 0,2 et 10 % en poids ; A-2 : au moins une résine mixte préparée par co-condensation des résines organosilicique A-1 mentionnées supra avec des polymères organiques usuels tels que : des résines polyesters et alkydes modifiées ou non par des acides gras comme l'acide oléique, linoléique, ricinoléique ou des esters d'acides gras et de polyols aliphatiques comme l'huile de ricin, le suif ; des résines époxydes modifiées ou non par des acides gras ; des résines phénoliques, acryliques, mélamine-formaldéhydes ; des polyamides ; des polyimides ; des polyamides-imides ; des polyurées ; des polyuréthannes ; des polyéthers ; des polycarbonates ; des polyphénols. Comme exemples concrets de constituants A qui sont préférés, peuvent être cités les mélanges A-3 : g - d'au moins une résine de type A-1 (résine A-1/1) présentant, dans sa structure, au moins deux motifs siloxyles différents choisis parmi ceux de formule (R3)3SiOQ 5 (motif M), (R3)2SiO (motif D) et R3SiO1 5 (motif T), l'un au moins de ces motifs étant un motif T, les groupes OH et/ou OR1 pouvant être portés par les motifs M, D et/ou T et la teneur pondérale en groupes OH et/ou OR1 étant comprise entre 0,2 et 10 % en poids, et
- d'au moins une autre résine de type A-1 (résine A-1/2) présentant, dans sa structure, au moins deux motifs siloxyles différents choisis parmi ceux de formule (R3)3SiO0 5 (motif M), (R3)2SiO (motif D) et R3SiO1 5 (motif T) et SiO2 (motif Q), l'un au moins de ces motifs étant un motif Q, les groupes OH et/ou OR1 pouvant être portés par les motifs M, D et/ou T et la teneur pondérale en groupes OH et/ou OR1 étant comprise entre 0,2 et 10 % en poids. Comme exemples concrets de constituants A qui conviennent bien, peuvent être cités les mélanges A-3 :
- d'au moins une résine MDT hydroxylée ayant une teneur pondérale en groupe OH comprise entre 0,2 et 10 % en poids, et - au moins une résine MQ hydroxylée ayant une teneur pondérale en groupe OH comprise entre 0,2 et 10 % en poids. Dans les mélanges A-3, les proportions respectives des constituants ne sont pas critiques et peuvent varier dans de larges proportions. Ces mélanges contiennent par exemple de 60 à 90 % en poids de résine(s) A-1/1 et de 40 à 10 %> en poids de résine(s) A-1/2. En ce qui concerne les constituants B-1 , on peut mentionner, à titre d'exemples de symboles R2 dans les dérivés organiques du métal M de formule (I), les radicaux : méthyle, éthyle, propyle, isopropyle, butyle, isobutyle, hexyle, éthyl-2 hexyle, octyle, décyle et dodécyle. Comme exemples concrets de constituants B-1 qui sont préférés, peuvent être cités : les titanates d'alkyles comme le titanate d'éthyle, le titanate de propyle, le titanate d'isopropyle, le titanate de butyle, le titanate d'éthyl-2 hexyle, le titanate d'octyle, le titanate de décyle, le titanate de dodécyle, le titanate de β-méthoxyéthyle, le titanate de β -éthoxyéthyle, le titanate de β-propoxyéthyle, le titanate de formule Ti[(OCH2CH2)2 OCH3]4 ou mélange d'au moins deux d'entre eux; les zirconates d'alkyles comme le zirconate de propyle, le zirconate de butyle ou mélange d'au moins deux d'entre eux; les silicates d'alkyles comme le silicate de méthyle, le silicate d'éthyle, le silicate d'isopropyle, le silicate de n-propyle ou mélange d'au moins deux d'entre eux; et mélanges d'au moins deux de ces produits. Comme exemples concrets de polyalkoxydes B-2 qui sont préférés, provenant de l'hydrolyse partielle des titanates, des zirconates et silicates monomères, peuvent être cités : les polytitanates B-2 provenant de l'hydrolyse partielle des titanates d'isopropyle, de butyle ou d'éthyl-2 hexyle ; les polyzirconates B-2 provenant de l'hydrolyse partielle des zirconates de propyle et de butyle ; les polysilicates B-2 provenant de l'hydrolyse partielle des silicates d'éthyle et d'isopropyle ; et mélanges d'au moins deux de ces produits. Comme exemples concrets de constituants B-3/1 qui sont préférés, peuvent être cités les organosilanes éventuellement alcoxylés choisis parmi les produits de formule générale suivante :
Figure imgf000011_0001
dans laquelle :
- R4, R5, R6 sont des radicaux hydrogénés ou hydrocarbonés identiques ou différents entre eux et représentent, de préférence, l'hydrogène, un alkyle linéaire ou ramifié en C-1-C4 ou un phényle éventuellement substitué par au moins un alkyle en C-J-C3,
- U est un alkylène linéaire ou ramifié en C-i-C ou un groupement divaient de formule -CO-O-alkylène- où le reste alkylène a la définition donnée supra et la valence libre de droite (en gras) est reliée au Si via W,
- W est un lien valenciel ,
- R7 et R8 sont des radicaux identiques ou différents et représentent un alkyle en C^-C4 linéaire ou ramifié,
- x' = 0 ou 1 ,
- x = de 0 à 2, de préférence 0 ou 1 et plus préférentiellement encore 0. Sans que cela soit limitatif, il peut être considéré que le vinyltriméthoxysilane ou le γ-(meth)acryloxypropyltriméthoxysilane est un composé B-3/1 particulièrement approprié. Comme exemples concrets de constituants B-3/2 qui sont préférés, peuvent être cités les tris[(trialkoxysilyl)alkyl] isocyanurates où les groupes alkyle comportent de 1 à 4 atomes de carbone et les composés organosiliciés sont choisis :
- soit parmi les produits B-3/2-a répondant à la formule générale suivante :
Figure imgf000012_0001
dans laquelle R9 est un radical alkyle linéaire ou ramifié en C-1-C4, + R10 est un radical alkyle linéaire ou ramifié,
+ y est égal à 0, 1 , 2 ou 3, de préférence à 0 ou 1 et, plus préférentiellement encore à 0, + où X a la signification :
Figure imgf000012_0002
avec :
+ E et D qui sont des radicaux identiques ou différents choisis parmi les alkyles en C1-C4 linéaires ou ramifiés,
+ z qui est égal à 0 ou 1 ,
+ R11 , R12, R13 qui sont des radicaux identiques ou différents représentant l'hydrogène ou un alkyle linéaire ou ramifié en C^-C^, l'hydrogène étant plus particulièrement préféré,
+ R11 et R12 ou R13 pouvant alternativement constituer ensemble et avec les deux carbones porteurs de l'époxy, un cycle alkyle ayant de 5 à 7 chaînons,
- soit parmi les produits B-3/2-b constitués par des polydiorganosiloxanes époxyfonctionnels comportant : (i) au moins un motif siloxyle de formule : XpGqSiO (B-3/2-b) dans laquelle :
+ X est le radical tel que défini ci-dessus pour la formule (B-3/2-a), + G est un groupe hydrocarboné monovalent, exempt d'action défavorable sur l'activité du catalyseur et choisi, de préférence, parmi les groupes alkyles ayant de 1 à 8 atomes de carbone inclus, éventuellement substitués par au moins un atome d'halogène, avantageusement, parmi les groupes méthyle, éthyle, propyle et 3,3,3-trifluoropropyle et ainsi que parmi les groupes aryles et, avantageusement, parmi les radicaux xylyle et tolyle et phényle, + p = 1 ou 2, + q = 0, 1 ou 2, + p + q = 1, 2 ou 3, et (2i) éventuellement au moins un motif siloxyle de formule : GrSiO 4-r (B-3/2-b2) *" dans laquelle G a la même signification que ci-dessus et r a une valeur comprise entre 0 et 3, par exemple entre 1 et 3. Les composés B-3/2 sont préférentiellement des tris[3-(trimethoxysilyl)propyl] isocyanurates et des époxyalcoxymonosilanes B-3/2-a. A titre d'exemple de tels composés B-3/2-a, on peut citer : + le 3-glycidoxypropyltriméthoxysilane (GLYMO)
+ le 3,4-époxycyclohexyléthyltriméthoxysilane. Pour la réalisation de l'invention, comme constituant B, on utilise de manière plus préférée les titanates, les zirconates et les silicates B-1 suivants, pris seuls ou en mélange entre eux : le titanate d'éthyle, le titanate de propyle, le titanate d'isopropyle, le titanate de butyle (n-butyle), le zirconate de propyle, le zirconate de butyle, le silicate d'éthyle, le silicate de propyle et le silicate d'isopropyle. Lorsqu'on utilise B-1 + B-3/1 ou B-1 + B-3/2, les proportions pondérales de B-1 par rapport au total B-1 + B3/1 ou B-3/2 sont notamment de 5 à 100 %, de préférence de 8 à 80 %. Sur le plan quantitatif lorsqu'on utilise B-1 + B-3/1 + B-3/2, il peut être précisé que les proportions pondérales entre B-1 , B-3/1 et B-3/2, exprimées en pourcentages en poids par rapport au total des trois, sont les suivantes : B-1 > 1 , de préférence compris entre 5 et 25, B-3/1 > 10, de préférence compris entre 15 et 70, B-3/2 < 90, de préférence compris entre 70 et 15 , étant entendu que la somme de ces proportions en B-1 , B-3/1 , B-3/2 est égale à 100 %. Le constituant C comporte des fonctions lui permettant de s'accrocher à la gaine silicone et des fonctions FH conférant au matériau textile traité des propriétés d'hydrophobie. Les constituants C-1 utilisables, séparément ou en mélange, sont des silanes, des
POS essentiellement linéaires et des résines POS portant dans leurs molécules, rattachées à des atomes de silicium, les deux fonctionnalités FA et FH. Les fonctions FA sont plus précisément des fonctions condensables/hydrolysables correspondant à OH et/ou OR1 ou des fonctions capables de générer in situ des fonctions
OH et/ou OR1. Les fonctions FH peuvent comprendre tout groupement hydrophobe connu ou toute combinaison de groupements hydrophobes connus. De préférence, ces groupements sont choisis parmi les modalités suivantes : groupements alkyles, groupements silicone, groupements fluorés et leurs diverses combinaisons. Ces groupements peuvent développer en sus des propriétés de douceur. Suivant une modalité préférée, ces groupements sont des enchaînements siloxanes comprenant des motifs M, D et/ou T, de préférence ceux définis supra à propos des constituants A-1. Suivant une autre modalité, ces groupements sont des enchaînements alkyle linéaires ou ramifiés en C1 à C50, notamment de C1 à C30. Suivant une autre modalité encore, ces groupements sont des groupes fluorés de formule générale : -Z-(-RF)k dans laquelle : + Z représente une rotule divalente ou trivalente de nature hydrocarbonée, qui peut être linéaire ou ramifiée, un reste cyclique ou non, aliphatique saturé ou insaturé, aromatique, mixte aliphatique/aromatique, et qui peut renfermer un ou plusieurs hétéroatomes oxygénés contenant de 1 à 30 atomes de carbone, + k est 1 ou 2, + RF représente le groupe -C3F2s-CF3 avec s égal à ou différent de zéro ou le groupe CsF2sH avec s égal à ou supérieur à 1.
Comme exemples concrets de constituants C-1 qui sont préférés, peuvent être cités les composés organosiliciés ci-après listés : (i) les diorganopolysiloxane essentiellement linéaire comprenant un groupement hydroxyle à chaque extrémité de chaîne, de formule :
Figure imgf000014_0001
dans laquelle : + les substituants R18, identiques ou différents, représentent chacun un radical monovalent hydrocarboné saturé ou non en C<| à C-13, substitué ou non substitué, aliphatique, cyclanique ou aromatique ; + j a une valeur suffisante pour conférer aux diorganopolysiloxanes de formule (III) une viscosité dynamique à 25°C allant de 50 à 10.000.000 mPa.s ; + il doit être compris que, dans le cadre de la présente invention, on peut utiliser comme POS hydroxylés de formule (III) un mélange constitué de plusieurs polymères hydroxylés qui diffèrent entre eux par la valeur de la viscosité et/ou la nature des substituants liés aux atomes de silicium ; il doit être compris encore que les POS de formule (III) peuvent éventuellement comprendre des motifs T de formule R18SiO32 et/ou des motifs SiO2 dans la proportion d'au plus 1 % (ces % exprimant le nombre de motifs T et/ou Q pour 100 atomes de silicium) ; (ii) les résines POS hydroxylées comprenant dans leur structure des motifs siloxyles T et éventuellement M et/ou éventuellement D tels que définis supra à propos des résines A-1 ;
(iii) les résines POS hydroxylées obtenues notamment :
-> par hydrolyse d'un alkoxysilane S substitué par des FH ; il peut s'agir, par exemple, d'un trialkoxysilane FH-substitué permettant d'obtenir une résine hydroxylée- à motifs T, dénommée également résine T(OH) ;
- par homocondensation des silanes S hydrolyses ;
-» et par « stripping » entraînement à la vapeur des hydrolysats dérivant des FH ;
(iv) des mélanges d'au moins deux des composés organosiliciques précités. Comme exemples concrets de constituants C-1 qui conviennent bien, peuvent être citées les résines MDT hydroxylées ayant une teneur pondérale en groupe OH comprise entre 0,2 et 10 %> en poids, prises seules ou en mélange avec des huiles silicones hydroxylées de formule (III). A propos des proportions d'emploi des constituants C-1 , elles se situent, comme expliqué ci-avant, dans l'intervalle allant de 1 à 1 000 parties en poids de constituant C-1 selon la FH recherchée, pour 100 parties en poids de constituant A. Par exemple, dans le cas où la FH apporte l'hydrophobie, on utilise alors généralement de 2 à 30 parties en poids de constituant C-1. Comme cela ressort des définitions données ci-avant, dans le cas où le constituant A est une résine POS équipée de motif(s) T et éventuellement M et/ou éventuellement D, il convient de comprendre que cette résine peut alors jouer aussi le rôle d'additif fonctionnel C-1 d'hydrofugation, à condition d'être engagé dans des proportions suffisantes égales à la somme des proportions correspondant à l'ensemble A + C-1. Les constituants C-2 utilisables, séparément ou en mélange, sont des composés hydrocarbonés portant dans leur molécule, rattachées à des atomes de carbone, les deux fonctionnalités FA et FH. Les fonctions FA sont plus précisément des fonctions condensables/hydrolysables correspondants à OH et/ou OR1 ou des fonctions capables de générer in situ des fonctions OH et/ou OR1 . Comme exemples concrets de constituants C-2 qui sont préférés, peuvent être cités les alcools fluorés, de préférence perfluorés de formule : R19 - OH (IV) où R19 représente un radical aliphatique, linéaire ou ramifié, ayant de 2 à 20 atomes de carbone, lesdits atomes de carbone étant substitués par au moins un atome de fluor et éventuellement par au moins un ou atome d'hydrogène. Comme exemples concrets de constituants C-2 qui conviennent bien, peuvent être cités les alcools perfluorés de formule RF-(CH2)m-OH où RF est tel que défini supra et m est un nombre allant de 0 à 10. A propos des proportions d'emploi des constituants C-2, elles se situent, comme expliqué ci-avant, dans l'intervalle allant de 1 à 1 000 parties en poids de constituant C-2, pour 100 parties en poids de constituant A. Comme exemples concrets de constituants D optionnels qui sont préférés, peuvent être cités, outre l'eau, les composés ci-après listés :
• les solvants organiques classiques, pouvant jouer le rôle pour certains de diluants, choisis dans le groupe constitué par : + des solvants aliphatiques ayant de 5 à 20 atomes de carbone tels que l'hexane, l'heptane, le « White Spirit », l'octane, le dodécane, et cycloaliphatique tels que le cyclohexane, le méthylcyclohexane, la décaline ; + des solvants chlorés tels que le trichloroéthylène, le trichloroéthane, le perchloroétylène, le perchloroéthane, le dichlorométhane ; + des solvants aromatiques tels que le toluène, le xylène ; + des alcanols tels que l'éthanol, l'isopropanol, le butanol, l'octanol ; + des cétones aliphatiques telles que l'acétone, la méthyléthylcétone, la méthylbutylcétone et cycloaliphatiques telles que la cyclopentanone, la cyclohexanone ; + les esters d'acides carboxyliques non gras et d'alcanols tels que l'acétate d'éthyle, de butyle, de pentyle ; + les esters dérivés d'acides gras saturés en C10 à C16, de préférence en C12 à C14 et d'alcanols tels que des myristates (C14), des laurates (C12) et des mélanges ; + les éthers-oxydes tels que l'éther dibutylique, l'éther diisopropylique.le monoéther méthylique ou éthylique de l'éthylèneglycol, le monoéther éthylique ou butylique du diéthylèneglycol ; • les diorganopolysiloxanes linéaires non réactifs de formule :
Figure imgf000017_0001
dans laquelle : + les substituants R21, identiques ou différents, ont les mêmes significations que celles données ci-avant pour le diorganopolysiloxane réactif de formule (III) ; + j' a une valeur suffisante pour conférer aux polymères de formule (VI) une viscosité dynamique à 25°C allant de 10 à 200.000 mPa.s ;
• les résines POS ayant les mêmes significations que celles données ci-avant pour le constituant A, mais qui sont exemptes cette fois de tout groupement fonctionnel de types OH et/ou OR1. Comme exemples concrets de résines utilisables, on peut citer les résines MQ, MDQ, TD et MDT. Comme exemples concrets de constituants auxiliaires E optionnels qui sont préférés, peuvent être cités les composés ci-après listés :
• les catalyseurs de polycondensation qui sont des composés d'un métal généralement choisi parmi étain, titane et zirconium ; on peut ainsi utiliser les monocarboxylates et les dicarboxylates d'étain tels que l'éthyl-2 hexanoate d'étain, le dilaurate de dibutylétain, le diacétate de dibutylétain, les chélates d'étain de valence IV hexacoordinés, etc., tels que ceux décrits dans EP-A-0 367 696 ;
• des charges appropriées parmi lesquelles on mentionnera notamment : + les poudres métalliques telles que la poudre de zinc, d'aluminium, de magnésium ; + des oxydes tels que la silice, le quartz broyé, l'alumine, l'oxyde de zirconium, de titane, de zinc, de magnésium, les oxydes de fer, de cérium, de lanthane, de praséodyme, de néodyme ; +les silicates tels que le mica, le talc, la vermiculite, le kaolin, le feldspath, les zéolithes ; + le carbonate de calcium, le métaborate de baryum, les pyrophosphates de fer, de zinc, de calcium, le phosphate de zinc, le noir de carbone ; + des pigments tels que les phtalocyanines, les oxydes de chrome, le sulfure et les sulfoséléniures de cadmium ; + des particules organiques ou polymériques, réticulées ou non ;
• des antifongiques, des bactéricides connus de l'homme de métier ; • des agents thixotropants connus de l'homme de métier ; • et, dans le cas de la mise en oeuvre d'une formulation silicone liquide réticulable en émulsion ou dispersion aqueuse, des agents tensioactifs non ioniques, ioniques ou amphotères. Les charges peuvent apporter des propriétés d'hydrophobie et contribuer à améliorer encore les propriétés de déperlance et d'imperméabilité. Les formulations silicones liquides utilisées, dans le cadre de la présente invention, comme bases d'enduction textile sont préparées par simple mélange à la température ambiante, et dans un ordre quelconque d'introduction, des constituants A, B, C, D (optionnel) et E (optionnel). Les quantités engagées sont nettement définies comme indiqué précédemment. L'ordre d'incorporation des constituants peut être quelconque, mais il est toutefois préférable, pour éviter tout risque de précipitation de produits solides ou de formation de gel, d'ajouter le constituant A sous forme d'une solution dans le constituant D solvant/diluant ou sous forme d'une emulsion/dispersion aqueuse quand le constituant D comprend de l'eau. L'introduction et le mélange intime des charges optionnelles E, quand on en utilise, avec les constituants A, B, C et éventuellement D sont effectués à l'aide des procédés classiques en usage chez les fabricants de formulations textiles. On peut utiliser pour le mélange, par exemple, des broyeurs à galets ou des broyeurs à turbines. Les formulations bases d'enduction textile ainsi préparées présentent l'avantage de durcir par simple séchage à l'air pendant un intervalle de temps pouvant aller de quelques dizaines de minutes à plusieurs heures ou au besoin plusieurs dizaines d'heures. Cette durée peut être raccourcie par chauffage à une température se situant dans l'intervalle allant de 50 °C à 180 °C. Les bases d'enduction textile ainsi préparées ont une stabilité au stockage excellente et peuvent être employées dans toutes les applications textiles nécessitant la présence, après durcissement, de revêtements durables à caractéristiques physiques très élevées. Suivant une caractéristique avantageuse, les formulations silicones liquides réticulables utilisées comme base d'enduction textile peuvent être préparées sous forme concentrée (on engage par exemple, pour 100 parties en poids de constituant A, de 0 à 100 parties de constituant D), puis être ensuite diluées au moment de leur emploi avec un diluant organique, un solvant organique ou de l'eau à raison de 1 à 30 parties en poids de formulation pour 100 parties en poids de solvant, diluant ou eau. Selon une première modalité générale de traitement, l'utilisation conforme à la présente invention peut être mise en oeuvre directement sur les articles textiles confectionnés à partir des fils, fibres et/ou filaments, comprenant au moins une surface textile et consistant par exemple dans des articles tissés, non tissés et/ou tricotés, en opérant à n'importe quel moment des processus d'élaboration (pour les étoffes) et/ou de rénovation et/ou d'entretien (pour les vêtements) du matériau textile. Par surface textile, on entend une surface obtenue par assemblage de fils, fibres et/ou filaments par un procédé quelconque tel que par exemple, le collage, le feutrage, le tissage, le tressage, le flocage, ou le tricotage. Les fils, fibres et/ou filaments servant à la fabrication de ces articles textiles peuvent être issus de la transformation d'une matrice thermoplastique synthétique constituée d'au moins un polymère thermoplastique choisi dans le groupe constitué par : les polyamides, les polyoléfines, les chlorures de polyvinylidène, les polyesters, les polyuréthanes, les acrylonitriles, les copolymères (méth)acrylate-butadiène-styrène, leurs copolymères et mélanges. La matrice thermoplastique peut comprendre des additifs, tels que des pigments, délustrants, matifiants, catalyseurs, stabilisants chaleur et/ou lumière, agents anti-bactériens, anti-fongiques, et/ou anti-acariens. (I peut par exemple s'agir d'un agent matifiant, par exemple choisi parmi les particules de dioxyde de titane et/ou de sulfure de zinc. Les fils, fibres et/ou filaments peuvent encore être issus de matières naturelles telles que notamment le coton, le lin, la laine, suivant les procédés de transformation connus de l'homme de métier. Bien entendu, on peut utiliser des mélanges de matières synthétiques et naturelles. Dans l'utilisation selon la présente invention, pour appliquer la base d'enduction textile sur l'article à traiter, on utilise des techniques classiques de l'industrie textile, notamment en faisant appel à la technique d'imprégnation dite de "foulardage" (padding en anglais). Lorsque l'article textile est traité par une formulation comprenant un diluant ou solvant organique, il est souhaitable d'éliminer ensuite le diluant ou solvant, par exemple de faire subir à cet article un traitement thermique pour chasser le diluant ou le solvant sous forme de vapeur. Généralement la quantité de base d'enduction textile déposée sur l'article textile correspond à une quantité comprise entre 0,1 et 10 % en poids par rapport au poids de l'article textile sec traité. Selon une seconde modalité générale de traitement , on peut mettre aussi en contact les fils, fibres et/ou filaments avec la base d'enduction textile à n'importe quel moment des processus d'élaboration du matériau textile. Par fil, on entend par exemple un objet multifilamentaire continu, un fil continu obtenu par assemblage de plusieurs fils ou un filé de fibres continu, obtenu à partir d'un unique type de fibres, ou d'un mélange de fibres. Par fibre, on entend par exemple une fibre courte ou longue, une fibre destinée à être travaillée en filature ou pour la fabrication d'articles non tissés ou un câble destiné à être coupés pour former des fibres courtes. Le procédé de fabrication de fils, fibres et/ou filaments débute généralement par le passage en filière de la matrice thermoplastique, et finit avant l'étape de fabrication de surface textile. Le procédé de fabrication de fils, fibres et/ou filaments comprend notamment une étape de filage. Par étape de filage, on entend une opération déterminée consistant à l'obtention de fils, fibres et/ou filaments. L'étape de filage débute lors du passage de la matrice thermoplastique à travers une ou plusieurs filières et finit par le transfert des fils, fibres et/ou filaments obtenus sur une bobine (pour les fils ou filaments) ou dans un pot (pour les fibres), également appelé renvidement. L'étape de filage peut également comprendre des étapes qui sont effectuées entre le passage dans la filière et le bobinage. Ces étapes peuvent être par exemple des étapes d'ensimage, de réunification des filaments (par un ou plusieurs points d'entraînement ou guide de convergence), d'étirage, de réchauffement des filaments, de relaxation et de thermofixation. Ainsi, le dépôt sur les fils, fibres et/ou filaments de la base d'enduction textile conforme à la présente invention peut être effectué par exemple après la convergence des fils, fibres et/ou filaments et/ou pendant une étape d'étirage des fils, fibres et/ou filaments. Ledit dépôt peut également être effectué entre ces deux étapes. Préférentiellement, on dépose la base d'enduction textile conforme à la présente invention sur les fils, fibres et/ou filaments pendant l'étape d'ensimage. Selon un autre objet préféré de l'invention, on dépose sur les fils, fibres et/ou filaments une composition d'ensimage comprenant au moins une base d'enduction textile conforme à la présente invention. On peut également déposer sur les fils, fibres et/ou filaments, la base d'enduction textile conforme à la présente invention pendant une étape de traitement lors de la reprise des fils, fibres et/ou filaments. Par étape de traitement, on entend des étapes de traitement après reprise des fils, fibres et/ou filaments, telles que par exemple des étapes de texturation, d'étirage, d'étirage-texturation, d'ensimage, de relaxation, de thermofixation, de torsion, de fixation, de frisage, de lavage et/ou de teinture. On peut notamment déposer sur les fils, fibres et/ou filaments, une base d'enduction textile conforme à la présente invention pendant une opération choisie dans le groupe constitué par : la relaxation, la torsion, la fixation, le frisage, l'étirage et/ou la texturation des fils, fibres et/ou filaments. On peut également procéder au dépôt sur les fils, fibres et/ou filaments d'une composition d'ensimage comprenant au moins une base d'enduction textile conforme à la présente invention, notamment pendant une étape de traitement lors de la reprise des fils, fibres et/ou filaments. On peut aussi placer les fils, fibres et/ou filaments dans une composition de lavage et/ou de teinture comprenant au moins une base d'enduction textile conforme à la présente invention. Selon une troisième modalité générale de traitement, l'utilisation conforme à la présente invention peut être mise en œuvre en deux temps :
- dans un premier temps : en mettant en contact les fils, fibres et/ou filaments avec la base d'enduction textile à n'importe quel moment des processus d'élaboration du matériau textile ; puis
- dans un deuxième temps : en mettant en contact les articles textiles confectionnés à partir des fils, fibres et/ou filaments traités en opérant à n'importe quel moment des processus d'élaboration (pour les étoffes) et/ou de rénovation et/ou d'entretien (pour les vêtements) du matériau textile. Le traitement avec la base d'enduction textile peut être appliqué soit de manière partielle soit de manière complète d'une part sur les fils, fibres et/ou filaments puis d'autre part sur les articles textiles confectionnés à partir des fils, fibres et/ou filaments traités. Par l'expression "de manière partielle", on entend définir notamment une application qui consiste à traiter les fils, fibres et/ou filaments avec une partie des ingrédients constitutifs de la base d'enduction textile et à apporter le complément lors du traitement des articles textiles confectionnés à partir des fils, fibres et/ou filaments traités. Par exemple, le système promoteur d'accrochage (constituant B) peut être apporté au moment du traitement des fils, fibres et/ou filaments, tandis que le système générateur de réseau (constituant A) et l'additif fonctionnel (constituant C) sont apportés au moment du traitement des articles. Par l'expression "de manière complète", on entend définir une application où d'une part les fils, fibres et/ou filaments puis d'autre part les articles textiles confectionnés à partir de ces fils, fibres et/ou filaments sont traités, chaque fois, avec une base enduction textile comportant tous ses ingrédients constitutifs, avec la possibilité que ces derniers ne soient pas obligatoirement présents dans les mêmes proportions au moment du traitement des fils, fibres et/ou filaments puis au moment du traitement des articles. On précisera encore qu'il est possible d'effectuer un ou plusieurs dépôts de la base enduction textile (prise en tout ou partie) sur les fils, fibres et/ou filaments et/ou sur les articles textiles. Les exemples qui vont suivre illustrent l'utilisation, selon la présente invention, d'une formulation silicone liquide réticulable, comme base d'enduction textile. EXEMPLE 1 Hydrophobie durable. 1) Formulation silicone liquide réticulable selon l'invention (composition C1) : Elle présente la constitution suivante (les parties sont données en poids) : A : mélange de : • résine MDT hydroxylée ayant 0,5 % d'OH en poids et constituée de 62 % en poids de motifs CH3SÎO3/2, 24 % en poids de motifs (CH3)2 Siθ2/2 e 14 % en poids de motifs (CH3)3 SiO-j/2 : 47 parties ; et de « résine MQ hydroxylée ayant 2 % d'OH en poids et constituée de 45 % en poids de motifs Siθ4/2 et 55.% en poids de motifs (CH3)3 SiO-|/2 : 7 parties ; B : mélange de : • titanate de n-butyle (Bu) de formule Ti(OBu) : 2 parties ; et de • silicate d'éthyle (Et) de formule Si(OEt) : 4 parties ; - C : résine MDT hydroxylée ayant 0,5 % d'OH en poids et constituée de 62 %> en poids de motifs CH3SÏO3 2, 24 % en poids de motifs (CH3)2 Siθ2/2 et 14 % en poids de motifs (CH )3 SiO<|/2 : 10 parties ; D : White Spirit : 30 parties. Le composé est re-dilué dans du solvant avant application.
2) Formulation de comparaison (composition C2) : Les performances de la composition C1 sont comparées à celles d'une composition C2 conventionnelle ("Scotch Guard") qui est un produit commercial connu pour ses excellentes propriétés hydrofuges. Il est appliqué par spray selon le protocole recommandé par le fournisseur.
3) Tests d'hydrofugation permanente : L'article textile traité utilisé est un tricot en Polyamide 6.6 du type tricotage interlock réalisé sur machine de tricotage circulaire double fonture avec des fils PA6.6 texture 78 dtex 68 brins et 78 dtex 23 brins. L'article textile est traité par foulardage par des solutions à 5% et 10% (en poids) de la composition C1 dans de l'heptane. Il subit un séchage à température ambiante (23 °C) pendant 12 heures, puis il est éventuellement traité thermiquement pendant 3 minutes à
150 °C. • La mesure de l'effet perlant est effectuée par le test de déperlance normalisé connu sous le nom de « Spray-Test » (AATC Test Method 22-1996) ) : - Le test consiste a asperger l'échantillon de l'article textile avec un volume d'eau donné. L'aspect de l'échantillon est ensuite évalué visuellement et comparé aux standards. Une note de 0 à 100%> est attribuée en fonction de la quantité d'eau retenue. Pour 0, l'échantillon est totalement mouillé, pour 100%), l'échantillon est complètement sec. - Afin d'obtenir une mesure plus quantitative de la performance de durabilité de l'effet déperlant, les échantillons sont également pesés avant et après aspersion et la quantité d'eau retenue par l'échantillon textile est déterminée par différence. Cette quantité est ensuite rapportée à la quantité d'eau retenue initialement par l'échantillon textile non lavé. • Pour tester la durabilité du traitement, une machine d'essai GIROWASH (usuellement employée dans le cadre d'étude de stabilité des couleurs au lavage - décrite dans la norme ISO 105 C06) a été utilisée. Ce système comprend un dispositif mécanique permettant : la rotation à 40 tours/min d'une roue montée sur un axe horizontal et dont la moitié au moins est immergée dans un bain chauffé à la température souhaité (en l'occurrence 50°C) ; la fixation sur cette roue de récipients fermés, en acier inoxydable, ayant une contenance de 550 ml chacun, un diamètre de 75 mm et une hauteur de 125 mm, le fond des récipients étant à 45 mm de l'axe de l'arbre. Ces récipients sont fixés de manière à être perpendiculaires à l'axe du rotor ; les échantillons textiles sont disposés dans ces petits récipients en présence d'eau, des billes d'acier calibrées de 6 mm de diamètre sont ajoutées afin d'augmenter les turbulences et l'abrasion en cours de lavage. Au bout d'un temps d'agitation donné, les échantillons sont prélevés, séchés (12 heures à température ambiante 23 °C) et l'effet perlant mesuré par le test précédemment décrit. Les mêmes échantillons sont ensuite replacés dans la machine d'essai GIROWASH pour poursuite de l'expérience. • Résultats expérimentaux : Les résultats montrent clairement que l'article textile traité par la composition C1 selon l'invention conserve ses propriétés d'hydrofugation dans le temps, alors que le traitement classique par la composition C2 selon l'art antérieur voit ses performances diminuer de manière significatives au cours des lavages. Ratio (Quantité retenue sur l'échantillon textile après x heures de lavage / Quantité retenue avant lavage)
Figure imgf000023_0001
Figure imgf000024_0001
Note attribuée au Spray Test (%)
Figure imgf000024_0002
EXEMPLE 2 : Hydrophobie durale avec teinture. On part' de la même composition C1 qui est ici diluée à 14% (en poids) dans l'heptane. Le textile utilisé est un tricot en Polyamide 6.6 du type tricot piqué réalisé sur machine de tricotage circulaire simple fonture avec un fil PA6.6 140 dtex 102 brins vanisé une chute sur deux. Dans cette exemple on procède à un test de résistance à la teinture. Le protocole de traitement est le suivant : imprégnation, essorage, séchage à température ambiante (23 °C), puis traitement thermique de 10 minutes à 150 °C). Résultats expérimentaux : • Un échantillon de l'article textile traité par la composition C1 a été teint en machine de teinture de laboratoire Mathis Labomat. Le rapport de bain était de 1/50 et les produits auxiliaires suivants ont été utilisés : acétate de sodium 0.5 g/l ; Sandogene CN 1 % ; Sandogene NH 1 %. Le colorant Bleu Nylosan N5GL a été utilisé à la dose de 1 ,2 %. La montée en température du bain a été assurée à la vitesse de 1 ,5 °C/min et la température maximale atteinte a été de 98 °C. La durée totale de la teinture a été de 45 minutes. • L'échantillon ressort du bain entièrement teint : il a conservé en majeure partie ses propriétés de déperlance (puisque sa cotation en Spray Test est passée de 90% à 80%). L'échantillon est ensuite soumis à une série de cycle de lavages en machine à 50 °C pendant une durée totale de 8 heures. A l'issue de ceux-ci, il conserve des propriétés de déperlance avec une cotation à 80 % au Spray Test. EXEMPLE 3 : Hvdrophobie durable - Tenue au lavage en machine industrielle.
1) Formulation silicone liquide réticulable selon l'invention (composition C3) : Elle présente la constitution suivante (les parties sont données en poids) : - A : mélange de : • résine MDT hydroxylée ayant 0,5 %> d'OH en poids et constituée de 62 % en poids de motifs CH3SÎO3/2, 24 % en poids de motifs (CH3)2 Siθ2/2 et 14 % en poids de motifs (CH3)3 SiO-j/2 : 47 parties ; et de • résine MQ hydroxylée ayant 2 % d'OH en poids et constituée de 45 % en poids de motifs Siθ4/2 et 55. %> en poids de motifs (CH3)3 SiO-j/2 : 7 parties ; B : mélange de : • tris(3-(trimethoxysilyl)propyl)isocyanurate : 7 parties • zirconate de n-propyle (Pr) de formule Zr(Opr) 4 : 20 parties • titanate de n-butyle (Bu) de formule Ti(OBu) : 2 parties ; et de • silicate d'éthyle (Et) de formule Si(OEt)4 : 4 parties ; C-1 : mélange de : • résine MDT hydroxylée ayant 0,5 % d'OH en poids et constituée de 62 % en poids de motifs CH3SÎO3/2, 24 % en poids de motifs (CH3)2 SiÛ2/2 et 14 % en poids de motifs (CH3)3 SiOι/2 : 10 parties ; et de • huile silicone linéaire hydroxylée ayant de l'ordre de 0,01 % d'OH en poids et constituée à 100 % en poids de motifs (CH3)2 Siθ2/2, ayant une viscosité de 4 000 000 mPa.s : 20 parties ; D : White Spirit : 883 parties.
2) Formulation silicone liquide réticulable selon l'invention (composition C4) : Elle présente la constitution suivante (les parties sont données en poids) : A : mélange de : • résine MDT hydroxylée ayant 0,5 % d'OH en poids et constituée de 62 % en poids de motifs CH3SJO3/2, 24 % en poids de motifs (CH3)2 Siθ2/2 et 14 % en poids de motifs (CH3)3 SiO-j/2 : 95 parties ; et de • résine MQ hydroxylée ayant 2 %> d'OH en poids et constituée de 45 % en poids de motifs S1O4/2 et 55% en poids de motifs (^3)3 SiO-1/2 : 14 parties ; B : mélange de : • tris(3-(trimethoxysilyl)propyl)isocyanurate : 1 1 parties • zirconate de n-propyle (Pr) de formule Zr(Opr) 4 : 41 parties • titanate de n-butyle (Bu) de formule Ti(OBu)4 : 4 parties ; et de • silicate d'éthyle (Et) de formule Si(OEt)4 : 8 parties ; C-1 : mélange de : • résine MDT hydroxylée ayant 0,5 % d'OH en poids et constituée de 62 %> en poids de motifs CH3Siθ3/2, 24 % en poids de motifs (CH3)2 SÎO2/2 et 14 % en poids de motifs (CH3)3 SiO-|/2 : 20 parties ; et de • huile silicone linéaire hydroxylée ayant de l'ordre de 0,01 % d'OH en poids et constituée à 100 % en poids de motifs (CH3)2 Siθ2/2, ayant une viscosité de 4 000 000 mPa.s : 80 parties ; • poids et constituée à 100 % en poids de motifs (CH3)2 Siθ2/2 : 80 parties. - D : White Spirit : 727 parties.
3) Formulation silicone liquide réticulable selon l'invention (composition C5) : Elle présente la constitution suivante (les parties sont données en poids) : A : mélange de : • résine MDT hydroxylée ayant 0,5 % d'OH en poids et constituée de 62 % en poids de motifs CH3SÎO3/2, 24 % en poids de motifs (CH3)2 SÎO2/2 et 14 % en poids de motifs (CH3)3 SiO-|/2 : 40 parties ; et de • résine MQ hydroxylée ayant 2 % d'OH en poids et constituée de 45 %> en poids de motifs SiÛ4/2 et 55.% en poids de motifs (CH3)3 SiO-|/2 : 6 parties ; - B : mélange de : • 3-aminopropyl trimethoxy silane : 8 parties • zirconate de n-propyle (Pr) de formule Zr(Opr) 4 : 18 parties • titanate de n-butyle (Bu) de formule Ti(OBu)4 : 2 parties ; et de • silicate d'éthyle (Et) de formule Si(OEt)4 : 3 parties ; - C-1 : mélange de : • résine MDT hydroxylée ayant 0,5 %> d'OH en poids et constituée de 62 % en poids de motifs CH3SÎO3/2, 24 % en poids de motifs (CH3)2 Siθ2/2 et 14 % en poids de motifs (CH3)3 SiO1 2 : 10 parties ; et de • huile silicone linéaire hydroxylée ayant de l'ordre de 0,01 % d'OH en poids et constituée à 100 % en poids de motifs (CH3)2 SÎO2/2, ayant une viscosité de 4 000 000 mPa.s : 18 parties ; D : White Spirit : 895 parties.
4) Formulation silicone liquide réticulable selon l'invention (composition C6) : Elle présente la constitution suivante (les parties sont données en poids) : A : résine MDT hydroxylée ayant 0,8 % d'OH en poids et constituée de 23 % en poids de motifs CH3Siθ3/2, 75 % en poids de motifs (CH3)2 SiÛ2/2 et 2 % en poids de motifs (CH3)3 SiO-|/2 : 58 parties B : mélange de : • 3-aminopropyl trimethoxy silane : 8 parties; et de • zirconate de n-propyle (Pr) de formule Zr(Opr) 4 : 18 parties C-1 : mélange de : • résine MDT hydroxylée ayant 0,8 % d'OH en poids et constituée de 23 % en poids de motifs CH3Siθ3/2, 75 % en poids de motifs (CH3)2 SiÛ2/2 et 2 % en poids de motifs (CH3)3 SiO1 2 : 20 parties ; et de • huile silicone linéaire hydroxylée ayant de l'ordre de 0,01 % d'OH en poids et constituée à 100 % en poids de motifs (CH3)2 Siθ2/2, ayant une viscosité de 4 000 000 mPa.s : 25 parties ; D : White Spirit : 871 parties.
5/ Formulation silicone liquide réticulable selon l'invention (composition C7) : Elle présente la constitution suivante (les parties sont données en poids) : A : résine MDT hydroxylée ayant 0,5 % d'OH en poids et constituée de 62 % en poids de motifs CH3SÎO3/2, 24 % en poids de motifs (CH3)2 Siθ2/2 et 14 % en poids de motifs (CH3)3 SiO-j/2 : 100 parties B : mélange de : • tris(3-(trimethoxysilyl)propyl)isocyanurate : 13 parties; et de • zirconate de n-propyle (Pr) de formule Zr(Opr) : 41 parties C-1 : mélange de : • résine MDT hydroxylée ayant 0,5 % d'OH en poids et constituée de 62 %> en poids de motifs CH3Siθ3/2, 24 % en poids de motifs (CH3)2 Siθ2/2 et 14 % en poids de motifs (^3)3 SiO-j/2 : 41 parties ; et de • huile silicone linéaire hydroxylée ayant de l'ordre de 0,01 % d'OH en poids et constituée à 100 % en poids de motifs (CH3)2 Siθ2/2, ayant une viscosité de 4 000 000 mPa.s : 62 parties ; D : White Spirit : 743 parties.
6) Formulation de comparaison (composition C8) : Les performances des compositions C3 à C7 sont comparées à celles d'une composition C8 conventionnelle (traitements connus et commercialisés sous les marques « Scotch Guard » ou «Teflon ») connu pour ses excellentes propriétés hydrofuges. Il est appliqué par une voie solvant selon le protocole recommandé par le fournisseur.
7) Tests d'hydrofugation permanente : L'article textile traité utilisé est un tissu bi-stretch à base de Polyamide 6.6 (80% en poids) et d'élasthanne (20%). Cette surface textile est tissée en chaîne et trame à partir de fil guipé élasthanne 44 dtex 1 brin et de polyamide 6.6 44 dtex 34 brins. L'élasticité de la surface textile obtenue est de 100 % dans chaque direction et le poids surfacique est de l'ordre de 130 g/m2. L'article textile est traité par foulardage avec les compositions C3 à C8. Il subit un traitement thermique à 150 °C pendant 2 minutes, puis il est stocké à température ambiante pendant 8 heures avant essais.
• La mesure de l'effet perlant est effectuée par le test de déperlance « Spray-Test » (AATC Test Method 22-1996). • Pour tester la durabilité du traitement, une machine de lavage industriel type WASHCATOR (Electrolux) a été utilisée pour un lavage en continu à 50°C pendant des durées variables de 8, 16, et 24 Heures .
• Résultats expérimentaux : Les résultats montrent clairement que l'article textile traité par les compositions C3 à C7 selon l'invention conserve ses propriétés d'hydrofugation dans le temps et au cours du lavage à 50°C dans des conditions d'abrasion en milieu humide sévères, alors que le traitement classique par la composition C8 selon l'art antérieur voit ses performances s'effondrer dés les premières heures de lavage.
Note attribuée au Spray Test après x heures de lavage (%)
Figure imgf000028_0001
Figure imgf000029_0001
EXEMPLE 4 1) Formulation silicone liquide réticulable selon l'invention (composition A) : Elle présente la constitution suivante (les pourcentages sont données en poids de la composition totale) : A : mélange de : • 1 ,63 % de résine MDT hydroxylée ayant 0,8%) d'OH en poids et constituée de 23 % en poids de motifs CH3Siθ3/2, 75 % en poids de motifs (CH3) SiÛ2/2 et 2 %> en poids de motifs (CH3)3 SiOι/2 « 4,66 % de résine MDT hydroxylée ayant 0,5 %> d'OH en poids et constituée de 62 % en poids de motifs CH3Siθ3/2, 24 % en poids de motifs (CH3)2 Siθ2/2 et 14 % en poids de motifs (^3)3 SiO-1/2 • 0,57 % de résine MQ hydroxylée ayant 2 % d'OH en poids et constituée de 45 % en poids de motifs Siθ4/2 et 55% en poids de motifs (^3)3 SiO-1/2 - B : mélange de : • 0,16 % de titanate de n-butyle (Bu) de formule Ti(OBu)4 • 1 ,6 %> de zirconate de propyle de formule Zr(OPr)4 • 0,33 % de silicate d'éthyle (Et) de formule Si(OEt)4 • 0,8 %> de silane aminiopropyl triéthoxy - C : 2,48 % de gomme silicone linéaire hydroxylée ayant de l'ordre de 0,01 % d'OH en poids et constituée à 100 % en poids de motifs (CH3)2 Siθ2/2, ayant une viscosité de 4 000 000 mPa.s D : White Spirit : complément à 100 %. 2) Formulation silicone liquide réticulable selon l'invention (composition B) : Elle présente la constitution suivante (les pourcentages sont données en poids de la composition totale) : A : mélange de : • 4,56 % de résine MDT hydroxylée ayant 0,8% d'OH en poids et constituée de 23 % en poids de motifs CH3SÎO3/2, 75 % en poids de motifs (CH3)2 Siθ2/2 et 2 % en poids de motifs (^3)3 SiO-1/2 • 2,70 % de résine MDT hydroxylée ayant 0,5 % d'OH en poids et constituée de 62 % en poids de motifs CH3SÎO3/2, 24 % en poids de motifs (CH3)2 Siθ2/2 et 14 % en poids de motifs (^3)3 SiO-|/2 • 0,33 % de résine MQ hydroxylée ayant 2 % d'OH en poids et constituée de 45 % en poids de motifs Siθ4/2 et 55.% en poids de motifs (CH3)3 SiOι/2 B : mélange de : • 0,09 % de titanate de n-butyle (Bu) de formule Ti(OBu)4 • 1 ,8 % de zirconate de propyle de formule Zr(OPr) • 0,20 % de silicate d'éthyle (Et) de formule Si(OEt)4 • 0,86 % de silane aminiopropyl triéthoxy C : 2,94 % de gomme silicone linéaire hydroxylée ayant de l'ordre de 0,01 % d'OH en poids et constituée à 100 % en poids de motifs (CH3)2 Siθ2/2, ayant une viscosité de 4 000 000 mPa.s
D : White Spirit : complément à 100 %.
3) Formulation silicone liquide réticulable selon l'invention (composition C) : Elle présente la constitution suivante (les pourcentages sont données en poids de la composition totale) : A : mélange de : • 4,0 % de résine MDT hydroxylée ayant 0,8% d'OH en poids et constituée de 23 % en poids de motifs CH3SÎO3/2, 75 % en poids de motifs (CH3)2 SiÛ2/2 et 2 % en poids de motifs (CH3)3 SiOι 2 « 2,24 % de résine MDT hydroxylée ayant 0,5 % d'OH en poids et constituée de 62 % en poids de motifs CH3SÎO3/2, 24 %> en poids de motifs (CH3)2 Siθ2/2 et 14 % en poids de motifs (CH3)3 SiO-|/2 • 0,28 % de résine MQ hydroxylée ayant 2 % d'OH en poids et constituée de 45 % en poids de motifs Siθ4/2 et 55.%) en poids de motifs (CH3)3 SiOι/2 - B : mélange de : • 0,08 % de titanate de n-butyle (Bu) de formule Ti(OBu)4 • 1,6 % de zirconate de propyle de formule Zr(OPr) • 0,16 % de silicate d'éthyle (Et) de formule Si(OEt)4 • 0,8 % de silane aminiopropyl triéthoxy - C : 3,35 % de gomme silicone linéaire hydroxylée ayant de l'ordre de 0,01 % d'OH en poids et constituée à 100 %ι en poids de motifs (CH3)2 Siθ2/2, ayant une viscosité de 4 000 000 mPa.s D : White Spirit : complément à 100 %. 4) Formulation comparative (composition D): Les performances des compositions A, B et C conformes à l'invention sont comparées à celles d'une composition D conventionnelle ("Scotch Guard") qui est un produit commercial connu pour ses excellentes propriétés hydrofuges. Il s'agit d'un acrylate fluoré dans de l'acétate de butyle.
5) Echantillon comparatif (échantillon E): Les performances des compositions A, B et C conformes à l'invention sont également comparées à celles d'un textile commercial connu pour ses excellentes propriétés de respirabilité et d'imperméabilité. Ce textile est commercialisé sous la dénomination EPIC par la société NEXTEC, et est constitué de polyamide 6.6 et d'élasthanne, présentant une élasticité de l'ordre de 50 % dans le sens de la trame. Son poids spécifique est de l'ordre de 160 g/m2. Ce tissu élastique a subi un traitement par une composition silicone comme décrit par exemple dans le brevet US-A-5 876 792.
6) Traitement d'un textile par les compositions A, B, C et D : Le textile est un textile tissé en Polyamide 6.6 et élasthanne (80/20). Il est constitué de fils élastiques en chaîne et trame à base d'un élasthanne 44 dTex guipé par un bout de PA 6.6 44 dTex / 34 brins. Ces surfaces textiles présentent une élasticité bidirectionnelle importante (100% d'élongation dans les deux directions) et un poids spécifique de 130 g/m2. Le textile est traité par foulardage par les compositions. Il subit un séchage à température ambiante pendant quelques minutes puis est chauffé pendant 2 min à 180°C.
7) Mesure de l'effet perlant : La mesure de l'effet perlant est effectuée par le test de déperlance « Spray-Test » (AATC Test Method 22-1996) décrit supra. Afin d'obtenir une mesure plus quantitative de la performance de durabilité de l'effet déperlant , les échantillons sont lavés suivant le protocole décrit infra, et sont pesés avant et après aspersion, et la quantité d'eau retenue par le textile est déterminée par différence. Cette quantité est ensuite rapportée à la quantité d'eau retenue initialement par le textile non lavé.
8) Mesure de l'imperméabilité à l'eau liquide : La mesure de l'imperméabilité à l'eau liquide est réalisée par le test d'imperméabilité connu sous le nom de "test de Schmerber" (ISO Test Method 81 1- 1981 ): - Le test consiste a appliquer une pression d'eau sur le textile par le biais d'une colonne d'eau et à mesurer la hauteur limite qu'il est nécessaire d'atteindre pour que l'eau traverse le textile. - pour tester la durabilité du traitement, on opère aussi sur les textiles lavés suivant le protocole décrit infra, et l'on compare les performances obtenues par rapport à celles du textile avant lavage.
9) Protocole de lavage : Pour tester la durabilité du traitement, une machine à laver industrielle (Wascator - Electrolux) est utilisée. Le cycle imposé est le suivant : lavage dans l'eau potable à 50°C en continu pendant 8h. Un tel traitement est supposé représentatif de la vie du textile en situation réelle ( dans un cycle de lavage en machine domestique, le temps de lavage n'est souvent que de 15 min maximum et le niveau de frottement induit est considérablement plus faible que pour la machine à laver industrielle).
10) Résultats expérimentaux : Les résultats montrent clairement que le textile traité par les compositions A, B et C selon l'invention conservent leurs propriétés de déperlance et d'imperméabilité dans le temps alors que les traitements classiques, faisant référence sur le marché, à base de fluorés ou de silicone voient leurs performances diminuer de manière significative au cours des lavages. On notera tout particulièrement l'exceptionnelle tenue du SCHMERBER dans le cas de des textiles traités conformément à l'invention, qui montre que ceux-ci sont à même de maintenir un niveau d'imperméabilité très satisfaisant après de nombreuses heures d'utilisation.
Figure imgf000032_0001
EXEMPLE 5 : Séchage rapide - Tenue au lavage en machine domestigue 1/ Formulation silicone liquide réticulable selon l'invention (composition F) : Elle présente la constitution suivante (les parties sont données en poids) : A : mélange de : • résine MDT hydroxylée ayant 0,5 % d'OH en poids et constituée de 62 % en poids de motifs CH3Siθ3/2, 24 % en poids de motifs (CH3) Siθ2/2 et 14 % en poids de motifs (^3)3 SiO^/2 : 47 parties ; et de • résine MQ hydroxylée ayant 2 % d'OH en poids et constituée de 45 % en poids de motifs Siθ4/2 et 55.% en poids de motifs (^3)3 SiO-j/2 : 7 parties ; - B : mélange de : • tris(3-(trimethoxysilyl)propyl)isocyanurate : 7 parties • zirconate de n-propyle (Pr) de formule Zr(Opr) : 20 parties • titanate de n-butyle (Bu) de formule Ti(OBu)4 : 2 parties ; et de • silicate d'éthyle (Et) de formule Si(OEt)4 : 4 parties ; - C : mélange de : • résine MDT hydroxylée ayant 0,5 % d'OH en poids et constituée de 62 % en poids de motifs CH3SÎO3/2, 24 % en poids de motifs (CH3)2SiÛ2/2 et 14 % en poids de motifs (^3)3 SiOι/2: 10 parties ; et de gomme silicone (motif D) hydroxylée ayant de l'ordre de 0,01 % d'OH en poids et constituée à 100 % en poids de motifs (CH3)2Siθ2/2 : 20 parties. • D : White Spirit : 883 parties.
2) Tests de séchage rapide : Les articles textiles traités utilisés sont : - un tissu bi-stretch à base de Polyamide 6.6 (80%o en poids) et d'élasthanne (20%). Cette surface textile est tissée en chaîne et trame à partir de fil guipé élasthanne 44 dtex 1 brin et de polyamide 6.6 44 dtex 34 brins. L'élasticité de la surface textile obtenue est de 100 % dans chaque direction et le poids 2 surfacique est de l'ordre de 130 g/m . - un tricot à base de Polyamide 6.6 (100% en poids). Il est obtenu par tricotage interlock réalisé sur machine de tricotage circulaire double fonture avec des fils PA6.6 textures 78 dtex 68 brins. Son élasticité est de l'ordre de 100%> dans 2 les deux directions et son poids spécifique de l'ordre de 130 g/m . Ces articles textiles sont traités par foulardage avec la composition F. Ils subissent un traitement thermique à 150 °C pendant 3 minutes, puis ils sont stockés à température et hygrométrie ambiante (23°C et 50% HR) pendant 8 heures avant essais. Afin de mettre en évidence l'amélioration de la vitesse de séchage, les textiles traités seront comparés systématiquement aux textiles vierges correspondants. Des coupons circulaire d'un diamètre de 8 cm sont confectionnés. La procédure d'humidification comporte une pesée initiale après un équilibrage de 8 heures en salle conditionnée (23°C et 50% HR) , puis une phase d'humidification dynamique effectuée à l'aide d'un batteur de laboratoire Shaker OSCILL 12 (Prolabo) . Les coupons sont disposés dans un flacon de 250 ml contenant 125 ml d'eau distillée, qui est monté sur le batteur. Celui-ci est ensuite programmé pour une durée de battage de 1 heure à la fréquence de 5,5/10 permettant ainsi de simuler des conditions dynamiques (variations de pression, etc.) de mouillage d'un textile.
• La mesure de l'effet perlant est effectuée par le test de déperlance « Spray-Test » (AATC Test Method 22-1996).
• La mesure de l'imperméabilité à l'eau liquide est réalisée par le test d'imperméabilité "test de Schmerber" (ISO Test Method 811-1981 ).
• La reprise d'humidité est mesurée par pesée du coupon avant et après humidification dynamique, et les valeurs obtenues exprimées en pourcentage en poids par rapport au poids du coupon sec.
• La mesure et le suivi du séchage sont effectués sur une balance Mettler instrumentée (acquisition automatique du poids toutes les minutes) sur laquelle le coupon circulaire de 8 cm de tissu est disposé (une seule face de l'échantillon étant présentée à l'air ambiant simulant ainsi des conditions de porter) . Cette balance est disposée dans une salle conditionnée ou règne une température de 23°C et une humidité relative de 50 %.
• Pour tester la durabilité du traitement, une machine de lavage domestique type NOVOTRONIC W 824 (Miele) a été utilisée pour un lavage en continu à 50°C pendant une durée de 8 heures. • Résultats expérimentaux : Les résultats montrent clairement que les articles textiles traités par la composition F selon l'invention conservent leurs performances en matière de déperlance et d'imperméabilité Schmerber après 8h de lavage à 50°C (qui correspond à des conditions de simulation d'une très intense sollicitation en abrasion en milieu humide à l'issue de laquelle la majorité des traitements classiques sont entièrement détruits). Les articles textiles traités par la composition F présentent par ailleurs une reprise d'humidité (dans les conditions décrites ci-dessus) beaucoup plus faible que le témoin, et ceci avant et après passage en machine 8h à 50°C. Un niveau faible de reprise d'humidité est essentiel pour un confort amélioré car, dans des conditions d'humidification beaucoup plus douces que celle pratiquées ici évidemment , le « freezing effect » bien connu des pratiquants de sports de montagne sera d'autant plus intense que la quantité d'eau absorbée par le tissu sera élevée. D'autre part, il est possible d'observer que les 2 surfaces textiles (tissu et tricot) présentent des vitesse de séchage beaucoup plus rapide après traitement par la composition F selon l'invention. Cette vitesse de séchage reste supérieure dans le cas des échantillons ayant subi un lavage de 8 heures à 50°C.
Figure imgf000035_0001
EXEMPLE 6 : Lavage avec détergent et Nettoyage à sec - Durabilité 1/ Formulation silicone liquide réticulable selon l'invention : Elle présente la constitution suivante (les parties sont données en poids) : A : mélange de : • résine MDT hydroxylée ayant 0,5 % d'OH en poids et constituée de 62 % en poids de motifs CH3SÎO3/2, 24 % en poids de motifs (CH3)2 Siθ2/2 et 14 % en poids de motifs (CH3)3 SiO-1 2 : 47 parties ; et de • résine MQ hydroxylée ayant 2 % d'OH en poids et constituée de 45 % en poids de motifs Siθ4/2 et 55.% en poids de motifs (^3)3 SiO-1/2 : 7 parties ; B : mélange de : • tris(3-(trimethoxysilyl)propyl)isocyanurate : 7 parties • zirconate de n-propyle (Pr) de formule Zr(Opr) 4 : 20 parties • titanate de n-butyle (Bu) de formule Ti(OBu)4 : 2 parties ; et de • silicate d'éthyle (Et) de formule Si(OEt)4 : 4 parties ; C : mélange de : • résine MDT hydroxylée ayant 0,5 %> d'OH en poids et constituée de 62 % en poids de motifs CH3SiO /2, 24 % en poids de motifs (CH3)2Siθ2/2 et 14 % en poids de motifs (CH3)3 SiO-j/2: 10 parties ; et de • gomme silicone (motif D) hydroxylée ayant de l'ordre de 0,01 % d'OH en poids et constituée à 100 % en poids de motifs (CH3)2SiO2/2 : 20 parties.
2) Tests de lavage détergent en machine domestique : Les performances de Spray-Test (norme AATC 22-1996) ont été suivies au fil de cycles répétés de lavage en machine. La machine à laver domestique utilisée est une machine CANDY AQUAMATIC 3 (40°C avec cycle d'essorage). La dose de détergent utilisée est de 4 g/litre soit environ 35 g par cycle. Les conditions de séchage qui ont été pratiquées sont de 3H à 23°C - 50% HR.
3) Tests de nettoyage à sec : Les performances de Spray-Test (norme AATC 22-1996) ont été suivies au fil de cycles répétés de nettoyage à sec. Les mêmes caractéristiques ont été déterminées. Les essais ont été réalisés dans un pressing industriel à l'aide d'une machine BÔWE P 250 fonctionnant au perchloroethylène. La surface textile soumise à ce test est un tissu bistretch de 120 g/m2 ayant environ 60 %> d'élongation en chaîne et en trame.
4) Résultats expérimentaux : Les deux tableau de résultats ci-dessous montrent clairement que le traitement appliqué conserve de bonnes performances de déperlance après une série de lavages domestiques avec détergent ou une série de nettoyage à sec.
Figure imgf000036_0001
Figure imgf000036_0002
Il doit être bien compris que l'invention définie par les revendications annexées n'est pas limitée aux modes de réalisation particuliers indiqués dans la description ci- dessus, mais en englobe les variantes qui ne sortent ni du cadre ni de l'esprit de la présente invention.

Claims

REVENDICATIONS
1) Utilisation d'une formulation silicone liquide réticulable comprenant : A - un système générateur de réseau silicone filmogène comprenant au moins une résine polyorganosiloxane (POS) présentant, par molécule, d'une part au moins deux motifs siloxyles différents choisis parmi ceux de types M, D, T, Q, l'un des motifs étant un motif T ou un motif Q et d'autre part au moins trois groupements hydrolysables/condensables de types OH et/ou OR1 où R1 est un radical alkyle linéaire ou ramifié en C-j à Cg ; B - un système promoteur d'accrochage dudit réseau sur la surface du matériau textile consistant dans : • soit B-1 au moins un alkoxyde métallique de formule générale : M[(OCH2CH2)a OR2]n (I) dans laquelle : - M est un métal choisi dans le groupe formé par : Ti, Zr, Ge, Si, Mn et Al ; - n = valence de M ; - les substituants R2, identiques ou différents, représentent chacun un radical alkyle, linéaire ou ramifié, en C-j à C-|2 ; - a représente zéro, 1 ou 2 ; - avec les conditions selon lesquelles, quand le symbole a représente zéro, le radical alkyle R2 possède de 2 à 12 atomes de carbone, et quand le symbole a représente 1 ou 2, le radical alkyle R2 possède de 1 à 4 atomes de carbone ; - -éventuellement, le métal M est relié à un ligand ; • soit B-2 au moins un polyalkoxyde métallique découlant de l'hydrolyse partielle des alkoxydes monomères de formule (I) mentionnée supra dans laquelle le symbole R2 a la signification précitée avec le symbole a représentant zéro ; • soit une association de B-1 et B-2 ; • soit B-3 une association de B-1 et/ou B-2 avec : - B-3/1 au moins un organosilane éventuellement alkoxylé contenant, par molécule, au moins un groupe alcényle en C2-C6, - et/ou B-3/2 au moins un composé organosilicié comprenant au moins un radical époxy, amino, uréido, isocyanato et/ou isocyanurate ; C - un additif fonctionnel consistant dans : • soit C-1 au moins un silane et/ou au moins un POS essentiellement linéaire et/ou au moins une résine POS, chacun de ces composés organosiliciques étant équipé, par molécule, d'une part de fonction(s) d'accrochage (FA) capables de réagir avec A et/ou B ou capable de générer in situ des fonctions aptes à réagir avec A et/ou B et d'autre part de fonction(s) d'hydrophobie (FH),qui peuvent être identiques ou différentes des FA ; • soit C-2 au moins un composé hydrocarboné comprenant au moins un groupe hydrocarboné linéaire ou ramifié, saturé ou insaturé, et éventuellement un ou plusieurs hétéroatome(s) autre que le Si et se présentant sous forme d'une structure monomère, oligomère ou polymère, le dit composé hydrocarboné étant équipé, par molécule, d'une part de fonction(s) d'accrochage (FA) capables de réagir avec A et/ou B ou capable de générer in situ des fonctions aptes à réagir avec A et/ou B et d'autre part de fonction(s) d'hydrophobie (FH) qui peuvent être identiques ou différentes des FA ; • soit un mélange de C-1 et C-2 ; D - éventuellement un système additif non réactif consistant dans : (i) au moins un solvant organique et/ou un composé organosilicié non réactif ; (2i) et/ou de l'eau; avec la condition selon laquelle on engage (les parties sont données en poids) : - pour 100 parties de constituant A, - de 0,5 à 200 parties de constituant B, . - 1 à 1000 parties de constituant C, et - de 0 à 10 000 parties de constituant D, pour (i) enduire un matériau textile et/ou des fils, fibres et/ou filaments constitutifs du matériau textile, de manière que la formulation silicone réticule autour des fils, fibres et/ou filaments constitutifs du matériau textile et forme autour d'eux une gaine silicone réticulée, et (ii) conférer de manière durable à ce matériau textile déperlance et imperméabilité, sans affecter substantiellement la respirabilité intrinsèque du matériau textile.
2) Utilisation selon la revendication 1 , pour conférer au matériau textile un effet perlant compris entre 80% et 100% selon la méthode Spray-Test AATC Test Method 22- 1996. 3) Utilisation selon la revendication 1 , pour conférer au matériau textile un effet perlant compris entre 80% et 100% selon la méthode Spray-Test AATC Test Method 22- 1996, cet effet perlant étant maintenu à une valeur comprise entre 70 et 100% après 8 heures de lavage continu en machine à l'eau à 50 °C. 4) Utilisation selon la revendication 1 ou 2, pour conférer au matériau textile une imperméabilité à l'eau liquide correspondant à une colonne d'eau supérieure ou égale à 10 cm, de préférence à 15 cm, de manière plus préférée à 20 cm d'eau, telle que mesurée par le test Schmerber ISO Test Method 811-1981.
5) Utilisation selon la revendication 1 ou 2, pour conférer au matériau textile une imperméabilité à l'eau liquide correspondant à une colonne d'eau supérieure ou égaie à 10 cm, de préférence à 15 cm, de manière plus préférée à 20 cm d'eau, telle que mesurée par le test Schmerber ISO Test Method 811-1981 , cette imperméabilité restant supérieure ou égale à 10 cm, de préférence à 15 cm, de manière plus préférée à 20 cm d'eau après 8 heures de lavage continu en machine à l'eau à 50 °C.
6) Utilisation selon l'une quelconque des revendications 1 à 5, pour conférer en plus au matériau textile des propriétés de reprise d'eau réduites.
7) Utilisation selon l'une quelconque des revendications 1 à 6, pour conférer en plus au matériau textile des propriétés de séchage rapide.
8) Utilisation selon l'une quelconque des revendications 1 à 7, dans laquelle le matériau textile est susceptible d'être employé à la réalisation d'un vêtement de sport. 9) Utilisation selon l'une quelconque des revendications 1 à 8, dans laquelle le radical R1 du constituant A est un radical alkyle linéaire ou ramifié en C-j à C3-
10) Utilisation selon l'une quelconque des revendications 1 à 9, dans laquelle on engage comme constituant A un mélange A-3 : - d'au moins une résine présentant, dans sa structure, au moins deux motifs siloxyles différents choisis parmi ceux de formule (R3)3SiO0,5 (motif M), (R3)2SiO (motif D) et R3SiO1|5 (motif T), l'un au moins de ces motifs étant un motif T, les groupes OH et/ou OR1 pouvant être portées par les motifs M, D et/ou T et la teneur pondérale en groupes OH et/ou OR1 étant comprise entre 0,2 et 10 % en poids, et - d'au moins une autre résine présentant, dans sa structure, au moins deux motifs siloxyles différents choisis parmi ceux de formule (R3)3SiO0,5 (motif M), (R3)2SiO (motif D) et R3SiO1 5 (motif T) et SiO2 (motif Q), l'un au moins de ces motifs étant un motif Q, les groupes OH et/ou OR1 pouvant être portées par les motifs M, D et/ou T et la teneur pondérale en groupes OH et/ou OR1 étant comprise entre 0,2 et 10 % en poids, - les radicaux R3 présents dans ces résines étant identiques ou différents et étant choisis parmi les radicaux alkyles linéaires ou ramifiés en C-] - C5, les radicaux alcényles en C2 - C4, phényle, trifluoro-3,3,3 propyle. 11) Utilisation selon l'une quelconque des revendications 1 à 10, dans laquelle on engage un constituant B-1 comprenant un titanate d'alkyle, un zirconate d'alkyle, un silicate d'alkyle ou un mélange d'au moins deux d'entre eux, et/ou comme constituant B-2 un polytitanate B-2 provenant de l'hydrolyse partielle de titanate d'isopropyle, de butyle ou d'éthyl-2 hexyle, un polyzirconate B-2 provenant de l'hydrolyse partielle de zirconate de propyle et de butyle, un polysilicate B-2 provenant de l'hydrolyse partielle de silicate d'éthyle et d'isopropyle ou un mélange d'au moins deux d'entre eux.
12) Utilisation selon la revendication 11 , dans laquelle le constituant B-1 comprend un composé choisi parmi le titanate d'éthyle, le titanate de propyle, le titanate d'isopropyle, le titanate de butyle, le titanate d'éthyl-2 hexyle, le titanate d'octyle, le titanate de décyle, le titanate de dodécyle, le titanate de β-méthoxyéthyle, le titanate de β -éthoxyéthyle, le titanate de β-propoxyéthyle, le titanate de formule Ti[(OCH2CH2)2 OCH3]4, le zirconate de propyle, le zirconate de butyle, silicate de méthyle, le silicate d'éthyle, le silicate d'isopropyle, le silicate de n-propyle, et mélange d'au moins deux d'entre eux.
13) Utilisation selon l'une quelconque des revendications 1 à 12, dans laquelle on engage un constituant C-1 comprenant : (i) un diorganopolysiloxane essentiellement linéaire comprenant un groupement hydroxyle à chaque extrémité de chaîne, de formule :
Figure imgf000041_0001
dans laquelle : + les substituants R18, identiques ou différents, représentent chacun un radical monovalent hydrocarboné saturé ou non en C-] à C13, substitué ou non substitué, aliphatique, cyclanique ou aromatique ; + j a une valeur suffisante pour conférer au diorganopolysiloxane de formule (III) une viscosité dynamique à 25°C allant de 50 à 10.000.000 mPa.s ;
(ii) une résine POS hydroxylée comprenant dans sa structure des motifs siloxyles T et éventuellement M et/ou éventuellement D; (iii) une résine POS hydroxylée susceptible d'être obtenue:
- par hydrolyse d'un alkoxysilane S substitué par des FH ;
-> par homocondensation des silanes S hydrolyses ; -> et par entraînement à la vapeur des hydrolysats dérivant des FH ; (iv) un mélange d'au moins deux des composés (i), (ii) et (iii).
14) Utilisation selon la revendications 13, dans laquelle on engage une résine MDT hydroxylée ayant une teneur pondérale en groupe OH comprise entre 0,2 et 10% en poids.
15) Utilisation selon l'une quelconque des revendications 1 à 14, dans laquelle on engage un alcool fluoré comme constituant C-2.
16) Utilisation selon la revendication 15, dans laquelle il s'agit d'un alcool perfluoré de formule : R 9 - OH (IV) où R19 représente un radical aliphatique, linéaire ou ramifié, ayant de 2 à 20 atomes de carbone, lesdits atomes de carbone étant substitués par au moins un atome de fluor et éventuellement par au moins un ou atome d'hydrogène.
17) Utilisation selon la revendication 16, dans laquelle il s'agit d'un alcool perfluoré de formule RF-(CH2)m-OH où RF représente le groupe -C3F2s-CF3 avec s égal à ou différent de zéro ou le groupe CsF2sH avec s égal à ou supérieur à 1 , et m est un nombre allant de 0 à 10.
18) Utilisation selon l'une quelconque des revendications 1 à 17, dans laquelle la formulation silicone liquide comprend en outre un catalyseur de polycondensation.
19) Utilisation selon l'une quelconque des revendications 1 à 18, dans laquelle la formulation silicone liquide comprend en outre une charge.
20) Utilisation selon l'une quelconque des revendications 1 à 19, dans laquelle la formulation silicone liquide est préparée sous forme concentrée, puis est diluée au moment de son emploi avec un diluant organique, un solvant organique ou de l'eau à raison de 1 à 30 parties en poids de formulation pour 100 parties en poids de solvant, diluant ou eau. 21) Utilisation selon l'une quelconque des revendications 1 à 20, pour l'application de la composition directement sur les articles textiles comprenant au moins une surface textile. 22) Utilisation selon l'une quelconque des revendications 1 à 21 , pour l'application de la composition sur les fils, fibres et/ou filaments pendant le processus d'élaboration du matériau textile.
PCT/FR2005/000147 2004-01-21 2005-01-21 Utilisation d'une formulation silicone pour la fonctionnalisation durable des textiles pour les vetements de sport WO2005080666A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2006550239A JP4594330B2 (ja) 2004-01-21 2005-01-21 スポーツウェア用テキスタイルの持続的機能化のためのシリコーン配合物の使用
KR1020067016771A KR101149452B1 (ko) 2004-01-21 2005-01-21 스포츠 의류용 텍스타일에 내구성을 부여하기 위한, 실리콘조성물의 용도
US10/586,740 US7851023B2 (en) 2004-01-21 2005-01-21 Use of a silicone formulation for the durable functionalisation of textiles for sports clothing
EP05717473A EP1709236A1 (fr) 2004-01-21 2005-01-21 Utilisation d une formulation silicone pour la fonctionnalisation durable des textiles pour les vetements de sport
CN200580006290XA CN1926281B (zh) 2004-01-21 2005-01-21 有机硅配制剂用于运动服装用纺织品的耐久功能化的用途

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0400548A FR2865223B1 (fr) 2004-01-21 2004-01-21 Utilisation d'une formulation silicone pour la fonctionnalisation durable des textiles pour les vetements de sport
FR0400548 2004-01-21

Publications (1)

Publication Number Publication Date
WO2005080666A1 true WO2005080666A1 (fr) 2005-09-01

Family

ID=34707973

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2005/000147 WO2005080666A1 (fr) 2004-01-21 2005-01-21 Utilisation d'une formulation silicone pour la fonctionnalisation durable des textiles pour les vetements de sport

Country Status (7)

Country Link
US (1) US7851023B2 (fr)
EP (1) EP1709236A1 (fr)
JP (1) JP4594330B2 (fr)
KR (1) KR101149452B1 (fr)
CN (1) CN1926281B (fr)
FR (1) FR2865223B1 (fr)
WO (1) WO2005080666A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010520052A (ja) * 2007-03-02 2010-06-10 ブルースター・シリコーン・フランス・エスアエス 織物支持体の製造方法及び当該織物支持体
US8013097B2 (en) 2007-04-11 2011-09-06 Dow Corning Corporation Silicone polyether block copolymers having organofunctional endblocking groups
DE102014220912A1 (de) 2014-10-15 2016-04-21 Wacker Chemie Ag Zusammensetzungen von Aminosiloxanen, Alkoxysiliciumverbindungen und Metallcarboxylaten

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2889185B1 (fr) 2005-07-29 2007-10-12 Rhodia Chimie Sa Procede pour hydrofuger et ameliorer l'effet perlant de materiaux de construction
TW200813159A (en) * 2006-04-26 2008-03-16 Dow Corning Korea Ltd A liquid silicone rubber composition for forming breathable coating film on a textile and process for forming a breathable coating film on a textile
US20080276970A1 (en) * 2007-05-09 2008-11-13 John Christopher Cameron Apparatus and method for treating materials with compositions
CN101977999B (zh) * 2008-03-25 2016-06-01 株式会社可乐丽 有机聚硅氧烷组合物及使用它的绳状构造体的制造方法
WO2010146252A2 (fr) * 2009-06-19 2010-12-23 Bluestar Silicones France Composition pour hydrofuger et ameliorer l'effet perlant de materiaux de construction
CN101798391B (zh) * 2010-03-29 2012-03-21 东莞市良展有机硅科技有限公司 一种改性纺织品硅胶的制备工艺及其制品
WO2016151205A1 (fr) * 2015-03-24 2016-09-29 Bluestar Silicones France Sas Procede de preparation d'une resine silicone stable au stockage
CN110670364A (zh) * 2019-11-13 2020-01-10 福建华峰新材料有限公司 一种有机硅无氟防水剂、其制备方法及防水织物
CN110983796B (zh) * 2019-12-12 2021-12-28 辽宁恒星精细化工有限公司 一种纺织品耐静水压有机硅涂层胶及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3434875A (en) * 1964-06-29 1969-03-25 Burlington Industries Inc Textile fabric coated with a high molecular weight methylpolysiloxane elastomer polymer
EP0312949A2 (fr) * 1987-10-22 1989-04-26 General Electric Company Imprégnation de tissus au moyen de polysiloxanes
EP0506113A2 (fr) * 1991-03-28 1992-09-30 Dow Corning Toray Silicone Company, Limited Composition microbicide à base de siloxane
US5209965A (en) * 1988-03-14 1993-05-11 Sili-Tex, Inc. Internally coated webs
EP0651089A1 (fr) * 1993-10-27 1995-05-03 Dow Corning Toray Silicone Company, Limited Méthode de traitement de fils par adsorption
WO2003066960A1 (fr) * 2002-02-08 2003-08-14 Rhodia Chimie Utilisation d'une emulsion inverse a base de silicone reticulable pour la realisation de revetements 'imper-respirants'
WO2004074569A1 (fr) * 2003-02-19 2004-09-02 Rhodia Chimie Utilisation d'une formulation silicone liquide reticulable comme base d’enduction textile

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06102080B2 (ja) * 1993-01-06 1994-12-14 ダウ コーニング アジア株式会社 耐臭性被膜形成用組成物
FR2751980B1 (fr) * 1996-08-02 1999-02-05 Rhone Poulenc Chimie Composition silicone pour l'enduction de substrats en matiere textile
US20040219373A1 (en) 2003-02-19 2004-11-04 Rhodia Chimie Textile coating formulations comprising crosslinkable liquid silicones, metal alkoxides and functional coreactants

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3434875A (en) * 1964-06-29 1969-03-25 Burlington Industries Inc Textile fabric coated with a high molecular weight methylpolysiloxane elastomer polymer
EP0312949A2 (fr) * 1987-10-22 1989-04-26 General Electric Company Imprégnation de tissus au moyen de polysiloxanes
US5209965A (en) * 1988-03-14 1993-05-11 Sili-Tex, Inc. Internally coated webs
EP0506113A2 (fr) * 1991-03-28 1992-09-30 Dow Corning Toray Silicone Company, Limited Composition microbicide à base de siloxane
EP0651089A1 (fr) * 1993-10-27 1995-05-03 Dow Corning Toray Silicone Company, Limited Méthode de traitement de fils par adsorption
WO2003066960A1 (fr) * 2002-02-08 2003-08-14 Rhodia Chimie Utilisation d'une emulsion inverse a base de silicone reticulable pour la realisation de revetements 'imper-respirants'
WO2004074569A1 (fr) * 2003-02-19 2004-09-02 Rhodia Chimie Utilisation d'une formulation silicone liquide reticulable comme base d’enduction textile

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010520052A (ja) * 2007-03-02 2010-06-10 ブルースター・シリコーン・フランス・エスアエス 織物支持体の製造方法及び当該織物支持体
US8013097B2 (en) 2007-04-11 2011-09-06 Dow Corning Corporation Silicone polyether block copolymers having organofunctional endblocking groups
DE102014220912A1 (de) 2014-10-15 2016-04-21 Wacker Chemie Ag Zusammensetzungen von Aminosiloxanen, Alkoxysiliciumverbindungen und Metallcarboxylaten
WO2016058781A1 (fr) 2014-10-15 2016-04-21 Wacker Chemie Ag Compositions d'aminosiloxanes, de composés d'alcoxysilicium et de carboxylates métalliques

Also Published As

Publication number Publication date
EP1709236A1 (fr) 2006-10-11
CN1926281A (zh) 2007-03-07
KR101149452B1 (ko) 2012-05-25
US20070277326A1 (en) 2007-12-06
JP4594330B2 (ja) 2010-12-08
KR20070001147A (ko) 2007-01-03
FR2865223B1 (fr) 2007-11-16
US7851023B2 (en) 2010-12-14
CN1926281B (zh) 2011-05-11
FR2865223A1 (fr) 2005-07-22
JP2007523267A (ja) 2007-08-16

Similar Documents

Publication Publication Date Title
EP1709236A1 (fr) Utilisation d une formulation silicone pour la fonctionnalisation durable des textiles pour les vetements de sport
WO2005095519A1 (fr) Composition mixte silicone-compose organique fluore pour conferer de l&#39;oleophobie et/ou de l&#39;hydrophobie a un materiau textile
US8012593B2 (en) Textile coating formulations comprising crosslinkable liquid silicones, metal alkoxides and functional coreactants
EP2035489B1 (fr) Emulsion huile dans eau d&#39;aminosiloxanes
AU649769B2 (en) N-containing polysiloxane compounds
CA1245668A (fr) Organopolysiloxannes et leur utilisation pour le traitement des fibres
FR2984343A1 (fr) Procede d&#39;obtention par voie sol-gel d&#39;un revetement fonctionnel durable pour supports, notamment textiles, et revetement ainsi obtenu
FR2851264A1 (fr) Utilisation d&#39;une formulation silicone comme base d&#39;enduction textile comprenant une resine silicone, un alkoxyde metallique et un additif foncyionnel capable de reagir avec l&#39;un des constituants precedents
EP1595022B1 (fr) Utilisation d&#39;une formulation silicone liquide reticulable comme base d&#39;enduction textile
FR2851265A1 (fr) Utilisation d&#39;une formuation silicone comme base d&#39;enduction textile comprenant une resine silicone, un alkoxyde metallique et un additif fonctionnel capable de reagir avec au moins un des constituants precedents
JPH03249281A (ja) 繊維用撥水剤
US5464801A (en) Catalyst compositions comprising rhodium catalyst complexes
WO2008000816A1 (fr) Procede pour hydrofuger un substrat
JPS58144179A (ja) 耐久撥水性布帛とその製造方法
JP2023539937A (ja) 繊維質基材の処理のための低環状体誘導体化アミノ官能性シリコーンポリマーの使用
BE886036A (fr) Compositions de silicone pour le traitement de fibres
EP1368525A2 (fr) Finitions de textile hydrofuges et procede de fabrication
PL231992B1 (pl) Sposób wytwarzania silnie hydrofobowych włókien i tkanin naturalnych

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006550239

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2005717473

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020067016771

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580006290.X

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2005717473

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067016771

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10586740

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10586740

Country of ref document: US