WO2005079973A1 - Reactor rotatorio para nixtamalización - Google Patents

Reactor rotatorio para nixtamalización Download PDF

Info

Publication number
WO2005079973A1
WO2005079973A1 PCT/MX2005/000006 MX2005000006W WO2005079973A1 WO 2005079973 A1 WO2005079973 A1 WO 2005079973A1 MX 2005000006 W MX2005000006 W MX 2005000006W WO 2005079973 A1 WO2005079973 A1 WO 2005079973A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
nixtamalization
rotary reactor
rotary
height
Prior art date
Application number
PCT/MX2005/000006
Other languages
English (en)
French (fr)
Inventor
Pablo Agustin Meouchi Saade
Original Assignee
Pablo Agustin Meouchi Saade
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pablo Agustin Meouchi Saade filed Critical Pablo Agustin Meouchi Saade
Priority to US10/590,294 priority Critical patent/US20080095674A1/en
Publication of WO2005079973A1 publication Critical patent/WO2005079973A1/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/08Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles
    • B01J8/10Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles moved by stirrers or by rotary drums or rotary receptacles or endless belts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F29/00Mixers with rotating receptacles
    • B01F29/40Parts or components, e.g. receptacles, feeding or discharging means
    • B01F29/401Receptacles, e.g. provided with liners
    • B01F29/402Receptacles, e.g. provided with liners characterised by the relative disposition or configuration of the interior of the receptacles
    • B01F29/4022Configuration of the interior
    • B01F29/40221Configuration of the interior provided with baffles, plates or bars on the wall or the bottom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F29/00Mixers with rotating receptacles
    • B01F29/60Mixers with rotating receptacles rotating about a horizontal or inclined axis, e.g. drum mixers
    • B01F29/63Mixers with rotating receptacles rotating about a horizontal or inclined axis, e.g. drum mixers with fixed bars, i.e. stationary, or fixed on the receptacle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/90Heating or cooling systems
    • B01F35/92Heating or cooling systems for heating the outside of the receptacle, e.g. heated jackets or burners
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/90Heating or cooling systems
    • B01F2035/99Heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2215/00Auxiliary or complementary information in relation with mixing
    • B01F2215/04Technical information in relation with mixing
    • B01F2215/0413Numerical information
    • B01F2215/0418Geometrical information
    • B01F2215/0422Numerical values of angles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F29/00Mixers with rotating receptacles
    • B01F29/40Parts or components, e.g. receptacles, feeding or discharging means
    • B01F29/403Disposition of the rotor axis
    • B01F29/4033Disposition of the rotor axis inclined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00796Details of the reactor or of the particulate material
    • B01J2208/00823Mixing elements
    • B01J2208/00831Stationary elements
    • B01J2208/0084Stationary elements inside the bed, e.g. baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00761Details of the reactor
    • B01J2219/00763Baffles
    • B01J2219/00765Baffles attached to the reactor wall
    • B01J2219/00768Baffles attached to the reactor wall vertical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00761Details of the reactor
    • B01J2219/00763Baffles
    • B01J2219/00765Baffles attached to the reactor wall
    • B01J2219/0077Baffles attached to the reactor wall inclined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/18Details relating to the spatial orientation of the reactor
    • B01J2219/187Details relating to the spatial orientation of the reactor inclined at an angle to the horizontal or to the vertical plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/19Details relating to the geometry of the reactor
    • B01J2219/194Details relating to the geometry of the reactor round
    • B01J2219/1947Details relating to the geometry of the reactor round oval or ellipsoidal
    • B01J2219/1948Details relating to the geometry of the reactor round oval or ellipsoidal ovoid or egg-shaped

Definitions

  • the present invention is related to the dough and tortilla industry, and any new industry in which the nixtamalization of any product is required, more specifically relates to a rotary reactor for nixtamalization, with a better capacity for homogenization of the reagents in the process and the product.
  • the nixtamalization process is the alkaline cooking of any product. That is, it is the cooking of a product in a basic aqueous medium.
  • the source of the alkali for nixtamalization was the bones of a former family member human being, a warrior who it stood out for its aptitudes in this activity, etc.
  • the state-of-the-art reactor although it allows a certain degree of agitation, does not allow a significant change of position of the elements of the trinomial.
  • the disclosed rotary reactor comprises a certain inclination, to achieve complete emptying thereof when the product nixtamalization process has been optimally carried out.
  • the unit agitation operation during the nixtamalization operation should be able to be controlled to avoid damage to the grain, an agitation control characteristic that the reactor does not have. as described in Mexican patent MX 191283. It is currently known that the hardness or softness of the grain is due to the percentage of corneal endosperm with respect to the soft endosperm in the corn grain. All the grains have both types of endosperm, however some predominate in one or the other and this determines the global hardness of the corn.
  • the corneal endosperm is made up of cells inside which is a protein matrix thicker than the protein matrices of the cells in the mealy endosperms, despite the fact that the cell wall of the mealy endosperm cells is thicker than the cell walls of corneal endosperm cells.
  • the state-of-the-art rotary reactor comprises a heating system consisting of two jackets, an outer jacket where hot burned gases are circulated and an intermediate jacket where thermal oil is contained.
  • the hot burned gases give up part of their sensible heat by heating the thermal oil in the neighboring jacket and said thermal oil in turn heats the components contained in the nixtamalization chamber.
  • This heating system has serious problems regarding the heat transfer coefficient and regarding the thermal inertia of the oil. Making a simile, it would be equivalent to the use you have of a thick plate frying pan, where it takes time to heat up and takes time to cool down.
  • the outer jacket of the rotary nixtamalization reactors which is the jacket comprising the burned gases, can control the temperature by means of the amount of fuel that is burned.
  • the oil jacket will have a temperature that will depend both on the temperature prevailing inside the internal chamber, on the heat transfer rate of the oil jacket, on the temperature of the gases burned on the external jacket and of the heat transfer rate from the outer jacket to the oil jacket.
  • the outer jacket is preheated with hot air and the oil jacket and the nixtamalization chamber will preheat as a result of heat transfer from the outer jacket and heat transmission from the oil jacket to the nixtamalization chamber.
  • the nixtamalization elements are fed, that is, the grain, the water and the lime.
  • the first stage is the one that goes from the moment of feeding the corn-water-lime trinomial until the maximum temperature set for nixtamalization is reached.
  • the next stage is the one that consists in the time in which this maximum temperature is conserved and the third will be the one that goes from the maximum temperature to the temperature in which the nixtamalized grain will be discharged to pass to the resting step thereof. It has been estimated that for correct nixtamalization, the different stages of nixtamalization should each have one third of the total time established for nixtamalization.
  • a structure that solves the mentioned deficiencies of the state-of-the-art reactor would mean an important advance in the nixtamalization operation.
  • the corn-water-lime trinomial in the end consists of a single product: nixtamalized corn with a certain content of water and lime.
  • One of the objectives of the present invention is to achieve a nixtamalization reactor structure that improves the degree of homogenization of the trinomial water, lime, product to be nixtamalized.
  • Another objective of the present invention is to make possible a nixtamalization reactor that controls the trinomial homogenization operation without damaging the grains with a percentage of soft endosperm with respect to the corneal endosperm more abundant than the grains with the most abundant percentage of corneal endosperm with regarding the soft endosperm.
  • Still another objective of the present invention is to be able to provide a nixtamalization reactor that homogenizes, in addition to the concentration of lime within the trinomial, the temperature at any point in the mass of the trinomial.
  • the present invention will be reflected in reactors with a given inclination, with driving means in the nixtamalization chamber and in the heating system thereof.
  • This inclination is coupled with the conformation of the reactor, including the position of the discharge medium, to achieve optimum emptying and loading capacity,
  • the reactors that reflect the teachings of the present invention have means that improve the homogenization operation of the trinomial water, lime and product to be nixtamalized and means to control the agitation, making it more or less intense, depending on the hardness of the product to be nixtamalized.
  • One of the means to improve the homogenization of the trinomial is to provide the rector with means that make the water, lime and product that are at a certain point in the low levels of the reactor, at a later time be displaced to higher levels.
  • One way to achieve this is to provide the reactor with means of entraining water, lime and product. Adopting these means different modalities, generally consisting of tapes fixed to the internal face of the reactor to achieve drag. These tapes are fixed to the interior wall with different angles with respect to the secant of the cylindrical wall. These tapes can be straight, and arranged longitudinally in the reactor, being a predetermined distance apart.
  • the angle at which they are fixed to the inner face of the innermost wall of the reactor, together with the direction of rotation of the reactor, will determine the height at which the trinomial will fall. If the angle of the tape with respect to the inner face is sharp on the turn side, the material will take longer to fall than if the angle of the tape with respect to the inner face is obtuse. A right angle is adequate and how fast the grain falls will depend on its angle of repose.
  • reactors comprising the teachings of the present invention, they comprise a frequency variator connected to the motor that provides the rotation to the reactor. With this, it is possible to control the rotation speed of the reactor, to adapt it to the hardness of the corn that is being nixtamalized.
  • An improvement in drag belts was to provide such belts with a configuration called a butterfly wing. To do this, two thirds of the height of the belt, a bend is formed so that the last third of the drag belt forms an angle equal to 120 ° with respect to the straight part.
  • This jacket is a jacket containing a series of scrolls, to heat the nixtamalization chamber, but it can also alternately contain scrolls for cooling.
  • the external surface of the hot gases is too large, facilitating the escape of heat by radiation and convection. And is that the relationship chamber volume exposed surface, is too high.
  • the heating of the oil to the required temperature is carried out in an oil heater, which is continuously circulating by means of a pump that drives the hot oil from the heater to the reactor and sends it back to the heater to complete the cycle. continuous.
  • thermal oil is taken as the working fluid, but it is also applied to the other fluids.
  • the working fluid can be water vapor, hot burned gases and thermal oil.
  • the heat source could be the burning of a fuel or electrical resistances.
  • a rotary nixtamalization reactor with a single jacket or two partially attached is proposed. These jackets may contain the working fluid listed above.
  • the nixtamalization reactor in the case of a single jacket, the interior of the same can carry a series of scrolls through which the working fluids will circulate.
  • These scrolls are formed by ribbons arranged in a helical form, or by two series of scrolls arranged in an interleaved form,
  • the working fluid it may be the burned gases or thermal oil, and even steam.
  • To cool water at temperature would be used ambient.
  • the working fluid consists of hot gases originated during combustion, which are to be introduced into the single jacket or partially connected jackets.
  • Figure 1 shows a schematic longitudinal section of the reactor object of the present invention, marking the angle of inclination of said reactor with respect to the horizontal.
  • Figure 2 illustrates a cross section of the reactor with the tapes, dragging the material, fixed at a 90 degree angle.
  • Figure 3 schematically illustrates the cross section of the reactor illustrated in Figure 2, with the tapes fixed at an angle.
  • Figure 4 illustrates the schematic of the electrical connection of the motor that moves the reactor to the frequency inverter.
  • Figure 5 illustrates the detail of the gate for the controlled emptying of the nixtamalized material. r ⁇ * Stamm • I know *
  • Figure 6 shows a conventional perspective of the reactor in the mode comprising heating scrolls.
  • Figure 7 illustrates in conventional perspective the reactor of the present invention in the mode in which cooling scrolls are also included.
  • Figure 8 illustrates a cross section of the reactor showing the drag belts in the mode in which they are straight.
  • Figure 9 illustrates a cross section of a reactor in which seagull-winged drag belts have been installed.
  • Figure 10 illustrates the minimum changes required by the state-of-the-art rotary reactor for the use of a single working fluid.
  • Figure 2 illustrates a cross section of the reactor with the tapes, dragging the material, fixed at a 90 degree angle.
  • the height h of the belt is variable, and depends on the amount of material that you want to drag.
  • Figure 3 schematically illustrates the cross section of the reactor illustrated in Figure 2, with the tapes fixed at an angle.
  • the inclination ⁇ of the belt with respect to the internal face of the reactor allows determining the height at which the product is going to be dropped in its rotation. As the angle of the turn side becomes sharper, the higher the material is conveyed before falling again.
  • the adequate inclination of the drive belts 2 is located in the Interval between 80 and 100 °. Optimally for most corn, the angle is 90 °.
  • Figure 4 illustrates the schematic of the electrical connection of the motor 40 that moves the reactor 1, to the variable frequency drive 41.
  • Figure 5 illustrates the detail of the gate for the controlled emptying of the nixtamalized material. This gate is located at the lower longitudinal end of the reactor, at its lower end.
  • It consists of a plate with means for fixing it sealed against the periphery of a window in the reactor. These means are designed in such a way as to allow regulating the distance between the plate and the external wall of the reactor. With this control, more or less already nixtamalized material can be passed, controlling the amount of material to pass to the other stages of the process. The further the plate is separated from the external wall of the reactor, the more material will be allowed to pass, at each stage of the turn in which the outlet is in the lower position.
  • the sealing and the control of the separation between the plate and the reactor is achieved by means of a pair of threaded pins and two butterflies or nuts with ruffles, which when turning to one side close and seal, and when turning in the opposite direction they separate more or less the plate, achieving variable openings.
  • the fully nixtamalized material is a material with all the water and lime absorbed, at the time of discharge, there are no draining problems.
  • the material simply slides by gravity through the corresponding opening with the emptying control plate, which is also sealed during the nixtamalized process.
  • the operation of the reactor then consists of receiving the quantity of material to be nixtamalized, along with the water and lime. Depending on the humidity and hardness of the corn, it is the amount of water and lime added. Also with these variables the time, temperature and rotation speed of the reactor are determined. Said speed controlled by means of the frequency variator of the rotary reactor motor.
  • the reactor outlet is opened, separating the plate that controls this output and at each rotation interval in which this opening is below or at the level of the upper level of the nixtamalized material, a certain amount of material will be released. These outputs being repeated until the reactor is completely emptied.
  • the body of the reactor 61 comprises on its external face a volute 62 that will carry the working fluid inside.
  • Working fluid will enter through volute end 63 and exit through opposite end 64.
  • a burner that provides the sensible heat to achieve the required temperatures, for the defined time, at the entrance of the scrolls, generally in the lower part of the reactor.
  • water vapor is used as the working fluid, it is generally fed from the top, the heat transfer coefficient being much higher than in the case of burned gases.
  • the first of which is to heat that oil in a Dow Ther, and subsequently circulate it through the volute.
  • the temperature of the nixtamalized corn can be controlled for a precise nixtamalization process.
  • the hot working fluid will be fed through one of the volutes and cold water will be introduced through the other volute, without adding hot gases through the heating volute, when it is required to reduce the temperature inside the nixtamalization reactor .
  • Figure 8 illustrates a cross section of the reactor showing the drag belts in the embodiment in which said tapes are straight.
  • the height (h) of the tape is between 1 and 40 cm, and the number of said tapes (n) is between 1 and 12.
  • Figure 9 illustrates a cross section of a reactor in which seagull-winged drag belts have been installed.
  • these tapes there is a first cant p1 and a second cant p2, the second cant 1/3 of the full height of the tape.
  • Figure 10 illustrates the minimum changes required by the state-of-the-art rotary reactor for the use of a single working fluid.

Abstract

La presente invención está relacionada con la industria de la masa y la tortilla, y cualquier industria nueva en la que se requiera la nixtamalización de cualquier producto, más especificamente se relaciona con un reactor rotatorio para la nixtamalización, con una mejor capacidad de homogeneización de los reactivos en el proceso y el producto. Las ventajas de los reactores que comprenden las enseñanzas de la presente invención con respecto de los del estado de la técnica radican en que los primeros logran un mejor grado de homogenización del trinomio agua, cal, producto a nixtamalizar, permite controlar la operación de homogenizado del trinomio sin dañar los granos suaves y logra al mismo tiempo la homogenización de la temperatura en toda la masa del producto. Estructuralmente, los reactores objeto de la presente invención están caracterizados por ser del tipo formado por una cámara central y una serie de chaquetas rodeando ésta, comprendiendo un extremo logitudinal a una altura dada, y otro extremo longitudinal opuesto a una altura inferior, formando la línea longitudinal del reactor con respecto a la horizontal, un ángulo seleccionado entre 15 y 30°.

Description

REACTOR ROTATORIO PARA NIXTAMALIZACIÓN
CAMPO DE LA INVENCIÓN
La presente invención esta relacionada con la industria de la masa y la tortilla, y cualquier industria nueva en la que se requiera la nixtamalización de cualquier producto, más específicamente se relaciona con un reactor rotatorio para la nixtamalización, con una mejor capacidad de homogeneización de los reactivos en el proceso y el producto.
ANTECEDENTES DE LA INVENCIÓN
El proceso de nixtamalización del maíz es un proceso muy antiguo en lo que actualmente es México, Guatemala y algunos otros países de Centroamérica, donde hubo asentamientos mayas. Estos procesos llegaron a tener, como muchas de las actividades cotidianas de la mayoría de las tribus prehispánicas, connotaciones religiosas.
Como es sabido, el proceso de nixtamalización es el cocimiento alcalino de cualquier producto. Es decir, es el cocimiento de un producto en un medio acuoso básico.
En algunas ocasiones específicas, la fuente de álcali para la nixtamalización fue los huesos de un ser humano ex miembro de la familia, algún guerrero que descolló por sus aptitudes en dicha actividad, etc.
Aún actualmente, en general la fuente de álcali ha sido un hidróxido u óxido de calcio.
Dado que, por una parte, poco a poco el calcio, durante el proceso de nixtamalización, pasaba a las capas internas del grano de maíz, y por otra parte, el ion OH reaccionara con algún tejido del grano, o con las impurezas del mismo, estas circunstancias hacia que el medio acuoso en el que el producto se estuviera cociendo, variara en la concentración de hidróxido de sodio y por lo tanto de pH.
Por otra parte, se sabe que la solubilidad en agua del hidróxido de calcio es muy baja y para lograr mantener la concentración adecuada, se debe de agregar al medio una cantidad que sobresature la solución con los problemas inherentes a las precipitaciones de dicho compuesto químico.
En los procesos caseros, esto no originaba más que la necesidad de estar mezclando periódicamente el trinomio agua, cal y grano de maíz.
Al pasar a la nixtamalización de cantidades más grandes de maíz en los molinos o tortillerías esto llegó a ser un problema importante porque el esfuerzo requerido para la mezcla periódica del trinomio mencionado requería de un importante esfuerzo humano.
Esta última problemática fue resuelta con el desarrollo de un reactor giratorio descrito en la ahora patente mexicana 191283, del mismo inventor de la invención cuya descripción se hace aquí.
Se agrega en integro la descripción de la mencionada patente para su consulta en la presente invención.
Con la aplicación del reactor de dicha patente mexicana 191283, se pudo observar que aún la homogenización constante del trinomio no alcanzaba su función en forma óptima, por lo que en la presente invención se agregan algunas características estructurales a dicho reactor para mejorar su función de homogenización.
El reactor del estado de la técnica, aunque permite un cierto grado de agitación, no permite un cambio de posición importante de los elementos del trinomio.
Del análisis del comportamiento en cuanto a la temperatura imperante en los diferentes niveles de altura de los componentes del trinomio, se pudo observar que por los fenómenos de transferencia del calor, la temperatura en el centro del seno del trinomio era menor que la temperatura que se alcanzaba en las capas del trinomio en contacto con las paredes del reactor.
Lo anterior a pesar de los fenómenos de transferencia de calor proporcionada por la convección natural.
Entonces el reactor del estado de la técnica, si bien permite cierta homogenización en cuanto a las concentraciones de cal, no permite la homogenización de la temperatura en las capas de diferentes alturas o posiciones en general.
Otro aspecto no divulgado den la patente mexicana 191283 fue el de la forma en como se iba a retirar el material una vez que ya estuviera nixtamalizado. El reactor rotatorio divulgado comprende una cierta inclinación, para lograr un vaciado completo del mismo cuando se haya llevado a cabo de manera óptima el proceso de nixtamalización del producto.
No se menciona como se logra que el trinomio se mantenga en el interior del reactor durante el proceso de nixtamalización, y como posteriormente se permite la extracción del producto nixtamalizado cuando el proceso se ha contemplado. Para lograr estas dos funciones, el medio empleado debe permitir tapar selladamente el reactor cuando este esté en el proceso de nixtamalización y permita asimismo sacar el material ya procesado.
Tampoco se enseña cual es la inclinación adecuada del reactor para su correcto funcionamiento tanto durante el proceso de nixtamalización, como durante el proceso de vaciado.
Por otro lado, dado que algunos maíces tienen estructura más suave que otras, la operación unitaria de agitación durante la operación de nixtamalización, debería de poder ser controlada para evitar que el grano se dañe, característica de control de la agitación que no tiene el reactor tal y como fue descrito en la patente mexicana MX 191283. Actualmente se sabe que la dureza o suavidad del grano se debe al porcentaje de endospermo corneo con respecto al endospermo suave en el grano de maíz. Todos los granos tienen ambos tipos de endospermo, sin embargo en algunos predominan uno u otro y esto determina la dureza global del maíz.
Se sabe asimismo que el endospermo corneo esta formado por células en cuyo interior se encuentra una matriz proteica de más grosor que las matrices proteicas de las células en los endospermos harinosos, a pesar de que la pared celular de las células de los endospermos harinosos es de mayor grosor que las paredes celulares de las células de los endospermos córneos.
El reactor giratorio del estado de la técnica comprende un sistema de calentamiento que consiste en dos chaquetas, una chaqueta exterior donde se hacen circular los gases quemados calientes y una chaqueta intermedia donde se contiene aceite térmico. Los gases quemados calientes ceden parte de su calor sensible al calentar el aceite térmico de la chaqueta vecina y dicho aceite térmico calienta a su vez los componentes contenidos en la cámara de nixtamalización.
Este sistema de calentamiento tiene serias problemáticas en cuanto al coeficiente de transmisión de calor y en cuanto a la inercia térmica del aceite. Haciendo un símil, sería equivalente al uso que se tiene de un sartén de placa gruesa, donde este tarda en calentarse y tarda en enfriarse.
La chaqueta exterior, de los reactores de nixtamalización rotatorios, que es la chaqueta que comprende los gases quemados, puede controlar la temperatura por medio de la cantidad de combustible que se quema.
La chaqueta del aceite va a tener una temperatura que dependerá tanto de la temperatura que impere en el interior de la cámara interna, de la tasa de transferencia de calor de la chaqueta de aceite, de la temperatura de los gases quemados en la chaqueta exterior y de la tasa de transferencia de calor de la chaqueta externa a la chaqueta de aceite.
En un proceso normal de funcionamiento de reactor, se precalienta la chaqueta exterior con aire caliente y la chaqueta de aceite y la cámara de nixtamalización se precalentarán como resultado de la transmisión de calor de la chaqueta exterior y la transmisión de calor de la chaqueta de aceite a la cámara de nixtamalización.
Cuando las temperaturas en estas chaquetas alcanzan un nivel adecuado de temperatura, se alimentan los elementos de nixtamalización, es decir, el grano, el agua y la cal.
Dependiendo de la temperatura a la que se encuentran estos elementos durante la alimentación y la temperatura de la cámara, existe cierto calor que se pierde por efecto de una cierta evaporación del agua alimentada (calor latente de evaporación) y por efecto del aumento de la temperatura del trinomio agua-cal- maíz.
La energía requerida para estos procesos se absorbe del aceite de la chaqueta circundante, haciendo descender la temperatura del mismo. Que tan rápido se haga el aumento de la temperatura de los elementos de la nixtamalización dependerá de que tan rápido el aceite ceda el calor requerido. Como la nixtamalización de manera apreciable se lleva a cabo a partir de los 72°C, en esta etapa existen cambios en el maíz que deberán ser tomados en cuenta para el resultado final.
Entonces, el establecimiento de una temperatura y un tiempo de nixtamalización se dificulta enormemente por la inercia que tiene el aceite para calentarse y para enfriarse.
Por otro lado, se ha visto que existen tres etapas en los procesos normales de nixtamalización, la primera etapa es la que va desde el momento de la alimentación del trinomio maíz-agua-cal hasta que se alcance la temperatura fijada como máximo para la nixtamalización, la etapa siguiente es la que consiste en el tiempo en que se conserva esta temperatura máxima y la tercera será la que va desde la temperatura máxima hasta la temperatura en que se descargará el grano nixtamalizado para pasar al paso de reposo del mismo. Se ha estimado que para una correcta nixtamalización, las diferentes etapas de la nixtamalización deberían de tener cada una un tercio del tiempo total establecido para la nixtamalización.
Una estructura que resuelva las deficiencias mencionadas del reactor del estado de la técnica significaría un avance importante en la operación de nixtamalización.
En los reactores del estado de la técnica también se dificulta el control de las temperaturas para lograr este perfil de calentamiento, conservación y enfriamiento del trinomio maíz-agua-cal, haciendo notar que por medio de los reactores rotatorios del estado de la técnica, el trinomio maíz-agua-cal, al final consiste en un solo producto: maíz nixtamalizado con cierto contenido de agua y cal.
OBJETIVOS DE LA INVENCIÓN
Uno de los objetivos de la presente invención es lograr una estructura de reactor de nixtamalización que mejore el grado de homogenización del trinomio agua, cal, producto a nixtamalizar.
Otro de los objetivos de la presente invención es hacer posible un reactor de nixtamalización que controle la operación de homogenizado del trinomio sin dañar los granos con porcentaje de endospermo suave con respecto al endospermo corneo más abundantes que los granos con porcentaje más abundante de endospermo corneo con respecto al endospermo suave.
Aún otro objetivo de la presente invención es poder proporcionar un reactor de nixtamalizaciόn que homogenice, además de la concentración de la cal en el seno del trinomio, la temperatura en cualquier punto de la masa del trinomio.
Todavía otro objetivo es el de mejorar el sistema de calentamiento de los reactores de nixtamalización rotatorios para lograr un control de la temperatura en el contenido de la cámara de nixtamalización. Aún otro objetivo de la presente invención es lograr controlar los tiempos de nixtamalización en las tres etapas normales en el proceso de nixtamalización.
Otros objetivos y ventajas de la presente invención podrán ser aparentes del estudio de la siguiente descripción y los dibujos que se acompañan con fines exclusivamente ilustrativos y no limitativos.
BREVE DESCRIPCIÓN DE LA INVENCIÓN
En pocas palabras, por un lado la presente invención se verá reflejada en reactores con una inclinación dada, con medios de arrastre en la cámara de nixtamalización y en el sistema de calentamiento del mismo.
En la inclinación, puesto que se pudo demostrar que con inclinaciones superiores se reducía drásticamente la capacidad del reactor, y si la inclinación era muy pequeña, la descarga no se llevaba a cabo de forma completa.
Esta inclinación esta aunada con la conformación del reactor, incluyendo la posición del medio de descarga, para lograr un vaciado y una capacidad de carga óptimos,
Asimismo, por otro lado, los reactores que reflejan las enseñanzas de la presente invención cuentan con medios que mejoran la operación de homogenización del trinomio agua, cal y producto a nixtamalizar y medios para controlar la agitación, haciéndola más o menos intensa, dependiendo de la dureza del producto a nixtamalizar.
Uno de los medios para mejorar la homogenización del trinomio consiste en dotar al rector con medios que hagan que el agua, cal y producto que se encuentren en cierto momento en los niveles bajos del reactor, en un momento siguiente sean desplazados a niveles más altos.
Una modalidad para lograr lo anterior es dotar al reactor con medios de arrastre de agua, cal y producto. Adoptando éstos medios diferentes modalidades, consistiendo generalmente en unas cintas fijas a la cara interna del reactor para lograr el arrastre. Estas cintas van fijas a la pared interior con diferentes ángulos con respecto a la secante de la pared cilindrica. Estas cintas pueden ser rectas, y dispuestos en forma longitudinal en el reactor, estando separadas una distancia predeterminada.
El ángulo al que se fijen a la cara interna de la pared más interna del reactor, junto con el sentido del giro del reactor, determinará la altura a la que el trinomio caerá. Si el ángulo de la cinta con respecto de la cara interna es agudo del lado del giro, el material tardará en caer más que si el ángulo de la cinta con respecto de la cara interna es obtuso. Un ángulo recto es adecuado y que tan rápido caiga el grano, dependerá del ángulo de reposo del mismo.
La altura de estas cintas, además de su ángulo, definirá la cantidad de trinomio arrastrada. Entre más alta sea la cinta, más cantidad de material arrastrará.
Además, los reactores comprendiendo las enseñanzas de la presente invención, comprenden un variador de frecuencia conectado al motor que proporciona el giro al reactor. Con esto se logra controlar la velocidad de giro del reactor, para adaptarla a la dureza del maíz que se esta nixtamalizando.
En la cámara de nixtamalización se estudiaron tanto el número de cintas arrastradoras como la altura de las mismas. Se tomó como variable de respuesta los cambios de posición de los diferentes segmentos del lecho del grano a nixtamalizar para medir el grado de mezclado y cambio de posición en cuanto a la altura y por otra parte la cantidad arrastrada de agua, cal y maíz en cada giro del reactor.
Se comprobó lo que la lógica indica. Entre mayor es el número de cintas arrastradoras y mayor es la altura de las mismas, el volumen que arrastra es mayor, sin embargo se encontró que dependiendo de la altura de las cintas, a un mismo ángulo con respecto de la cara interna de la cámara de reacción, tiene un comportamiento diferente con respecto a la altura en la que deja caer el 50% del material arrastrado. Cuando el número de paletas es excesivo y la altura es demasiado elevada, una cantidad importante del grano y el agua arrastrados, jamás llega al nivel más bajo del reactor porque el grano se vaciaría en una cinta arrastradora más o menos vecina.
En el comportamiento de un reactor donde el agua agregada es tal que toda el agua con cal sea absorbida por el grano, es importante que su diseño permita que todo el grano tenga la misma probabilidad de estar en contacto con dicha agua con cal para lograr un nixtamalizado homogéneo. Conforme se incrementa el número de cintas arrastradoras y estas son más altas, y puesto que en su recorrido el agua arrastrada, al tener menor ángulo de reposo, va a caer antes que el último grano arrastrado, entonces el tiempo que este último grano arrastrado va a estar inmerso en la suspensión agua-cal va a depender del momento en que este último grano caiga hasta el fondo del reactor.
El simple hecho de proporcionar al menos una cinta arrastradora en el reactor se mejora el mezclado del trinomio agua cal maíz. Pero de acuerdo con la Ley de los Rendimientos Decrecientes, existe un máximo de números de paletas a proporcionarle al reactor.
Un comportamiento similar tiene la altura de las cintas. Un centímetro de altura en las cintas reporta un mejor comportamiento, aunque mínimo, en la homogenización del trinomio. Sin embargo se pudo determinar que una altura mayor que 40 cm, además de proporcionar una mejora negativa en la homogenización significa un necesidad de resistencia mecánica importante tanto en los medios de sujeción de las cintas a la cara interna del reactor como en la misma cinta, implicando un cambio de material, un tratamiento térmico de la misma o una cédula mas elevada, con la siguiente carga mecánica de los diferentes elementos de fijación del reactor.
Un mejoramiento en las cintas de arrastre fue el proporcionar a dichas cintas una configuración denominada ala de mariposa. Para ello, a dos tercios de la altura de la cinta, se forma un doblez para que el último tercio de la cinta arrastradora forme un ángulo igual a 120° con respecto a la parte recta.
Se pudo determinar que el número de cintas arrastradoras que pueden funcionar en el reactor objeto de la presente invención van desde 1 hasta 12.
En cuanto a la altura de las cintas, esta varía desde 1 cm hasta 40 cm.
Por lo que respecta al sistema de calentamiento, se modificaron el número de chaquetas, dejándose únicamente 1 chaqueta. Esta chaqueta es una chaqueta conteniendo una serie de volutas, para calentar la cámara de nixtamalización, pero también puede contener en disposición alternada, volutas para el enfriamiento.
Un análisis de los reactores rotatorios del estado de la técnica demuestra que al tener una ΔT más amplia se tiene una pérdida de calor más grande y es que como se debe de calentar in situ el aceite a cierta temperatura, la temperatura de los gases de combustión o del aire caliente que lleguen a la chaqueta deberá estar por encima de la temperatura que se desee en el seno del trinomio agua- maíz-cal.
Además, con esta estructura del estado de la técnica, el control de la temperatura se consigue difícilmente, requiriendo además de grandes volúmenes de gas para lograr calentar el aceite y si bien el reactor esta diseñado para llevar a cabo la nixtamallzación, no esta diseñado para llevar a cabo la transferencia de calor de la chaqueta de gases calientes a la chaqueta de aceite.
Asimismo, la superficie externa de los gases calientes es demasiado grande facilitando el escape del calor por radiación y convección. Y es que la relación superficie expuesta volumen de la cámara, es demasiado alta.
Entonces, el calentamiento del aceite hasta la temperatura requerida se lleva a cabo en un calentador de aceite, éste está continuamente en circulación por medio de una bomba que impulsa el aceite caliente del calentador al reactor y lo envía de nuevo al calentador para completar el ciclo continuo.
En esta descripción se toma como fluido de trabajo el aceite térmico, pero se aplica asimismo a los otros fluidos.
El fluido de trabajo puede ser vapor de agua, gases quemados calientes y aceite térmico. La fuente de calor podría ser el quemado de un combustible o resistencias eléctricas.
Se propone un reactor de nixtamalización rotatorio con una sola chaqueta o dos parcialmente unidas. Estas chaquetas pueden contener el fluido de trabajo enumerado arriba.
Para mejorar el índice de transferencia de calor, el reactor de nixtamalización, en el caso de una única chaqueta, el interior de la misma puede llevar una serie de volutas a través de las cuales circularán los fluidos de trabajo. Estas volutas están formadas por cintas dispuestas en forma helicoidal, o por dos series de volutas dispuestas en forma entreveradas,
Para calentar el fluido de trabajo podrán ser los gases quemados o aceite térmico, e inclusive vapor. Para enfriar se utilizaría agua a temperatura ambiente.
En una de las modalidades, el fluido de trabajo consiste en gases calientes originados durante la combustión, que se van a introducir a la chaqueta única o chaquetas parcialmente conectadas.
Para comprender mejor las características de la invención se acompaña a la presente descripción, como parte integrante de la misma, los dibujos con carácter ilustrativo más no limitativo, que se describen a continuación.
Para comprender mejor las características de la invención se acompaña a la presente descripción, como parte integrante de la misma, los dibujos con carácter ilustrativo más no limitativo, que se describen a continuación.
BREVE DESCRIPCIÓN DE LOS DIBUJOS
La figura 1 muestra un corte longitudinal esquemático del reactor objeto de la presente invención, marcando el ángulo de inclinación de dicho reactor con respecto a la horizontal.
La figura 2 ilustra un corte transversal del reactor con las cintas, que arrastran al material, fijas a un ángulo de 90 grados.
La figura 3 ilustra esquemáticamente el corte transversal del reactor ilustrado en la figura 2, con las cintas fijadas en forma inclinada. La figura 4 ¡lustra el esquema de la conexión eléctrica del motor que mueve el reactor, al variador de frecuencia.
La figura 5 ilustra el detalle de la compuerta para el vaciado controlado del material nixtamalizado. r~ * • sé*
La figura 6 muestra una perspectiva convencional del reactor en la modalidad que comprende volutas de calentamiento.
La figura 7 ilustra en perspectiva convencional, el reactor de la presente invención en la modalidad en la cual se incluyen asimismo volutas de enfriamiento.
La figura 8 ilustra un corte transversal del reactor mostrando las cintas arrastradoras en la modalidad en que son rectas.
La figura 9 ilustra un corte transversal de un reactor en el cual se ha hecho instalar cintas arrastradoras con ala de gaviota.
La figura 10 ilustra los cambios mínimos que requiere el reactor rotatorio del estado de la técnica para el uso de un solo fluido de trabajo.
Para una mejor comprensión del invento, se pasará a hacer la descripción detallada de alguna de las modalidades del mismo, mostrada en los dibujos que con fines ilustrativos mas no limitativos se anexan a la presente descripción. DESCRIPCIÓN DETALLADA DEL INVENTO
Los detalles característicos del reactor con las enseñanzas de la presente invención, se muestran claramente en la siguiente descripción y en los dibujos ilustrativos que se anexan, sirviendo los mismos signos de referencia para señalar las mismas partes.
Haciendo referencia a la figura 1 , que muestra un corte longitudinal esquemático del reactor objeto de la presente invención, marcando el ángulo a de inclinación de dicho reactor con respecto a la horizontal, indicaremos que este ángulo puede variar entre 15 y 30°.
Si esta inclinación es menor al extremo menor de este intervalo, el vaciado del material nixtamalizado se dificulta demasiado, quedando siempre un remanente en el reactor.
Con una inclinación más grande que 30°, la capacidad del reactor, que es abierto a la atmósfera, se ve reducido para evitar el derrame del material ya que el reactor esta abierto en los extremos.
La figura 2 ilustra un corte transversal del reactor con las cintas, que arrastran al material, fijas a un ángulo de 90 grados. La altura h de la cinta es variable, y depende de la cantidad de material que se quiera arrastrar.
A mayor cantidad de material arrastrado la agitación es más enérgica y la reacción se lleva a cabo de la mejor manera, sin embargo, si el producto a nixtamalizar es muy suave, esta agitación puede desbaratarlo dando lugar a una pasta difícil de manejar, debido a los almidones gelatinizados.
Se pudo constatar que una altura de cinta entre 20 y 30 centímetros permitía manejar toda la variedad de tipos de maíces, controlando la velocidad de giro del reactor.
La figura 3 ilustra esquemáticamente el corte transversal del reactor ilustrado en la figura 2, con las cintas fijadas en forma inclinada. La inclinación β de la cinta con respecto a la cara interna del reactor permite determinar la altura a la cual el producto va a dejarse caer en su giro. En cuanto el ángulo del lado del giro, es más agudo, más alto se transporta el material antes de caer otra vez.
Con un ángulo más obtuso del lado del giro, el grano empieza a resbalar más rápido, y cuando este arrastrador llega tantito por encima del cuarto de giro, el total del producto ya resbaló completamente.
Se pudo constatar que la inclinación adecuada de las cintas de arrastre 2 se ubica en el Intervalo entre 80 y 100°. De manera óptima para la mayor parte de los maíces, el ángulo es de 90°.
La figura 4 ilustra el esquema de la conexión eléctrica del motor 40 que mueve el reactor 1 , al variador de frecuencia 41 .
Con este variador de frecuencia se logra el control de la velocidad de giro del reactor, para hacer más o menos enérgica la agitación, dependiendo de las condiciones requeridas por el tipo de material, más o menos duro.
La figura 5 ilustra el detalle de la compuerta para el vaciado controlado del material nixtamalizado. Esta compuerta esta localizada en el extremo longitudinal más inferior del reactor, en su extremo más inferior.
Consiste en una placa con medios para fijarse selladamente contra la periferia de una ventana en el reactor. Estos medios están diseñados de manera a permitir regular la distancia entre la placa y la pared externa del reactor. Con este control se pude hacer pasar más o menos material ya nixtamalizado, controlando la cantidad de material a pasar a las otras etapas del proceso. Entre mas separada este la placa de la pared externa del reactor, más cantidad dejará pasar de material, en cada etapa del giro en la cual la salida se encuentre en la posición inferior.
En esta modalidad, el sellado y el control de la separación entre la placa y el reactor, se logra por medio de un par de espigas roscadas y sendas mariposas o tuercas con volantes, que al girar hacia un lado cierran y sellan, y al girar en sentido contrario separan más o menos la placa, logrando aberturas variables.
Puesto que el material completamente nixtamalizado es un material con toda el agua y la cal absorbida, en el momento de la descarga, no se dan problemas de escurridos. El material simplemente se desliza por efecto de la gravedad a través de la abertura correspondiente con la placa de control de vaciado, que es la que sella también durante el proceso del nixtamalizado. La operación del reactor consiste entonces en recibir la cantidad de material a nixtamalizar, junto con el agua y la cal. Dependiendo de la humedad y dureza del maíz, es la cantidad de agua y cal agregadas. También con estas variables se determina el tiempo, temperatura y velocidad de giro del reactor. Dicha velocidad controlada por medio del variador de frecuencia del motor del reactor giratorio. Finalizado el tiempo de nixtamalización, se abre la salida del reactor, separando la placa que controla esta salida y en cada intervalo de giro en que esta abertura este por debajo o a nivel del nivel superior del material nixtamalizado, cierta cantidad de material se dejará salir, repitiéndose estas salidas hasta el completo vaciado del reactor.
Haciendo referencia a la figura 6 donde se muestra una perspectiva convencional del reactor en la modalidad que comprende volutas de calentamiento. En esta figura se ha omitido ilustrar el forro externo que conforma la chaqueta en forma continua.
El cuerpo del reactor 61 comprende en su cara externa una voluta 62 que al interior conducirá el fluido de trabajo. El fluido de trabajo entrará por el extremo de voluta 63 y saldrá por el extremo contrario 64.
Además de lograr una circulación del aire con un mayor tiempo de residencia, al mismo tiempo se lograr un desplazamiento que permite una transferencia mejor del calor sensible contenido en el fluido de trabajo (cuando se habla de gases quemados y aceite térmico) y una transferencia del calor latente y calor sensible en el caso de vapor. Lo anterior debido a que el régimen de flujo del fluido es un flujo turbulento disminuyendo el fenómeno de capa externa en conexión con la superficie interior de los conductos.
Asimismo se pudo determinar que aunque cualquier tipo de quemador puede lograr ventajas comparativas con respecto a los reactores del estado de la técnica, los más recomendados son los quemadores modulantes de baja presión.
Se tiene entonces, en una de las modalidades, un quemador que proporciona el calor sensible para lograr las temperaturas requeridas, durante el tiempo definido, a la entrada de las volutas, generalmente en la parte baja del reactor.
En caso de usar como fluido de trabajo el vapor de agua, este se alimenta generalmente por la parte superior, siendo el coeficiente de transmisión de calor mucho mayor que en el caso de gases quemados.
En el caso de usar gases calientes, se presentan dos posibilidades, la primera de ellas es la de calentar ese aceite en un Dow Ther, y hacerlo circular posteriormente a través de la voluta. Controlando el flujo másico y la temperatura del aceite térmico se puede controlar la temperatura del maíz nixtamalizado para un proceso preciso de nixtamalización.
La otra posibilidad consiste en calentar el aceite térmico por medio de resistencias eléctricas, permitiendo un control de la temperatura por medios mecánicos eléctricos. Para lograr un enfriamiento en el reactor al final del proceso de nixtamalización y alcanzar la temperatura de reposo, se tiene una adaptación del reactor como se puede ver en la figura 7, donde se ilustra en perspectiva convencional, el reactor de la presente invención en la modalidad en la cual se incluyen asimismo volutas de enfriamiento.
Entonces, en esta modalidad, se alimentará el fluido de trabajo caliente por una de las volutas y se introducirá agua fría por la otra voluta, sin agregar gases calientes por la voluta de calentamiento, cuando se requiera reducir la temperatura al interior del reactor de nixtamalización.
En la modalidad de reactor ilustrada en la figura 6, es posible lograr el enfriamiento reduciendo o apagando completamente la flama del quemador y por algún mecanismo introduciendo aire a temperatura ambiente a través de la única voluta.
Aunque no se ilustra, se pudo determinar, como resultado de varias pruebas, que es posible utilizar un reactor con las características de los del estado de la técnica con dos chaquetas, llevando a cabo algunas perforaciones de ventanas en la pared común de la chaqueta externa para lograr la circulación del fluido de trabajo en el interior de la chaqueta interna. El fluido de trabajo entraría entonces en la cámara externa y a través de las ventanas practicadas en la pared común.
Con respecto al otro aspecto de la presente invención, la figura 8 ilustra un corte transversal del reactor mostrando las cintas arrastradoras en la modalidad en que dichas cintas son rectas. La altura (h) de la cinta es de entre 1 y 40 cm, y el número de dichas cintas (n) es entre 1 y 12.
La figura 9 ilustra un corte transversal de un reactor en el cual se ha hecho instalar cintas arrastradoras con ala de gaviota. En esta cintas se tiene un primer peralte p1 y un segundo peralte p2, siendo el segundo peralte 1 /3 de la altura completa de la cinta.
La figura 10 ilustra los cambios mínimos que requiere el reactor rotatorio del estado de la técnica para el uso de un solo fluido de trabajo.
Estas modificaciones consisten simplemente en llevar a cabo unas ventanas V en la pared común de la chaqueta externa y la chaqueta interna
El invento ha sido descrito suficientemente como para que una persona con conocimientos medios en la materia pueda reproducir y obtener los resultados que mencionamos en la presente invención. Sin embargo, cualquier persona hábil en el campo de la técnica que compete el presente invento puede ser capaz de hacer modificaciones no descritas en la presente solicitud, sin embargo, si para la aplicación de estas modificaciones en una estructura determinada o en el proceso de manufactura del mismo, se requiere de la materia reclamada en las siguientes reivindicaciones, dichas estructuras deberán ser comprendidas dentro del alcance de la invención.

Claims

REIVINDICACIONES
Habiendo descrito suficientemente la invención, se reclama como propiedad lo contenido en las siguientes cláusulas reivindicatorías.
Reivindicaciones sin derecho a prioridad 1 . Reactor rotatorio para nixtamalización, del tipo formado por una cámara central y una serie de chaquetas rodeando ésta, caracterizado por comprender un extremo longitudinal a una altura dada, y otro extremo longitudinal opuesto a una altura inferior, formando la línea longitudinal del reactor con respecto a la horizontal, un ángulo seleccionado entre 15 y 30°.
2. Reactor rotatorio para nixtamalización, tal y como se reclama en la reivindicación anterior, caracterizado por comprender en el interior de la cámara central, fijas a la cara interna, una serie de arrastradores consistentes en unas cintas paralelas, dispuestas en forma tangencial a la cara interior de la cámara central del reactor.
3. Reactor rotatorio para nixtamalización, tal y como se reclama en la reivindicación anterior, caracterizado porque la cinta forma un ángulo con respecto a la cara interna de la cámara central, que se selecciona de entre 80 y 100°.
4. Reactor rotatorio para nixtamalización, tal y como se reclama en la reivindicación anterior, caracterizado porque la cinta forma un ángulo con respecto a la cara interna de la cámara central, que es igual a 90°.
5. Reactor rotatorio para nixtamalización, tal y como se reclama en cualquiera de las reivindicaciones 2 a 4, caracterizado porque la cinta tiene una altura seleccionada de entre el intervalo formado entre 20 y 30 cm.
6. Reactor rotatorio para nixtamalización, tal y como se reclama en la reivindicación anterior, caracterizado porque la cinta tiene una altura de 25 cm.
7. Reactor rotatorio para nixtamalización, tal y como se reclama en cualquiera de las reivindicaciones anteriores, caracterizado porque el reactor comprende un medio de control de salida del material nixtamalizado, consistente en una abertura en el extremo longitudinal del reactor que se encuentra a una altura inferior con respecto a la altura del extremo opuesto, una placa de perímetro mayor a la de la abertura, pero de una configuración geométrica que permita ocluir dicha abertura, y unos medios de fijación de esta placa al reactor, en correspondencia de posición con la abertura, dichos medios de fijación teniendo la cualidad de permitir el control de separación entre la placa y el reactor, para permitir una mayor o menor salida de material nixtamalizado.
8. Reactor rotatorio para nixtamalización, tal y como se reclama en la reivindicación anterior, caracterizado porque dichos medios de fijación están formados por un par de espigas de cuerda corrida colocadas en extremos opuestos de la placa, y unos cuerpos con rosca interna para atornillar dichas espigas desplazando dicha placa hacia el reactor o separándolo de éste.
9. Reactor rotatorio para nixtamalización, tal y como se reclama en cualquiera de las reivindicaciones 1 a 8, caracterizado dichos medios de fijación están formados por un par de espigas de cuerda corrida colocadas en extremos opuestos y unos cuerpos con rosca interna para atornillar dichas espigas desplazando dicha placa hacia el reactor o separándola de éste.
Reivindicaciones con derecho a prioridad 10)Reactor rotatorio para nixtamalización, caracterizado el reactor porque en la cara interna de la pared que divide la cámara central de la cámara intermedia, se comprenden fijas unas cintas arrastradoras en un número comprendido entre 1 y 12, con una altura de cinta entre 1 y 40 cm.
1 1 )Reactor rotatorio para nixtamalización, tal y como se reclama en la reivindicación anterior, caracterizado porque dichas cintas presentan la configuración de ala de gaviota.
12)Reactor rotatorio para nixtamalización, tal y como se reclama en la reivindicación 10 ó 11 , caracterizado porque tiene una sola chaqueta donde se alimenta el fluido de trabajo para el calentamiento de la cámara de nixtamalización; el fluido de trabajo es seleccionado de entre vapor, gases de combustión y aceite térmico y la fuente de calor es seleccionada de entre el quemado de un combustible o el paso de energía eléctrica a través de unas resistencias.
13)Reactor rotatorio para nixtamalización, tal y como se reclama en la reivindicación anterior, caracterizado porque el fluido de trabajo es el gas de combustión. 14)Reactor rotatorio para nixtamalización, tal y como se reclama en cualquiera de las reivindicaciones 10 a 13, caracterizado por comprender una voluta externa formada por una cinta que se une por su canto en forma helicoidal a la superficie externa de la cámara de nixtamalización, para permitir que el flujo del fluido de trabajo recorra una distancia más grande logrando un mejor intercambio térmico.
15)Reactor rotatorio para nixtamalización, tal y como se reclama en la reivindicación anterior, caracterizado porque además de la voluta anterior, existe una segunda voluta intermedia con el mismo desarrollo de la primera; dicha segunda voluta esta formada para permitir el paso de un segundo fluido de trabajo, a una baja temperatura en relación al primer fluido de trabajo.
16)Reactor rotatorio para nixtamalización, tal y como se reclama en la reivindicación anterior, caracterizado porque además dicha segunda voluta esta formada por una media caña que se fija en el espacio intermedio de la primera voluta y sigue el mismo giro.
17)Reactor rotatorio para nixtamalización, tal y como se reclama en la reivindicación 10, caracterizado porque se comprenden dos chaquetas comunicadas por medio de una serie de ventanas practicadas en la pared común de dichas chaquetas.
PCT/MX2005/000006 2004-02-23 2005-01-21 Reactor rotatorio para nixtamalización WO2005079973A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/590,294 US20080095674A1 (en) 2004-02-23 2005-01-21 Rotary Reactor for Nixtamalization

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
MXPA04001693A MXPA04001693A (es) 2004-02-23 2004-02-23 Reactor rotatorio para nixtamalizacion.
MXPA/A/2004/001693 2004-02-23

Publications (1)

Publication Number Publication Date
WO2005079973A1 true WO2005079973A1 (es) 2005-09-01

Family

ID=34880366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX2005/000006 WO2005079973A1 (es) 2004-02-23 2005-01-21 Reactor rotatorio para nixtamalización

Country Status (3)

Country Link
US (1) US20080095674A1 (es)
MX (1) MXPA04001693A (es)
WO (1) WO2005079973A1 (es)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102805418A (zh) * 2012-08-14 2012-12-05 成都海科机械设备制造有限公司 一种拌料机及由其组成的拌料系统
CN107261880A (zh) * 2017-07-28 2017-10-20 苏州国质信网络通讯有限公司 一种专色油墨稀释搅拌装置
CN109225038A (zh) * 2018-09-09 2019-01-18 宁波革创新材料科技有限公司 一种快速出料的涂料搅拌装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102258955A (zh) * 2011-04-25 2011-11-30 山东万盛环保科技发展有限公司 滚筒式混料机
CN105688792A (zh) * 2014-11-24 2016-06-22 丹阳恒安化学科技研究所有限公司 一种简便式反应釜
CN105771733B (zh) * 2016-03-22 2018-07-27 苏州涣霖智能科技有限公司 风热型立式有机肥料搅拌料斗
CN111531719B (zh) * 2020-05-07 2022-09-16 杭州华能工程安全科技股份有限公司 一种具有稳固结构的化学灌浆混料罐及其安装方法
CN115253733A (zh) * 2022-07-28 2022-11-01 桐柏泓鑫新材料有限公司 高纯度银粉全密封制备系统及其方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES330926A1 (es) * 1965-09-08 1967-09-16 Inventa A G Fur Forschung Und Patentverwertung Un dispositivo para la realizacion continua de reacciones quimicas en liquidos viscosos.
ES402186A1 (es) * 1972-04-27 1975-03-01 Acedo De Blas Nueva cuba rotativa de reaccion.
ES435711A1 (es) * 1975-03-07 1977-03-16 Metalquimica S A Perffeccionamientos en las maquinas de macerar y tratar car-ne.
US4639216A (en) * 1985-04-25 1987-01-27 Schnupp's Grain Roasting, Inc. Grain roasting machine and method
MX9201985A (es) * 1992-04-29 1993-10-01 Felipe Alberto Sanchez Y De La Secador rotatorio continuo y reactor de nixtamalizacion
MX9600261A (es) * 1996-01-17 1997-07-31 Felipe Alberto Sanchez Camara Reactor rotatorio para nixtamalizacion precisa de maiz que no quiebra el grano, no produce naxayote ni genera contaminante alguno.

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES330926A1 (es) * 1965-09-08 1967-09-16 Inventa A G Fur Forschung Und Patentverwertung Un dispositivo para la realizacion continua de reacciones quimicas en liquidos viscosos.
ES402186A1 (es) * 1972-04-27 1975-03-01 Acedo De Blas Nueva cuba rotativa de reaccion.
ES435711A1 (es) * 1975-03-07 1977-03-16 Metalquimica S A Perffeccionamientos en las maquinas de macerar y tratar car-ne.
US4639216A (en) * 1985-04-25 1987-01-27 Schnupp's Grain Roasting, Inc. Grain roasting machine and method
MX9201985A (es) * 1992-04-29 1993-10-01 Felipe Alberto Sanchez Y De La Secador rotatorio continuo y reactor de nixtamalizacion
MX9600261A (es) * 1996-01-17 1997-07-31 Felipe Alberto Sanchez Camara Reactor rotatorio para nixtamalizacion precisa de maiz que no quiebra el grano, no produce naxayote ni genera contaminante alguno.

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102805418A (zh) * 2012-08-14 2012-12-05 成都海科机械设备制造有限公司 一种拌料机及由其组成的拌料系统
CN107261880A (zh) * 2017-07-28 2017-10-20 苏州国质信网络通讯有限公司 一种专色油墨稀释搅拌装置
CN109225038A (zh) * 2018-09-09 2019-01-18 宁波革创新材料科技有限公司 一种快速出料的涂料搅拌装置

Also Published As

Publication number Publication date
US20080095674A1 (en) 2008-04-24
MXPA04001693A (es) 2005-08-25

Similar Documents

Publication Publication Date Title
WO2005079973A1 (es) Reactor rotatorio para nixtamalización
ES2362610T3 (es) Secador y método para secar carbonato de calcio precipitado.
ES2385351T3 (es) Intercambiador térmico de fluido de infusión y cartucho correspondiente
ES2338674T3 (es) Procedimiento para la produccion continua de patatas chips de tipo cocidas por lotes.
ES2553205T3 (es) Máquina de palomitas de maíz de aire caliente, especialmente con un recubridor de sabor
TWI610055B (zh) 用於迴轉爐的選擇性氧-燃料燃燒器、該迴轉爐及其操作方法
ES2375301T3 (es) Aparato mezclador radial.
Gough Enterocystoplasty.
JP2006272173A (ja) ドレン中和装置
ES2318807T3 (es) Dispositivo de calentamiento-coccion de liquido.
WO2006078153A1 (es) Procedimiento de nixtamalización y equipo que aplica dicho procedimiento
ES2545225T3 (es) Aparato de tipo recipiente para freír o cocer productos alimenticios
WO2014027335A2 (es) Sistema eléctrico-mecánico de nixtamalización
ES2513494T3 (es) Fabricación de miga
JP2008170085A (ja) 給湯システム
ES2280027T3 (es) Procedimiento y reactor para la preparacion continua de polimeros.
US1691577A (en) Bath apparatus
ES2804708T3 (es) Estufa de liberación lenta de calor
CN206095008U (zh) 食品烘烤用换热器及换热散热一体式预热烘烤设备
US1040929A (en) Dough retainer or trough.
CN206641892U (zh) 一种适用于穿刺器的加热装置和一种穿刺器
ES1150433U (es) Un sistema de generación de vapor
CN110037486A (zh) 一种节能暖气供热床
CN210021948U (zh) 一种自动控温碱水罐
ES2958532T3 (es) Sistema de tostado

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
WWE Wipo information: entry into national phase

Ref document number: 10590294

Country of ref document: US