WO2005078313A1 - 無段変速装置 - Google Patents

無段変速装置 Download PDF

Info

Publication number
WO2005078313A1
WO2005078313A1 PCT/JP2005/001298 JP2005001298W WO2005078313A1 WO 2005078313 A1 WO2005078313 A1 WO 2005078313A1 JP 2005001298 W JP2005001298 W JP 2005001298W WO 2005078313 A1 WO2005078313 A1 WO 2005078313A1
Authority
WO
WIPO (PCT)
Prior art keywords
traction
rotor
continuously variable
movable
output shaft
Prior art date
Application number
PCT/JP2005/001298
Other languages
English (en)
French (fr)
Inventor
Mitsuru Sekiya
Original Assignee
Mikuni Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mikuni Corporation filed Critical Mikuni Corporation
Priority to JP2005517923A priority Critical patent/JPWO2005078313A1/ja
Publication of WO2005078313A1 publication Critical patent/WO2005078313A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H15/00Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by friction between rotary members
    • F16H15/48Gearings for conveying rotary motion with variable gear ratio, or for reversing rotary motion, by friction between rotary members with members having orbital motion
    • F16H15/50Gearings providing a continuous range of gear ratios
    • F16H15/52Gearings providing a continuous range of gear ratios in which a member of uniform effective diameter mounted on a shaft may co-operate with different parts of another member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/06Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • F16H37/08Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing
    • F16H37/0833Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths
    • F16H37/084Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths at least one power path being a continuously variable transmission, i.e. CVT
    • F16H37/0853CVT using friction between rotary members having a first member of uniform effective diameter cooperating with different parts of a second member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/06Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • F16H37/08Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing
    • F16H37/0833Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths
    • F16H37/084Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths at least one power path being a continuously variable transmission, i.e. CVT
    • F16H2037/0866Power split variators with distributing differentials, with the output of the CVT connected or connectable to the output shaft

Definitions

  • the present invention relates to a continuously variable transmission that continuously changes the rotation speed of an input shaft and transmits the rotation to an output shaft, and more particularly to a continuously variable transmission (CVT) that can be mounted on an automobile, a motorcycle, or the like.
  • CVT continuously variable transmission
  • a toroidal CVT in which a pair of disks are linked by a power roller having a spherical contact surface is known.
  • This CVT is equipped with an input disk connected to the input shaft, an output disk connected to the output shaft, a power roller interposed between both disks, etc.
  • the shift range cannot be set wide. Also, since the gear ratio cannot be set to infinity, a clutch mechanism is required to set the stop state. Since the input pulley and the output pulley rotate only in the same direction, a reverse gear or the like is required to perform reverse rotation. A hydraulic drive mechanism for changing the groove width of the pulley is required. Further, the pair of pulleys has a relatively large diameter and a hydraulic drive mechanism, etc., so that the entire device becomes large, and a high-frequency metallic sound is generated when the top of the metal belt comes into contact with or separates from the pulley.
  • the present invention has been made in view of the circumstances of the above-described conventional device, and an object thereof is to simplify the device, reduce the size, reduce the cost, etc., and compare the shift range. It can be set widely, and the rise of the friction coefficient prevents a large load from being applied to the bearing part of the thrust bearing, which increases friction.
  • Another object of the present invention is to provide a continuously variable transmission that can reduce frictional loss by reducing rotational resistance and transmit a large drive torque.
  • a continuously variable transmission according to a first aspect of the present invention that achieves the above object is configured such that a carrier formed to rotate integrally with an input shaft and a shaft integrally rotated with an output shaft.
  • the differential gear train is formed by the sun gear, the planetary gear, the ring gear, and the like, the relative rotational speed of the carrier and the ring gear, which rotate integrally with the revolution of the planetary gear, is determined by the rotor.
  • the rotation of the input shaft is transmitted to the output shaft so that forward rotation with acceleration and deceleration, stop state, and reverse rotation occur continuously.
  • the continuously variable rotor mechanism is formed so as to rotate integrally with the carrier and to be reciprocally movable in the axial direction of the input shaft, and has a cylindrical contact surface on its outer periphery. And a conical contact surface formed on the outer periphery of the ring gear, and supported rotatably about an axis inclined with respect to the axis of the input shaft or the output shaft, and in contact with the contact surface of the ring gear.
  • a two-stage conical traction rotor having a first conical surface and a second conical surface that comes into contact with the contact surface of the movable disk, and the traction rotor in contact with the ring gear and the movable disk so as to be sandwiched from outside in cooperation with the ring gear and the movable disk And a configuration including a traction ring.
  • the contact surface of the movable disk contacts the second conical surface of the traction rotor
  • the contact surface of the ring gear contacts the first conical surface of the traction rotor
  • the traction rotor is movable. Tiger so that it presses against the disc and ring gear
  • the cushion ring contacts the traction rotor (eg the first conical surface).
  • the rotation can be set to forward rotation (for example, a gear ratio of 1).
  • the rotation can be set to a stopped state (i.e., gear ratio 0) by advancing a predetermined amount, and the rotation of the ring gear can be set to reverse rotation (e.g., a gear ratio 1-0.2) by advancing it further by a predetermined amount.
  • the gear ratio can be set relatively wide.
  • a configuration is adopted in which the traction ring is disposed between the contact surface of the ring gear and the contact surface of the movable disk in the axial direction of the input shaft or the output shaft. Can be.
  • the pressing force of the traction ring acts to press the traction rotor against the ring gear and the movable disk in a well-balanced manner, so that the traction force is reliably obtained, and a more stable shifting operation is performed. Done.
  • an urging member for urging the movable disk toward one side in the axial direction of the input shaft, and pressing the movable disk to move the movable disk against the urging force of the urging member.
  • the position of the movable disk can be changed by appropriately adjusting the position of the pressing member. Therefore, it is possible to easily set a drive mechanism and the like interlocked with the pressing member inside and outside the device.
  • the first conical surface of the traction rotor is formed such that its rotation center line has a vertex at a point where the rotation center line intersects the axis of the input shaft or the output shaft. can do.
  • the truncation ring is movable in the radial direction while its center is deviated from the axis of the input shaft or the output shaft by a predetermined amount, and the axis of the input shaft or the output shaft.
  • the traction rotor comprises a plurality of traction rotors arranged in a circumferential direction so as to be able to revolve between a traction ring and a movable disk and a ring gear. At least one may employ a configuration that is supported to revolve independently of the other.
  • the traction rotor comprises three traction rotors arranged in the circumferential direction between the traction ring, the movable disk and the ring gear, and two of the traction rotors rotate around the output shaft.
  • the first link is freely rotatably supported by the first link, and the other one of the traction rotors is rotatably supported by the second link rotatably provided around the output shaft.
  • the configuration can be adopted. According to this configuration, it is possible to secure a stable traction drive while reducing the number of parts.
  • the truncation ring is rotatably supported around the axis of the input shaft or the output shaft with its center located coaxially with the axis of the input shaft or the output shaft.
  • the traction rotor includes a fixed rotor arranged in a circumferential direction so as not to revolve between the traction ring and the movable disk and the ring gear; a movable rotor supported movably relative to the fixed rotor; And a configuration including:
  • the traction rotor includes two fixed rotors and one movable rotor rotatably supported by a link movably provided in a predetermined angle range around the output shaft. can do.
  • a continuously variable transmission according to a second aspect of the present invention that achieves the above object is configured such that a carrier formed to rotate integrally with an input shaft and a shaft that rotates integrally with an output shaft.
  • a sun gear, a rotating body rotatably provided around an output shaft, and a sun gear A plurality of planetary gears that are rotatably supported on the rotating body in a state where they are combined with each other and that can revolve around the sun gear with the force and rotation of the rotating body;
  • the differential gear train is formed by the sun gear, the planetary gear, the ring gear, and the like, the carrier that rotates integrally with the ring gear and the rotating body that rotates integrally with the revolution of the planetary gear.
  • the rotation of the input shaft is transmitted to the output shaft so that forward rotation with rotation, stop, and reverse rotation occur continuously. Is done.
  • the input shaft and the output shaft can be coaxially arranged without the need for a clutch mechanism, a reverse rotation switching mechanism, and the like, the structure is simplified, and an inexpensive and small continuously variable transmission is provided. Can be.
  • the rotor-type continuously variable mechanism is formed so as to rotate integrally with the carrier and to be reciprocally movable in the axial direction of the input shaft, and has a cylindrical contact surface on its outer periphery. And a conical contact surface formed on the outer periphery of the rotating body; and a rotatably supported body rotatably supported on an axis inclined with respect to the axis of the input shaft or the output shaft.
  • a two-stage conical traction rotor having a first conical surface in contact with the surface and a second conical surface in contact with the contact surface of the movable body; and a traction rotor cooperating with the rotator and the movable body so as to be sandwiched from outside. And a traction ring that comes into contact with.
  • the contact surface of the movable body comes into contact with the second conical surface of the traction rotor
  • the contact surface of the rotating body comes into contact with the first conical surface of the traction rotor
  • the traction rotor is brought into contact with the movable body.
  • the traction ring contacts the traction rotor (eg, the first conical surface) so as to press against the rotating body.
  • the speed change ratio can be changed in a wide range, and the forward rotation, stop, and reverse rotation can be performed.
  • the rotation can be set continuously.
  • the traction ring is disposed between a contact surface of the rotating body and a contact surface of the movable body in the axial direction of the input shaft or the output shaft.
  • a configuration can be employed.
  • the pressing force of the traction ring acts to press the traction rotor against the rotating body and the movable body in a well-balanced manner, so that the traction force is reliably obtained, and a more stable shifting operation is performed. Done.
  • the rotor-type continuously variable mechanism is configured to rotate integrally with the rotating body and to be reciprocally movable in the axial direction of the output shaft, and to have a cylindrical contact surface on the outer periphery thereof.
  • a two-stage conical traction rotor having a conical surface and a second conical surface that comes into contact with the contact surface of the movable body, and a traction that contacts the traction rotor so as to be sandwiched from outside in cooperation with the carrier and the movable body.
  • a configuration may be employed that includes a ring and
  • the contact surface of the movable body comes into contact with the second conical surface of the traction rotor
  • the contact surface of the carrier comes into contact with the first conical surface of the traction rotor
  • the traction rotor is moved to the movable body.
  • the traction ring comes into contact with the translation rotor (for example, a bearing) so as to press against the rotating body.
  • the movable body is appropriately moved, and the rotation speed of the rotating body is appropriately changed with respect to the rotation speed of the carrier (ring gear), thereby changing the rotation speed.
  • the speed ratio in a wide range, forward rotation, stop, and reverse rotation can be set continuously.
  • the speed ratio of the traction rotor can be reduced, the spin loss in the traction transmission region can be reduced, which is advantageous in traction coefficient and transmission efficiency.
  • the conical contact surface provided on the carrier is formed near the output shaft, so that the traction rotor can be arranged closer to the axis of the output shaft. Therefore, the size of the apparatus can be reduced.
  • the traction ring is disposed between the contact surface of the carrier and the contact surface of the movable body in the axial direction of the input shaft or the output shaft.
  • a configuration can be employed.
  • the pressing force of the traction ring acts to press the traction rotor against the carrier and the movable body in a well-balanced manner, so that the traction force is reliably obtained, and a more stable shifting operation is performed.
  • an urging member for urging the movable body toward one side in the axial direction of the input shaft and a method for moving the movable body by staking the urging force of the urging member.
  • a pressing member for pressing is
  • the position of the movable body can be changed by appropriately adjusting the position of the pressing member. Therefore, it is possible to easily set a drive mechanism and the like interlocked with the pressing member inside and outside the device.
  • the first conical surface of the traction rotor is formed such that its rotation center line has a vertex at a point where the rotation center line intersects the axis of the input shaft or the output shaft. can do.
  • the center of the truncation ring is an input. While being coaxial with the axis of the shaft or output shaft, it is rotatably supported around the axis of the input shaft or output shaft, and the traction rotor is positioned between the traction ring and the movable and rotating bodies. Further, it is possible to adopt a configuration including: a fixed rotor arranged in a circumferential direction so as to be non-revolvable; and a movable rotor supported movably with respect to the fixed rotor.
  • the traction rotor is composed of two fixed rotors and one movable rotor supported by a link provided movably within a predetermined angle range around an output shaft.
  • the truncation ring is supported so that its center is movable in the radial direction and is not rotatable around the axis of the input shaft or the output shaft, and the truncation rotor is inscribed in the truncation ring.
  • the traction rotor is supported so as to be able to revolve within a predetermined angle range and can rotate relative to the first conical surface and the second conical surface.
  • a configuration having bearings in contact can be employed.
  • the forward rotation, the stop rotation, and the reverse rotation with acceleration / deceleration can be performed without providing the conventional clutch mechanism, reverse rotation gear, hydraulic mechanism, and the like.
  • the rotation of the input shaft can be transmitted to the output shaft so that the torque is generated continuously, and the speed change range can be set broadly, noise and the like can be prevented as much as possible, and large driving torque can be transmitted.
  • An inexpensive continuously variable transmission can be obtained.
  • FIG. 1 is a sectional view showing one embodiment of a continuously variable transmission according to a first aspect of the present invention.
  • FIG. 2 is a schematic diagram of the continuously variable transmission shown in FIG.
  • FIG. 3 is a schematic diagram showing a part of the continuously variable transmission shown in FIG.
  • FIG. 4A and 4B are schematic diagrams showing a part of the continuously variable transmission shown in FIG.
  • FIG. 5 is a schematic diagram showing a part of the continuously variable transmission shown in FIG.
  • FIG. 5 is a sectional view showing another embodiment of the continuously variable transmission according to the first aspect of the present invention.
  • FIG. 8 is a sectional view showing still another embodiment of the continuously variable transmission according to the first aspect of the present invention.
  • FIG. 9 is a schematic diagram of the continuously variable transmission shown in FIG.
  • FIG. 10 is a schematic diagram showing a part of the continuously variable transmission shown in FIG.
  • FIG. 11 is a sectional view showing still another embodiment of the continuously variable transmission according to the first aspect of the present invention.
  • FIG. 12 is a sectional view showing an embodiment of the continuously variable transmission according to the second aspect of the present invention.
  • FIG. 13 is a schematic diagram of the continuously variable transmission shown in FIG.
  • FIG. 14 is a sectional view showing another embodiment of the continuously variable transmission according to the second aspect of the present invention.
  • FIG. 15 is a sectional view showing a part of the continuously variable transmission shown in FIG.
  • FIG. 16 is a schematic diagram of the continuously variable transmission shown in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a cross-sectional view of the device
  • FIGS. 2 to 6 are schematic diagrams of the device. is there.
  • the continuously variable transmission has a housing 10, an input shaft 20 rotatably supported with respect to the housing 10, and an input shaft 20.
  • the combined carrier 30, the output shaft 40 rotatably supported with respect to the housing 10, the sun gear 50 and the sun gear 5 combined so as to rotate integrally with the output shaft 40.
  • the three planetary gears 60 rotatably supported with respect to the carrier 30 in a state where they are combined with 0, the ring gear 70 coupled with the planetary gear 60, and the carrier 30
  • the relative rotational speed of the carrier 30 and the ring gear 70 is continuously adjusted by the movable disk 80, the contact surface 72 of the ring gear 70 described later, the traction rotor 90, the traction ring 100, and the like.
  • a rotor-type continuously variable mechanism is formed.
  • the housing 10 is formed by molding using an aluminum material or the like, and as shown in FIG. 1, a housing 11 a for supporting the input shaft 20 and a housing to which a seal 11 b is attached.
  • the housing 11 includes a half 11, a housing 12 a to which a bearing 12 a for supporting the output shaft 40, a seal 12 b, and the like are attached.
  • the housing 10 is defined by fastening the housing halves 11 and 12 with a bonnet or the like, and the input shaft 20 and the output shaft 40 are rotated on the same axis. It is freely supported.
  • the input shaft 20 has a plate-like flange 21 at its end.
  • the input shaft 20 is disposed at an interval of about 120 degrees with respect to the flange 21 and is parallel to the axis L.
  • Three elongated cylindrical pins 22 are connected. That is, the carrier 30 is constituted by the flange 21 and the three pins 22.
  • Each carrier 30 (pin 22) supports a planetary gear 60 rotatably at its distal end and holds the planetary gear 60 in engagement with the sun gear 50. That is, when the input shaft 20 rotates, the carrier 30 rotates physically, so that the planetary gear 60 orbits around the sun gear 50 (planetary motion).
  • the ring gear 70 has, as shown in FIG. 1 and FIG. 4B, internal teeth 71 corresponding to the three planetary gears 60, and a first cone of a traction rotor 90 described later on its outer periphery. It has a conical contact surface 72 that contacts the surface 91.
  • the movable disc 80 has three circular holes 81 which are externally fitted to the carrier 30 (pins 22) in a sliding manner. And a cylindrical contact surface 82 that contacts the second conical surface 92 of the motor 90.
  • the movable disk 80 is supported so as to be able to reciprocate in the direction of the axis L along the pins 22. Further, as shown in FIG.
  • the movable disk 80 is urged toward the input shaft 20 by a coil spring 83 serving as an urging member, while opposing the urging force of the coil spring 83.
  • a pressing member 84 is disposed on the side.
  • the pressing member 84 is coupled to the worm gear 85, the worm wheel 86, and a feeding female screw formed on the inner periphery of the worm wheel 86, and through a screw member 87 whose rotation is restricted, the coil panel 8. It can be moved in the direction of the axis L while resisting the biasing force of (3).
  • an operation drive motor is connected to the upstream side of the worm gear 85 so that the drive is controlled in accordance with the operation signal of the operator.
  • a configuration in which the pressing member 84 is driven via a shift lever provided outside the housing 10 may be adopted.
  • each of the three traction rotors 90 is inclined such that the rotation center line S intersects the axis L of the output shaft 40 at the same point P. It is supported so that it can rotate (rotate) and revolve. That is, the two traction rotors 90 are rotatably supported by a first link 93 provided rotatably about the output shaft 40, and one traction rotor 90 is The first link 93 is rotatably supported on a second link 94 rotatably provided around the output shaft 40 independently of the link 93. It can revolve independently and independently.
  • the inclination angle of the rotation center line S of the traction rotor 90 with respect to the axis L is appropriately selected according to the range of the gear ratio to be set.
  • a spring 95 is provided between the first link 93 and the second link 94 to draw each other.
  • the three traction rotors 90 are, as shown in FIG.
  • the outer diameters are different from each other so as to have a small diameter.
  • two traction rotors 90 supported by the first link 93 have a large diameter and a medium diameter, and are supported by the second link 94. Even if one traction rotor 90 is formed to have a small diameter. Note that only one traction rotor 90 may be formed to have a smaller diameter than the other.
  • the three traction rotors 90 are provided with a first contacting surface ⁇ 2 of a ring gear 70 and a first contacting surface 101 of a traction ring 100 described later. It has a conical surface 91 and a second conical surface 92 that contacts the contact surface 82 of the movable disk 80.
  • the first conical surface 91 is formed to have a vertex at a point P where the rotation center line S of the traction rotor 90 intersects with the axis L of the output shaft 40.
  • the second conical surface 92 is formed such that its generatrix M at the position where the contact surface 82 of the movable disk 80 comes into contact is parallel to the axis L of the input shaft 20.
  • the inclination of the bus M with respect to the rotation center line S that is, the inclination angle of the bus M with respect to the rotation center line S depends on how the transmission ratio is set, while keeping the bus M parallel to the axis L. Determined by choosing the angle of inclination of line S.
  • first conical surface 91 spin loss is prevented in the contact area between the traction rotor 90, the ring gear 70 and the traction ring 100, and traction by rolling contact is prevented.
  • the transmission efficiency of the force that is, the efficiency of the torque drive is improved.
  • rolling contact is made between the traction rotor 90 and the movable disk 80 while allowing the movable disk 80 to move in the axial direction L. ing.
  • the traction ring 100 has a conical contact surface 101 that can contact the first conical surface 91 of the traction rotor 90, as shown in FIGS. 1 to 3 and FIG. 5.
  • the rotation center line L ' is positioned at a position deviated by a predetermined amount from the axis L of the output shaft 40. Then, it is inserted into the annular groove 1 2 c of the housing half 1 2
  • the traction ring 100 is positioned between the movable ring 80 and the ring gear 70 in the direction of the axis L of the input shaft 20 and the output shaft 40.
  • the pressing force of the traction ring 100 causes the first conical surface 91 and the second conical surface 92 of the traction rotor 90 to contact the contact surface 72 of the ring gear 70 and the movable disc 80.
  • the surfaces 82 are pressed against each other in a well-balanced manner, so that a traction force is reliably obtained, and a more stable shifting operation is performed.
  • the smallest traction rotor 90 that can revolve independently moves in the direction of the narrow gap (the C1 direction) while rotating (rotating) in the C2 direction, and is movable with the traction ring 100. It bites between the disc 80 and the ring gear 70 to generate a wedge action.
  • the traction rotor 90 is arranged on the outer periphery of the ring gear 70 and has an input shaft.
  • the three planetary gears 60 also revolve (rotate) in the same direction as the input shaft 20 and revolve at the same speed.
  • the ring gear 70 stops, rotates at the same speed as the movable disk 80 (and the input shaft 20), and the movable disk
  • the planetary gear 60 to the sun gear 50 depends on the state of rotation, such as rotation prior to 80 (rotation at a higher speed) or rotation behind the movable disk 80 (rotation at a lower speed). And the rotation speed transmitted to the output shaft 40 changes.
  • the rotation difference between the ring gear 70 and the carrier 30 changes according to the position where the movable disk 80 contacts the second conical surface 92. Therefore, the radius of rotation of the traction rotor 90 at the intersection of the generating line N of the first conical surface 91 and the normal V of the movable disk 80 is R, and the contact radius of the contact surface 82 of the movable disk 80 is R. Assuming that the radius of rotation of the second conical surface 92 is r, the rotation difference is represented by (r_R) / R. When this value becomes a negative value, the ring gear 70 is moved to the carrier 30 (and the movable disk 80). Will rotate (rotate faster) ahead of.
  • the movable disk 80 appropriately moves the pressing member 84 against the urging force of the coil spring 83 by a drive mechanism (worm gear 85, ⁇ ; ⁇ -wheel 86, screw member 87, etc.). By doing so, the above-described shift operation is performed.
  • the carrier 30 (and the movable disk 80)
  • the gear ratio becomes 2 when the rotation of the ring gear 70 with respect to the rotation of 15 is delayed by 15 rotations, the gear ratio becomes 1 when there is no rotation delay (same rotation), and the gear ratio becomes 0 with 1 rotation ahead of 5 rotations (stop)
  • the gear ratio becomes 11 (reverse rotation) with a delay of 2 ⁇ 5 rotations.
  • the speed ratio of a general automobile is 0 (speed reduction ratio: infinity) when stopped, 1.2 (speed reduction ratio: 0.833 3) when overtopping, and -0.9 when reverse.
  • the top of the rotation of the ring gear 70 with respect to the rotation of the carrier 30 is set to be over with a delay of 125 rotations, and the rotation of the ring gear 70 is advanced by 15 rotations because it is about 2 (reduction ratio: 1-5).
  • the stop state is set by, and retreat is set by leading 2 Z 5 rotations.
  • the continuous variable mechanism based on the traction drive system eliminates the need for the clutch mechanism, reverse rotation switching gear, and the like required for the conventional CVT. Since the shaft 20 and the output shaft 40 can be coaxially arranged, they are small and inexpensive, have low spin loss, can minimize noise generation, can set a wide range of gear shifts, and can obtain highly efficient torque transmission characteristics. it can.
  • FIG. 7 shows another embodiment of the continuously variable transmission according to the first aspect of the present invention.
  • the direction of inclination of the traction rotor 90 ′ and the accompanying movable The disc 80 ', the ring gear 70' and the traction ring 100 'are modified, and the same reference numerals are given to the other same components, and the description thereof will be omitted.
  • two traction rotors 90 ′ are rotatably supported on the first link 93, and are rotatably supported on the second link 94.
  • one traction rotor 90 ' is rotatably supported.
  • the rotation center line S ′ of the traction rotor 90 ′ is arranged to be inclined so as to intersect with the axis L of the input shaft 20, and the first conical surface 9 1 ′ is formed in a conical shape of the ring gear 70 ′.
  • the contact surface 7 2 ′ and the conical contact surface 1 0 1 ′ of the traction ring 1 0 0 ′ are in contact, and the second conical surface 9 2 ′ is in contact with the cylindrical contact surface 8 2 ′ of the movable disk 80 ′. It is formed so that it may contact.
  • the first conical surface 9 1 ′ is formed so as to have a vertex at a point where the rotation center line S ′ intersects with the axis L of the input shaft 20.
  • continuous gear shifting operation can be performed as described above, spin loss can be suppressed, noise generation can be prevented as much as possible, the gear shifting range can be set widely, and high efficiency torque transmission characteristics can be obtained.
  • each component can be more concentrated, and the device can be made more compact.
  • FIG. 8 and FIG. 9 show still another embodiment of the continuously variable transmission according to the first aspect of the present invention. The description is omitted.
  • the traction ring 100 is housed in the annular groove 12 c ′ of the housing half 12, and the center thereof is the input shaft 20 and the output shaft. It is rotatably supported around the axis L 'while being positioned on the axis L' deviated by a predetermined amount with respect to the 40 axis L.
  • the traction rotor 90 ′ ′ is positioned between the traction ring 100 ′ ′′ having the contact surface 101 ′′ and the movable disk 80 (contact surface 82) and the ring gear 70 (contact surface 72).
  • two fixed rotors 90 ′ (90 a ′, 90 b ′), which are arranged in the circumferential direction and rotatably supported by the housing half 12, It is rotatable with respect to a link 94 ′ that is movably provided within a predetermined angle range with respect to a cylindrical member 12 e disposed around the output shaft 40 so as to be movable relative to the fixed rotor 90 ′ ′′.
  • the three traction rotors 90 cannot revolve, and one movable rotor 90 ′ ′ (90 c ′) resists the urging force of the torsion spring 95 and the two fixed rotors 90 ′ ′ ( 90 0 a '', 90 b '').
  • the input shaft 20 When the movable disk 80 rotates, the three traction rotors 90 ′′ rotate (rotate), rotate the ring gear 70, transmit a predetermined torque, and rotate the output shaft 40.
  • the traction rotor 90 is arranged on the outer periphery of the ring gear 70 and transmits the torque at a position separated by a predetermined distance from the input shaft 20 and the output shaft 40, a large torque can be transmitted even if it is small.
  • the outer diameter of the housing 10 can be reduced accordingly.
  • FIG. 11 is a sectional view of the embodiment shown in FIGS. This is a change of the inclination direction of 90 ''', the movable disk 80' and the ring gear 70 'and the traction ring 100'''. And the description is omitted.
  • the rotation center line S ′ of the transduction rotor (fixed rotor and movable rotor) 90 ′ ′′ ′ is aligned with the axis L of the input shaft 20.
  • the first conical surface 9 1 ′ is arranged so as to intersect, and the first conical surface 9 1 ′ is a conical contact surface 7 2 ′ of the ring gear 70 ′ and a conical contact surface 1 0 1 of the traction ring 1 0 0 ′′.
  • the second conical surface 9 2 ′ is formed so as to be in contact with the cylindrical contact surface 8 2 ′ of the movable disk 80 ′.
  • the first conical surface 9 1 ′ has a vertex at a point where the rotation center line S ′ intersects with the axis L of the input shaft 20.
  • continuous gear shifting operation can be performed as described above, spin loss can be suppressed, noise generation can be prevented as much as possible, the gear shifting range can be set widely, and high efficiency torque transmission characteristics can be obtained.
  • each component can be more concentrated and the device can be made more compact.
  • FIGS. 12 and 13 show an embodiment of the continuously variable transmission according to the second aspect of the present invention.
  • the continuously variable transmission according to this embodiment includes a housing 10, an input shaft 20 rotatably supported with respect to the housing 10, and an input shaft 20.
  • the carrier 30 ′ is formed so as to rotate integrally with the output shaft 40, which is rotatably supported with respect to the housing 10, and is formed so as to rotate integrally with the output shaft 40.
  • Sun gear 50 rotating disk 110 as a rotating body provided rotatably around output shaft 40, rotating with rotating disk 110 in combination with sun gear 50
  • the movable disk 80 ′, the contact surface 112 of the rotating disk 110 described later, the traction rotor 90 ′′, the traction ring 100 ′′, and the like allow the relative movement between the carrier 30 ′ and the rotating disk 110.
  • a rotor type continuously variable mechanism that continuously changes the rotation speed is configured.
  • the input shaft 20 has a plate-like flange 21 ′ at its end, and is disposed at an interval of about 120 degrees with respect to the flange 21 ′ so as to be parallel to the axis L.
  • Three extending cylindrical pins 22 ' are connected. That is, the carrier 30 ′ is constituted by the flange 21 ′ and the three pins 22 ′.
  • the ring gear 70 ′ is connected to the carrier 30 ′ (pin 22 ′) at the tip end so as to rotate integrally. That is, when the input shaft 20 rotates, the carrier 30 ′ and the ring gear 70 ′ rotate physically.
  • the movable disk 80 ′ has three circular holes 8 1 ′ slidably fitted to the carrier 30 ′ (pin 22 ′), and has an outer periphery thereof. Has a cylindrical contact surface 82 ′′ that contacts the second conical surface 92 of the traction rotor 90 ′′.
  • the movable disk 80 ′ rotates integrally with the input shaft 20 and the ring gear 70 ′, and is supported so as to be able to reciprocate in the direction of the axis L along the pin 22 ′.
  • the rotating disk 1 10 has three planetary gears 60 as shown in FIGS. It has three pins 111 for rotatably supporting the motor, and is externally fitted (supported) to the output shaft 40 so as to be rotatable.
  • the rotating disk 110 has a conical contact surface 1 1 2 on its outer periphery that comes into contact with the first conical surface 91 of the traction rotor 90 ′′.
  • the ring gear 70 ′ ′′ has internal teeth 71 ′′ that match three planetary gears 60 that match the sun gear 50, and is arranged at a position adjacent to the rotating disk 110.
  • the contact surface 82 ′ ′′ of the movable disk 80 ′′ contacts the second conical surface 92 of the traction rotor 90 ′′, and the contact surface 1 1 2 of the rotating disk 110 corresponds to the first surface of the traction rotor 90.
  • the traction ring 100 '' (the contact surface 101 '') contacts the conical surface 9 1, and the traction rotor 90 '' is pressed against the movable disk 80 '' and the rotating disk 1 10. Touches surface 91.
  • FIGS. 14 to 16 show another embodiment of the continuously variable transmission according to the second aspect of the present invention.
  • the same reference numerals are given to the same components as those of the above-described embodiment. The description is omitted.
  • the continuously variable transmission according to this embodiment includes a housing 10, an input shaft 20 rotatably supported with respect to the housing 10, and an input shaft 20.
  • a movable sleeve 180 having a cylindrical contact surface 181, described later, a contact surface 23a ', described later, of the carrier 130, a first conical surface 191, and a second conical surface 19, described later Rolling contact that continuously changes the relative rotation speed between the carrier 130 and the rotating sleeve (rotating body) 210 by means of a traction rotor 190 having two and a traction ring 200, etc.
  • the rotor type continuously variable mechanism is constructed.
  • the input shaft 20 has a disk-shaped flange 21 ′ at its end, a rotatable outer sleeve 21 around a rotating sleeve 210, and a flange.
  • a carrier 130 that rotates integrally with the input shaft 20 is configured. Therefore, when the input shaft 20 rotates, the carrier 130 and the ring gear 170 rotate physically.
  • a conical contact surface 23 a ′ with which a first conical surface 191 of a traction rotor 190 described later is in rolling contact is formed on the cap 23 ′ of the carrier 130. .
  • the rotating sleeve 210 has three pins 211 for rotatably supporting the three planetary gears 60, a guide groove 211 for guiding the movable sleeve 180 in the axial direction L, and the like.
  • the outer shaft is rotatably fitted (supported) to the output shaft 40.
  • the ring gear 170 has internal teeth 171, which engage with three planetary gears 60, which are combined with the sun gear 50, and are held between the flange 21 'and the cap 23' and fastened by bolts.
  • the movable sleeve 180 has, at its outer periphery, a cylindrical contact surface 18 1 that comes into rolling contact with the second conical surface 19 2 of the traction rotor 190, and a guide groove 18 that extends in the axial direction L. Has 2 etc.
  • the movable sleeve 180 is rotated integrally with the rotating sleeve 210 by the ball 183 inserted into the guide grooves 18 2 and 21, and at the same time, is moved relative to the rotating sleeve 210. It is supported slidably (reciprocating) in the axial direction L of the output shaft 40.
  • the movable sleeve 180 is urged to one side by a coil spring 83 serving as an urging member, and a pressing member (for moving the movable sleeve 180 against the urging force of the coil spring 83).
  • a shift operation is performed by being moved between a position indicated by a solid line in FIG. 14 and a position indicated by a two-dot chain line.
  • the three traction rotors 190 rotate (rotate) and rotate in such a manner that their respective rotation center lines S intersect with the axis L of the output shaft 40 at the same point P (see FIG. 3). It is supported by a holding plate 195 so that it can revolve over a predetermined angle range. Also, the three traction rotors 190 form part of the carrier 130. 1st conical surface 1 9 1 contacting the contact surface 2 3 a 'of the cap 2 3 ′, 2nd conical surface 1 9 2 contacting the contact surface 1 8 1 of the movable sleeve 1 80 1, fraction ring 2 It has a bearing 1993 that contacts the 00 cam surface 201.
  • the first conical surface 1991 is formed so as to have its vertex at a point P (see FIG. 3) where the rotation center line S of the traction rotor 190 intersects with the axis L of the output shaft 40. 2
  • the conical surface 1992 is formed such that its generatrix at the position where the contact surface 18 1 of the movable sleeve 180 comes into contact is parallel to the axis L of the output shaft 40.
  • the bearing 1993 can rotate relative to the first conical surface 1991 and the second conical surface 1992, and at the same time, comes into rolling contact with the cam surface 201 of the traction ring 200. It has become.
  • the traction ring 200 has a predetermined thickness in the direction of the axis L and is formed so as to have a disk-shaped contour.
  • the bearings 193 are formed at substantially equal intervals in the circumferential direction, and are formed so as to have three cam surfaces 201 which are in inscribed contact with each other and are in rolling contact.
  • the truncation ring 200 is supported by the housing 10 so that its center is movable in the radial direction and cannot rotate around the axis L of the input shaft 20 and the output shaft 40.
  • the three cam surfaces 201 reduce the load pressing the bearing 193 toward the center in a predetermined area, and increase the load pressing the bearing 193 toward the center in other predetermined areas. That is, it acts to increase the normal load.
  • the traction rotor 190 ( The normal load that presses the contact surface 19 1, 19 2) against the contact surface 23 a ′, 18 1 automatically increases.
  • the contact surface 181 of the movable sleeve 180 contacts the second conical surface 192 of the traction rotor 190 and the contact surface 23 a ′ of the cap 23 ′ forming a part of the carrier 130.
  • the traction ring 200 contacts the bearing 193 so as to contact the first conical surface 91 of the rotor 190 and press the traction rotor 190 against the movable sleeve 180 and the carrier 130 (cap 23 ′).
  • the gear ratio of the traction low 190 can be reduced, the spin speed in the traction transmission region can be reduced, which is advantageous in terms of traction coefficient and transmission efficiency.
  • the adoption of the rotor-type continuously variable mechanism based on the traction drive system eliminates the need for the clutch mechanism and reverse rotation switching gear required for the conventional CVT.
  • the traction rotor 190 can be arranged close to the output shaft 40, so the components can be centralized and downsized, inexpensive, low in spin loss, noise generation can be minimized, and the transmission range can be changed. Can be set widely, and highly efficient torque transmission characteristics can be obtained.
  • the movable disk 80, 80 ', 80''' or the movable sleeve 180, the ring gears 70, 70 ', 170, the traction rotors 90, 90', 90 ''', 1 90, traction rings 100, 100 ', 100'', 200, etc. but the configuration is not limited to this.
  • Other mechanisms can be employed as long as they are variable mechanisms.
  • the number of the truncation rotors 90, 90 ′, 90 ′ ′, and 190 is three, and the number of the planetary gears 60 is three.
  • other numbers may be adopted.
  • the interrelationship between the sun gear 50, the planetary gear 60, and the ring gears 70, 70 ', 70' '' has been described as transmitting the torque by the gears that are combined with each other.
  • the present invention is not limited to this, and a configuration may be adopted in which traction transmission is performed in which the rolling contact is made between the rolling members to transmit the torque.
  • the continuously variable transmission according to the present invention has a simple structure, can be small and inexpensive, can minimize noise and the like, can set a wide shift range, and can transmit a large torque. Therefore, it can be applied as a transmission for small-displacement motorcycles, automobiles, large-displacement automobiles, etc., other vehicles such as leisure beer, or a drive mechanism that requires a transmission. It can also be preferably applied to

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Friction Gearing (AREA)
  • Transmission Devices (AREA)

Abstract

本発明の無段変速装置は、入力軸(20)と一緒に回転するキャリヤ(30)、出力軸(40)と一緒に回転する太陽ギヤ(50)、太陽ギヤ(50)に噛合した状態でキャリヤ(30)に支持され入力軸の回転に伴って太陽ギヤの周りを公転し得る複数の遊星ギヤ(60)、複数の遊星ギヤ(60)に噛合するリングギヤ(70)等を備え、トラクションロータ(90)の第1円錐面(91)に接触するリングギヤ(70)の接触面(72),トラクションリング(100)の接触面(101),トラクションロータ(90)の第2円錐面(92)に接触する可動ディスク(80)の円筒状の接触面(82)等によりロータ式連続可変機構を形成し、可動ディスクを軸線L方向に移動させることで、キャリヤとリングギヤとの相対的な回転速度を連続的に変化させる。これにより、安価かつ小型で変速レンジの幅広い無段変速装置が得られる。

Description

明 細 書 無段変速装置 技術分野
本発明は、 入力軸の回転速度を連続的に変化させて出力軸に伝達する無段変速 装置に関し、 特に、 自動車、 二輪車等に搭載され得る無段変速装置 (CVT) に 関する。 背景技術
比較的小排気量の自動車等に搭載される従来の無段変速装置としては、 金属べ ノレ卜で一対のプーリを連動させるベルト式 CVTが知られている。 この CVTは
、 入力軸に連結された入力プーリ、 出力軸に連結された出力プーリ、 両プーリ間 に巻回された無端状のベルト等を備え、 両プーリの V溝の幅寸法を可変制御する ことでベノレトが接触する回転径を変化させて、 入力軸から出力軸に伝達される回 転速度を連続的に変化させるものである (例えば、 日経メカニカル (1992年
3月 2日、 P 34〜P 46参照)。
また、 比較的大排気量の自動車等に搭載される従来の無段変速装置としては、 球面状の接触面をもつパワーローラで一対のディスクを連動させるトロイダル式 CVTが知られている。 この CVTは、 入力軸に連結された入力ディスク、 出力 軸に連結された出力ディスク、 両ディスクの間に介在するパワーローラ等を備え
、 パワーローラの回転軸の傾きを可変制御することでパワーローラが接触する両 ディスクの回転径を変化させて、 入力軸から出力軸に伝達される回転速度を連続 的に変化させるものである (例えば、 日経メカニカル (1 992年 3月 2日、 P 34〜P 46、 及び、 NSK Te c h n i c a l J o u r n a l No. 6 71 (2001年、 P 5~P 13参照)。 ところで、 上記従来のベルト式 C V Tにおいては、 変速レンジ 1を中心として 増速及び減速するが、 変速比が大きく (又は小さく) なると、 一方側のプーリに 巻回するベルトの曲率が大きくなり (又は曲率半径が小さくなり)、 ベルトを形 成する金属コマの滑りが多くなって駆動力の伝達効率が低下する。 したがって、 これを避ける範囲で駆動すると、 変速レンジを広く設定することができない。 また、 変速比を無限にできないので、 停止状態を設定するにはクラッチ機構が 必要になり、 入力プーリと出力プーリとは同一方向にのみ回転するので、 逆回転 を行わせるには逆転ギヤ等が必要になり、 プーリの溝幅を変化させるための油圧 駆動機構等が必要になる。 さらに、 一対のプーリは比較的径が大きく、 油圧駆動 機構等も備えるため、 装置全体が大きくなり、 又、 金属ベルトのコマがプーリに 接触及び離脱する際に、 高周波の金属音を生じる。
上記従来のトロイダル式 C V Tにおいては、 変速レンジ 1を中心として増速及 び減速し、 この中心付近ではパワーローラのディスクに対するスピンロスが多く なって駆動力の伝達効率が低下する。 また、 変速比を無限にできないので、 停止 状態を設定するにはクラッチ機構が必要になり、 逆回転を行わせるには逆転ギヤ 等が必要になる。 さらに、 パワーローラをディスクに押圧するために、 1 . 5〜 2 . 2 G P aという超高圧の押付荷重を発生する機構及び構造が必要になる。 発明の開示
本発明は、 上記従来の装置の事情に鑑みて成されたものであり、 その目的とす るところは、 装置の簡素化、 小型化、 低コスト化等を図りつつ、 変速レンジを比 較的広く設定することができ、 又、 トラクシヨン係数の上昇により、 フリクショ ンが増加するスラストベアリングの軸受部に大きな荷重が印加されないようにし て、 スラストベアリング軸受部でのトラクションオイルによるトラクシヨン係数 の上昇を抑え、 回転抵抗を低減してフリクションロスを低減でき、 大きな駆動ト ルクを伝達できる、 無段変速装置を提供することにある。 上記目的を達成する本発明の第 1の観点に係る無段変速装置は、 入力軸と一体 的に回転するように形成されたキヤリャと、 出力軸と一体的に回転するように形 成された太陽ギヤと、 太陽ギヤに嚙合した状態でキヤリャに対して回動自在に支 持され, かつ, 入力軸の回転に伴って太陽ギヤの周りを公転し得る複数の遊星ギ ャと、 複数の遊星ギヤに嚙合する内歯をもつリングギヤと、 キヤリャとリングギ ャとの相対的な回転速度を連続的に変化させるベく転がり接触するロータを含む ロータ式連続可変機構と、 を有する、 構成となっている。
この構成によれば、 太陽ギヤ、 遊星ギヤ、 リングギヤ等により差動歯車列が形 成されているため、 遊星ギヤの公転と一体的に回転するキヤリャとリングギヤと の相対的な回転速度を、 ロータ式連続可変機構により連続的に変化させることで
、 増減速を伴う正回転、 停止状態、 逆回転を連続的に生じるように、 入力軸の回 転が出力軸に伝達される。
このように、 クラッチ機構、 逆転切替え機構等が不要で、 入力軸と出力軸とを 同軸上に配置することができるため、 構造が簡略化され、 安価で小型の無段変速 装置を提供することができる。
上記第 1の観点に係る装置において、 ロータ式連続可変機構は、 キヤリャと一 体的に回転すると共に入力軸の軸線方向に往復動自在に形成され, かつ, その外 周に円筒状の接触面をもつ可動ディスクと、 リングギヤの外周に形成された円錐 状の接触面と、 入力軸又は出力軸の軸線に対して傾斜した軸線周りに回動自在に 支持され, かつ, リングギヤの接触面と接触する第 1円錐面及び可動ディスクの 接触面と接触する第 2円錐面をもつ二段円錐状のトラクシヨンロータと、 リング ギヤ及び可動ディスクと協働して外側から挟み込むようにトラクシヨンロータに 接触する トラクシヨンリングと、 を含む、 構成を採用することができる。
この構成によれば、 可動ディスクの接触面がトラクシヨンロータの第 2円錐面 に接触し、 リングギヤの接触面がトラクシヨンロータの第 1円錐面に接触し、 さ らに、 トラクシヨンロータを可動ディスクとリングギヤに押し付けるようにトラ クシヨンリングがトラクシヨンロータ (の例えば第 1円錐面) に接触する。 そし て、 可動ディスクが入力軸の軸線方向に移動することで、 接触する第 2円錐面上 の回転半径が変化し、 キヤリャの回転速度 (遊星ギヤの公転速度) とリングギヤ の回転速度とが相対的に変化する。 例えば、 可動ディスクを所定の位置に移動さ せて、 可動ディスク (キヤリャ) の回転に対してリングギヤを遅れずに同時に回 転させることで正回転 (例えば、 変速比 1 ) に設定でき、 リングギヤの回転を所 定量だけ先行させることで停止状態 (すなわち、 変速比 0 ) に設定でき、 リング ギヤの回転をさらに所定量だけ先行させることで逆回転 (例えば、 変速比一 0 . 2 ) に設定でき、 変速比を比較的広く設定することができる。
上記第 1の観点に係る装置において、 トラクシヨンリングは、 入力軸又は出力 軸の軸線方向において, リングギヤの接触面と可動ディスクの接触面との間に配 置されている、 構成を採用することができる。
この構成によれば、 トラクシヨンリングの押圧力が、 トラクシヨンロータをリ ングギヤと可動ディスクとにバランス良く押し付けるように作用するため、 トラ クシヨン力が確実に得られて、 より安定した変速動作が行われる。
上記第 1の観点に係る装置において、 可動ディスクを入力軸の軸線方向の一方 側に向けて付勢する付勢部材と、 付勢部材の付勢力に抗して可動デイスクを移動 させるべく押圧する押圧部材と、 を含む、 構成を採用することができる。
この構成によれば、 押圧部材の位置を適宜調整することで、 可動ディスクの位 置を変化させることができる。 したがって、 押圧部材に連動する駆動機構等を装 置の内部及び外部に容易に設定することができる。
上記第 1の観点に係る装置において、 トラクシヨンロータの第 1円錐面は、 そ の回転中心線が入力軸又は出力軸の軸線と交わる点に頂点をもつように形成され ている、 構成を採用することができる。
この構成によれば、 トラクシヨンロータとリングギヤ及びトラクシヨンリング との接触領域でのスピンロスが防止され、 トラクシヨンドライブの効率 (転がり 接触によるトラクシヨン力の伝達効率) が向上する。
上記第 1の観点に係る装置において、 トラクシヨンリングは、 その中心が入力 軸又は出力軸の軸線から所定量だけ偏倚した状態で, その径方向に移動自在にか つ入力軸又は出力軸の軸線回りに回動不能に支持され、 トラクシヨンロータは、 トラクシヨンリングと可動ディスク及びリングギヤとの間において公転可能に周 方向に配列された複数のトラクシヨンロータからなり、 複数のトラクシヨンロー タの少なくとも一つは、 他に対して独立して公転し得るように支持されている、 構成を採用することができる。
この構成によれば、 入力軸が回転すると、 可動ディスク (の接触面) と トラク シヨンロータ (の第 2円錐面) との間にフリクションが生じる。 すると、 独立し て公転し得るトラクシヨンロータが可動ディスクに引き摺られて、 トラクシヨン リングと可動ディスクとの間に食い込むと、 その楔作用により、 トラクシヨンリ ングが適宜径方向に移動しつつ、 他のトラクシヨンロータが可動ディスクとトラ クシヨンリングとの間に締め付けられ (強く挟持され) る。 これにより、 トラク シヨンロータとリングギヤとの間にも大きなトラクシヨン力が発生し、 確実なト ラタシヨンドライブが行われる。
さらに、 出力軸に負荷が印加された場合、 出力軸の回転が遅くなってリングギ ャの回転が遅くなると、 独立して公転し得るトラクシヨンロータが狭い隙間の方 向に移動し、 他のトラクシヨンロータの締め付け力を増加させる。 これにより、 伝達トルクが増加して遅れが解消され、 所望のトルク伝達が行われる。
上記構成において、 トラクシヨンロータは、 トラクシヨンリングと可動ディス ク及びリングギヤとの間において周方向に配列された三個のトラクションロータ からなり、 トラクシヨンロータの二つは、 出力軸回りに回動自在に設けられた第 1リンクに回動自在に支持され、 トラクシヨンロータの残りの一つは、 出力軸回 りに回動自在に設けられた第 2リンクに回動自在に支持されている、 構成を採用 することができる。 この構成によれば、 部品点数を削減しつつも、 安定したトラクシヨンドライブ を確保することができる。
また、 上記第 1の観点に係る装置において、 トラクシヨンリングは、 その中心 が入力軸又は出力軸の軸線と同軸上に位置した状態で, 入力軸又は出力軸の軸線 回りに回動自在に支持され、 トラクシヨンロータは、 トラクシヨンリングと可動 ディスク及びリングギヤとの間において公転不能に周方向に配列された固定ロー タと、 固定ロータに対し相対的に移動可能に支持された可動ロータと、 を含む、 構成を採用することができる。
この構成によれば、 入力軸が回転すると、 可動ディスク (の接触面) と トラク シヨンロータ (の第 2円錐面) との間にフリクションが生じる。 すると、 トラク シヨンリングが回転しつつ可動ロータが可動ディスクに引き摺られて、 トラクシ ヨンリングと可動ディスクとの間に食い込むと、 その楔作用により、 固定ロータ も可動ディスクとトラクシヨンリングとの間に締め付けられ (強く挟持され) る 。 これにより、 大きなトラクシヨン力が発生し、 確実なトラクシヨンドライブが 行われる。
上記構成において、 トラクシヨンロータは、 二つの固定ロータと、 出力軸回り の所定角度範囲において移動自在に設けられたリンクに回動自在に支持された一 つの可動ロータと、 を含む、 構成を採用することができる。
この構成によれば、 部品点数を削減しつつも、 安定したトラクシヨンドライブ を確保することができる。 すなわち、 出力軸に負荷が印加されると、 リングギヤ 力 トラクションロータの回転に対し遅れを生じるが、 一つの可動ロータがその遅 れ分だけ周方向に移動し、 二つの固定ロータの締め付け力を増加させる。 これに より、 伝達トルクが増加して遅れが解消され、 所望のトルク伝達が行われる。 上記目的を達成する本発明の第 2の観点に係る無段変速装置は、 入力軸と一体 的に回転するように形成されたキヤリャと、 出力軸と一体的に回転するように形 成された太陽ギヤと、 出力軸の回りに回動自在に設けられた回転体と、 太陽ギヤ に嚙合した状態で回転体に対して回動自在に支持され, 力つ, 回転体の回転に伴 つて太陽ギヤの周りを公転し得る複数の遊星ギヤと、 入力軸と一体的に回転する ようにキヤリャに連結され, 複数の遊星ギヤに嚙合する内歯をもつリングギヤと 、 キヤリャと回転体との相対的な回転速度を連続的に変化させるべく転がり接触 するロータを含むロータ式連続可変機構と、 を有する、 構成となっている。
この構成によれば、 太陽ギヤ、 遊星ギヤ、 リングギヤ等により差動歯車列が形 成されているため、 リングギヤと一体的に回転するキヤリャと遊星ギヤの公転と 一体的に回転する回転体との相対的な回転速度を、 ロータ式連続可変機構により 連続的に変化させることで、 增減速を伴う正回転、 停止状態、 逆回転を連続的に 生じるように、 入力軸の回転が出力軸に伝達される。 このように、 クラッチ機構、 逆転切替え機構等が不要で、 入力軸と出力軸とを同軸上に配置することができる ため、 構造が簡略化され、 安価で小型の無段変速装置を提供することができる。 上記第 2の観点に係る装置において、 ロータ式連続可変機構は、 キヤリャと一 体的に回転すると共に入力軸の軸線方向に往復動自在に形成され, かつ, その外 周に円筒状の接触面をもつ可動体と、 回転体の外周に形成された円錐状の接触面 と、 入力軸又は出力軸の軸線に対して傾斜した軸線周りに回動自在に支持され, 力つ, 回転体の接触面と接触する第 1円錐面及び可動体の接触面と接触する第 2 円錐面をもつ二段円錐状のトラクションロータと、 回転体及び可動体と協働して 外側から挟み込むようにトラクシヨンロータに接触するトラクシヨンリングと、 を含む、 構成を採用することができる。
この構成によれば、 可動体の接触面がトラクシヨンロータの第 2円錐面に接触 し、 回転体の接触面がトラクシヨンロータの第 1円錐面に接触し、 さらに、 トラ クシヨンロータを可動体と回転体に押し付けるようにトラクシヨンリングがトラ クシヨンロータ (の例えば第 1円錐面) に接触する。 そして、 可動体が入力軸の 軸線方向に移動することで、 接触する第 2円錐面上の回転半径が変化し、 キヤリ ャの回転速度 (リングギヤの回転速度) と回転体の回転速度 (遊星ギヤの公転速 度) とが相対的に変化する。 すなわち、 可動体を適宜移動させて、 可動体 (リン グギヤ) の回転速度に対して回転体の回転速度を適宜変化させることで、 変速比 を幅広いレンジで変化させて、 正回転、 停止、 逆回転を連続的に設定することが できる。
上記第 2の観点に係る装置のロータ式連続可変機構において、 トラクシヨンリ ングは、 入力軸又は出力軸の軸線方向において, 回転体の接触面と可動体の接触 面との間に配置されている、 構成を採用することができる。
この構成によれば、 トラクシヨンリングの押圧力が、 トラクシヨンロータを回 転体と可動体とにバランス良く押し付けるように作用するため、 トラクシヨン力 が確実に得られて、 より安定した変速動作が行われる。
上記第 2の観点に係る装置において、 ロータ式連続可変機構は、 回転体と一体 的に回転すると共に出力軸の軸線方向に往復動自在に形成され, かつ, その外周 に円筒状の接触面をもつ可動体と、 キヤリャに形成された円錐状の接触面と、 入 力軸又は出力軸の軸線に対して傾斜した軸線周りに回動自在に支持され, かつ, キヤリャの接触面と接触する第 1円錐面及び可動体の接触面と接触する第 2円錐 面をもつ二段円錐状のトラクションロータと、 キヤリャ及び可動体と協働して外 側から挟み込むようにトラクシヨンロータに接触するトラクシヨンリングと、 を 含む、 構成を採用することができる。
この構成によれば、 可動体の接触面がトラクシヨンロータの第 2円錐面に接触 し、 キヤリャの接触面がトラクシヨンロータの第 1円錐面に接触し、 さらに、 ト ラクシヨンロータを可動体と回転体に押し付けるようにトラクシヨンリングがト ラタシヨンロータ (の例えばベアリング) に接触する。 そして、 可動体が出力軸 の軸線方向に移動することで、 接触する第 2円錐面上の回転半径が変化し、 キヤ リャの回転速度 (リングギヤの回転速度) と回転体の回転速度 (遊星ギヤの公転 速度) とが相対的に変化する。 すなわち、 可動体を適宜移動させて、 キヤリャ ( リングギヤ) の回転速度に対して回転体の回転速度を適宜変化させることで、 変 速比を幅広いレンジで変化させて、 正回転、 停止、 逆回転を連続的に設定するこ とができる。 特に、 トラクシヨンロータの変速比を小さくできるため、 トラクシ ヨン伝達領域のスピンロスを少なくでき、 それ故に、 トラクシヨン係数、 伝達効 率で有利となる。
また、 この構成によれば、 キヤリャに設けた円錐状の接触面を出力軸の近傍に 形成することで、 トラクシヨンロータを出力軸の軸線寄りに近づけて配置するこ とができ、 部品の集約化による装置の小型化を達成することができる。
上記第 2の観点に係る装置のロータ式連続可変機構において、 トラクシヨンリ ングは、 入力軸又は出力軸の軸線方向において, キヤリャの接触面と可動体の接 触面との間に配置されている、 構成を採用することができる。
この構成によれば、 トラクシヨンリングの押圧力が、 トラクシヨンロータをキ ャリャと可動体とにバランス良く押し付けるように作用するため、 トラクシヨン 力が確実に得られて、 より安定した変速動作が行われる。
上記第 2の観点に係る装置において、 可動体を入力軸の軸線方向の一方側に向 けて付勢する付勢部材と、 付勢部材の付勢力に杭して可動体を移動させるベく押 圧する押圧部材と、 を含む、 構成を採用することができる。
この構成によれば、 押圧部材の位置を適宜調整することで、 可動体の位置を変 化させることができる。 したがって、 押圧部材に連動する駆動機構等を装置の内 部及び外部に容易に設定することができる。
上記第 2の観点に係る装置において、 トラクシヨンロータの第 1円錐面は、 そ の回転中心線が入力軸又は出力軸の軸線と交わる点に頂点をもつように形成され ている、 構成を採用することができる。
この構成によれば、 トラクシヨンロータと回転ディスク及びトラクシヨンリン グとの接触領域でのスピンロスが防止され、 トラクシヨンドライブの効率 (転が り接触によるトラクシヨン力の伝達効率) が向上する。
上記第 2の観点に係る装置において、 トラクシヨンリングは、 その中心が入力 軸又は出力軸の軸線と同軸上に位置した状態で, 入力軸又は出力軸の軸線回りに 回動自在に支持され、 トラクシヨンロータは、 トラクシヨンリングと可動体及び 回転体との間におレ、て公転不能に周方向に配列された固定ロータと、 固定ロータ に対し相対的に移動可能に支持された可動ロータと、 を含む、 構成を採用するこ とができる。
この構成によれば、 入力軸が回転すると、 可動体 (の接触面) とトラクシヨン ロータ (の第 2円錐面) との間にフリクションが生じる。 すると、 トラクシヨン リングが回転しつつ可動ロータが可動体に引き摺られて、 トラクシヨンリングと 可動体との間に食い込むと、 その楔作用により、 固定ロータも可動体とトラクシ ヨンリングとの間に締め付けられ (強く挟持され) る。 これにより、 大きなトラ クシヨン力が発生し、 確実なトラクシヨンドライブが行われる。
さらに、 出力軸に負荷が印加された場合、 出力軸の回転が遅くなつてリングギ ャの回転が遅くなると、 可動ロータが狭い隙間の方向に移動し、 他の固定ロータ の締め付け力を増加させる。 これにより、 伝達トルクが増加して遅れが解消され 、 所望のトルク伝達が行われる。
上記第 2の観点に係る装置において、 トラクシヨンロータは、 二つの固定ロー タと、 出力軸回りの所定角度範囲において移動自在に設けられたリンクに回動自 在に支持された一つの可動ロータと、 を含む、 構成を採用することができる。 この構成によれば、 部品点数を削減しつつも、 安定したトラクシヨンドライブ を確保することができる。 すなわち、 出力軸に負荷が印加されると、 リングギヤ がトラクションロータの回転に対し遅れを生じるが、 一つの可動ロータがその遅 れ分だけ周方向に移動し、 二つの固定ロータの締め付け力を増加させる。 これに より、 伝達トルクが増加して遅れが解消され、 所望のトルク伝達が行われる。 上記第 2の観点に係る装置において、 トラクシヨンリングは、 その中心が径方 向に移動自在にかつ入力軸又は出力軸の軸線回りに回動不能に支持され, かつ, トラクシヨンロータを内接させると共に法線荷重を増加させるようにカム作用を
0 及ぼすカム面を有し、 トラクシヨンロータは、 所定の角度範囲を公転可能に支持 されると共に、 第 1円錐面及び第 2円錐面に対して相対的に回転し得ると、共に力 ム面に接触するベアリングを有する、 構成を採用することができる。
この構成によれば、 出力軸の負荷トルクが増加して、 ロータ式連続可変機構に より設定される所定速度よりも遅くなると、 この回転遅れが解消されるまで、 ト ラクシヨンロータのベアリングが自転しつつトラクシヨンリングのカム面に沿つ て所定の角度範囲を公転し、 カム面がトラクシヨンロータ (ベアリング) にカム 作用を及ぼして、 法線荷重を必要最小限だけ自動的に増加させるように作用する 。 このように、 出力軸の負荷変動に応じて、 必要とされる法線荷重がフィードバ ック制御されて、 安定したトラクシヨン力が得られ、 回転力の伝達が確実に行わ れる。
以上述べたように、 上記の構成をなす無段変速装置によれば、 従来のようなク ラッチ機構、 逆転ギヤ、 油圧機構等を設けることなく、 増減速を伴う正回転、 停 止、 逆回転を連続的に生じるように、 入力軸の回転を出力軸に伝達させることが でき、 しかも変速レンジを幅広く設定でき、 騒音等を極力防止でき、 大きな駆動 トルクを伝達することができる、 小型化で安価な無段変速装置が得られる。 図面の簡単な説明
図 1は、 本発明の第 1の観点に係る無段変速装置の一実施形態を示す断面図で ある。
図 2は、 図 1に示す無段変速装置の模式図である。
図 3は、 図 1に示す無段変速装置の一部を示す模式図である。
図 4 A及び図 4 Bは、 図 1に示す無段変速装置の一部を示す模式図である。 図 5は、 図 1に示す無段変速装置の一部を示す模式図である。
図 6 A、 図 6 B、 及び図 6 Cは、 図 1に示す無段変速装置の動作を説明する模 式図である。 図 Ίは、 本発明の第 1の観点に係る無段変速装置の他の実施形態を示す断面図 である。
図 8は、 本発明の第 1の観点に係る無段変速装置のさらに他の実施形態を示す 断面図である。
図 9は、 図 8に示す無段変速装置の模式図である。
図 1 0は、 図 8に示す無段変速装置の一部を示す模式図である。
図 1 1は、 本発明の第 1の観点に係る無段変速装置のさらに他の実施形態を示 す断面図である。
図 1 2は、 本発明の第 2の観点に係る無段変速装置の一実施形態を示す断面図 である。
図 1 3は、 図 1 2に示す無段変速装置の模式図である。
図 1 4は、 本発明の第 2の観点に係る無段変速装置の他の実施形態を示す断面 図である。
図 1 5は、 図 1 4に示す無段変速装置の一部を示す断面図である。
図 1 6は、 図 1 4に示す無段変速装置の模式図である。 発明を実施するための最良の形態
以下、 本発明の最良の実施形態について、 添付図面を参照しつつ説明する。 図 1ないし図 6は、 本発明の第 1の観点に係る無段変速装置の一実施形態を示 すものであり、 図 1は装置の断面図、 図 2ないし図 6は装置の模式図である。 この無段変速装置は、 図 1に示すように、 ハウジング 1 0、 ハウジング 1 0に 対して回動自在に支持された入力軸 2 0、 入力軸 2 0に対して一体的に回転する ように結合されたキヤリャ 3 0、 ハウジング 1 0に対して回動自在に支持された 出力軸 4 0、 出力軸 4 0に対して一体的に回転するように結合された太陽ギヤ 5 0、 太陽ギヤ 5 0に嚙合した状態でキヤリャ 3 0に対して回動自在に支持された 3つの遊星ギヤ 6 0、 遊星ギヤ 6 0に嚙合するリングギヤ 7 0、 キヤリャ 3 0と
2 一体的に回転するようにかつ入力軸 2 0の軸線方向に移動可能に支持された可動 ディスク 8 0、 リングギヤ 7 0及び可動ディスク 8 0の外周に配列された 3つの トラクションロータ 9 0、 トラクションロータ 9 0の外側に配置されたトラクシ ヨンリング 1 0 0等を備えている。
そして、 可動ディスク 8 0、 リングギヤ 7 0の後述する接触面 7 2、 トラクシ ヨンロータ 9 0、 トラクシヨンリング 1 0 0等により、 キヤリャ 3 0とリングギ ャ 7 0との相対的な回転速度を連続的に変化させるロータ式連続可変機構が構成 されている。
ハウジング 1 0は、 アルミニウム材料等を用いて型成形されたものであり、 図 1に示すように、 入力軸 2 0を支持するための軸受 1 1 a及びシール 1 1 b等が 取り付けられたハウジング半体 1 1、 出力軸 4 0を支持するための軸受 1 2 a及 びシール 1 2 b等が取り付けられたハウジング半体 1 2等により構成されている。 そして、 ハウジング 1 0は、 ハウジング半体 1 1とハウジング半体 1 2とをボ ノレ卜等により締結することにより画定され、 入力軸 2 0と出力軸 4 0とを同一の 軸線上に回動自在に支持している。
入力軸 2 0は、 図 1に示すように、 その端部において板状のフランジ 2 1を有 し、 このフランジ 2 1に対して、 略 1 2 0度の間隔で配置され軸線 Lと平行に伸 長する円柱状の 3本のピン 2 2が結合されている。 すなわち、 フランジ 2 1及び 3本のピン 2 2により、 キヤリャ 3 0が構成されている。
各々のキヤリャ 3 0 (ピン 2 2 ) は、 その先端部において、 遊星ギヤ 6 0を回 動自在に支持すると共に、 太陽ギヤ 5 0に嚙合させた状態に保持している。 すな わち、 入力軸 2 0が回転すると、 キヤリャ 3 0がー体的に回転し、 遊星ギヤ 6 0 を太陽ギヤ 5 0の周りに公転 (遊星運動) させるようになつている。
リングギヤ 7 0は、 図 1及び図 4 Bに示すように、 3つの遊星ギヤ 6 0に嚙合 する内歯 7 1を有し、 その外周には、 後述するトラクシヨンロータ 9 0の第 1円 錐面 9 1と接触する円錐状の接触面 7 2を有する。 可動ディスク 8 0は、 図 1に示すように、 キヤリャ 3 0 (ピン 2 2 ) に摺動自 在に外嵌される 3つの円孔 8 1を有し、 その外周には、 後述するトラクシヨン口 ータ 9 0の第 2円錐面 9 2と接触する円筒状の接触面 8 2を有する。 そして、 可 動ディスク 8 0は、 ピン 2 2に沿って軸線 L方向に往復動自在に支持されている。 また、 可動ディスク 8 0は、 図 1に示すように、 付勢部材としてのコイルバネ 8 3により入力軸 2 0側に向けて付勢されており、 一方、 コイルバネ 8 3の付勢 力に対向する側に押圧部材 8 4が配置されている。 押圧部材 8 4は、 ウォームギ ャ 8 5及びウォームホイール 8 6、 ウォームホイール 8 6の内周に形成された送 り雌ネジと嚙合すると共に回転が規制されたネジ部材 8 7を介して、 コイルパネ 8 3の付勢力に抗しつつ軸線 L方向に移動させられるようになつている。 ここで 、 ウォームギヤ 8 5の上流側には、 操作用の駆動モータが連結されており、 操作 者の操作信号に応じて駆動制御されるようになっている。
尚、 押圧部材 8 4の駆動機構としては、 ハウジング 1 0の外側に設けられたシ フトレバ一等を介して駆動される構成を採用してもよい。
3つのトラクシヨンロータ 9 0は、 図 1ないし図 3、 図 5に示すように、 それ ぞれの回転中心線 Sが出力軸 4 0の軸線 Lと同一点 Pで交わるように傾斜した状 態で回転 (自転) 及び公転し得るように支持されている。 すなわち、 2つのトラ クシヨンロータ 9 0は、 出力軸 4 0回りに回動自在に設けられた第 1リンク 9 3 に対して回動自在に支持されており、 1つのトラクシヨンロータ 9 0は、 第 1リ ンク 9 3とは独立して出力軸 4 0回りに回動自在に設けられた第 2リンク 9 4に 対して回動自在に支持されて、 先の 2つのトラクシヨンロータ 9 0とは別個に独 立して公転し得るようになつている。 トラクシヨンロータ 9 0の回転中心線 Sの 軸線 Lに対する傾斜角度は、 設定する変速比の範囲に応じて適宜選定される。 ま た、 第 1 リンク 9 3と第 2リンク 9 4との間には、 お互いを引き寄せるバネ 9 5 が設けられている。
ここで、 3つのトラクシヨンロータ 9 0は、 図 5に示すように、 大径、 中径、 小径となるようにお互いの外径が異なるように形成され、 例えば、 第 1リンク 9 3に支持された 2つのトラクシヨンロータ 9 0が大径と中径で、 第 2リンク 9 4 に支持された 1つのトラクシヨンロータ 9 0が小径となるように形成されていて もよレ、。 尚、 1つのトラクシヨンロータ 9 0のみが他に比べて小径となるように 形成されていてもよい。
また、 3つのトラクシヨンロータ 9 0は、 図 1ないし図 3に示すように、 リン グギヤ 7 0の接触面 Ί 2及び後述するトラクシヨンリング 1 0 0の接触面 1 0 1 と接触する第 1円錐面 9 1、 可動ディスク 8 0の接触面 8 2と接触する第 2円錐 面 9 2を有する。
第 1円錐面 9 1は、 トラクシヨンロータ 9 0の回転中心線 Sが出力軸 4 0の軸 線 Lと交わる点 Pに、 その頂点をもつように形成されている。 第 2円錐面 9 2は 、 可動ディスク 8 0の接触面 8 2が接触する位置でのその母線 Mが、 入力軸 2 0 の軸線 Lと平行になるように形成されている。 尚、 第 2円錐面 9 2のブロフィー ノレ、 すなわち、 回転中心線 Sに対する母線 Mの傾斜角度は、 変速比を如何に設定 するかによつて、 母線 Mを軸線 Lと平行に保ちつつ回転中心線 Sの傾斜角度を選 定することによって決定される。
したがって、 上記の第 1円錐面 9 1を採用することで、 トラクシヨンロータ 9 0とリングギヤ 7 0及びトラクシヨンリング 1 0 0との間の接触領域では、 スピ ンロスが防止され、 転がり接触によるトラクシヨン力の伝達効率、 すなわち、 ト ラクシヨンドライブの効率が向上する。 また、 第 2円錐面 9 2を採用することで 、 トラクシヨンロータ 9 0と可動ディスク 8 0との間では、 可動ディスク 8 0の 軸線方向 Lへの移動を許容しつつ転がり接触するようになつている。
トラクシヨンリング 1 0 0は、 図 1ないし図 3、 図 5に示すように、 トラクシ ヨンロータ 9 0の第 1円錐面 9 1に接触し得る円錐状の接触面 1 0 1を有し、 そ の回転中心線 L 'は、 出力軸 4 0の軸線 Lから所定量だけ偏倚した位置に位置 付けられている。 そして、 ハウジング半体 1 2の環状溝 1 2 cに挿入されて径方
5 向に所定量だけ移動自在に支持されると共に、 ピン 1 2 dにより回転しないよう に規制されている。
また、 トラクシヨンリング 1 0 0は、 図 1ないし図 3に示すように、 入力軸 2 0及び出力軸 4 0の軸線 L方向において、 可動リング 8 0とリングギヤ 7 0との 間に位置するように配置されている。 したがって、 トラクシヨンリング 1 0 0の 押圧力が、 トラクシヨンロータ 9 0の第 1円錐面 9 1と第 2円錐面 9 2を、 リン グギヤ 7 0の接触面 7 2と可動ディスク 8 0の接触面 8 2とに、 それぞれバラン ス良く押し付けるように作用するため、 トラクシヨン力が確実に得られて、 より 安定した変速動作が行われる。
ここで、 3つのトラクシヨンロータ 9 0、 可動ディスク 8 0 (及びリングギヤ 7 0 ) の相互関係について説明する。
先ず、 出力軸 4 0に一定の負荷が加わっている場合、 入力軸 2 0及び可動ディ スク 8 0が回転すると、 トラクシヨンロータ 9 0が回転 (自転及び公転) して、 リングギヤ 7 0を回転させ、 所定のトルクが伝達されて出力軸 4 0が回転する。 一方、 図 5に示すように、 入力軸 2 0及び可動ディスク 8 0が C 3方向に回転 する状態において、 出力軸 4 0の負荷が増加すると、 出力軸 4 0の回転が遅くな り、 リングギヤ 7 0はトラクシヨンロータ 9 0の回転に対して遅れ (C 3 '方 向) を生じる。 この遅れは、 トラクシヨンロータ 9 0の法線荷重により生じるト ラクシヨントルクが不足するためである。 そして、 独立して公転し得る最小のト ラクシヨンロータ 9 0は、 C 2方向に回転 (自転) しつつ狭い隙間の方向 (C 1 方向) に移動して、 トラクシヨンリング 1 0 0と可動ディスク 8 0及びリングギ ャ 7 0との間に食い込んで楔作用を生じる。
この楔作用により、 トラクシヨンリング 1 0 0が適宜径方向に移動 (変心運動 ) しつつ、 中径及び大径の 2つのトラクシヨンロータ 9 0は、 可動ディスク 8 0 及びリングギヤ 7 0と トラクシヨンリング 1 0 0との間により強く締め付けられ (強く挟持され)、 トラクシヨンロータ 9 0の法線荷重が増加してトラクション 係数が大きくなり、 トラクシヨントルクが増加する。 これにより、 伝達トルクが 増加して、 リングギヤ 7 0の遅れも解消され、 3つのトラクシヨンロータ 9 0は 一緒に回転してトルク伝達を確実に行レ、、 確実なトラクションドライブが行われ る。
また、 トラクシヨンロータ 9 0は、 リングギヤ 7 0の外周に配置されて入力軸
2 0及び出力軸 4 0から所定の距離だけ隔てた位置でトルクの伝達を行うので、 小型でも大きなトルクを伝達することができる。
次に、 上記無段変速装置の動作及び原理について、 図 6 Aないし図 6 Cを参照 しつつ説明する。 尚、 ここでは、 入力軸 2 0の所定方向の回転に対して、 車両等 の前進方向に出力軸 4 0が回転する場合を正回転、 後退方向に回転する場合を逆 回転として説明する。
先ず、 入力軸 2 0が所定の速度で回転すると、 可動ディスク 8 0及びキヤリャ
3 0も一体となって同一方向に回転する。 そして、 キヤリャ 3 0の回転に伴って 、 3つの遊星ギヤ 6 0も回転 (自転) しつつ入力軸 2 0と同一方向に同一速度で 公転する。
ここで、 遊星ギヤ 6 0から太陽ギヤ 5 0への回転トルクの伝達は、 リングギヤ
7 0がどのような状態にあるかに応じて変化する。 すなわち、 リングギヤ 7 0が 、 停止、 可動ディスク 8 0 (及び入力軸 2 0 ) と同一速度で回転、 可動ディスク
8 0に先行して回転 (より速い速度で回転)、 可動ディスク 8 0に遅れて回転 ( より遅い速度で回転) 等のいずれの状態にあるかによって、 遊星ギヤ 6 0から太 陽ギヤ 5 0及び出力軸 4 0に伝達される回転速度は変化する。
そこで、 トラクシヨンロータ 9 0の第 2円錐面 9 2に接触する可動ディスク 8 0の軸線方向 Lにおける位置を適宜変化させることにより、 キヤリャ 3 0 (及び 可動ディスク 8 0 ) とリングギヤ 7 0との間に相対的な回転速度の変化 (回転差 ) を生じさせることで、 入力軸 2 0から出力軸 4 0に伝達される回転速度を連続 的に変化させる (増減速を伴う正回転、 停止、 逆回転等を連続的に生じさせる)
1 ことができる。
すなわち、 リングギヤ 7 0とキヤリャ 3 0との回転差は、 可動ディスク 8 0が 第 2円錐面 9 2に接触する位置に応じて変化する。 したがって、 第 1円錐面 9 1 の母線 Nと可動ディスク 8 0の法線 Vとの交点におけるトラクシヨンロータ 9 0 の回転半径を R、 可動ディスク 8 0の接触面 8 2が接触する位置での第 2円錐面 9 2の回転半径を rとすると、 回転差は (r _ R ) /Rで表され、 この値がマイ ナス値になるとリングギヤ 7 0がキヤリャ 3 0 (及び可動ディスク 8 0 ) に対し て先行して回転 (速く回転) することになる。
例えば、 図 6 Aに示す状態では、 r > Rであり、 入力軸 2 0の回転は正回転で 出力軸 4 0に伝達され、 r値が小さくなる左側に向けて可動ディスク 8 0が移動 するにしたがって変速比が小さくなり、 図 6 Bに示すように、 r ' < R ' とな る所定の位置に可動ディスク 8 0が移動して、 リングギヤ 7 0がキヤリャ 3 0 ( 可動ディスク 8 0 ) に対して所定量だけ先行して回転するとき、 変速比が 0とな つて出力軸 4 0の回転は停止する。
そして、 さらに、 図 6 Cに示すように、 r値がさらに小さくなる r ' ' (く r ' < r ) の位置に可動ディスク 8 0が移動すると、 リングギヤ 7 0がキヤリ ャ 3 0 (可動ディスク 8 0 ) に対して所定量だけさらに先行して回転し、 変速比 がマイナス^ ί直となつて出力軸 4 0は逆回転する。
ここで、 可動ディスク 8 0は、 コイルバネ 8 3の付勢力に抗して押圧部材 8 4 を駆動機構 (ウォームギヤ 8 5、 ゥ; ί -ームホイール 8 6、 ネジ部材 8 7等) によ り適宜移動させることで、 上記の変速動作が行われる。
ここで、 例えば、 太陽ギヤ 5 0の歯数を 1 8、 遊星ギヤ 6 0の歯数を 2 7、 リ ングギヤ 7 0の歯数を 7 2とすると、 キヤリャ 3 0 (及び可動ディスク 8 0 ) の 回転に対するリングギヤ 7 0の回転が、 1 5回転遅れで変速比が 2となり、 回 転遅れなし (同一回転) で変速比は 1となり、 1ノ 5回転先行で変速比は 0 (停 止) となり、 2 Ζ 5回転遅れで変速比は一 1 (逆回転) となる。 一般的な自動車における変速比は、 停止状態で変速比 0 (減速比:無限大)、 オーバトップで変速比 1 . 2 (減速比: 0 . 8 3 3 3 )、 後退で変速比— 0 . 2 (減速比: 一 5 ) 程度であるため、 この場合は、 キヤリャ 3 0の回転に対するリ ングギヤ 7 0の回転が、 1 2 5回転遅れでオーバトップが設定され、 1 5回 転先行することで停止状態が設定され、 2 Z 5回転先行することで後退が設定さ れる。
上記構成の無段変速装置によれば、 トラクシヨンドライブ方式に基づく連続可 変機構を採用したことにより、 従来の C V Tで必要とされたクラッチ機構、 逆転 切替えギヤ等が不要になり、 又、 入力軸 2 0と出力軸 4 0とを同軸に配置できる ため、 小型かつ安価で、 スピンロスが少なく、 騒音の発生を極力防止でき、 変速 レンジを幅広く設定でき、 高効率のトルク伝達特性を得ることができる。
図 7は、 本発明の第 1の観点に係る無段変速装置の他の実施形態を示すもので あり、 前述の実施形態に対して、 トラクシヨンロータ 9 0 'の傾斜方向、 それ に伴う可動ディスク 8 0 '及びリングギヤ 7 0 '並びにトラクシヨンリング 1 0 0 'を変更したものであり、 それ以外の同一の構成については同一の符号を 付してその説明を省略する。
すなわち、 この実施形態に係る装置においては、 図 7に示すように、 第 1リン ク 9 3に対して 2つのトラクシヨンロータ 9 0 'が回動自在に支持され、 第 2 リンク 9 4に対して 1つのトラクシヨンロータ 9 0 'が回動自在に支持されて いる。
そして、 トラクシヨンロータ 9 0 'の回転中心線 S 'は、 入力軸 2 0の軸線 Lと交差するように傾斜して配置され、 第 1円錐面 9 1 'はリングギヤ 7 0 ' の円錐状の接触面 7 2 '及びトラクシヨンリング 1 0 0 'の円錐状の接触面 1 0 1 ' と接触し、 第 2円錐面 9 2 'は可動ディスク 8 0 'の円筒状の接触面 8 2 ' と接触するように形成されている。 また、 第 1円錐面 9 1 'は、 回転中心 線 S 'が入力軸 2 0の軸線 Lと交わる点に頂点をもつように形成されている。 この装置においても、 前述同様に連続的な変速動作を行うことができ、 スピン ロスを抑制でき、 騒音の発生を極力防止でき、 変速レンジを幅広く設定でき、 高 効率のトルク伝達特性を得ることができ、 特に、 トラクシヨンロータ 90 の 傾斜の向きを変更したことにより、 各部品をより集約化でき、 装置をより小型化 することができる。
図 8及び図 9は、 本発明の第 1の観点に係る無段変速装置のさらに他の実施形 態を示すものであり、 前述の実施形態と同一の構成については同一の符号を付し てその説明を省略する。 この実施形態の装置においては、 図 8及び図 9に示すよ うに、 トラクシヨンリング 100 は、 ハウジング半体 1 2の環状溝 1 2 c 'に収容されて、 その中心が入力軸 20及び出力軸 40の軸線 Lに対して所定 量だけ偏倚した軸線 L '上に位置した状態で軸線 L '回りに回動自在に支持さ れている。
トラクシヨンロータ 90 ' 'は、 接触面 1 0 1 ' 'をもつトラクシヨンリン グ 1 00 ' ' と可動ディスク 80 (接触面 8 2 ) 及びリングギヤ 70 (接触面 72) との間において、 図 8ないし図 1 0に示すように、 周方向に配列されると 共にハウジング半体 1 2に回動自在に支持された 2つの固定ロータ 90 ' ( 90 a ' ' , 90 b ' ' )、 2つの固定ロータ 90 ' 'に対し相対的に移動可能 に出力軸 40の回りに配置された筒状部材 1 2 eに対して所定の角度範囲を可動 に設けられたリンク 94 'に対して回動自在に支持された 1つの可動ロータ 9 0 ' ' (90 c により形成されている。 尚、 リンク 94 'は、 捩りバネ
95により所定の向きに回転付勢されている。
これにより、 3つのトラクシヨンロータ 90 は公転不能であり、 1つの 可動ロータ 90 ' ' (9 0 c ' ' ) が捩りバネ 9 5の付勢力に抗しつつ 2つの 固定ロータ 9 0 ' ' (9 0 a ' ' , 90 b ' ' ) に対して相対的に移動できる ようになつている。
この装置によれば、 出力軸 40に一定の負荷が加わっている場合、 入力軸 20 及び可動ディスク 80が回転すると、 3つのトラクシヨ ンロータ 90 ' 'が回 転 (自転) して、 リングギヤ 70を回転させ、 所定のトルクが伝達されて出力軸 40が回転する。
一方、 図 10に示すように、 入力軸 20及び可動ディスク 80が C 3方向に回 転する状態において、 出力軸 40の負荷が増加すると、 出力軸 40の回転が遅く なり、 リングギヤ 70はトラクションロータ 90 ' 'の回転 (自転) に対して 遅れ (C 3 '方向) を生じる。 この遅れは、 トラクションロータ 90 ' 'の法 線荷重により生じるトラクシヨントルクが不足するためである。 それ故に、 リン グギヤ 70と固定ロータ 90 ' ' (90 a ' ', 90 b ' ' ) との間に微小な 滑りを生じ、 可動ロータ 90 ' ' (90 c ' ' ) は C 2方向に回転 (自転) し つつ狭い隙間の方向 (C 1方向) に移動して、 トラクシヨンリング 100 ' ' と可動ディスク 80及びリングギヤ 70との間に食い込んで楔作用を生じる。 この楔作用により、 2つの固定ロータ 90 ' ' (90 a ' ' , 90 b ' 一) は、 可動ディスク 80及びリングギヤ 70と トラクシヨンリング 1 00 ' ' と の間により強く締め付けられ (強く挟持され)、 トラクシヨンロータ 90 ' 一の 法線荷重が増加してトラクション係数が大きくなり、 トラクシヨントルクが増加 する。 これにより、 伝達トルクが増加して、 リングギヤ 70の遅れも解消され、 可動ロータ 90 ' (90 c ' ') の移動 (食い込み) も停止し、 トルク伝達 を確実に行い、 確実なトラクシヨンドライブが行われる。
また、 トラクシヨンロータ 90 は、 リングギヤ 70の外周に配置されて 入力軸 20及び出力軸 40から所定の距離だけ隔てた位置でトルクの伝達を行う ので、 小型でも大きなトルクを伝達することができる。
尚、 この装置では、 トラクシヨンリング 100 ' 'は回転するだけで変心運 動を行わないため、 その分だけハウジング 10の外径寸法を小径化することがで さる。
図 1 1は、 前述の図 8及び図 9に示す実施形態に対して、 トラクシヨンロータ 9 0 ' ' 'の傾斜方向、 それに伴う可動ディスク 8 0 '及びリングギヤ 7 0 ' 並びにトラクシヨンリング 1 0 0 ' ' 'を変更したものであり、 それ以外の同 一の構成については同一の符号を付してその説明を省略する。
すなわち、 この実施形態に係る装置においては、 図 1 1に示すように、 卜ラタ シヨンロータ (固定ロータ及び可動ロータ) 9 0 ' ' 'の回転中心線 S 'は、 入力軸 2 0の軸線 Lと交差するように傾斜して配置され、 第 1円錐面 9 1 'は リングギヤ 7 0 'の円錐状の接触面 7 2 '及びトラクシヨンリング 1 0 0 ' ' 'の円錐状の接触面 1 0 1 ' ' と接触し、 第 2円錐面 9 2 'は可動ディスク 8 0 'の円筒状の接触面 8 2 ' と接触するように形成されている。 また、 第 1 円錐面 9 1 'は、 回転中心線 S 'が入力軸 2 0の軸線 Lと交わる点に頂点をも つように形成されている。
この装置においても、 前述同様に連続的な変速動作を行うことができ、 スピン ロスを抑制でき、 騒音の発生を極力防止でき、 変速レンジを幅広く設定でき、 高 効率のトルク伝達特性を得ることができ、 特に、 トラクシヨンロータ 9 0一 ' の傾斜の向きを変更したことにより、 各部品をより集約化でき、 装置をより 小型化することができる。
図 1 2及び図 1 3は、 本発明の第 2の観点に係る無段変速装置の一実施形態を 示すものであり、 前述の実施形態と同一の構成については同一の符号を付してそ の説明を省略する。 この実施形態に係る無段変速装置は、 図 1 2及び図 1 3に示 すように、 ハウジング 1 0、 ハウジング 1 0に対して回動自在に支持された入力 軸 2 0、 入力軸 2 0と一体的に回転するように形成されたキヤリャ 3 0 '、 ハ ウジング 1 0に対して回動自在に支持された出力軸 4 0、 出力軸 4 0と一体的に 回転するように形成された太陽ギヤ 5 0、 出力軸 4 0の回りに回動自在に設けら れた回転体としての回転ディスク 1 1 0、 太陽ギヤ 5 0に嚙合した状態で回転デ イスク 1 1 0に対して回動自在に支持されかつ回転ディスク 1 1 0の回転に伴つ て太陽ギヤ 5 0の周りを公転し得る複数 (3つ) の遊星ギヤ 6 0、 入力軸 2 0と 一体的に回転するようにキヤリャ 30 'に連結され複数の遊星ギヤ 60に嚙合 する内歯 7 1 ' 'をもつリングギヤ 70 ' '、 キヤリャ 30 ' と一体的に回転 するようにかつ入力軸 20の軸線 L方向に移動可能に支持された可動体としての 可動ディスク 80 ' '、 可動ディスク 80 ' '及び回転ディスク 1 10の外周 に配列された 3つのトラクシヨンロータ 90 ' ' (2つの固定ロータ及び 1つ の可動ロータ)、 トラクシヨンロータ 90 ' 'の外側に配置されたトラクシヨン リング 100 ' '等を備えている。
そして、 可動ディスク 80 ' '、 回転ディスク 1 10の後述する接触面 1 1 2、 トラクシヨンロータ 90 ' '、 トラクシヨンリング 100 ' '等により、 キヤリャ 30 ' と回転ディスク 1 10との相対的な回転速度を連続的に変化さ せるロータ式連続可変機構が構成されている。
入力軸 20は、 図 1 2に示すように、 その端部において板状のフランジ 21 'を有し、 このフランジ 2 1 'に対して、 略 1 20度の間隔で配置され軸線 L と平行に伸長する円柱状の 3本のピン 22 'が結合されている。 すなわち、 フ ランジ 2 1 '及び 3本のピン 22 'により、 キヤリャ 30 'が構成されている。 キヤリャ 30 ' (ピン 22 ') には、 その先端部において、 リングギヤ 70 ' 一が一体的に回転するように連結されている。 すなわち、 入力軸 20が回転 すると、 キヤリャ 30 '及びリングギヤ 70 'がー体的に回転するようになつ ている。
可動ディスク 80 ' 'は、 図 1 2及び図 1 3に示すように、 キヤリャ 30 ' (ピン 22 ' ) に摺動自在に外嵌される 3つの円孔 8 1 ' 'を有し、 その外周 には、 トラクシヨンロータ 90 ' 'の第 2円錐面 92と接触する円筒状の接触 面 82 ' 'を有する。 そして、 可動ディスク 80 ' ,は、 入力軸 20及びリン グギヤ 70 ' ' と一体的に回転すると共に、 ピン 22 'に沿って軸線 L方向に 往復動自在に支持されている。
回転ディスク 1 10は、 図 12及び図 13に示すように、 3つの遊星ギヤ 60 を回動自在に支持する 3つのピン 1 1 1を有し、 出力軸 40に対して回動自在に 外嵌 (支持) されている。 また、 回転ディスク 1 10は、 その外周において、 ト ラクションロータ 90 ' 'の第 1円錐面 91と接触する円錐状の接触面 1 1 2 を有する。
リングギヤ 70 ' 'は、 太陽ギヤ 50に嚙合した 3つの遊星ギヤ 60に嚙合 する内歯 7 1 ' 'を有し、 回転ディスク 1 10と隣接した位置に配置されてい る。
この装置においては、 可動ディスク 80 ' 'の接触面 82 ' 'が トラクショ ンロータ 90 ' 'の第 2円錐面 92に接触し、 回転ディスク 1 10の接触面 1 1 2がトラクシヨンロータ 90 の第 1円錐面 9 1に接触し、 さらに、 トラ クシヨンロータ 90 ' 'を可動ディスク 80 ' ' と回転ディスク 1 10に押し 付けるようにトラクシヨンリング 100 ' ' (の接触面 101 ' ' ) が第 1円 錐面 91に接触する。
そして、 可動ディスク 80 ' 'が入力軸 20の軸線 L方向に移動することで 、 接触する第 2円錐面 92上の回転半径 rが変化し、 キヤリャ 30 'の回転速 度 (リングギヤ 70 ' 'の回転速度) と回転ディスク 1 10の回転速度 (遊星 ギヤ 60の公転速度) とが相対的に変化する。 すなわち、 可動ディスク 80 ' 'を適宜移動させて、 可動ディスク 80 ' ' (リングギヤ 70 ' ' ) の回転速 度に対して回転ディスク 1 10の回転速度を適宜変化させることで、 変速比を幅 広いレンジで変化させて、 正回転、 停止、 逆回転を連続的に設定することができ る。
このように、 トラクシヨンドライブ方式に基づくロータ式連続可変機構を採用 したことにより、 従来の CVTで必要とされたクラッチ機構、 逆転切替えギヤ等 が不要になり、 又、 入力軸 20と出力軸 40とを同軸に配置できるため、 小型か つ安価で、 スピンロスが少なく、 騒音の発生を極力防止でき、 変速レンジを幅広 く設定でき、 高効率のトルク伝達特性を得ることができる。 図 1 4ないし図 1 6は、 本発明の第 2の観点に係る無段変速装置の他の実施形 態を示すものであり、 前述の実施形態と同一の構成については同一の符号を付し てその説明を省略する。 この実施形態に係る無段変速装置は、 図 1 4ないし図 1 6に示すように、 ハウジング 1 0、 ハウジング 1 0に対して回動自在に支持され た入力軸 2 0、 入力軸 2 0と一体的に回転するように形成されたキヤリャ 1 3 0 、 ハウジング 1 0に対して回動自在に支持された出力軸 4 0、 出力軸 4 0と一体 的に回転するように形成された太陽ギヤ 5 0、 出力軸 4 0の回りに回動自在に設 けられた回転体としての回転スリーブ 2 1 0、 太陽ギヤ 5 0に嚙合した状態で回 転スリーブ 2 1 0に対して回動自在に支持されかつ回転スリーブ 2 1 0の回転に 伴って太陽ギヤ 5 0の周りを公転し得る複数 (3つ) の遊星ギヤ 6 0、 入力軸 2 0と一体的に回転するようにキヤリャ 1 3 0に連結され複数の遊星ギヤ 6 0に嚼 合する内歯 1 7 1をもつリングギヤ 1 7 0、 回転スリーブ 2 1 0と一体的に回転 するようにかつ出力軸 4 0の軸線方向 Lに移動可能に支持された可動体としての 可動スリーブ 1 8 0、 可動スリーブ 1 8 0及びキヤリャ 1 3 0 (後述するキヤッ プ 2 3 ' ) の外周に配列された 3つのトラクシヨンロータ 1 9 0、 トラクショ ンロータ 1 9 0の外側に配置されたトラクシヨンリング 2 0 0等を備えている。 そして、 後述する円筒状の接触面 1 8 1をもつ可動スリーブ 1 8 0、 キヤリャ 1 3 0の後述する接触面 2 3 a ' , 後述する第 1円錐面 1 9 1及び第 2円錐面 1 9 2をもつトラクシヨンロータ 1 9 0、 トラクシヨンリング 2 0 0等により、 キヤリャ 1 3 0と回転スリーブ (回転体) 2 1 0との相対的な回転速度を連続的 に変化させるベく転がり接触するロータ式連続可変機構が構成されている。 入力軸 2 0は、 図 1 4に示すように、 その端部において円板状に形成されたフ ランジ 2 1 '、 回転スリーブ 2 1 0の周りに回動自在に外嵌されると共にフラ ンジ 2 1 'に対向するように連結されたキャップ 2 3 'を有する。 そして、 フ ランジ 2 1 ' とキャップ 2 3 'によりリングギヤ 1 7 0が挟持された状態でボ ルトにより締結されている。 すなわち、 フランジ 2 1 '及びキヤップ 2 3 'に より、 入力軸 2 0と一体的に回転するキヤリャ 1 3 0が構成されている。 したが つて、 入力軸 2 0が回転すると、 キヤリャ 1 3 0及びリングギヤ 1 7 0がー体的 に回転するようになっている。
ここで、 キヤリャ 1 3 0のキャップ 2 3 'には、 後述するトラクシヨンロー タ 1 9 0の第 1円錐面 1 9 1が転がり接触する円錐状の接触面 2 3 a 'が形成 されている。
回転スリーブ 2 1 0は、 3つの遊星ギヤ 6 0を回動自在に支持する 3つのピン 2 1 1、 可動スリーブ 1 8 0を軸線方向 Lに案内するためのガイド溝 2 1 2等を 有し、 出力軸 4 0に対して回動自在に外嵌 (支持) されている。
リングギヤ 1 7 0は、 太陽ギヤ 5 0に嚙合した 3つの遊星ギヤ 6 0に嚙合する 内歯 1 7 1を有し、 フランジ 2 1 '及びキャップ 2 3 'に挟持されると共にボ ルトにより締結されて、 入力軸 2 0と一体的に回転するようになっている。 可動スリーブ 1 8 0は、 その外周において、 トラクシヨンロータ 1 9 0の第 2 円錐面 1 9 2と転がり接触する円筒状の接触面 1 8 1、 軸線方向 Lに伸長するガ ィド溝 1 8 2等を有する。 そして、 可動スリーブ 1 8 0は、 ガイド溝 1 8 2 , 2 1 2に挿入されたボール 1 8 3により、 回転スリーブ 2 1 0と一体的に回転する と同時に、 回転スリーブ 2 1 0に対して出力軸 4 0の軸線方向 Lに摺動 (往復動 ) 自在に支持されている。
ここで、 可動スリーブ 1 8 0は、 付勢部材としてのコイルバネ 8 3により一方 側に付勢されており、 コイルバネ 8 3の付勢力に抗して可動スリーブ 1 8 0を移 動させる押圧部材 (不図示) により、 図 1 4中の実線で示す位置と二点鎖線で示 す位置との間を移動させられことで、 変速動作が行われるようになつている。
3つのトラクシヨンロータ 1 9 0は、 前述同様に、 それぞれの回転中心線 Sが 出力軸 4 0の軸線 Lと同一点 P (図 3参照) で交わるように傾斜した状態で回転 (自転) 及び所定の角度範囲を公転し得るように保持プレート 1 9 5に支持され ている。 また、 3つのトラクシヨンロータ 1 9 0は、 キヤリャ 1 3 0の一部をな すキャップ 2 3 'の接触面 2 3 a ' と接触する第 1円錐面 1 9 1、 可動スリー ブ 1 8 0の接触面 1 8 1と接触する第 2円錐面 1 9 2、 トラクシヨンリング 2 0 0のカム面 2 0 1と接触するベアリング 1 9 3を有する。
尚、 第 1円錐面 1 9 1は、 トラクシヨンロータ 1 9 0の回転中心線 Sが出力軸 4 0の軸線 Lと交わる点 P (図 3参照) にその頂点をもつように形成され、 第 2 円錐面 1 9 2は、 可動スリーブ 1 8 0の接触面 1 8 1が接触する位置でのその母 線が出力軸 4 0の軸線 Lと平行になるように形成されている。
ベアリング 1 9 3は、 第 1円錐面 1 9 1及び第 2円錐面 1 9 2に対して相対的 に回転し得ると同時に、 トラクシヨンリング 2 0 0のカム面 2 0 1と転がり接触 するようになつている。
トラクシヨンリング 2 0 0は、 図 1 4ないし図 1 6に示すように、 軸線 L方向 において所定の厚さを有しかつ輪郭が円板状をなすように形成され、 又、 その内 側において周方向に略等間隔をおいて形成されかつベアリング 1 9 3がそれぞれ 内接して転がり接触する 3つのカム面 2 0 1を有するように形成されている。 そ して、 トラクシヨンリング 2 0 0は、 その中心が径方向に移動自在にかつ入力軸 2 0及び出力軸 4 0の軸線 L回りに回動不能にハウジング 1 0に支持されている。
3つのカム面 2 0 1は、 所定の領域ではベアリング 1 9 3を中心寄りに押し付 ける荷重を小さくし、 他の所定の領域ではベアリング 1 9 3を中心寄りに押し付 ける荷重を大きくする、 すなわち、 法線荷重を増加させるように作用する。
これによれば、 出力軸 4 0の回転速度が入力軸 2 0の回転速度により設定され る値 (所定値) よりも遅くなるとき、 その遅れ分を解消するように、 トラクショ ンロータ 1 9 0 (の接触面 1 9 1 , 1 9 2 ) を接触面 2 3 a ' , 1 8 1に対し て押し付ける法線荷重を自動的に増加させるようになつている。 すなわち、 常に 必要最小限の法線荷重を印加するようにフィードバック制御するため、 必要以上 の法線荷重が印加されることはなく、 入力軸 2 0から出力軸 4 0に対して回転力 が確実に伝達される。 この装置においては、 可動スリーブ 180の接触面 181がトラクシヨンロー タ 1 90の第 2円錐面 192に接触し、 キヤリャ 130の一部をなすキャップ 2 3 'の接触面 23 a '力 Sトラクシヨンロータ 1 90の第 1円錐面 9 1に接触し 、 さらに、 トラクシヨンロータ 1 90を可動スリーブ 180とキヤリャ 130 ( キャップ 23 ' ) に押し付けるようにトラクシヨンリング 200がベアリング 193に接 する。
そして、 可動スリーブ 180が出力軸 40の軸線 L方向に移動することで、 接 触する第 2円錐面 192上の回転半径が変化し、 キヤリャ 1 30の回転速度 (リ ングギヤ 1 70の回転速度) と回転スリーブ 210の回転速度 (遊星ギヤ 60の 公転速度) とが相対的に変化する。 すなわち、 可動スリーブ 180を適宜移動さ せて、 可動スリーブ 180 (回転スリーブ 210) の回転速度に対してリングギ ャ 1 70の回転速度を適宜変化させることで、 変速比を幅広いレンジで変化させ て、 正回転、 停止、 逆回転を連続的に設定することができる。 また、 トラクショ ンロー 1 90の変速比を小さくできるため、 トラクシヨン伝達領域でのスピン口 スを少なくすることができ、 トラクション係数、 伝達効率の点で有利になる。 このように、 トラクシヨンドライブ方式に基づくロータ式連続可変機構を採用 したことにより、 従来の CVTで必要とされたクラッチ機構、 逆転切替えギヤ等 が不要になり、 又、 入力軸 20と出力軸 40とを同軸に配置でき、 しかもトラク ションロータ 190を、 出力軸 40に近づけて配置できるため、 部品を集約化し て小型化でき、 安価で、 スピンロスが少なく、 騒音の発生を極力防止でき、 変速 レンジを幅広く設定でき、 高効率のトルク伝達特性を得ることができる。
上記実施形態においては、 ロータ式連続可変機構として、 可動ディスク 80, 80 ' , 80 ' 'あるいは可動スリーブ 180、 リングギヤ 70, 70 ' , 1 70、 トラクシヨンロータ 90, 90 ' , 90 ' ' , 1 90、 トラクシヨンリ ング 100, 100 ' , 100 ' ', 200等を含む構成を採用したが、 これ に限定されるものではなく、 トラクシヨンドライブ方式に基づくロータ式連続可 変機構であれば、 その他の機構を採用することができる。
上記実施形態においては、 トラクシヨンロータ 9 0 , 9 0 ' , 9 0 ' ' , 1 9 0の個数として 3個、 遊星ギヤ 6 0の個数として 3個を採用した場合を示した 力 これに限定されるものではなく、 その他の個数を採用してもよい。
上記実施形態においては、 太陽ギヤ 5 0、 遊星ギヤ 6 0、 リングギヤ 7 0, 7 0 ' , 7 0 ' ' との相互関係が、 お互いに嚙合するギヤにより トルクを伝達す るものとして示したが、 これに限定されず、 相互間でお互いに転がり接触してト ルクを伝達するトラクション伝達を行う構成を採用してもよい。 産業上の利用可能性
以上述べたように、 本発明の無段変速装置は、 構造が簡単で、 小型かつ安価に でき、 しかも騒音等の発生が極力防止され、 変速レンジを幅広く設定でき、 大き いトルクを伝達することができるため、 小排気量の二輪車、 自動車、 大排気量の 自動車等の変速装置として適用できるのは勿論のこと、 レジャービール等のその 他の車両、 あるいは、 変速装置を必要とする駆動機構等においても好ましく適用 することができる。

Claims

請 求 の 範 囲
1 . 入力軸と一体的に回転するように形成されたキヤリャと、 出力軸と一体的に回転するように形成された太陽ギヤと、
前記太陽ギヤに嚙合した状態で前記キヤリャに対して回動自在に支持され, か つ, 前記入力軸の回転に伴って前記太陽ギヤの周りを公転し得る複数の遊星ギヤ と、
前記複数の遊星ギヤに嚙合する内歯をもつリングギヤと、
前記キヤリャと前記リングギヤとの相対的な回転速度を連続的に変化させるベ く転がり接触するロータを含むロータ式連続可変機構と、
を有する、 ことを特徴とする無段変速装置。
2 . 前記ロータ式連続可変機構は、
前記キヤリャと一体的に回転すると共に前記入力軸の軸線方向に往復動自在に 形成され, かつ, その外周に円筒状の接触面をもつ可動ディスクと、
前記リングギヤの外周に形成された円錐状の接触面と、
前記入力軸又は出力軸の軸線に対して傾斜した軸線周りに回動自在に支持され , かつ, 前記リングギヤの接触面と接触する第 1円錐面及び前記可動ディスクの 接触面と接触する第 2円錐面をもつ二段円錐状のトラクションロータと、 前記リングギヤ及び可動ディスクと協働して外側から挟み込むように前記トラ クシヨンロータに接触する トラクシヨンリングと、
を含む、 ことを特徴とする請求の範囲第 1項に記載の無段変速装置。
3 . 前記トラクシヨンリングは、 前記入力軸又は出力軸の軸線方向に おいて, 前記リングギヤの接触面と可動ディスクの接触面との間に配置されてい る、
ことを特徴とする請求の範囲第 2項に記載の無段変速装置。
4 . 前記可動ディスクを前記入力軸の軸線方向の一方側に向けて付勢 する付勢部材と、 前記付勢部材の付勢力に抗して前記可動ディスクを移動させる ベく押圧する押圧部材と、 を含む、
ことを特徴とする請求の範囲第 2項に記載の無段変速装置。
5 . 前記トラクシヨンロータの第 1円錐面は、 その回転中心線が前記 入力軸又は出力軸の軸線と交わる点に頂点をもつように形成されている、 ことを特徴とする請求の範囲第 2項に記載の無段変速装置。
6 . 前記トラクシヨンリングは、 その中心が前記入力軸又は出力軸の 軸線から所定量だけ偏倚した状態で、 その径方向に移動自在にかつ前記入力軸又 は出力軸の軸線回りに回動不能に支持され、
前記トラクシヨンロータは、 前記トラクシヨンリングと前記可動ディスク及び リングギヤとの間において公転可能に周方向に配列された複数のトラクションロ ータからなり、
前記複数のトラクシヨンロータの少なくとも一つは、 他に対して独立して公転 し得るように支持されている、
ことを特徴とする請求の範囲第 2項に記載の無段変速装置。
7 . 前記トラクシヨンロータは、 前記トラクシヨンリングと前記可動 ディスク及びリングギヤとの間において周方向に配列された三個のトラクシヨン ロータからなり、
前記トラクシヨンロータの二つは、 前記出力軸回りに回動自在に設けられた第 1リンクに回動自在に支持され、
前記トラクシヨンロータの残りの一つは、 前記出力軸回りに回動自在に設けら れた第 2リンクに回動自在に支持されている、
ことを特徴とする請求の範囲第 6項に記載の無段変速装置。
8 . 前記トラクシヨンリングは、 その中心が前記入力軸又は出力軸の 軸線と同軸上に位置した状態で、 前記入力軸又は出力軸の軸線回りに回動自在に 支持され、 前記トラクシヨンロータは、 前記トラクシヨンリングと前記可動ディスク及び リングギヤとの間において公転不能に周方向に配列された固定ロータと、 前記固 定ロータに対し相対的に移動可能に支持された可動ロータと、 を含む、
ことを特徴とする請求の範囲第 2項に記載の無段変速装置。
9 . 前記トラクシヨンロータは、 二つの前記固定ロータと、 前記出力 軸回りの所定角度範囲において移動自在に設けられたリンクに回動自在に支持さ れた一つの前記可動ロータと、 を含む、
ことを特徴とする請求の範囲第 8項に記載の無段変速装置。
1 0 . 入力軸と一体的に回転するように形成されたキヤリャと、 出力軸と一体的に回転するように形成された太陽ギヤと、
前記出力軸の回りに回動自在に設けられた回転体と、
前記太陽ギヤに嚙合した状態で前記回転体に対して回動自在に支持され, かつ, 前記回転体の回転に伴って前記太陽ギヤの周りを公転し得る複数の遊星ギヤと、 前記入力軸と一体的に回転するように前記キヤリャに連結され, 前記複数の遊 星ギヤに嚙合する内歯をもつリングギヤと、
前記キヤリャと前記回転体との相対的な回転速度を連続的に変化させるベく転 がり接触するロータを含むロータ式連続可変機構と、
を有する、 ことを特徴とする無段変速装置。
1 1 . 前記ロータ式連続可変機構は、
前記キヤリャと一体的に回転すると共に前記入力軸の軸線方向に往復動自在に 形成され, かつ, その外周に円筒状の接触面をもつ可動体と、
前記回転体の外周に形成された円錐状の接触面と、
前記入力軸又は出力軸の軸線に対して傾斜した軸線周りに回動自在に支持され , 力つ, 前記回転体の接触面と接触する第 1円錐面及び前記可動体の接触面と接 触する第 2円錐面をもつ二段円錐状のトラクシヨンロータと、
前記回転体及び可動体と協働して外側から挟み込むように前記トラクシヨン口 ータに接触する トラクシヨンリングと、
を含む、 ことを特徴とする請求の範囲第 1 0項に記載の無段変速装置。
1 2 . 前記トラクシヨンリングは、 前記入力軸又は出力軸の軸線方向 において, 前記回転体の接触面と可動体の接触面との間に配置されている、 ことを特徴とする請求の範囲第 1 1項に記載の無段変速装置。
1 3 . 前記ロータ式連続可変機構は、
前記回転体と一体的に回転すると共に前記出力軸の軸線方向に往復動自在に形 成され, かつ, その外周に円筒状の接触面をもつ可動体と、
前記キヤリャに形成された円錐状の接触面と、
前記入力軸又は出力軸の軸線に対して傾斜した軸線周りに回動自在に支持され , かつ, 前記キヤリャの接触面と接触する第 1円錐面及び前記可動体の接触面と 接触する第 2円錐面をもつ二段円錐状のトラクシヨンロータと、
前記キャリャ及び可動体と協働して外側から挟み込むように前記トラクシヨン ロータに接触するトラクシヨンリングと、
を含む、 ことを特徴とする請求の範囲第 1 0項に記載の無段変速装置。
1 4 . 前記トラクシヨンリングは、 前記入力軸又は出力軸の軸線方向 において, 前記キヤリャの接触面と可動体の接触面との間に配置されている、 ことを特徴とする請求の範囲第 1 3項に記載の無段変速装置。
1 5 . 前記可動体を前記入力軸の軸線方向の一方側に向けて付勢する 付勢部材と、 前記付勢部材の付勢力に杭して前記可動体を移動させるベく押圧す る押圧部材と、 を含む、
ことを特徴とする請求の範囲第 1 1項に記載の無段変速装置。
1 6 . 前記トラクシヨンロータの第 1円錐面は、 その回転中心線が前 記入力軸又は出力軸の軸線と交わる点に頂点をもつように形成されている、 ことを特徴とする請求の範囲第 1 1項に記載の無段変速装置。
1 7 . 前記トラクシヨンリングは、 その中心が前記入力軸又は出力軸 の軸線と同軸上に位置した状態で、 前記入力軸又は出力軸の軸線回りに回動自在 に支持され、
前記トラクシヨンロータは、 前記トラクシヨンリングと前記可動体及び回転体 との間において公転不能に周方向に配列された固定ロータと、 前記固定ロータに 対し相対的に移動可能に支持された可動ロータと、 を含む、
ことを特徴とする請求の範囲第 1 1項に記載の無段変速装置。
1 8 . 前記トラクシヨンロータは、 二つの前記固定ロータと、 前記出 力軸回りの所定角度範囲において移動自在に設けられたリンクに回動自在に支持 された一つの前記可動ロータと、 を含む、
ことを特徴とする請求の範囲第 1 7項に記載の無段変速装置。
1 9 . 前記トラクシヨンリングは、 その中心が径方向に移動自在にか つ前記入力軸又は出力軸の軸線回りに回動不能に支持され, かつ, 前記トラクシ ョンロータを内接させると共に法線荷重を増加させるようにカム作用を及ぼす力 ム面を有し、
前記トラクシヨンロータは、 所定の角度範囲を公転可能に支持されると共に、 前記第 1円錐面及び第 2円錐面に対して相対的に回転し得ると共に前記カム面に 接触するベアリングを有する、
ことを特徴とする請求の範囲第 1 3項に記載の無段変速装置。
PCT/JP2005/001298 2004-02-16 2005-01-25 無段変速装置 WO2005078313A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005517923A JPWO2005078313A1 (ja) 2004-02-16 2005-01-25 無段変速装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004037612 2004-02-16
JP2004-037612 2004-02-16

Publications (1)

Publication Number Publication Date
WO2005078313A1 true WO2005078313A1 (ja) 2005-08-25

Family

ID=34857783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/001298 WO2005078313A1 (ja) 2004-02-16 2005-01-25 無段変速装置

Country Status (3)

Country Link
JP (1) JPWO2005078313A1 (ja)
TW (1) TW200530522A (ja)
WO (1) WO2005078313A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010107188A2 (ko) * 2009-03-18 2010-09-23 Na Young Bae 자동 무단 변속장치
CN102269056A (zh) * 2006-06-26 2011-12-07 福博科技术公司 无级变速器
GB2525855A (en) * 2014-05-05 2015-11-11 Universitã Catholique De Louvain Continuously variable planetary transmission

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1762199A (en) * 1929-07-03 1930-06-10 Hartford Special Machinery Co Variable-speed transmission
JPS591862A (ja) * 1982-06-28 1984-01-07 Komatsu Ltd 機械式無段変速機
JPH11515077A (ja) * 1995-10-26 1999-12-21 ゲトラク イノヴァツィオンズ ゲーエムベーハー 変速比を無段階で変更可能な自動車変速機
WO2003048608A1 (fr) * 2001-12-05 2003-06-12 Suenori Tsujimoto Dispositif de changement de vitesse

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1762199A (en) * 1929-07-03 1930-06-10 Hartford Special Machinery Co Variable-speed transmission
JPS591862A (ja) * 1982-06-28 1984-01-07 Komatsu Ltd 機械式無段変速機
JPH11515077A (ja) * 1995-10-26 1999-12-21 ゲトラク イノヴァツィオンズ ゲーエムベーハー 変速比を無段階で変更可能な自動車変速機
WO2003048608A1 (fr) * 2001-12-05 2003-06-12 Suenori Tsujimoto Dispositif de changement de vitesse

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102269056A (zh) * 2006-06-26 2011-12-07 福博科技术公司 无级变速器
CN102269056B (zh) * 2006-06-26 2013-10-23 福博科技术公司 无级变速器
WO2010107188A2 (ko) * 2009-03-18 2010-09-23 Na Young Bae 자동 무단 변속장치
WO2010107188A3 (ko) * 2009-03-18 2010-11-25 Na Young Bae 자동 무단 변속장치
GB2525855A (en) * 2014-05-05 2015-11-11 Universitã Catholique De Louvain Continuously variable planetary transmission

Also Published As

Publication number Publication date
JPWO2005078313A1 (ja) 2007-10-18
TW200530522A (en) 2005-09-16

Similar Documents

Publication Publication Date Title
US10253881B2 (en) Systems and methods for axial force generation
US7207918B2 (en) Continuously variable transmission
US20080261747A1 (en) Adjusting device with a CVT planetary roller transmission
WO2011114494A1 (ja) 無段変速機
WO2004070233A1 (ja) トラクションドライブ式無段変速機
JP2008530461A (ja) 連続可変トロイダルトランスミッション
EP1102940B1 (en) Infinitely variable epicyclic transmissions
FR2634848A1 (fr) Transmission a variation continue a courroie plate
WO2005078313A1 (ja) 無段変速装置
JP2010127382A (ja) ベルト式無段変速機
JP3914307B2 (ja) 無段変速可能な巻掛け式変速機
JP2699687B2 (ja) 摩擦車式無段変速機の変速制御装置
US5163884A (en) Friction-type stepless speed change device
JP2007113749A (ja) 無段変速装置
JPH1163140A (ja) 遊び車付き無段変速機
JP2004263857A (ja) トラクションドライブ式無段変速機
JP2007120718A (ja) 無段変速装置
JP2007071350A (ja) 無段変速装置
WO2005083299A2 (en) Continuously variable transmission with easily changeable transmission ratio
JP4685603B2 (ja) 作業車両用変速装置
JP4158491B2 (ja) ベルト挟み径/挟み圧直列制御型無段変速装置
JP2005221060A (ja) 無段変速装置
JPH0587202A (ja) 変速プーリ装置
JP2005172065A (ja) トラクションドライブ式無段変速機
JP2004028172A (ja) 摩擦式変速装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005517923

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase