WO2005072895A1 - 表面被覆超硬合金製切削工具、及びその製造方法 - Google Patents

表面被覆超硬合金製切削工具、及びその製造方法 Download PDF

Info

Publication number
WO2005072895A1
WO2005072895A1 PCT/JP2005/001208 JP2005001208W WO2005072895A1 WO 2005072895 A1 WO2005072895 A1 WO 2005072895A1 JP 2005001208 W JP2005001208 W JP 2005001208W WO 2005072895 A1 WO2005072895 A1 WO 2005072895A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
target
atomic
cutting
carbon
Prior art date
Application number
PCT/JP2005/001208
Other languages
English (en)
French (fr)
Inventor
Keisuke Morita
Tomoyuki Masuno
Akira Osada
Eiji Nakamura
Original Assignee
Mitsubishi Materials Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004146397A external-priority patent/JP4530138B2/ja
Priority claimed from JP2004146398A external-priority patent/JP4530139B2/ja
Priority claimed from JP2004212896A external-priority patent/JP4530142B2/ja
Application filed by Mitsubishi Materials Corporation filed Critical Mitsubishi Materials Corporation
Priority to EP05709435.1A priority Critical patent/EP1710032B1/en
Priority to US10/597,505 priority patent/US7655299B2/en
Publication of WO2005072895A1 publication Critical patent/WO2005072895A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0664Carbonitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • Y10T428/24967Absolute thicknesses specified
    • Y10T428/24975No layer or component greater than 5 mils thick
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/252Glass or ceramic [i.e., fired or glazed clay, cement, etc.] [porcelain, quartz, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/30Self-sustaining carbon mass or layer with impregnant or other layer

Definitions

  • the present invention provides a lubricating amorphous carbon-based coating even when cutting steel materials such as various types of steel and iron, and non-ferrous materials such as A1 alloys and Cu alloys, particularly at high speeds.
  • the present invention relates to a surface-coated cemented carbide cutting tool that exhibits excellent wear resistance (hereinafter referred to as coated carbide tool).
  • the present invention provides a surface coating layer having excellent high-temperature hardness and heat resistance, and excellent high-temperature strength, as well as excellent lubricating properties, and therefore, particularly, various A1 and A1 alloys, Cu and Cu alloys,
  • the surface coating layer This is a coated carbide tool that exhibits excellent wear resistance without occurrence of chipping (micro chipping).
  • a coated carbide tool it can be freely attached to and detached from the tip of a cutting tool for turning or flat cutting of various steel materials such as steel and iron, and non-ferrous materials such as A1 alloy and Cu alloy.
  • a throw-away insert used for mounting on a drill, a drill miniature drill used for drilling, etc., and a solid type end mill used for face milling, grooving, shoulder processing, etc.
  • a throwaway end mill tool or the like which detachably attaches a way tip and performs cutting in the same manner as the solid type end mill.
  • Ti target as a power source electrode (evaporation source) in a sputtering device, and forming in a reaction atmosphere consisting of a mixed gas of nitrogen and Ar, or a mixed gas of hydrocarbon decomposition gas and nitrogen and Ar.
  • Adhesion bonding consisting of one or both of a titanium nitride (hereinafter, referred to as TiN) layer and a titanium carbonitride (hereinafter, referred to as TiCN) layer and having an average layer thickness of 0.13 xm
  • a WC target was used as a power source electrode (evaporation source), formed in a reaction atmosphere composed of a mixed gas of hydrocarbon decomposition gas and Ar, and measured with an Auger spectrometer.
  • Coated carbide tools which have a composition consisting of carbon and unavoidable impurities, and have a lubricating amorphous carbon-based coating having an average layer thickness of 11 ⁇ m. It has been.
  • the conventional coated carbide tool described above has a force source electrode (evaporation source) with a Ti target sputtering device, a power source electrode (evaporation source) with a Ti target sputtering device, a power source electrode (evaporation source) with a Ti target sputtering device, a power source electrode (evaporation source) with a Ti target sputtering device, a power source electrode (evaporation source) with a Ti target sputtering device, a power source electrode (evaporation source) with a Ti target sputtering device, a power source electrode (evaporation source) with a Ti target sputtering device, a power source electrode (evaporation source) with a Ti target sputtering device, a power source electrode (evaporation source) with a Ti target sputtering device, a power source electrode (evaporation source) with a Ti target sputtering device, a power source electrode (evaporation source) with a Ti
  • Nitrogen and Ar are introduced at, for example, a nitrogen flow rate of 200 sccm and an Ar flow rate of 300 sccm, and a mixed gas of, for example, lPa of nitrogen and Ar, or, for example, CH (charcoal).
  • H flow rate 40sccm
  • nitrogen flow rate 200sccm
  • Ar flow rate 40sccm
  • a sputtering power of 12 kW (frequency: 40 kHz) is applied to the power source electrode (evaporation source) of the Ti target, while a bias voltage of, for example, -100 V is applied to the carbide substrate.
  • a glow discharge is generated under the conditions described above, and an adhesion bonding layer composed of either or both of a TiN layer and a TiCN layer having a predetermined thickness is formed on the surface of the cemented carbide substrate.
  • hydrocarbons such as CH
  • Ar was introduced at a rate of 40 to 80 sccm in CH flow rate and 250 sccm in Ar flow rate, and the nitrogen was introduced.
  • a mixed gas of methane and the mixed gas of nitrogen and Ar The atmosphere is changed to a reaction atmosphere composed of, for example, a mixed gas of hydrocarbon decomposition gas of IPa and Ar, and the bias voltage applied to the above-mentioned carbide substrate is set at, for example, 120 V, and the cathode electrode of the WC target (evaporation source) It is manufactured by depositing a lubricating amorphous carbon-based coating with a predetermined thickness on the above-mentioned adhesion bonding layer under the condition that an output power of 4 to 6 kW (frequency: 40 kHz) is applied. It is also known (see JP-A-07-164211 and JP-A-2002-513087).
  • tungsten carbide hereinafter, referred to as WC
  • TiCN titanium carbonitride
  • the lower layer has an average layer thickness of 1.5 to 10 x m, and has a composition formula: (Ti Al) N (
  • the upper layer has an average layer thickness of 110 / im, and a WC target is used as a power source electrode (evaporation source) by a sputtering device. It is formed in a reaction atmosphere consisting of a mixed gas, and is measured by an Auger spectrometer.
  • An amorphous carbon-based lubricating layer having a composition consisting of carbon and inevitable impurities, and a coated carbide tool formed by vapor deposition is known, and a surface coating layer of the coated carbide tool is known.
  • the (Ti, A1) N layer which is a hard layer, has high-temperature hardness and heat resistance due to Al as a component, has high-temperature strength due to Ti, and has an amorphous carbon-based lubricating layer as the upper layer.
  • the above coated carbide tool is, for example, a vapor deposition apparatus schematically shown in FIG. 6, that is, an alloy in which a Ti-A1 alloy having a predetermined composition is set as a force source electrode (evaporation source).
  • a discharge device and a vapor deposition device equipped with a sputtering device on which a WC target was set as a power source electrode (evaporation source) were used, and the above-mentioned super-hard substrate was charged into the deposition device.
  • Ar flow rate Introduced at a rate of 250 sccm, for example, to make a reaction atmosphere composed of a mixed gas of IPa hydrocarbon decomposition gas and Ar, for example, a bias voltage of 20 V applied to the cemented carbide substrate, Amorphous carbon-based lubrication was applied to the hard layer consisting of the (Ti, A1N layer) under the conditions that an output of 416 kW (frequency: 40 kHz) was applied to the target power electrode (evaporation source). It is also known that it is manufactured by vapor-depositing a layer (see JP-T-2002-513087).
  • a magnetic field is formed by the electromagnetic coil using a vapor deposition apparatus provided with an electromagnetic coil in each of the sputtering apparatuses and serving as a magnetron sputtering apparatus, and the magnetic flux density at the mounting portion of the superhard substrate is set to 100 300 G (Gauss).
  • the heating temperature in the apparatus is set to 300 to 500 ° C.
  • the reaction gas in the apparatus is a hydrocarbon such as CH
  • nitrogen and Ar preferably CH flow rate: 25-100sccm, nitrogen flow rate: 200-300sccm
  • the power source electrode (evaporation source) of the WC target of both magnetron sputtering devices has, for example, a sputtering power of 11 kW (frequency: 40 kHz),
  • a sputtering power of 11 kW frequency: 40 kHz
  • a sputtering power of 38 kW frequency: 40 kHz
  • the structure of the carbon-based amorphous coating is coated with fine particles of a crystalline titanium carbonitride-based compound [hereinafter referred to as “crystalline Ti”.
  • crystalline Ti a crystalline titanium carbonitride-based compound
  • (C, N) -based compound fine particles ” have a microstructure with a dispersed distribution.
  • Nitrogen 0.5 20 atomic%
  • the coated carbide tool formed with this lubricating amorphous carbon-based film has a W component In combination with the strength improvement effect of To exhibit even more excellent wear resistance over a long period of time without the occurrence of microscopic chipping.
  • Nitrogen 0.5-30 atomic%
  • a highly lubricated amorphous carbon-based coating formed by vapor deposition of a lubricating amorphous carbon-based coating having an average layer thickness of 11 / m It is characterized by coated carbide tools that exhibit wear properties.
  • the adhesion bonding layer composed of either or both of the TiN layer and the TiCN layer is located between the cemented carbide substrate and the lubricating amorphous carbon-based coating, and firmly adheres to both of them.
  • the average layer thickness is less than 0.1 lzm, the desired excellent adhesion cannot be secured, while the average layer thickness cannot be assured. Above 3 xm, it is easy to cause thermoplastic deformation, especially at high speed cutting
  • the average layer thickness was determined to be 0.1 ⁇ 3 ⁇ ⁇ ⁇ , since this would cause chipping in the lubricious amorphous carbon-based coating.
  • the W component has the effect of forming the base of the above-mentioned lubricating amorphous carbon-based coating and improving the strength of the coating.
  • the content is less than 5 atomic%, the desired high strength is ensured.
  • the content exceeds 40 atomic%, the lubricating property will rapidly decrease, so the content was set to 540 atomic%.
  • the Ti component, the N component, and the C (carbon) component combine under magnetic field film formation and exist as crystalline Ti (C, N) -based compound fine particles in the coating, which significantly improves the hardness of the coating.
  • the Ti content is less than 0.5 atomic% and the N content is less than 0.5 atomic%, the proportion of Ti (C, N) -based fine particles in the coating decreases. If the content exceeds 30 atomic% for the Ti component and 30 atomic% for the N component, the strength and lubricity will rapidly decrease. Therefore, their contents were determined as Ti: 0.5-30 atomic% and N: 0.5-30 atomic%, respectively.
  • the average layer thickness is less than 1 ⁇ m, the desired lubricating and abrasion resistance effects cannot be secured, while if the average layer thickness exceeds 13 ⁇ , chipping occurs at the cutting edge.
  • the average layer thickness was determined to be 11 ⁇ m because of the fact that it becomes easier.
  • the present inventors have conducted further research to develop a coated carbide tool in which a lubricous amorphous carbon-based coating exhibits excellent wear resistance especially in high-speed cutting.
  • a magnetic field is formed by the electromagnetic coil, the magnetic flux density at the mounting portion of the superhard substrate is set to 100 to 300 G (Gauss), and the heating temperature in the device is set to 300 to 500 ° C.
  • Nitrogen and Ar as reaction gas in the device For example, nitrogen is introduced at a flow rate of 200 sccm and Ar flow rate is introduced at a rate of 300 sccm to form a reaction atmosphere composed of, for example, a mixed gas of nitrogen and Ar of IPa, and a force source electrode (evaporation source) of the Ti A1 alloy target is Output: A sputtering power of 12 kW (frequency: 40 kHz) is applied.
  • a glow discharge is generated on the super-hard substrate under the condition that a bias voltage of, for example, 1100 V is applied.
  • (Ti, A1) N) layer When a composite nitride layer of Ti and A1 (hereinafter, referred to as (Ti, A1) N) layer is formed, the resulting (Ti, A1) N layer is firmly adhered to the surface of the cemented carbide substrate. Further, the adhesion to the cemented carbide substrate can be further improved by film formation in a magnetic field, and the high-temperature hardness and heat resistance can be improved by the inclusion of A1 in the magnetic field. In addition, even in high-speed cutting with high heat generation, it will exhibit excellent wear resistance without chipping.
  • CH flow rate 25-100sccm
  • nitrogen flow rate 200-300sccm
  • the power source electrode (evaporation source) of the WC target of the two magnetron sputtering apparatuses has, for example, a sputtering power of 13 kW (frequency: 40 kHz), and the Ti A1 alloy target has
  • the lubricating amorphous carbon-based film formed as a result is formed.
  • the film is tightly and tightly bonded to the (Ti, A1) N layer, and the structure of the carbon-based amorphous material is shown in the transmission electron microscope as shown in the schematic diagram in FIG. 1B.
  • the substrate has a structure in which crystalline Ti-A1-based composite carbonitride fine particles with excellent high-temperature hardness and heat resistance [hereinafter referred to as "crystalline Ti-A1-based (C, N) fine particles"] are dispersed and distributed. To be like that.
  • the resulting lubricious amorphous carbon-based coating has a dispersion distribution of crystalline Ti-A1 (C, N) fines.
  • C, N crystalline Ti-A1
  • the present invention has been made based on the above research results,
  • a WC target and a Ti-A1 alloy target are used as power source electrodes (evaporation sources), and a reaction atmosphere consisting of a hydrocarbon decomposition gas and a mixed gas of nitrogen and Ar. Film in a magnetic field, and measured with an Auger spectrometer,
  • the adhesion bonding layer composed of the N layer has excellent high-temperature strength due to the constituent component Ti, and excellent high-temperature hardness and heat resistance due to the A1 component as described above. If the X value, which indicates the content ratio of Ti, is less than 0.40 in the ratio (atomic ratio) to the total amount with Ti, the effect of improving wear resistance in high-speed cutting with high heat generation cannot be obtained. When the X value exceeds 0.60, the high temperature strength sharply decreases, which may cause chipping. Therefore, the X value was set to 0.40-0.60.
  • the (Ti, A1) N layer is firmly and tightly bonded to both the super-hard substrate and the lubricating amorphous carbon-based coating, and the adhesion to the super-hard substrate is further improved by film formation in a magnetic field.
  • the average layer thickness is less than 0.1 ⁇ , it is not possible to secure the desired excellent adhesion, while if the average layer thickness exceeds 3 ⁇ , especially high speed The average layer thickness was determined to be 0.1-3 ⁇ ⁇ ⁇ ⁇ because it would cause chipping during cutting.
  • the W component has the effect of forming the base of the above-mentioned lubricating amorphous carbon-based coating and improving the strength of the coating.
  • the content is less than 5 atomic%, the desired high strength is ensured.
  • the content exceeds 20 atomic%, the lubricity will rapidly decrease, so the content was set to 520 atomic%.
  • the Ti and A1 components, the nitrogen (N) component, and the carbon (C) component are combined under magnetic field film formation, and are present as fine particles of crystalline Ti-A1 (C, N) in the film.
  • -A1 (C, N) fine particles have excellent high-temperature strength due to the constituent components Ti and N, and excellent high-temperature hardness and heat resistance due to the A1 and C components.
  • Minute Scattered coatings have significantly improved abrasion resistance, but their content is less than 2.5 at% for T ⁇ , less than 1.6 at% for A1 component, and less than 0.1 at% for ⁇ component.
  • the content is less than 4 atomic%, the proportion of fine particles of Ti-A1 (C, N) in the coating film becomes too small, and the desired wear resistance cannot be secured.
  • the content exceeds 10 at% for the component, 15 at% for the A1 component, and 22.5 at% for the N component, the high-temperature strength decreases, or the high-temperature hardness and heat resistance rapidly decrease.
  • the contents were determined as Ti: 2.5-10 atomic%, Al: l.615 atomic%, and nitrogen: 0.4-22.5 atomic%, respectively.
  • the average layer thickness is less than 1 beta m, can not and child secure desired lubricity and abrasion resistance effect, whereas when the average layer thickness exceeds 13 xm, Chibbingu occurs easily on the cutting edge
  • the average layer thickness was determined to be 13 ⁇ m.
  • the present inventors have found that the surface coating layer exhibits excellent wear resistance over a long period of time without generation of chipping, especially in high-speed heavy cutting of a work material such as the above-mentioned non-ferrous material.
  • an arc ion plating apparatus having a structure shown in a schematic plan view in FIG. 3A and a schematic front view in FIG. 3B, that is, a rotating table for mounting a carbide substrate is provided in the center of the apparatus.
  • the A1 content is relatively high (the Ti content is low).
  • An arc plating apparatus equipped with metal Cr as a force source electrode (evaporation source) was also used at a position rotated 90 degrees with respect to the cathode electrode, and the center axis of the apparatus was placed on the rotary table of the vapor deposition apparatus.
  • a plurality of carbide substrates are mounted in a ring shape at a predetermined radial distance from the substrate, and in this state, the rotating table is rotated while the atmosphere in the apparatus is a nitrogen atmosphere, and the lower layer (hard layer) formed by vapor deposition is formed.
  • the carbide substrate itself is also used for the purpose of making the layer thickness uniform While rotating, an arc discharge is generated between the force source electrode (evaporation source) and the anode electrode on each of the left and right sides in the drawing, and a composite nitride of A1 and Ti is formed on the surface of the carbide substrate.
  • a layer [hereinafter referred to as (Al / Ti) N] layer is formed, in the resulting (Al / Ti) N layer, the cemented carbide substrate arranged in a ring on a turntable has the above-mentioned one side.
  • the highest A1 content point is formed in the layer at the point of closest approach to the power source electrode (evaporation source) of the A1-Ti alloy, which has a relatively high A1 content (low Ti content).
  • the Ti content is relatively high, the (A1 content is low), and the Ti-A1 alloy is closest to the force source electrode, the highest Ti content point is formed in the layer, Due to the rotation of the rotary table, the A1 maximum content point and the Ti maximum content point alternate in the layer at a predetermined interval along the layer thickness direction. It has a composition change structure in which the Al and Ti contents continuously change from the highest A1 content point to the highest Ti content point, and from the highest Ti content point to the highest Al content point. .
  • the A1 content in the A1-Ti alloy which is the force source electrode (evaporation source) on one side of the opposed arrangement
  • the Ti content in the Ti-A1 alloy, which is the force source electrode (evaporation source) on the other side is set to be relatively higher than the A1 content in the conventional Ti-A1 alloy. In addition to making it relatively high compared to the Ti content of the alloy, controlling the rotation speed of the turntable on which the carbide substrate is mounted,
  • composition formula (Al Ti) N (where X is 0.05—0.3
  • the highest Ti content point is determined by the composition formula: (Ti Al) N (However, in atomic ratio, Y is 0.05-0.3.
  • the thickness between the A1 maximum content point and the Ti maximum content point adjacent to each other in the thickness direction is 0.01-0.1 x m
  • the Al content is relatively higher in the above-mentioned A1 maximum content part compared to the conventional (Ti, A1) N layer, it shows higher high-temperature hardness and heat resistance (high-temperature characteristics),
  • the Ti content is relatively higher in the above-mentioned Ti highest content portion than in the conventional (Ti, A1) N layer, the Ti content is higher and the A1 highest content is higher.
  • Ti is higher since the interval between the dots is extremely small, the layer as a whole has excellent high-temperature hardness and heat resistance while maintaining excellent high-temperature strength.
  • a force source electrode is a Ti target magnetron sputtering apparatus, and a force source electrode (evaporation source).
  • the source is mounted on a rotary table of a vapor deposition system equipped with a magnetron sputtering system for a WC target in an opposed arrangement, and the above-mentioned carbide substrate having the lower layer formed thereon is rotated.
  • the cemented carbide substrate itself is also rotated, and a magnetic field is formed by an electromagnetic coil to reduce the magnetic flux density at the mounting portion of the cemented carbide substrate.
  • a magnetic field is formed by an electromagnetic coil to reduce the magnetic flux density at the mounting portion of the cemented carbide substrate.
  • Hydrocarbons such as H, nitrogen and Ar, preferably C H flow rate: 25 100sccm, nitrogen flow rate:
  • reaction atmosphere is, for example, 1 Pa of a decomposed gas of CH and a mixed gas of nitrogen and Ar.
  • the power source electrode (evaporation source) of the WC target of the sputtering device has, for example, a sputtering power of 13 kW (frequency: 40 kHz), and the Ti target has a power of, for example, 3 to 8 kW (frequency: 40 kHz).
  • the amorphous carbon-based lubricating layer (upper layer) is formed under the condition that the sputtering power is simultaneously applied, the resulting amorphous carbon-based lubricating layer is observed for its structure with a transmission electron microscope. As shown in the schematic diagram in Fig.
  • fine particles of crystalline titanium carbonitride-based compound were placed on the base of the carbon-based amorphous body containing W component [hereinafter, "crystalline Ti (C, N) -based compound fine particles” Has an organization that is distributed and distributed.
  • Nitrogen 0.5 30 atomic%
  • the balance being composed of carbon and unavoidable impurities.
  • the formed amorphous carbon-based lubricating layer has an effect of the W component contained in the base material, an effect of dispersing and dispersing the crystalline Ti (C, N) -based fine particles, and an effect of forming the magnetic field by the electromagnetic coil.
  • the high-temperature strength is remarkably improved by the grain refining effect.
  • (E) A coated carbide layer formed by vapor deposition of a (Al / Ti) N layer having the composition change structure in the lower layer and a surface coating layer in which the upper layer is formed of an amorphous carbon-based lubricating layer.
  • the tool has excellent high-temperature hardness and heat resistance even in high-speed heavy cutting of the above-mentioned non-ferrous materials and other materials with high heat generation and high mechanical impact, especially in the case of high-temperature hard tools.
  • the amorphous carbon-based lubricating layer which has superior high-temperature strength and the upper layer, also has excellent high-temperature strength, so that the surface coating layer has excellent abrasion resistance without generation of chipping. To be able to demonstrate their sexuality over a long period of time.
  • the present invention has been made based on the results of the above research, and has the following features:
  • the lower layer has an average layer thickness of 1.5-10 ⁇ , and the A1 maximum content point and the Ti maximum content point are alternately repeated at predetermined intervals along the thickness direction. Having a component concentration distribution structure in which the A1 and Ti contents are continuously changed from the A1 highest content point to the Ti highest content point, and the Ti highest content point to the A1 highest content point, respectively.
  • the highest A1 content point is determined by the composition formula: (Al Ti) N (where X is 0.0
  • the highest Ti content point is determined by the composition formula: (Ti Al) N (however, in atomic ratio,
  • the upper layer has an average layer thickness of 110 to 10 zm, and uses a WC target and a Ti target as a power source electrode (evaporation source) with a magnetron sputtering device, and decomposes hydrocarbons.
  • a film is formed in a magnetic field in a reaction atmosphere composed of a mixed gas of gas, nitrogen, and Ar, and measured by an O.D.
  • coated carbide tools that are formed by vapor deposition of the surface coating layer composed of (a) and (b) above, and in which the surface coating layer exhibits excellent chipping resistance especially in high-speed heavy cutting. It is.
  • the A1 component in the (AlZTi) N layer which is the lower layer, improves high-temperature hardness and heat resistance, and the Ti component has an effect of improving high-temperature strength. Therefore, the content of the A1 component is relatively high, and A1 is the highest. At the content point, the steel has more excellent high-temperature hardness and heat resistance, and exhibits excellent wear resistance under high-speed cutting conditions accompanied by high heat generation.
  • the ratio (atomic ratio) of the total amount to A is less than 0.05, the proportion of A1 becomes relatively too large, and even if the highest Ti content point with excellent high-temperature strength exists adjacent to the A decrease in the strength of the steel itself is inevitable, and as a result, chipping and the like are likely to occur under high-speed heavy cutting conditions.
  • the X value indicating the ratio of the component exceeds 0.35, the ratio of A1 is relatively high. Too low to ensure the desired high-temperature hardness and heat resistance
  • the power to do it The power to stop with S, the X-Nao is set to 0.05-5.35.
  • the A1 maximum content point is excellent in high-temperature hardness and heat resistance, but is inferior in high-temperature strength.
  • High content ratio This results in excellent high-temperature strength.
  • the highest Ti content points are alternately interposed in the thickness direction.
  • the Y value indicating the ratio of A1 is the total amount with Ti. If the ratio (atomic ratio) of the element exceeds 0.35, the proportion of A1 becomes relatively large, and the desired high-temperature strength cannot be secured. If it is less than 0.05, the proportion of Ti becomes relatively too large, and it becomes impossible to provide the desired high-temperature hardness and heat resistance at the highest Ti content point, and this is a factor that promotes the progress of wear. Therefore, Yi Nao was determined to be 0.05-0.35.
  • the distance is less than 0.01 ⁇ m, it is difficult to clearly define each point with the above composition, and as a result, the desired high-temperature strength and excellent high-temperature hardness and heat resistance of the layer are secured.
  • the interval exceeds 0.1 lxm, the disadvantages of each point are: Insufficient high-temperature strength at the highest A1 content point, insufficient high-temperature hardness and heat resistance at the highest Ti content point Is locally present in the layer, which causes chipping to occur easily on the cutting edge and promotes abrasion. Therefore, the interval is set to 0.01 to 0.1xm.
  • the layer thickness is less than 1.5 ⁇ , the desired wear resistance cannot be ensured for a long period of time, while if the average layer thickness exceeds 10 ⁇ , chipping tends to occur.
  • the average layer thickness was determined to be 1.5- ⁇ .
  • the W component is contained in the base material of the above-mentioned amorphous carbon-based lubricating layer, and has an effect of improving the high-temperature strength of the layer. However, if the content is less than 5 atomic%, desired excellent high-temperature strength is ensured. However, if the content exceeds 40 atomic%, the lubricating properties will rapidly decrease, so the content was determined to be 5-40 atomic%.
  • the Ti component, the N component, and the C (carbon) component combine under magnetic field film formation and exist as fine particles of crystalline Ti (C, N) -based compounds in the coating film, and provide the excellent lubricity of the layer. It has the effect of significantly improving the high-temperature strength without impairing it. However, if its content is less than 0.5 atomic% for the Ti component and less than 0.5 atomic% for the N component, Ti (C, N) -based Since the content of fine particles is small, it is not possible to secure the desired excellent high-temperature strength. On the other hand, if the content exceeds 30 atomic% for the Ti component and 30 atomic% for the N component, the high-temperature hardness and Lubrication Since the properties suddenly decrease, the content of each should be Ti: 0.5-30 atomic%.
  • N 0.5-30 atomic%.
  • the average layer thickness is less than 1 ⁇ m , the desired lubricating effect cannot be ensured over a long period of time, while if the average layer thickness exceeds 10 zm, chipping tends to occur on the cutting edge. Therefore, the average layer thickness was determined to be 11 to 10 ⁇ m.
  • the coated cemented carbide tool of the present invention comprises a lower layer (hard layer) and an upper layer (amorphous carbon-based) on a WC-based cemented carbide substrate or a titanium carbonitride-based cermet substrate surface. (A lubricating layer).
  • TiN, TiCN, and TiAIN in the lower layer provide excellent adhesion to the substrate, high-temperature hardness, heat resistance, and high-temperature strength.
  • the fine particle diameter of the crystalline Ti (C, N) -based compound and the crystalline (Ti, Al) (C, ⁇ ) -based compound dispersed and distributed in the upper layer is preferably 40 nm or less. When the particle size is 40 nm or more, the wear resistance of the entire upper layer deteriorates.
  • the lower layer exhibits excellent high-temperature hardness, heat resistance, and high-temperature strength in high-speed cutting and high-speed heavy cutting with high heat generation and mechanical impact
  • the upper layer amorphous
  • the high-quality carbon-based lubricating layer also exhibits excellent lubricity, wear resistance and high-temperature stability by containing fine crystals of the lower layer component.
  • the hardness of the lubricating amorphous carbon-based coating constituting the tool becomes ultrafine by magnetic field deposition on the base material of the carbon-based amorphous body.
  • Dispersion distribution by state Crystalline Ti (C, N) -based compound fine particles greatly improved, combined with the fact that the base material of the carbon-based amorphous material had high strength by the action of the W component, High-speed cutting of various steel materials such as steel and iron, as well as A1 alloys and Cu alloys, etc., exhibit excellent wear resistance without chipping over a long period of time.
  • the wear resistance of the lubricating amorphous carbon-based coating constituting the tool becomes ultra-fine due to the magnetic field film formation on the carbon-based amorphous body.
  • Crystalline (Ti, Al) (C, N) -based compound fine particles that are dispersed and distributed in a state are significantly improved, and the carbon-based amorphous body has a high strength by the action of the W component.
  • the (AlZTi) N layer of the lower layer constituting the surface coating layer has excellent high-temperature hardness and heat resistance, and further excellent high-temperature strength, and has the same upper layer as the non-coated layer.
  • the crystalline carbon-based lubricating layer has the effect of the W component contained in the carbon-based amorphous body and the crystalline T i ( Due to the action of the (C, N) -based compound fine particles and the crystalline (Ti, Al) (C, N) -based compound fine particles, they have an even higher temperature strength, so that particularly high heat generation and Even in high-speed heavy cutting of the above-mentioned non-ferrous materials with high mechanical impact, it can exhibit excellent wear resistance over a long period without chipping on the surface coating layer.
  • FIG. 1A shows a transmission electron microscope using a lubricating amorphous carbon-based coating (including fine particles of a crystalline Ti (C, N) compound) constituting the coated carbide tool of the present invention.
  • FIG. 3 is a schematic diagram showing the results of tissue observation.
  • FIG. 1B shows a transmission type of a lubricating amorphous carbon-based coating (including fine particles of crystalline (Ti, Al) (C, N) -based compounds) constituting the coated cemented carbide tool of the present invention.
  • FIG. 3 is a schematic view showing the result of observation of a structure using an electron microscope.
  • FIG. 2A is a schematic plan view showing a vapor deposition device used for forming an adhesion bonding layer and a lubricating amorphous carbon-based film constituting the coated carbide tool of the present invention.
  • FIG. 2B is a schematic front view of the vapor deposition apparatus shown in FIG. 2A.
  • FIG. 3A is a schematic plan view showing a vapor deposition device used for forming an adhesion bonding layer and a lubricating amorphous carbon-based film constituting the coated carbide tool of the present invention.
  • FIG. 3B is a schematic front view of the vapor deposition device shown in FIG. 2A.
  • FIG. 4A is a schematic plan view of an arc ion plating apparatus used for forming an (AlZTi) N layer which is a lower layer of a surface coating layer of the coated carbide tool of the present invention.
  • FIG. 4B is a schematic front view of the arc ion plating apparatus shown in FIG. 4A.
  • FIG. 5A is a schematic plan view of a vapor deposition device used to form an adhesion bonding layer and a lubricating amorphous carbon-based coating that constitute a conventional coated carbide tool (a comparative coated carbide tool). is there
  • FIG. 5B is a schematic front view of the vapor deposition device shown in FIG. 5A.
  • FIG. 6 shows a vapor deposition apparatus used for forming a (Ti, A1) N layer which is a lower layer of a surface coating layer of a conventional coated carbide tool and an amorphous carbon-based lubricating layer which is an upper layer.
  • a vapor deposition apparatus used for forming a (Ti, A1) N layer which is a lower layer of a surface coating layer of a conventional coated carbide tool and an amorphous carbon-based lubricating layer which is an upper layer.
  • coated carbide tool of the present invention will be specifically described with reference to examples.
  • WC powder, TiC powder, VC powder, TaC powder, NbC powder, Cr C powder, and Co powder having an average particle diameter of 0.83 ⁇ m were prepared.
  • the raw material powder was blended in the composition shown in Table 1, wet-mixed for 84 hours with a ball mill, dried, pressed into a green compact at a pressure of 100 MPa, and the green compact was pressed in a vacuum of 6 Pa.
  • the carbide substrate material for cutting carbon steel is subjected to a HOING process of R: 0.03 on a cutting edge portion to form a carbide substrate A-1—A-10 having a tip shape of ISO standard TNMG160408, and
  • the cemented carbide substrate material for cutting A1 alloy and Cu alloy is polished to ISO standard ⁇ ⁇ Cemented carbide substrate with GX160304R chip shape ⁇ —: ⁇ One A—10.
  • TiCN having an average particle size of 0.5 to 2 ⁇ m (by mass ratio) was used.
  • the mixture was wet-mixed in a ball mill for 84 hours, dried, and pressed into a green compact at a pressure of 100MPa. This green compact was maintained at 1500 ° C for 1 hour in a 2kPa nitrogen atmosphere.
  • Carbide substrate material for cutting carbon steel consisting of TiCN-based cermet and carbide substrate material for cutting A1 alloy and Cu alloy.
  • the cutting edge is subjected to a honing process of R: 0.03 to form a cemented carbide substrate B-1 B-6 with a tip shape of ISO standard 'TNMG16 0408'.
  • the hard substrate material was polished to give a carbide substrate ⁇ - -B-6 f with a chip shape of ISO standard ⁇ 160304 ⁇ .
  • a Ti—A1 electrode having a predetermined composition is used as a force source electrode (evaporation source) of a magnetron sputtering apparatus for forming an adhesion bonding layer having a (Ti, A1) N layer strength.
  • a glow discharge under the condition of applying a bias voltage, the surface of the cemented carbide substrate is bonded to the surface of the TiN layer and the TiCN layer having the target layer thickness shown in Table 3, or both.
  • the condition applied to the electromagnetic coil is a predetermined value in a range of voltage: 50 100 V, current: 10 20 A, and the magnetic flux density in the mounting portion of the carbide substrate is 100 300 G (Gauss).
  • the heating temperature in the vapor deposition apparatus is 400 ° C., and the bias voltage of the superhard substrate is kept at 100 V, and CH (hydrocarbon) is used as a reaction gas in the vapor deposition apparatus.
  • Osccm, Ar flow rate Introduced at a predetermined flow rate within the range of 150-250sccm, the reaction atmosphere was 1 Pa of a decomposition gas of CH and a mixed gas of nitrogen and Ar, and both magnetrons were used.
  • the power source electrode (evaporation source) of the WC target of the sputtering device has a predetermined sputtering power in the range of, for example, 13 kW (frequency: 40 kHz), and the Ti target has a power of 318 kW (frequency : 40 kHz) under the condition that a predetermined sputtering power within the range was applied simultaneously, and a lubricating amorphous carbon-based film having the target composition and the target layer thickness shown in Table 3 was also formed by vapor deposition to obtain the coating of the present invention.
  • Slow-away tips made of the surface-coated cemented carbide of the present invention hereinafter, referred to as the coated carbide tips of the present invention 1, -26, and 2Q 'as hard tools were produced.
  • the carbide substrate A- 1, V one A_10, ics and B_L, a V one B- 6, 6 r Noso respectively, was subjected to ultrasonic cleaning in acetone, in a dry state, 3A, and 3B
  • a plurality of carbide substrates were mounted in a ring shape at a position separated from the central axis by a predetermined distance in the radial direction, and the cathode electrode (
  • a Ti-A1 alloy target having a predetermined composition is arranged, and on the opposite side, a C target with a purity of 99.6 mass% is arranged as a power source electrode (evaporation source) of a magnetron sputtering apparatus.
  • a TiN layer and A Ti target with a purity of 99.9% by mass was placed as a power source electrode (evaporation source) of a magnetron sputtering device for forming an adhesion bonding layer consisting of one or both of the TiCN layers.
  • a glow discharge under the condition that a bias voltage is applied, an adhesion bonding layer composed of one or both of a TiN layer and a TiCN layer having a target layer thickness shown in Table 3 is formed on the surface of the cemented carbide substrate.
  • condition applied to the electromagnetic coil is a predetermined value within a range of voltage: 50-100 V and current: 10-20 A, and the magnetic flux density at the mounting portion of the carbide substrate is set to 100-30 G ( Gauss), the heating temperature in the vapor deposition apparatus is 400 ° C., and the bias voltage of the cemented carbide substrate is kept at 170 V. Hydrogen), nitrogen and Ar, CH flow: 25 100sccm, nitrogen flow: 200-300
  • the power source electrode (evaporation source) of the WC target of the puttering device has, for example, a predetermined sputtering power within the range of 13 kW (frequency: 40 kHz).
  • Output Under conditions where a predetermined sputtering power within the range of 3 to 8 kW (frequency: 40 kHz) is applied simultaneously, a lubricating amorphous carbon-based film having the target composition and target layer thickness shown in Table 4 is formed by vapor deposition.
  • the surfaces of the above-mentioned super-hard substrates A—1, 1′-A-10, 10 r and B_l, 1′-B-6, 6 r were ultrasonically cleaned in acetone
  • a plurality of carbide substrates are mounted in a ring shape at a position radially away from the central axis by a predetermined distance
  • a sputtering power of 12 kW (frequency: 40 kHz) is applied to the sword electrode (evaporation source) of the get, while a glow discharge is generated to the carbide substrate under the condition that a bias voltage of -100 V is applied.
  • an adhesion bonding layer composed of one or both of a TiN layer and a TiCN layer having a target layer thickness shown in Tables 5 and 6 is formed on the surface of the cemented carbide substrate,
  • the bias voltage to be applied is set to 20V and output to the power source electrode (evaporation source) of the WC target.
  • the lubricating property of the target composition and target layer thickness shown in Tables 5 and 6 is also applied on the above-mentioned adhesion bonding layer.
  • conventional coating comparison table surface coating cemented carbide throw ⁇ way chip corresponding to carbide tools hereinafter, referred to as comparative coated carbide inserts
  • a dry high-speed cutting test (normal cutting speed was 200 mZmin.) Of Cu alloy was performed under the following conditions. In each cutting test, the flank wear width of the cutting edge was measured. This measurement The results are shown in Table 3-6.
  • Adhesive bonding layer Wang lied over amorphous «» Steam coating Flank wear ⁇ (iwr Carbide Oki mark ⁇ Mark%) mm
  • Target composition (Yoshi%) Target Cki alloy Instantaneous thickness High speed
  • medium coarse WC powder with average particle size 4. Fine particles of 0.8 zm
  • Ratio, TiC / WC 50/50 powder, and the 1.
  • these super-hard substrates (end mills) C-1 and C-8 were ultrasonically cleaned in acetone, dried, and then deposited as shown in FIGS. 2A and 2B or FIGS. 3A and 3B. It was charged into the apparatus, and under the same conditions as in Example 1 above, either or both of the TiN layer and the TiCN layer having the target layer thicknesses shown in Tables 8 and 9, and the target composition also shown in Tables 8 and 9 And by forming a lubricating amorphous carbon-based coating having a target layer thickness by vapor deposition, an end mill made of the surface-coated cemented carbide of the present invention as the coated carbide tool of the present invention (hereinafter, referred to as the coated carbide end mill of the present invention) 1 to 19 were manufactured respectively.
  • the above-mentioned super-hard substrate (end mill) C-1-1 C-8 was ultrasonically cleaned in acetone and dried, and then the vapor deposition apparatus shown in Figs. 5A and 5B. And under the same conditions as in Example 1 above, either or both of the TiN layer and the TiCN layer having the target layer thickness shown in Table 10, and the target composition and the target layer also shown in Table 10 Thick lubricity
  • the end mill made of a comparative surface-coated cemented carbide equivalent to a conventional coated carbide tool (hereinafter referred to as a comparative coated carbide end mill) Each was manufactured.
  • Work material Plane dimensions: lOOmm X 250mm, thickness: 50mm, JIS A5052 plate material, Cutting speed: 300m / min.,
  • Work material Plane dimensions: 100mm X 250mm, thickness: 50mm JIS-C3710 plate material, Cutting speed: 300m / min.,
  • High-speed side cutting test (normal cutting speed is 180m / min.) Of Cu alloy under the conditions of (1), coated carbide end mills (7, 8) of the present invention and comparative coated carbide end mills (7, 8, 11, 18, 19) about,
  • Work material Plane dimensions: 100mm X 250mm, thickness: 50mm JIS ⁇ S 10C plate material, Cutting speed: 350m / min.,
  • Example 2 The diameter produced in Example 2 above was 8 mm (for forming a cemented carbide substrate C-1-1 C-3), 13 mm
  • the diameter X length of the groove forming part is 4mm X 13mm (Carbide substrate D-1-1D-3), 8mm X 22mm (Carbide substrate D-4-D_6) D-8 and D-8, each with dimensions of 16mm X 45mm (Carbide substrate D_7, D-8) and a two-flute shape with a helix angle of 30 ° were manufactured. .
  • the cutting edges of these super-hard substrates (drills) D-1 to D-8 were honed, ultrasonically cleaned in acetone, and dried, and the same as in FIGS. 2A and 2B or FIG. 3A and 3B, and under the same conditions as in Example 1 above, either or both of the TiN layer and the TiCN layer having the target layer thicknesses shown in Tables 11 and 12, and the same table as above.
  • a drill made of the surface-coated cemented carbide of the present invention as a coated carbide tool of the present invention hereinafter, referred to as The present invention is called coated carbide drills).
  • the cutting edge of the above-mentioned carbide substrate (drill) D-1 D-8 was subjected to hoeing, ultrasonically washed in acetone, and dried, and similarly, FIG. 5B, and under the same conditions as in Example 1 above, one or both of the TiN layer and the TiCN layer having the target layer thickness shown in Table 13, and also shown in Table 13.
  • a comparative surface coated cemented carbide drill equivalent to a conventional coated carbide tool hereinafter referred to as a comparative coated carbide drill
  • coated carbide drills of the present invention 1 1 1 1 and comparative coated carbide drills 1 to 8, of the present invention, coated carbide drills 1, 3, 9, 12 14 and comparative coated carbide drills 11 About 3
  • Work material Plane dimensions: lOOmm X 250mm, thickness: 50mm, JIS .A5052 plate material, Cutting speed: 280m / min.,
  • Work material Plane dimensions: 100mm X 250mm, thickness: 50mm JIS ⁇ S 10C plate material, Cutting speed: 250m / min.,
  • Work material Plane dimensions: 100mm X 250mm, thickness: 50mm JIS-C3710 plate material, Cutting speed: 250m / min.,
  • the coating as present invention coated carbide tool obtained carbide inserts 1 4 2, 42 r, the present invention coated cemented carbide end mill 1 19, and the present invention coated cemented carbide drills 1 19 and conventional coated Comparative coating hard tip 1 -16 which corresponds to carbide tools, 16 r, the lubricity amorphous carbon-based coating film constituting compare coated cemented carbide end mill 1 8, and the comparison coating carbide drill 1 8, the composition was measured using an Auger spectrometer and the layer thickness was measured using a scanning electron microscope. As a result, the target composition and the target layer thickness were substantially the same and the average layer thickness (average value at five cross sections) was obtained.
  • the coated carbide tool of the present invention showed crystalline Ti (CN) compound fine particles dispersed and distributed in the carbon-based amorphous body.
  • the lubricating amorphous carbon-based film shows a structure in which crystalline Ti (CN) -based compound fine particles are dispersed and distributed on the carbon-based amorphous material base.
  • All of the coated carbide tools of the present invention exhibit excellent wear resistance even when cutting A1 alloys, Cu alloys, and steel under high-speed conditions, but have low lubricity.
  • Amorphous carbon-based coating force In a conventional coated carbide tool having a structure composed of a single phase of a carbon-based amorphous body (comparative coated carbide tool), the lubricating amorphous carbon-based coating It is evident that the wear progresses very quickly and the service life is reached in a relatively short time.
  • Example 4 As raw material powders, WC powder, TiC powder, VC powder, TaC powder, NbC powder, Cr C powder, and Co powder having an average particle diameter of 0.7 to 3 ⁇ m were prepared. The powder was blended in the composition shown in Table 14, wet-mixed in a ball mill for 80 hours, dried, and then pressed into a green compact at a pressure of OOMPa, and the green compact was warmed in a vacuum of 6 Pa. Degree: Sintering at 1400 ° C for 1 hour to produce carbide substrate material for cutting carbon steel and carbide substrate material for cutting A1 alloy and Cu alloy, both made of WC-based cemented carbide.
  • the above-mentioned carbide substrate material for carbon steel cutting is subjected to a honing process of R: 0.03 on the cutting edge to form a carbide substrate A—11 A—10 with a tip shape of ISO standard TNMG160408, and
  • the carbide substrate material for cutting A1 alloy and Cu alloy is polished to a carbide with ISO standard ⁇ EGX160304R chip shape.
  • ⁇ _1 'A-10' was the body ⁇ _1 'A-10'.
  • WC powder, Co powder, and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 15, wet-mixed in a ball mill for 80 hours, dried, and then pressed at a pressure of OOMPa.
  • This green compact is sintered in a 2kPa nitrogen atmosphere at a temperature of 1510 ° C for 1 hour, and the V and deviation are made of TiCN-based cermet for cutting carbon steel.
  • the base material and the carbide substrate material for cutting A1 alloy and Cu alloy are manufactured.
  • the carbide substrate material for cutting carbon steel is subjected to Houng processing of R: 0.03 on the cutting edge, and the ISO standard 'TNMG16 0408 Carbide substrate B-1—B-6 with a chip shape of A1 and the A1 alloy and the carbide substrate for Cu alloy cutting were polished. It was cemented carbide substrate B- with a chip shape of ISO standard 'TEGX160304R Te.
  • FIG A plurality of carbide substrates are mounted in a ring shape on the rotary table shown in 2A and 2B at a predetermined distance in the radial direction from the central axis of the rotary table, and the force of the magnetron sputtering device on one side is set.
  • a Ti target with a purity of 99.6% by mass is placed as a source electrode (evaporation source), and a WC target with a purity of 99.6% by mass is placed on the opposite side as a power electrode of a magnetron sputtering device (evaporation source). I do.
  • a Ti A1 alloy target having a predetermined composition is arranged on the side orthogonal to the two force source electrodes.
  • condition applied to the electromagnetic coil is a predetermined value within a range of voltage: 50-100 V and current: 10-20 A, and the magnetic flux density at the mounting portion of the carbide substrate is set to 100-30 G ( Gauss), the heating temperature in the vapor deposition apparatus is 400 ° C., and the bias voltage of the superhard substrate is 100 V.
  • Osccm, Ar flow rate Introduced at a predetermined flow rate within the range of 150-250 sccm, the reaction atmosphere was 1 Pa of CH decomposed gas, a mixed gas of nitrogen and Ar, and both magnetrons were used.
  • the power source electrode (evaporation source) of the WC target of the sputtering device has a predetermined sputtering power in the range of, for example, 13 kW (frequency: 40 kHz), and the Ti target has a power of 318 kW (frequency : 40 kHz) under the condition that a predetermined sputtering power within the range was applied simultaneously, by vapor-depositing a lubricating amorphous carbon-based coating having a target composition and a target layer thickness also shown in Table 16, thereby forming the coating of the present invention.
  • the present invention surface-coated cemented carbide throwaway tip as a cemented carbide tool (hereinafter referred to as the invention-coated cemented carbide tip) 1,-26, 26 ' Each was manufactured.
  • each of the above-mentioned carbide substrates A_l, V-A_10, 10 'and B_l, ⁇ ' -'_ 6, 6 ' was ultrasonically cleaned in acetone and dried, as shown in FIGS. 3A and 3B.
  • a rotary table of a vapor deposition device On a rotary table of a vapor deposition device, a plurality of carbide substrates are mounted in a ring shape at a predetermined radial distance from the center axis of the rotary table, and a cathode electrode (evaporation source) of a magnetron sputter bedding device on one side is mounted.
  • a Ti-A1 alloy target with a predetermined composition is placed, and a C target with a purity of 99.6 mass% is placed on the opposite side as a power source electrode (evaporation source) of a magnetron sputtering device.
  • a power source electrode (evaporation source) of a magnetron sputtering apparatus for forming an adhesion bonding layer composed of one or both of a TiN layer and a TiCN layer was used. 9% by mass Ti target
  • a glow discharge is generated under the condition that a bias voltage of -70 V is applied, so that the target composition and target layer thickness (Ti, Al) shown in Tables 16 and 17 are formed on the surface of the cemented carbide substrate.
  • Ti, Al target layer thickness
  • the condition applied to the electromagnetic coil is a predetermined value in a range of voltage: 50 100 V, current: 10 20 A, and the magnetic flux density in the mounting portion of the carbide substrate is 100 300 G (Gauss).
  • the heating temperature in the vapor deposition apparatus is set to 400 ° C., and the bias voltage of the super-hard substrate is kept at 170 V, and the reaction gas is supplied as a reaction gas in the vapor deposition apparatus.
  • CH hydrocarbon
  • nitrogen and Ar CH flow rate: 25-100sccm
  • nitrogen flow rate 200-300
  • the power source electrode (evaporation source) of the WC target of the puttering device has, for example, a predetermined sputtering power within a range of 11 to 3 kW (frequency: 40 kHz).
  • a predetermined sputtering power within the range of 8 kW (frequency: 40 kHz) is applied simultaneously, a lubricating amorphous carbon-based film having the target composition and target layer thickness shown in Table 17 is also formed by vapor deposition.
  • a throw-away insert 27, 27'-42, 42 'made of a surface-coated carbide alloy of the present invention as a coated carbide tool of the present invention (hereinafter, referred to as a coated carbide chip of the present invention) was manufactured.
  • the surfaces of the above-mentioned super-hard substrates A—1, 1′-A-10, 10 r and B_l, 1′-one B-6, 6 r were ultrasonically cleaned in acetone
  • a plurality of carbide substrates are mounted in a ring shape at a position radially away from the central axis by a predetermined distance
  • the applied bias voltage is -20V
  • the power supply electrode (evaporation source) of the WC target is applied with a predetermined sputter power within the range of 416kW (frequency: 40kHz).
  • a lubricating amorphous carbon-based coating with the target composition and target layer thickness also shown in Table 18 was deposited to form a comparative surface coated cemented carbide throwaway equivalent to a conventional coated carbide tool. Chips (hereinafter referred to as comparative coated carbide tips) 1, 1 ′ 1, 16 and 16 r were manufactured.
  • Cutting condition A High-speed cutting test (normal cutting speed is 120m / min.) Of carbon steel under the following conditions (referred to as cutting condition A),
  • cutting condition B High-speed cutting test of A1 alloy under the conditions (referred to as cutting condition B) (normal cutting speed is 400m / min.)
  • a dry high-speed cutting test (normal cutting speed was 200 m / min.) Of the Cu alloy was performed under the following conditions (cutting conditions C and d). In each cutting test, the flank wear width of the cutting edge was measured. The measurement results are shown in Tables 16-18.
  • these super-hard substrates (end mills) C-11 and C-8 were ultrasonically cleaned in acetone, dried, and then deposited as shown in Figs. 2A and 2B or Figs. 3A and 3B.
  • the (Ti, A1) N layer having the target composition and the target layer thickness shown in Tables 20 and 21 and the target composition and Lubricity of target layer thickness An end mill made of a surface-coated cemented carbide of the present invention as a coated carbide tool of the present invention (hereinafter, referred to as a coated carbide end mill of the present invention) by vapor-depositing and forming an amorphous carbon-based coating. 19 were manufactured respectively.
  • the above-described super-hard substrate (end mill) C-1-1 C-8 was ultrasonically cleaned in acetone and dried, and then the vapor deposition apparatus shown in Figs. 5A and 5B. And a TiN layer having a target layer thickness shown in Table 22 and a lubricating amorphous carbon-based coating having a target composition and a target layer thickness also shown in Table 22 under the same conditions as in Example 4 above.
  • end mills made of comparative surface-coated cemented carbide (hereinafter referred to as comparative coated carbide end mills) 18 corresponding to conventional coated carbide tools were manufactured.
  • Work material Plane dimensions: lOOmm X 250mm, thickness: 50mm, JIS .A5052 plate material, Cutting speed: 320m / min.,
  • Work material Plane dimensions: 100mm X 250mm, thickness: 50mm, JIS 'C3710 plate material, Cutting speed: 320m / min.,
  • Work material Plane dimensions: 100mm X 250mm, thickness: 50mm JIS ⁇ S 10C plate material, Cutting speed: 365m / min.,
  • Axial depth of cut 8.0mm
  • the diameters produced in Example 5 above were 8 mm (for forming the cemented carbide substrate C-11-C3), 13 mm (for forming the cemented carbide substrate C4-1-C16), and 26 mm (for forming the cemented carbide substrate C1-1-6).
  • the base material for forming C-17 and C-18) was used, and the diameter X length of the groove forming part was 4mm each by grinding from these three types of round rod sintered bodies.
  • the cutting edge of the carbide substrate (drill) D-1 D-8 was subjected to hoeung, ultrasonically cleaned in acetone, and dried, and then, similarly to Figs. 2A, 2B or 3A and 3B, and under the same conditions as in Example 4 above, the target composition and the target thickness (Ti, A1) N layer shown in Tables 23 and 24, and By depositing a film of a lubricating carbon-based amorphous material having the target composition and target layer thickness shown in 23 and 24, the surface-coated cemented carbide drill as the coated carbide tool of the present invention is formed. (Hereinafter referred to as the coated carbide drill of the present invention).
  • Work material Plane dimensions: 100mm X 250mm, thickness: 50mm, JIS A5052 plate material, cutting speed: 290m / min.,
  • Work material Plane dimensions: 100mm X 250mm, thickness: 50mm, JIS 'C3710 plate material, Cutting speed: 265m / min.,
  • the coated carbide tool of the present invention was found to be a carbon-based amorphous body.
  • Figure 12 shows a structure in which crystalline Ti-A1 (C, N) fine particles are dispersed and distributed.
  • Serial conventional coating cemented carbide tools were shown the organization of a single phase of the carbon-based amorphous substance.
  • the lubricating amorphous carbon-based coating showed that the crystalline Ti-A1-based (C, N) fine particles were dispersed and distributed on the carbon-based amorphous body.
  • the coated carbide tools of the present invention which have a microstructure, exhibit excellent wear resistance even when cutting A1 alloys, Cu alloys, and steel at high speeds, while maintaining lubrication.
  • WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, CrC powder, TiN powder, TaN powder, each having an average particle diameter of 13 ⁇ m, And Co powder were prepared, and the raw material powders were blended in the composition shown in Table 26, wet-mixed in a ball mill for 60 hours, dried, and then pressed into a green compact at a pressure of 100MPa.
  • the powder is sintered in a vacuum of 6 Pa at a temperature of 1400 ° C for 1 hour, and after sintering, it is polished and made of a WC-based cemented carbide with a tip shape of ISO standard 'TEGX160304R'.
  • a carbide substrate A-1—A-10 was formed.
  • MoC powder MoC powder
  • ZrC powder NbC powder
  • TaC having an average particle diameter of 0.5-2 / im Powder
  • WC powder Co powder
  • Ni powder Ni powder
  • these raw material powders are blended in the blending composition shown in Table 27, wet-mixed for 48 hours with a ball mill, dried, and then pressed at a pressure of lOOMPa.
  • the green compact is pressed and sintered in a 2 kPa nitrogen atmosphere at a temperature of 1500 ° C for 1 hour, and after sintering, it is polished to form a chip conforming to ISO Standard 'TEGX160304R.
  • a TiCN-based cemented carbide substrate B-1-1B-6 was formed.
  • an arc ion plating apparatus shown in FIGS. 4A and 4B that is, a rotary table for mounting a carbide substrate is provided at the center of the apparatus, and the rotary table is sandwiched between the rotary table and one side relatively.
  • A1-Ti alloy with high A1 content and Ti-A1 alloy with relatively high Ti content on the other side were installed as power source electrodes (evaporation sources), and rotated 90 degrees with respect to both cathode electrodes.
  • each of the above-mentioned carbide substrates A-1-1 A-10 and B-1-B-6 in acetone After being ultrasonically cleaned and dried, it is mounted along the outer periphery at a position radially away from the central axis on the rotary table in the vapor deposition apparatus by a predetermined distance.
  • the A1 maximum content point and the Ti maximum content point of the target composition shown in Tables 28 and 29 alternately exist at the target intervals shown in Tables 28 and 29, and the Ti maximum value from the A1 maximum content point.
  • Content point, from the highest Ti content point to the highest A1 content point, has a composition change structure in which the A1 and Ti content continuously change, respectively, and also has the target layer thickness shown in Tables 28 and 29.
  • (Al / Ti) N layer is deposited and formed as a lower layer of the surface coating layer,
  • a Ti target with a purity of 99.9% by mass was used as the power source electrode (evaporation source) of the vapor deposition device shown in Figs. 2A and 2B, ie, the magnetron sputtering device on one side, and the magnetron on the other side.
  • a power source electrode (evaporation source) for the sputtering device use a vapor deposition device in which a WC target with a purity of 99.6% by mass is placed opposite to a rotary table, and the center of this is placed on a rotary table in the device.
  • the above-mentioned cemented carbide substrate on which the lower layer is formed is mounted in a ring shape at a position radially away from the axis by a predetermined distance,
  • the magnetic flux density at the mounting portion of the above-described carbide substrate on which the lower layer is formed is 100 to 300 G. (Gauss)
  • a heating temperature in the vapor deposition apparatus is 400 ° C.
  • a bias voltage of ⁇ 100 V is applied to the carbide substrate, while a reactive gas is contained in the vapor deposition apparatus.
  • CH hydrogen
  • nitrogen and Ar CH flow rate: 25 100sccm
  • Ar flow rate 300 sccm
  • Ar flow rate 150 Introduced at a predetermined flow rate within the range of 250 sccm, the reaction atmosphere was changed to a mixed gas of lPa CH decomposition gas, nitrogen and Ar, and the two magnets.
  • the power source electrode (evaporation source) of the WC target of the Ron sputtering device has a predetermined sputtering power within the range of 13 kW (frequency: 40 kHz), and the Ti target has a power output of 3 to 8 kW ( (Frequency: 40 kHz) under the condition that a predetermined sputtering power within the range was simultaneously applied.
  • an amorphous carbon-based lubricating layer having a target composition and a target layer thickness also shown in Table 28 was vapor-deposited and formed as an upper layer. Throwaway chips (hereinafter, referred to as coated chips of the present invention) 1-26 were manufactured.
  • the power source electrode (evaporation source) of the vapor deposition apparatus shown in FIGS. 3A and 3B that is, the magnetron sputtering bedding apparatus on one side, had a predetermined composition.
  • the carbide substrate on which the lower layer was formed in the above (c) was mounted in a ring shape at a position radially away from the central axis of the table by a predetermined distance,
  • the reaction atmosphere was 1 Pa of a decomposition gas of CH and a mixed gas of nitrogen and Ar, and both magnetron sputtering
  • the power source electrode (evaporation source) of the WC target of the WC target has a predetermined sputter power within the range of 13 kW (frequency: 40 kHz).
  • the Ti target has the output of 3-8 kW (frequency). : 40 kHz) under the conditions of simultaneously applying a predetermined sputtering power within the range, a lubricating amorphous carbon-based coating having a target composition and a target layer thickness shown in Table 29 is also formed by vapor deposition.
  • the indexable inserts made of the surface-coated cemented carbide alloy of the present invention as cemented carbide tools (hereinafter referred to as the coated carbide tips of the present invention) 2742 were manufactured.
  • the above-mentioned carbide substrates A-1-1 A-10 and B-1-B-6 were subjected to ultrasonic cleaning in acetone and dried, as shown in FIG.
  • the vapor deposition device shown that is, an arc discharge device in which a Ti-A1 alloy having a predetermined composition is set as a power source electrode (evaporation source), and a sputtering device in which a WC target is set as a power source electrode (evaporation source)
  • a vapor deposition device equipped with (b) First, while the inside of the apparatus is evacuated and kept at a vacuum of 0 lPa or less, the inside of the apparatus is heated to 500 ° C by a heater, and a DC bias voltage of -1000 V is applied to the carbide substrate, A current of 100 A is applied between the Ti A1 alloy of the force source electrode and the anode electrode to generate an arc discharge, and the surface of the carbide substrate is bombarded with the Ti-A1 alloy,
  • the bias voltage applied to the layered carbide substrate was set to 20V, and the power source electrode (evaporation source) of the WC target was applied with a predetermined sputtering power within the range of 416kW (frequency: 40kHz).
  • the comparative surface-coated cemented carbide equivalent to the conventional coated cemented carbide tool is formed.
  • Each of the throwaway chips (hereinafter referred to as comparative coated carbide chips) 1-16 were manufactured.
  • Carbide bases (end mills) C-11 and C-18 made of WC-based cemented carbide with each were manufactured. [0108] Next, the surface of these cemented carbide substrates (end mills) C-11 and C-18 was ultrasonically cleaned in acetone and dried, and the arc ion plating apparatus shown in Figs. 4A and 4B was also used. In the same conditions as in Example 7 above, the highest A1 content point and highest Ti content point of the target composition shown in Tables 32 and 33 are alternately shown in Table 7 along the layer thickness direction. A1 and Ti contents are present repeatedly at the target intervals and the A1 and Ti contents continuously change from the highest A1 content point to the highest Ti content point and from the highest Ti content point to the highest A1 content point.
  • an (AlZTi) N layer having a target layer thickness shown in Tables 32 and 33 is formed by vapor deposition as a lower layer (hard layer) of the surface coating layer.
  • it is charged into the vapor deposition apparatus shown in Figs. 3A and 3B, and the eyes shown in Tables 32 and 33 are also used.
  • the surface-coated carbide end mill of the present invention as the coated carbide tool of the present invention hereinafter referred to as the coated end mill of the present invention) 1) 19 were manufactured respectively.
  • the surface of the above-mentioned super-hard substrate (end mill) C-11 C18 was subjected to ultrasonic cleaning in acetone and dried, and then applied to a vapor deposition apparatus also shown in FIG.
  • a (Ti, Al) N layer and an amorphous carbon-based lubricating layer having the target composition and target layer thickness also shown in Table 34 were respectively placed under the surface coating layer.
  • a comparative surface-coated carbide end mill (hereinafter, referred to as a comparative coated end mill) 118 corresponding to a conventional coated carbide tool was produced by vapor deposition as a layer and an upper layer, respectively.
  • Work material Plant dimensions: 100mm X 250mm, thickness: 50mm, JIS-A5052 plate material, Cutting speed: 205m / min.,
  • the diameters produced in Example 8 above were 8 mm (for forming a cemented carbide substrate C1-C3), 13mm (for forming a cemented carbide substrate C-4-1 and C-6), and 26mm (for forming a cemented carbide substrate C-7, 3 types of round rod sintered bodies (for forming C-8), and from these three types of round rod sintered bodies, the diameter X length of the groove forming part was 4 mm X 13 mm (ultra-hard Substrate D-1-1 D-3), dimensions of 8mm x 22mm (carbide substrate D-4-D-6), and 16mm x 45mm (carbide substrate D_7, D-8), as well as torsion angles Carbide substrates (drills) D_1-D-8 each made of a WC-based cemented carbide having a two-edge shape of 30 degrees were manufactured.
  • the cutting edge of the carbide substrate (drill) Dl-D-8 was honed, ultrasonically cleaned in acetone, and dried, as shown in Figs. 4A and 4B.
  • the A1 maximum content point and the Ti maximum content point of the target composition shown in Tables 35 and 36 were alternately placed along the thickness direction under the same conditions as in Example 7 above. Repeatedly present at the target intervals shown in Tables 35 and 36, and the A1 and Ti contents are respectively continuous from the A1 maximum content point to the Ti maximum content point and from the Ti maximum content point to the A1 maximum content point, respectively.
  • An (A1 / Ti) N layer having a composition changing structure and having a target layer thickness shown in Tables 35 and 36 is formed by vapor deposition as a lower layer (hard layer) of the surface coating layer. 2A or 2B or 3A or 3B, and By forming an amorphous carbon-based lubricating layer having the target composition and target layer thickness shown in 35 and 36 by vapor deposition as the upper layer, the surface-coated carbide drill of the present invention as a coated carbide tool of the present invention (hereinafter, referred to as Each of the coated drills of the present invention was manufactured.
  • the surface of the above-mentioned carbide substrate (drill) D-11-D-8 was honed, ultrasonically cleaned in acetone, and dried, and also shown in FIG.
  • the (Ti, Al) N layer and the amorphous carbon-based lubricating layer having the target composition and the target layer thickness also shown in Table 37 were charged into the vapor deposition apparatus shown in FIG.
  • a comparative surface-coated carbide drill (hereinafter referred to as a comparative coated drill) 18 corresponding to a conventional coated carbide tool was produced by vapor deposition as the lower layer and the upper layer of the surface coating layer, respectively.
  • the coated drills 1-3, 9, 12-14 and the comparative coated drills 13 of the present invention were prepared as follows.
  • Work material Plant dimensions: 100mm X 250mm, thickness: 50mm, JIS 'A5052 plate material, Cutting speed: 115m / min.,
  • Work material Plant dimensions: 100mm X 250mm, thickness: 50mm, JIS-C3710 plate material, Cutting speed: 110m / min.,
  • Work material Plant dimensions: 100mm X 250mm, thickness: 50mm, JIS TP340H plate material, Cutting speed: 65m / min.,
  • High-speed high-feed drilling test (normal cutting speed and feed rate of 40m / min. And 0.2mm / rev) of Ti alloy under the following conditions: i fl " r3 ⁇ 4 ⁇ 3 ⁇ 4r3 ⁇ 4
  • the number of holes drilled until the flank wear width of the cutting edge of the tip reached 0.3 mm was also measured in the feed hole drilling test (using water-soluble cutting oil). Indicated.
  • the coated carbide tip of the present invention obtained as a coated carbide tool of the present invention is obtained as a result, the coated carbide end mill is coated with the present invention, the coated carbide drill is coated with the present invention, and the conventional coated carbide tool is formed.
  • the contents of the A1 and Ti components along the thickness direction were measured using an Auger spectrometer and the layer thickness was measured using a scanning electron microscope.
  • the A1 maximum content point and the Ti maximum content point are alternately and repeatedly present at substantially the same composition and interval as the target values, respectively, and It has been confirmed that the composition has a composition change structure in which the A1 and Ti contents continuously change from the A1 maximum content point to the Ti maximum content point, and from the Ti maximum content point to the A1 maximum content point, respectively. Also showed substantially the same value as the target layer thickness.
  • the (Ti, A1) N layer of the conventional coated carbide tool shows substantially the same composition as the target composition and the same average layer thickness as the target layer thickness, but the composition change along the thickness direction. Was not found, indicating a homogeneous composition throughout the layer.
  • composition of the amorphous carbon-based lubricating layer constituting the upper layer was measured using an Auger spectrometer and the thickness of the layer using a scanning electron microscope.
  • the composition and the average layer thickness were substantially the same as those shown in Fig. 1 and the structure was observed using a transmission electron microscope.
  • FIG. 1A a structure in which crystalline Ti (C, N) -based compound fine particles are dispersed and distributed on a carbon-based amorphous body containing a W component is shown.
  • a structure composed of a single phase of a system amorphous body was shown.
  • the (Al / Ti) N layer has excellent high-temperature hardness and heat resistance, and also has excellent high-temperature strength
  • the amorphous carbon-based lubricating layer as the upper layer is a carbon-based amorphous material containing W component.
  • the surface coating layer has a (Ti, A1) N layer, and the upper layer has a single-phase structure of a carbon-based amorphous material.
  • the high-speed heavy cutting of non-ferrous materials causes the surface coating layer to wear. Progress fast tool and since Chibbingu also occur, it is clear that lead to a relatively short time service life.
  • the coated carbide tool of the present invention is excellent not only in cutting under normal conditions, but also particularly when cutting various kinds of work materials under high-speed cutting conditions. Since it exhibits abrasion resistance, it can sufficiently and satisfactorily cope with labor saving and energy saving of cutting work and low cost.
  • the coated carbide tool of the present invention is excellent not only for cutting under ordinary cutting conditions, especially for various non-ferrous materials, but also for high-speed heavy cutting with high heat generation and mechanical shock. Since it exhibits wear resistance and exhibits excellent cutting performance over a long period of time, it is fully satisfied with high performance and automation of cutting equipment, labor saving and energy saving of cutting work, and low cost. It can correspond to.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

 硬質基体と;前記硬質基体の表面上に形成され、Ti,Alのうちの少なくとも1種およびN,Cのうちの少なくとも1種からなる複合化合物を含みかつ0.1~3μmの平均層厚を有する下部層と;前記下部層上に形成され、Wを含有する炭素系非晶質体の素地中に結晶質Ti(C,N)系化合物微粒または結晶質(Ti,Al)(C,N)系化合物微粒が分散分布した組織を示し、かつ1~13μmの平均層厚を有する上部層と;を備えた表面被覆切削工具。  

Description

明 細 書
表面被覆超硬合金製切削工具、及びその製造方法
技術分野
[0001] この発明は、各種の鋼ゃ铸鉄などの鉄鋼材料、さらに A1合金や Cu合金などの非鉄 材料の切削加工を、特に高速で行なった場合にも、潤滑性非晶質炭素系被膜がす ぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具 (以下、被覆超硬工具と いう)に関するものである。
また、この発明は、表面被覆層がすぐれた高温硬さと耐熱性、さらにすぐれた高温 強度に加えて、すぐれた潤滑性を有し、したがって特に各種の A1および A1合金や C uおよび Cu合金、さらに Tiおよび Ti合金などの非鉄材料の切削加工を、特に高熱発 生を伴う高速で、かつ高い機械的衝撃を伴う高切り込みや高送りなどの重切削条件 で行なった場合に、表面被覆層にチッビング (微小欠け)などの発生なぐすぐれた 耐摩耗性を発揮する被覆超硬工具に関するものである。
本願は、 2004年 1月 30曰に出願された特願 2004-22535号、 2004年 5月 17曰 に出願された特願 2004—146397号、同曰に出願された特願 2004—146398号、 及び 2004年 7月 21日に出願された特願 2004-212896号に対し優先権を主張し、 それらの内容をここに援用する。
背景技術
[0002] 一般に、被覆超硬工具として、各種の鋼ゃ錡鉄などの鉄鋼材料、さらに A1合金や C u合金などの非鉄材料の旋削加工や平肖 ijり加工にバイトの先端部に着脱自在に取り 付けて用いられるスローァウェイチップ、穴あけ切削加工などに用いられるドリルゃミ ニチユアドリル、さらに面削加工や溝力卩ェ、肩加工などに用いられるソリッドタイプの エンドミルなどがあり、また前記スローァウェイチップを着脱自在に取り付けて前記ソ リツドタイプのエンドミルと同様に切削加工を行うスローァウェイエンドミル工具などが 知られている。
[0003] また、上記の被覆超硬工具として、
(a)炭化タングステン(以下、 WCで示す)基超硬合金または炭窒化チタン (以下、 T iCNで示す)系サーメットからなる超硬基体の表面に、
(b)スパッタリング装置にて、力ソード電極 (蒸発源)として Tiターゲットを用レ、、窒素 と Arの混合ガス、または炭化水素の分解ガスと窒素と Arの混合ガスからなる反応雰 囲気で形成された、窒化チタン (以下、 TiNで示す)層および炭窒化チタン (以下、 Ti CNで示す)層のいずれか、または両方からなり、かつ 0. 1 3 x mの平均層厚を有 する密着接合層を介して、
(c)スパッタリング装置にて、力ソード電極 (蒸発源)として、 WCターゲットを用い、 炭化水素の分解ガスと Arの混合ガスからなる反応雰囲気で形成され、ォージェ分光 分析装置で測定して、
:5—20原子%、
を含有し、残りが炭素と不可避不純物からなる組成を有し、かつ 1一 13 μ mの平均層 厚を有する潤滑性非晶質炭素系被膜を蒸着形成してなる、被覆超硬工具が知られ ている。
さらに、上記の従来被覆超硬工具が、例えば図 5Aに概略平面図で、図 5Bに概略 正面図で示される通り、力ソード電極 (蒸発源)が Tiターゲットのスパッタリング装置と 、力ソード電極 (蒸発源)が WCターゲットのスパッタリング装置を備えた蒸着装置に上 記の超硬基体を装入し、ヒータで装置内を、例えば 300°Cの温度に加熱した状態で 、装置内に反応ガスとして窒素と Arを、例えば窒素流量: 200sccm、 Ar流量: 300s ccmの割合で導入して、例えば lPaの窒素と Arの混合ガス、または例えば C H (炭
2 2 化水素)と窒素と Arを、例えば。 H流量: 40sccm、窒素流量: 200sccm、 Ar流量:
2 2
300sccmの割合で導入して、同じく lPaの C Hの分解ガスと窒素と Arの混合ガス
2 2
力 なる反応雰囲気とし、 Tiターゲットの力ソード電極 (蒸発源)には出力: 12kW (周 波数: 40kHz)のスパッタ電力を印加し、一方上記超硬基体には、例えば— 100Vの バイアス電圧を印加した条件でグロ一放電を発生させ、前記超硬基体の表面に、所 定層厚の TiN層および TiCN層のいずれ力 \または両方からなる密着接合層を形成 し、ついで例えば装置内の加熱温度を 200°Cとした状態で、 C Hなどの炭化水素と
2 2
Arを、 C H流量: 40— 80sccm、 Ar流量: 250sccmの割合で導入して、前記窒素
2 2
と Arの混合ガス、または前記メタンの分解ガスと窒素と Arの混合ガスからなる反応雰 囲気を、例えば IPaの炭化水素の分解ガスと Arの混合ガスからなる反応雰囲気に変 え、例えば上記超硬基体に印加するバイアス電圧を一 20Vとし、 WCターゲットのカソ ード電極(蒸発源)には出力: 4一 6kW (周波数: 40kHz)のスパッタ電力を印加した 条件で、上記密着接合層の上に、所定層厚の潤滑性非晶質炭素系被膜を蒸着形 成することにより製造されることも知られている(特開平 07— 164211号公報、及び特 表 2002— 513087号公報参照)。
[0005] また、特に上記の非鉄材料からなる被削材の切削加工に用いられる被覆超硬工具 として、炭化タングステン (以下、 WCで示す)基超硬合金または炭窒化チタン (以下 、 TiCNで示す)基サーメットで構成された超硬基体の表面に、
(a)下部層として、 1. 5— 10 x mの平均層厚を有し、かつ組成式:(Ti Al ) N (た
l-Z Z だし、原子比で、 Zは 0. 40-0. 60を示す)を満足する Tiと A1の複合窒化物 [以下、 (Ti, A1) Nで示す]層からなる硬質層、
(b)上部層として、 1一 10 /i mの平均層厚を有し、かつスパッタリング装置にて、力 ソード電極 (蒸発源)として、 WCターゲットを用レ、、炭化水素の分解ガスと Arの混合 ガスからなる反応雰囲気で形成され、ォージェ分光分析装置で測定して、
\ : 5—20原子%、
を含有し、残りが炭素と不可避不純物からなる組成をする非晶質炭素系潤滑層、 を蒸着形成してなる被覆超硬工具が知られており、かつ前記被覆超硬工具の表面 被覆層の硬質層である (Ti, A1) N層が、構成成分である Alによって高温硬さと耐熱 性、同 Tiによって高温強度を有し、かつ同上部層である非晶質炭素系潤滑層の共 存と相俟って、上記の非鉄材料などの被削材の連続切削や断続切削加工に用いた 場合にすぐれた切削性能を発揮することも知られている。
[0006] さらに、上記の被覆超硬工具が、例えば図 6に概略説明図で示される蒸着装置、す なわち力ソード電極 (蒸発源)として所定組成を有する Ti一 A1合金がセットされたァー ク放電装置と、力ソード電極 (蒸発源)として WCターゲットがセットされたスパッタリン グ装置を備えた蒸着装置を用い、これに上記の超硬基体を装入し、
(a)まず、上記下部層として、ヒーターで装置内を、例えば 500°Cの温度に加熱した 状態で、アノード電極と上記 Ti-Al合金の力ソード電極 (蒸発源)との間に、例えば電 流: 90Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガス を導入して、例えば 2Paの反応雰囲気とし、一方上記超硬基体には、例えば- 100V のバイアス電圧を印加した条件で、前記超硬基体の表面に、上記 (Ti, A1) N層から なる硬質層を蒸着形成し、
(b)つぎに、上部層として、例えば装置内の加熱温度を 200°Cとした状態で、 C Hな
2 2 どの炭化水素と Arを、 C H流量: 40— 80sccm
2 2 、 Ar流量: 250sccmの割合で導入 して、例えば IPaの炭化水素の分解ガスと Arの混合ガスからなる反応雰囲気とし、例 えば上記超硬基体に印加するバイアス電圧を一 20Vとし、 WCターゲットの力ソード電 極(蒸発源)には出力: 4一 6kW (周波数: 40kHz)のスパッタ電力を印加した条件で 、上記 (Ti, A1N層からなる硬質層の上に非晶質炭素系潤滑層を蒸着形成すること により製造されることも知られてレ、る(特表 2002—513087号公報参照)。
発明の開示
発明が解決しょうとする課題
[0007] 近年の切削加工装置の高性能化はめざましぐ一方で切削加工に対する省力化お よび省エネ化、さらに低コスト化の要求も強ぐこれに伴い、切削加工は高速化の傾 向にあるが、上記の従来被覆超硬工具においては、これを通常の切削加工条件で 用いた場合には問題はないが、特に切削加工を高速で行なった場合には、潤滑性 非晶質炭素系被膜の摩耗進行が著しく速ぐ比較的短時間で使用寿命に至るのが 現状である。また、特に上記の非鉄材料などの被削材の切削加工を、高速で、かつ 高い機械的衝撃を伴う高切り込みや高送りなどの重切削条件で行なった場合には、 表面被覆層の下部層である硬質層にあっては高温硬さおよび耐熱性、さらに高温強 度、また同非晶質炭素系潤滑層にあっては高温強度がそれぞれ不十分であるため に、チッビングが発生し易ぐかつ摩耗進行も一段と促進するようになることから、比 較的短時間で使用寿命に至るのが現状である。
課題を解決するための手段
[0008] そこで、本発明者等は、上述のような観点から、特に高速切削加工で潤滑性非晶 質炭素系被膜がすぐれた耐摩耗性を発揮する被覆超硬工具を開発すベぐ研究を 行った結果、 (a)図 2A, 2Bにそれぞれ概略平面図および概略正面図で示される蒸着装置、すな わち上記の図 5A, 5Bに示される従来潤滑性非晶質炭素系被膜形成用蒸着装置に おけるスパッタリング装置のそれぞれに、電磁コイルを設けてマグネトロンスパッタリン グ装置とした蒸着装置を用い、前記電磁コイルにより磁場を形成して、超硬基体の装 着部における磁束密度を 100 300G (ガウス)とし、前記装置内の加熱温度を 300 一 500°Cとした状態で、かつ装置内に反応ガスとして、例えば C Hなどの炭化水素
2 2
と窒素と Arを、望ましくは C H流量: 25— 100sccm、窒素流量: 200— 300sccm
2 2 、
Ar流量: 150— 250sccmの割合で導入して、反応雰囲気を、例えば lPaの C Hの
2 2 分解ガスと窒素と Arの混合ガスとすると共に、前記両マグネトロンスパッタリング装置 の WCターゲットの力ソード電極(蒸発源)には、例えば出力: 1一 3kW (周波数: 40k Hz)のスパッタ電力、同 Tiターゲットには、例えば出力: 3 8kW (周波数: 40kHz) のスパッタ電力を同時に印加した条件で潤滑性非晶質炭素系被膜の形成を行うと、 この結果形成された潤滑性非晶質炭素系被膜は、これの透過型電子顕微鏡による 組織観察結果が図 1Aに模式図で示される通り炭素系非晶質体の素地に、結晶質 炭窒化チタン系化合物の微粒 [以下、「結晶質 Ti (C, N)系化合物微粒」で示す]が 分散分布した組織をもつようになること。
(b)上記 (a)の潤滑性非晶質炭素系被膜を形成するに際して、蒸着装置内に導入さ れる反応ガスとしての炭化水素と窒素と Arのそれぞれの流量と、マグネトロンスパッタ リング装置の WCターゲットと Tiターゲットに印加されるスパッタ電力を調整して、前記 潤滑性非晶質炭素系被膜が、ォージェ分光分析装置で測定して、
\ : 5—40原子%、
Ti: 0. 5— 30原子%、
窒素: 0. 5 20原子%、
を含有し、残りが炭素と不可避不純物からなる組成を有するようにすると、この結果形 成された潤滑性非晶質炭素系被膜は、結晶質 Ti (C, N)系微粒の分散分布効果、 および前記電磁コイルによる磁場成膜に際しての細粒化効果で、硬さが著しく向上 するようになり、したがって、この潤滑性非晶質炭素系被膜を形成してなる被覆超硬 工具は、 W成分による強度向上効果と相俟って、高速切削加工でも切刃部にチッピ ング (微少欠け)の発生なぐ一段とすぐれた耐摩耗性を長期に亘つて発揮するように なること。
以上(a)および (b)に示される研究結果を得たのである。
[0010] この発明は、上記の研究結果に基づいてなされたものであって、
(a) WC基超硬合金または TiCN系サーメットからなる超硬基体の表面に、(b)マグ ネトロンスパッタリング装置にて、力ソード電極 (蒸発源)として Tiターゲットを用レ、、窒 素と Arの混合ガス、または炭化水素の分解ガスと窒素と Arの混合ガスからなる反応 雰囲気で磁場中成膜された、 TiN層および TiCN層のいずれ力 \または両方からなり 、かつ 0. 1 3 x mの平均層厚を有する密着接合層を介して、
(c)同じくマグネトロンスパッタリング装置にて、力ソード電極 (蒸発源)として、 WCタ 一ゲットと Tiターゲットを用レ、、炭化水素の分解ガスと窒素と Arの混合ガスからなる反 応雰囲気で磁場中成膜され、ォージェ分光分析装置で測定して、
\ : 5—40原子%、
Ti: 0. 5— 30原子%、
窒素: 0. 5— 30原子%、
を含有し、残りが炭素と不可避不純物からなる組成を有すると共に、透過型電子顕微 鏡による観察で、炭素系非晶質体の素地に、結晶質 Ti (C, N)系化合物微粒が分散 分布した組織を示し、かつ 1一 13 / mの平均層厚を有する潤滑性非晶質炭素系被 膜を蒸着形成してなる、特に高速切削加工で潤滑性非晶質炭素系被膜がすぐれた 耐摩耗性を発揮する被覆超硬工具に特徴を有するものである。
[0011] つぎに、この発明の被覆超硬工具において、これを構成する密着接合層および潤 滑性非晶質炭素系被膜を上記の通りに限定した理由を説明する。
(a)密着接合層の平均層厚
TiN層および TiCN層のいずれ力、、または両方からなる密着接合層は、超硬基体と 潤滑性非晶質炭素系被膜の間にあって、これら両者と強固に密着接合し、さらに前 記超硬基体に対する密着接合性は磁場中成膜によって一層向上したものになるが、 その平均層厚が 0. l z m未満では、所望のすぐれた密着接合性を確保することがで きず、一方その平均層厚が 3 x mを越えると、特に高速切削で熱塑性変形を起こし易 くなり、これが潤滑性非晶質炭素系被膜におけるチッビング発生の原因となることか ら、その平均層厚が 0· 1— 3 μ ΐηと定めた。
[0012] (b)潤滑性非晶質炭素系被膜の W含有量
W成分は、上記の潤滑性非晶質炭素系被膜の素地を形成して、被膜の強度を向 上させる作用があるが、その含有量が 5原子%未満では所望の高強度を確保するこ とができず、一方その含有量が 40原子%を越えると潤滑性が急激に低下するように なることから、その含有量を 5 40原子%と定めた。
[0013] (c)潤滑性非晶質炭素系被膜の Tiおよび N含有量
Ti成分と N成分、さらに C (炭素)成分は磁場成膜下で結合して、被膜中に結晶質 の Ti (C, N)系化合物微粒として存在し、被膜の硬さを著しく向上させる作用がある が、その含有量が Ti成分が 0. 5原子%未満、および N成分が 0. 5原子%未満にな ると、被膜中に Ti (C, N)系微粒として存在する割合が少なくなり過ぎて、所望の高 硬度を確保することができず、一方その含有量が Ti成分が 30原子%、および N成分 が 30原子%を越えると強度および潤滑性が急激に低下するようになることから、その 含有量をそれぞれ Ti: 0. 5— 30原子%、N : 0. 5— 30原子%と定めた。
[0014] (d)潤滑性非晶質炭素系被膜の平均層厚
その平均層厚が 1 μ m未満では、所望の潤滑性および耐摩耗性効果を確保するこ とができず、一方その平均層厚が 13 μ ΐηを越えると、切刃部にチッビングが発生し易 くなること力ら、その平均層厚を 1一 13 μ mと定めた。
[0015] また、本発明者等は、特に高速切削加工で潤滑性非晶質炭素系被膜がすぐれた 耐摩耗性を発揮する被覆超硬工具を開発すベぐさらに研究を行った結果、
(a)図 3A, 3Bにそれぞれ概略平面図および概略正面図で示される蒸着装置、すな わち上記の図 5A, 5Bに示される従来潤滑性非晶質炭素系被膜形成用蒸着装置に おけるスパッタリング装置のそれぞれに、電磁コイルを設けてマグネトロンスパッタリン グ装置とすると共に、一方の力ソード電極 (蒸発源)である Tiターゲットを所定の組成 をもった Ti一 A1合金ターゲットとした蒸着装置を用レ、、前記電磁コイルにより磁場を形 成して、超硬基体の装着部における磁束密度を 100— 300G (ガウス)とし、前記装 置内の加熱温度を 300— 500°Cとした状態で、装置内に反応ガスとして窒素と Arを 、例えば窒素流量: 200sccm、 Ar流量: 300sccmの割合で導入して、例えば IPaの 窒素と Arの混合ガスからなる反応雰囲気とし、前記 Ti A1合金ターゲットの力ソード 電極(蒸発源)には、例えば出力: 12kW (周波数: 40kHz)のスパッタ電力を印加し 、一方上記超硬基体には、例えば一 100Vのバイアス電圧を印加した条件でグロ一 放電を発生させることにより、前記超硬基体の表面に、
組成式:(Ti Al ) N (ただし、原子比で、 Xは 0. 40-0. 60を示す)、を満足す
1— X X
る Tiと A1の複合窒化物 [以下、(Ti, A1) Nで示す]層、を形成すると、この結果の (Ti , A1) N層は、超硬基体表面に対して強固に密着接合し、さらに前記超硬基体に対 する密着接合性は磁場中成膜によって一層向上したものになるば力、りでなぐ A1の 含有によって高温硬さおよび耐熱性が向上し、 Tiによる高温強度向上効果と相俟っ て、高熱発生を伴なう高速切削加工でも、チッビングの発生なぐすぐれた耐摩耗性 を発揮するようになること。
[0016] (b)ついで、装置内に反応ガスとして、例えば C Hなどの炭化水素と窒素と Arを、望
2 2
ましくは C H流量: 25— 100sccm、窒素流量: 200— 300sccm
2 2 、 Ar流量: 200scc mの割合で導入して、反応雰囲気を、例えば IPaの C Hの分解ガスと窒素と Arの混
2 2
合ガスとすると共に、前記両マグネトロンスパッタリング装置のうちの WCターゲットの 力ソード電極(蒸発源)には、例えば出力: 1一 3kW (周波数: 40kHz)のスパッタ電 力、前記 Ti A1合金ターゲットには、例えば出力: 3— 8kW (周波数: 40kHz)のスパ ッタ電力を同時に印加した条件で潤滑性非晶質炭素系被膜の形成を行うと、この結 果形成された潤滑性非晶質炭素系被膜は、上記の (Ti, A1) N層に対して強固に密 着接合すると共に、これの透過型電子顕微鏡による組織観察結果が図 1Bに模式図 で示される通り炭素系非晶質体の素地に、高温硬さおよび耐熱性のすぐれた結晶質 Ti - A1系複合炭窒化物微粒 [以下、「結晶質 Ti - A1系(C, N)微粒」で示す]が分散 分布した組織をもつようになること。
[0017] (c)上記 (b)の潤滑性非晶質炭素系被膜を形成するに際して、蒸着装置内に導入さ れる反応ガスとしての炭化水素と窒素と Arのそれぞれの流量と、マグネトロンスパッタ リング装置の WCターゲットと Ti一 A1合金ターゲットに印加されるスパッタ電力、さらに 前記 Ti一 A1合金ターゲットの組成を調整して、前記潤滑性非晶質炭素系被膜が、ォ ージェ分光分析装置で測定して、
\ : 5—20原子%、
Ti : 2. 5— 10原子%、
Al : l . 6— 15原子0 /0
窒素: 0. 4 22. 5原子%、
を含有し、残りが炭素と不可避不純物からなる組成を有するようにすると、この結果形 成された潤滑性非晶質炭素系被膜は、結晶質 Ti - A1系(C, N)微粒の分散分布効 果、および前記電磁コイルによる磁場成膜に際しての細粒化効果で、硬さが著しく向 上するようになり、したがって、この潤滑性非晶質炭素系被膜を形成してなる被覆超 硬工具は、 W成分による強度向上効果と相俟って、高速切削加工でも切刃部にチッ ビング (微少欠け)の発生なぐ一段とすぐれた耐摩耗性を長期に亘つて発揮するよう になること。
以上(a)— (c)に示される研究結果を得たのである。
この発明は、上記の研究結果に基づいてなされたものであって、
(a) WC基超硬合金または TiCN系サーメットからなる超硬基体の表面に、
(b)マグネトロンスパッタリング装置にて、力ソード電極 (蒸発源)として Tiターゲット を用い、窒素と Arの混合ガスからなる反応雰囲気で磁場中成膜され、 0. 1— 3 / m の平均層厚を有すると共に、
組成式:(Ti Al ) N (ただし、原子比で、 Xは 0· 40-0. 60を示す)、を満足す
1— X X
る (Ti, A1) N層からなる密着接合層を介して、
(c)同じくマグネトロンスパッタリング装置にて、力ソード電極 (蒸発源)として、 WCタ 一ゲットと Ti一 A1合金ターゲットを用レ、、炭化水素の分解ガスと窒素と Arの混合ガス からなる反応雰囲気で磁場中成膜され、ォージェ分光分析装置で測定して、
:5—20原子%、
Ti : 2. 5— 10原子%、
Al : l . 6— 15原子0 /0
窒素: 0. 4 22. 5原子%、
を含有し、残りが炭素と不可避不純物からなる組成を有すると共に、透過型電子顕微 鏡による観察で、炭素系非晶質体の素地に、結晶質 Ti - A1系(C, N)微粒が分散分 布した組織を示し、かつ 1一 13 / mの平均層厚を有する潤滑性非晶質炭素系被膜 を蒸着形成してなる、特に高速切削加工で潤滑性非晶質炭素系被膜がすぐれた耐 摩耗性を発揮する被覆超硬工具に特徴を有するものである。
[0019] つぎに、この発明の被覆超硬工具において、これを構成する密着接合層および潤 滑性非晶質炭素系被膜を上記の通りに限定した理由を説明する。
(a)密着接合層の組成および平均層厚
(Ti, A1) N層からなる密着接合層は、上記の通り構成成分である Tiによってすぐれ た高温強度、同 A1成分によってすぐれた高温硬さおよび耐熱性を具備するようにな るが、 A1の含有割合を示す X値が Tiとの合量に占める割合 (原子比)で 0. 40未満で は、高い発熱を伴なう高速切削での耐摩耗性向上効果は得られず、一方前記 X値が 0. 60を越えると、高温強度が急激に低下し、チッビング発生の原因となることから、 X値を 0· 40-0. 60と定めた。
また、上記の (Ti, A1) N層は、超硬基体および潤滑性非晶質炭素系被膜の両者と 強固に密着接合し、前記超硬基体に対する密着接合性は磁場中成膜によって一層 向上したものになるが、その平均層厚が 0. 1 μ ΐη未満では、所望のすぐれた密着接 合性を確保することができず、一方その平均層厚が 3 μ ΐηを越えると、特に高速切削 でチッビング発生の原因となることから、その平均層厚が 0. 1— 3 μ ΐηと定めた。
[0020] (b)潤滑性非晶質炭素系被膜の W含有量
W成分は、上記の潤滑性非晶質炭素系被膜の素地を形成して、被膜の強度を向 上させる作用があるが、その含有量が 5原子%未満では所望の高強度を確保するこ とができず、一方その含有量が 20原子%を越えると潤滑性が急激に低下するように なることから、その含有量を 5 20原子%と定めた。
[0021] (c)潤滑性非晶質炭素系被膜の Ti、 Al、および窒素含有量
Tiおよび A1成分と窒素 (N)成分、さらに炭素(C)成分は磁場成膜下で結合して、 被膜中に結晶質 Ti - A1系(C, N)微粒として存在し、前記結晶質 Ti - A1系(C, N)微 粒は、構成成分である Tiおよび N成分によってすぐれた高温強度、さらに A1および C 成分によってすぐれた高温硬さと耐熱性を具備するようになるので、これが素地に分 散分布した被膜は耐摩耗性が著しく向上したものになるが、その含有量が T诚分に ついては 2. 5原子%未満、 A1成分については 1. 6原子%未満、 Ν成分については 0. 4原子%未満になると、被膜中に Ti一 A1系(C, N)微粒として存在する割合が少な くなり過ぎて、所望の耐摩耗性を確保することができず、一方その含有量が Ti成分に ついては 10原子%、 A1成分については 15原子%、 N成分については 22. 5原子% を越えると高温強度が低下したり、あるいは高温硬さや耐熱性が急激に低下するよう になることから、その含有量をそれぞれ Ti: 2. 5— 10原子%、 Al : l . 6 15原子%、 窒素: 0. 4-22. 5原子%と定めた。
[0022] (d)潤滑性非晶質炭素系被膜の平均層厚
その平均層厚が 1 β m未満では、所望の潤滑性および耐摩耗性効果を確保するこ とができず、一方その平均層厚が 13 x mを越えると、切刃部にチッビングが発生し易 くなること力ら、その平均層厚を 1一 13 μ mと定めた。
[0023] さらに、本発明者等は、特に上記の非鉄材料などの被削材の高速重切削加工で表 面被覆層が、チッビングの発生なぐ長期に亘つてすぐれた耐摩耗性を発揮する被 覆超硬工具を開発すベぐ上記の従来被覆超硬工具に着目し、研究を行った結果、 (a)上記の図 6の蒸着装置のアーク放電装置を用いて形成された従来被覆超硬ェ 具の表面硬質層を構成する (Ti, A1) N層の下部層(硬質層)は、層厚全体に亘つて 実質的に均一な組成を有し、したがって均質な高温硬さと耐熱性、さらに高温強度を 有するが、例えば図 3Aに概略平面図で、図 3Bに概略正面図で示される構造のァー クイオンプレーティング装置、すなわち装置中央部に超硬基体装着用回転テーブル を設け、前記回転テーブルを挟んで、一方側に相対的に A1含有量の高い (Ti含有 量の低レ、) A1— Ti合金、他方側に相対的に Ti含有量の高レ、 (A1含有量の低レ、)Ti一 A1合金をそれぞれ力ソード電極 (蒸発源)として対向配置し、さらに前記両カソード電 極に対して 90度回転した位置にも力ソード電極 (蒸発源)として金属 Crを装着したァ 一クイオンプレーティング装置を用い、この蒸着装置の前記回転テーブル上に、これ の中心軸から半径方向に所定距離離れた位置に複数の超硬基体をリング状に装着 し、この状態で装置内雰囲気を窒素雰囲気として前記回転テーブルを回転させると 共に、蒸着形成される下部層 (硬質層)の層厚均一化を図る目的で超硬基体自体も 自転させながら、前記の図面上左右両側のそれぞれの力ソード電極 (蒸発源)とァノ ード電極との間にアーク放電を発生させて、前記超硬基体の表面に A1と Tiの複合窒 化物 [以下、(Al/Ti) Nで示す]層を形成すると、この結果の (Al/Ti) N層において は、回転テーブル上にリング状に配置された前記超硬基体が上記の一方側の相対 的に A1含有量の高い (Ti含有量の低い) A1 - Ti合金の力ソード電極 (蒸発源)に最も 接近した時点で層中に A1最高含有点が形成され、また前記超硬基体が上記の他方 側の相対的に Ti含有量の高レ、 (A1含有量の低レ、)Ti一 A1合金の力ソード電極に最も 接近した時点で層中に Ti最高含有点が形成され、上記回転テーブルの回転によつ て層中には層厚方向にそって前記 A1最高含有点と Ti最高含有点が所定間隔をもつ て交互に繰り返し現れると共に、前記 A1最高含有点から前記 Ti最高含有点、前記 Ti 最高含有点から前記 Al最高含有点へ Alおよび Ti含有量がそれぞれ連続的に変化 する組成変化構造をもつようになること。
(b)上記(a)の組成変化構造を有する (Al/Ti) N層の形成において、対向配置の 一方側の力ソード電極 (蒸発源)である A1— Ti合金における A1含有量を上記の従来 T i一 A1合金の A1含有量に比して相対的に高いものとし、かつ同他方側の力ソード電極 (蒸発源)である Ti一 A1合金における Ti含有量を上記の従来 Ti一 A1合金の Ti含有量 に比して相対的に高いものとする共に、超硬基体が装着されている回転テーブルの 回転速度を制御して、
上記 A1最高含有点が、組成式:(Al Ti ) N (ただし、原子比で、 Xは 0. 05— 0. 3
1-X X
5を示す)、
上記 Ti最高含有点が、組成式:(Ti Al ) N (ただし、原子比で、 Yは 0· 05-0. 3
1-Y Y
5を示す)、
をそれぞれ満足し、かつ隣り合う上記 A1最高含有点と Ti最高含有点の厚さ方向の間 鬲を 0. 01—0. 1 x mとすると、
上記 A1最高含有点部分では、上記の従来 (Ti, A1) N層に比して Al含有量が相対的 に高くなることから、より一段とすぐれた高温硬さと耐熱性(高温特性)を示し、一方上 記 Ti最高含有点部分では、前記従来 (Ti, A1) N層に比して Ti含有量が相対的に高 くなることから、一段と高い高温強度を具備し、かつこれら A1最高含有点と Ti最高含 有点の間隔をきわめて小さくしたことから、層全体の特性としてすぐれた高温強度を 保持した状態ですぐれた高温硬さと耐熱性を具備するようになること。
[0025] (c)つぎに、例えば図 2Aに概略平面図で、図 2Bに概略正面図で示される通り、力 ソード電極 (蒸発源)が Tiターゲットのマグネトロンスパッタリング装置と、力ソード電極 (蒸発源)が WCターゲットのマグネトロンスパッタリング装置を対向配置に備えた蒸着 装置の回転テーブル上に、上記の下部層を形成した超硬基体を装着し、回転テー ブルを回転させると共に、蒸着形成される上部層(非晶質炭素系潤滑層)の層厚均 一化を図る目的で前記超硬基体自体も自転させ、電磁コイルにより磁場を形成して、 前記超硬基体の装着部における磁束密度を 100— 300G (ガウス)とし、前記装置内 の加熱温度を 300— 500°Cとした状態で、かつ装置内に反応ガスとして、例えば C
2
Hなどの炭化水素と窒素と Arを、望ましくは C H流量: 25 100sccm、窒素流量:
2 2 2
200— 300sccm、 Ar流量: 150— 250sccmの割合で導入して、反応雰囲気を、例 えば lPaの C Hの分解ガスと窒素と Arの混合ガスとすると共に、前記両マグネトロン
2 2
スパッタリング装置の WCターゲットの力ソード電極(蒸発源)には、例えば出力: 1一 3 kW (周波数: 40kHz)のスパッタ電力、同 Tiターゲットには、例えば出力: 3— 8kW ( 周波数: 40kHz)のスパッタ電力を同時に印加した条件で非晶質炭素系潤滑層(上 部層)の形成を行うと、この結果形成された非晶質炭素系潤滑層は、これの透過型電 子顕微鏡による組織観察結果が図 1Aに模式図で示される通り W成分含有の炭素系 非晶質体の素地に、結晶質炭窒化チタン系化合物の微粒 [以下、「結晶質 Ti (C, N )系化合物微粒」で示す]が分散分布した組織をもつようになること。
[0026] (d)上記 (c)の非晶質炭素系潤滑層を形成するに際して、蒸着装置内に導入される 反応ガスとしての炭化水素と窒素と Arのそれぞれの流量と、マグネトロンスパッタリン グ装置の WCターゲットと Tiターゲットに印加されるスパッタ電力を調整して、前記非 晶質炭素系潤滑層が、ォージェ分光分析装置で測定して、
:5—40原子%、
Ti: 0. 5— 30原子%、
窒素: 0. 5 30原子%、
を含有し、残りが炭素と不可避不純物からなる組成を有するようにすると、この結果形 成された非晶質炭素系潤滑層は、これの素地が含有する W成分の作用と、結晶質 T i (C, N)系微粒の分散分布効果、および前記電磁コイルによる磁場成膜に際しての 細粒化効果で、高温強度が著しく向上するようになること。
[0027] (e)上記の下部層が組成変化構造を有する (Al/Ti) N層、上部層が非晶質炭素 系潤滑層で構成された表面被覆層を蒸着形成してなる被覆超硬工具は、特に著し レ、高熱発生と高い機械的衝撃を伴う上記の非鉄材料などの被削材の高速重切削で も、下部層である (AlZTi) N層がすぐれた高温硬さと耐熱性、さらにすぐれた高温強 度を有し、かつ上部層である非晶質炭素系潤滑層も、すぐれた高温強度を具備する ようになることから、表面被覆層にチッビングの発生なぐすぐれた耐摩耗性を長期に 亘つて発揮するようになること。
以上(a) (e)に示される研究結果を得たのである。
[0028] この発明は、上記の研究結果に基づいてなされたものであって、超硬基体の表面 に、
(a)下部層として、 1. 5— 10 μ ΐηの平均層厚を有し、かつ、層厚方向にそって、 A1 最高含有点と Ti最高含有点とが所定間隔をおいて交互に繰り返し存在し、かつ前記 A1最高含有点から前記 Ti最高含有点、前記 Ti最高含有点から前記 A1最高含有点 へ A1および Ti含有量がそれぞれ連続的に変化する成分濃度分布構造を有し、 さらに、上記 A1最高含有点が、組成式:(Al Ti ) N (ただし、原子比で、 Xは 0. 0
1-X X
5-0. 35を示す)、上記 Ti最高含有点が、組成式:(Ti Al ) N (ただし、原子比で、
l-Y Y
Yは 0· 05-0. 35を示す)、を満足し、
かつ隣り合う上記 A1最高含有点と Ti最高含有点の間隔が、 0. 01-0. Ι μ ΐηから なる組成変化構造を有する (AlZTi) N層からなる硬質層、
(b)上部層として、 1一 10 z mの平均層厚を有し、かつマグネトロンスパッタリング装 置にて、力ソード電極 (蒸発源)として、 WCターゲットと Tiターゲットを用レ、、炭化水素 の分解ガスと窒素と Arの混合ガスからなる反応雰囲気で磁場中成膜され、ォージヱ 分光分析装置で測定して、
:5—40原子%、
Ti: 0. 5— 30原子%、 窒素: 0. 5— 30原子%、
を含有し、残りが炭素と不可避不純物からなる組成を有すると共に、透過型電子顕微 鏡による観察で、 W成分含有の炭素系非晶質体の素地に、結晶質 Ti (C, N)系化合 物微粒が分散分布した組織を有する非晶質炭素系潤滑層、
以上 (a)および (b)で構成された表面被覆層を蒸着形成してなる、特に高速重切削 加工で表面被覆層がすぐれた耐チッピング性を発揮する被覆超硬工具に特徴を有 するものである。
[0029] つぎに、この発明の被覆超硬工具の表面被覆層の構成層に関し、上記の通りに数 値限定した理由を説明する。
(A)下部層 [ (Al/Ti) N層]
(a) A1最高含有点の組成
下部層である (AlZTi) N層における A1成分は、高温硬さおよび耐熱性を向上させ 、同 Ti成分は高温強度を向上させる作用があり、したがって相対的に A1成分の含有 割合が高い A1最高含有点では一段とすぐれた高温硬さと耐熱性を具備するようにな り、高熱発生を伴う高速切削条件で、すぐれた耐摩耗性を発揮するようになるが、 Ti の割合を示す X値が A1との合量に占める割合 (原子比)で 0· 05未満になると、相対 的に A1の割合が多くなり過ぎて、すぐれた高温強度を有する Ti最高含有点が隣接し て存在しても層自体の強度低下は避けられず、この結果高速重切削条件ではチッピ ングなどが発生し易くなり、一方 Ώ成分の割合を示す X値が同 0. 35を越えると、相 対的に A1の割合が少なくなり過ぎて、所望のすぐれた高温硬さおよび耐熱性を確保 すること力 Sでさなくなること力ら、 Xィ直を 0. 05-0. 35と定めた。
[0030] (b)Ti最高含有点の組成
上記の通り A1最高含有点は高温硬さおよび耐熱性のすぐれたものであるが、反面 高温強度の劣るものであるため、この A1最高含有点の高温強度不足を補う目的で、 相対的に Ti含有割合が高ぐこれによつてすぐれた高温強度を有するようになる Ti最 高含有点を厚さ方向に交互に介在させるものであり、したがって A1の割合を示す Y値 が Tiとの合量に占める割合 (原子比)で 0. 35を越えると、相対的に A1の割合が多く なり過ぎて、所望のすぐれた高温強度を確保することができず、一方同 Y値が同じく 0 . 05未満になると、相対的に Tiの割合が多くなり過ぎて、 Ti最高含有点に所望の高 温硬さおよび耐熱性を具備せしめることができなくなり、摩耗進行促進の原因となるこ と力ら、 Yィ直を 0. 05-0. 35と定めた。
[0031] (c) Al最高含有点と Ti最高含有点間の間隔
その間隔が 0. 01 μ m未満ではそれぞれの点を上記の組成で明確に形成すること が困難であり、この結果層に所望のすぐれた高温強度と、すぐれた高温硬さおよび 耐熱性を確保することができなくなり、またその間隔が 0. l x mを越えるとそれぞれの 点がもつ欠点、すなわち A1最高含有点であれば高温強度不足、 Ti最高含有点であ れば高温硬さおよび耐熱性不足が層内に局部的に現れ、これが原因で切刃にチッ ビングが発生し易くなつたり、摩耗進行が促進されるようになることから、その間隔を 0 . 01—0. l x mと定めた。
[0032] (d)平均層厚
その層厚が 1. 5 μ ΐη未満では、所望の耐摩耗性を長期に亘つて確保することがで きず、一方その平均層厚が 10 μ ΐηを越えると、チッビングが発生し易くなることから、 その平均層厚を 1. 5— ΙΟ μ ΐηと定めた。
[0033] (Β)上部層(非晶質炭素系潤滑層)
(a) W含有量
W成分は、上記の非晶質炭素系潤滑層の素地に含有して、層の高温強度を向上 させる作用があるが、その含有量が 5原子%未満では所望のすぐれた高温強度を確 保することができず、一方その含有量が 40原子%を越えると潤滑性が急激に低下す るようになること力ら、その含有量を 5— 40原子%と定めた。
[0034] (b)Tiおよび N含有量
Ti成分と N成分、さらに C (炭素)成分は磁場成膜下で結合して、被膜中に結晶質 の Ti (C, N)系化合物微粒として存在し、層の具備するすぐれた潤滑性を損なうこと なぐ高温強度を著しく向上させる作用があるが、その含有量が Ti成分が 0. 5原子% 未満、および N成分が 0. 5原子%未満では、層中に Ti (C, N)系微粒として存在す る割合が少なくて、所望のすぐれた高温強度を確保することができず、一方その含有 量が Ti成分が 30原子%、および N成分が 30原子%を越えると高温硬さおよび潤滑 性が急激に低下するようになることから、その含有量をそれぞれ Ti : 0. 5— 30原子%
、N : 0. 5— 30原子%と定めた。
[0035] (c)平均層厚
その平均層厚が 1 μ m未満では、所望の潤滑効果を長期に亘つて確保することが できず、一方その平均層厚が 10 z mを越えると、切刃部にチッビングが発生し易くな ること力ら、その平均層厚を 1一 10 μ mと定めた。
[0036] 以上述べたように、本発明の被覆超硬工具は、 WC基超硬基体または炭窒化チタ ン系サーメット基体表面上に、下部層 (硬質層)及び上部層(非晶質炭素系潤滑層) を形成したものである。
1.下部層における TiN、及び TiCN、 TiAINは、基材との優れた密着性および高温 硬さと耐熱性、高温強度を付与する。
2.上部層である非晶質炭素系潤滑層において、
2-1 炭素系非晶質相成分である Wは、被膜強度の向上を目的として含有され、 C は、潤滑性効果の向上を目的として含有される。
2-2 結晶質 Ti (C, N)系化合物 (TiN, TiCNなど)および、結晶質 (Ti, Al) (C, N )系化合物 (TiAIN, TiAlCNなど)の微粒を上記 2 - 1記載の炭素系非晶質相に分散 分布させることにより、上部潤滑層全体の耐摩耗性、耐熱性、高温硬さ、高温強度を 向上させることができる。
3.上部層に分散分布させる結晶質 Ti (C, N)系化合物および、結晶質 (Ti, Al) (C , Ν)系化合物の微粒径は 40nm以下であることが好ましレ、。粒径が 40nm以上の場 合、上部層全体の耐摩耗性が劣化する。
4.上記 1一 3を複合させることにより、高熱発生と機械的衝撃を伴う高速切削および 高速重切削において下部層が優れた高温硬さと耐熱性さらに高温強度を発揮し、上 部層(非晶質炭素系潤滑層)も、下部層成分の微粒結晶を含有する事により、優れた 潤滑性と耐摩耗性と高温安定性を発揮する。
発明の効果
[0037] この発明の被覆超硬工具は、これを構成する潤滑性非晶質炭素系被膜の硬さが、 これの炭素系非晶質体の素地に、磁場成膜により超微細となった状態で分散分布す る結晶質 Ti (C, N)系化合物微粒によって著しく向上したものになり、前記炭素系非 晶質体の素地が W成分の作用で高強度を具備するようになることと相俟って、各種 の鋼ゃ铸鉄などの鉄鋼材料、さらに A1合金や Cu合金などの高速切削で、チッビング の発生なぐすぐれた耐摩耗性を長期に亘つて発揮するものである。
また、この発明の被覆超硬工具は、これを構成する潤滑性非晶質炭素系被膜の耐 摩耗性が、これの炭素系非晶質体の素地に、磁場成膜により超微細となった状態で 分散分布する結晶質 (Ti, Al) (C, N)系化合物微粒によって著しく向上したものに なり、前記炭素系非晶質体の素地が W成分の作用で高強度を具備するようになるこ とと相俟って、各種の鋼ゃ錡鉄などの鉄鋼材料、さらに A1合金や Cu合金などの高速 切削で、チッビングの発生なぐすぐれた耐摩耗性を長期に亘つて発揮するものであ る。
さらに、この発明の被覆超硬工具は、表面被覆層を構成する下部層の (AlZTi) N 層がすぐれた高温硬さと耐熱性、さらにすぐれた高温強度を有し、かつ同上部層で ある非晶質炭素系潤滑層が、これの炭素系非晶質体の素地が含有する W成分の作 用、並びに前記素地に磁場成膜により超微細となった状態で分散分布する結晶質 T i (C, N)系化合物微粒および、結晶質 (Ti, Al) (C, N)系化合物微粒の作用によつ て、一段とすぐれた高温強度を具備するようになることから、特に著しい高熱発生と高 い機械的衝撃を伴う上記の非鉄材料などの被削材の高速重切削でも、表面被覆層 にチッビングの発生なぐすぐれた耐摩耗性を長期に亘つて発揮するものである。 図面の簡単な説明
[図 1A]図 1Aは、この発明の被覆超硬工具を構成する潤滑性非晶質炭素系被膜 (結 晶質 Ti (C, N)系化合物微粒を含む)を透過型電子顕微鏡を用いて組織観察した結 果を示す模式図である。
[図 1B]図 1 Bは、この発明の被覆超硬工具を構成する潤滑性非晶質炭素系被膜 (結 晶質 (Ti, Al) (C, N)系化合物微粒を含む)を透過型電子顕微鏡を用いて組織観察 した結果を示す模式図である。
[図 2A]図 2Aは、この発明の被覆超硬工具を構成する密着接合層および潤滑性非 晶質炭素系被膜を形成するのに用いた蒸着装置を示す概略平面図である。 [図 2B]図 2Bは、図 2Aに示す蒸着装置の概略正面図である。
[図 3A]図 3Aは、この発明の被覆超硬工具を構成する密着接合層および潤滑性非 晶質炭素系被膜を形成するのに用いた蒸着装置を示す概略平面図である。
[図 3B]図 3Bは、図 2Aに示す蒸着装置の概略正面図である。
[図 4A]図 4Aは、本発明被覆超硬工具の表面被覆層の下部層である (AlZTi) N層 を形成するのに用いたアークイオンプレーティング装置の概略平面図である。
[図 4B]図 4Bは、図 4Aに示すアークイオンプレーティング装置の概略正面図である。
[図 5A]図 5Aは、従来被覆超硬工具 (比較被覆超硬工具)を構成する密着接合層お よび潤滑性非晶質炭素系被膜を形成するのに用いた蒸着装置の概略平面図である
[図 5B]図 5Bは、図 5Aに示す蒸着装置の概略正面図である。
[図 6]図 6は、従来被覆超硬工具の表面被覆層の下部層である (Ti, A1) N層および 上部層である非晶質炭素系潤滑層を形成するのに用いた蒸着装置の概略説明図で ある。
発明を実施するための最良の形態
[0039] つぎに、この発明の被覆超硬工具を実施例により具体的に説明する。
実施例 1
[0040] 原料粉末として、レ、ずれも 0. 8 3 μ mの平均粒径を有する WC粉末、 TiC粉末、 VC粉末、 TaC粉末、 NbC粉末、 Cr C粉末、および Co粉末を用意し、これら原料 粉末を、表 1に示される配合組成に配合し、ボールミルで 84時間湿式混合し、乾燥し た後、 lOOMPaの圧力で圧粉体にプレス成形し、この圧粉体を 6Paの真空中、温度 : 1400°Cに 1時間保持の条件で焼結して、いずれも WC基超硬合金からなる炭素鋼 切削用超硬基体素材と A1合金および Cu合金切削用超硬基体素材を製造し、前記 炭素鋼切削用超硬基体素材には切刃部分に R: 0. 03のホーユング加工を施して IS O規格 'TNMG160408のチップ形状をもった超硬基体 A-1— A-10とし、また前 記 A1合金および Cu合金切削用超硬基体素材には研磨加工を施して ISO規格 ·ΤΕ GX160304Rのチップ形状をもった超硬基体 Α—:^ 一 A— 10 とした。
[0041] また、原料粉末として、いずれも 0. 5-2 μ mの平均粒径を有する TiCN (質量比で 、 TiC/TiN = 50/50)粉末、 Mo C粉末、 ZrC粉末、 NbC粉末、 TaC粉末、 WC 粉末、 Co粉末、および Ni粉末を用意し、これら原料粉末を、表 2に示される配合組 成に配合し、ボールミルで 84時間湿式混合し、乾燥した後、 lOOMPaの圧力で圧粉 体にプレス成形し、この圧粉体を 2kPaの窒素雰囲気中、温度: 1500°Cに 1時間保 持の条件で焼結して、レ、ずれも TiCN系サーメットからなる炭素鋼切削用超硬基体素 材と A1合金および Cu合金切削用超硬基体素材を製造し、前記炭素鋼切削用超硬 基体素材には切刃部分に R: 0. 03のホーユング加工を施して ISO規格 'TNMG16 0408のチップ形状をもった超硬基体 B—1 B—6とし、また前記 A1合金および Cu合 金切削用超硬基体素材には研磨加工を施して ISO規格 ·ΤΕΟΧ160304Ιのチップ 形状をもった超硬基体 Β— -B-6f とした。
ついで、上記の超硬基体 A_l , 1' 一 A—10, 10' および Β_1, Ϋ 一 B_6, 6r のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図 2A, 2Bに示される 蒸着装置内の回転テーブル上に、これの中心軸から半径方向に所定距離離れた位 置に複数の超硬基体をリング状に装着し、一方側のマグネトロンスパッタリング装置 の力ソード電極 (蒸発源)として、純度:99. 9質量%の Tiターゲット、対向する側にマ グネトロンスパッタリング装置の力ソード電極 (蒸発源)として、純度:99. 6質量%の WCターゲットを配置する。また前記 2つの力ソード電極に直交する側に、(Ti, A1)N 層力 なる密着接合層形成用のマグネトロンスパッタリング装置の力ソード電極 (蒸発 源)として、所定の組成をもった Ti一 A1合金ターゲットを配置し、
(a)まず、装置内を真空排気して 0. OlPaの真空に保持しながら、ヒーターで装置内 を 200°Cに加熱した後、 Arガスを装置内に導入して 0. 5Paの圧力の Ar雰囲気とし、 この状態で前記回転テーブル上で自転しながら回転する前記超硬基体に一 800Vの バイアス電圧を印加して前記超硬基体表面を 20分間 Arガスボンバード洗浄し、
(b)ついで、前記蒸着装置の対向配置の両マグネトロンスパッタリング装置の電磁コ ィルに、いずれも電圧:50V、電流: 10Aの条件で印加して、前記超硬基体の装着 部における磁束密度を 140G (ガウス)とした磁場を形成すると共に、前記蒸着装置 内の加熱温度を 400°Cとした状態で、反応ガスとして窒素と Arを、窒素流量: 300sc cm、 Ar流量: 200sccmの割合で導入して、 lPaの窒素と Arの混合ガスからなる反 応雰囲気、または反応ガスとして C Hと窒素と Arを、 C H流量: 50sccm、窒素流
2 2 2 2
量: 300sccm、 Ar流量: 230sccmの割合で導入して、 lPaの C Hの分解ガスと窒
2 2
素と Arの混合ガスからなる反応雰囲気とし、 Tiターゲットの力ソード電極 (蒸発源)に は出力: 12kW (周波数: 40kHz)のスパッタ電力を印加し、一方上記超硬基体には 、—100Vのバイアス電圧を印加した条件でグロ一放電を発生させることにより、前記 超硬基体の表面に表 3に示される目標層厚の TiN層および TiCN層のいずれ力、、ま たは両方からなる密着接合層を形成し、
(c)さらに、前記電磁コイルに印加する条件を、電圧: 50 100V、電流: 10 20A の範囲内の所定の値として、上記超硬基体の装着部における磁束密度を 100 30 0G (ガウス)の範囲内の所定の値とし、前記蒸着装置内の加熱温度は 400°C、上記 超硬基体のバイアス電圧は一 100Vとしたままで、前記蒸着装置内に反応ガスとして 、 C H (炭化水素)と窒素と Arを、 C H流量: 25 100sccm、窒素流量: 200 30
2 2 2 2
Osccm、 Ar流量: 150— 250sccmの範囲内の所定の流量で導入して、反応雰囲気 を、 lPaの C Hの分解ガスと窒素と Arの混合ガスとすると共に、前記両マグネトロン
2 2
スパッタリング装置の WCターゲットの力ソード電極(蒸発源)には、例えば出力: 1一 3 kW (周波数: 40kHz)の範囲内の所定のスパッタ電力、同 Tiターゲットには、出力: 3 一 8kW (周波数: 40kHz)の範囲内の所定のスパッタ電力を同時に印加した条件で 、同じく表 3に示される目標組成および目標層厚の潤滑性非晶質炭素系被膜を蒸着 形成することにより、本発明被覆超硬工具としての本発明表面被覆超硬合金製スロ 一ァウェイチップ(以下、本発明被覆超硬チップと云う) 1 , -26, 2Q' をそれぞ れ製造した。
さらに上記超硬基体 A— 1 , V 一 A_10, ic および B_l, V 一 B— 6, 6r のそ れぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図 3A, 3Bに示され蒸着装 置の回転テーブル上に、これの中心軸から半径方向に所定距離はなれた位置に複 数の超硬基体をリング状に装着し、一方側のマグネトロンスパッタ寝具装置のカソー ド電極 (蒸発源)として、所定の組成をもった Ti一 A1合金ターゲット、対向する側にマ グネトロンスパッタリング装置の力ソード電極 (蒸発源)として、純度 99. 6質量%の Cターゲットを配置する。また前記 2つの力ソード電極に直交する側に、 TiN層および TiCN層のいずれか、または両方からなる密着接合層形成用のマグネトロンスパッタ リング装置の力ソード電極 (蒸発源)として、純度: 99. 9質量%の Tiターゲットを配置 し、
(a)まず、装置内を真空排気して 0. OlPaの真空に保持しながら、ヒーターで装置内 を 200°Cに加熱した後、 Arガスを装置内に導入して 0. 5Paの圧力の Ar雰囲気とし、 この状態で前記回転テーブル上で自転しながら回転する前記超硬基体に一 800Vの バイアス電圧を印加して前記超硬基体表面を 20分間 Arガスボンバード洗浄し、
(b)ついで、前記蒸着装置の対向配置の両マグネトロンスパッタリング装置の電磁コ ィルに、いずれも電圧:50V、電流: 10Aの条件で印加して、前記超硬基体の装着 部における磁束密度を 140G (ガウス)とした磁場を形成すると共に、前記蒸着装置 内の加熱温度を 400°Cとした状態で、反応ガスとして窒素と Arを、窒素流量: 300sc cm、 Ar流量: 200sccmの割合で導入して、 lPaの窒素と Arの混合ガスからなる反 応雰囲気、または反応ガスとして C Hと窒素と Arを、 C H流量: 50sccm、窒素流
2 2 2 2
量: 300sccm、 Ar流量: 230sccmの割合で導入して、 lPaの C Hの分解ガスと窒
2 2
素と Arの混合ガスからなる反応雰囲気とし、 Tiターゲットの力ソード電極 (蒸発源)に は出力: 12kW (周波数: 40kHz)のスパッタ電力を印加し、一方上記超硬基体には 、—100Vのバイアス電圧を印加した条件でグロ一放電を発生させることにより、前記 超硬基体の表面に表 3に示される目標層厚の TiN層および TiCN層のいずれカ ま たは両方からなる密着接合層を形成し、
(c)さらに、前記電磁コイルに印加する条件を、電圧: 50— 100V、電流: 10— 20A の範囲内の所定の値として、上記超硬基体の装着部における磁束密度を 100— 30 0G (ガウス)の範囲内の所定の値とし、前記蒸着装置内の加熱温度は 400°C、上記 超硬基体のバイアス電圧は一 70Vとしたままで、前記蒸着装置内に反応ガスとして、 C H (炭化水素)と窒素と Arを、 C H流量: 25 100sccm、窒素流量: 200— 300
2 2 2 2
sccm、 Ar流量: 150 250sccmの範囲内の所定の流量で導入して、反応雰囲気を 、 lPaの C Hの分解ガスと窒素と Arの混合ガスとすると共に、前記両マグネトロンス
2 2
パッタリング装置の WCターゲットの力ソード電極(蒸発源)には、例えば出力: 1一 3k W (周波数: 40kHz)の範囲内の所定のスパッタ電力、同 Ti一 A1合金ターゲットには、 出力: 3— 8kW (周波数: 40kHz)の範囲内の所定のスパッタ電力を同時に印加した 条件で、表 4に示される目標組成および目標層厚の潤滑性非晶質炭素系被膜を蒸 着形成することにより、本発明被覆超硬工具としての本発明表面被覆超硬合金製ス ローァウェイチップ(以下、本発明被覆超硬チップと云う) 27, 27' -42, 2' をそ れぞれ製造した。
また、比較の目的で、上記超硬基体 A— 1 , 1 ' -A-10, 10r および B_l, 1' 一 B-6 , 6r のそれぞれの表面を、アセトン中で超音波洗浄し、乾燥した状態で、図 5A , 5Bに示される力ソード電極 (蒸発源)が Tiターゲットのスパッタリング装置と、カソー ド電極 (蒸発源)が WCターゲットのスパッタリング装置を対向配置した蒸着装置の回 転テーブル上に、これの中心軸から半径方向に所定距離離れた位置に複数の超硬 基体をリング状に装着し、
(a)まず、装置内を真空排気して 0. O l Paの真空に保持しながら、ヒーターで装置内 を 200°Cに加熱した後、 Arガスを装置内に導入して 0. 5Paの圧力の Ar雰囲気とし、 この状態で前記回転テーブル上で自転しながら回転する前記超硬基体に一 800Vの バイアス電圧を印加して前記超硬基体表面を 20分間 Arガスボンバード洗浄し、
(b)ついで、前記蒸着装置内の加熱温度を 300°Cとした状態で、装置内に反応ガス として窒素と Arを、窒素流量: 200sccm、 Ar流量: 300sccmの割合で導入して、 1P aの窒素と Arの混合ガスからなる反応雰囲気、または反応ガスとして C Hと窒素と Ar
2 2 を、 C H流量: 40sccm、窒素流量: 200sccm、 Ar流量: 300sccmの割合で導入し
2 2
て、 l Paの C Hの分解ガスと窒素と Arの混合ガスからなる反応雰囲気とし、 Tiター
2 2
ゲットの力ソード電極(蒸発源)には出力: 12kW (周波数: 40kHz)のスパッタ電力を 印加し、一方上記超硬基体には、—100Vのバイアス電圧を印加した条件でグロ一放 電を発生させることにより、前記超硬基体の表面に表 5, 6に示される目標層厚の Ti N層および TiCN層のいずれか、または両方からなる密着接合層を形成し、
(c)ついで、上記蒸着装置内の加熱温度を 200°Cとした状態で、 C Hと Arを、 C H
2 2 2 2 流量: 40— 80sccm、 Ar流量: 250sccmの範囲内の所定の流量で導入して、 lPaの C Hの分解ガスと Arの混合ガスからなる反応雰囲気とすると共に、上記超硬基体に
2 2
印加するバイアス電圧を一 20Vとし、 WCターゲットの力ソード電極 (蒸発源)には出力 : 4一 6kW (周波数: 40kHz)の範囲内の所定のスパッタ電力を印加した条件で、上 記密着接合層の上に、同じく表 5, 6に示される目標組成および目標層厚の潤滑性 非晶質炭素系被膜を蒸着形成することにより、従来被覆超硬工具に相当する比較表 面被覆超硬合金製スローァウェイチップ (以下、比較被覆超硬チップと云う) 1 , lr -16, 16' をそれぞれ製造した。
つぎに、上記本発明被覆超硬チップ 1, 1' 一 42, 42r および比較被覆超硬チッ プ 1, 1' 一 16, 16r を工具鋼製バイトの先端部に固定治具にてネジ止めした状態 で、
被削材: JIS ' SIOCの丸棒、
切削速度: 350m/min.、
切り込み: 1. 2mm、
送り: 0. 18mm/rev.、
切削時間: 5分、
の条件での炭素鋼の乾式高速切削加工試験(通常の切削速度は 120m/min. )、 被削材: JIS 'A5052の丸棒、
切削速度: 1000m/min.、
切り込み: 1 · 4mm、
送り: 0. 3mm/ rev.、
切削時間: 20分、
の条件での A1合金の乾式高速切削加工試験(通常の切削速度は 400m/min. )、 さらに、
被削材: JIS . C3710の丸棒、
切削速度: 430m/min.、
切り込み: 1. 2mm、
り: 0. 25mm rev.、
切削時間: 20分、
の条件での Cu合金の乾式高速切削加工試験(通常の切削速度は 200mZmin. ) を行なった。いずれの切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定 結果を表 3— 6に示した。
[0046] [表 1]
Figure imgf000027_0001
[0047] [表 2]
Figure imgf000028_0001
3]
〔〕0049
Figure imgf000029_0001
密着接合層 灣滑綵非晶質 «»蒸被膜 逃げ面摩耗輥 (iwr 超硬 隱標瞧標子%》 mm
量別 基!^ 目穰 (c,嶋 康棄鋼の ΑΙ合金ぬ Cu含'金の 著号 層厚
mm T1CN層 W Τί ΑΙ N 結晶粒子
不純物 《 m/ 高速切,富速麵高速切削 搔 (nm)
27, 27' A-i ,r 0.1 ― 5.0 10.0 15.0 12.5 残リ 3.0 32.6 0.21 0.f§ 0,140050 28, 28' A-2 ,2' ― 1.0 10,0 8,0 12.0 12,0 残 y 5,0 24,9 0.19 0.13 0.12
2», 29' A-3 ,3' 1.0 0.5 15.0 4,0 β.0 3.0 殘 y 7.0 22.1 0.19 0,11 0,12
30, 30' A-4 ,4' ― 2.0 20.0 10,0 13.0 2,5 残り 9.0 11.7 0,14 0.1 0.07
31, 3t' A-S ,5' 2.5 ― 5.0 雌' 10.0 励 残 y IJ 8.6 0.13 0.0? 0.Q5
32, 32' A-6 ,6' 1.0 2.0 10.0 7.5 7.5 13.5 残 y 3.0 5.3 0.1 0.04 0,04
33, 33' A-7 0.5 ― 15.0 5,0 5.0 3.0 残 y 5.0 28.6 0.2 0,14 0.13 超硬本発明被礙チプ. · 34, 34' A- ' ― 3.0 20.0 2.S 2.5 0.5 残 y 7,0 25.7 D.12 0 12
35, 35' A-9 ,9' 0,5 2,5 5.0 2.5 1.6 0.4 残 y 9.0 16.3 0,18 o.ts 0,08
3i, 36" A-10.10' 2.0 ― 10.0 §,0 4.0 β.0 残 y 13.0 14.3 0.18 0.1 0.07
37, 37' B-i ,1' ― 2.5 15.0 10.0 8.7 δ.Ο 残 y <ao 9.4 0.13 0.0? 0.06
B-2 ,2' 1.0 1.0 20.0 2.5 1.6 3.1 残 y 8J 12.2 0.1 S o.t 0,08
39, 39 B-3 ,3' ― 1.0 5.0 10.0 J 0.0 10.0 残 y 7.0 21.2 0.1 S 0.13 0.11
¾ 40' B-4 ,4' 1.5 ― 10,0 7.5 7.5 7.a 残 y m 6.5 an 0.05 0.05
41, 41* B-5 ,5* ― 0.1 15.0 5,0 s.o s,o 残り 3.0 38.8 0,23 0,18 0.16
42, 42* Β-β ,8' 1.5 1.5 細 7.5 7.5 7,5 «y to t8,8 0.17 0,12 0,1
Figure imgf000031_0001
密着接舎屡 涠滑性難晶資糜素系被縝 逃げ面摩耗幅 (rwti) 超硬
種别 基体 目檫層厚( m) 目欉組成 (厭子%) 目檁 膽金 Cki合金 瞬 攞厚 高速 ぬ富速 の寓逮
ΤΊΝ躧 ncN C+
層 W 《 m》 切削 切削 脑 不纖
1 , 1 ' Α-1 , 1* 0. 1 ― 5 - ― 残 y 1 0. 7S 0. 67 O. 6S
2, ,2' Α-2, 2' ― 1 10 ― ― 残 y 3 0> 72. 0. 64 0. 62
3, 3' Α-3, 3' 1 0. 5 15 ― ― 则 5 0. m 0. 62 0. 60
4, 4" Α-4, 4' ― 2 20 ― ― 残 y 7 0. 64 0, 60 0. 58
5, 5' Α-5, 5' g, S ― ― 残 y 9 0, 62 0. 58 0. 57
8. e' Α-6, 6' 1 2 10 ― ― ay 13 0. 59 0, S5 0. §3
7, 7' Α-?» Ύ 0. 5 ― 15 ― ― 残 y 3 0. 74 0, 67 0. 64
8, 8* Α-8, 8' ― 3 20 ― ― 残 y S 0. 72 0. 64 0. 61
9, β' A~9, 0' 0. 5 2. 5 10 ― ― 翻 7 0. 68 0, ©2 0. 60
10. 10' Α-10, 10' 2 ― 15 ― ― m 9 0. 6S 0. 60 0. 57
Figure imgf000032_0001
実施例 2
原料粉末として、平均粒径: 4. を有する中粗粒 WC粉末、同 0. 8 zmの微粒
WC粉末、同 1. 3Mmの TaC粉末、同 1. 2μπιの NbC粉末、同 1. 2 11の21"〇粉末 、同 1. 8 μ m(Z)Cr C f^ ,同 1. 5^ 111の じ粉末、同 1. ΟμταΟ) (Ti, W)C (質量
3 2
比で、 TiC/WC = 50/50)粉末、および同 1. 8 Mmの Co粉末を用意し、これら原 料粉末をそれぞれ表 7に示される配合組成に配合し、さらにワックスを加えてアセトン 中で 72時間ボールミル混合し、減圧乾燥した後、 lOOMPaの圧力で所定形状の各 種の圧粉体にプレス成形し、これらの圧粉体を、 6Paの真空雰囲気中、 7°C/分の昇 温速度で 1370— 1470°Cの範囲内の所定の温度に昇温し、この温度に 1時間保持 後、炉冷の条件で焼結して、直径が 8mm、 13mm,および 26mmの 3種の超硬基体 形成用丸棒焼結体を形成し、さらに前記の 3種の丸棒焼結体から、研削加工にて、 表 7に示される組合せで、切刃部の直径 X長さがそれぞれ 6mm X 13mm, 10mm X 22mm、および 20mm X 45mmの寸法、並びにいずれもねじれ角 30度の 4枚刃 スクェアの形状をもった超硬基体 (エンドミル) C一 1一 C—8をそれぞれ製造した。
[0053] ついで、これらの超硬基体(エンドミル) C—1一 C—8を、アセトン中で超音波洗浄し 、乾燥した状態で、同じく図 2A, 2Bまたは、図 3A, 3Bに示される蒸着装置に装入し 、上記実施例 1と同一の条件で、表 8, 9に示される目標層厚の TiN層および TiCN 層のいずれか、または両方、並びに同じく表 8, 9に示される目標組成および目標層 厚の潤滑性非晶質炭素系被膜を蒸着形成することにより、本発明被覆超硬工具とし ての本発明表面被覆超硬合金製エンドミル (以下、本発明被覆超硬エンドミルと云う ) 1一 19をそれぞれ製造した。
[0054] また、比較の目的で、上記の超硬基体(エンドミル) C—1一 C—8を、アセトン中で超 音波洗浄し、乾燥した状態で、同じく図 5A, 5Bに示される蒸着装置に装入し、上記 実施例 1と同一の条件で、表 10に示される目標層厚の TiN層および TiCN層のいず れか、または両方、並びに同じく表 10に示される目標組成および目標層厚の潤滑性 非晶質炭素系被膜を蒸着形成することにより、従来被覆超硬工具に相当する比較表 面被覆超硬合金製エンドミル (以下、比較被覆超硬エンドミルと云う) 1一 8をそれぞ れ製造した。
[0055] つぎに、上記本発明被覆超硬エンドミル 1一 19および比較被覆超硬エンドミル 1一 19のうち、本発明被覆超硬エンドミル 1一 3, 9, 12— 14および比較被覆超硬エンド ミル 1一 3については、
被削材:平面寸法: lOOmm X 250mm、厚さ: 50mmの JIS .A5052の板材、 切削速度: 300m/min.、
軸方向切り込み: 4mm、
径方向切り込み: 0. 7mm、
テーブル送り: 2200mm/分、 の条件での Al合金の乾式高速側面切削加工試験(通常の切削速度は 180m/min . )、本発明被覆超硬エンドミル 4一 6, 10, 15— 17および従来被覆超硬エンドミル 4 一 6については、
被削材:平面寸法: 100mm X 250mm,厚さ: 50mmの JIS - C3710の板材、 切削速度: 300m/min.、
軸方向切り込み: 6mm、
径方向切り込み: 1. lmm、
テーブル送り: 2050mm/分、
の条件での Cu合金の乾式高速側面切削加工試験(通常の切削速度は 180m/mi n. )、本発明被覆超硬エンドミル 7, 8および比較被覆超硬エンドミル 7, 8, 11 , 18, 19については、
被削材:平面寸法: 100mm X 250mm,厚さ: 50mmの JIS · S 10Cの板材、 切削速度: 350m/min.、
軸方向切り込み: 8mm、
径方向切り込み: 2mm、
テーブル送り: 2050mm/分、
の条件での炭素鋼の乾式高速側面切削加工試験(通常の切削速度は 200m/min . )をそれぞれ行い、いずれの側面切削加工試験でも切刃部の外周刃の逃げ面摩耗 幅が使用寿命の目安とされる 0. 1mmに至るまでの切削長を測定した。この測定結 果を表 8— 10にそれぞれ示した。
[表 7]
Figure imgf000035_0001
a滑性 *晶質炭素慕被膜
超硬 目樣屬 I 棵組成 (« %) TiiCN) 圏锞 切削 δ 種: 系緒晶
霄 G+
TiN層 TiCN層 W Ti N mm (m)
雜子怪 不麵 (nm) t C-1 0,1 ― 5.0 20,0 10,0 残リ 3 21.3 19S
2 C-2 ― 1.0 10,0 15.0 7.5 残 y 5 7,9 2f0
3 C-3 0.5 0,5 15.0 翻 §,0 3 28.3 185
4 0-4 ― I.S 20,0 5.0 2,5 7 11, 6 223
5 C-δ 0.5 2.0 5.0 20.0 mo 残 y 9 25.3 245 β c-β 0.5 ― ■ 15.0 10.5 残リ 3 17.2 192
7 G 7 3.0 ― 15.0 漏 麵 9 15.8 70
8 0-8 ― 3.0 20.0 5.0 9.5 13 S.6 84
9 C-1 Ο.δ 1.0 10,0 0.5 赚 5 6.3 213
10 C-4 ― 1.5 40,0 4.0 30.0 残リ 10 13.2 205
1 1 0-7 - 1.5 10.0 30.0 25.0 残 y 6 37.4 64
ェンル S t
硬被覆趨本 ¾明
m
Figure imgf000037_0001
10]
Figure imgf000037_0002
実施例 3
[0060] 上記の実施例 2で製造した直径が 8mm (超硬基体 C - 1一 C - 3形成用)、 13mm
(超硬基体 C - 4一 C - 6形成用)、および 26mm (超硬基体 C - 7、 C - 8形成用)の 3種 の丸棒焼結体を用い、この 3種の丸棒焼結体から、研削加工にて、溝形成部の直径 X長さがそれぞれ 4mm X 13mm (超硬基体 D— 1一 D— 3)、 8mm X 22mm (超硬基 体 D—4— D_6)、および 16mm X 45mm (超硬基体 D_7、 D—8)の寸法、並びにい ずれもねじれ角 30度の 2枚刃形状をもった超硬基体(ドリル) D— 1一 D-8をそれぞれ 製造した。
[0061] ついで、これらの超硬基体(ドリル) D-1— D-8の切刃に、ホーニングを施し、ァセ トン中で超音波洗浄し、乾燥した状態で、同じく図 2A, 2Bまたは、図 3A, 3Bに示さ れる蒸着装置に装入し、上記実施例 1と同一の条件で、表 11 , 12に示される目標層 厚の TiN層および TiCN層のいずれカ または両方、並びに同じく表 11, 12に示さ れる目標組成および目標層厚の潤滑性炭素系非晶質体の被膜を蒸着形成すること により、本発明被覆超硬工具としての本発明表面被覆超硬合金製ドリル (以下、本発 明被覆超硬ドリルと云う) 1一 19をそれぞれ製造した。
[0062] また、比較の目的で、上記の超硬基体(ドリル) D—1 D—8の切刃に、ホーユング を施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図 5A, 5Bに示される蒸 着装置に装入し、上記実施例 1と同一の条件で、表 13に示される目標層厚の TiN層 および TiCN層のいずれか、または両方、並びに同じく表 13に示される目標組成お よび目標層厚の潤滑性非晶質炭素系被膜を蒸着形成することにより、従来被覆超硬 工具に相当する比較表面被覆超硬合金製ドリル (以下、比較被覆超硬ドリルと云う) 1 一 8をそれぞれ製造した。
[0063] つぎに、上記本発明被覆超硬ドリル 1一 19および比較被覆超硬ドリル 1一 8のうち、 本発明被覆超硬ドリル 1一 3, 9, 12 14および比較被覆超硬ドリル 1一 3について は、
被削材:平面寸法: lOOmm X 250mm、厚さ: 50mmの JIS .A5052の板材、 切削速度: 280m/min.、
り: 0. 4mm/ rev、 穴深さ: 6mm、
の条件での A1合金の湿式高速穴あけ切削加工試験(通常の切削速度は 120m/m in. )、本発明被覆超硬ドリル 4一 6, 10, 15— 17および比較被覆超硬ドリル 4一 6に ついては、
被削材:平面寸法: 100mm X 250mm,厚さ: 50mmの JIS · S 10Cの板材、 切削速度: 250m/min.、
送り: 0. 5mm/ rev、
穴深さ: 12mm、
の条件での炭素鋼の湿式高速穴あけ切削加工試験(通常の切削速度は 1 lOmZmi n. )、本発明被覆超硬ドリル 7, 8, 1 1 , 18, 19および比較被覆超硬ドリル 7, 8につ いては、
被削材:平面寸法: 100mm X 250mm、厚さ: 50mmの JIS - C3710の板材、 切削速度: 250m/min.、
送り: 0.り mm/ rev、
穴深さ: 20mm、
の条件での Cu合金の湿式高速穴あけ切削加工試験(通常の切削速度は 110m/ min. )、をそれぞれ行い、いずれの湿式穴あけ切削加工試験 (水溶性切削油使用) でも先端切刃面の逃げ面摩耗幅が 0. 3mmに至るまでの穴あけ加工数を測定した。 この測定結果を表 11一 13にそれぞれ示した。
[表 11]
Figure imgf000040_0001
00065
§s
Figure imgf000041_0001
Figure imgf000042_0001
[0067] この結果得られた本発明被覆超硬工具としての本発明被覆超硬チップ 1 4 2, 42r 、本発明被覆超硬エンドミル 1 19、および本発明被覆超硬ドリル 1 19 並びに従来被覆超硬工具に相当する比較被覆超硬チップ 1 -16, 16r 、比 較被覆超硬エンドミル 1 8、および比較被覆超硬ドリル 1 8を構成する潤滑性非 晶質炭素系被膜について、その組成をォージェ分光分析装置、その層厚を走査型 電子顕微鏡を用いて測定したところ、いずれも目標組成および目標層厚と実質的に 同じ組成および平均層厚(断面 5箇所の平均値)を示し、また、その組織を透過型電 子顕微鏡を用いて観察したところ、前記本発明被覆超硬工具は、炭素系非晶質体の 素地に、結晶質の Ti (C N)系化合物微粒が分散分布した組織を示し、一方前記従 来被覆超硬工具は、炭素系非晶質体の単一相からなる組織を示した。
[0068] 表 3— 13に示される結果から、潤滑性非晶質炭素系被膜が、炭素系非晶質体の素 地に、結晶質の Ti (C N)系化合物微粒が分散分布した組織を有する本発明被覆 超硬工具は、いずれも A1合金や Cu合金、さらに鋼の切削加工を、高速条件で行な つた場合にも、すぐれた耐摩耗性を発揮するのに対して、潤滑性非晶質炭素系被膜 力 炭素系非晶質体の単一相からなる組織を有する従来被覆超硬工具(比較被覆 超硬工具)においては、高速切削条件では、前記潤滑性非晶質炭素系被膜の摩耗 進行がきわめて速ぐ比較的短時間で使用寿命に至ることが明らかである。
実施例 4 [0069] 原料粉末として、いずれも 0. 7— 3 μ mの平均粒径を有する WC粉末、 TiC粉末、 VC粉末、 TaC粉末、 NbC粉末、 Cr C粉末、および Co粉末を用意し、これら原料 粉末を、表 14に示される配合組成に配合し、ボールミルで 80時間湿式混合し、乾燥 した後、 l OOMPaの圧力で圧粉体にプレス成形し、この圧粉体を 6Paの真空中、温 度: 1400°Cに 1時間保持の条件で焼結して、いずれも WC基超硬合金からなる炭素 鋼切削用超硬基体素材と A1合金および Cu合金切削用超硬基体素材を製造し、前 記炭素鋼切削用超硬基体素材には切刃部分に R : 0. 03のホーニング加工を施して ISO規格 'TNMG160408のチップ形状をもった超硬基体 A— 1一 A— 10とし、また 前記 A1合金および Cu合金切削用超硬基体素材には研磨加工を施して ISO規格 ·Τ EGX160304Rのチップ形状をもった超硬基体 Α_1' A—10' とした。
[0070] また、原料粉末として、いずれも 0. 5- 2 μ mの平均粒径を有する TiCN (質量比で 、 TiCZTiN = 50/50)粉末、 Mo C粉末、 ZrC粉末、 NbC粉末、 TaC粉末、 WC 粉末、 Co粉末、および Ni粉末を用意し、これら原料粉末を、表 15に示される配合組 成に配合し、ボールミルで 80時間湿式混合し、乾燥した後、 l OOMPaの圧力で圧粉 体にプレス成形し、この圧粉体を 2kPaの窒素雰囲気中、温度: 1510°Cに 1時間保 持の条件で焼結して、 V、ずれも TiCN系サーメットからなる炭素鋼切削用超硬基体素 材と A1合金および Cu合金切削用超硬基体素材を製造し、前記炭素鋼切削用超硬 基体素材には切刃部分に R : 0. 03のホーユング加工を施して ISO規格 'TNMG16 0408のチップ形状をもった超硬基体 B-1— B-6とし、また前記 A1合金および Cu合 金切削用超硬基体素材には研磨加工を施して ISO規格 'TEGX160304Rのチップ 形状をもった超硬基体 B— とした。
[0071] ついで、上記の超硬基体 A_l , 1 ' 一 A—10, 10' および Β_1, Ϋ —B-6 , 6r のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図 2A, 2Bに示される 蒸着装置内の回転テーブル上に、これの中心軸から半径方向に所定距離離れた位 置に複数の超硬基体をリング状に装着し、一方側のマグネトロンスパッタリング装置 の力ソード電極 (蒸発源)として、純度: 99. 6質量%の Tiターゲット、対向する側にマ グネトロンスパッタリング装置の力ソード電極 (蒸発源)として、純度: 99. 6質量%の WCターゲットを配置する。また前記 2つの力ソード電極に直交する側に、(Ti, A1)N 層力 なる密着接合層形成用のマグネトロンスパッタリング装置の力ソード電極 (蒸発 源)として、所定の組成をもった Ti A1合金ターゲットを配置し、
(a)まず、装置内を真空排気して 0. O l Paの真空に保持しながら、ヒーターで装置内 を 200°Cに加熱した後、 Arガスを装置内に導入して 0. 5Paの圧力の Ar雰囲気とし、 この状態で前記回転テーブル上で自転しながら回転する前記超硬基体に一 810Vの バイアス電圧を印加して前記超硬基体表面を 20分間 Arガスボンバード洗浄し、
(b)ついで、前記蒸着装置の全てのマグネトロンスパッタリング装置の電磁コイルに、 いずれも電圧: 50V、電流: 10Aの条件で印加して、前記超硬基体の装着部におけ る磁束密度を 140G (ガウス)とした磁場を形成すると共に、前記蒸着装置内の加熱 温度を 400°Cとした状態で、反応ガスとして窒素と Arを、窒素流量: 300sccm、 Ar流 量: 200sccmの割合で導入して、 l Paの窒素と Arの混合ガスからなる反応雰囲気と し、 Ti-Al合金ターゲットの力ソード電極(蒸発源)には出力: 12kW (周波数: 40kHz )のスパッタ電力を印加し、一方上記超硬基体には、 -70Vのバイアス電圧を印加し た条件でグロ一放電を発生させることにより、前記超硬基体の表面に表 16 , 17に示 される目標組成および目標層厚の (Ti, Al) N層からなる密着接合層を形成し、
(c)さらに、前記電磁コイルに印加する条件を、電圧: 50— 100V、電流: 10— 20A の範囲内の所定の値として、上記超硬基体の装着部における磁束密度を 100— 30 0G (ガウス)の範囲内の所定の値とし、前記蒸着装置内の加熱温度は 400°C、上記 超硬基体のバイアス電圧は 100Vとしたままで、前記蒸着装置内に反応ガスとして
、 C H (炭化水素)と窒素と Arを、 C H流量: 25— 100sccm、窒素流量: 200— 30
2 2 2 2
Osccm、 Ar流量: 150— 250sccmの範囲内の所定の流量で導入して、反応雰囲気 を、 l Paの C Hの分解ガスと窒素と Arの混合ガスとすると共に、前記両マグネトロン
2 2
スパッタリング装置の WCターゲットの力ソード電極(蒸発源)には、例えば出力: 1一 3 kW (周波数: 40kHz)の範囲内の所定のスパッタ電力、同 Tiターゲットには、出力: 3 一 8kW (周波数: 40kHz)の範囲内の所定のスパッタ電力を同時に印加した条件で 、同じく表 16に示される目標組成および目標層厚の潤滑性非晶質炭素系被膜を蒸 着形成することにより、本発明被覆超硬工具としての本発明表面被覆超硬合金製ス ローァウェイチップ(以下、本発明被覆超硬チップと云う) 1 , - 26, 26' をそれ ぞれ製造した。
さらに上記超硬基体 A_l , V 一 A_10, 10' および B_l, \' 一 Β_6, 6' のそ れぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図 3A, 3Bに示され蒸着装 置の回転テーブル上に、これの中心軸から半径方向に所定距離はなれた位置に複 数の超硬基体をリング状に装着し、一方側のマグネトロンスパッタ寝具装置のカソー ド電極 (蒸発源)として、所定の組成をもった Ti一 A1合金ターゲット、対向する側にマ グネトロンスパッタリング装置の力ソード電極 (蒸発源)として、純度 99. 6質量%の Cターゲットを配置する。また前記 2つの力ソード電極に直交する側に、 TiN層および TiCN層のいずれか、または両方からなる密着接合層形成用のマグネトロンスパッタ リング装置の力ソード電極 (蒸発源)として、純度: 99. 9質量%の Tiターゲットを配置 し、
(a)まず、装置内を真空排気して 0. OlPaの真空に保持しながら、ヒーターで装置内 を 200°Cに加熱した後、 Arガスを装置内に導入して 0. 5Paの圧力の Ar雰囲気とし、 この状態で前記回転テーブル上で自転しながら回転する前記超硬基体に 810Vの バイアス電圧を印加して前記超硬基体表面を 20分間 Arガスボンバード洗浄し、
(b)ついで、前記蒸着装置の全てのマグネトロンスパッタリング装置の電磁コイルに、 いずれも電圧: 50V、電流: 10Aの条件で印加して、前記超硬基体の装着部におけ る磁束密度を 140G (ガウス)とした磁場を形成すると共に、前記蒸着装置内の加熱 温度を 400°Cとした状態で、反応ガスとして窒素と Arを、窒素流量: 300sccm、 Ar流 量: 200sccmの割合で導入して、 lPaの窒素と Arの混合ガスからなる反応雰囲気と し、 Ti A1合金ターゲットの力ソード電極(蒸発源)には出力: 12kW (周波数: 40kHz )のスパッタ電力を印加し、一方上記超硬基体には、—70Vのバイアス電圧を印加し た条件でグロ一放電を発生させることにより、前記超硬基体の表面に表 16, 17に示 される目標組成および目標層厚の (Ti, Al) N層からなる密着接合層を形成し、
(c)さらに、前記電磁コイルに印加する条件を、電圧: 50 100V、電流: 10 20A の範囲内の所定の値として、上記超硬基体の装着部における磁束密度を 100 30 0G (ガウス)の範囲内の所定の値とし、前記蒸着装置内の加熱温度は 400°C、上記 超硬基体のバイアス電圧は一 70Vとしたままで、前記蒸着装置内に反応ガスとして、 C H (炭化水素)と窒素と Arを、 C H流量: 25— 100sccm、窒素流量: 200— 300
2 2 2 2
sccm、 Ar流量: 150— 250sccmの範囲内の所定の流量で導入して、反応雰囲気を 、 lPaの C Hの分解ガスと窒素と Arの混合ガスとすると共に、前記両マグネトロンス
2 2
パッタリング装置の WCターゲットの力ソード電極(蒸発源)には、例えば出力: 1一 3k W (周波数: 40kHz)の範囲内の所定のスパッタ電力、同 Ti一 A1合金ターゲットには、 出力: 3— 8kW (周波数: 40kHz)の範囲内の所定のスパッタ電力を同時に印加した 条件で、同じく表 17に示される目標組成および目標層厚の潤滑性非晶質炭素系被 膜を蒸着形成することにより、本発明被覆超硬工具としての本発明表面被覆超硬合 金製スローァウェイチップ(以下、本発明被覆超硬チップと云う) 27, 27' 一 42, 42 ' をそれぞれ製造した。
また、比較の目的で、上記超硬基体 A— 1 , 1' -A-10, 10r および B_l, 1' 一 B-6, 6r のそれぞれの表面を、アセトン中で超音波洗浄し、乾燥した状態で、図 5A , 5Bに示される力ソード電極 (蒸発源)が Tiターゲットのスパッタリング装置と、カソー ド電極 (蒸発源)が WCターゲットのスパッタリング装置を対向配置した蒸着装置の回 転テーブル上に、これの中心軸から半径方向に所定距離離れた位置に複数の超硬 基体をリング状に装着し、
(a)まず、装置内を真空排気して 0. OlPaの真空に保持しながら、ヒーターで装置内 を 200°Cに加熱した後、 Arガスを装置内に導入して 0. 5Paの圧力の Ar雰囲気とし、 この状態で前記回転テーブル上で自転しながら回転する前記超硬基体に一 800Vの バイアス電圧を印加して前記超硬基体表面を 20分間 Arガスボンバード洗浄し、
(b)ついで、前記蒸着装置内の加熱温度を 300°Cとした状態で、装置内に反応ガス として窒素と Arを、窒素流量: 200sccm、 Ar流量: 300sccmの割合で導入して、 1P aの窒素と Arの混合ガスからなる反応雰囲気とし、 Tiターゲットの力ソード電極 (蒸発 源)には出力: 12kW (周波数: 40kHz)のスパッタ電力を印加し、一方上記超硬基体 には、_100Vのバイアス電圧を印加した条件でグロ一放電を発生させることにより、 前記超硬基体の表面に表 18に示される目標層厚の TiN層からなる密着接合層を形 成し、
(c)ついで、上記蒸着装置内の加熱温度を 200°Cとした状態で、 C Hと Arを、 C H 流量: 40— 80sccm、 Ar流量: 250sccmの範囲内の所定の流量で導入して、 lPaの C Hの分解ガスと Arの混合ガスからなる反応雰囲気とすると共に、上記超硬基体に
2 2
印加するバイアス電圧を- 20Vとし、 WCターゲットの力ソード電極 (蒸発源)には出力 : 4一 6kW (周波数: 40kHz)の範囲内の所定のスパッタ電力を印加した条件で、上 記密着接合層の上に、同じく表 18に示される目標組成および目標層厚の潤滑性非 晶質炭素系被膜を蒸着形成することにより、従来被覆超硬工具に相当する比較表面 被覆超硬合金製スローァウェイチップ (以下、比較被覆超硬チップと云う) 1 , 1' 一 1 6, 16r をそれぞれ製造した。
つぎに、上記本発明被覆超硬チップ 1, 1' 一 42, 42r および比較被覆超硬チッ プ 1 , 1' 一 16, 16r を工具鋼製バイトの先端部に固定治具にてネジ止めした状態 で、
被削材: JIS ' SIOCの丸棒、
切削速度: 360m/min.、
切り込み: 1. 2mm、
り: 0. 2mm rev.、
切削時間: 5分、
の条件 (切削条件 Aという)での炭素鋼の乾式高速切削加工試験 (通常の切削速度 は 120m/min. )、
被削材: JIS .A5052の丸棒、
切削速度: 1050m/min.、
切り込み: 1. 2mm、
送り: 0. 3mm/rev.、
切削時間: 20分、
の条件 (切削条件 Bという)での A1合金の乾式高速切削加工試験 (通常の切削速度 は 400m/min. )、さらに、
被削材: JIS ' C3710の丸棒、
切削速度: 450m/min.、
切り込み: 1. 4mm、 送り: 0· 27mm/rev. 、
切削時間: 20分、
の条件 (切削条件 Cとレ、う)での Cu合金の乾式高速切削加工試験 (通常の切削速度 は 200m/min. )を行なった。いずれの切削加工試験でも切刃の逃げ面摩耗幅を 測定した。この測定結果を表 16— 18に示した。
[表 14]
Figure imgf000048_0001
[0076] [表 15]
Figure imgf000048_0002
[0077] [表 16]
Figure imgf000049_0001
7] 0079
Figure imgf000050_0001
Figure imgf000051_0001
実施例 5
原料粉末として、平均粒径: 4.2 μπιを有する中粗粒 WC粉末、同 0.7 μπιの微粒 WC粉末、同 1.2〃111の丁&〇粉末、同 1. 1〃111の1^)〇粉末、同 1.1 μ mの ZrC粉末 、同 1.6 mの CrC粉末、同 1.4 111の 〇粉末、同 1.1 μ m<¾ (Ti, W)C (質量
3 2
比で、 TiC/WC = 50/50)粉末、および同 1.8 zmの Co粉末を用意し、これら原 料粉末をそれぞれ表 19に示される配合組成に配合し、さらにワックスを加えてァセト ン中で 70時間ボールミル混合し、減圧乾燥した後、 lOOMPaの圧力で所定形状の 各種の圧粉体にプレス成形し、これらの圧粉体を、 6Paの真空雰囲気中、 7°C/分の 昇温速度で 1375— 1475°Cの範囲内の所定の温度に昇温し、この温度に 1時間保 持後、炉冷の条件で焼結して、直径が 8mm、 13mm,および 26mmの 3種の超硬基 体形成用丸棒焼結体を形成し、さらに前記の 3種の丸棒焼結体から、研削加工にて 、表 19に示される組合せで、切刃部の直径 X長さがそれぞれ 6mm X I 3mm、 10m m X 22mm、および 20mm X 45mmの寸法、並びにいずれもねじれ角 30度の 4枚 刃スクェアの形状をもった超硬基体 (エンドミル) C一 1一 C—8をそれぞれ製造した。
[0081] ついで、これらの超硬基体(エンドミル) C—1一 C—8を、アセトン中で超音波洗浄し 、乾燥した状態で、同じく図 2A, 2Bまたは、図 3A, 3Bに示される蒸着装置に装入し 、上記実施例 4と同一の条件で、表 20, 21に示される目標組成および目標層厚の( Ti, A1) N層、並びに同じく表 20, 21に示される目標組成および目標層厚の潤滑性 非晶質炭素系被膜を蒸着形成することにより、本発明被覆超硬工具としての本発明 表面被覆超硬合金製エンドミル (以下、本発明被覆超硬エンドミルと云う) 1一 19をそ れぞれ製造した。
[0082] また、比較の目的で、上記の超硬基体(エンドミル) C—1一 C—8を、アセトン中で超 音波洗浄し、乾燥した状態で、同じく図 5A, 5Bに示される蒸着装置に装入し、上記 実施例 4と同一の条件で、表 22に示される目標層厚の TiN層、並びに同じく表 22に 示される目標組成および目標層厚の潤滑性非晶質炭素系被膜を蒸着形成すること により、従来被覆超硬工具に相当する比較表面被覆超硬合金製エンドミル (以下、 比較被覆超硬エンドミルと云う) 1一 8をそれぞれ製造した。
[0083] つぎに、上記本発明被覆超硬エンドミル 1一 19および比較被覆超硬エンドミル 1一 8のうち、本発明被覆超硬エンドミル 1一 3, 9, 12— 14および比較被覆超硬エンドミ ノレ 1一 3については、
被削材:平面寸法: lOOmm X 250mm、厚さ: 50mmの JIS .A5052の板材、 切削速度: 320m/min.、
軸方向切り込み: 4. 5mm,
径方向切り込み: 0. 7mm、
テーブル送り: 2350mm/分、
の条件での A1合金の乾式高速側面切削加工試験(通常の切削速度は 180mZmin . )、本発明被覆超硬エンドミル 4一 6, 10, 15— 17および従来被覆超硬エンドミル 4 一 6については、
被削材:平面寸法: 100mm X 250mm、厚さ: 50mmの JIS ' C3710の板材、 切削速度: 320m/min.、
軸方向切り込み: 6. 5mm、
径方向切り込み: 1. 2mm、
テーブル送り: 2185mm/分、
の条件での Cu合金の乾式高速側面切削加工試験(通常の切削速度は 180m/mi n. )、本発明被覆超硬エンドミル 7, 8, 11, 18, 19および比較被覆超硬エンドミル7 , 8については、
被削材:平面寸法: 100mm X 250mm,厚さ: 50mmの JIS · S 10Cの板材、 切削速度: 365m/min.、
軸方向切り込み: 8. 0mm、
径方向切り込み: 2. 0mm、
テーブル送り: 2140mm/分、
の条件での炭素鋼の湿式高速側面切削加工試験(通常の切削速度は 200m/min . )をそれぞれ行い、いずれの側面切削加工試験でも切刃部の外周刃の逃げ面摩耗 幅が使用寿命の目安とされる 0, 1mmに至るまでの切削長を測定した。この測定結 果を表 20— 22にそれぞれ示した。
[表 19]
配 合 繾 瘃 ( 質 量 % 》 切 穩 鑭 直 ft 長さ
Co {Ti, W)C TaC NfaC ん 1* VG
C-1 5 ― ― 1 — 微轆:残 0X13 趨 C-2 6 ― ― 1. δ 微 tt:残 8X13 硬
C-3 6 ― 0.5 ― 0.3 0.3 微粒:残 8X13 体
SU〔^S0852 C-4 6. § ― 0.4 截霾:¾ 10 2 ン C-S 7 18 ― 5 一 躯 tt:残
C-6 7.5 ― ― ― 0.4 微 幾 10x22 ル
C-7 8 20 5 ― 中義粒:残 20 45
C-8 9 9 1, 8 0.2 1 中輟種:残 20^46
^008621
Figure imgf000055_0001
〔〕00087
Figure imgf000056_0001
溷港性非晶質炭素》被膜
TiN
纏 屠の目
種斕 体 目摞組成 (原子%》 删長
目標
檁酵 (m)
潘暴
《 rr
ΤΪ AI ( 》
不義物
1 0-1 0, 5 10 - ― ― 翻 5 83 比 2 C-2 0. 1 20 ― ― ― 残 y 3 74
被 3 C-3 1 5 ― ― ― 残 y 5 88
超 4 C-4 1 10 ― ― ― 翻
5 C-5 1. 6 20 ― ― - 腳 102 ン
6 C-6 2 S ― - 残り 7 86 ル 7 C-7 3 10 ― ― - 残 y 1 1 37
8 G- 2- 5 16 ― ― 残り 13 41 実施例 6
[0088] 上記の実施例 5で製造した直径が 8mm (超硬基体 C一 1一 C-3形成用)、 13mm ( 超硬基体 C一 4一 C一 6形成用)、および 26mm (超硬基体 C一 7、 C一 8形成用)の 3種 の丸棒焼結体を用い、この 3種の丸棒焼結体から、研削加工にて、溝形成部の直径 X長さがそれぞれ 4mm X 13mm (超硬基体 D_l D— 3)、 8mm X 22mm (超硬基 体 D— 4— D_6)、および 16mm X 45mm (超硬基体 D— 7、 D— 8)の寸法、並びにい ずれもねじれ角 30度の 2枚刃形状をもった超硬基体(ドリル) D_l— D_8をそれぞれ 製造した。
[0089] ついで、これらの超硬基体(ドリル) D— 1 D—8の切刃に、ホーユングを施し、ァセ トン中で超音波洗浄し、乾燥した状態で、同じく図 2A, 2Bまたは、図 3A, 3Bに示さ れる蒸着装置に装入し、上記実施例 4と同一の条件で、表 23, 24に示される目標組 成および目標層厚の(Ti, A1) N層、並びに同じく表 23, 24に示される目標組成およ び目標層厚の潤滑性炭素系非晶質体の被膜を蒸着形成することにより、本発明被 覆超硬工具としての本発明表面被覆超硬合金製ドリル(以下、本発明被覆超硬ドリ ルと云う) 1一 19をそれぞれ製造した。
[0090] また、比較の目的で、上記の超硬基体(ドリル) D— 1一 D— 8の切刃に、ホーニング を施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図 5A, 5Bに示される蒸 着装置に装入し、上記実施例 4と同一の条件で、表 25に示される目標層厚の TiN層 、並びに同じく表 25に示される目標組成および目標層厚の潤滑性非晶質炭素系被 膜を蒸着形成することにより、従来被覆超硬工具に相当する比較表面被覆超硬合金 製ドリル (以下、比較被覆超硬ドリルと云う) 1一 8をそれぞれ製造した。
つぎに、上記本発明被覆超硬ドリル 1一 19および比較被覆超硬ドリル 1一 8のうち、 本発明被覆超硬ドリル 1一 3, 9, 12 14および比較被覆超硬ドリル 1一 3について は、
被削材:平面寸法: 100mm X 250mm、厚さ: 50mmの JIS .A5052の板材、切削 速度: 290m/min.、
り: 0. 4mm/ rev、
穴深さ: 6mm、
の条件での Al合金の湿式高速穴あけ切削加工試験(通常の切削速度は 120mZm in. )、本発明被覆超硬ドリル 4一 6, 10, 15— 17および比較被覆超硬ドリル 4一 6に ついては、
被削材:平面寸法: lOOmm X 250mm、厚さ: 50mmの JIS ' SIOCの板材、 切削速度: 265m/min.、
り: 0. 5mm rev、
穴深さ: 12mm、
の条件での炭素鋼の湿式高速穴あけ切削加工試験(通常の切削速度は 110m/mi n. )、本発明被覆超硬ドリル 7, 8, 11, 18, 19および比較被覆超硬ドリル 7, 8につ いては、
被削材:平面寸法: 100mm X 250mm、厚さ: 50mmの JIS ' C3710の板材、 切削速度: 265m/min.、
り: 0. 6mm/ rev、
穴深さ: 20mm、
の条件での Cu合金の湿式高速穴あけ切削加工試験 (通常の切削速度は 110mZ min. )、をそれぞれ行い、いずれの湿式穴あけ切削加工試験 (水溶性切削油使用) でも先端切刃面の逃げ面摩耗幅が 0. 3mmに至るまでの穴あけ加工数を測定した。 この測定結果を表 23— 25にそれぞれ示した。 ¾009
Figure imgf000059_0001
舊 ¾u23 ¾0940
Figure imgf000060_0001
Figure imgf000061_0001
[0095] この結果得られた本発明被覆超硬工具としての本発明被覆超硬チップ 1, 1 ' 一 4 2, 42r 、本発明被覆超硬エンドミル 1一 19、および本発明被覆超硬ドリル 1一 19、 並びに従来被覆超硬工具に相当する比較被覆超硬チップ 1, -16, 16r 、比 較被覆超硬エンドミル 1一 8、および比較被覆超硬ドリル 1一 8を構成する密着接合 層および潤滑性非晶質炭素系被膜について、その組成をォージェ分光分析装置、 その層厚を走查型電子顕微鏡を用いて測定したところ、いずれも目標組成および目 標層厚と実質的に同じ組成および平均層厚(断面 5箇所の平均値)を示し、また、そ の組織を透過型電子顕微鏡を用いて観察したところ、前記本発明被覆超硬工具は、 炭素系非晶質体の素地に、結晶質の Ti - A1系(C, N)微粒が分散分布した組織を 示し、一方前記従来被覆超硬工具は、炭素系非晶質体の単一相からなる組織を示 した。
[0096] 表 16— 25に示される結果から、潤滑性非晶質炭素系被膜が、炭素系非晶質体の 素地に、結晶質の Ti一 A1系(C, N)微粒が分散分布した組織を有する本発明被覆超 硬工具は、いずれも A1合金や Cu合金、さらに鋼の切削加工を、高速条件で行なつ た場合にも、すぐれた耐摩耗性を発揮するのに対して、潤滑性非晶質炭素系被膜が 、炭素系非晶質体の単一相からなる組織を有する従来被覆超硬工具 (比較被覆超 硬工具)においては、高速切削条件では、前記潤滑性非晶質炭素系被膜の摩耗進 行がきわめて速ぐ比較的短時間で使用寿命に至ることが明らかである。 実施例 7
[0097] 原料粉末として、レ、ずれも 1一 3 μ mの平均粒径を有する WC粉末、 TiC粉末、 ZrC 粉末、 VC粉末、 TaC粉末、 NbC粉末、 Cr C粉末、 TiN粉末、 TaN粉末、および C o粉末を用意し、これら原料粉末を、表 26に示される配合組成に配合し、ボールミル で 60時間湿式混合し、乾燥した後、 lOOMPaの圧力で圧粉体にプレス成形し、この 圧粉体を 6Paの真空中、温度: 1400°Cに 1時間保持の条件で焼結し、焼結後、研磨 加工を施して ISO規格 'TEGX160304Rのチップ形状をもった WC基超硬合金製 の超硬基体 A-1— A-10を形成した。
[0098] また、原料粉末として、いずれも 0. 5— 2 /i mの平均粒径を有する TiCN (重量比で TiC/TiN = 50/50)粉末、 Mo C粉末、 ZrC粉末、 NbC粉末、 TaC粉末、 WC粉 末、 Co粉末、および Ni粉末を用意し、これら原料粉末を、表 27に示される配合組成 に配合し、ボールミルで 48時間湿式混合し、乾燥した後、 lOOMPaの圧力で圧粉体 にプレス成形し、この圧粉体を 2kPaの窒素雰囲気中、温度: 1500°Cに 1時間保持 の条件で焼結し、焼結後、研磨加工を施して ISO規格 'TEGX160304Rのチップ形 状をもった TiCN系超硬製の超硬基体 B— 1一 B— 6を形成した。
[0099] (a)つぎに、図 4A, 4Bに示されるアークイオンプレーティング装置、すなわち装置 中央部に超硬基体装着用回転テーブルを設け、前記回転テーブルを挟んで、一方 側に相対的に A1含有量の高い A1 - Ti合金、他方側に相対的に Ti含有量の高い Ti - A1合金をそれぞれ力ソード電極 (蒸発源)として装着し、さらに前記両カソード電極に 対して 90度回転した位置に力ソード電極 (蒸発源)として金属 Crを装着したアークィ オンプレーティング装置を用レ、、上記の超硬基体 A— 1一 A— 10および B—1— B—6の それぞれを、アセトン中で超音波洗浄し、乾燥した状態で、前記蒸着装置内の回転 テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着し
(b)まず、装置内を排気して 0· lPa以下の真空に保持しながら、ヒーターで装置内 を 500°Cに加熱した後、前記回転テーブル上で自転しながら回転する超硬基体に一 1000Vの直流バイアス電圧を印加し、かつ力ソード電極として装着した前記金属 Cr とアノード電極との間に 100Aの電流を流してアーク放電を発生させ、もって超硬基 体表面を前記金属 Crによってボンバード洗浄し、
(c)っレ、で装置内に反応ガスとして窒素ガスを導入して 3Paの反応雰囲気とすると 共に、前記回転テーブル上で自転しながら回転する超硬基体に- 70Vの直流バイァ ス電圧を印加し、かつそれぞれ対向配置した両カソード電極 (前記 Ti最高含有点形 成用 Ti
一 A1合金および A1最高含有点形成用 A1— Ti合金)とアノード電極との間に 100Aの電 流を流してアーク放電を発生させ、もって前記超硬基体の表面に、層厚方向に沿つ て表 28, 29に示される目標組成の A1最高含有点と Ti最高含有点とが交互に同じく 表 28, 29に示される目標間隔で繰り返し存在し、かつ前記 A1最高含有点から前記 T i最高含有点、前記 Ti最高含有点から前記 A1最高含有点へ A1および Ti含有量がそ れぞれ連続的に変化する組成変化構造を有し、かつ同じく表 28, 29に示される目標 層厚の (Al/Ti) N層を表面被覆層の下部層として蒸着形成し、
(d)つぎに、図 2A, 2Bに示される蒸着装置、すなわち一方側のマグネトロンスパッ タリング装置の力ソード電極 (蒸発源)として、純度: 99. 9質量%の Tiターゲット、他 方側のマグネトロンスパッタリング装置の力ソード電極 (蒸発源)として、純度: 99. 6質 量%の WCターゲットを回転テーブルを挟んで対向配置した蒸着装置を用レ、、装置 内の回転テーブル上に、これの中心軸から半径方向に所定距離離れた位置に上記 の下部層形成の超硬基体をリング状に装着し、
(e)電磁コイルに印加する条件を、電圧: 50— 100V、電流: 10— 20Aの範囲内の 所定の値として、上記下部層形成の超硬基体の装着部における磁束密度を 100— 3 00G (ガウス)の範囲内の所定の値とし、前記蒸着装置内の加熱温度を 400°C、前記 超硬基体に— 100Vのバイアス電圧を印加し、一方前記蒸着装置内には反応ガスと して、 C H (炭化水素)と窒素と Arを、 C H流量: 25 100sccm、窒素流量: 200
2 2 2 2
一 300sccm、 Ar流量: 150 250sccmの範囲内の所定の流量で導入して、反応雰 囲気を、 lPaの C Hの分解ガスと窒素と Arの混合ガスとすると共に、前記両マグネト
2 2
ロンスパッタリング装置の WCターゲットの力ソード電極 (蒸発源)には、例えば出力: 1 一 3kW (周波数: 40kHz)の範囲内の所定のスパッタ電力、同 Tiターゲットには、出 力: 3— 8kW (周波数: 40kHz)の範囲内の所定のスパッタ電力を同時に印加した条 件で、同じく表 28に示される目標組成および目標層厚の非晶質炭素系潤滑層を上 部層として蒸着形成することにより、本発明被覆超硬工具としての本発明表面被覆 超硬合金製スローァウェイチップ (以下、本発明被覆チップと云う) 1一 26をそれぞれ 製造した。
(f)さらに前記記載 (d)に変わり、図 3A, 3Bに示される蒸着装置、すなわち一方側 のマグネトロンスパッタ寝具装置の力ソード電極 (蒸発源)として、所定の組成をもった
Ti一 A1合金ターゲット、対方側のマグネトロンスパッタリング装置の力ソード電極 (蒸発 源)として、純度 99. 6質量%の WCターゲットを回転テーブルを挟んで対向配置した 蒸着装置を用い、装置内の回転テーブル上に、これの中心軸から半径方向に所定 距離はなれた位置に上記(c)にて下部層を形成した超硬基体をリング状に装着し、
(g)電磁コイルに印加する条件を、電圧: 50 100V、電流: 10 20Aの範囲内の 所定の値として、上記超硬基体の装着部における磁束密度を 100 300G (ガウス) の範囲内の所定の値とし、前記蒸着装置内の加熱温度は 400°C、上記超硬基体の バイアス電圧は一 100Vとしたままで、前記蒸着装置内に反応ガスとして、 C H (炭化
2 2 水素)と窒素と Arを、 C H流量: 25— 100sccm、窒素流量: 200— 300sccm、 Ar
2 2
流量: 150— 250sccmの範囲内の所定の流量で導入して、反応雰囲気を、 lPaの C Hの分解ガスと窒素と Arの混合ガスとすると共に、前記両マグネトロンスパッタリン
2 2
グ装置の WCターゲットの力ソード電極 (蒸発源)には、例えば出力: 1一 3kW (周波 数: 40kHz)の範囲内の所定のスパッタ電力、同 Tiターゲットには、出力: 3— 8kW( 周波数: 40kHz)の範囲内の所定のスパッタ電力を同時に印加した条件で、同じく表 29に示される目標組成および目標層厚の潤滑性非晶質炭素系被膜を蒸着形成す ることにより、本発明被覆超硬工具としての本発明表面被覆超硬合金製スローアウエ ィチップ (以下、本発明被覆超硬チップと云う) 27 42をそれぞれ製造した。
(a)また、比較の目的で、上記の超硬基体 A— 1一 A— 10および B—1— B—6を、ァ セトン中で超音波洗浄し、乾燥した状態で、それぞれ図 6に示される蒸着装置、すな わち力ソード電極 (蒸発源)として所定組成を有する Ti一 A1合金がセットされたアーク 放電装置と、力ソード電極 (蒸発源)として WCターゲットがセットされたスパッタリング 装置を備えた蒸着装置に装入し、 (b)まず、装置内を排気して 0· lPa以下の真空に保持しながら、ヒーターで装置内 を 500°Cに加熱した後、前記超硬基体に- 1000Vの直流バイアス電圧を印加し、か つ力ソード電極の前記 Ti A1合金とアノード電極との間に 100Aの電流を流してァー ク放電を発生させ、もって超硬基体表面を前記 Ti一 A1合金でボンバード洗浄し、
(c)上記装置内に反応ガスとして窒素ガスを導入して 3Paの反応雰囲気とすると共 に、前記超硬基体に印加するバイアス電圧を一 100Vに下げて、前記 Ti一 A1合金の 力ソード電極とアノード電極との間にアーク放電を発生させ、もって前記超硬基体 A— 1一 A_10および B—1— B—6のそれぞれの表面に、表 30に示される目標組成およ び目標層厚の (Ti, A1) N層を表面被覆層の下部層として蒸着形成し、
(d)ついで、上記蒸着装置内の加熱温度を 200°Cとした状態で、 C Hと Arを、 C
2 2 2
H流量: 40— 80sccm、 Ar流量: 250sccmの範囲内の所定の流量で導入して、 1P
2
aの C Hの分解ガスと Arの混合ガスからなる反応雰囲気とすると共に、上記の下部
2 2
層形成の超硬基体に印加するバイアス電圧を 20Vとし、 WCターゲットの力ソード電 極(蒸発源)には出力: 4一 6kW (周波数: 40kHz)の範囲内の所定のスパッタ電力を 印加した条件で、上記下部層の上に、同じく表 30に示される目標組成および目標層 厚の非晶質炭素系潤滑層を蒸着形成することにより、従来被覆超硬工具に相当する 比較表面被覆超硬合金製スローァウェイチップ (以下、比較被覆超硬チップと云う) 1 一 16をそれぞれ製造した。
つぎに、上記の各種の被覆チップを、いずれも工具鋼製バイトの先端部に固定治 具にてネジ止めした状態で、本発明被覆チップ 1一 42および比較被覆チップ 1一 16 について、
被削材: JIS .A5052の丸棒、
切削速度: 800m/min.、
切り込み: 7. 3mm、
り: 0. 1 mm/rev.、
切削時間: 20分、
の条件 (切削条件 A)での A1合金の乾式連続高速高切り込み切削加工試験(通常の 切削速度および切り込みは 400mZmin.および 2mm)、 被削材: JIS . C3710の丸棒、
切削速度: 380m/min. 、
切り込み: 6. 8mm、
送り: 0. 13mm rev. 、
切削時間: 20分、
の条件 (切削条件 B)での Cu合金の乾式連続高速高切り込み切削加工試験(通常 の切削速度および切り込みは 200m/min.および 2mm)、
被削材: JIS .TB340Hの丸棒、
切削速度: 150m/min. 、
切り込み: 6. 4mm、
送り: 0. l lmmZrev. 、
切削時間: 15分、
の条件 (切削条件 C)での Ti合金の乾式連続高速高切り込み切削加工試験 (通常の 切削速度および切り込みは 100m/min.および 1 · 5mm)を行い、いずれの切削加 ェ試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表 28, 29に示した。
[表 26]
Figure imgf000067_0001
27] OAV7: 80∑S/S00<e1>d 990:
m S ' Ι S *β ― 01 ― S 'S ΖΪ 9-a 教 01 01 ― 8 t 1? 6 s-a
I
m ― ― Ζ ― S 01 ャ一 9 教 01 ― ― ― ― S ε-a m ― 9 L ― 9 ― L 8 2— a 鼇 9L Ot 0L 一 s ει
03«1Λ1 0B丄 !N
【%薯篇) 麟 欝 导 a
〕〕 〔¾蓄 0∞
靈0051
Figure imgf000069_0001
Figure imgf000070_0001
Figure imgf000071_0001
実施例 8
原料粉末として、平均粒径: 4.6 IX mを有する中粗粒 WC粉末、同 0.8 μ mの微粒 WC粉末、同 1.3^111の丁&〇粉末、同 1.2 xmの NbC粉末、同 1.2 μ mの ZrC粉末 、同 2. の CrC粉末、同 1. の VC粉末、同 1. Ομπιの(Ti, W)C [質量 比で、 TiCZWC = 5〇/50]粉末、および同 1.8 xmの Co粉末を用意し、これら原 料粉末をそれぞれ表 31に示される配合組成に配合し、さらにワックスを加えてァセト ン中で 24時間ボールミル混合し、減圧乾燥した後、 lOOMPaの圧力で所定形状の 各種の圧粉体にプレス成形し、これらの圧粉体を、 6Paの真空雰囲気中、 7°C/分の 昇温速度で 1370 1470°Cの範囲内の所定の温度に昇温し、この温度に 1時間保 持後、炉冷の条件で焼結して、直径が 8mm、 13mm,および 26mmの 3種の超硬基 体形成用丸棒焼結体を形成し、さらに前記の 3種の丸棒焼結体から、研削加工にて 、表 31に示される組合せで、切刃部の直径 X長さがそれぞれ 6mm XI 3mm、 10m mX22mm、および 20mm X 45mmの寸法、並びにいずれもねじれ角 30度の 4枚 刃スクェア形状をもった WC基超硬合金製の超硬基体(エンドミル) C一 1一 C一 8をそ れぞれ製造した。 [0108] ついで、これらの超硬基体(エンドミル) C一 1一 C一 8の表面をアセトン中で超音波洗 浄し、乾燥した状態で、同じく図 4A, 4Bに示されるアークイオンプレーティング装置 に装入し、上記実施例 7と同一の条件で、層厚方向に沿って表 32, 33に示される目 標組成の A1最高含有点と Ti最高含有点とが交互に同じく表 7に示される目標間隔で 繰り返し存在し、かつ前記 A1最高含有点から前記 Ti最高含有点、前記 Ti最高含有 点から前記 A1最高含有点へ A1および Ti含有量がそれぞれ連続的に変化する組成 変化構造を有し、かつ表 32, 33に示される目標層厚の (AlZTi) N層を表面被覆層 の下部層 (硬質層)として蒸着形成し、ついで前記下部層形成の超硬基体を同じく図 2A, 2Bまたは、図 3A, 3Bに示される蒸着装置に装入し、同じく表 32, 33に示され る目標組成および目標層厚の非晶質炭素系潤滑層を同上部層として蒸着形成する ことにより、本発明被覆超硬工具としての本発明表面被覆超硬製エンドミル (以下、 本発明被覆エンドミルと云う) 1一 19をそれぞれ製造した。
[0109] また、比較の目的で、上記の超硬基体(エンドミル) C一 1一 C一 8の表面をアセトン中 で超音波洗浄し、乾燥した状態で、同じく図 6に示される蒸着装置に装入し、上記実 施例 7と同一の条件で、同じく表 34に示される目標組成および目標層厚の (Ti, Al) N層および非晶質炭素系潤滑層をそれぞれ表面被覆層の下部層および上部層とし て蒸着形成することにより、従来被覆超硬工具に相当する比較表面被覆超硬製ェン ドミル (以下、比較被覆エンドミルと云う) 1一 8をそれぞれ製造した。
[0110] つぎに、上記本発明被覆エンドミル 1一 19および比較被覆エンドミル 1一 8のうち、 本発明被覆エンドミル 1一 3, 9, 12— 14および比較被覆エンドミル 1一 3については 被削材—平面寸法: 100mm X 250mm、厚さ: 50mmの JIS - C3710の板材、 切削速度: 180m/min.、
溝深さ(切り込み): 5mm、
テーブル送り: 485mm/分、
の条件での Cu合金の乾式高速高切り込み溝切削加工試験(通常の切削速度およ び溝深さは 150m/min.および 2mm)、本発明被覆エンドミル 4一 6, 10, 15—17 および比較被覆エンドミル 4一 6については、 被削材ー平面寸法: 100mm X 250mm、厚さ: 50mmの JIS 'TP340Hの板材、 切削速度: 185m/min.、
溝深さ(切り込み):8. lmm、
テーブル送り: 455mm/分、
の条件での Ti合金の乾式高速高切り込み溝切削加工試験 (通常の切削速度および 溝深さは 150m/min.および 4mm)、本発明被覆エンドミル 7, 8, 11, 18, 19およ び比較被覆エンドミル 7, 8については、
被削材—平面寸法: 100mm X 250mm、厚さ: 50mmの JIS -A5052の板材、 切削速度: 205m/min.、
溝深さ(切り込み): 16mm、
テーブル送り: 500mm/分、
の条件での Ti合金の乾式高速高送り溝切削加工試験 (通常の切削速度および溝深 さは 180m/min.および 8mm)をそれぞれ行レ、、いずれの溝切削加工試験でも切 刃部の外周刃の逃げ面摩耗幅が使用寿命の目安とされる 0. 1mmに至るまでの切 削溝長を測定した。この測定結果をそれぞれ表 32— 34に示した。
[表 31]
s 会 « ( 質 量 % ) 切刃部の 種 湖 盧怪 暴さ
Co (Τί, W)G TaC ZrC WC (mm)
C-1 5 S ― ― ― ― ― 中輟粒:残 6X13 趨 C-2 § -- 1 0. S ― ― ― 微 6X13· 硬
基 C-3 6 ― 1 ― 1 。.5 0, 5 微粒:幾 6Κ13 体
C-4 8 ― ― ― ― 0. § 0, 5 微敦:残 . 10X22
X
ン C-5 9 25 10 1
卜' - ― ― 中賴粒:幾 10Χ·£2
C— 6 10 ― ― ― ― 1 ― 微粒:残 10X 2 ル
C-7 12 1? 9 1 中輟粒:磯 20x 5
C一 8 16 ― 10 5 10 中雜粒:残 20X 5
Figure imgf000075_0001
Figure imgf000076_0001
Figure imgf000077_0001
実施例 9
上記の実施例 8で製造した直径が 8mm (超硬基体 C 1一 C 3形成用)、 13mm ( 超硬基体 C - 4一 C - 6形成用)、および 26mm (超硬基体 C - 7、 C - 8形成用)の 3種 の丸棒焼結体を用い、この 3種の丸棒焼結体から、研削加工にて、溝形成部の直径 X長さがそれぞれ 4mm X 13mm (超硬基体 D— 1一 D— 3)、 8mm X 22mm (超硬基 体 D—4— D— 6)、および 16mm X 45mm (超硬基体 D_7、 D—8)の寸法、並びにい ずれもねじれ角 30度の 2枚刃形状をもった WC基超硬合金製の超硬基体(ドリル) D _1一 D— 8をそれぞれ製造した。 [0116] ついで、これらの超硬基体(ドリル) D-l— D-8の切刃に、ホーニングを施し、ァセ トン中で超音波洗浄し、乾燥した状態で、同じく図 4A, 4Bに示されるアークイオンプ レーティング装置に装入し、上記実施例 7と同一の条件で、層厚方向に沿って表 35 , 36に示される目標組成の A1最高含有点と Ti最高含有点とが交互に同じく表 35, 3 6に示される目標間隔で繰り返し存在し、かつ前記 A1最高含有点から前記 Ti最高含 有点、前記 Ti最高含有点から前記 A1最高含有点へ A1および Ti含有量がそれぞれ 連続的に変化する組成変化構造を有し、かつ表 35, 36に示される目標層厚の (A1 /Ti) N層を表面被覆層の下部層(硬質層)として蒸着形成し、ついで前記下部層形 成の超硬基体を同じく図 2A, 2Bまたは、図 3A, 3Bに示される蒸着装置に装入し、 同じく表 35, 36に示される目標組成および目標層厚の非晶質炭素系潤滑層を同上 部層として蒸着形成することにより、本発明被覆超硬工具としての本発明表面被覆 超硬製ドリル (以下、本発明被覆ドリルと云う) 1一 19をそれぞれ製造した。
[0117] また、比較の目的で、上記の超硬基体(ドリル) D— 1一 D— 8の表面に、ホーニング を施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図 6に示される蒸着装置 に装入し、上記実施例 7と同一の条件で、同じく表 37に示される目標組成および目 標層厚を有する (Ti, Al) N層および非晶質炭素系潤滑層をそれぞれ表面被覆層の 下部層および上部層として蒸着形成することにより、従来被覆超硬工具に相当する 比較表面被覆超硬製ドリル (以下、比較被覆ドリルと云う) 1一 8をそれぞれ製造した。
[0118] つぎに、上記本発明被覆ドリル 1一 19および比較被覆ドリル 1一 8のうち、本発明被 覆ドリル 1一 3, 9, 12— 14および比較被覆ドリル 1一 3については、
被削材—平面寸法: 100mm X 250mm、厚さ: 50mmの JIS 'A5052の板材、 切削速度: 115m/min. 、
送り: 0. 52mm/rev、
穴深さ: 6mm、
の条件での Al合金の湿式高速高送り穴あけ切削加工試験(通常の切削速度および 送りは 80m/min.および 0. 2mmZrev)、本発明被覆ドリノレ 4一 6, 10, 15— 17お よび比較被覆ドリル 4一 6については、
被削材—平面寸法: 100mm X 250mm、厚さ: 50mmの JIS - C3710の板材、 切削速度: 110m/min.、
送り: 0. 57mm rev、
穴深さ: 12mm、
の条件での Cu合金の湿式高速高送り穴あけ切削加工試験 (通常の切削速度および 送り ίま 80m/min.および 0. 25mm/rev)、本発明被覆ドリノレ 7, 8, 11 , 18, 19お よび比較被覆ドリル 7, 8については、
被削材—平面寸法: 100mm X 250mm、厚さ: 50mmの JIS .TP340Hの板材、 切削速度: 65m/min.、
送り: 0. 52mm/rev、
穴深さ: 20mm、
の条件での Ti合金の湿式高速高送り穴あけ切削加工試験 (通常の切削速度および 送りは 40m/min.および 0. 2mm/ rev) をてれそ; i fl"レヽ、レヽずれの、1® r¾ <¾r¾ 送り穴あけ切削加工試験 (水溶性切削油使用)でも先端切刃面の逃げ面摩耗幅が 0 . 3mmに至るまでの穴あけ加工数を測定した。この測定結果をそれぞれ表 35— 37 に示した。
[表 35]
Figure imgf000080_0001
Figure imgf000081_0001
Figure imgf000082_0001
この結果得られた本発明被覆超硬工具としての本発明被覆超硬チップ 1一 42、本 発明被覆超硬エンドミル 1一 19、および本発明被覆超硬ドリル 1一 19、並びに従来 被覆超硬工具としての比較被覆超硬チップ 1一 16、比較被覆超硬エンドミル 1一 8、 および比較被覆超硬ドリル 1一 8を構成する表面被覆層の下部層を構成する (A1/T i) N層および (Ti, A1) N層について、厚さ方向に沿って A1および Ti成分の含有量を ォージェ分光分析装置、その層厚を走査型電子顕微鏡を用いて測定したところ、前 記本発明被覆超硬工具の (Al/Ti) N層では、 A1最高含有点と Ti最高含有点とがそ れぞれ目標値と実質的に同じ組成および間隔で交互に繰り返し存在し、かつ前記 A1 最高含有点から前記 Ti最高含有点、前記 Ti最高含有点から前記 A1最高含有点へ A1および Ti含有量がそれぞれ連続的に変化する組成変化構造を有することが確認 され、さらに平均層厚も目標層厚と実質的に同じ値を示した。一方、前記従来被覆超 硬工具の (Ti, A1) N層では、 目標組成と実質的に同じ組成および目標層厚と実質 的に同じ平均層厚を示すものの、厚さ方向に沿った組成変化は見られず、層全体に 亘つて均質な組成を示すものであった。
さらに、同上部層を構成する非晶質炭素系潤滑層についても、その組成をォージ ェ分光分析装置、その層厚を走査型電子顕微鏡を用いて測定したところ、いずれも 目標組成および目標層厚と実質的に同じ組成および平均層厚(断面 5箇所の平均 値)を示し、また、その組織を透過型電子顕微鏡を用レ、て観察したところ、前記本発 明被覆超硬工具は、図 1 Aに示される通り W成分含有の炭素系非晶質体の素地に、 結晶質の Ti (C, N)系化合物微粒が分散分布した組織を示し、一方前記従来被覆 超硬工具は、炭素系非晶質体の単一相からなる組織を示した。
[0123] 表 28— 37に示される結果から、本発明被覆超硬工具は、いずれも著しい高熱発 生および高い機械的衝撃を伴なう非鉄材料の高速重切削でも、表面被覆層の下部 層である (Al/Ti) N層がすぐれた高温硬さと耐熱性、さらにすぐれた高温強度を有 し、かつ同上部層である非晶質炭素系潤滑層が、 W成分含有の炭素系非晶質体の 素地に、結晶質の Ti (C, N)系化合物微粒が分散分布した組織を有し、すぐれた高 温強度を具備することから、表面被覆層にチッビングの発生なぐすぐれた耐摩耗性 を長期に亘つて発揮するのに対して、表面被覆層の下部層が (Ti, A1) N層、同上部 層が炭素系非晶質体の単一相からなる組織を有する非晶質炭素系潤滑層で構成さ れた従来被覆超硬工具においては、いずれも非鉄材料の高速重切削加工では表面 被覆層の摩耗進行が速ぐかつチッビングも発生することから、比較的短時間で使用 寿命に至ることが明らかである。
[0124] 以上、本発明の好ましい実施例を説明したが、本発明はこれら実施例に限定される ことはなレ、。本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびそ の他の変更が可能である。本発明は前述した説明によって限定されることはなぐ添 付のクレームの範囲によってのみ限定される。
産業上の利用可能性
上述のように、この発明の被覆超硬工具は、通常の条件での切削加工は勿論のこ と、特に各種の被削材の切削加工を、高速切削条件で行なった場合にも、すぐれた 耐摩耗性を発揮するものであるから、切削加工の省力化および省エネ化、さらに低コ ストイ匕に十分満足に対応できるものである。
3 また、この発明の被覆超硬工具は、特に各種の非鉄材料などの通常の切削条件 での切削加工は勿論のこと、特に高い発熱および機械的衝撃を伴なう高速重切削 加工でもすぐれた耐摩耗性を発揮し、長期に亘つてすぐれた切削性能を示すもので あるから、切削加工装置の高性能化および自動化、並びに切削加工の省力化およ び省エネ化、さらに低コストィヒに十分満足に対応できるものである。

Claims

請求の範囲
[1] 硬質基体と;
前記硬質基体の表面上に形成され、 Ti,Alのうちの少なくとも 1種および N, Cのうち の少なくとも 1種からなる複合化合物を含みかつ 0. 1— 3 μ mの平均層厚を有する下 部層と;
前記下部層上に形成され、 Wを含有する炭素系非晶質体の素地中に結晶質 Ti (C , N)系化合物微粒または結晶質 (Ti,Al) (C, N)系化合物微粒が分散分布した組 織を示し、かつ 1一 13 / mの平均層厚を有する上部層と;を備えた表面被覆切削ェ 具。
[2] 請求項 1記載の表面被覆切削工具であって、前記上部層は、 W: 5— 20原子%、 T
1: 5—30原子%、 N : 0. 5— 30原子%を含有し、残りが Cおよび不可避不純物から なる組成を有する非晶質炭素系潤滑層力 なる。
[3] 請求項 1記載の表面被覆切削工具であって、前記上部層は、 W: 5— 20原子%、 T
1: 5—20原子%、 N : 0. 5— 18原子%を含有し、残りが Cおよび不可避不純物から なる組成を有する非晶質炭素系潤滑層力 なる。
[4] 請求項 1記載の表面被覆切削工具であって、前記上部層は、 W: 10— 40原子%、
Ti: 0. 5 4原子%、 ^^ : 10—30原子%を含有し、残りが Cおよび不可避不純物か らなる組成を有する非晶質炭素系潤滑層からなる。
[5] 請求項 1記載の表面被覆切削工具であって、前記上部層は、 W: 5— 20原子%、 T i: 2. 5— 10原子%、^^ : 0. 4—22. 5原子%、A1 : 1. 6— 15原子%を含有し、残り 力 および不可避不純物からなる組成を有する非晶質炭素系潤滑層からなる。
[6] 請求項 1記載の表面被覆切削工具であって、前記上部層は、炭素系非晶質体を 含み、前記炭素系非晶質体の素地中の結晶質 Ti (C, N)系化合物微粒または結晶 質 (Ti,Al) (C, N)系化合物微粒の平均粒度が、透過型電子顕微鏡による観察で、
40nm以下である。
[7] 請求項 1記載の表面被覆切削工具であって、前記上部層は、炭素系非晶質体を 含み、前記炭素系非晶質体の素地中の結晶質 Ti (C, N)系化合物微粒または結晶 質 (Ti,Al) (C, N)系化合物微粒の平均粒度が、透過型電子顕微鏡による観察で、 20nm以下である。
請求項 1記載の表面被覆切削工具であって、前記上部層は、炭素系非晶質体を 含み、前記炭素系非晶質体の素地中の結晶質 Ti (C, N)系化合物微粒または結晶 質 (Ti,Al) (C, N)系化合物微粒の平均粒度が、透過型電子顕微鏡による観察で、 10nm以下である。
請求項 1記載の表面被覆切削工具であって、前記下部層は、 TiN層および TiCN 層の少なくとも一方からなる。
請求項 1記載の表面被覆切削工具であって、前記下部層は、組成式(Ti , Al )
1-X X
N (但し Xは原子比で、 0. 40-0. 60を示す)を満足する Tiと A1の複合窒化物層から なる。
請求項 1記載の表面被覆切削工具であって、前記下部層は、膜厚方向にそって、 A1最高含有点と Ti最高含有点とが所定間隔をおいて交互に繰り返し存在し、かつ前 記 A1最高含有点から Ti最高含有点、前記 Ti最高含有点から前記 A1最高含有点へ A1および Ti含有量がそれぞれ連続的に変化する組成濃度分布構造を有し、さらに、 前記 A1最高含有点が組成式(Al )N (但し Xは原子比で、 0. 05-0. 35を示す)、
1-X
前記 Ti最高含有点が組成式(Ti ,ΑΙ )Ν (但し Xは原子比で、 0. 05-0. 35を示
1-X X
す)を満足し、かつ隣り合う A1最高含有点の間隔が、 0. 01-0. 1 μ ΐηである組成変 化構造を有する Tiと A1の複合窒化物層からなる。
請求項 1記載の表面被覆切削工具であって、前記硬質基体は、炭化タングステン 基超硬合金からなる。
請求項 1記載の表面被覆切削工具であって、前記硬質基体は、炭窒化チタン基サ 一メットカゝらなる。
硬質基体を準備する段階と;
マグネトロンスパッタリング装置を用レ、、力ソード電極として Tiターゲットまたは Ti一 A 1合金ターゲットを用レ、、窒素と Arの混合ガス、または炭化水素の分解ガスと窒素と A rの混合ガスからなる反応雰囲気中かつ磁場中において、 Ti, Alのうちの少なくとも 1 種および N,Cのうちの少なくとも 1種からなる複合化合物を含みかつ 0. 1-3 μ mの 平均層厚を有する下部層を前記硬質基体表面上に形成する段階と; 前記マグネトロンスパッタリング装置を用い、力ソード電極として炭化タングステンタ 一ゲットと Tiターゲットまたは Ti一 A1合金ターゲットを用い、炭化水素の分解ガスと窒 素と Arの混合ガスからなる反応雰囲気中かつ磁場中において、 Wを含有する炭素 系非晶質体の素地中に結晶質 Ti (C, N)系化合物微粒または結晶質 (Ti, Al) (C, N)系化合物微粒が分散分布した組織を示し、かつ 1一 13 μ mの平均層厚を有する 上部層を前記下部層上に形成する段階と;を含む、表面被覆切削工具の製造方法。
PCT/JP2005/001208 2004-01-30 2005-01-28 表面被覆超硬合金製切削工具、及びその製造方法 WO2005072895A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP05709435.1A EP1710032B1 (en) 2004-01-30 2005-01-28 Cutting tool made of surface-coated super hard alloy, and method for manufacture thereof
US10/597,505 US7655299B2 (en) 2004-01-30 2005-01-28 Surface-coated cutting tool made of hard metal and manufacturing method for same

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2004022535 2004-01-30
JP2004-022535 2004-01-30
JP2004-146398 2004-05-17
JP2004146397A JP4530138B2 (ja) 2004-01-30 2004-05-17 潤滑性非晶質炭素系被膜がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具
JP2004146398A JP4530139B2 (ja) 2004-05-17 2004-05-17 潤滑性非晶質炭素系被膜がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具
JP2004-146397 2004-05-17
JP2004212896A JP4530142B2 (ja) 2004-07-21 2004-07-21 高速重切削で表面被覆層がすぐれた耐チッピング性を発揮する表面被覆超硬合金製切削工具
JP2004-212896 2004-07-21

Publications (1)

Publication Number Publication Date
WO2005072895A1 true WO2005072895A1 (ja) 2005-08-11

Family

ID=34831309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/001208 WO2005072895A1 (ja) 2004-01-30 2005-01-28 表面被覆超硬合金製切削工具、及びその製造方法

Country Status (3)

Country Link
US (1) US7655299B2 (ja)
EP (2) EP1710032B1 (ja)
WO (1) WO2005072895A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5165207B2 (ja) * 2006-03-29 2013-03-21 オンセミコンダクター・トレーディング・リミテッド 半導体装置の製造方法
FR2921672B1 (fr) * 2007-09-28 2014-08-15 Commissariat Energie Atomique Procede d'obtention d'une surface dure a l'echelle nanometrique
US20120152011A1 (en) * 2009-09-03 2012-06-21 Mario Zamora Scale-Up Device For Testing Bit Balling Characteristics
US20110094876A1 (en) * 2009-10-27 2011-04-28 Yi-Hsiang Liang Germanium-containing vacuum coating for noble-metal components
US8968738B2 (en) * 2010-09-14 2015-03-03 The Henry M. Jackson Foundation For The Advancement Of Military Medicine, Inc. Methods of treating autoimmune diseases with anti-FcεRI antibodies
WO2012078151A1 (en) * 2010-12-08 2012-06-14 Galleon International Corporation Hard and low friction nitride coatings
JP5035479B2 (ja) 2011-01-27 2012-09-26 三菱マテリアル株式会社 耐欠損性、耐摩耗性にすぐれた表面被覆切削工具
TW201321542A (zh) * 2011-11-29 2013-06-01 Chenming Mold Ind Corp 製造ic屏蔽鍍膜之設備及ic之金屬屏蔽膜層
US10008667B2 (en) * 2014-08-29 2018-06-26 Intel Corporation Materials and components in phase change memory devices
CN107761038B (zh) * 2017-09-14 2020-03-10 中国科学院金属研究所 一种低孔隙率和高非晶度的铝基非晶涂层及其制备装置和制备方法
CN113046703B (zh) * 2021-03-17 2022-12-23 昆明理工大学 一种高硬度纳米复合涂层及其制备方法与应用
WO2023276067A1 (ja) * 2021-06-30 2023-01-05 住友電工ハードメタル株式会社 切削工具

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001225412A (ja) * 2000-02-16 2001-08-21 Token Thermotec:Kk 保護膜被覆部材
JP2001316800A (ja) * 2000-02-25 2001-11-16 Sumitomo Electric Ind Ltd 非晶質炭素被覆部材
JP2002206177A (ja) * 2000-12-28 2002-07-26 Komatsu Ltd 優れた摺動特性を有する摺動部材
JP2002235748A (ja) * 2001-02-13 2002-08-23 Koyo Seiko Co Ltd 転がり摺動部品
JP2004010923A (ja) * 2002-06-04 2004-01-15 Toyota Motor Corp 摺動部材及びその製造方法
JP2004202587A (ja) * 2002-12-24 2004-07-22 Mitsubishi Materials Corp 密着性および耐摩耗性のすぐれた硬質被覆層を形成してなる表面被覆超硬合金製切削工具
JP2005007559A (ja) * 2003-06-23 2005-01-13 Mitsubishi Materials Corp 高速重切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2666142B2 (ja) 1987-02-04 1997-10-22 旭光学工業株式会社 カメラの自動焦点検出装置
JPH0750949B2 (ja) 1987-08-14 1995-05-31 日本電気株式会社 ト−ン信号送出制御方式
US5728465A (en) * 1991-05-03 1998-03-17 Advanced Refractory Technologies, Inc. Diamond-like nanocomposite corrosion resistant coatings
DE69319531T2 (de) * 1992-10-12 1999-04-15 Sumitomo Electric Industries Ultradünnes Filmlaminat
DE4421144C2 (de) 1993-07-21 2003-02-13 Unaxis Balzers Ag Beschichtetes Werkzeug mit erhöhter Standzeit
JPH1161380A (ja) * 1997-08-20 1999-03-05 Kobe Steel Ltd 耐磨耗性多層型硬質皮膜
US6827976B2 (en) * 1998-04-29 2004-12-07 Unaxis Trading Ag Method to increase wear resistance of a tool or other machine component
EP1078110B1 (de) * 1998-04-29 2002-11-27 Unaxis Trading AG Werkzeug oder maschinenbauteil und verfahren zu dessen herstellung sowie vakuumbehandlungsanlage
TW533246B (en) * 2001-11-29 2003-05-21 Univ Nat Cheng Kung Titanium aluminum carbon nitride-amorphous carbon nano composite ceramic plating layer with high ductility and high adhesion
DE60336453D1 (de) * 2002-01-21 2011-05-05 Mitsubishi Materials Corp "oberflächenbeschichtetes schneidwerkzeugglied mit harter beschichtungsschicht, die einen hervorragenden reibwiderstand beim hochgeschwindigkeitsschneiden aufweist, und verfahren zur bildung der harten beschichtungsschicht auf der fläche des schneidwerkzeugs"
JP3928487B2 (ja) * 2002-06-04 2007-06-13 三菱マテリアル株式会社 高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具
TW545742U (en) 2002-06-13 2003-08-01 Hon Hai Prec Ind Co Ltd Electrical connector
JP2004146397A (ja) 2002-10-21 2004-05-20 Murata Mfg Co Ltd 回路モジュールおよびネットワーク機器
JP4020200B2 (ja) 2003-01-08 2007-12-12 株式会社ジャパンリーコム 光ケーブル接続部収納用キャビネット

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001225412A (ja) * 2000-02-16 2001-08-21 Token Thermotec:Kk 保護膜被覆部材
JP2001316800A (ja) * 2000-02-25 2001-11-16 Sumitomo Electric Ind Ltd 非晶質炭素被覆部材
JP2002206177A (ja) * 2000-12-28 2002-07-26 Komatsu Ltd 優れた摺動特性を有する摺動部材
JP2002235748A (ja) * 2001-02-13 2002-08-23 Koyo Seiko Co Ltd 転がり摺動部品
JP2004010923A (ja) * 2002-06-04 2004-01-15 Toyota Motor Corp 摺動部材及びその製造方法
JP2004202587A (ja) * 2002-12-24 2004-07-22 Mitsubishi Materials Corp 密着性および耐摩耗性のすぐれた硬質被覆層を形成してなる表面被覆超硬合金製切削工具
JP2005007559A (ja) * 2003-06-23 2005-01-13 Mitsubishi Materials Corp 高速重切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具

Also Published As

Publication number Publication date
EP1710032A4 (en) 2010-02-24
EP1710032A1 (en) 2006-10-11
US7655299B2 (en) 2010-02-02
EP2308621A1 (en) 2011-04-13
EP1710032B1 (en) 2016-09-28
US20080233388A1 (en) 2008-09-25
EP2308621B1 (en) 2015-07-08

Similar Documents

Publication Publication Date Title
WO2005072895A1 (ja) 表面被覆超硬合金製切削工具、及びその製造方法
EP3269479B1 (en) Surface-coated cutting tool and method for manufacturing same
JP4702520B2 (ja) 高硬度鋼の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具
JP5594575B2 (ja) 硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具
EP2554303A1 (en) Cutting tool
JP2009101491A (ja) 高速切削加工で硬質被覆層がすぐれた潤滑性と耐摩耗性を発揮する表面被覆切削工具
JP4711177B2 (ja) 潤滑性被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具
JP5440346B2 (ja) 表面被覆切削工具
JP2009101490A (ja) 高速切削加工で硬質被覆層がすぐれた潤滑性と耐摩耗性を発揮する表面被覆切削工具
JP4543373B2 (ja) 非鉄材料の高速切削加工ですぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具の製造方法
JP4530139B2 (ja) 潤滑性非晶質炭素系被膜がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具
JP4438546B2 (ja) 高速重切削で表面被覆層がすぐれた耐チッピング性を発揮する表面被覆超硬合金製切削工具
JP4775757B2 (ja) 潤滑性非晶質炭素系被膜がすぐれた耐摩耗性を発揮する表面被覆サーメット製切削工具
JP4530142B2 (ja) 高速重切削で表面被覆層がすぐれた耐チッピング性を発揮する表面被覆超硬合金製切削工具
JP2006224198A (ja) 高反応性被削材の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具
JP2004358610A (ja) 高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆サーメット製切削工具
JP2011194536A (ja) 硬質被覆層がすぐれた耐欠損性を発揮する表面被覆切削工具
JP4645818B2 (ja) 耐熱合金の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具
JP5077743B2 (ja) 硬質被覆層がすぐれた耐チッピング性と耐摩耗性を発揮する表面被覆切削工具
JP4530138B2 (ja) 潤滑性非晶質炭素系被膜がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具
JP2006224216A (ja) 耐熱合金の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具
JP5499862B2 (ja) 硬質被覆層がすぐれた耐チッピング性と耐摩耗性を発揮する表面被覆切削工具
JP2010234517A (ja) 高速重切削加工で硬質被覆層がすぐれた耐チッピング性、耐摩耗性を発揮する表面被覆切削工具
JP2010207915A (ja) 溶着生の高い被削材の重切削加工で硬質被覆層がすぐれた耐チッピング性と耐摩耗性を発揮する表面被覆切削工具
JP2005095986A (ja) 高速重切削条件で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆サーメット製切削工具

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200580001819.9

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10597505

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2005709435

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2005709435

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 2005709435

Country of ref document: EP